v850 linker scripts
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575 char *type_name;
1576
1577 for (;;)
1578 {
1579 type = check_typedef (type);
1580 if (TYPE_CODE (type) != TYPE_CODE_PTR
1581 && TYPE_CODE (type) != TYPE_CODE_REF)
1582 break;
1583 type = TYPE_TARGET_TYPE (type);
1584 }
1585
1586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (type) != TYPE_CODE_UNION)
1588 {
1589 type_name = type_to_string (type);
1590 make_cleanup (xfree, type_name);
1591 error (_("Type %s is not a structure or union type."), type_name);
1592 }
1593
1594 #if 0
1595 /* FIXME: This change put in by Michael seems incorrect for the case
1596 where the structure tag name is the same as the member name.
1597 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1598 foo; } bell;" Disabled by fnf. */
1599 {
1600 char *type_name;
1601
1602 type_name = type_name_no_tag (type);
1603 if (type_name != NULL && strcmp (type_name, name) == 0)
1604 return type;
1605 }
1606 #endif
1607
1608 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1609 {
1610 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1611
1612 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1613 {
1614 return TYPE_FIELD_TYPE (type, i);
1615 }
1616 else if (!t_field_name || *t_field_name == '\0')
1617 {
1618 struct type *subtype
1619 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1620
1621 if (subtype != NULL)
1622 return subtype;
1623 }
1624 }
1625
1626 /* OK, it's not in this class. Recursively check the baseclasses. */
1627 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1628 {
1629 struct type *t;
1630
1631 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1632 if (t != NULL)
1633 {
1634 return t;
1635 }
1636 }
1637
1638 if (noerr)
1639 {
1640 return NULL;
1641 }
1642
1643 type_name = type_to_string (type);
1644 make_cleanup (xfree, type_name);
1645 error (_("Type %s has no component named %s."), type_name, name);
1646 }
1647
1648 /* Store in *MAX the largest number representable by unsigned integer type
1649 TYPE. */
1650
1651 void
1652 get_unsigned_type_max (struct type *type, ULONGEST *max)
1653 {
1654 unsigned int n;
1655
1656 type = check_typedef (type);
1657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1658 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1659
1660 /* Written this way to avoid overflow. */
1661 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1662 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1663 }
1664
1665 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1666 signed integer type TYPE. */
1667
1668 void
1669 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1670 {
1671 unsigned int n;
1672
1673 type = check_typedef (type);
1674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1675 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1676
1677 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1678 *min = -((ULONGEST) 1 << (n - 1));
1679 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1680 }
1681
1682 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1683 cplus_stuff.vptr_fieldno.
1684
1685 cplus_stuff is initialized to cplus_struct_default which does not
1686 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1687 designated initializers). We cope with that here. */
1688
1689 int
1690 internal_type_vptr_fieldno (struct type *type)
1691 {
1692 type = check_typedef (type);
1693 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (type) == TYPE_CODE_UNION);
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 return -1;
1697 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1698 }
1699
1700 /* Set the value of cplus_stuff.vptr_fieldno. */
1701
1702 void
1703 set_type_vptr_fieldno (struct type *type, int fieldno)
1704 {
1705 type = check_typedef (type);
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 if (!HAVE_CPLUS_STRUCT (type))
1709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1710 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1711 }
1712
1713 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1714 cplus_stuff.vptr_basetype. */
1715
1716 struct type *
1717 internal_type_vptr_basetype (struct type *type)
1718 {
1719 type = check_typedef (type);
1720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1721 || TYPE_CODE (type) == TYPE_CODE_UNION);
1722 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1724 }
1725
1726 /* Set the value of cplus_stuff.vptr_basetype. */
1727
1728 void
1729 set_type_vptr_basetype (struct type *type, struct type *basetype)
1730 {
1731 type = check_typedef (type);
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1737 }
1738
1739 /* Lookup the vptr basetype/fieldno values for TYPE.
1740 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1741 vptr_fieldno. Also, if found and basetype is from the same objfile,
1742 cache the results.
1743 If not found, return -1 and ignore BASETYPEP.
1744 Callers should be aware that in some cases (for example,
1745 the type or one of its baseclasses is a stub type and we are
1746 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1747 this function will not be able to find the
1748 virtual function table pointer, and vptr_fieldno will remain -1 and
1749 vptr_basetype will remain NULL or incomplete. */
1750
1751 int
1752 get_vptr_fieldno (struct type *type, struct type **basetypep)
1753 {
1754 type = check_typedef (type);
1755
1756 if (TYPE_VPTR_FIELDNO (type) < 0)
1757 {
1758 int i;
1759
1760 /* We must start at zero in case the first (and only) baseclass
1761 is virtual (and hence we cannot share the table pointer). */
1762 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1763 {
1764 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1765 int fieldno;
1766 struct type *basetype;
1767
1768 fieldno = get_vptr_fieldno (baseclass, &basetype);
1769 if (fieldno >= 0)
1770 {
1771 /* If the type comes from a different objfile we can't cache
1772 it, it may have a different lifetime. PR 2384 */
1773 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1774 {
1775 set_type_vptr_fieldno (type, fieldno);
1776 set_type_vptr_basetype (type, basetype);
1777 }
1778 if (basetypep)
1779 *basetypep = basetype;
1780 return fieldno;
1781 }
1782 }
1783
1784 /* Not found. */
1785 return -1;
1786 }
1787 else
1788 {
1789 if (basetypep)
1790 *basetypep = TYPE_VPTR_BASETYPE (type);
1791 return TYPE_VPTR_FIELDNO (type);
1792 }
1793 }
1794
1795 static void
1796 stub_noname_complaint (void)
1797 {
1798 complaint (&symfile_complaints, _("stub type has NULL name"));
1799 }
1800
1801 /* Worker for is_dynamic_type. */
1802
1803 static int
1804 is_dynamic_type_internal (struct type *type, int top_level)
1805 {
1806 type = check_typedef (type);
1807
1808 /* We only want to recognize references at the outermost level. */
1809 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1810 type = check_typedef (TYPE_TARGET_TYPE (type));
1811
1812 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1813 dynamic, even if the type itself is statically defined.
1814 From a user's point of view, this may appear counter-intuitive;
1815 but it makes sense in this context, because the point is to determine
1816 whether any part of the type needs to be resolved before it can
1817 be exploited. */
1818 if (TYPE_DATA_LOCATION (type) != NULL
1819 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1820 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1821 return 1;
1822
1823 if (TYPE_ASSOCIATED_PROP (type))
1824 return 1;
1825
1826 if (TYPE_ALLOCATED_PROP (type))
1827 return 1;
1828
1829 switch (TYPE_CODE (type))
1830 {
1831 case TYPE_CODE_RANGE:
1832 {
1833 /* A range type is obviously dynamic if it has at least one
1834 dynamic bound. But also consider the range type to be
1835 dynamic when its subtype is dynamic, even if the bounds
1836 of the range type are static. It allows us to assume that
1837 the subtype of a static range type is also static. */
1838 return (!has_static_range (TYPE_RANGE_DATA (type))
1839 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1840 }
1841
1842 case TYPE_CODE_ARRAY:
1843 {
1844 gdb_assert (TYPE_NFIELDS (type) == 1);
1845
1846 /* The array is dynamic if either the bounds are dynamic,
1847 or the elements it contains have a dynamic contents. */
1848 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1849 return 1;
1850 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1851 }
1852
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 {
1856 int i;
1857
1858 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1859 if (!field_is_static (&TYPE_FIELD (type, i))
1860 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1861 return 1;
1862 }
1863 break;
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* See gdbtypes.h. */
1870
1871 int
1872 is_dynamic_type (struct type *type)
1873 {
1874 return is_dynamic_type_internal (type, 1);
1875 }
1876
1877 static struct type *resolve_dynamic_type_internal
1878 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1879
1880 /* Given a dynamic range type (dyn_range_type) and a stack of
1881 struct property_addr_info elements, return a static version
1882 of that type. */
1883
1884 static struct type *
1885 resolve_dynamic_range (struct type *dyn_range_type,
1886 struct property_addr_info *addr_stack)
1887 {
1888 CORE_ADDR value;
1889 struct type *static_range_type, *static_target_type;
1890 const struct dynamic_prop *prop;
1891 struct dynamic_prop low_bound, high_bound;
1892
1893 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1894
1895 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1896 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1897 {
1898 low_bound.kind = PROP_CONST;
1899 low_bound.data.const_val = value;
1900 }
1901 else
1902 {
1903 low_bound.kind = PROP_UNDEFINED;
1904 low_bound.data.const_val = 0;
1905 }
1906
1907 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1908 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1909 {
1910 high_bound.kind = PROP_CONST;
1911 high_bound.data.const_val = value;
1912
1913 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1914 high_bound.data.const_val
1915 = low_bound.data.const_val + high_bound.data.const_val - 1;
1916 }
1917 else
1918 {
1919 high_bound.kind = PROP_UNDEFINED;
1920 high_bound.data.const_val = 0;
1921 }
1922
1923 static_target_type
1924 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1925 addr_stack, 0);
1926 static_range_type = create_range_type (copy_type (dyn_range_type),
1927 static_target_type,
1928 &low_bound, &high_bound);
1929 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1930 return static_range_type;
1931 }
1932
1933 /* Resolves dynamic bound values of an array type TYPE to static ones.
1934 ADDR_STACK is a stack of struct property_addr_info to be used
1935 if needed during the dynamic resolution. */
1936
1937 static struct type *
1938 resolve_dynamic_array (struct type *type,
1939 struct property_addr_info *addr_stack)
1940 {
1941 CORE_ADDR value;
1942 struct type *elt_type;
1943 struct type *range_type;
1944 struct type *ary_dim;
1945 struct dynamic_prop *prop;
1946
1947 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1948
1949 type = copy_type (type);
1950
1951 elt_type = type;
1952 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1953 range_type = resolve_dynamic_range (range_type, addr_stack);
1954
1955 /* Resolve allocated/associated here before creating a new array type, which
1956 will update the length of the array accordingly. */
1957 prop = TYPE_ALLOCATED_PROP (type);
1958 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1959 {
1960 TYPE_DYN_PROP_ADDR (prop) = value;
1961 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1962 }
1963 prop = TYPE_ASSOCIATED_PROP (type);
1964 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1965 {
1966 TYPE_DYN_PROP_ADDR (prop) = value;
1967 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1968 }
1969
1970 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1971
1972 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1973 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1974 else
1975 elt_type = TYPE_TARGET_TYPE (type);
1976
1977 return create_array_type_with_stride (type, elt_type, range_type,
1978 TYPE_FIELD_BITSIZE (type, 0));
1979 }
1980
1981 /* Resolve dynamic bounds of members of the union TYPE to static
1982 bounds. ADDR_STACK is a stack of struct property_addr_info
1983 to be used if needed during the dynamic resolution. */
1984
1985 static struct type *
1986 resolve_dynamic_union (struct type *type,
1987 struct property_addr_info *addr_stack)
1988 {
1989 struct type *resolved_type;
1990 int i;
1991 unsigned int max_len = 0;
1992
1993 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1994
1995 resolved_type = copy_type (type);
1996 TYPE_FIELDS (resolved_type)
1997 = (struct field *) TYPE_ALLOC (resolved_type,
1998 TYPE_NFIELDS (resolved_type)
1999 * sizeof (struct field));
2000 memcpy (TYPE_FIELDS (resolved_type),
2001 TYPE_FIELDS (type),
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2004 {
2005 struct type *t;
2006
2007 if (field_is_static (&TYPE_FIELD (type, i)))
2008 continue;
2009
2010 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2011 addr_stack, 0);
2012 TYPE_FIELD_TYPE (resolved_type, i) = t;
2013 if (TYPE_LENGTH (t) > max_len)
2014 max_len = TYPE_LENGTH (t);
2015 }
2016
2017 TYPE_LENGTH (resolved_type) = max_len;
2018 return resolved_type;
2019 }
2020
2021 /* Resolve dynamic bounds of members of the struct TYPE to static
2022 bounds. ADDR_STACK is a stack of struct property_addr_info to
2023 be used if needed during the dynamic resolution. */
2024
2025 static struct type *
2026 resolve_dynamic_struct (struct type *type,
2027 struct property_addr_info *addr_stack)
2028 {
2029 struct type *resolved_type;
2030 int i;
2031 unsigned resolved_type_bit_length = 0;
2032
2033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2034 gdb_assert (TYPE_NFIELDS (type) > 0);
2035
2036 resolved_type = copy_type (type);
2037 TYPE_FIELDS (resolved_type)
2038 = (struct field *) TYPE_ALLOC (resolved_type,
2039 TYPE_NFIELDS (resolved_type)
2040 * sizeof (struct field));
2041 memcpy (TYPE_FIELDS (resolved_type),
2042 TYPE_FIELDS (type),
2043 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2044 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2045 {
2046 unsigned new_bit_length;
2047 struct property_addr_info pinfo;
2048
2049 if (field_is_static (&TYPE_FIELD (type, i)))
2050 continue;
2051
2052 /* As we know this field is not a static field, the field's
2053 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2054 this is the case, but only trigger a simple error rather
2055 than an internal error if that fails. While failing
2056 that verification indicates a bug in our code, the error
2057 is not severe enough to suggest to the user he stops
2058 his debugging session because of it. */
2059 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2060 error (_("Cannot determine struct field location"
2061 " (invalid location kind)"));
2062
2063 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2064 pinfo.valaddr = addr_stack->valaddr;
2065 pinfo.addr
2066 = (addr_stack->addr
2067 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2072 &pinfo, 0);
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
2091 }
2092
2093 /* The length of a type won't change for fortran, but it does for C and Ada.
2094 For fortran the size of dynamic fields might change over time but not the
2095 type length of the structure. If we adapt it, we run into problems
2096 when calculating the element offset for arrays of structs. */
2097 if (current_language->la_language != language_fortran)
2098 TYPE_LENGTH (resolved_type)
2099 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2100
2101 /* The Ada language uses this field as a cache for static fixed types: reset
2102 it as RESOLVED_TYPE must have its own static fixed type. */
2103 TYPE_TARGET_TYPE (resolved_type) = NULL;
2104
2105 return resolved_type;
2106 }
2107
2108 /* Worker for resolved_dynamic_type. */
2109
2110 static struct type *
2111 resolve_dynamic_type_internal (struct type *type,
2112 struct property_addr_info *addr_stack,
2113 int top_level)
2114 {
2115 struct type *real_type = check_typedef (type);
2116 struct type *resolved_type = type;
2117 struct dynamic_prop *prop;
2118 CORE_ADDR value;
2119
2120 if (!is_dynamic_type_internal (real_type, top_level))
2121 return type;
2122
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 resolved_type = copy_type (type);
2126 TYPE_TARGET_TYPE (resolved_type)
2127 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2128 top_level);
2129 }
2130 else
2131 {
2132 /* Before trying to resolve TYPE, make sure it is not a stub. */
2133 type = real_type;
2134
2135 switch (TYPE_CODE (type))
2136 {
2137 case TYPE_CODE_REF:
2138 {
2139 struct property_addr_info pinfo;
2140
2141 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2142 pinfo.valaddr = NULL;
2143 if (addr_stack->valaddr != NULL)
2144 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2145 else
2146 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2147 pinfo.next = addr_stack;
2148
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2152 &pinfo, top_level);
2153 break;
2154 }
2155
2156 case TYPE_CODE_ARRAY:
2157 resolved_type = resolve_dynamic_array (type, addr_stack);
2158 break;
2159
2160 case TYPE_CODE_RANGE:
2161 resolved_type = resolve_dynamic_range (type, addr_stack);
2162 break;
2163
2164 case TYPE_CODE_UNION:
2165 resolved_type = resolve_dynamic_union (type, addr_stack);
2166 break;
2167
2168 case TYPE_CODE_STRUCT:
2169 resolved_type = resolve_dynamic_struct (type, addr_stack);
2170 break;
2171 }
2172 }
2173
2174 /* Resolve data_location attribute. */
2175 prop = TYPE_DATA_LOCATION (resolved_type);
2176 if (prop != NULL
2177 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2178 {
2179 TYPE_DYN_PROP_ADDR (prop) = value;
2180 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2181 }
2182
2183 return resolved_type;
2184 }
2185
2186 /* See gdbtypes.h */
2187
2188 struct type *
2189 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2190 CORE_ADDR addr)
2191 {
2192 struct property_addr_info pinfo
2193 = {check_typedef (type), valaddr, addr, NULL};
2194
2195 return resolve_dynamic_type_internal (type, &pinfo, 1);
2196 }
2197
2198 /* See gdbtypes.h */
2199
2200 struct dynamic_prop *
2201 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2202 {
2203 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2204
2205 while (node != NULL)
2206 {
2207 if (node->prop_kind == prop_kind)
2208 return &node->prop;
2209 node = node->next;
2210 }
2211 return NULL;
2212 }
2213
2214 /* See gdbtypes.h */
2215
2216 void
2217 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2218 struct type *type, struct objfile *objfile)
2219 {
2220 struct dynamic_prop_list *temp;
2221
2222 gdb_assert (TYPE_OBJFILE_OWNED (type));
2223
2224 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2225 temp->prop_kind = prop_kind;
2226 temp->prop = prop;
2227 temp->next = TYPE_DYN_PROP_LIST (type);
2228
2229 TYPE_DYN_PROP_LIST (type) = temp;
2230 }
2231
2232 /* Remove dynamic property from TYPE in case it exists. */
2233
2234 void
2235 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2236 struct type *type)
2237 {
2238 struct dynamic_prop_list *prev_node, *curr_node;
2239
2240 curr_node = TYPE_DYN_PROP_LIST (type);
2241 prev_node = NULL;
2242
2243 while (NULL != curr_node)
2244 {
2245 if (curr_node->prop_kind == prop_kind)
2246 {
2247 /* Update the linked list but don't free anything.
2248 The property was allocated on objstack and it is not known
2249 if we are on top of it. Nevertheless, everything is released
2250 when the complete objstack is freed. */
2251 if (NULL == prev_node)
2252 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2253 else
2254 prev_node->next = curr_node->next;
2255
2256 return;
2257 }
2258
2259 prev_node = curr_node;
2260 curr_node = curr_node->next;
2261 }
2262 }
2263
2264 /* Find the real type of TYPE. This function returns the real type,
2265 after removing all layers of typedefs, and completing opaque or stub
2266 types. Completion changes the TYPE argument, but stripping of
2267 typedefs does not.
2268
2269 Instance flags (e.g. const/volatile) are preserved as typedefs are
2270 stripped. If necessary a new qualified form of the underlying type
2271 is created.
2272
2273 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2274 not been computed and we're either in the middle of reading symbols, or
2275 there was no name for the typedef in the debug info.
2276
2277 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2278 QUITs in the symbol reading code can also throw.
2279 Thus this function can throw an exception.
2280
2281 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2282 the target type.
2283
2284 If this is a stubbed struct (i.e. declared as struct foo *), see if
2285 we can find a full definition in some other file. If so, copy this
2286 definition, so we can use it in future. There used to be a comment
2287 (but not any code) that if we don't find a full definition, we'd
2288 set a flag so we don't spend time in the future checking the same
2289 type. That would be a mistake, though--we might load in more
2290 symbols which contain a full definition for the type. */
2291
2292 struct type *
2293 check_typedef (struct type *type)
2294 {
2295 struct type *orig_type = type;
2296 /* While we're removing typedefs, we don't want to lose qualifiers.
2297 E.g., const/volatile. */
2298 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2299
2300 gdb_assert (type);
2301
2302 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 if (!TYPE_TARGET_TYPE (type))
2305 {
2306 const char *name;
2307 struct symbol *sym;
2308
2309 /* It is dangerous to call lookup_symbol if we are currently
2310 reading a symtab. Infinite recursion is one danger. */
2311 if (currently_reading_symtab)
2312 return make_qualified_type (type, instance_flags, NULL);
2313
2314 name = type_name_no_tag (type);
2315 /* FIXME: shouldn't we separately check the TYPE_NAME and
2316 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2317 VAR_DOMAIN as appropriate? (this code was written before
2318 TYPE_NAME and TYPE_TAG_NAME were separate). */
2319 if (name == NULL)
2320 {
2321 stub_noname_complaint ();
2322 return make_qualified_type (type, instance_flags, NULL);
2323 }
2324 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2325 if (sym)
2326 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2327 else /* TYPE_CODE_UNDEF */
2328 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2329 }
2330 type = TYPE_TARGET_TYPE (type);
2331
2332 /* Preserve the instance flags as we traverse down the typedef chain.
2333
2334 Handling address spaces/classes is nasty, what do we do if there's a
2335 conflict?
2336 E.g., what if an outer typedef marks the type as class_1 and an inner
2337 typedef marks the type as class_2?
2338 This is the wrong place to do such error checking. We leave it to
2339 the code that created the typedef in the first place to flag the
2340 error. We just pick the outer address space (akin to letting the
2341 outer cast in a chain of casting win), instead of assuming
2342 "it can't happen". */
2343 {
2344 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2345 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2346 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2347 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2348
2349 /* Treat code vs data spaces and address classes separately. */
2350 if ((instance_flags & ALL_SPACES) != 0)
2351 new_instance_flags &= ~ALL_SPACES;
2352 if ((instance_flags & ALL_CLASSES) != 0)
2353 new_instance_flags &= ~ALL_CLASSES;
2354
2355 instance_flags |= new_instance_flags;
2356 }
2357 }
2358
2359 /* If this is a struct/class/union with no fields, then check
2360 whether a full definition exists somewhere else. This is for
2361 systems where a type definition with no fields is issued for such
2362 types, instead of identifying them as stub types in the first
2363 place. */
2364
2365 if (TYPE_IS_OPAQUE (type)
2366 && opaque_type_resolution
2367 && !currently_reading_symtab)
2368 {
2369 const char *name = type_name_no_tag (type);
2370 struct type *newtype;
2371
2372 if (name == NULL)
2373 {
2374 stub_noname_complaint ();
2375 return make_qualified_type (type, instance_flags, NULL);
2376 }
2377 newtype = lookup_transparent_type (name);
2378
2379 if (newtype)
2380 {
2381 /* If the resolved type and the stub are in the same
2382 objfile, then replace the stub type with the real deal.
2383 But if they're in separate objfiles, leave the stub
2384 alone; we'll just look up the transparent type every time
2385 we call check_typedef. We can't create pointers between
2386 types allocated to different objfiles, since they may
2387 have different lifetimes. Trying to copy NEWTYPE over to
2388 TYPE's objfile is pointless, too, since you'll have to
2389 move over any other types NEWTYPE refers to, which could
2390 be an unbounded amount of stuff. */
2391 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2392 type = make_qualified_type (newtype,
2393 TYPE_INSTANCE_FLAGS (type),
2394 type);
2395 else
2396 type = newtype;
2397 }
2398 }
2399 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2400 types. */
2401 else if (TYPE_STUB (type) && !currently_reading_symtab)
2402 {
2403 const char *name = type_name_no_tag (type);
2404 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2405 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2406 as appropriate? (this code was written before TYPE_NAME and
2407 TYPE_TAG_NAME were separate). */
2408 struct symbol *sym;
2409
2410 if (name == NULL)
2411 {
2412 stub_noname_complaint ();
2413 return make_qualified_type (type, instance_flags, NULL);
2414 }
2415 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2416 if (sym)
2417 {
2418 /* Same as above for opaque types, we can replace the stub
2419 with the complete type only if they are in the same
2420 objfile. */
2421 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2422 type = make_qualified_type (SYMBOL_TYPE (sym),
2423 TYPE_INSTANCE_FLAGS (type),
2424 type);
2425 else
2426 type = SYMBOL_TYPE (sym);
2427 }
2428 }
2429
2430 if (TYPE_TARGET_STUB (type))
2431 {
2432 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2433
2434 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2435 {
2436 /* Nothing we can do. */
2437 }
2438 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2439 {
2440 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2441 TYPE_TARGET_STUB (type) = 0;
2442 }
2443 }
2444
2445 type = make_qualified_type (type, instance_flags, NULL);
2446
2447 /* Cache TYPE_LENGTH for future use. */
2448 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2449
2450 return type;
2451 }
2452
2453 /* Parse a type expression in the string [P..P+LENGTH). If an error
2454 occurs, silently return a void type. */
2455
2456 static struct type *
2457 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2458 {
2459 struct ui_file *saved_gdb_stderr;
2460 struct type *type = NULL; /* Initialize to keep gcc happy. */
2461
2462 /* Suppress error messages. */
2463 saved_gdb_stderr = gdb_stderr;
2464 gdb_stderr = ui_file_new ();
2465
2466 /* Call parse_and_eval_type() without fear of longjmp()s. */
2467 TRY
2468 {
2469 type = parse_and_eval_type (p, length);
2470 }
2471 CATCH (except, RETURN_MASK_ERROR)
2472 {
2473 type = builtin_type (gdbarch)->builtin_void;
2474 }
2475 END_CATCH
2476
2477 /* Stop suppressing error messages. */
2478 ui_file_delete (gdb_stderr);
2479 gdb_stderr = saved_gdb_stderr;
2480
2481 return type;
2482 }
2483
2484 /* Ugly hack to convert method stubs into method types.
2485
2486 He ain't kiddin'. This demangles the name of the method into a
2487 string including argument types, parses out each argument type,
2488 generates a string casting a zero to that type, evaluates the
2489 string, and stuffs the resulting type into an argtype vector!!!
2490 Then it knows the type of the whole function (including argument
2491 types for overloading), which info used to be in the stab's but was
2492 removed to hack back the space required for them. */
2493
2494 static void
2495 check_stub_method (struct type *type, int method_id, int signature_id)
2496 {
2497 struct gdbarch *gdbarch = get_type_arch (type);
2498 struct fn_field *f;
2499 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2500 char *demangled_name = gdb_demangle (mangled_name,
2501 DMGL_PARAMS | DMGL_ANSI);
2502 char *argtypetext, *p;
2503 int depth = 0, argcount = 1;
2504 struct field *argtypes;
2505 struct type *mtype;
2506
2507 /* Make sure we got back a function string that we can use. */
2508 if (demangled_name)
2509 p = strchr (demangled_name, '(');
2510 else
2511 p = NULL;
2512
2513 if (demangled_name == NULL || p == NULL)
2514 error (_("Internal: Cannot demangle mangled name `%s'."),
2515 mangled_name);
2516
2517 /* Now, read in the parameters that define this type. */
2518 p += 1;
2519 argtypetext = p;
2520 while (*p)
2521 {
2522 if (*p == '(' || *p == '<')
2523 {
2524 depth += 1;
2525 }
2526 else if (*p == ')' || *p == '>')
2527 {
2528 depth -= 1;
2529 }
2530 else if (*p == ',' && depth == 0)
2531 {
2532 argcount += 1;
2533 }
2534
2535 p += 1;
2536 }
2537
2538 /* If we read one argument and it was ``void'', don't count it. */
2539 if (startswith (argtypetext, "(void)"))
2540 argcount -= 1;
2541
2542 /* We need one extra slot, for the THIS pointer. */
2543
2544 argtypes = (struct field *)
2545 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2546 p = argtypetext;
2547
2548 /* Add THIS pointer for non-static methods. */
2549 f = TYPE_FN_FIELDLIST1 (type, method_id);
2550 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2551 argcount = 0;
2552 else
2553 {
2554 argtypes[0].type = lookup_pointer_type (type);
2555 argcount = 1;
2556 }
2557
2558 if (*p != ')') /* () means no args, skip while. */
2559 {
2560 depth = 0;
2561 while (*p)
2562 {
2563 if (depth <= 0 && (*p == ',' || *p == ')'))
2564 {
2565 /* Avoid parsing of ellipsis, they will be handled below.
2566 Also avoid ``void'' as above. */
2567 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2568 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2569 {
2570 argtypes[argcount].type =
2571 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2572 argcount += 1;
2573 }
2574 argtypetext = p + 1;
2575 }
2576
2577 if (*p == '(' || *p == '<')
2578 {
2579 depth += 1;
2580 }
2581 else if (*p == ')' || *p == '>')
2582 {
2583 depth -= 1;
2584 }
2585
2586 p += 1;
2587 }
2588 }
2589
2590 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2591
2592 /* Now update the old "stub" type into a real type. */
2593 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2594 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2595 We want a method (TYPE_CODE_METHOD). */
2596 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2597 argtypes, argcount, p[-2] == '.');
2598 TYPE_STUB (mtype) = 0;
2599 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2600
2601 xfree (demangled_name);
2602 }
2603
2604 /* This is the external interface to check_stub_method, above. This
2605 function unstubs all of the signatures for TYPE's METHOD_ID method
2606 name. After calling this function TYPE_FN_FIELD_STUB will be
2607 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2608 correct.
2609
2610 This function unfortunately can not die until stabs do. */
2611
2612 void
2613 check_stub_method_group (struct type *type, int method_id)
2614 {
2615 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2617 int j, found_stub = 0;
2618
2619 for (j = 0; j < len; j++)
2620 if (TYPE_FN_FIELD_STUB (f, j))
2621 {
2622 found_stub = 1;
2623 check_stub_method (type, method_id, j);
2624 }
2625
2626 /* GNU v3 methods with incorrect names were corrected when we read
2627 in type information, because it was cheaper to do it then. The
2628 only GNU v2 methods with incorrect method names are operators and
2629 destructors; destructors were also corrected when we read in type
2630 information.
2631
2632 Therefore the only thing we need to handle here are v2 operator
2633 names. */
2634 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2635 {
2636 int ret;
2637 char dem_opname[256];
2638
2639 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2640 method_id),
2641 dem_opname, DMGL_ANSI);
2642 if (!ret)
2643 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2644 method_id),
2645 dem_opname, 0);
2646 if (ret)
2647 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2648 }
2649 }
2650
2651 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2652 const struct cplus_struct_type cplus_struct_default = { };
2653
2654 void
2655 allocate_cplus_struct_type (struct type *type)
2656 {
2657 if (HAVE_CPLUS_STRUCT (type))
2658 /* Structure was already allocated. Nothing more to do. */
2659 return;
2660
2661 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2662 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2663 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2664 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2665 set_type_vptr_fieldno (type, -1);
2666 }
2667
2668 const struct gnat_aux_type gnat_aux_default =
2669 { NULL };
2670
2671 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2672 and allocate the associated gnat-specific data. The gnat-specific
2673 data is also initialized to gnat_aux_default. */
2674
2675 void
2676 allocate_gnat_aux_type (struct type *type)
2677 {
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2679 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2680 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2681 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2682 }
2683
2684 /* Helper function to initialize a newly allocated type. Set type code
2685 to CODE and initialize the type-specific fields accordingly. */
2686
2687 static void
2688 set_type_code (struct type *type, enum type_code code)
2689 {
2690 TYPE_CODE (type) = code;
2691
2692 switch (code)
2693 {
2694 case TYPE_CODE_STRUCT:
2695 case TYPE_CODE_UNION:
2696 case TYPE_CODE_NAMESPACE:
2697 INIT_CPLUS_SPECIFIC (type);
2698 break;
2699 case TYPE_CODE_FLT:
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2701 break;
2702 case TYPE_CODE_FUNC:
2703 INIT_FUNC_SPECIFIC (type);
2704 break;
2705 }
2706 }
2707
2708 /* Helper function to verify floating-point format and size.
2709 BIT is the type size in bits; if BIT equals -1, the size is
2710 determined by the floatformat. Returns size to be used. */
2711
2712 static int
2713 verify_floatformat (int bit, const struct floatformat **floatformats)
2714 {
2715 gdb_assert (floatformats != NULL);
2716 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
2717
2718 if (bit == -1)
2719 bit = floatformats[0]->totalsize;
2720 gdb_assert (bit >= 0);
2721
2722 size_t len = bit / TARGET_CHAR_BIT;
2723 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
2724 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
2725
2726 return bit;
2727 }
2728
2729 /* Helper function to initialize the standard scalar types.
2730
2731 If NAME is non-NULL, then it is used to initialize the type name.
2732 Note that NAME is not copied; it is required to have a lifetime at
2733 least as long as OBJFILE. */
2734
2735 struct type *
2736 init_type (struct objfile *objfile, enum type_code code, int length,
2737 const char *name)
2738 {
2739 struct type *type;
2740
2741 type = alloc_type (objfile);
2742 set_type_code (type, code);
2743 TYPE_LENGTH (type) = length;
2744 TYPE_NAME (type) = name;
2745
2746 return type;
2747 }
2748
2749 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2750 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2751 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2752
2753 struct type *
2754 init_integer_type (struct objfile *objfile,
2755 int bit, int unsigned_p, const char *name)
2756 {
2757 struct type *t;
2758
2759 t = init_type (objfile, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
2760 if (unsigned_p)
2761 TYPE_UNSIGNED (t) = 1;
2762
2763 return t;
2764 }
2765
2766 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2767 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2768 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2769
2770 struct type *
2771 init_character_type (struct objfile *objfile,
2772 int bit, int unsigned_p, const char *name)
2773 {
2774 struct type *t;
2775
2776 t = init_type (objfile, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
2777 if (unsigned_p)
2778 TYPE_UNSIGNED (t) = 1;
2779
2780 return t;
2781 }
2782
2783 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2784 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2785 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2786
2787 struct type *
2788 init_boolean_type (struct objfile *objfile,
2789 int bit, int unsigned_p, const char *name)
2790 {
2791 struct type *t;
2792
2793 t = init_type (objfile, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
2794 if (unsigned_p)
2795 TYPE_UNSIGNED (t) = 1;
2796
2797 return t;
2798 }
2799
2800 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2801 BIT is the type size in bits; if BIT equals -1, the size is
2802 determined by the floatformat. NAME is the type name. Set the
2803 TYPE_FLOATFORMAT from FLOATFORMATS. */
2804
2805 struct type *
2806 init_float_type (struct objfile *objfile,
2807 int bit, const char *name,
2808 const struct floatformat **floatformats)
2809 {
2810 struct type *t;
2811
2812 bit = verify_floatformat (bit, floatformats);
2813 t = init_type (objfile, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
2814 TYPE_FLOATFORMAT (t) = floatformats;
2815
2816 return t;
2817 }
2818
2819 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2820 BIT is the type size in bits. NAME is the type name. */
2821
2822 struct type *
2823 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2824 {
2825 struct type *t;
2826
2827 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
2828 return t;
2829 }
2830
2831 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2832 NAME is the type name. TARGET_TYPE is the component float type. */
2833
2834 struct type *
2835 init_complex_type (struct objfile *objfile,
2836 const char *name, struct type *target_type)
2837 {
2838 struct type *t;
2839
2840 t = init_type (objfile, TYPE_CODE_COMPLEX,
2841 2 * TYPE_LENGTH (target_type), name);
2842 TYPE_TARGET_TYPE (t) = target_type;
2843 return t;
2844 }
2845
2846 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2847 BIT is the pointer type size in bits. NAME is the type name.
2848 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2849 TYPE_UNSIGNED flag. */
2850
2851 struct type *
2852 init_pointer_type (struct objfile *objfile,
2853 int bit, const char *name, struct type *target_type)
2854 {
2855 struct type *t;
2856
2857 t = init_type (objfile, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
2858 TYPE_TARGET_TYPE (t) = target_type;
2859 TYPE_UNSIGNED (t) = 1;
2860 return t;
2861 }
2862
2863 \f
2864 /* Queries on types. */
2865
2866 int
2867 can_dereference (struct type *t)
2868 {
2869 /* FIXME: Should we return true for references as well as
2870 pointers? */
2871 t = check_typedef (t);
2872 return
2873 (t != NULL
2874 && TYPE_CODE (t) == TYPE_CODE_PTR
2875 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2876 }
2877
2878 int
2879 is_integral_type (struct type *t)
2880 {
2881 t = check_typedef (t);
2882 return
2883 ((t != NULL)
2884 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2885 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2886 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2887 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2888 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2889 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2890 }
2891
2892 /* Return true if TYPE is scalar. */
2893
2894 int
2895 is_scalar_type (struct type *type)
2896 {
2897 type = check_typedef (type);
2898
2899 switch (TYPE_CODE (type))
2900 {
2901 case TYPE_CODE_ARRAY:
2902 case TYPE_CODE_STRUCT:
2903 case TYPE_CODE_UNION:
2904 case TYPE_CODE_SET:
2905 case TYPE_CODE_STRING:
2906 return 0;
2907 default:
2908 return 1;
2909 }
2910 }
2911
2912 /* Return true if T is scalar, or a composite type which in practice has
2913 the memory layout of a scalar type. E.g., an array or struct with only
2914 one scalar element inside it, or a union with only scalar elements. */
2915
2916 int
2917 is_scalar_type_recursive (struct type *t)
2918 {
2919 t = check_typedef (t);
2920
2921 if (is_scalar_type (t))
2922 return 1;
2923 /* Are we dealing with an array or string of known dimensions? */
2924 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2925 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2926 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2927 {
2928 LONGEST low_bound, high_bound;
2929 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2930
2931 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2932
2933 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2934 }
2935 /* Are we dealing with a struct with one element? */
2936 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2937 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2938 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2939 {
2940 int i, n = TYPE_NFIELDS (t);
2941
2942 /* If all elements of the union are scalar, then the union is scalar. */
2943 for (i = 0; i < n; i++)
2944 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2945 return 0;
2946
2947 return 1;
2948 }
2949
2950 return 0;
2951 }
2952
2953 /* Return true is T is a class or a union. False otherwise. */
2954
2955 int
2956 class_or_union_p (const struct type *t)
2957 {
2958 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2959 || TYPE_CODE (t) == TYPE_CODE_UNION);
2960 }
2961
2962 /* A helper function which returns true if types A and B represent the
2963 "same" class type. This is true if the types have the same main
2964 type, or the same name. */
2965
2966 int
2967 class_types_same_p (const struct type *a, const struct type *b)
2968 {
2969 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2970 || (TYPE_NAME (a) && TYPE_NAME (b)
2971 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2972 }
2973
2974 /* If BASE is an ancestor of DCLASS return the distance between them.
2975 otherwise return -1;
2976 eg:
2977
2978 class A {};
2979 class B: public A {};
2980 class C: public B {};
2981 class D: C {};
2982
2983 distance_to_ancestor (A, A, 0) = 0
2984 distance_to_ancestor (A, B, 0) = 1
2985 distance_to_ancestor (A, C, 0) = 2
2986 distance_to_ancestor (A, D, 0) = 3
2987
2988 If PUBLIC is 1 then only public ancestors are considered,
2989 and the function returns the distance only if BASE is a public ancestor
2990 of DCLASS.
2991 Eg:
2992
2993 distance_to_ancestor (A, D, 1) = -1. */
2994
2995 static int
2996 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2997 {
2998 int i;
2999 int d;
3000
3001 base = check_typedef (base);
3002 dclass = check_typedef (dclass);
3003
3004 if (class_types_same_p (base, dclass))
3005 return 0;
3006
3007 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3008 {
3009 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3010 continue;
3011
3012 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3013 if (d >= 0)
3014 return 1 + d;
3015 }
3016
3017 return -1;
3018 }
3019
3020 /* Check whether BASE is an ancestor or base class or DCLASS
3021 Return 1 if so, and 0 if not.
3022 Note: If BASE and DCLASS are of the same type, this function
3023 will return 1. So for some class A, is_ancestor (A, A) will
3024 return 1. */
3025
3026 int
3027 is_ancestor (struct type *base, struct type *dclass)
3028 {
3029 return distance_to_ancestor (base, dclass, 0) >= 0;
3030 }
3031
3032 /* Like is_ancestor, but only returns true when BASE is a public
3033 ancestor of DCLASS. */
3034
3035 int
3036 is_public_ancestor (struct type *base, struct type *dclass)
3037 {
3038 return distance_to_ancestor (base, dclass, 1) >= 0;
3039 }
3040
3041 /* A helper function for is_unique_ancestor. */
3042
3043 static int
3044 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3045 int *offset,
3046 const gdb_byte *valaddr, int embedded_offset,
3047 CORE_ADDR address, struct value *val)
3048 {
3049 int i, count = 0;
3050
3051 base = check_typedef (base);
3052 dclass = check_typedef (dclass);
3053
3054 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3055 {
3056 struct type *iter;
3057 int this_offset;
3058
3059 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3060
3061 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3062 address, val);
3063
3064 if (class_types_same_p (base, iter))
3065 {
3066 /* If this is the first subclass, set *OFFSET and set count
3067 to 1. Otherwise, if this is at the same offset as
3068 previous instances, do nothing. Otherwise, increment
3069 count. */
3070 if (*offset == -1)
3071 {
3072 *offset = this_offset;
3073 count = 1;
3074 }
3075 else if (this_offset == *offset)
3076 {
3077 /* Nothing. */
3078 }
3079 else
3080 ++count;
3081 }
3082 else
3083 count += is_unique_ancestor_worker (base, iter, offset,
3084 valaddr,
3085 embedded_offset + this_offset,
3086 address, val);
3087 }
3088
3089 return count;
3090 }
3091
3092 /* Like is_ancestor, but only returns true if BASE is a unique base
3093 class of the type of VAL. */
3094
3095 int
3096 is_unique_ancestor (struct type *base, struct value *val)
3097 {
3098 int offset = -1;
3099
3100 return is_unique_ancestor_worker (base, value_type (val), &offset,
3101 value_contents_for_printing (val),
3102 value_embedded_offset (val),
3103 value_address (val), val) == 1;
3104 }
3105
3106 \f
3107 /* Overload resolution. */
3108
3109 /* Return the sum of the rank of A with the rank of B. */
3110
3111 struct rank
3112 sum_ranks (struct rank a, struct rank b)
3113 {
3114 struct rank c;
3115 c.rank = a.rank + b.rank;
3116 c.subrank = a.subrank + b.subrank;
3117 return c;
3118 }
3119
3120 /* Compare rank A and B and return:
3121 0 if a = b
3122 1 if a is better than b
3123 -1 if b is better than a. */
3124
3125 int
3126 compare_ranks (struct rank a, struct rank b)
3127 {
3128 if (a.rank == b.rank)
3129 {
3130 if (a.subrank == b.subrank)
3131 return 0;
3132 if (a.subrank < b.subrank)
3133 return 1;
3134 if (a.subrank > b.subrank)
3135 return -1;
3136 }
3137
3138 if (a.rank < b.rank)
3139 return 1;
3140
3141 /* a.rank > b.rank */
3142 return -1;
3143 }
3144
3145 /* Functions for overload resolution begin here. */
3146
3147 /* Compare two badness vectors A and B and return the result.
3148 0 => A and B are identical
3149 1 => A and B are incomparable
3150 2 => A is better than B
3151 3 => A is worse than B */
3152
3153 int
3154 compare_badness (struct badness_vector *a, struct badness_vector *b)
3155 {
3156 int i;
3157 int tmp;
3158 short found_pos = 0; /* any positives in c? */
3159 short found_neg = 0; /* any negatives in c? */
3160
3161 /* differing lengths => incomparable */
3162 if (a->length != b->length)
3163 return 1;
3164
3165 /* Subtract b from a */
3166 for (i = 0; i < a->length; i++)
3167 {
3168 tmp = compare_ranks (b->rank[i], a->rank[i]);
3169 if (tmp > 0)
3170 found_pos = 1;
3171 else if (tmp < 0)
3172 found_neg = 1;
3173 }
3174
3175 if (found_pos)
3176 {
3177 if (found_neg)
3178 return 1; /* incomparable */
3179 else
3180 return 3; /* A > B */
3181 }
3182 else
3183 /* no positives */
3184 {
3185 if (found_neg)
3186 return 2; /* A < B */
3187 else
3188 return 0; /* A == B */
3189 }
3190 }
3191
3192 /* Rank a function by comparing its parameter types (PARMS, length
3193 NPARMS), to the types of an argument list (ARGS, length NARGS).
3194 Return a pointer to a badness vector. This has NARGS + 1
3195 entries. */
3196
3197 struct badness_vector *
3198 rank_function (struct type **parms, int nparms,
3199 struct value **args, int nargs)
3200 {
3201 int i;
3202 struct badness_vector *bv = XNEW (struct badness_vector);
3203 int min_len = nparms < nargs ? nparms : nargs;
3204
3205 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3206 bv->rank = XNEWVEC (struct rank, nargs + 1);
3207
3208 /* First compare the lengths of the supplied lists.
3209 If there is a mismatch, set it to a high value. */
3210
3211 /* pai/1997-06-03 FIXME: when we have debug info about default
3212 arguments and ellipsis parameter lists, we should consider those
3213 and rank the length-match more finely. */
3214
3215 LENGTH_MATCH (bv) = (nargs != nparms)
3216 ? LENGTH_MISMATCH_BADNESS
3217 : EXACT_MATCH_BADNESS;
3218
3219 /* Now rank all the parameters of the candidate function. */
3220 for (i = 1; i <= min_len; i++)
3221 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3222 args[i - 1]);
3223
3224 /* If more arguments than parameters, add dummy entries. */
3225 for (i = min_len + 1; i <= nargs; i++)
3226 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3227
3228 return bv;
3229 }
3230
3231 /* Compare the names of two integer types, assuming that any sign
3232 qualifiers have been checked already. We do it this way because
3233 there may be an "int" in the name of one of the types. */
3234
3235 static int
3236 integer_types_same_name_p (const char *first, const char *second)
3237 {
3238 int first_p, second_p;
3239
3240 /* If both are shorts, return 1; if neither is a short, keep
3241 checking. */
3242 first_p = (strstr (first, "short") != NULL);
3243 second_p = (strstr (second, "short") != NULL);
3244 if (first_p && second_p)
3245 return 1;
3246 if (first_p || second_p)
3247 return 0;
3248
3249 /* Likewise for long. */
3250 first_p = (strstr (first, "long") != NULL);
3251 second_p = (strstr (second, "long") != NULL);
3252 if (first_p && second_p)
3253 return 1;
3254 if (first_p || second_p)
3255 return 0;
3256
3257 /* Likewise for char. */
3258 first_p = (strstr (first, "char") != NULL);
3259 second_p = (strstr (second, "char") != NULL);
3260 if (first_p && second_p)
3261 return 1;
3262 if (first_p || second_p)
3263 return 0;
3264
3265 /* They must both be ints. */
3266 return 1;
3267 }
3268
3269 /* Compares type A to type B returns 1 if the represent the same type
3270 0 otherwise. */
3271
3272 int
3273 types_equal (struct type *a, struct type *b)
3274 {
3275 /* Identical type pointers. */
3276 /* However, this still doesn't catch all cases of same type for b
3277 and a. The reason is that builtin types are different from
3278 the same ones constructed from the object. */
3279 if (a == b)
3280 return 1;
3281
3282 /* Resolve typedefs */
3283 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3284 a = check_typedef (a);
3285 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3286 b = check_typedef (b);
3287
3288 /* If after resolving typedefs a and b are not of the same type
3289 code then they are not equal. */
3290 if (TYPE_CODE (a) != TYPE_CODE (b))
3291 return 0;
3292
3293 /* If a and b are both pointers types or both reference types then
3294 they are equal of the same type iff the objects they refer to are
3295 of the same type. */
3296 if (TYPE_CODE (a) == TYPE_CODE_PTR
3297 || TYPE_CODE (a) == TYPE_CODE_REF)
3298 return types_equal (TYPE_TARGET_TYPE (a),
3299 TYPE_TARGET_TYPE (b));
3300
3301 /* Well, damnit, if the names are exactly the same, I'll say they
3302 are exactly the same. This happens when we generate method
3303 stubs. The types won't point to the same address, but they
3304 really are the same. */
3305
3306 if (TYPE_NAME (a) && TYPE_NAME (b)
3307 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3308 return 1;
3309
3310 /* Check if identical after resolving typedefs. */
3311 if (a == b)
3312 return 1;
3313
3314 /* Two function types are equal if their argument and return types
3315 are equal. */
3316 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3317 {
3318 int i;
3319
3320 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3321 return 0;
3322
3323 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3324 return 0;
3325
3326 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3327 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3328 return 0;
3329
3330 return 1;
3331 }
3332
3333 return 0;
3334 }
3335 \f
3336 /* Deep comparison of types. */
3337
3338 /* An entry in the type-equality bcache. */
3339
3340 typedef struct type_equality_entry
3341 {
3342 struct type *type1, *type2;
3343 } type_equality_entry_d;
3344
3345 DEF_VEC_O (type_equality_entry_d);
3346
3347 /* A helper function to compare two strings. Returns 1 if they are
3348 the same, 0 otherwise. Handles NULLs properly. */
3349
3350 static int
3351 compare_maybe_null_strings (const char *s, const char *t)
3352 {
3353 if (s == NULL && t != NULL)
3354 return 0;
3355 else if (s != NULL && t == NULL)
3356 return 0;
3357 else if (s == NULL && t== NULL)
3358 return 1;
3359 return strcmp (s, t) == 0;
3360 }
3361
3362 /* A helper function for check_types_worklist that checks two types for
3363 "deep" equality. Returns non-zero if the types are considered the
3364 same, zero otherwise. */
3365
3366 static int
3367 check_types_equal (struct type *type1, struct type *type2,
3368 VEC (type_equality_entry_d) **worklist)
3369 {
3370 type1 = check_typedef (type1);
3371 type2 = check_typedef (type2);
3372
3373 if (type1 == type2)
3374 return 1;
3375
3376 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3377 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3378 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3379 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3380 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3381 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3382 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3383 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3384 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3385 return 0;
3386
3387 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3388 TYPE_TAG_NAME (type2)))
3389 return 0;
3390 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3391 return 0;
3392
3393 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3394 {
3395 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3396 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3397 return 0;
3398 }
3399 else
3400 {
3401 int i;
3402
3403 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3404 {
3405 const struct field *field1 = &TYPE_FIELD (type1, i);
3406 const struct field *field2 = &TYPE_FIELD (type2, i);
3407 struct type_equality_entry entry;
3408
3409 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3410 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3411 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3412 return 0;
3413 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3414 FIELD_NAME (*field2)))
3415 return 0;
3416 switch (FIELD_LOC_KIND (*field1))
3417 {
3418 case FIELD_LOC_KIND_BITPOS:
3419 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3420 return 0;
3421 break;
3422 case FIELD_LOC_KIND_ENUMVAL:
3423 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3424 return 0;
3425 break;
3426 case FIELD_LOC_KIND_PHYSADDR:
3427 if (FIELD_STATIC_PHYSADDR (*field1)
3428 != FIELD_STATIC_PHYSADDR (*field2))
3429 return 0;
3430 break;
3431 case FIELD_LOC_KIND_PHYSNAME:
3432 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3433 FIELD_STATIC_PHYSNAME (*field2)))
3434 return 0;
3435 break;
3436 case FIELD_LOC_KIND_DWARF_BLOCK:
3437 {
3438 struct dwarf2_locexpr_baton *block1, *block2;
3439
3440 block1 = FIELD_DWARF_BLOCK (*field1);
3441 block2 = FIELD_DWARF_BLOCK (*field2);
3442 if (block1->per_cu != block2->per_cu
3443 || block1->size != block2->size
3444 || memcmp (block1->data, block2->data, block1->size) != 0)
3445 return 0;
3446 }
3447 break;
3448 default:
3449 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3450 "%d by check_types_equal"),
3451 FIELD_LOC_KIND (*field1));
3452 }
3453
3454 entry.type1 = FIELD_TYPE (*field1);
3455 entry.type2 = FIELD_TYPE (*field2);
3456 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3457 }
3458 }
3459
3460 if (TYPE_TARGET_TYPE (type1) != NULL)
3461 {
3462 struct type_equality_entry entry;
3463
3464 if (TYPE_TARGET_TYPE (type2) == NULL)
3465 return 0;
3466
3467 entry.type1 = TYPE_TARGET_TYPE (type1);
3468 entry.type2 = TYPE_TARGET_TYPE (type2);
3469 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3470 }
3471 else if (TYPE_TARGET_TYPE (type2) != NULL)
3472 return 0;
3473
3474 return 1;
3475 }
3476
3477 /* Check types on a worklist for equality. Returns zero if any pair
3478 is not equal, non-zero if they are all considered equal. */
3479
3480 static int
3481 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3482 struct bcache *cache)
3483 {
3484 while (!VEC_empty (type_equality_entry_d, *worklist))
3485 {
3486 struct type_equality_entry entry;
3487 int added;
3488
3489 entry = *VEC_last (type_equality_entry_d, *worklist);
3490 VEC_pop (type_equality_entry_d, *worklist);
3491
3492 /* If the type pair has already been visited, we know it is
3493 ok. */
3494 bcache_full (&entry, sizeof (entry), cache, &added);
3495 if (!added)
3496 continue;
3497
3498 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3499 return 0;
3500 }
3501
3502 return 1;
3503 }
3504
3505 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3506 "deep comparison". Otherwise return zero. */
3507
3508 int
3509 types_deeply_equal (struct type *type1, struct type *type2)
3510 {
3511 struct gdb_exception except = exception_none;
3512 int result = 0;
3513 struct bcache *cache;
3514 VEC (type_equality_entry_d) *worklist = NULL;
3515 struct type_equality_entry entry;
3516
3517 gdb_assert (type1 != NULL && type2 != NULL);
3518
3519 /* Early exit for the simple case. */
3520 if (type1 == type2)
3521 return 1;
3522
3523 cache = bcache_xmalloc (NULL, NULL);
3524
3525 entry.type1 = type1;
3526 entry.type2 = type2;
3527 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3528
3529 /* check_types_worklist calls several nested helper functions, some
3530 of which can raise a GDB exception, so we just check and rethrow
3531 here. If there is a GDB exception, a comparison is not capable
3532 (or trusted), so exit. */
3533 TRY
3534 {
3535 result = check_types_worklist (&worklist, cache);
3536 }
3537 CATCH (ex, RETURN_MASK_ALL)
3538 {
3539 except = ex;
3540 }
3541 END_CATCH
3542
3543 bcache_xfree (cache);
3544 VEC_free (type_equality_entry_d, worklist);
3545
3546 /* Rethrow if there was a problem. */
3547 if (except.reason < 0)
3548 throw_exception (except);
3549
3550 return result;
3551 }
3552
3553 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3554 Otherwise return one. */
3555
3556 int
3557 type_not_allocated (const struct type *type)
3558 {
3559 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3560
3561 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3562 && !TYPE_DYN_PROP_ADDR (prop));
3563 }
3564
3565 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3566 Otherwise return one. */
3567
3568 int
3569 type_not_associated (const struct type *type)
3570 {
3571 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3572
3573 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3574 && !TYPE_DYN_PROP_ADDR (prop));
3575 }
3576 \f
3577 /* Compare one type (PARM) for compatibility with another (ARG).
3578 * PARM is intended to be the parameter type of a function; and
3579 * ARG is the supplied argument's type. This function tests if
3580 * the latter can be converted to the former.
3581 * VALUE is the argument's value or NULL if none (or called recursively)
3582 *
3583 * Return 0 if they are identical types;
3584 * Otherwise, return an integer which corresponds to how compatible
3585 * PARM is to ARG. The higher the return value, the worse the match.
3586 * Generally the "bad" conversions are all uniformly assigned a 100. */
3587
3588 struct rank
3589 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3590 {
3591 struct rank rank = {0,0};
3592
3593 if (types_equal (parm, arg))
3594 return EXACT_MATCH_BADNESS;
3595
3596 /* Resolve typedefs */
3597 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3598 parm = check_typedef (parm);
3599 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3600 arg = check_typedef (arg);
3601
3602 /* See through references, since we can almost make non-references
3603 references. */
3604 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3605 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3606 REFERENCE_CONVERSION_BADNESS));
3607 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3608 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3609 REFERENCE_CONVERSION_BADNESS));
3610 if (overload_debug)
3611 /* Debugging only. */
3612 fprintf_filtered (gdb_stderr,
3613 "------ Arg is %s [%d], parm is %s [%d]\n",
3614 TYPE_NAME (arg), TYPE_CODE (arg),
3615 TYPE_NAME (parm), TYPE_CODE (parm));
3616
3617 /* x -> y means arg of type x being supplied for parameter of type y. */
3618
3619 switch (TYPE_CODE (parm))
3620 {
3621 case TYPE_CODE_PTR:
3622 switch (TYPE_CODE (arg))
3623 {
3624 case TYPE_CODE_PTR:
3625
3626 /* Allowed pointer conversions are:
3627 (a) pointer to void-pointer conversion. */
3628 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3629 return VOID_PTR_CONVERSION_BADNESS;
3630
3631 /* (b) pointer to ancestor-pointer conversion. */
3632 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3633 TYPE_TARGET_TYPE (arg),
3634 0);
3635 if (rank.subrank >= 0)
3636 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3637
3638 return INCOMPATIBLE_TYPE_BADNESS;
3639 case TYPE_CODE_ARRAY:
3640 if (types_equal (TYPE_TARGET_TYPE (parm),
3641 TYPE_TARGET_TYPE (arg)))
3642 return EXACT_MATCH_BADNESS;
3643 return INCOMPATIBLE_TYPE_BADNESS;
3644 case TYPE_CODE_FUNC:
3645 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3646 case TYPE_CODE_INT:
3647 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3648 {
3649 if (value_as_long (value) == 0)
3650 {
3651 /* Null pointer conversion: allow it to be cast to a pointer.
3652 [4.10.1 of C++ standard draft n3290] */
3653 return NULL_POINTER_CONVERSION_BADNESS;
3654 }
3655 else
3656 {
3657 /* If type checking is disabled, allow the conversion. */
3658 if (!strict_type_checking)
3659 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3660 }
3661 }
3662 /* fall through */
3663 case TYPE_CODE_ENUM:
3664 case TYPE_CODE_FLAGS:
3665 case TYPE_CODE_CHAR:
3666 case TYPE_CODE_RANGE:
3667 case TYPE_CODE_BOOL:
3668 default:
3669 return INCOMPATIBLE_TYPE_BADNESS;
3670 }
3671 case TYPE_CODE_ARRAY:
3672 switch (TYPE_CODE (arg))
3673 {
3674 case TYPE_CODE_PTR:
3675 case TYPE_CODE_ARRAY:
3676 return rank_one_type (TYPE_TARGET_TYPE (parm),
3677 TYPE_TARGET_TYPE (arg), NULL);
3678 default:
3679 return INCOMPATIBLE_TYPE_BADNESS;
3680 }
3681 case TYPE_CODE_FUNC:
3682 switch (TYPE_CODE (arg))
3683 {
3684 case TYPE_CODE_PTR: /* funcptr -> func */
3685 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3686 default:
3687 return INCOMPATIBLE_TYPE_BADNESS;
3688 }
3689 case TYPE_CODE_INT:
3690 switch (TYPE_CODE (arg))
3691 {
3692 case TYPE_CODE_INT:
3693 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3694 {
3695 /* Deal with signed, unsigned, and plain chars and
3696 signed and unsigned ints. */
3697 if (TYPE_NOSIGN (parm))
3698 {
3699 /* This case only for character types. */
3700 if (TYPE_NOSIGN (arg))
3701 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3702 else /* signed/unsigned char -> plain char */
3703 return INTEGER_CONVERSION_BADNESS;
3704 }
3705 else if (TYPE_UNSIGNED (parm))
3706 {
3707 if (TYPE_UNSIGNED (arg))
3708 {
3709 /* unsigned int -> unsigned int, or
3710 unsigned long -> unsigned long */
3711 if (integer_types_same_name_p (TYPE_NAME (parm),
3712 TYPE_NAME (arg)))
3713 return EXACT_MATCH_BADNESS;
3714 else if (integer_types_same_name_p (TYPE_NAME (arg),
3715 "int")
3716 && integer_types_same_name_p (TYPE_NAME (parm),
3717 "long"))
3718 /* unsigned int -> unsigned long */
3719 return INTEGER_PROMOTION_BADNESS;
3720 else
3721 /* unsigned long -> unsigned int */
3722 return INTEGER_CONVERSION_BADNESS;
3723 }
3724 else
3725 {
3726 if (integer_types_same_name_p (TYPE_NAME (arg),
3727 "long")
3728 && integer_types_same_name_p (TYPE_NAME (parm),
3729 "int"))
3730 /* signed long -> unsigned int */
3731 return INTEGER_CONVERSION_BADNESS;
3732 else
3733 /* signed int/long -> unsigned int/long */
3734 return INTEGER_CONVERSION_BADNESS;
3735 }
3736 }
3737 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3738 {
3739 if (integer_types_same_name_p (TYPE_NAME (parm),
3740 TYPE_NAME (arg)))
3741 return EXACT_MATCH_BADNESS;
3742 else if (integer_types_same_name_p (TYPE_NAME (arg),
3743 "int")
3744 && integer_types_same_name_p (TYPE_NAME (parm),
3745 "long"))
3746 return INTEGER_PROMOTION_BADNESS;
3747 else
3748 return INTEGER_CONVERSION_BADNESS;
3749 }
3750 else
3751 return INTEGER_CONVERSION_BADNESS;
3752 }
3753 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3754 return INTEGER_PROMOTION_BADNESS;
3755 else
3756 return INTEGER_CONVERSION_BADNESS;
3757 case TYPE_CODE_ENUM:
3758 case TYPE_CODE_FLAGS:
3759 case TYPE_CODE_CHAR:
3760 case TYPE_CODE_RANGE:
3761 case TYPE_CODE_BOOL:
3762 if (TYPE_DECLARED_CLASS (arg))
3763 return INCOMPATIBLE_TYPE_BADNESS;
3764 return INTEGER_PROMOTION_BADNESS;
3765 case TYPE_CODE_FLT:
3766 return INT_FLOAT_CONVERSION_BADNESS;
3767 case TYPE_CODE_PTR:
3768 return NS_POINTER_CONVERSION_BADNESS;
3769 default:
3770 return INCOMPATIBLE_TYPE_BADNESS;
3771 }
3772 break;
3773 case TYPE_CODE_ENUM:
3774 switch (TYPE_CODE (arg))
3775 {
3776 case TYPE_CODE_INT:
3777 case TYPE_CODE_CHAR:
3778 case TYPE_CODE_RANGE:
3779 case TYPE_CODE_BOOL:
3780 case TYPE_CODE_ENUM:
3781 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3782 return INCOMPATIBLE_TYPE_BADNESS;
3783 return INTEGER_CONVERSION_BADNESS;
3784 case TYPE_CODE_FLT:
3785 return INT_FLOAT_CONVERSION_BADNESS;
3786 default:
3787 return INCOMPATIBLE_TYPE_BADNESS;
3788 }
3789 break;
3790 case TYPE_CODE_CHAR:
3791 switch (TYPE_CODE (arg))
3792 {
3793 case TYPE_CODE_RANGE:
3794 case TYPE_CODE_BOOL:
3795 case TYPE_CODE_ENUM:
3796 if (TYPE_DECLARED_CLASS (arg))
3797 return INCOMPATIBLE_TYPE_BADNESS;
3798 return INTEGER_CONVERSION_BADNESS;
3799 case TYPE_CODE_FLT:
3800 return INT_FLOAT_CONVERSION_BADNESS;
3801 case TYPE_CODE_INT:
3802 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3803 return INTEGER_CONVERSION_BADNESS;
3804 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3805 return INTEGER_PROMOTION_BADNESS;
3806 /* >>> !! else fall through !! <<< */
3807 case TYPE_CODE_CHAR:
3808 /* Deal with signed, unsigned, and plain chars for C++ and
3809 with int cases falling through from previous case. */
3810 if (TYPE_NOSIGN (parm))
3811 {
3812 if (TYPE_NOSIGN (arg))
3813 return EXACT_MATCH_BADNESS;
3814 else
3815 return INTEGER_CONVERSION_BADNESS;
3816 }
3817 else if (TYPE_UNSIGNED (parm))
3818 {
3819 if (TYPE_UNSIGNED (arg))
3820 return EXACT_MATCH_BADNESS;
3821 else
3822 return INTEGER_PROMOTION_BADNESS;
3823 }
3824 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3825 return EXACT_MATCH_BADNESS;
3826 else
3827 return INTEGER_CONVERSION_BADNESS;
3828 default:
3829 return INCOMPATIBLE_TYPE_BADNESS;
3830 }
3831 break;
3832 case TYPE_CODE_RANGE:
3833 switch (TYPE_CODE (arg))
3834 {
3835 case TYPE_CODE_INT:
3836 case TYPE_CODE_CHAR:
3837 case TYPE_CODE_RANGE:
3838 case TYPE_CODE_BOOL:
3839 case TYPE_CODE_ENUM:
3840 return INTEGER_CONVERSION_BADNESS;
3841 case TYPE_CODE_FLT:
3842 return INT_FLOAT_CONVERSION_BADNESS;
3843 default:
3844 return INCOMPATIBLE_TYPE_BADNESS;
3845 }
3846 break;
3847 case TYPE_CODE_BOOL:
3848 switch (TYPE_CODE (arg))
3849 {
3850 /* n3290 draft, section 4.12.1 (conv.bool):
3851
3852 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3853 pointer to member type can be converted to a prvalue of type
3854 bool. A zero value, null pointer value, or null member pointer
3855 value is converted to false; any other value is converted to
3856 true. A prvalue of type std::nullptr_t can be converted to a
3857 prvalue of type bool; the resulting value is false." */
3858 case TYPE_CODE_INT:
3859 case TYPE_CODE_CHAR:
3860 case TYPE_CODE_ENUM:
3861 case TYPE_CODE_FLT:
3862 case TYPE_CODE_MEMBERPTR:
3863 case TYPE_CODE_PTR:
3864 return BOOL_CONVERSION_BADNESS;
3865 case TYPE_CODE_RANGE:
3866 return INCOMPATIBLE_TYPE_BADNESS;
3867 case TYPE_CODE_BOOL:
3868 return EXACT_MATCH_BADNESS;
3869 default:
3870 return INCOMPATIBLE_TYPE_BADNESS;
3871 }
3872 break;
3873 case TYPE_CODE_FLT:
3874 switch (TYPE_CODE (arg))
3875 {
3876 case TYPE_CODE_FLT:
3877 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3878 return FLOAT_PROMOTION_BADNESS;
3879 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3880 return EXACT_MATCH_BADNESS;
3881 else
3882 return FLOAT_CONVERSION_BADNESS;
3883 case TYPE_CODE_INT:
3884 case TYPE_CODE_BOOL:
3885 case TYPE_CODE_ENUM:
3886 case TYPE_CODE_RANGE:
3887 case TYPE_CODE_CHAR:
3888 return INT_FLOAT_CONVERSION_BADNESS;
3889 default:
3890 return INCOMPATIBLE_TYPE_BADNESS;
3891 }
3892 break;
3893 case TYPE_CODE_COMPLEX:
3894 switch (TYPE_CODE (arg))
3895 { /* Strictly not needed for C++, but... */
3896 case TYPE_CODE_FLT:
3897 return FLOAT_PROMOTION_BADNESS;
3898 case TYPE_CODE_COMPLEX:
3899 return EXACT_MATCH_BADNESS;
3900 default:
3901 return INCOMPATIBLE_TYPE_BADNESS;
3902 }
3903 break;
3904 case TYPE_CODE_STRUCT:
3905 switch (TYPE_CODE (arg))
3906 {
3907 case TYPE_CODE_STRUCT:
3908 /* Check for derivation */
3909 rank.subrank = distance_to_ancestor (parm, arg, 0);
3910 if (rank.subrank >= 0)
3911 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3912 /* else fall through */
3913 default:
3914 return INCOMPATIBLE_TYPE_BADNESS;
3915 }
3916 break;
3917 case TYPE_CODE_UNION:
3918 switch (TYPE_CODE (arg))
3919 {
3920 case TYPE_CODE_UNION:
3921 default:
3922 return INCOMPATIBLE_TYPE_BADNESS;
3923 }
3924 break;
3925 case TYPE_CODE_MEMBERPTR:
3926 switch (TYPE_CODE (arg))
3927 {
3928 default:
3929 return INCOMPATIBLE_TYPE_BADNESS;
3930 }
3931 break;
3932 case TYPE_CODE_METHOD:
3933 switch (TYPE_CODE (arg))
3934 {
3935
3936 default:
3937 return INCOMPATIBLE_TYPE_BADNESS;
3938 }
3939 break;
3940 case TYPE_CODE_REF:
3941 switch (TYPE_CODE (arg))
3942 {
3943
3944 default:
3945 return INCOMPATIBLE_TYPE_BADNESS;
3946 }
3947
3948 break;
3949 case TYPE_CODE_SET:
3950 switch (TYPE_CODE (arg))
3951 {
3952 /* Not in C++ */
3953 case TYPE_CODE_SET:
3954 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3955 TYPE_FIELD_TYPE (arg, 0), NULL);
3956 default:
3957 return INCOMPATIBLE_TYPE_BADNESS;
3958 }
3959 break;
3960 case TYPE_CODE_VOID:
3961 default:
3962 return INCOMPATIBLE_TYPE_BADNESS;
3963 } /* switch (TYPE_CODE (arg)) */
3964 }
3965
3966 /* End of functions for overload resolution. */
3967 \f
3968 /* Routines to pretty-print types. */
3969
3970 static void
3971 print_bit_vector (B_TYPE *bits, int nbits)
3972 {
3973 int bitno;
3974
3975 for (bitno = 0; bitno < nbits; bitno++)
3976 {
3977 if ((bitno % 8) == 0)
3978 {
3979 puts_filtered (" ");
3980 }
3981 if (B_TST (bits, bitno))
3982 printf_filtered (("1"));
3983 else
3984 printf_filtered (("0"));
3985 }
3986 }
3987
3988 /* Note the first arg should be the "this" pointer, we may not want to
3989 include it since we may get into a infinitely recursive
3990 situation. */
3991
3992 static void
3993 print_args (struct field *args, int nargs, int spaces)
3994 {
3995 if (args != NULL)
3996 {
3997 int i;
3998
3999 for (i = 0; i < nargs; i++)
4000 {
4001 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4002 args[i].name != NULL ? args[i].name : "<NULL>");
4003 recursive_dump_type (args[i].type, spaces + 2);
4004 }
4005 }
4006 }
4007
4008 int
4009 field_is_static (struct field *f)
4010 {
4011 /* "static" fields are the fields whose location is not relative
4012 to the address of the enclosing struct. It would be nice to
4013 have a dedicated flag that would be set for static fields when
4014 the type is being created. But in practice, checking the field
4015 loc_kind should give us an accurate answer. */
4016 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4017 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4018 }
4019
4020 static void
4021 dump_fn_fieldlists (struct type *type, int spaces)
4022 {
4023 int method_idx;
4024 int overload_idx;
4025 struct fn_field *f;
4026
4027 printfi_filtered (spaces, "fn_fieldlists ");
4028 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4029 printf_filtered ("\n");
4030 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4031 {
4032 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4033 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4034 method_idx,
4035 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4036 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4037 gdb_stdout);
4038 printf_filtered (_(") length %d\n"),
4039 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4040 for (overload_idx = 0;
4041 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4042 overload_idx++)
4043 {
4044 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4045 overload_idx,
4046 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4047 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4048 gdb_stdout);
4049 printf_filtered (")\n");
4050 printfi_filtered (spaces + 8, "type ");
4051 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4052 gdb_stdout);
4053 printf_filtered ("\n");
4054
4055 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4056 spaces + 8 + 2);
4057
4058 printfi_filtered (spaces + 8, "args ");
4059 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4060 gdb_stdout);
4061 printf_filtered ("\n");
4062 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4063 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4064 spaces + 8 + 2);
4065 printfi_filtered (spaces + 8, "fcontext ");
4066 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4067 gdb_stdout);
4068 printf_filtered ("\n");
4069
4070 printfi_filtered (spaces + 8, "is_const %d\n",
4071 TYPE_FN_FIELD_CONST (f, overload_idx));
4072 printfi_filtered (spaces + 8, "is_volatile %d\n",
4073 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4074 printfi_filtered (spaces + 8, "is_private %d\n",
4075 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4076 printfi_filtered (spaces + 8, "is_protected %d\n",
4077 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4078 printfi_filtered (spaces + 8, "is_stub %d\n",
4079 TYPE_FN_FIELD_STUB (f, overload_idx));
4080 printfi_filtered (spaces + 8, "voffset %u\n",
4081 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4082 }
4083 }
4084 }
4085
4086 static void
4087 print_cplus_stuff (struct type *type, int spaces)
4088 {
4089 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4090 printfi_filtered (spaces, "vptr_basetype ");
4091 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4092 puts_filtered ("\n");
4093 if (TYPE_VPTR_BASETYPE (type) != NULL)
4094 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4095
4096 printfi_filtered (spaces, "n_baseclasses %d\n",
4097 TYPE_N_BASECLASSES (type));
4098 printfi_filtered (spaces, "nfn_fields %d\n",
4099 TYPE_NFN_FIELDS (type));
4100 if (TYPE_N_BASECLASSES (type) > 0)
4101 {
4102 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4103 TYPE_N_BASECLASSES (type));
4104 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4105 gdb_stdout);
4106 printf_filtered (")");
4107
4108 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4109 TYPE_N_BASECLASSES (type));
4110 puts_filtered ("\n");
4111 }
4112 if (TYPE_NFIELDS (type) > 0)
4113 {
4114 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4115 {
4116 printfi_filtered (spaces,
4117 "private_field_bits (%d bits at *",
4118 TYPE_NFIELDS (type));
4119 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4120 gdb_stdout);
4121 printf_filtered (")");
4122 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4123 TYPE_NFIELDS (type));
4124 puts_filtered ("\n");
4125 }
4126 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4127 {
4128 printfi_filtered (spaces,
4129 "protected_field_bits (%d bits at *",
4130 TYPE_NFIELDS (type));
4131 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4132 gdb_stdout);
4133 printf_filtered (")");
4134 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4135 TYPE_NFIELDS (type));
4136 puts_filtered ("\n");
4137 }
4138 }
4139 if (TYPE_NFN_FIELDS (type) > 0)
4140 {
4141 dump_fn_fieldlists (type, spaces);
4142 }
4143 }
4144
4145 /* Print the contents of the TYPE's type_specific union, assuming that
4146 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4147
4148 static void
4149 print_gnat_stuff (struct type *type, int spaces)
4150 {
4151 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4152
4153 if (descriptive_type == NULL)
4154 printfi_filtered (spaces + 2, "no descriptive type\n");
4155 else
4156 {
4157 printfi_filtered (spaces + 2, "descriptive type\n");
4158 recursive_dump_type (descriptive_type, spaces + 4);
4159 }
4160 }
4161
4162 static struct obstack dont_print_type_obstack;
4163
4164 void
4165 recursive_dump_type (struct type *type, int spaces)
4166 {
4167 int idx;
4168
4169 if (spaces == 0)
4170 obstack_begin (&dont_print_type_obstack, 0);
4171
4172 if (TYPE_NFIELDS (type) > 0
4173 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4174 {
4175 struct type **first_dont_print
4176 = (struct type **) obstack_base (&dont_print_type_obstack);
4177
4178 int i = (struct type **)
4179 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4180
4181 while (--i >= 0)
4182 {
4183 if (type == first_dont_print[i])
4184 {
4185 printfi_filtered (spaces, "type node ");
4186 gdb_print_host_address (type, gdb_stdout);
4187 printf_filtered (_(" <same as already seen type>\n"));
4188 return;
4189 }
4190 }
4191
4192 obstack_ptr_grow (&dont_print_type_obstack, type);
4193 }
4194
4195 printfi_filtered (spaces, "type node ");
4196 gdb_print_host_address (type, gdb_stdout);
4197 printf_filtered ("\n");
4198 printfi_filtered (spaces, "name '%s' (",
4199 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4200 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4201 printf_filtered (")\n");
4202 printfi_filtered (spaces, "tagname '%s' (",
4203 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4204 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4205 printf_filtered (")\n");
4206 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4207 switch (TYPE_CODE (type))
4208 {
4209 case TYPE_CODE_UNDEF:
4210 printf_filtered ("(TYPE_CODE_UNDEF)");
4211 break;
4212 case TYPE_CODE_PTR:
4213 printf_filtered ("(TYPE_CODE_PTR)");
4214 break;
4215 case TYPE_CODE_ARRAY:
4216 printf_filtered ("(TYPE_CODE_ARRAY)");
4217 break;
4218 case TYPE_CODE_STRUCT:
4219 printf_filtered ("(TYPE_CODE_STRUCT)");
4220 break;
4221 case TYPE_CODE_UNION:
4222 printf_filtered ("(TYPE_CODE_UNION)");
4223 break;
4224 case TYPE_CODE_ENUM:
4225 printf_filtered ("(TYPE_CODE_ENUM)");
4226 break;
4227 case TYPE_CODE_FLAGS:
4228 printf_filtered ("(TYPE_CODE_FLAGS)");
4229 break;
4230 case TYPE_CODE_FUNC:
4231 printf_filtered ("(TYPE_CODE_FUNC)");
4232 break;
4233 case TYPE_CODE_INT:
4234 printf_filtered ("(TYPE_CODE_INT)");
4235 break;
4236 case TYPE_CODE_FLT:
4237 printf_filtered ("(TYPE_CODE_FLT)");
4238 break;
4239 case TYPE_CODE_VOID:
4240 printf_filtered ("(TYPE_CODE_VOID)");
4241 break;
4242 case TYPE_CODE_SET:
4243 printf_filtered ("(TYPE_CODE_SET)");
4244 break;
4245 case TYPE_CODE_RANGE:
4246 printf_filtered ("(TYPE_CODE_RANGE)");
4247 break;
4248 case TYPE_CODE_STRING:
4249 printf_filtered ("(TYPE_CODE_STRING)");
4250 break;
4251 case TYPE_CODE_ERROR:
4252 printf_filtered ("(TYPE_CODE_ERROR)");
4253 break;
4254 case TYPE_CODE_MEMBERPTR:
4255 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4256 break;
4257 case TYPE_CODE_METHODPTR:
4258 printf_filtered ("(TYPE_CODE_METHODPTR)");
4259 break;
4260 case TYPE_CODE_METHOD:
4261 printf_filtered ("(TYPE_CODE_METHOD)");
4262 break;
4263 case TYPE_CODE_REF:
4264 printf_filtered ("(TYPE_CODE_REF)");
4265 break;
4266 case TYPE_CODE_CHAR:
4267 printf_filtered ("(TYPE_CODE_CHAR)");
4268 break;
4269 case TYPE_CODE_BOOL:
4270 printf_filtered ("(TYPE_CODE_BOOL)");
4271 break;
4272 case TYPE_CODE_COMPLEX:
4273 printf_filtered ("(TYPE_CODE_COMPLEX)");
4274 break;
4275 case TYPE_CODE_TYPEDEF:
4276 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4277 break;
4278 case TYPE_CODE_NAMESPACE:
4279 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4280 break;
4281 default:
4282 printf_filtered ("(UNKNOWN TYPE CODE)");
4283 break;
4284 }
4285 puts_filtered ("\n");
4286 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4287 if (TYPE_OBJFILE_OWNED (type))
4288 {
4289 printfi_filtered (spaces, "objfile ");
4290 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4291 }
4292 else
4293 {
4294 printfi_filtered (spaces, "gdbarch ");
4295 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4296 }
4297 printf_filtered ("\n");
4298 printfi_filtered (spaces, "target_type ");
4299 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4300 printf_filtered ("\n");
4301 if (TYPE_TARGET_TYPE (type) != NULL)
4302 {
4303 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4304 }
4305 printfi_filtered (spaces, "pointer_type ");
4306 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4307 printf_filtered ("\n");
4308 printfi_filtered (spaces, "reference_type ");
4309 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4310 printf_filtered ("\n");
4311 printfi_filtered (spaces, "type_chain ");
4312 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4313 printf_filtered ("\n");
4314 printfi_filtered (spaces, "instance_flags 0x%x",
4315 TYPE_INSTANCE_FLAGS (type));
4316 if (TYPE_CONST (type))
4317 {
4318 puts_filtered (" TYPE_CONST");
4319 }
4320 if (TYPE_VOLATILE (type))
4321 {
4322 puts_filtered (" TYPE_VOLATILE");
4323 }
4324 if (TYPE_CODE_SPACE (type))
4325 {
4326 puts_filtered (" TYPE_CODE_SPACE");
4327 }
4328 if (TYPE_DATA_SPACE (type))
4329 {
4330 puts_filtered (" TYPE_DATA_SPACE");
4331 }
4332 if (TYPE_ADDRESS_CLASS_1 (type))
4333 {
4334 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4335 }
4336 if (TYPE_ADDRESS_CLASS_2 (type))
4337 {
4338 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4339 }
4340 if (TYPE_RESTRICT (type))
4341 {
4342 puts_filtered (" TYPE_RESTRICT");
4343 }
4344 if (TYPE_ATOMIC (type))
4345 {
4346 puts_filtered (" TYPE_ATOMIC");
4347 }
4348 puts_filtered ("\n");
4349
4350 printfi_filtered (spaces, "flags");
4351 if (TYPE_UNSIGNED (type))
4352 {
4353 puts_filtered (" TYPE_UNSIGNED");
4354 }
4355 if (TYPE_NOSIGN (type))
4356 {
4357 puts_filtered (" TYPE_NOSIGN");
4358 }
4359 if (TYPE_STUB (type))
4360 {
4361 puts_filtered (" TYPE_STUB");
4362 }
4363 if (TYPE_TARGET_STUB (type))
4364 {
4365 puts_filtered (" TYPE_TARGET_STUB");
4366 }
4367 if (TYPE_STATIC (type))
4368 {
4369 puts_filtered (" TYPE_STATIC");
4370 }
4371 if (TYPE_PROTOTYPED (type))
4372 {
4373 puts_filtered (" TYPE_PROTOTYPED");
4374 }
4375 if (TYPE_INCOMPLETE (type))
4376 {
4377 puts_filtered (" TYPE_INCOMPLETE");
4378 }
4379 if (TYPE_VARARGS (type))
4380 {
4381 puts_filtered (" TYPE_VARARGS");
4382 }
4383 /* This is used for things like AltiVec registers on ppc. Gcc emits
4384 an attribute for the array type, which tells whether or not we
4385 have a vector, instead of a regular array. */
4386 if (TYPE_VECTOR (type))
4387 {
4388 puts_filtered (" TYPE_VECTOR");
4389 }
4390 if (TYPE_FIXED_INSTANCE (type))
4391 {
4392 puts_filtered (" TYPE_FIXED_INSTANCE");
4393 }
4394 if (TYPE_STUB_SUPPORTED (type))
4395 {
4396 puts_filtered (" TYPE_STUB_SUPPORTED");
4397 }
4398 if (TYPE_NOTTEXT (type))
4399 {
4400 puts_filtered (" TYPE_NOTTEXT");
4401 }
4402 puts_filtered ("\n");
4403 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4404 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4405 puts_filtered ("\n");
4406 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4407 {
4408 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4409 printfi_filtered (spaces + 2,
4410 "[%d] enumval %s type ",
4411 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4412 else
4413 printfi_filtered (spaces + 2,
4414 "[%d] bitpos %s bitsize %d type ",
4415 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4416 TYPE_FIELD_BITSIZE (type, idx));
4417 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4418 printf_filtered (" name '%s' (",
4419 TYPE_FIELD_NAME (type, idx) != NULL
4420 ? TYPE_FIELD_NAME (type, idx)
4421 : "<NULL>");
4422 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4423 printf_filtered (")\n");
4424 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4425 {
4426 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4427 }
4428 }
4429 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4430 {
4431 printfi_filtered (spaces, "low %s%s high %s%s\n",
4432 plongest (TYPE_LOW_BOUND (type)),
4433 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4434 plongest (TYPE_HIGH_BOUND (type)),
4435 TYPE_HIGH_BOUND_UNDEFINED (type)
4436 ? " (undefined)" : "");
4437 }
4438
4439 switch (TYPE_SPECIFIC_FIELD (type))
4440 {
4441 case TYPE_SPECIFIC_CPLUS_STUFF:
4442 printfi_filtered (spaces, "cplus_stuff ");
4443 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4444 gdb_stdout);
4445 puts_filtered ("\n");
4446 print_cplus_stuff (type, spaces);
4447 break;
4448
4449 case TYPE_SPECIFIC_GNAT_STUFF:
4450 printfi_filtered (spaces, "gnat_stuff ");
4451 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4452 puts_filtered ("\n");
4453 print_gnat_stuff (type, spaces);
4454 break;
4455
4456 case TYPE_SPECIFIC_FLOATFORMAT:
4457 printfi_filtered (spaces, "floatformat ");
4458 if (TYPE_FLOATFORMAT (type) == NULL)
4459 puts_filtered ("(null)");
4460 else
4461 {
4462 puts_filtered ("{ ");
4463 if (TYPE_FLOATFORMAT (type)[0] == NULL
4464 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4465 puts_filtered ("(null)");
4466 else
4467 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4468
4469 puts_filtered (", ");
4470 if (TYPE_FLOATFORMAT (type)[1] == NULL
4471 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4472 puts_filtered ("(null)");
4473 else
4474 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4475
4476 puts_filtered (" }");
4477 }
4478 puts_filtered ("\n");
4479 break;
4480
4481 case TYPE_SPECIFIC_FUNC:
4482 printfi_filtered (spaces, "calling_convention %d\n",
4483 TYPE_CALLING_CONVENTION (type));
4484 /* tail_call_list is not printed. */
4485 break;
4486
4487 case TYPE_SPECIFIC_SELF_TYPE:
4488 printfi_filtered (spaces, "self_type ");
4489 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4490 puts_filtered ("\n");
4491 break;
4492 }
4493
4494 if (spaces == 0)
4495 obstack_free (&dont_print_type_obstack, NULL);
4496 }
4497 \f
4498 /* Trivial helpers for the libiberty hash table, for mapping one
4499 type to another. */
4500
4501 struct type_pair
4502 {
4503 struct type *old, *newobj;
4504 };
4505
4506 static hashval_t
4507 type_pair_hash (const void *item)
4508 {
4509 const struct type_pair *pair = (const struct type_pair *) item;
4510
4511 return htab_hash_pointer (pair->old);
4512 }
4513
4514 static int
4515 type_pair_eq (const void *item_lhs, const void *item_rhs)
4516 {
4517 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4518 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4519
4520 return lhs->old == rhs->old;
4521 }
4522
4523 /* Allocate the hash table used by copy_type_recursive to walk
4524 types without duplicates. We use OBJFILE's obstack, because
4525 OBJFILE is about to be deleted. */
4526
4527 htab_t
4528 create_copied_types_hash (struct objfile *objfile)
4529 {
4530 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4531 NULL, &objfile->objfile_obstack,
4532 hashtab_obstack_allocate,
4533 dummy_obstack_deallocate);
4534 }
4535
4536 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4537
4538 static struct dynamic_prop_list *
4539 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4540 struct dynamic_prop_list *list)
4541 {
4542 struct dynamic_prop_list *copy = list;
4543 struct dynamic_prop_list **node_ptr = &copy;
4544
4545 while (*node_ptr != NULL)
4546 {
4547 struct dynamic_prop_list *node_copy;
4548
4549 node_copy = ((struct dynamic_prop_list *)
4550 obstack_copy (objfile_obstack, *node_ptr,
4551 sizeof (struct dynamic_prop_list)));
4552 node_copy->prop = (*node_ptr)->prop;
4553 *node_ptr = node_copy;
4554
4555 node_ptr = &node_copy->next;
4556 }
4557
4558 return copy;
4559 }
4560
4561 /* Recursively copy (deep copy) TYPE, if it is associated with
4562 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4563 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4564 it is not associated with OBJFILE. */
4565
4566 struct type *
4567 copy_type_recursive (struct objfile *objfile,
4568 struct type *type,
4569 htab_t copied_types)
4570 {
4571 struct type_pair *stored, pair;
4572 void **slot;
4573 struct type *new_type;
4574
4575 if (! TYPE_OBJFILE_OWNED (type))
4576 return type;
4577
4578 /* This type shouldn't be pointing to any types in other objfiles;
4579 if it did, the type might disappear unexpectedly. */
4580 gdb_assert (TYPE_OBJFILE (type) == objfile);
4581
4582 pair.old = type;
4583 slot = htab_find_slot (copied_types, &pair, INSERT);
4584 if (*slot != NULL)
4585 return ((struct type_pair *) *slot)->newobj;
4586
4587 new_type = alloc_type_arch (get_type_arch (type));
4588
4589 /* We must add the new type to the hash table immediately, in case
4590 we encounter this type again during a recursive call below. */
4591 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4592 stored->old = type;
4593 stored->newobj = new_type;
4594 *slot = stored;
4595
4596 /* Copy the common fields of types. For the main type, we simply
4597 copy the entire thing and then update specific fields as needed. */
4598 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4599 TYPE_OBJFILE_OWNED (new_type) = 0;
4600 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4601
4602 if (TYPE_NAME (type))
4603 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4604 if (TYPE_TAG_NAME (type))
4605 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4606
4607 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4608 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4609
4610 /* Copy the fields. */
4611 if (TYPE_NFIELDS (type))
4612 {
4613 int i, nfields;
4614
4615 nfields = TYPE_NFIELDS (type);
4616 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4617 for (i = 0; i < nfields; i++)
4618 {
4619 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4620 TYPE_FIELD_ARTIFICIAL (type, i);
4621 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4622 if (TYPE_FIELD_TYPE (type, i))
4623 TYPE_FIELD_TYPE (new_type, i)
4624 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4625 copied_types);
4626 if (TYPE_FIELD_NAME (type, i))
4627 TYPE_FIELD_NAME (new_type, i) =
4628 xstrdup (TYPE_FIELD_NAME (type, i));
4629 switch (TYPE_FIELD_LOC_KIND (type, i))
4630 {
4631 case FIELD_LOC_KIND_BITPOS:
4632 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4633 TYPE_FIELD_BITPOS (type, i));
4634 break;
4635 case FIELD_LOC_KIND_ENUMVAL:
4636 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4637 TYPE_FIELD_ENUMVAL (type, i));
4638 break;
4639 case FIELD_LOC_KIND_PHYSADDR:
4640 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4641 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4642 break;
4643 case FIELD_LOC_KIND_PHYSNAME:
4644 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4645 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4646 i)));
4647 break;
4648 default:
4649 internal_error (__FILE__, __LINE__,
4650 _("Unexpected type field location kind: %d"),
4651 TYPE_FIELD_LOC_KIND (type, i));
4652 }
4653 }
4654 }
4655
4656 /* For range types, copy the bounds information. */
4657 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4658 {
4659 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4660 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4661 }
4662
4663 if (TYPE_DYN_PROP_LIST (type) != NULL)
4664 TYPE_DYN_PROP_LIST (new_type)
4665 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4666 TYPE_DYN_PROP_LIST (type));
4667
4668
4669 /* Copy pointers to other types. */
4670 if (TYPE_TARGET_TYPE (type))
4671 TYPE_TARGET_TYPE (new_type) =
4672 copy_type_recursive (objfile,
4673 TYPE_TARGET_TYPE (type),
4674 copied_types);
4675
4676 /* Maybe copy the type_specific bits.
4677
4678 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4679 base classes and methods. There's no fundamental reason why we
4680 can't, but at the moment it is not needed. */
4681
4682 switch (TYPE_SPECIFIC_FIELD (type))
4683 {
4684 case TYPE_SPECIFIC_NONE:
4685 break;
4686 case TYPE_SPECIFIC_FUNC:
4687 INIT_FUNC_SPECIFIC (new_type);
4688 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4689 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4690 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4691 break;
4692 case TYPE_SPECIFIC_FLOATFORMAT:
4693 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4694 break;
4695 case TYPE_SPECIFIC_CPLUS_STUFF:
4696 INIT_CPLUS_SPECIFIC (new_type);
4697 break;
4698 case TYPE_SPECIFIC_GNAT_STUFF:
4699 INIT_GNAT_SPECIFIC (new_type);
4700 break;
4701 case TYPE_SPECIFIC_SELF_TYPE:
4702 set_type_self_type (new_type,
4703 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4704 copied_types));
4705 break;
4706 default:
4707 gdb_assert_not_reached ("bad type_specific_kind");
4708 }
4709
4710 return new_type;
4711 }
4712
4713 /* Make a copy of the given TYPE, except that the pointer & reference
4714 types are not preserved.
4715
4716 This function assumes that the given type has an associated objfile.
4717 This objfile is used to allocate the new type. */
4718
4719 struct type *
4720 copy_type (const struct type *type)
4721 {
4722 struct type *new_type;
4723
4724 gdb_assert (TYPE_OBJFILE_OWNED (type));
4725
4726 new_type = alloc_type_copy (type);
4727 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4728 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4729 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4730 sizeof (struct main_type));
4731 if (TYPE_DYN_PROP_LIST (type) != NULL)
4732 TYPE_DYN_PROP_LIST (new_type)
4733 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4734 TYPE_DYN_PROP_LIST (type));
4735
4736 return new_type;
4737 }
4738 \f
4739 /* Helper functions to initialize architecture-specific types. */
4740
4741 /* Allocate a type structure associated with GDBARCH and set its
4742 CODE, LENGTH, and NAME fields. */
4743
4744 struct type *
4745 arch_type (struct gdbarch *gdbarch,
4746 enum type_code code, int length, const char *name)
4747 {
4748 struct type *type;
4749
4750 type = alloc_type_arch (gdbarch);
4751 set_type_code (type, code);
4752 TYPE_LENGTH (type) = length;
4753
4754 if (name)
4755 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4756
4757 return type;
4758 }
4759
4760 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4761 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4762 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4763
4764 struct type *
4765 arch_integer_type (struct gdbarch *gdbarch,
4766 int bit, int unsigned_p, const char *name)
4767 {
4768 struct type *t;
4769
4770 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4771 if (unsigned_p)
4772 TYPE_UNSIGNED (t) = 1;
4773
4774 return t;
4775 }
4776
4777 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4778 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4779 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4780
4781 struct type *
4782 arch_character_type (struct gdbarch *gdbarch,
4783 int bit, int unsigned_p, const char *name)
4784 {
4785 struct type *t;
4786
4787 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4788 if (unsigned_p)
4789 TYPE_UNSIGNED (t) = 1;
4790
4791 return t;
4792 }
4793
4794 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4795 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4796 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4797
4798 struct type *
4799 arch_boolean_type (struct gdbarch *gdbarch,
4800 int bit, int unsigned_p, const char *name)
4801 {
4802 struct type *t;
4803
4804 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4805 if (unsigned_p)
4806 TYPE_UNSIGNED (t) = 1;
4807
4808 return t;
4809 }
4810
4811 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4812 BIT is the type size in bits; if BIT equals -1, the size is
4813 determined by the floatformat. NAME is the type name. Set the
4814 TYPE_FLOATFORMAT from FLOATFORMATS. */
4815
4816 struct type *
4817 arch_float_type (struct gdbarch *gdbarch,
4818 int bit, const char *name,
4819 const struct floatformat **floatformats)
4820 {
4821 struct type *t;
4822
4823 bit = verify_floatformat (bit, floatformats);
4824 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4825 TYPE_FLOATFORMAT (t) = floatformats;
4826
4827 return t;
4828 }
4829
4830 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4831 BIT is the type size in bits. NAME is the type name. */
4832
4833 struct type *
4834 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4835 {
4836 struct type *t;
4837
4838 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4839 return t;
4840 }
4841
4842 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4843 NAME is the type name. TARGET_TYPE is the component float type. */
4844
4845 struct type *
4846 arch_complex_type (struct gdbarch *gdbarch,
4847 const char *name, struct type *target_type)
4848 {
4849 struct type *t;
4850
4851 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4852 2 * TYPE_LENGTH (target_type), name);
4853 TYPE_TARGET_TYPE (t) = target_type;
4854 return t;
4855 }
4856
4857 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4858 BIT is the pointer type size in bits. NAME is the type name.
4859 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4860 TYPE_UNSIGNED flag. */
4861
4862 struct type *
4863 arch_pointer_type (struct gdbarch *gdbarch,
4864 int bit, const char *name, struct type *target_type)
4865 {
4866 struct type *t;
4867
4868 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4869 TYPE_TARGET_TYPE (t) = target_type;
4870 TYPE_UNSIGNED (t) = 1;
4871 return t;
4872 }
4873
4874 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4875 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4876
4877 struct type *
4878 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4879 {
4880 int max_nfields = length * TARGET_CHAR_BIT;
4881 struct type *type;
4882
4883 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4884 TYPE_UNSIGNED (type) = 1;
4885 TYPE_NFIELDS (type) = 0;
4886 /* Pre-allocate enough space assuming every field is one bit. */
4887 TYPE_FIELDS (type)
4888 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4889
4890 return type;
4891 }
4892
4893 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4894 position BITPOS is called NAME. Pass NAME as "" for fields that
4895 should not be printed. */
4896
4897 void
4898 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4899 struct type *field_type, const char *name)
4900 {
4901 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4902 int field_nr = TYPE_NFIELDS (type);
4903
4904 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4905 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4906 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4907 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4908 gdb_assert (name != NULL);
4909
4910 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4911 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4912 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4913 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4914 ++TYPE_NFIELDS (type);
4915 }
4916
4917 /* Special version of append_flags_type_field to add a flag field.
4918 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4919 position BITPOS is called NAME. */
4920
4921 void
4922 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4923 {
4924 struct gdbarch *gdbarch = get_type_arch (type);
4925
4926 append_flags_type_field (type, bitpos, 1,
4927 builtin_type (gdbarch)->builtin_bool,
4928 name);
4929 }
4930
4931 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4932 specified by CODE) associated with GDBARCH. NAME is the type name. */
4933
4934 struct type *
4935 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4936 enum type_code code)
4937 {
4938 struct type *t;
4939
4940 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4941 t = arch_type (gdbarch, code, 0, NULL);
4942 TYPE_TAG_NAME (t) = name;
4943 INIT_CPLUS_SPECIFIC (t);
4944 return t;
4945 }
4946
4947 /* Add new field with name NAME and type FIELD to composite type T.
4948 Do not set the field's position or adjust the type's length;
4949 the caller should do so. Return the new field. */
4950
4951 struct field *
4952 append_composite_type_field_raw (struct type *t, const char *name,
4953 struct type *field)
4954 {
4955 struct field *f;
4956
4957 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4958 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4959 TYPE_NFIELDS (t));
4960 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4961 memset (f, 0, sizeof f[0]);
4962 FIELD_TYPE (f[0]) = field;
4963 FIELD_NAME (f[0]) = name;
4964 return f;
4965 }
4966
4967 /* Add new field with name NAME and type FIELD to composite type T.
4968 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4969
4970 void
4971 append_composite_type_field_aligned (struct type *t, const char *name,
4972 struct type *field, int alignment)
4973 {
4974 struct field *f = append_composite_type_field_raw (t, name, field);
4975
4976 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4977 {
4978 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4979 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4980 }
4981 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4982 {
4983 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4984 if (TYPE_NFIELDS (t) > 1)
4985 {
4986 SET_FIELD_BITPOS (f[0],
4987 (FIELD_BITPOS (f[-1])
4988 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4989 * TARGET_CHAR_BIT)));
4990
4991 if (alignment)
4992 {
4993 int left;
4994
4995 alignment *= TARGET_CHAR_BIT;
4996 left = FIELD_BITPOS (f[0]) % alignment;
4997
4998 if (left)
4999 {
5000 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5001 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5002 }
5003 }
5004 }
5005 }
5006 }
5007
5008 /* Add new field with name NAME and type FIELD to composite type T. */
5009
5010 void
5011 append_composite_type_field (struct type *t, const char *name,
5012 struct type *field)
5013 {
5014 append_composite_type_field_aligned (t, name, field, 0);
5015 }
5016
5017 static struct gdbarch_data *gdbtypes_data;
5018
5019 const struct builtin_type *
5020 builtin_type (struct gdbarch *gdbarch)
5021 {
5022 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5023 }
5024
5025 static void *
5026 gdbtypes_post_init (struct gdbarch *gdbarch)
5027 {
5028 struct builtin_type *builtin_type
5029 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5030
5031 /* Basic types. */
5032 builtin_type->builtin_void
5033 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
5034 builtin_type->builtin_char
5035 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5036 !gdbarch_char_signed (gdbarch), "char");
5037 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5038 builtin_type->builtin_signed_char
5039 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5040 0, "signed char");
5041 builtin_type->builtin_unsigned_char
5042 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5043 1, "unsigned char");
5044 builtin_type->builtin_short
5045 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5046 0, "short");
5047 builtin_type->builtin_unsigned_short
5048 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5049 1, "unsigned short");
5050 builtin_type->builtin_int
5051 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5052 0, "int");
5053 builtin_type->builtin_unsigned_int
5054 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5055 1, "unsigned int");
5056 builtin_type->builtin_long
5057 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5058 0, "long");
5059 builtin_type->builtin_unsigned_long
5060 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5061 1, "unsigned long");
5062 builtin_type->builtin_long_long
5063 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5064 0, "long long");
5065 builtin_type->builtin_unsigned_long_long
5066 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5067 1, "unsigned long long");
5068 builtin_type->builtin_float
5069 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5070 "float", gdbarch_float_format (gdbarch));
5071 builtin_type->builtin_double
5072 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5073 "double", gdbarch_double_format (gdbarch));
5074 builtin_type->builtin_long_double
5075 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5076 "long double", gdbarch_long_double_format (gdbarch));
5077 builtin_type->builtin_complex
5078 = arch_complex_type (gdbarch, "complex",
5079 builtin_type->builtin_float);
5080 builtin_type->builtin_double_complex
5081 = arch_complex_type (gdbarch, "double complex",
5082 builtin_type->builtin_double);
5083 builtin_type->builtin_string
5084 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
5085 builtin_type->builtin_bool
5086 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
5087
5088 /* The following three are about decimal floating point types, which
5089 are 32-bits, 64-bits and 128-bits respectively. */
5090 builtin_type->builtin_decfloat
5091 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5092 builtin_type->builtin_decdouble
5093 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5094 builtin_type->builtin_declong
5095 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5096
5097 /* "True" character types. */
5098 builtin_type->builtin_true_char
5099 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5100 builtin_type->builtin_true_unsigned_char
5101 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5102
5103 /* Fixed-size integer types. */
5104 builtin_type->builtin_int0
5105 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5106 builtin_type->builtin_int8
5107 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5108 builtin_type->builtin_uint8
5109 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5110 builtin_type->builtin_int16
5111 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5112 builtin_type->builtin_uint16
5113 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5114 builtin_type->builtin_int32
5115 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5116 builtin_type->builtin_uint32
5117 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5118 builtin_type->builtin_int64
5119 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5120 builtin_type->builtin_uint64
5121 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5122 builtin_type->builtin_int128
5123 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5124 builtin_type->builtin_uint128
5125 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5126 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5127 TYPE_INSTANCE_FLAG_NOTTEXT;
5128 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5129 TYPE_INSTANCE_FLAG_NOTTEXT;
5130
5131 /* Wide character types. */
5132 builtin_type->builtin_char16
5133 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5134 builtin_type->builtin_char32
5135 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5136
5137
5138 /* Default data/code pointer types. */
5139 builtin_type->builtin_data_ptr
5140 = lookup_pointer_type (builtin_type->builtin_void);
5141 builtin_type->builtin_func_ptr
5142 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5143 builtin_type->builtin_func_func
5144 = lookup_function_type (builtin_type->builtin_func_ptr);
5145
5146 /* This type represents a GDB internal function. */
5147 builtin_type->internal_fn
5148 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5149 "<internal function>");
5150
5151 /* This type represents an xmethod. */
5152 builtin_type->xmethod
5153 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5154
5155 return builtin_type;
5156 }
5157
5158 /* This set of objfile-based types is intended to be used by symbol
5159 readers as basic types. */
5160
5161 static const struct objfile_data *objfile_type_data;
5162
5163 const struct objfile_type *
5164 objfile_type (struct objfile *objfile)
5165 {
5166 struct gdbarch *gdbarch;
5167 struct objfile_type *objfile_type
5168 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5169
5170 if (objfile_type)
5171 return objfile_type;
5172
5173 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5174 1, struct objfile_type);
5175
5176 /* Use the objfile architecture to determine basic type properties. */
5177 gdbarch = get_objfile_arch (objfile);
5178
5179 /* Basic types. */
5180 objfile_type->builtin_void
5181 = init_type (objfile, TYPE_CODE_VOID, 1, "void");
5182 objfile_type->builtin_char
5183 = init_integer_type (objfile, TARGET_CHAR_BIT,
5184 !gdbarch_char_signed (gdbarch), "char");
5185 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5186 objfile_type->builtin_signed_char
5187 = init_integer_type (objfile, TARGET_CHAR_BIT,
5188 0, "signed char");
5189 objfile_type->builtin_unsigned_char
5190 = init_integer_type (objfile, TARGET_CHAR_BIT,
5191 1, "unsigned char");
5192 objfile_type->builtin_short
5193 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5194 0, "short");
5195 objfile_type->builtin_unsigned_short
5196 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5197 1, "unsigned short");
5198 objfile_type->builtin_int
5199 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5200 0, "int");
5201 objfile_type->builtin_unsigned_int
5202 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5203 1, "unsigned int");
5204 objfile_type->builtin_long
5205 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5206 0, "long");
5207 objfile_type->builtin_unsigned_long
5208 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5209 1, "unsigned long");
5210 objfile_type->builtin_long_long
5211 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5212 0, "long long");
5213 objfile_type->builtin_unsigned_long_long
5214 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5215 1, "unsigned long long");
5216 objfile_type->builtin_float
5217 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5218 "float", gdbarch_float_format (gdbarch));
5219 objfile_type->builtin_double
5220 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5221 "double", gdbarch_double_format (gdbarch));
5222 objfile_type->builtin_long_double
5223 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5224 "long double", gdbarch_long_double_format (gdbarch));
5225
5226 /* This type represents a type that was unrecognized in symbol read-in. */
5227 objfile_type->builtin_error
5228 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5229
5230 /* The following set of types is used for symbols with no
5231 debug information. */
5232 objfile_type->nodebug_text_symbol
5233 = init_type (objfile, TYPE_CODE_FUNC, 1,
5234 "<text variable, no debug info>");
5235 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5236 = objfile_type->builtin_int;
5237 objfile_type->nodebug_text_gnu_ifunc_symbol
5238 = init_type (objfile, TYPE_CODE_FUNC, 1,
5239 "<text gnu-indirect-function variable, no debug info>");
5240 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5241 = objfile_type->nodebug_text_symbol;
5242 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5243 objfile_type->nodebug_got_plt_symbol
5244 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5245 "<text from jump slot in .got.plt, no debug info>",
5246 objfile_type->nodebug_text_symbol);
5247 objfile_type->nodebug_data_symbol
5248 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5249 "<data variable, no debug info>");
5250 objfile_type->nodebug_unknown_symbol
5251 = init_integer_type (objfile, TARGET_CHAR_BIT, 0,
5252 "<variable (not text or data), no debug info>");
5253 objfile_type->nodebug_tls_symbol
5254 = init_integer_type (objfile, gdbarch_int_bit (gdbarch), 0,
5255 "<thread local variable, no debug info>");
5256
5257 /* NOTE: on some targets, addresses and pointers are not necessarily
5258 the same.
5259
5260 The upshot is:
5261 - gdb's `struct type' always describes the target's
5262 representation.
5263 - gdb's `struct value' objects should always hold values in
5264 target form.
5265 - gdb's CORE_ADDR values are addresses in the unified virtual
5266 address space that the assembler and linker work with. Thus,
5267 since target_read_memory takes a CORE_ADDR as an argument, it
5268 can access any memory on the target, even if the processor has
5269 separate code and data address spaces.
5270
5271 In this context, objfile_type->builtin_core_addr is a bit odd:
5272 it's a target type for a value the target will never see. It's
5273 only used to hold the values of (typeless) linker symbols, which
5274 are indeed in the unified virtual address space. */
5275
5276 objfile_type->builtin_core_addr
5277 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5278 "__CORE_ADDR");
5279
5280 set_objfile_data (objfile, objfile_type_data, objfile_type);
5281 return objfile_type;
5282 }
5283
5284 extern initialize_file_ftype _initialize_gdbtypes;
5285
5286 void
5287 _initialize_gdbtypes (void)
5288 {
5289 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5290 objfile_type_data = register_objfile_data ();
5291
5292 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5293 _("Set debugging of C++ overloading."),
5294 _("Show debugging of C++ overloading."),
5295 _("When enabled, ranking of the "
5296 "functions is displayed."),
5297 NULL,
5298 show_overload_debug,
5299 &setdebuglist, &showdebuglist);
5300
5301 /* Add user knob for controlling resolution of opaque types. */
5302 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5303 &opaque_type_resolution,
5304 _("Set resolution of opaque struct/class/union"
5305 " types (if set before loading symbols)."),
5306 _("Show resolution of opaque struct/class/union"
5307 " types (if set before loading symbols)."),
5308 NULL, NULL,
5309 show_opaque_type_resolution,
5310 &setlist, &showlist);
5311
5312 /* Add an option to permit non-strict type checking. */
5313 add_setshow_boolean_cmd ("type", class_support,
5314 &strict_type_checking,
5315 _("Set strict type checking."),
5316 _("Show strict type checking."),
5317 NULL, NULL,
5318 show_strict_type_checking,
5319 &setchecklist, &showchecklist);
5320 }
This page took 0.215502 seconds and 4 git commands to generate.