af28ca122e9541f7e8088c0161a5e3dee1012723
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_half_big,
47 &floatformat_ieee_half_little
48 };
49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_single_big,
51 &floatformat_ieee_single_little
52 };
53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_little
56 };
57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_ieee_double_big,
59 &floatformat_ieee_double_littlebyte_bigword
60 };
61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_i387_ext,
63 &floatformat_i387_ext
64 };
65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_m68881_ext,
67 &floatformat_m68881_ext
68 };
69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_arm_ext_big,
71 &floatformat_arm_ext_littlebyte_bigword
72 };
73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_spill_big,
75 &floatformat_ia64_spill_little
76 };
77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ia64_quad_big,
79 &floatformat_ia64_quad_little
80 };
81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_f,
83 &floatformat_vax_f
84 };
85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_vax_d,
87 &floatformat_vax_d
88 };
89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_ibm_long_double,
91 &floatformat_ibm_long_double
92 };
93
94
95 int opaque_type_resolution = 1;
96 static void
97 show_opaque_type_resolution (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c,
99 const char *value)
100 {
101 fprintf_filtered (file, _("\
102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
103 value);
104 }
105
106 int overload_debug = 0;
107 static void
108 show_overload_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
112 value);
113 }
114
115 struct extra
116 {
117 char str[128];
118 int len;
119 }; /* Maximum extension is 128! FIXME */
120
121 static void print_bit_vector (B_TYPE *, int);
122 static void print_arg_types (struct field *, int, int);
123 static void dump_fn_fieldlists (struct type *, int);
124 static void print_cplus_stuff (struct type *, int);
125
126
127 /* Allocate a new OBJFILE-associated type structure and fill it
128 with some defaults. Space for the type structure is allocated
129 on the objfile's objfile_obstack. */
130
131 struct type *
132 alloc_type (struct objfile *objfile)
133 {
134 struct type *type;
135
136 gdb_assert (objfile != NULL);
137
138 /* Alloc the structure and start off with all fields zeroed. */
139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
141 struct main_type);
142 OBJSTAT (objfile, n_types++);
143
144 TYPE_OBJFILE_OWNED (type) = 1;
145 TYPE_OWNER (type).objfile = objfile;
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_VPTR_FIELDNO (type) = -1;
151 TYPE_CHAIN (type) = type; /* Chain back to itself. */
152
153 return type;
154 }
155
156 /* Allocate a new GDBARCH-associated type structure and fill it
157 with some defaults. Space for the type structure is allocated
158 on the heap. */
159
160 struct type *
161 alloc_type_arch (struct gdbarch *gdbarch)
162 {
163 struct type *type;
164
165 gdb_assert (gdbarch != NULL);
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 type = XZALLOC (struct type);
170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
171
172 TYPE_OBJFILE_OWNED (type) = 0;
173 TYPE_OWNER (type).gdbarch = gdbarch;
174
175 /* Initialize the fields that might not be zero. */
176
177 TYPE_CODE (type) = TYPE_CODE_UNDEF;
178 TYPE_VPTR_FIELDNO (type) = -1;
179 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180
181 return type;
182 }
183
184 /* If TYPE is objfile-associated, allocate a new type structure
185 associated with the same objfile. If TYPE is gdbarch-associated,
186 allocate a new type structure associated with the same gdbarch. */
187
188 struct type *
189 alloc_type_copy (const struct type *type)
190 {
191 if (TYPE_OBJFILE_OWNED (type))
192 return alloc_type (TYPE_OWNER (type).objfile);
193 else
194 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
195 }
196
197 /* If TYPE is gdbarch-associated, return that architecture.
198 If TYPE is objfile-associated, return that objfile's architecture. */
199
200 struct gdbarch *
201 get_type_arch (const struct type *type)
202 {
203 if (TYPE_OBJFILE_OWNED (type))
204 return get_objfile_arch (TYPE_OWNER (type).objfile);
205 else
206 return TYPE_OWNER (type).gdbarch;
207 }
208
209
210 /* Alloc a new type instance structure, fill it with some defaults,
211 and point it at OLDTYPE. Allocate the new type instance from the
212 same place as OLDTYPE. */
213
214 static struct type *
215 alloc_type_instance (struct type *oldtype)
216 {
217 struct type *type;
218
219 /* Allocate the structure. */
220
221 if (! TYPE_OBJFILE_OWNED (oldtype))
222 type = XZALLOC (struct type);
223 else
224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
225 struct type);
226
227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
228
229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
230
231 return type;
232 }
233
234 /* Clear all remnants of the previous type at TYPE, in preparation for
235 replacing it with something else. Preserve owner information. */
236 static void
237 smash_type (struct type *type)
238 {
239 int objfile_owned = TYPE_OBJFILE_OWNED (type);
240 union type_owner owner = TYPE_OWNER (type);
241
242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
243
244 /* Restore owner information. */
245 TYPE_OBJFILE_OWNED (type) = objfile_owned;
246 TYPE_OWNER (type) = owner;
247
248 /* For now, delete the rings. */
249 TYPE_CHAIN (type) = type;
250
251 /* For now, leave the pointer/reference types alone. */
252 }
253
254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
255 to a pointer to memory where the pointer type should be stored.
256 If *TYPEPTR is zero, update it to point to the pointer type we return.
257 We allocate new memory if needed. */
258
259 struct type *
260 make_pointer_type (struct type *type, struct type **typeptr)
261 {
262 struct type *ntype; /* New type */
263 struct type *chain;
264
265 ntype = TYPE_POINTER_TYPE (type);
266
267 if (ntype)
268 {
269 if (typeptr == 0)
270 return ntype; /* Don't care about alloc,
271 and have new type. */
272 else if (*typeptr == 0)
273 {
274 *typeptr = ntype; /* Tracking alloc, and have new type. */
275 return ntype;
276 }
277 }
278
279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
280 {
281 ntype = alloc_type_copy (type);
282 if (typeptr)
283 *typeptr = ntype;
284 }
285 else /* We have storage, but need to reset it. */
286 {
287 ntype = *typeptr;
288 chain = TYPE_CHAIN (ntype);
289 smash_type (ntype);
290 TYPE_CHAIN (ntype) = chain;
291 }
292
293 TYPE_TARGET_TYPE (ntype) = type;
294 TYPE_POINTER_TYPE (type) = ntype;
295
296 /* FIXME! Assume the machine has only one representation for
297 pointers! */
298
299 TYPE_LENGTH (ntype)
300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
301 TYPE_CODE (ntype) = TYPE_CODE_PTR;
302
303 /* Mark pointers as unsigned. The target converts between pointers
304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
305 gdbarch_address_to_pointer. */
306 TYPE_UNSIGNED (ntype) = 1;
307
308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
309 TYPE_POINTER_TYPE (type) = ntype;
310
311 /* Update the length of all the other variants of this type. */
312 chain = TYPE_CHAIN (ntype);
313 while (chain != ntype)
314 {
315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
316 chain = TYPE_CHAIN (chain);
317 }
318
319 return ntype;
320 }
321
322 /* Given a type TYPE, return a type of pointers to that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_pointer_type (struct type *type)
327 {
328 return make_pointer_type (type, (struct type **) 0);
329 }
330
331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
332 points to a pointer to memory where the reference type should be
333 stored. If *TYPEPTR is zero, update it to point to the reference
334 type we return. We allocate new memory if needed. */
335
336 struct type *
337 make_reference_type (struct type *type, struct type **typeptr)
338 {
339 struct type *ntype; /* New type */
340 struct type *chain;
341
342 ntype = TYPE_REFERENCE_TYPE (type);
343
344 if (ntype)
345 {
346 if (typeptr == 0)
347 return ntype; /* Don't care about alloc,
348 and have new type. */
349 else if (*typeptr == 0)
350 {
351 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 return ntype;
353 }
354 }
355
356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
357 {
358 ntype = alloc_type_copy (type);
359 if (typeptr)
360 *typeptr = ntype;
361 }
362 else /* We have storage, but need to reset it. */
363 {
364 ntype = *typeptr;
365 chain = TYPE_CHAIN (ntype);
366 smash_type (ntype);
367 TYPE_CHAIN (ntype) = chain;
368 }
369
370 TYPE_TARGET_TYPE (ntype) = type;
371 TYPE_REFERENCE_TYPE (type) = ntype;
372
373 /* FIXME! Assume the machine has only one representation for
374 references, and that it matches the (only) representation for
375 pointers! */
376
377 TYPE_LENGTH (ntype) =
378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
379 TYPE_CODE (ntype) = TYPE_CODE_REF;
380
381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
382 TYPE_REFERENCE_TYPE (type) = ntype;
383
384 /* Update the length of all the other variants of this type. */
385 chain = TYPE_CHAIN (ntype);
386 while (chain != ntype)
387 {
388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
389 chain = TYPE_CHAIN (chain);
390 }
391
392 return ntype;
393 }
394
395 /* Same as above, but caller doesn't care about memory allocation
396 details. */
397
398 struct type *
399 lookup_reference_type (struct type *type)
400 {
401 return make_reference_type (type, (struct type **) 0);
402 }
403
404 /* Lookup a function type that returns type TYPE. TYPEPTR, if
405 nonzero, points to a pointer to memory where the function type
406 should be stored. If *TYPEPTR is zero, update it to point to the
407 function type we return. We allocate new memory if needed. */
408
409 struct type *
410 make_function_type (struct type *type, struct type **typeptr)
411 {
412 struct type *ntype; /* New type */
413
414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
415 {
416 ntype = alloc_type_copy (type);
417 if (typeptr)
418 *typeptr = ntype;
419 }
420 else /* We have storage, but need to reset it. */
421 {
422 ntype = *typeptr;
423 smash_type (ntype);
424 }
425
426 TYPE_TARGET_TYPE (ntype) = type;
427
428 TYPE_LENGTH (ntype) = 1;
429 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
430
431 return ntype;
432 }
433
434
435 /* Given a type TYPE, return a type of functions that return that type.
436 May need to construct such a type if this is the first use. */
437
438 struct type *
439 lookup_function_type (struct type *type)
440 {
441 return make_function_type (type, (struct type **) 0);
442 }
443
444 /* Identify address space identifier by name --
445 return the integer flag defined in gdbtypes.h. */
446 extern int
447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
448 {
449 int type_flags;
450
451 /* Check for known address space delimiters. */
452 if (!strcmp (space_identifier, "code"))
453 return TYPE_INSTANCE_FLAG_CODE_SPACE;
454 else if (!strcmp (space_identifier, "data"))
455 return TYPE_INSTANCE_FLAG_DATA_SPACE;
456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
457 && gdbarch_address_class_name_to_type_flags (gdbarch,
458 space_identifier,
459 &type_flags))
460 return type_flags;
461 else
462 error (_("Unknown address space specifier: \"%s\""), space_identifier);
463 }
464
465 /* Identify address space identifier by integer flag as defined in
466 gdbtypes.h -- return the string version of the adress space name. */
467
468 const char *
469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
470 {
471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
472 return "code";
473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
474 return "data";
475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
476 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
478 else
479 return NULL;
480 }
481
482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
483
484 If STORAGE is non-NULL, create the new type instance there.
485 STORAGE must be in the same obstack as TYPE. */
486
487 static struct type *
488 make_qualified_type (struct type *type, int new_flags,
489 struct type *storage)
490 {
491 struct type *ntype;
492
493 ntype = type;
494 do
495 {
496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
497 return ntype;
498 ntype = TYPE_CHAIN (ntype);
499 }
500 while (ntype != type);
501
502 /* Create a new type instance. */
503 if (storage == NULL)
504 ntype = alloc_type_instance (type);
505 else
506 {
507 /* If STORAGE was provided, it had better be in the same objfile
508 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
509 if one objfile is freed and the other kept, we'd have
510 dangling pointers. */
511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
512
513 ntype = storage;
514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
515 TYPE_CHAIN (ntype) = ntype;
516 }
517
518 /* Pointers or references to the original type are not relevant to
519 the new type. */
520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
522
523 /* Chain the new qualified type to the old type. */
524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
525 TYPE_CHAIN (type) = ntype;
526
527 /* Now set the instance flags and return the new type. */
528 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
529
530 /* Set length of new type to that of the original type. */
531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
532
533 return ntype;
534 }
535
536 /* Make an address-space-delimited variant of a type -- a type that
537 is identical to the one supplied except that it has an address
538 space attribute attached to it (such as "code" or "data").
539
540 The space attributes "code" and "data" are for Harvard
541 architectures. The address space attributes are for architectures
542 which have alternately sized pointers or pointers with alternate
543 representations. */
544
545 struct type *
546 make_type_with_address_space (struct type *type, int space_flag)
547 {
548 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
550 | TYPE_INSTANCE_FLAG_DATA_SPACE
551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
552 | space_flag);
553
554 return make_qualified_type (type, new_flags, NULL);
555 }
556
557 /* Make a "c-v" variant of a type -- a type that is identical to the
558 one supplied except that it may have const or volatile attributes
559 CNST is a flag for setting the const attribute
560 VOLTL is a flag for setting the volatile attribute
561 TYPE is the base type whose variant we are creating.
562
563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
564 storage to hold the new qualified type; *TYPEPTR and TYPE must be
565 in the same objfile. Otherwise, allocate fresh memory for the new
566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
567 new type we construct. */
568 struct type *
569 make_cv_type (int cnst, int voltl,
570 struct type *type,
571 struct type **typeptr)
572 {
573 struct type *ntype; /* New type */
574
575 int new_flags = (TYPE_INSTANCE_FLAGS (type)
576 & ~(TYPE_INSTANCE_FLAG_CONST
577 | TYPE_INSTANCE_FLAG_VOLATILE));
578
579 if (cnst)
580 new_flags |= TYPE_INSTANCE_FLAG_CONST;
581
582 if (voltl)
583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
584
585 if (typeptr && *typeptr != NULL)
586 {
587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
588 a C-V variant chain that threads across objfiles: if one
589 objfile gets freed, then the other has a broken C-V chain.
590
591 This code used to try to copy over the main type from TYPE to
592 *TYPEPTR if they were in different objfiles, but that's
593 wrong, too: TYPE may have a field list or member function
594 lists, which refer to types of their own, etc. etc. The
595 whole shebang would need to be copied over recursively; you
596 can't have inter-objfile pointers. The only thing to do is
597 to leave stub types as stub types, and look them up afresh by
598 name each time you encounter them. */
599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
600 }
601
602 ntype = make_qualified_type (type, new_flags,
603 typeptr ? *typeptr : NULL);
604
605 if (typeptr != NULL)
606 *typeptr = ntype;
607
608 return ntype;
609 }
610
611 /* Replace the contents of ntype with the type *type. This changes the
612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
613 the changes are propogated to all types in the TYPE_CHAIN.
614
615 In order to build recursive types, it's inevitable that we'll need
616 to update types in place --- but this sort of indiscriminate
617 smashing is ugly, and needs to be replaced with something more
618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
619 clear if more steps are needed. */
620 void
621 replace_type (struct type *ntype, struct type *type)
622 {
623 struct type *chain;
624
625 /* These two types had better be in the same objfile. Otherwise,
626 the assignment of one type's main type structure to the other
627 will produce a type with references to objects (names; field
628 lists; etc.) allocated on an objfile other than its own. */
629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
630
631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
632
633 /* The type length is not a part of the main type. Update it for
634 each type on the variant chain. */
635 chain = ntype;
636 do
637 {
638 /* Assert that this element of the chain has no address-class bits
639 set in its flags. Such type variants might have type lengths
640 which are supposed to be different from the non-address-class
641 variants. This assertion shouldn't ever be triggered because
642 symbol readers which do construct address-class variants don't
643 call replace_type(). */
644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
645
646 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
647 chain = TYPE_CHAIN (chain);
648 }
649 while (ntype != chain);
650
651 /* Assert that the two types have equivalent instance qualifiers.
652 This should be true for at least all of our debug readers. */
653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
654 }
655
656 /* Implement direct support for MEMBER_TYPE in GNU C++.
657 May need to construct such a type if this is the first use.
658 The TYPE is the type of the member. The DOMAIN is the type
659 of the aggregate that the member belongs to. */
660
661 struct type *
662 lookup_memberptr_type (struct type *type, struct type *domain)
663 {
664 struct type *mtype;
665
666 mtype = alloc_type_copy (type);
667 smash_to_memberptr_type (mtype, domain, type);
668 return mtype;
669 }
670
671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
672
673 struct type *
674 lookup_methodptr_type (struct type *to_type)
675 {
676 struct type *mtype;
677
678 mtype = alloc_type_copy (to_type);
679 smash_to_methodptr_type (mtype, to_type);
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860
861 return create_array_type (NULL, element_type, range_type);
862 }
863
864 /* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
875
876 struct type *
877 create_string_type (struct type *result_type,
878 struct type *string_char_type,
879 struct type *range_type)
880 {
881 result_type = create_array_type (result_type,
882 string_char_type,
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
885 return result_type;
886 }
887
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891 {
892 struct type *result_type;
893
894 result_type = lookup_array_range_type (string_char_type,
895 low_bound, high_bound);
896 TYPE_CODE (result_type) = TYPE_CODE_STRING;
897 return result_type;
898 }
899
900 struct type *
901 create_set_type (struct type *result_type, struct type *domain_type)
902 {
903 if (result_type == NULL)
904 result_type = alloc_type_copy (domain_type);
905
906 TYPE_CODE (result_type) = TYPE_CODE_SET;
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
909
910 if (!TYPE_STUB (domain_type))
911 {
912 LONGEST low_bound, high_bound, bit_length;
913
914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
915 low_bound = high_bound = 0;
916 bit_length = high_bound - low_bound + 1;
917 TYPE_LENGTH (result_type)
918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
919 if (low_bound >= 0)
920 TYPE_UNSIGNED (result_type) = 1;
921 }
922 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
923
924 return result_type;
925 }
926
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930 void
931 make_vector_type (struct type *array_type)
932 {
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_VECTOR (array_type) = 1;
951 }
952
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
955 {
956 struct type *array_type;
957
958 array_type = lookup_array_range_type (elt_type, 0, n - 1);
959 make_vector_type (array_type);
960 return array_type;
961 }
962
963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
966 TYPE doesn't include the offset (that's the value of the MEMBER
967 itself), but does include the structure type into which it points
968 (for some reason).
969
970 When "smashing" the type, we preserve the objfile that the old type
971 pointed to, since we aren't changing where the type is actually
972 allocated. */
973
974 void
975 smash_to_memberptr_type (struct type *type, struct type *domain,
976 struct type *to_type)
977 {
978 smash_type (type);
979 TYPE_TARGET_TYPE (type) = to_type;
980 TYPE_DOMAIN_TYPE (type) = domain;
981 /* Assume that a data member pointer is the same size as a normal
982 pointer. */
983 TYPE_LENGTH (type)
984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
986 }
987
988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
989
990 When "smashing" the type, we preserve the objfile that the old type
991 pointed to, since we aren't changing where the type is actually
992 allocated. */
993
994 void
995 smash_to_methodptr_type (struct type *type, struct type *to_type)
996 {
997 smash_type (type);
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1002 }
1003
1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1005 METHOD just means `function that gets an extra "this" argument'.
1006
1007 When "smashing" the type, we preserve the objfile that the old type
1008 pointed to, since we aren't changing where the type is actually
1009 allocated. */
1010
1011 void
1012 smash_to_method_type (struct type *type, struct type *domain,
1013 struct type *to_type, struct field *args,
1014 int nargs, int varargs)
1015 {
1016 smash_type (type);
1017 TYPE_TARGET_TYPE (type) = to_type;
1018 TYPE_DOMAIN_TYPE (type) = domain;
1019 TYPE_FIELDS (type) = args;
1020 TYPE_NFIELDS (type) = nargs;
1021 if (varargs)
1022 TYPE_VARARGS (type) = 1;
1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1024 TYPE_CODE (type) = TYPE_CODE_METHOD;
1025 }
1026
1027 /* Return a typename for a struct/union/enum type without "struct ",
1028 "union ", or "enum ". If the type has a NULL name, return NULL. */
1029
1030 char *
1031 type_name_no_tag (const struct type *type)
1032 {
1033 if (TYPE_TAG_NAME (type) != NULL)
1034 return TYPE_TAG_NAME (type);
1035
1036 /* Is there code which expects this to return the name if there is
1037 no tag name? My guess is that this is mainly used for C++ in
1038 cases where the two will always be the same. */
1039 return TYPE_NAME (type);
1040 }
1041
1042 /* Lookup a typedef or primitive type named NAME, visible in lexical
1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1044 suitably defined. */
1045
1046 struct type *
1047 lookup_typename (const struct language_defn *language,
1048 struct gdbarch *gdbarch, char *name,
1049 const struct block *block, int noerr)
1050 {
1051 struct symbol *sym;
1052 struct type *tmp;
1053
1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1056 {
1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1058 if (tmp)
1059 {
1060 return tmp;
1061 }
1062 else if (!tmp && noerr)
1063 {
1064 return NULL;
1065 }
1066 else
1067 {
1068 error (_("No type named %s."), name);
1069 }
1070 }
1071 return (SYMBOL_TYPE (sym));
1072 }
1073
1074 struct type *
1075 lookup_unsigned_typename (const struct language_defn *language,
1076 struct gdbarch *gdbarch, char *name)
1077 {
1078 char *uns = alloca (strlen (name) + 10);
1079
1080 strcpy (uns, "unsigned ");
1081 strcpy (uns + 9, name);
1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1083 }
1084
1085 struct type *
1086 lookup_signed_typename (const struct language_defn *language,
1087 struct gdbarch *gdbarch, char *name)
1088 {
1089 struct type *t;
1090 char *uns = alloca (strlen (name) + 8);
1091
1092 strcpy (uns, "signed ");
1093 strcpy (uns + 7, name);
1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1095 /* If we don't find "signed FOO" just try again with plain "FOO". */
1096 if (t != NULL)
1097 return t;
1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1099 }
1100
1101 /* Lookup a structure type named "struct NAME",
1102 visible in lexical block BLOCK. */
1103
1104 struct type *
1105 lookup_struct (char *name, struct block *block)
1106 {
1107 struct symbol *sym;
1108
1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1110
1111 if (sym == NULL)
1112 {
1113 error (_("No struct type named %s."), name);
1114 }
1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1116 {
1117 error (_("This context has class, union or enum %s, not a struct."),
1118 name);
1119 }
1120 return (SYMBOL_TYPE (sym));
1121 }
1122
1123 /* Lookup a union type named "union NAME",
1124 visible in lexical block BLOCK. */
1125
1126 struct type *
1127 lookup_union (char *name, struct block *block)
1128 {
1129 struct symbol *sym;
1130 struct type *t;
1131
1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1133
1134 if (sym == NULL)
1135 error (_("No union type named %s."), name);
1136
1137 t = SYMBOL_TYPE (sym);
1138
1139 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1140 return t;
1141
1142 /* If we get here, it's not a union. */
1143 error (_("This context has class, struct or enum %s, not a union."),
1144 name);
1145 }
1146
1147
1148 /* Lookup an enum type named "enum NAME",
1149 visible in lexical block BLOCK. */
1150
1151 struct type *
1152 lookup_enum (char *name, struct block *block)
1153 {
1154 struct symbol *sym;
1155
1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1157 if (sym == NULL)
1158 {
1159 error (_("No enum type named %s."), name);
1160 }
1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1162 {
1163 error (_("This context has class, struct or union %s, not an enum."),
1164 name);
1165 }
1166 return (SYMBOL_TYPE (sym));
1167 }
1168
1169 /* Lookup a template type named "template NAME<TYPE>",
1170 visible in lexical block BLOCK. */
1171
1172 struct type *
1173 lookup_template_type (char *name, struct type *type,
1174 struct block *block)
1175 {
1176 struct symbol *sym;
1177 char *nam = (char *)
1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1179
1180 strcpy (nam, name);
1181 strcat (nam, "<");
1182 strcat (nam, TYPE_NAME (type));
1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1184
1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1186
1187 if (sym == NULL)
1188 {
1189 error (_("No template type named %s."), name);
1190 }
1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1192 {
1193 error (_("This context has class, union or enum %s, not a struct."),
1194 name);
1195 }
1196 return (SYMBOL_TYPE (sym));
1197 }
1198
1199 /* Given a type TYPE, lookup the type of the component of type named
1200 NAME.
1201
1202 TYPE can be either a struct or union, or a pointer or reference to
1203 a struct or union. If it is a pointer or reference, its target
1204 type is automatically used. Thus '.' and '->' are interchangable,
1205 as specified for the definitions of the expression element types
1206 STRUCTOP_STRUCT and STRUCTOP_PTR.
1207
1208 If NOERR is nonzero, return zero if NAME is not suitably defined.
1209 If NAME is the name of a baseclass type, return that type. */
1210
1211 struct type *
1212 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1213 {
1214 int i;
1215 char *typename;
1216
1217 for (;;)
1218 {
1219 CHECK_TYPEDEF (type);
1220 if (TYPE_CODE (type) != TYPE_CODE_PTR
1221 && TYPE_CODE (type) != TYPE_CODE_REF)
1222 break;
1223 type = TYPE_TARGET_TYPE (type);
1224 }
1225
1226 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1227 && TYPE_CODE (type) != TYPE_CODE_UNION)
1228 {
1229 typename = type_to_string (type);
1230 make_cleanup (xfree, typename);
1231 error (_("Type %s is not a structure or union type."), typename);
1232 }
1233
1234 #if 0
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
1243 if (typename != NULL && strcmp (typename, name) == 0)
1244 return type;
1245 }
1246 #endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 else if (!t_field_name || *t_field_name == '\0')
1257 {
1258 struct type *subtype
1259 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1260
1261 if (subtype != NULL)
1262 return subtype;
1263 }
1264 }
1265
1266 /* OK, it's not in this class. Recursively check the baseclasses. */
1267 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1268 {
1269 struct type *t;
1270
1271 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1272 if (t != NULL)
1273 {
1274 return t;
1275 }
1276 }
1277
1278 if (noerr)
1279 {
1280 return NULL;
1281 }
1282
1283 typename = type_to_string (type);
1284 make_cleanup (xfree, typename);
1285 error (_("Type %s has no component named %s."), typename, name);
1286 }
1287
1288 /* Lookup the vptr basetype/fieldno values for TYPE.
1289 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1290 vptr_fieldno. Also, if found and basetype is from the same objfile,
1291 cache the results.
1292 If not found, return -1 and ignore BASETYPEP.
1293 Callers should be aware that in some cases (for example,
1294 the type or one of its baseclasses is a stub type and we are
1295 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1296 this function will not be able to find the
1297 virtual function table pointer, and vptr_fieldno will remain -1 and
1298 vptr_basetype will remain NULL or incomplete. */
1299
1300 int
1301 get_vptr_fieldno (struct type *type, struct type **basetypep)
1302 {
1303 CHECK_TYPEDEF (type);
1304
1305 if (TYPE_VPTR_FIELDNO (type) < 0)
1306 {
1307 int i;
1308
1309 /* We must start at zero in case the first (and only) baseclass
1310 is virtual (and hence we cannot share the table pointer). */
1311 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1312 {
1313 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1314 int fieldno;
1315 struct type *basetype;
1316
1317 fieldno = get_vptr_fieldno (baseclass, &basetype);
1318 if (fieldno >= 0)
1319 {
1320 /* If the type comes from a different objfile we can't cache
1321 it, it may have a different lifetime. PR 2384 */
1322 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1323 {
1324 TYPE_VPTR_FIELDNO (type) = fieldno;
1325 TYPE_VPTR_BASETYPE (type) = basetype;
1326 }
1327 if (basetypep)
1328 *basetypep = basetype;
1329 return fieldno;
1330 }
1331 }
1332
1333 /* Not found. */
1334 return -1;
1335 }
1336 else
1337 {
1338 if (basetypep)
1339 *basetypep = TYPE_VPTR_BASETYPE (type);
1340 return TYPE_VPTR_FIELDNO (type);
1341 }
1342 }
1343
1344 static void
1345 stub_noname_complaint (void)
1346 {
1347 complaint (&symfile_complaints, _("stub type has NULL name"));
1348 }
1349
1350 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1351
1352 If this is a stubbed struct (i.e. declared as struct foo *), see if
1353 we can find a full definition in some other file. If so, copy this
1354 definition, so we can use it in future. There used to be a comment
1355 (but not any code) that if we don't find a full definition, we'd
1356 set a flag so we don't spend time in the future checking the same
1357 type. That would be a mistake, though--we might load in more
1358 symbols which contain a full definition for the type.
1359
1360 This used to be coded as a macro, but I don't think it is called
1361 often enough to merit such treatment.
1362
1363 Find the real type of TYPE. This function returns the real type,
1364 after removing all layers of typedefs and completing opaque or stub
1365 types. Completion changes the TYPE argument, but stripping of
1366 typedefs does not.
1367
1368 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1369 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1370 check_typedef can still return different type than the original TYPE
1371 pointer. */
1372
1373 struct type *
1374 check_typedef (struct type *type)
1375 {
1376 struct type *orig_type = type;
1377 int is_const, is_volatile;
1378
1379 gdb_assert (type);
1380
1381 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1382 {
1383 if (!TYPE_TARGET_TYPE (type))
1384 {
1385 char *name;
1386 struct symbol *sym;
1387
1388 /* It is dangerous to call lookup_symbol if we are currently
1389 reading a symtab. Infinite recursion is one danger. */
1390 if (currently_reading_symtab)
1391 return type;
1392
1393 name = type_name_no_tag (type);
1394 /* FIXME: shouldn't we separately check the TYPE_NAME and
1395 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1396 VAR_DOMAIN as appropriate? (this code was written before
1397 TYPE_NAME and TYPE_TAG_NAME were separate). */
1398 if (name == NULL)
1399 {
1400 stub_noname_complaint ();
1401 return type;
1402 }
1403 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1404 if (sym)
1405 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1406 else /* TYPE_CODE_UNDEF */
1407 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1408 }
1409 type = TYPE_TARGET_TYPE (type);
1410 }
1411
1412 is_const = TYPE_CONST (type);
1413 is_volatile = TYPE_VOLATILE (type);
1414
1415 /* If this is a struct/class/union with no fields, then check
1416 whether a full definition exists somewhere else. This is for
1417 systems where a type definition with no fields is issued for such
1418 types, instead of identifying them as stub types in the first
1419 place. */
1420
1421 if (TYPE_IS_OPAQUE (type)
1422 && opaque_type_resolution
1423 && !currently_reading_symtab)
1424 {
1425 char *name = type_name_no_tag (type);
1426 struct type *newtype;
1427
1428 if (name == NULL)
1429 {
1430 stub_noname_complaint ();
1431 return type;
1432 }
1433 newtype = lookup_transparent_type (name);
1434
1435 if (newtype)
1436 {
1437 /* If the resolved type and the stub are in the same
1438 objfile, then replace the stub type with the real deal.
1439 But if they're in separate objfiles, leave the stub
1440 alone; we'll just look up the transparent type every time
1441 we call check_typedef. We can't create pointers between
1442 types allocated to different objfiles, since they may
1443 have different lifetimes. Trying to copy NEWTYPE over to
1444 TYPE's objfile is pointless, too, since you'll have to
1445 move over any other types NEWTYPE refers to, which could
1446 be an unbounded amount of stuff. */
1447 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1448 make_cv_type (is_const, is_volatile, newtype, &type);
1449 else
1450 type = newtype;
1451 }
1452 }
1453 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1454 types. */
1455 else if (TYPE_STUB (type) && !currently_reading_symtab)
1456 {
1457 char *name = type_name_no_tag (type);
1458 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1459 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1460 as appropriate? (this code was written before TYPE_NAME and
1461 TYPE_TAG_NAME were separate). */
1462 struct symbol *sym;
1463
1464 if (name == NULL)
1465 {
1466 stub_noname_complaint ();
1467 return type;
1468 }
1469 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1470 if (sym)
1471 {
1472 /* Same as above for opaque types, we can replace the stub
1473 with the complete type only if they are int the same
1474 objfile. */
1475 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1476 make_cv_type (is_const, is_volatile,
1477 SYMBOL_TYPE (sym), &type);
1478 else
1479 type = SYMBOL_TYPE (sym);
1480 }
1481 }
1482
1483 if (TYPE_TARGET_STUB (type))
1484 {
1485 struct type *range_type;
1486 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1487
1488 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1489 {
1490 /* Empty. */
1491 }
1492 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1493 && TYPE_NFIELDS (type) == 1
1494 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1495 == TYPE_CODE_RANGE))
1496 {
1497 /* Now recompute the length of the array type, based on its
1498 number of elements and the target type's length.
1499 Watch out for Ada null Ada arrays where the high bound
1500 is smaller than the low bound. */
1501 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1502 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1503 ULONGEST len;
1504
1505 if (high_bound < low_bound)
1506 len = 0;
1507 else
1508 {
1509 /* For now, we conservatively take the array length to be 0
1510 if its length exceeds UINT_MAX. The code below assumes
1511 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1512 which is technically not guaranteed by C, but is usually true
1513 (because it would be true if x were unsigned with its
1514 high-order bit on). It uses the fact that
1515 high_bound-low_bound is always representable in
1516 ULONGEST and that if high_bound-low_bound+1 overflows,
1517 it overflows to 0. We must change these tests if we
1518 decide to increase the representation of TYPE_LENGTH
1519 from unsigned int to ULONGEST. */
1520 ULONGEST ulow = low_bound, uhigh = high_bound;
1521 ULONGEST tlen = TYPE_LENGTH (target_type);
1522
1523 len = tlen * (uhigh - ulow + 1);
1524 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1525 || len > UINT_MAX)
1526 len = 0;
1527 }
1528 TYPE_LENGTH (type) = len;
1529 TYPE_TARGET_STUB (type) = 0;
1530 }
1531 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1532 {
1533 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1534 TYPE_TARGET_STUB (type) = 0;
1535 }
1536 }
1537 /* Cache TYPE_LENGTH for future use. */
1538 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1539 return type;
1540 }
1541
1542 /* Parse a type expression in the string [P..P+LENGTH). If an error
1543 occurs, silently return a void type. */
1544
1545 static struct type *
1546 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1547 {
1548 struct ui_file *saved_gdb_stderr;
1549 struct type *type;
1550
1551 /* Suppress error messages. */
1552 saved_gdb_stderr = gdb_stderr;
1553 gdb_stderr = ui_file_new ();
1554
1555 /* Call parse_and_eval_type() without fear of longjmp()s. */
1556 if (!gdb_parse_and_eval_type (p, length, &type))
1557 type = builtin_type (gdbarch)->builtin_void;
1558
1559 /* Stop suppressing error messages. */
1560 ui_file_delete (gdb_stderr);
1561 gdb_stderr = saved_gdb_stderr;
1562
1563 return type;
1564 }
1565
1566 /* Ugly hack to convert method stubs into method types.
1567
1568 He ain't kiddin'. This demangles the name of the method into a
1569 string including argument types, parses out each argument type,
1570 generates a string casting a zero to that type, evaluates the
1571 string, and stuffs the resulting type into an argtype vector!!!
1572 Then it knows the type of the whole function (including argument
1573 types for overloading), which info used to be in the stab's but was
1574 removed to hack back the space required for them. */
1575
1576 static void
1577 check_stub_method (struct type *type, int method_id, int signature_id)
1578 {
1579 struct gdbarch *gdbarch = get_type_arch (type);
1580 struct fn_field *f;
1581 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1582 char *demangled_name = cplus_demangle (mangled_name,
1583 DMGL_PARAMS | DMGL_ANSI);
1584 char *argtypetext, *p;
1585 int depth = 0, argcount = 1;
1586 struct field *argtypes;
1587 struct type *mtype;
1588
1589 /* Make sure we got back a function string that we can use. */
1590 if (demangled_name)
1591 p = strchr (demangled_name, '(');
1592 else
1593 p = NULL;
1594
1595 if (demangled_name == NULL || p == NULL)
1596 error (_("Internal: Cannot demangle mangled name `%s'."),
1597 mangled_name);
1598
1599 /* Now, read in the parameters that define this type. */
1600 p += 1;
1601 argtypetext = p;
1602 while (*p)
1603 {
1604 if (*p == '(' || *p == '<')
1605 {
1606 depth += 1;
1607 }
1608 else if (*p == ')' || *p == '>')
1609 {
1610 depth -= 1;
1611 }
1612 else if (*p == ',' && depth == 0)
1613 {
1614 argcount += 1;
1615 }
1616
1617 p += 1;
1618 }
1619
1620 /* If we read one argument and it was ``void'', don't count it. */
1621 if (strncmp (argtypetext, "(void)", 6) == 0)
1622 argcount -= 1;
1623
1624 /* We need one extra slot, for the THIS pointer. */
1625
1626 argtypes = (struct field *)
1627 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1628 p = argtypetext;
1629
1630 /* Add THIS pointer for non-static methods. */
1631 f = TYPE_FN_FIELDLIST1 (type, method_id);
1632 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1633 argcount = 0;
1634 else
1635 {
1636 argtypes[0].type = lookup_pointer_type (type);
1637 argcount = 1;
1638 }
1639
1640 if (*p != ')') /* () means no args, skip while */
1641 {
1642 depth = 0;
1643 while (*p)
1644 {
1645 if (depth <= 0 && (*p == ',' || *p == ')'))
1646 {
1647 /* Avoid parsing of ellipsis, they will be handled below.
1648 Also avoid ``void'' as above. */
1649 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1650 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1651 {
1652 argtypes[argcount].type =
1653 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1654 argcount += 1;
1655 }
1656 argtypetext = p + 1;
1657 }
1658
1659 if (*p == '(' || *p == '<')
1660 {
1661 depth += 1;
1662 }
1663 else if (*p == ')' || *p == '>')
1664 {
1665 depth -= 1;
1666 }
1667
1668 p += 1;
1669 }
1670 }
1671
1672 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1673
1674 /* Now update the old "stub" type into a real type. */
1675 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1676 TYPE_DOMAIN_TYPE (mtype) = type;
1677 TYPE_FIELDS (mtype) = argtypes;
1678 TYPE_NFIELDS (mtype) = argcount;
1679 TYPE_STUB (mtype) = 0;
1680 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1681 if (p[-2] == '.')
1682 TYPE_VARARGS (mtype) = 1;
1683
1684 xfree (demangled_name);
1685 }
1686
1687 /* This is the external interface to check_stub_method, above. This
1688 function unstubs all of the signatures for TYPE's METHOD_ID method
1689 name. After calling this function TYPE_FN_FIELD_STUB will be
1690 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1691 correct.
1692
1693 This function unfortunately can not die until stabs do. */
1694
1695 void
1696 check_stub_method_group (struct type *type, int method_id)
1697 {
1698 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1699 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1700 int j, found_stub = 0;
1701
1702 for (j = 0; j < len; j++)
1703 if (TYPE_FN_FIELD_STUB (f, j))
1704 {
1705 found_stub = 1;
1706 check_stub_method (type, method_id, j);
1707 }
1708
1709 /* GNU v3 methods with incorrect names were corrected when we read
1710 in type information, because it was cheaper to do it then. The
1711 only GNU v2 methods with incorrect method names are operators and
1712 destructors; destructors were also corrected when we read in type
1713 information.
1714
1715 Therefore the only thing we need to handle here are v2 operator
1716 names. */
1717 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1718 {
1719 int ret;
1720 char dem_opname[256];
1721
1722 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1723 method_id),
1724 dem_opname, DMGL_ANSI);
1725 if (!ret)
1726 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1727 method_id),
1728 dem_opname, 0);
1729 if (ret)
1730 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1731 }
1732 }
1733
1734 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1735 const struct cplus_struct_type cplus_struct_default = { };
1736
1737 void
1738 allocate_cplus_struct_type (struct type *type)
1739 {
1740 if (HAVE_CPLUS_STRUCT (type))
1741 /* Structure was already allocated. Nothing more to do. */
1742 return;
1743
1744 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1745 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1746 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1747 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1748 }
1749
1750 const struct gnat_aux_type gnat_aux_default =
1751 { NULL };
1752
1753 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1754 and allocate the associated gnat-specific data. The gnat-specific
1755 data is also initialized to gnat_aux_default. */
1756 void
1757 allocate_gnat_aux_type (struct type *type)
1758 {
1759 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1760 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1761 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1762 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1763 }
1764
1765
1766 /* Helper function to initialize the standard scalar types.
1767
1768 If NAME is non-NULL, then we make a copy of the string pointed
1769 to by name in the objfile_obstack for that objfile, and initialize
1770 the type name to that copy. There are places (mipsread.c in particular),
1771 where init_type is called with a NULL value for NAME). */
1772
1773 struct type *
1774 init_type (enum type_code code, int length, int flags,
1775 char *name, struct objfile *objfile)
1776 {
1777 struct type *type;
1778
1779 type = alloc_type (objfile);
1780 TYPE_CODE (type) = code;
1781 TYPE_LENGTH (type) = length;
1782
1783 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1784 if (flags & TYPE_FLAG_UNSIGNED)
1785 TYPE_UNSIGNED (type) = 1;
1786 if (flags & TYPE_FLAG_NOSIGN)
1787 TYPE_NOSIGN (type) = 1;
1788 if (flags & TYPE_FLAG_STUB)
1789 TYPE_STUB (type) = 1;
1790 if (flags & TYPE_FLAG_TARGET_STUB)
1791 TYPE_TARGET_STUB (type) = 1;
1792 if (flags & TYPE_FLAG_STATIC)
1793 TYPE_STATIC (type) = 1;
1794 if (flags & TYPE_FLAG_PROTOTYPED)
1795 TYPE_PROTOTYPED (type) = 1;
1796 if (flags & TYPE_FLAG_INCOMPLETE)
1797 TYPE_INCOMPLETE (type) = 1;
1798 if (flags & TYPE_FLAG_VARARGS)
1799 TYPE_VARARGS (type) = 1;
1800 if (flags & TYPE_FLAG_VECTOR)
1801 TYPE_VECTOR (type) = 1;
1802 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1803 TYPE_STUB_SUPPORTED (type) = 1;
1804 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1805 TYPE_FIXED_INSTANCE (type) = 1;
1806
1807 if (name)
1808 TYPE_NAME (type) = obsavestring (name, strlen (name),
1809 &objfile->objfile_obstack);
1810
1811 /* C++ fancies. */
1812
1813 if (name && strcmp (name, "char") == 0)
1814 TYPE_NOSIGN (type) = 1;
1815
1816 switch (code)
1817 {
1818 case TYPE_CODE_STRUCT:
1819 case TYPE_CODE_UNION:
1820 case TYPE_CODE_NAMESPACE:
1821 INIT_CPLUS_SPECIFIC (type);
1822 break;
1823 case TYPE_CODE_FLT:
1824 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1825 break;
1826 case TYPE_CODE_FUNC:
1827 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1828 break;
1829 }
1830 return type;
1831 }
1832
1833 int
1834 can_dereference (struct type *t)
1835 {
1836 /* FIXME: Should we return true for references as well as
1837 pointers? */
1838 CHECK_TYPEDEF (t);
1839 return
1840 (t != NULL
1841 && TYPE_CODE (t) == TYPE_CODE_PTR
1842 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1843 }
1844
1845 int
1846 is_integral_type (struct type *t)
1847 {
1848 CHECK_TYPEDEF (t);
1849 return
1850 ((t != NULL)
1851 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1852 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1853 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1854 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1855 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1856 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1857 }
1858
1859 /* A helper function which returns true if types A and B represent the
1860 "same" class type. This is true if the types have the same main
1861 type, or the same name. */
1862
1863 int
1864 class_types_same_p (const struct type *a, const struct type *b)
1865 {
1866 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1867 || (TYPE_NAME (a) && TYPE_NAME (b)
1868 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1869 }
1870
1871 /* Check whether BASE is an ancestor or base class or DCLASS
1872 Return 1 if so, and 0 if not.
1873 Note: callers may want to check for identity of the types before
1874 calling this function -- identical types are considered to satisfy
1875 the ancestor relationship even if they're identical. */
1876
1877 int
1878 is_ancestor (struct type *base, struct type *dclass)
1879 {
1880 int i;
1881
1882 CHECK_TYPEDEF (base);
1883 CHECK_TYPEDEF (dclass);
1884
1885 if (class_types_same_p (base, dclass))
1886 return 1;
1887
1888 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1889 {
1890 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1891 return 1;
1892 }
1893
1894 return 0;
1895 }
1896
1897 /* Like is_ancestor, but only returns true when BASE is a public
1898 ancestor of DCLASS. */
1899
1900 int
1901 is_public_ancestor (struct type *base, struct type *dclass)
1902 {
1903 int i;
1904
1905 CHECK_TYPEDEF (base);
1906 CHECK_TYPEDEF (dclass);
1907
1908 if (class_types_same_p (base, dclass))
1909 return 1;
1910
1911 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1912 {
1913 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1914 continue;
1915 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1916 return 1;
1917 }
1918
1919 return 0;
1920 }
1921
1922 /* A helper function for is_unique_ancestor. */
1923
1924 static int
1925 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1926 int *offset,
1927 const bfd_byte *contents, CORE_ADDR address)
1928 {
1929 int i, count = 0;
1930
1931 CHECK_TYPEDEF (base);
1932 CHECK_TYPEDEF (dclass);
1933
1934 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1935 {
1936 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1937 int this_offset = baseclass_offset (dclass, i, contents, address);
1938
1939 if (this_offset == -1)
1940 error (_("virtual baseclass botch"));
1941
1942 if (class_types_same_p (base, iter))
1943 {
1944 /* If this is the first subclass, set *OFFSET and set count
1945 to 1. Otherwise, if this is at the same offset as
1946 previous instances, do nothing. Otherwise, increment
1947 count. */
1948 if (*offset == -1)
1949 {
1950 *offset = this_offset;
1951 count = 1;
1952 }
1953 else if (this_offset == *offset)
1954 {
1955 /* Nothing. */
1956 }
1957 else
1958 ++count;
1959 }
1960 else
1961 count += is_unique_ancestor_worker (base, iter, offset,
1962 contents + this_offset,
1963 address + this_offset);
1964 }
1965
1966 return count;
1967 }
1968
1969 /* Like is_ancestor, but only returns true if BASE is a unique base
1970 class of the type of VAL. */
1971
1972 int
1973 is_unique_ancestor (struct type *base, struct value *val)
1974 {
1975 int offset = -1;
1976
1977 return is_unique_ancestor_worker (base, value_type (val), &offset,
1978 value_contents (val),
1979 value_address (val)) == 1;
1980 }
1981
1982 \f
1983
1984
1985 /* Functions for overload resolution begin here */
1986
1987 /* Compare two badness vectors A and B and return the result.
1988 0 => A and B are identical
1989 1 => A and B are incomparable
1990 2 => A is better than B
1991 3 => A is worse than B */
1992
1993 int
1994 compare_badness (struct badness_vector *a, struct badness_vector *b)
1995 {
1996 int i;
1997 int tmp;
1998 short found_pos = 0; /* any positives in c? */
1999 short found_neg = 0; /* any negatives in c? */
2000
2001 /* differing lengths => incomparable */
2002 if (a->length != b->length)
2003 return 1;
2004
2005 /* Subtract b from a */
2006 for (i = 0; i < a->length; i++)
2007 {
2008 tmp = a->rank[i] - b->rank[i];
2009 if (tmp > 0)
2010 found_pos = 1;
2011 else if (tmp < 0)
2012 found_neg = 1;
2013 }
2014
2015 if (found_pos)
2016 {
2017 if (found_neg)
2018 return 1; /* incomparable */
2019 else
2020 return 3; /* A > B */
2021 }
2022 else
2023 /* no positives */
2024 {
2025 if (found_neg)
2026 return 2; /* A < B */
2027 else
2028 return 0; /* A == B */
2029 }
2030 }
2031
2032 /* Rank a function by comparing its parameter types (PARMS, length
2033 NPARMS), to the types of an argument list (ARGS, length NARGS).
2034 Return a pointer to a badness vector. This has NARGS + 1
2035 entries. */
2036
2037 struct badness_vector *
2038 rank_function (struct type **parms, int nparms,
2039 struct type **args, int nargs)
2040 {
2041 int i;
2042 struct badness_vector *bv;
2043 int min_len = nparms < nargs ? nparms : nargs;
2044
2045 bv = xmalloc (sizeof (struct badness_vector));
2046 bv->length = nargs + 1; /* add 1 for the length-match rank */
2047 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2048
2049 /* First compare the lengths of the supplied lists.
2050 If there is a mismatch, set it to a high value. */
2051
2052 /* pai/1997-06-03 FIXME: when we have debug info about default
2053 arguments and ellipsis parameter lists, we should consider those
2054 and rank the length-match more finely. */
2055
2056 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2057
2058 /* Now rank all the parameters of the candidate function */
2059 for (i = 1; i <= min_len; i++)
2060 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2061
2062 /* If more arguments than parameters, add dummy entries */
2063 for (i = min_len + 1; i <= nargs; i++)
2064 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2065
2066 return bv;
2067 }
2068
2069 /* Compare the names of two integer types, assuming that any sign
2070 qualifiers have been checked already. We do it this way because
2071 there may be an "int" in the name of one of the types. */
2072
2073 static int
2074 integer_types_same_name_p (const char *first, const char *second)
2075 {
2076 int first_p, second_p;
2077
2078 /* If both are shorts, return 1; if neither is a short, keep
2079 checking. */
2080 first_p = (strstr (first, "short") != NULL);
2081 second_p = (strstr (second, "short") != NULL);
2082 if (first_p && second_p)
2083 return 1;
2084 if (first_p || second_p)
2085 return 0;
2086
2087 /* Likewise for long. */
2088 first_p = (strstr (first, "long") != NULL);
2089 second_p = (strstr (second, "long") != NULL);
2090 if (first_p && second_p)
2091 return 1;
2092 if (first_p || second_p)
2093 return 0;
2094
2095 /* Likewise for char. */
2096 first_p = (strstr (first, "char") != NULL);
2097 second_p = (strstr (second, "char") != NULL);
2098 if (first_p && second_p)
2099 return 1;
2100 if (first_p || second_p)
2101 return 0;
2102
2103 /* They must both be ints. */
2104 return 1;
2105 }
2106
2107 /* Compare one type (PARM) for compatibility with another (ARG).
2108 * PARM is intended to be the parameter type of a function; and
2109 * ARG is the supplied argument's type. This function tests if
2110 * the latter can be converted to the former.
2111 *
2112 * Return 0 if they are identical types;
2113 * Otherwise, return an integer which corresponds to how compatible
2114 * PARM is to ARG. The higher the return value, the worse the match.
2115 * Generally the "bad" conversions are all uniformly assigned a 100. */
2116
2117 int
2118 rank_one_type (struct type *parm, struct type *arg)
2119 {
2120 /* Identical type pointers. */
2121 /* However, this still doesn't catch all cases of same type for arg
2122 and param. The reason is that builtin types are different from
2123 the same ones constructed from the object. */
2124 if (parm == arg)
2125 return 0;
2126
2127 /* Resolve typedefs */
2128 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2129 parm = check_typedef (parm);
2130 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2131 arg = check_typedef (arg);
2132
2133 /*
2134 Well, damnit, if the names are exactly the same, I'll say they
2135 are exactly the same. This happens when we generate method
2136 stubs. The types won't point to the same address, but they
2137 really are the same.
2138 */
2139
2140 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2141 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2142 return 0;
2143
2144 /* Check if identical after resolving typedefs. */
2145 if (parm == arg)
2146 return 0;
2147
2148 /* See through references, since we can almost make non-references
2149 references. */
2150 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2151 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2152 + REFERENCE_CONVERSION_BADNESS);
2153 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2154 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2155 + REFERENCE_CONVERSION_BADNESS);
2156 if (overload_debug)
2157 /* Debugging only. */
2158 fprintf_filtered (gdb_stderr,
2159 "------ Arg is %s [%d], parm is %s [%d]\n",
2160 TYPE_NAME (arg), TYPE_CODE (arg),
2161 TYPE_NAME (parm), TYPE_CODE (parm));
2162
2163 /* x -> y means arg of type x being supplied for parameter of type y */
2164
2165 switch (TYPE_CODE (parm))
2166 {
2167 case TYPE_CODE_PTR:
2168 switch (TYPE_CODE (arg))
2169 {
2170 case TYPE_CODE_PTR:
2171 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2172 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2173 return VOID_PTR_CONVERSION_BADNESS;
2174 else
2175 return rank_one_type (TYPE_TARGET_TYPE (parm),
2176 TYPE_TARGET_TYPE (arg));
2177 case TYPE_CODE_ARRAY:
2178 return rank_one_type (TYPE_TARGET_TYPE (parm),
2179 TYPE_TARGET_TYPE (arg));
2180 case TYPE_CODE_FUNC:
2181 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2182 case TYPE_CODE_INT:
2183 case TYPE_CODE_ENUM:
2184 case TYPE_CODE_FLAGS:
2185 case TYPE_CODE_CHAR:
2186 case TYPE_CODE_RANGE:
2187 case TYPE_CODE_BOOL:
2188 return POINTER_CONVERSION_BADNESS;
2189 default:
2190 return INCOMPATIBLE_TYPE_BADNESS;
2191 }
2192 case TYPE_CODE_ARRAY:
2193 switch (TYPE_CODE (arg))
2194 {
2195 case TYPE_CODE_PTR:
2196 case TYPE_CODE_ARRAY:
2197 return rank_one_type (TYPE_TARGET_TYPE (parm),
2198 TYPE_TARGET_TYPE (arg));
2199 default:
2200 return INCOMPATIBLE_TYPE_BADNESS;
2201 }
2202 case TYPE_CODE_FUNC:
2203 switch (TYPE_CODE (arg))
2204 {
2205 case TYPE_CODE_PTR: /* funcptr -> func */
2206 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2207 default:
2208 return INCOMPATIBLE_TYPE_BADNESS;
2209 }
2210 case TYPE_CODE_INT:
2211 switch (TYPE_CODE (arg))
2212 {
2213 case TYPE_CODE_INT:
2214 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2215 {
2216 /* Deal with signed, unsigned, and plain chars and
2217 signed and unsigned ints. */
2218 if (TYPE_NOSIGN (parm))
2219 {
2220 /* This case only for character types */
2221 if (TYPE_NOSIGN (arg))
2222 return 0; /* plain char -> plain char */
2223 else /* signed/unsigned char -> plain char */
2224 return INTEGER_CONVERSION_BADNESS;
2225 }
2226 else if (TYPE_UNSIGNED (parm))
2227 {
2228 if (TYPE_UNSIGNED (arg))
2229 {
2230 /* unsigned int -> unsigned int, or
2231 unsigned long -> unsigned long */
2232 if (integer_types_same_name_p (TYPE_NAME (parm),
2233 TYPE_NAME (arg)))
2234 return 0;
2235 else if (integer_types_same_name_p (TYPE_NAME (arg),
2236 "int")
2237 && integer_types_same_name_p (TYPE_NAME (parm),
2238 "long"))
2239 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2240 else
2241 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2242 }
2243 else
2244 {
2245 if (integer_types_same_name_p (TYPE_NAME (arg),
2246 "long")
2247 && integer_types_same_name_p (TYPE_NAME (parm),
2248 "int"))
2249 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2250 else
2251 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2252 }
2253 }
2254 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2255 {
2256 if (integer_types_same_name_p (TYPE_NAME (parm),
2257 TYPE_NAME (arg)))
2258 return 0;
2259 else if (integer_types_same_name_p (TYPE_NAME (arg),
2260 "int")
2261 && integer_types_same_name_p (TYPE_NAME (parm),
2262 "long"))
2263 return INTEGER_PROMOTION_BADNESS;
2264 else
2265 return INTEGER_CONVERSION_BADNESS;
2266 }
2267 else
2268 return INTEGER_CONVERSION_BADNESS;
2269 }
2270 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2271 return INTEGER_PROMOTION_BADNESS;
2272 else
2273 return INTEGER_CONVERSION_BADNESS;
2274 case TYPE_CODE_ENUM:
2275 case TYPE_CODE_FLAGS:
2276 case TYPE_CODE_CHAR:
2277 case TYPE_CODE_RANGE:
2278 case TYPE_CODE_BOOL:
2279 return INTEGER_PROMOTION_BADNESS;
2280 case TYPE_CODE_FLT:
2281 return INT_FLOAT_CONVERSION_BADNESS;
2282 case TYPE_CODE_PTR:
2283 return NS_POINTER_CONVERSION_BADNESS;
2284 default:
2285 return INCOMPATIBLE_TYPE_BADNESS;
2286 }
2287 break;
2288 case TYPE_CODE_ENUM:
2289 switch (TYPE_CODE (arg))
2290 {
2291 case TYPE_CODE_INT:
2292 case TYPE_CODE_CHAR:
2293 case TYPE_CODE_RANGE:
2294 case TYPE_CODE_BOOL:
2295 case TYPE_CODE_ENUM:
2296 return INTEGER_CONVERSION_BADNESS;
2297 case TYPE_CODE_FLT:
2298 return INT_FLOAT_CONVERSION_BADNESS;
2299 default:
2300 return INCOMPATIBLE_TYPE_BADNESS;
2301 }
2302 break;
2303 case TYPE_CODE_CHAR:
2304 switch (TYPE_CODE (arg))
2305 {
2306 case TYPE_CODE_RANGE:
2307 case TYPE_CODE_BOOL:
2308 case TYPE_CODE_ENUM:
2309 return INTEGER_CONVERSION_BADNESS;
2310 case TYPE_CODE_FLT:
2311 return INT_FLOAT_CONVERSION_BADNESS;
2312 case TYPE_CODE_INT:
2313 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2314 return INTEGER_CONVERSION_BADNESS;
2315 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2316 return INTEGER_PROMOTION_BADNESS;
2317 /* >>> !! else fall through !! <<< */
2318 case TYPE_CODE_CHAR:
2319 /* Deal with signed, unsigned, and plain chars for C++ and
2320 with int cases falling through from previous case. */
2321 if (TYPE_NOSIGN (parm))
2322 {
2323 if (TYPE_NOSIGN (arg))
2324 return 0;
2325 else
2326 return INTEGER_CONVERSION_BADNESS;
2327 }
2328 else if (TYPE_UNSIGNED (parm))
2329 {
2330 if (TYPE_UNSIGNED (arg))
2331 return 0;
2332 else
2333 return INTEGER_PROMOTION_BADNESS;
2334 }
2335 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2336 return 0;
2337 else
2338 return INTEGER_CONVERSION_BADNESS;
2339 default:
2340 return INCOMPATIBLE_TYPE_BADNESS;
2341 }
2342 break;
2343 case TYPE_CODE_RANGE:
2344 switch (TYPE_CODE (arg))
2345 {
2346 case TYPE_CODE_INT:
2347 case TYPE_CODE_CHAR:
2348 case TYPE_CODE_RANGE:
2349 case TYPE_CODE_BOOL:
2350 case TYPE_CODE_ENUM:
2351 return INTEGER_CONVERSION_BADNESS;
2352 case TYPE_CODE_FLT:
2353 return INT_FLOAT_CONVERSION_BADNESS;
2354 default:
2355 return INCOMPATIBLE_TYPE_BADNESS;
2356 }
2357 break;
2358 case TYPE_CODE_BOOL:
2359 switch (TYPE_CODE (arg))
2360 {
2361 case TYPE_CODE_INT:
2362 case TYPE_CODE_CHAR:
2363 case TYPE_CODE_RANGE:
2364 case TYPE_CODE_ENUM:
2365 case TYPE_CODE_FLT:
2366 case TYPE_CODE_PTR:
2367 return BOOLEAN_CONVERSION_BADNESS;
2368 case TYPE_CODE_BOOL:
2369 return 0;
2370 default:
2371 return INCOMPATIBLE_TYPE_BADNESS;
2372 }
2373 break;
2374 case TYPE_CODE_FLT:
2375 switch (TYPE_CODE (arg))
2376 {
2377 case TYPE_CODE_FLT:
2378 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2379 return FLOAT_PROMOTION_BADNESS;
2380 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2381 return 0;
2382 else
2383 return FLOAT_CONVERSION_BADNESS;
2384 case TYPE_CODE_INT:
2385 case TYPE_CODE_BOOL:
2386 case TYPE_CODE_ENUM:
2387 case TYPE_CODE_RANGE:
2388 case TYPE_CODE_CHAR:
2389 return INT_FLOAT_CONVERSION_BADNESS;
2390 default:
2391 return INCOMPATIBLE_TYPE_BADNESS;
2392 }
2393 break;
2394 case TYPE_CODE_COMPLEX:
2395 switch (TYPE_CODE (arg))
2396 { /* Strictly not needed for C++, but... */
2397 case TYPE_CODE_FLT:
2398 return FLOAT_PROMOTION_BADNESS;
2399 case TYPE_CODE_COMPLEX:
2400 return 0;
2401 default:
2402 return INCOMPATIBLE_TYPE_BADNESS;
2403 }
2404 break;
2405 case TYPE_CODE_STRUCT:
2406 /* currently same as TYPE_CODE_CLASS */
2407 switch (TYPE_CODE (arg))
2408 {
2409 case TYPE_CODE_STRUCT:
2410 /* Check for derivation */
2411 if (is_ancestor (parm, arg))
2412 return BASE_CONVERSION_BADNESS;
2413 /* else fall through */
2414 default:
2415 return INCOMPATIBLE_TYPE_BADNESS;
2416 }
2417 break;
2418 case TYPE_CODE_UNION:
2419 switch (TYPE_CODE (arg))
2420 {
2421 case TYPE_CODE_UNION:
2422 default:
2423 return INCOMPATIBLE_TYPE_BADNESS;
2424 }
2425 break;
2426 case TYPE_CODE_MEMBERPTR:
2427 switch (TYPE_CODE (arg))
2428 {
2429 default:
2430 return INCOMPATIBLE_TYPE_BADNESS;
2431 }
2432 break;
2433 case TYPE_CODE_METHOD:
2434 switch (TYPE_CODE (arg))
2435 {
2436
2437 default:
2438 return INCOMPATIBLE_TYPE_BADNESS;
2439 }
2440 break;
2441 case TYPE_CODE_REF:
2442 switch (TYPE_CODE (arg))
2443 {
2444
2445 default:
2446 return INCOMPATIBLE_TYPE_BADNESS;
2447 }
2448
2449 break;
2450 case TYPE_CODE_SET:
2451 switch (TYPE_CODE (arg))
2452 {
2453 /* Not in C++ */
2454 case TYPE_CODE_SET:
2455 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2456 TYPE_FIELD_TYPE (arg, 0));
2457 default:
2458 return INCOMPATIBLE_TYPE_BADNESS;
2459 }
2460 break;
2461 case TYPE_CODE_VOID:
2462 default:
2463 return INCOMPATIBLE_TYPE_BADNESS;
2464 } /* switch (TYPE_CODE (arg)) */
2465 }
2466
2467
2468 /* End of functions for overload resolution */
2469
2470 static void
2471 print_bit_vector (B_TYPE *bits, int nbits)
2472 {
2473 int bitno;
2474
2475 for (bitno = 0; bitno < nbits; bitno++)
2476 {
2477 if ((bitno % 8) == 0)
2478 {
2479 puts_filtered (" ");
2480 }
2481 if (B_TST (bits, bitno))
2482 printf_filtered (("1"));
2483 else
2484 printf_filtered (("0"));
2485 }
2486 }
2487
2488 /* Note the first arg should be the "this" pointer, we may not want to
2489 include it since we may get into a infinitely recursive
2490 situation. */
2491
2492 static void
2493 print_arg_types (struct field *args, int nargs, int spaces)
2494 {
2495 if (args != NULL)
2496 {
2497 int i;
2498
2499 for (i = 0; i < nargs; i++)
2500 recursive_dump_type (args[i].type, spaces + 2);
2501 }
2502 }
2503
2504 int
2505 field_is_static (struct field *f)
2506 {
2507 /* "static" fields are the fields whose location is not relative
2508 to the address of the enclosing struct. It would be nice to
2509 have a dedicated flag that would be set for static fields when
2510 the type is being created. But in practice, checking the field
2511 loc_kind should give us an accurate answer. */
2512 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2513 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2514 }
2515
2516 static void
2517 dump_fn_fieldlists (struct type *type, int spaces)
2518 {
2519 int method_idx;
2520 int overload_idx;
2521 struct fn_field *f;
2522
2523 printfi_filtered (spaces, "fn_fieldlists ");
2524 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2525 printf_filtered ("\n");
2526 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2527 {
2528 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2529 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2530 method_idx,
2531 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2532 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2533 gdb_stdout);
2534 printf_filtered (_(") length %d\n"),
2535 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2536 for (overload_idx = 0;
2537 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2538 overload_idx++)
2539 {
2540 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2541 overload_idx,
2542 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2543 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2544 gdb_stdout);
2545 printf_filtered (")\n");
2546 printfi_filtered (spaces + 8, "type ");
2547 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2548 gdb_stdout);
2549 printf_filtered ("\n");
2550
2551 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2552 spaces + 8 + 2);
2553
2554 printfi_filtered (spaces + 8, "args ");
2555 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2556 gdb_stdout);
2557 printf_filtered ("\n");
2558
2559 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2560 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2561 overload_idx)),
2562 spaces);
2563 printfi_filtered (spaces + 8, "fcontext ");
2564 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2565 gdb_stdout);
2566 printf_filtered ("\n");
2567
2568 printfi_filtered (spaces + 8, "is_const %d\n",
2569 TYPE_FN_FIELD_CONST (f, overload_idx));
2570 printfi_filtered (spaces + 8, "is_volatile %d\n",
2571 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2572 printfi_filtered (spaces + 8, "is_private %d\n",
2573 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2574 printfi_filtered (spaces + 8, "is_protected %d\n",
2575 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2576 printfi_filtered (spaces + 8, "is_stub %d\n",
2577 TYPE_FN_FIELD_STUB (f, overload_idx));
2578 printfi_filtered (spaces + 8, "voffset %u\n",
2579 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2580 }
2581 }
2582 }
2583
2584 static void
2585 print_cplus_stuff (struct type *type, int spaces)
2586 {
2587 printfi_filtered (spaces, "n_baseclasses %d\n",
2588 TYPE_N_BASECLASSES (type));
2589 printfi_filtered (spaces, "nfn_fields %d\n",
2590 TYPE_NFN_FIELDS (type));
2591 printfi_filtered (spaces, "nfn_fields_total %d\n",
2592 TYPE_NFN_FIELDS_TOTAL (type));
2593 if (TYPE_N_BASECLASSES (type) > 0)
2594 {
2595 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2596 TYPE_N_BASECLASSES (type));
2597 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2598 gdb_stdout);
2599 printf_filtered (")");
2600
2601 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2602 TYPE_N_BASECLASSES (type));
2603 puts_filtered ("\n");
2604 }
2605 if (TYPE_NFIELDS (type) > 0)
2606 {
2607 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2608 {
2609 printfi_filtered (spaces,
2610 "private_field_bits (%d bits at *",
2611 TYPE_NFIELDS (type));
2612 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2613 gdb_stdout);
2614 printf_filtered (")");
2615 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2616 TYPE_NFIELDS (type));
2617 puts_filtered ("\n");
2618 }
2619 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2620 {
2621 printfi_filtered (spaces,
2622 "protected_field_bits (%d bits at *",
2623 TYPE_NFIELDS (type));
2624 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2625 gdb_stdout);
2626 printf_filtered (")");
2627 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2628 TYPE_NFIELDS (type));
2629 puts_filtered ("\n");
2630 }
2631 }
2632 if (TYPE_NFN_FIELDS (type) > 0)
2633 {
2634 dump_fn_fieldlists (type, spaces);
2635 }
2636 }
2637
2638 /* Print the contents of the TYPE's type_specific union, assuming that
2639 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2640
2641 static void
2642 print_gnat_stuff (struct type *type, int spaces)
2643 {
2644 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2645
2646 recursive_dump_type (descriptive_type, spaces + 2);
2647 }
2648
2649 static struct obstack dont_print_type_obstack;
2650
2651 void
2652 recursive_dump_type (struct type *type, int spaces)
2653 {
2654 int idx;
2655
2656 if (spaces == 0)
2657 obstack_begin (&dont_print_type_obstack, 0);
2658
2659 if (TYPE_NFIELDS (type) > 0
2660 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2661 {
2662 struct type **first_dont_print
2663 = (struct type **) obstack_base (&dont_print_type_obstack);
2664
2665 int i = (struct type **)
2666 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2667
2668 while (--i >= 0)
2669 {
2670 if (type == first_dont_print[i])
2671 {
2672 printfi_filtered (spaces, "type node ");
2673 gdb_print_host_address (type, gdb_stdout);
2674 printf_filtered (_(" <same as already seen type>\n"));
2675 return;
2676 }
2677 }
2678
2679 obstack_ptr_grow (&dont_print_type_obstack, type);
2680 }
2681
2682 printfi_filtered (spaces, "type node ");
2683 gdb_print_host_address (type, gdb_stdout);
2684 printf_filtered ("\n");
2685 printfi_filtered (spaces, "name '%s' (",
2686 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2687 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2688 printf_filtered (")\n");
2689 printfi_filtered (spaces, "tagname '%s' (",
2690 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2691 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2692 printf_filtered (")\n");
2693 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2694 switch (TYPE_CODE (type))
2695 {
2696 case TYPE_CODE_UNDEF:
2697 printf_filtered ("(TYPE_CODE_UNDEF)");
2698 break;
2699 case TYPE_CODE_PTR:
2700 printf_filtered ("(TYPE_CODE_PTR)");
2701 break;
2702 case TYPE_CODE_ARRAY:
2703 printf_filtered ("(TYPE_CODE_ARRAY)");
2704 break;
2705 case TYPE_CODE_STRUCT:
2706 printf_filtered ("(TYPE_CODE_STRUCT)");
2707 break;
2708 case TYPE_CODE_UNION:
2709 printf_filtered ("(TYPE_CODE_UNION)");
2710 break;
2711 case TYPE_CODE_ENUM:
2712 printf_filtered ("(TYPE_CODE_ENUM)");
2713 break;
2714 case TYPE_CODE_FLAGS:
2715 printf_filtered ("(TYPE_CODE_FLAGS)");
2716 break;
2717 case TYPE_CODE_FUNC:
2718 printf_filtered ("(TYPE_CODE_FUNC)");
2719 break;
2720 case TYPE_CODE_INT:
2721 printf_filtered ("(TYPE_CODE_INT)");
2722 break;
2723 case TYPE_CODE_FLT:
2724 printf_filtered ("(TYPE_CODE_FLT)");
2725 break;
2726 case TYPE_CODE_VOID:
2727 printf_filtered ("(TYPE_CODE_VOID)");
2728 break;
2729 case TYPE_CODE_SET:
2730 printf_filtered ("(TYPE_CODE_SET)");
2731 break;
2732 case TYPE_CODE_RANGE:
2733 printf_filtered ("(TYPE_CODE_RANGE)");
2734 break;
2735 case TYPE_CODE_STRING:
2736 printf_filtered ("(TYPE_CODE_STRING)");
2737 break;
2738 case TYPE_CODE_BITSTRING:
2739 printf_filtered ("(TYPE_CODE_BITSTRING)");
2740 break;
2741 case TYPE_CODE_ERROR:
2742 printf_filtered ("(TYPE_CODE_ERROR)");
2743 break;
2744 case TYPE_CODE_MEMBERPTR:
2745 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2746 break;
2747 case TYPE_CODE_METHODPTR:
2748 printf_filtered ("(TYPE_CODE_METHODPTR)");
2749 break;
2750 case TYPE_CODE_METHOD:
2751 printf_filtered ("(TYPE_CODE_METHOD)");
2752 break;
2753 case TYPE_CODE_REF:
2754 printf_filtered ("(TYPE_CODE_REF)");
2755 break;
2756 case TYPE_CODE_CHAR:
2757 printf_filtered ("(TYPE_CODE_CHAR)");
2758 break;
2759 case TYPE_CODE_BOOL:
2760 printf_filtered ("(TYPE_CODE_BOOL)");
2761 break;
2762 case TYPE_CODE_COMPLEX:
2763 printf_filtered ("(TYPE_CODE_COMPLEX)");
2764 break;
2765 case TYPE_CODE_TYPEDEF:
2766 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2767 break;
2768 case TYPE_CODE_NAMESPACE:
2769 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2770 break;
2771 default:
2772 printf_filtered ("(UNKNOWN TYPE CODE)");
2773 break;
2774 }
2775 puts_filtered ("\n");
2776 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2777 if (TYPE_OBJFILE_OWNED (type))
2778 {
2779 printfi_filtered (spaces, "objfile ");
2780 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2781 }
2782 else
2783 {
2784 printfi_filtered (spaces, "gdbarch ");
2785 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2786 }
2787 printf_filtered ("\n");
2788 printfi_filtered (spaces, "target_type ");
2789 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2790 printf_filtered ("\n");
2791 if (TYPE_TARGET_TYPE (type) != NULL)
2792 {
2793 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2794 }
2795 printfi_filtered (spaces, "pointer_type ");
2796 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2797 printf_filtered ("\n");
2798 printfi_filtered (spaces, "reference_type ");
2799 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2800 printf_filtered ("\n");
2801 printfi_filtered (spaces, "type_chain ");
2802 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2803 printf_filtered ("\n");
2804 printfi_filtered (spaces, "instance_flags 0x%x",
2805 TYPE_INSTANCE_FLAGS (type));
2806 if (TYPE_CONST (type))
2807 {
2808 puts_filtered (" TYPE_FLAG_CONST");
2809 }
2810 if (TYPE_VOLATILE (type))
2811 {
2812 puts_filtered (" TYPE_FLAG_VOLATILE");
2813 }
2814 if (TYPE_CODE_SPACE (type))
2815 {
2816 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2817 }
2818 if (TYPE_DATA_SPACE (type))
2819 {
2820 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2821 }
2822 if (TYPE_ADDRESS_CLASS_1 (type))
2823 {
2824 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2825 }
2826 if (TYPE_ADDRESS_CLASS_2 (type))
2827 {
2828 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2829 }
2830 puts_filtered ("\n");
2831
2832 printfi_filtered (spaces, "flags");
2833 if (TYPE_UNSIGNED (type))
2834 {
2835 puts_filtered (" TYPE_FLAG_UNSIGNED");
2836 }
2837 if (TYPE_NOSIGN (type))
2838 {
2839 puts_filtered (" TYPE_FLAG_NOSIGN");
2840 }
2841 if (TYPE_STUB (type))
2842 {
2843 puts_filtered (" TYPE_FLAG_STUB");
2844 }
2845 if (TYPE_TARGET_STUB (type))
2846 {
2847 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2848 }
2849 if (TYPE_STATIC (type))
2850 {
2851 puts_filtered (" TYPE_FLAG_STATIC");
2852 }
2853 if (TYPE_PROTOTYPED (type))
2854 {
2855 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2856 }
2857 if (TYPE_INCOMPLETE (type))
2858 {
2859 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2860 }
2861 if (TYPE_VARARGS (type))
2862 {
2863 puts_filtered (" TYPE_FLAG_VARARGS");
2864 }
2865 /* This is used for things like AltiVec registers on ppc. Gcc emits
2866 an attribute for the array type, which tells whether or not we
2867 have a vector, instead of a regular array. */
2868 if (TYPE_VECTOR (type))
2869 {
2870 puts_filtered (" TYPE_FLAG_VECTOR");
2871 }
2872 if (TYPE_FIXED_INSTANCE (type))
2873 {
2874 puts_filtered (" TYPE_FIXED_INSTANCE");
2875 }
2876 if (TYPE_STUB_SUPPORTED (type))
2877 {
2878 puts_filtered (" TYPE_STUB_SUPPORTED");
2879 }
2880 if (TYPE_NOTTEXT (type))
2881 {
2882 puts_filtered (" TYPE_NOTTEXT");
2883 }
2884 puts_filtered ("\n");
2885 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2886 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2887 puts_filtered ("\n");
2888 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2889 {
2890 printfi_filtered (spaces + 2,
2891 "[%d] bitpos %d bitsize %d type ",
2892 idx, TYPE_FIELD_BITPOS (type, idx),
2893 TYPE_FIELD_BITSIZE (type, idx));
2894 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2895 printf_filtered (" name '%s' (",
2896 TYPE_FIELD_NAME (type, idx) != NULL
2897 ? TYPE_FIELD_NAME (type, idx)
2898 : "<NULL>");
2899 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2900 printf_filtered (")\n");
2901 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2902 {
2903 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2904 }
2905 }
2906 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2907 {
2908 printfi_filtered (spaces, "low %s%s high %s%s\n",
2909 plongest (TYPE_LOW_BOUND (type)),
2910 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2911 plongest (TYPE_HIGH_BOUND (type)),
2912 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2913 }
2914 printfi_filtered (spaces, "vptr_basetype ");
2915 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2916 puts_filtered ("\n");
2917 if (TYPE_VPTR_BASETYPE (type) != NULL)
2918 {
2919 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2920 }
2921 printfi_filtered (spaces, "vptr_fieldno %d\n",
2922 TYPE_VPTR_FIELDNO (type));
2923
2924 switch (TYPE_SPECIFIC_FIELD (type))
2925 {
2926 case TYPE_SPECIFIC_CPLUS_STUFF:
2927 printfi_filtered (spaces, "cplus_stuff ");
2928 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2929 gdb_stdout);
2930 puts_filtered ("\n");
2931 print_cplus_stuff (type, spaces);
2932 break;
2933
2934 case TYPE_SPECIFIC_GNAT_STUFF:
2935 printfi_filtered (spaces, "gnat_stuff ");
2936 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2937 puts_filtered ("\n");
2938 print_gnat_stuff (type, spaces);
2939 break;
2940
2941 case TYPE_SPECIFIC_FLOATFORMAT:
2942 printfi_filtered (spaces, "floatformat ");
2943 if (TYPE_FLOATFORMAT (type) == NULL)
2944 puts_filtered ("(null)");
2945 else
2946 {
2947 puts_filtered ("{ ");
2948 if (TYPE_FLOATFORMAT (type)[0] == NULL
2949 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2950 puts_filtered ("(null)");
2951 else
2952 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2953
2954 puts_filtered (", ");
2955 if (TYPE_FLOATFORMAT (type)[1] == NULL
2956 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2957 puts_filtered ("(null)");
2958 else
2959 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2960
2961 puts_filtered (" }");
2962 }
2963 puts_filtered ("\n");
2964 break;
2965
2966 case TYPE_SPECIFIC_CALLING_CONVENTION:
2967 printfi_filtered (spaces, "calling_convention %d\n",
2968 TYPE_CALLING_CONVENTION (type));
2969 break;
2970 }
2971
2972 if (spaces == 0)
2973 obstack_free (&dont_print_type_obstack, NULL);
2974 }
2975
2976 /* Trivial helpers for the libiberty hash table, for mapping one
2977 type to another. */
2978
2979 struct type_pair
2980 {
2981 struct type *old, *new;
2982 };
2983
2984 static hashval_t
2985 type_pair_hash (const void *item)
2986 {
2987 const struct type_pair *pair = item;
2988
2989 return htab_hash_pointer (pair->old);
2990 }
2991
2992 static int
2993 type_pair_eq (const void *item_lhs, const void *item_rhs)
2994 {
2995 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2996
2997 return lhs->old == rhs->old;
2998 }
2999
3000 /* Allocate the hash table used by copy_type_recursive to walk
3001 types without duplicates. We use OBJFILE's obstack, because
3002 OBJFILE is about to be deleted. */
3003
3004 htab_t
3005 create_copied_types_hash (struct objfile *objfile)
3006 {
3007 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3008 NULL, &objfile->objfile_obstack,
3009 hashtab_obstack_allocate,
3010 dummy_obstack_deallocate);
3011 }
3012
3013 /* Recursively copy (deep copy) TYPE, if it is associated with
3014 OBJFILE. Return a new type allocated using malloc, a saved type if
3015 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3016 not associated with OBJFILE. */
3017
3018 struct type *
3019 copy_type_recursive (struct objfile *objfile,
3020 struct type *type,
3021 htab_t copied_types)
3022 {
3023 struct type_pair *stored, pair;
3024 void **slot;
3025 struct type *new_type;
3026
3027 if (! TYPE_OBJFILE_OWNED (type))
3028 return type;
3029
3030 /* This type shouldn't be pointing to any types in other objfiles;
3031 if it did, the type might disappear unexpectedly. */
3032 gdb_assert (TYPE_OBJFILE (type) == objfile);
3033
3034 pair.old = type;
3035 slot = htab_find_slot (copied_types, &pair, INSERT);
3036 if (*slot != NULL)
3037 return ((struct type_pair *) *slot)->new;
3038
3039 new_type = alloc_type_arch (get_type_arch (type));
3040
3041 /* We must add the new type to the hash table immediately, in case
3042 we encounter this type again during a recursive call below. */
3043 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3044 stored->old = type;
3045 stored->new = new_type;
3046 *slot = stored;
3047
3048 /* Copy the common fields of types. For the main type, we simply
3049 copy the entire thing and then update specific fields as needed. */
3050 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3051 TYPE_OBJFILE_OWNED (new_type) = 0;
3052 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3053
3054 if (TYPE_NAME (type))
3055 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3056 if (TYPE_TAG_NAME (type))
3057 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3058
3059 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3060 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3061
3062 /* Copy the fields. */
3063 if (TYPE_NFIELDS (type))
3064 {
3065 int i, nfields;
3066
3067 nfields = TYPE_NFIELDS (type);
3068 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3069 for (i = 0; i < nfields; i++)
3070 {
3071 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3072 TYPE_FIELD_ARTIFICIAL (type, i);
3073 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3074 if (TYPE_FIELD_TYPE (type, i))
3075 TYPE_FIELD_TYPE (new_type, i)
3076 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3077 copied_types);
3078 if (TYPE_FIELD_NAME (type, i))
3079 TYPE_FIELD_NAME (new_type, i) =
3080 xstrdup (TYPE_FIELD_NAME (type, i));
3081 switch (TYPE_FIELD_LOC_KIND (type, i))
3082 {
3083 case FIELD_LOC_KIND_BITPOS:
3084 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3085 TYPE_FIELD_BITPOS (type, i));
3086 break;
3087 case FIELD_LOC_KIND_PHYSADDR:
3088 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3089 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3090 break;
3091 case FIELD_LOC_KIND_PHYSNAME:
3092 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3093 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3094 i)));
3095 break;
3096 default:
3097 internal_error (__FILE__, __LINE__,
3098 _("Unexpected type field location kind: %d"),
3099 TYPE_FIELD_LOC_KIND (type, i));
3100 }
3101 }
3102 }
3103
3104 /* For range types, copy the bounds information. */
3105 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3106 {
3107 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3108 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3109 }
3110
3111 /* Copy pointers to other types. */
3112 if (TYPE_TARGET_TYPE (type))
3113 TYPE_TARGET_TYPE (new_type) =
3114 copy_type_recursive (objfile,
3115 TYPE_TARGET_TYPE (type),
3116 copied_types);
3117 if (TYPE_VPTR_BASETYPE (type))
3118 TYPE_VPTR_BASETYPE (new_type) =
3119 copy_type_recursive (objfile,
3120 TYPE_VPTR_BASETYPE (type),
3121 copied_types);
3122 /* Maybe copy the type_specific bits.
3123
3124 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3125 base classes and methods. There's no fundamental reason why we
3126 can't, but at the moment it is not needed. */
3127
3128 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3129 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3130 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3131 || TYPE_CODE (type) == TYPE_CODE_UNION
3132 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3133 INIT_CPLUS_SPECIFIC (new_type);
3134
3135 return new_type;
3136 }
3137
3138 /* Make a copy of the given TYPE, except that the pointer & reference
3139 types are not preserved.
3140
3141 This function assumes that the given type has an associated objfile.
3142 This objfile is used to allocate the new type. */
3143
3144 struct type *
3145 copy_type (const struct type *type)
3146 {
3147 struct type *new_type;
3148
3149 gdb_assert (TYPE_OBJFILE_OWNED (type));
3150
3151 new_type = alloc_type_copy (type);
3152 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3153 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3154 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3155 sizeof (struct main_type));
3156
3157 return new_type;
3158 }
3159
3160
3161 /* Helper functions to initialize architecture-specific types. */
3162
3163 /* Allocate a type structure associated with GDBARCH and set its
3164 CODE, LENGTH, and NAME fields. */
3165 struct type *
3166 arch_type (struct gdbarch *gdbarch,
3167 enum type_code code, int length, char *name)
3168 {
3169 struct type *type;
3170
3171 type = alloc_type_arch (gdbarch);
3172 TYPE_CODE (type) = code;
3173 TYPE_LENGTH (type) = length;
3174
3175 if (name)
3176 TYPE_NAME (type) = xstrdup (name);
3177
3178 return type;
3179 }
3180
3181 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3182 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3183 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3184 struct type *
3185 arch_integer_type (struct gdbarch *gdbarch,
3186 int bit, int unsigned_p, char *name)
3187 {
3188 struct type *t;
3189
3190 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3191 if (unsigned_p)
3192 TYPE_UNSIGNED (t) = 1;
3193 if (name && strcmp (name, "char") == 0)
3194 TYPE_NOSIGN (t) = 1;
3195
3196 return t;
3197 }
3198
3199 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3200 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3201 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3202 struct type *
3203 arch_character_type (struct gdbarch *gdbarch,
3204 int bit, int unsigned_p, char *name)
3205 {
3206 struct type *t;
3207
3208 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3209 if (unsigned_p)
3210 TYPE_UNSIGNED (t) = 1;
3211
3212 return t;
3213 }
3214
3215 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3216 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3217 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3218 struct type *
3219 arch_boolean_type (struct gdbarch *gdbarch,
3220 int bit, int unsigned_p, char *name)
3221 {
3222 struct type *t;
3223
3224 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3225 if (unsigned_p)
3226 TYPE_UNSIGNED (t) = 1;
3227
3228 return t;
3229 }
3230
3231 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3232 BIT is the type size in bits; if BIT equals -1, the size is
3233 determined by the floatformat. NAME is the type name. Set the
3234 TYPE_FLOATFORMAT from FLOATFORMATS. */
3235 struct type *
3236 arch_float_type (struct gdbarch *gdbarch,
3237 int bit, char *name, const struct floatformat **floatformats)
3238 {
3239 struct type *t;
3240
3241 if (bit == -1)
3242 {
3243 gdb_assert (floatformats != NULL);
3244 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3245 bit = floatformats[0]->totalsize;
3246 }
3247 gdb_assert (bit >= 0);
3248
3249 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3250 TYPE_FLOATFORMAT (t) = floatformats;
3251 return t;
3252 }
3253
3254 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3255 NAME is the type name. TARGET_TYPE is the component float type. */
3256 struct type *
3257 arch_complex_type (struct gdbarch *gdbarch,
3258 char *name, struct type *target_type)
3259 {
3260 struct type *t;
3261
3262 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3263 2 * TYPE_LENGTH (target_type), name);
3264 TYPE_TARGET_TYPE (t) = target_type;
3265 return t;
3266 }
3267
3268 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3269 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3270 struct type *
3271 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3272 {
3273 int nfields = length * TARGET_CHAR_BIT;
3274 struct type *type;
3275
3276 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3277 TYPE_UNSIGNED (type) = 1;
3278 TYPE_NFIELDS (type) = nfields;
3279 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3280
3281 return type;
3282 }
3283
3284 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3285 position BITPOS is called NAME. */
3286 void
3287 append_flags_type_flag (struct type *type, int bitpos, char *name)
3288 {
3289 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3290 gdb_assert (bitpos < TYPE_NFIELDS (type));
3291 gdb_assert (bitpos >= 0);
3292
3293 if (name)
3294 {
3295 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3296 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3297 }
3298 else
3299 {
3300 /* Don't show this field to the user. */
3301 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3302 }
3303 }
3304
3305 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3306 specified by CODE) associated with GDBARCH. NAME is the type name. */
3307 struct type *
3308 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3309 {
3310 struct type *t;
3311
3312 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3313 t = arch_type (gdbarch, code, 0, NULL);
3314 TYPE_TAG_NAME (t) = name;
3315 INIT_CPLUS_SPECIFIC (t);
3316 return t;
3317 }
3318
3319 /* Add new field with name NAME and type FIELD to composite type T.
3320 Do not set the field's position or adjust the type's length;
3321 the caller should do so. Return the new field. */
3322 struct field *
3323 append_composite_type_field_raw (struct type *t, char *name,
3324 struct type *field)
3325 {
3326 struct field *f;
3327
3328 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3329 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3330 sizeof (struct field) * TYPE_NFIELDS (t));
3331 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3332 memset (f, 0, sizeof f[0]);
3333 FIELD_TYPE (f[0]) = field;
3334 FIELD_NAME (f[0]) = name;
3335 return f;
3336 }
3337
3338 /* Add new field with name NAME and type FIELD to composite type T.
3339 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3340 void
3341 append_composite_type_field_aligned (struct type *t, char *name,
3342 struct type *field, int alignment)
3343 {
3344 struct field *f = append_composite_type_field_raw (t, name, field);
3345
3346 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3347 {
3348 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3349 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3350 }
3351 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3352 {
3353 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3354 if (TYPE_NFIELDS (t) > 1)
3355 {
3356 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3357 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3358 * TARGET_CHAR_BIT));
3359
3360 if (alignment)
3361 {
3362 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3363
3364 if (left)
3365 {
3366 FIELD_BITPOS (f[0]) += left;
3367 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3368 }
3369 }
3370 }
3371 }
3372 }
3373
3374 /* Add new field with name NAME and type FIELD to composite type T. */
3375 void
3376 append_composite_type_field (struct type *t, char *name,
3377 struct type *field)
3378 {
3379 append_composite_type_field_aligned (t, name, field, 0);
3380 }
3381
3382
3383 static struct gdbarch_data *gdbtypes_data;
3384
3385 const struct builtin_type *
3386 builtin_type (struct gdbarch *gdbarch)
3387 {
3388 return gdbarch_data (gdbarch, gdbtypes_data);
3389 }
3390
3391 static void *
3392 gdbtypes_post_init (struct gdbarch *gdbarch)
3393 {
3394 struct builtin_type *builtin_type
3395 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3396
3397 /* Basic types. */
3398 builtin_type->builtin_void
3399 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3400 builtin_type->builtin_char
3401 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3402 !gdbarch_char_signed (gdbarch), "char");
3403 builtin_type->builtin_signed_char
3404 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3405 0, "signed char");
3406 builtin_type->builtin_unsigned_char
3407 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3408 1, "unsigned char");
3409 builtin_type->builtin_short
3410 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3411 0, "short");
3412 builtin_type->builtin_unsigned_short
3413 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3414 1, "unsigned short");
3415 builtin_type->builtin_int
3416 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3417 0, "int");
3418 builtin_type->builtin_unsigned_int
3419 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3420 1, "unsigned int");
3421 builtin_type->builtin_long
3422 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3423 0, "long");
3424 builtin_type->builtin_unsigned_long
3425 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3426 1, "unsigned long");
3427 builtin_type->builtin_long_long
3428 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3429 0, "long long");
3430 builtin_type->builtin_unsigned_long_long
3431 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3432 1, "unsigned long long");
3433 builtin_type->builtin_float
3434 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3435 "float", gdbarch_float_format (gdbarch));
3436 builtin_type->builtin_double
3437 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3438 "double", gdbarch_double_format (gdbarch));
3439 builtin_type->builtin_long_double
3440 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3441 "long double", gdbarch_long_double_format (gdbarch));
3442 builtin_type->builtin_complex
3443 = arch_complex_type (gdbarch, "complex",
3444 builtin_type->builtin_float);
3445 builtin_type->builtin_double_complex
3446 = arch_complex_type (gdbarch, "double complex",
3447 builtin_type->builtin_double);
3448 builtin_type->builtin_string
3449 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3450 builtin_type->builtin_bool
3451 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3452
3453 /* The following three are about decimal floating point types, which
3454 are 32-bits, 64-bits and 128-bits respectively. */
3455 builtin_type->builtin_decfloat
3456 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3457 builtin_type->builtin_decdouble
3458 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3459 builtin_type->builtin_declong
3460 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3461
3462 /* "True" character types. */
3463 builtin_type->builtin_true_char
3464 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3465 builtin_type->builtin_true_unsigned_char
3466 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3467
3468 /* Fixed-size integer types. */
3469 builtin_type->builtin_int0
3470 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3471 builtin_type->builtin_int8
3472 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3473 builtin_type->builtin_uint8
3474 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3475 builtin_type->builtin_int16
3476 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3477 builtin_type->builtin_uint16
3478 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3479 builtin_type->builtin_int32
3480 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3481 builtin_type->builtin_uint32
3482 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3483 builtin_type->builtin_int64
3484 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3485 builtin_type->builtin_uint64
3486 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3487 builtin_type->builtin_int128
3488 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3489 builtin_type->builtin_uint128
3490 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3491 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3492 TYPE_INSTANCE_FLAG_NOTTEXT;
3493 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3494 TYPE_INSTANCE_FLAG_NOTTEXT;
3495
3496 /* Wide character types. */
3497 builtin_type->builtin_char16
3498 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3499 builtin_type->builtin_char32
3500 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3501
3502
3503 /* Default data/code pointer types. */
3504 builtin_type->builtin_data_ptr
3505 = lookup_pointer_type (builtin_type->builtin_void);
3506 builtin_type->builtin_func_ptr
3507 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3508
3509 /* This type represents a GDB internal function. */
3510 builtin_type->internal_fn
3511 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3512 "<internal function>");
3513
3514 return builtin_type;
3515 }
3516
3517
3518 /* This set of objfile-based types is intended to be used by symbol
3519 readers as basic types. */
3520
3521 static const struct objfile_data *objfile_type_data;
3522
3523 const struct objfile_type *
3524 objfile_type (struct objfile *objfile)
3525 {
3526 struct gdbarch *gdbarch;
3527 struct objfile_type *objfile_type
3528 = objfile_data (objfile, objfile_type_data);
3529
3530 if (objfile_type)
3531 return objfile_type;
3532
3533 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3534 1, struct objfile_type);
3535
3536 /* Use the objfile architecture to determine basic type properties. */
3537 gdbarch = get_objfile_arch (objfile);
3538
3539 /* Basic types. */
3540 objfile_type->builtin_void
3541 = init_type (TYPE_CODE_VOID, 1,
3542 0,
3543 "void", objfile);
3544
3545 objfile_type->builtin_char
3546 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3547 (TYPE_FLAG_NOSIGN
3548 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3549 "char", objfile);
3550 objfile_type->builtin_signed_char
3551 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3552 0,
3553 "signed char", objfile);
3554 objfile_type->builtin_unsigned_char
3555 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3556 TYPE_FLAG_UNSIGNED,
3557 "unsigned char", objfile);
3558 objfile_type->builtin_short
3559 = init_type (TYPE_CODE_INT,
3560 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3561 0, "short", objfile);
3562 objfile_type->builtin_unsigned_short
3563 = init_type (TYPE_CODE_INT,
3564 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3565 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3566 objfile_type->builtin_int
3567 = init_type (TYPE_CODE_INT,
3568 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3569 0, "int", objfile);
3570 objfile_type->builtin_unsigned_int
3571 = init_type (TYPE_CODE_INT,
3572 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3573 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3574 objfile_type->builtin_long
3575 = init_type (TYPE_CODE_INT,
3576 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3577 0, "long", objfile);
3578 objfile_type->builtin_unsigned_long
3579 = init_type (TYPE_CODE_INT,
3580 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3581 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3582 objfile_type->builtin_long_long
3583 = init_type (TYPE_CODE_INT,
3584 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3585 0, "long long", objfile);
3586 objfile_type->builtin_unsigned_long_long
3587 = init_type (TYPE_CODE_INT,
3588 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3589 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3590
3591 objfile_type->builtin_float
3592 = init_type (TYPE_CODE_FLT,
3593 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3594 0, "float", objfile);
3595 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3596 = gdbarch_float_format (gdbarch);
3597 objfile_type->builtin_double
3598 = init_type (TYPE_CODE_FLT,
3599 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3600 0, "double", objfile);
3601 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3602 = gdbarch_double_format (gdbarch);
3603 objfile_type->builtin_long_double
3604 = init_type (TYPE_CODE_FLT,
3605 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3606 0, "long double", objfile);
3607 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3608 = gdbarch_long_double_format (gdbarch);
3609
3610 /* This type represents a type that was unrecognized in symbol read-in. */
3611 objfile_type->builtin_error
3612 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3613
3614 /* The following set of types is used for symbols with no
3615 debug information. */
3616 objfile_type->nodebug_text_symbol
3617 = init_type (TYPE_CODE_FUNC, 1, 0,
3618 "<text variable, no debug info>", objfile);
3619 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3620 = objfile_type->builtin_int;
3621 objfile_type->nodebug_data_symbol
3622 = init_type (TYPE_CODE_INT,
3623 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3624 "<data variable, no debug info>", objfile);
3625 objfile_type->nodebug_unknown_symbol
3626 = init_type (TYPE_CODE_INT, 1, 0,
3627 "<variable (not text or data), no debug info>", objfile);
3628 objfile_type->nodebug_tls_symbol
3629 = init_type (TYPE_CODE_INT,
3630 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3631 "<thread local variable, no debug info>", objfile);
3632
3633 /* NOTE: on some targets, addresses and pointers are not necessarily
3634 the same --- for example, on the D10V, pointers are 16 bits long,
3635 but addresses are 32 bits long. See doc/gdbint.texinfo,
3636 ``Pointers Are Not Always Addresses''.
3637
3638 The upshot is:
3639 - gdb's `struct type' always describes the target's
3640 representation.
3641 - gdb's `struct value' objects should always hold values in
3642 target form.
3643 - gdb's CORE_ADDR values are addresses in the unified virtual
3644 address space that the assembler and linker work with. Thus,
3645 since target_read_memory takes a CORE_ADDR as an argument, it
3646 can access any memory on the target, even if the processor has
3647 separate code and data address spaces.
3648
3649 So, for example:
3650 - If v is a value holding a D10V code pointer, its contents are
3651 in target form: a big-endian address left-shifted two bits.
3652 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3653 sizeof (void *) == 2 on the target.
3654
3655 In this context, objfile_type->builtin_core_addr is a bit odd:
3656 it's a target type for a value the target will never see. It's
3657 only used to hold the values of (typeless) linker symbols, which
3658 are indeed in the unified virtual address space. */
3659
3660 objfile_type->builtin_core_addr
3661 = init_type (TYPE_CODE_INT,
3662 gdbarch_addr_bit (gdbarch) / 8,
3663 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3664
3665 set_objfile_data (objfile, objfile_type_data, objfile_type);
3666 return objfile_type;
3667 }
3668
3669
3670 extern void _initialize_gdbtypes (void);
3671 void
3672 _initialize_gdbtypes (void)
3673 {
3674 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3675 objfile_type_data = register_objfile_data ();
3676
3677 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3678 Set debugging of C++ overloading."), _("\
3679 Show debugging of C++ overloading."), _("\
3680 When enabled, ranking of the functions is displayed."),
3681 NULL,
3682 show_overload_debug,
3683 &setdebuglist, &showdebuglist);
3684
3685 /* Add user knob for controlling resolution of opaque types. */
3686 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3687 &opaque_type_resolution, _("\
3688 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3689 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3690 NULL,
3691 show_opaque_type_resolution,
3692 &setlist, &showlist);
3693 }
This page took 0.105364 seconds and 4 git commands to generate.