b2e11772dc7bfea6cf97e961e822e1dfec574874
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
1770 switch (TYPE_CODE (type))
1771 {
1772 case TYPE_CODE_RANGE:
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
1782
1783 case TYPE_CODE_ARRAY:
1784 {
1785 gdb_assert (TYPE_NFIELDS (type) == 1);
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1790 return 1;
1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1792 }
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1802 return 1;
1803 }
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 /* See gdbtypes.h. */
1811
1812 int
1813 is_dynamic_type (struct type *type)
1814 {
1815 return is_dynamic_type_internal (type, 1);
1816 }
1817
1818 static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1820
1821 /* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
1824
1825 static struct type *
1826 resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
1828 {
1829 CORE_ADDR value;
1830 struct type *static_range_type, *static_target_type;
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1836
1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
1854
1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1867 addr_stack, 0);
1868 static_range_type = create_range_type (copy_type (dyn_range_type),
1869 static_target_type,
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873 }
1874
1875 /* Resolves dynamic bound values of an array type TYPE to static ones.
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
1878
1879 static struct type *
1880 resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
1882 {
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1892 range_type = resolve_dynamic_range (range_type, addr_stack);
1893
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904 }
1905
1906 /* Resolve dynamic bounds of members of the union TYPE to static
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
1909
1910 static struct type *
1911 resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1935 addr_stack, 0);
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943 }
1944
1945 /* Resolve dynamic bounds of members of the struct TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned resolved_type_bit_length = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
1969 unsigned new_bit_length;
1970 struct property_addr_info pinfo;
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
2011 }
2012
2013 TYPE_LENGTH (resolved_type)
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
2016 /* The Ada language uses this field as a cache for static fixed types: reset
2017 it as RESOLVED_TYPE must have its own static fixed type. */
2018 TYPE_TARGET_TYPE (resolved_type) = NULL;
2019
2020 return resolved_type;
2021 }
2022
2023 /* Worker for resolved_dynamic_type. */
2024
2025 static struct type *
2026 resolve_dynamic_type_internal (struct type *type,
2027 struct property_addr_info *addr_stack,
2028 int top_level)
2029 {
2030 struct type *real_type = check_typedef (type);
2031 struct type *resolved_type = type;
2032 struct dynamic_prop *prop;
2033 CORE_ADDR value;
2034
2035 if (!is_dynamic_type_internal (real_type, top_level))
2036 return type;
2037
2038 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2039 {
2040 resolved_type = copy_type (type);
2041 TYPE_TARGET_TYPE (resolved_type)
2042 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2043 top_level);
2044 }
2045 else
2046 {
2047 /* Before trying to resolve TYPE, make sure it is not a stub. */
2048 type = real_type;
2049
2050 switch (TYPE_CODE (type))
2051 {
2052 case TYPE_CODE_REF:
2053 {
2054 struct property_addr_info pinfo;
2055
2056 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2057 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2058 pinfo.next = addr_stack;
2059
2060 resolved_type = copy_type (type);
2061 TYPE_TARGET_TYPE (resolved_type)
2062 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2063 &pinfo, top_level);
2064 break;
2065 }
2066
2067 case TYPE_CODE_ARRAY:
2068 resolved_type = resolve_dynamic_array (type, addr_stack);
2069 break;
2070
2071 case TYPE_CODE_RANGE:
2072 resolved_type = resolve_dynamic_range (type, addr_stack);
2073 break;
2074
2075 case TYPE_CODE_UNION:
2076 resolved_type = resolve_dynamic_union (type, addr_stack);
2077 break;
2078
2079 case TYPE_CODE_STRUCT:
2080 resolved_type = resolve_dynamic_struct (type, addr_stack);
2081 break;
2082 }
2083 }
2084
2085 /* Resolve data_location attribute. */
2086 prop = TYPE_DATA_LOCATION (resolved_type);
2087 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2088 {
2089 TYPE_DYN_PROP_ADDR (prop) = value;
2090 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2091 }
2092
2093 return resolved_type;
2094 }
2095
2096 /* See gdbtypes.h */
2097
2098 struct type *
2099 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2100 {
2101 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2102
2103 return resolve_dynamic_type_internal (type, &pinfo, 1);
2104 }
2105
2106 /* See gdbtypes.h */
2107
2108 struct dynamic_prop *
2109 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2110 {
2111 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2112
2113 while (node != NULL)
2114 {
2115 if (node->prop_kind == prop_kind)
2116 return &node->prop;
2117 node = node->next;
2118 }
2119 return NULL;
2120 }
2121
2122 /* See gdbtypes.h */
2123
2124 void
2125 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2126 struct type *type, struct objfile *objfile)
2127 {
2128 struct dynamic_prop_list *temp;
2129
2130 gdb_assert (TYPE_OBJFILE_OWNED (type));
2131
2132 temp = obstack_alloc (&objfile->objfile_obstack,
2133 sizeof (struct dynamic_prop_list));
2134 temp->prop_kind = prop_kind;
2135 temp->prop = prop;
2136 temp->next = TYPE_DYN_PROP_LIST (type);
2137
2138 TYPE_DYN_PROP_LIST (type) = temp;
2139 }
2140
2141
2142 /* Find the real type of TYPE. This function returns the real type,
2143 after removing all layers of typedefs, and completing opaque or stub
2144 types. Completion changes the TYPE argument, but stripping of
2145 typedefs does not.
2146
2147 Instance flags (e.g. const/volatile) are preserved as typedefs are
2148 stripped. If necessary a new qualified form of the underlying type
2149 is created.
2150
2151 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2152 not been computed and we're either in the middle of reading symbols, or
2153 there was no name for the typedef in the debug info.
2154
2155 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2156 QUITs in the symbol reading code can also throw.
2157 Thus this function can throw an exception.
2158
2159 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2160 the target type.
2161
2162 If this is a stubbed struct (i.e. declared as struct foo *), see if
2163 we can find a full definition in some other file. If so, copy this
2164 definition, so we can use it in future. There used to be a comment
2165 (but not any code) that if we don't find a full definition, we'd
2166 set a flag so we don't spend time in the future checking the same
2167 type. That would be a mistake, though--we might load in more
2168 symbols which contain a full definition for the type. */
2169
2170 struct type *
2171 check_typedef (struct type *type)
2172 {
2173 struct type *orig_type = type;
2174 /* While we're removing typedefs, we don't want to lose qualifiers.
2175 E.g., const/volatile. */
2176 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2177
2178 gdb_assert (type);
2179
2180 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2181 {
2182 if (!TYPE_TARGET_TYPE (type))
2183 {
2184 const char *name;
2185 struct symbol *sym;
2186
2187 /* It is dangerous to call lookup_symbol if we are currently
2188 reading a symtab. Infinite recursion is one danger. */
2189 if (currently_reading_symtab)
2190 return make_qualified_type (type, instance_flags, NULL);
2191
2192 name = type_name_no_tag (type);
2193 /* FIXME: shouldn't we separately check the TYPE_NAME and
2194 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2195 VAR_DOMAIN as appropriate? (this code was written before
2196 TYPE_NAME and TYPE_TAG_NAME were separate). */
2197 if (name == NULL)
2198 {
2199 stub_noname_complaint ();
2200 return make_qualified_type (type, instance_flags, NULL);
2201 }
2202 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2203 if (sym)
2204 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2205 else /* TYPE_CODE_UNDEF */
2206 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2207 }
2208 type = TYPE_TARGET_TYPE (type);
2209
2210 /* Preserve the instance flags as we traverse down the typedef chain.
2211
2212 Handling address spaces/classes is nasty, what do we do if there's a
2213 conflict?
2214 E.g., what if an outer typedef marks the type as class_1 and an inner
2215 typedef marks the type as class_2?
2216 This is the wrong place to do such error checking. We leave it to
2217 the code that created the typedef in the first place to flag the
2218 error. We just pick the outer address space (akin to letting the
2219 outer cast in a chain of casting win), instead of assuming
2220 "it can't happen". */
2221 {
2222 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2223 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2224 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2225 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2226
2227 /* Treat code vs data spaces and address classes separately. */
2228 if ((instance_flags & ALL_SPACES) != 0)
2229 new_instance_flags &= ~ALL_SPACES;
2230 if ((instance_flags & ALL_CLASSES) != 0)
2231 new_instance_flags &= ~ALL_CLASSES;
2232
2233 instance_flags |= new_instance_flags;
2234 }
2235 }
2236
2237 /* If this is a struct/class/union with no fields, then check
2238 whether a full definition exists somewhere else. This is for
2239 systems where a type definition with no fields is issued for such
2240 types, instead of identifying them as stub types in the first
2241 place. */
2242
2243 if (TYPE_IS_OPAQUE (type)
2244 && opaque_type_resolution
2245 && !currently_reading_symtab)
2246 {
2247 const char *name = type_name_no_tag (type);
2248 struct type *newtype;
2249
2250 if (name == NULL)
2251 {
2252 stub_noname_complaint ();
2253 return make_qualified_type (type, instance_flags, NULL);
2254 }
2255 newtype = lookup_transparent_type (name);
2256
2257 if (newtype)
2258 {
2259 /* If the resolved type and the stub are in the same
2260 objfile, then replace the stub type with the real deal.
2261 But if they're in separate objfiles, leave the stub
2262 alone; we'll just look up the transparent type every time
2263 we call check_typedef. We can't create pointers between
2264 types allocated to different objfiles, since they may
2265 have different lifetimes. Trying to copy NEWTYPE over to
2266 TYPE's objfile is pointless, too, since you'll have to
2267 move over any other types NEWTYPE refers to, which could
2268 be an unbounded amount of stuff. */
2269 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2270 type = make_qualified_type (newtype,
2271 TYPE_INSTANCE_FLAGS (type),
2272 type);
2273 else
2274 type = newtype;
2275 }
2276 }
2277 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2278 types. */
2279 else if (TYPE_STUB (type) && !currently_reading_symtab)
2280 {
2281 const char *name = type_name_no_tag (type);
2282 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2283 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2284 as appropriate? (this code was written before TYPE_NAME and
2285 TYPE_TAG_NAME were separate). */
2286 struct symbol *sym;
2287
2288 if (name == NULL)
2289 {
2290 stub_noname_complaint ();
2291 return make_qualified_type (type, instance_flags, NULL);
2292 }
2293 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2294 if (sym)
2295 {
2296 /* Same as above for opaque types, we can replace the stub
2297 with the complete type only if they are in the same
2298 objfile. */
2299 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2300 type = make_qualified_type (SYMBOL_TYPE (sym),
2301 TYPE_INSTANCE_FLAGS (type),
2302 type);
2303 else
2304 type = SYMBOL_TYPE (sym);
2305 }
2306 }
2307
2308 if (TYPE_TARGET_STUB (type))
2309 {
2310 struct type *range_type;
2311 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2312
2313 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2314 {
2315 /* Nothing we can do. */
2316 }
2317 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2318 {
2319 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2320 TYPE_TARGET_STUB (type) = 0;
2321 }
2322 }
2323
2324 type = make_qualified_type (type, instance_flags, NULL);
2325
2326 /* Cache TYPE_LENGTH for future use. */
2327 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2328
2329 return type;
2330 }
2331
2332 /* Parse a type expression in the string [P..P+LENGTH). If an error
2333 occurs, silently return a void type. */
2334
2335 static struct type *
2336 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2337 {
2338 struct ui_file *saved_gdb_stderr;
2339 struct type *type = NULL; /* Initialize to keep gcc happy. */
2340
2341 /* Suppress error messages. */
2342 saved_gdb_stderr = gdb_stderr;
2343 gdb_stderr = ui_file_new ();
2344
2345 /* Call parse_and_eval_type() without fear of longjmp()s. */
2346 TRY
2347 {
2348 type = parse_and_eval_type (p, length);
2349 }
2350 CATCH (except, RETURN_MASK_ERROR)
2351 {
2352 type = builtin_type (gdbarch)->builtin_void;
2353 }
2354 END_CATCH
2355
2356 /* Stop suppressing error messages. */
2357 ui_file_delete (gdb_stderr);
2358 gdb_stderr = saved_gdb_stderr;
2359
2360 return type;
2361 }
2362
2363 /* Ugly hack to convert method stubs into method types.
2364
2365 He ain't kiddin'. This demangles the name of the method into a
2366 string including argument types, parses out each argument type,
2367 generates a string casting a zero to that type, evaluates the
2368 string, and stuffs the resulting type into an argtype vector!!!
2369 Then it knows the type of the whole function (including argument
2370 types for overloading), which info used to be in the stab's but was
2371 removed to hack back the space required for them. */
2372
2373 static void
2374 check_stub_method (struct type *type, int method_id, int signature_id)
2375 {
2376 struct gdbarch *gdbarch = get_type_arch (type);
2377 struct fn_field *f;
2378 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2379 char *demangled_name = gdb_demangle (mangled_name,
2380 DMGL_PARAMS | DMGL_ANSI);
2381 char *argtypetext, *p;
2382 int depth = 0, argcount = 1;
2383 struct field *argtypes;
2384 struct type *mtype;
2385
2386 /* Make sure we got back a function string that we can use. */
2387 if (demangled_name)
2388 p = strchr (demangled_name, '(');
2389 else
2390 p = NULL;
2391
2392 if (demangled_name == NULL || p == NULL)
2393 error (_("Internal: Cannot demangle mangled name `%s'."),
2394 mangled_name);
2395
2396 /* Now, read in the parameters that define this type. */
2397 p += 1;
2398 argtypetext = p;
2399 while (*p)
2400 {
2401 if (*p == '(' || *p == '<')
2402 {
2403 depth += 1;
2404 }
2405 else if (*p == ')' || *p == '>')
2406 {
2407 depth -= 1;
2408 }
2409 else if (*p == ',' && depth == 0)
2410 {
2411 argcount += 1;
2412 }
2413
2414 p += 1;
2415 }
2416
2417 /* If we read one argument and it was ``void'', don't count it. */
2418 if (startswith (argtypetext, "(void)"))
2419 argcount -= 1;
2420
2421 /* We need one extra slot, for the THIS pointer. */
2422
2423 argtypes = (struct field *)
2424 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2425 p = argtypetext;
2426
2427 /* Add THIS pointer for non-static methods. */
2428 f = TYPE_FN_FIELDLIST1 (type, method_id);
2429 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2430 argcount = 0;
2431 else
2432 {
2433 argtypes[0].type = lookup_pointer_type (type);
2434 argcount = 1;
2435 }
2436
2437 if (*p != ')') /* () means no args, skip while. */
2438 {
2439 depth = 0;
2440 while (*p)
2441 {
2442 if (depth <= 0 && (*p == ',' || *p == ')'))
2443 {
2444 /* Avoid parsing of ellipsis, they will be handled below.
2445 Also avoid ``void'' as above. */
2446 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2447 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2448 {
2449 argtypes[argcount].type =
2450 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2451 argcount += 1;
2452 }
2453 argtypetext = p + 1;
2454 }
2455
2456 if (*p == '(' || *p == '<')
2457 {
2458 depth += 1;
2459 }
2460 else if (*p == ')' || *p == '>')
2461 {
2462 depth -= 1;
2463 }
2464
2465 p += 1;
2466 }
2467 }
2468
2469 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2470
2471 /* Now update the old "stub" type into a real type. */
2472 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2473 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2474 We want a method (TYPE_CODE_METHOD). */
2475 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2476 argtypes, argcount, p[-2] == '.');
2477 TYPE_STUB (mtype) = 0;
2478 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2479
2480 xfree (demangled_name);
2481 }
2482
2483 /* This is the external interface to check_stub_method, above. This
2484 function unstubs all of the signatures for TYPE's METHOD_ID method
2485 name. After calling this function TYPE_FN_FIELD_STUB will be
2486 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2487 correct.
2488
2489 This function unfortunately can not die until stabs do. */
2490
2491 void
2492 check_stub_method_group (struct type *type, int method_id)
2493 {
2494 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2495 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2496 int j, found_stub = 0;
2497
2498 for (j = 0; j < len; j++)
2499 if (TYPE_FN_FIELD_STUB (f, j))
2500 {
2501 found_stub = 1;
2502 check_stub_method (type, method_id, j);
2503 }
2504
2505 /* GNU v3 methods with incorrect names were corrected when we read
2506 in type information, because it was cheaper to do it then. The
2507 only GNU v2 methods with incorrect method names are operators and
2508 destructors; destructors were also corrected when we read in type
2509 information.
2510
2511 Therefore the only thing we need to handle here are v2 operator
2512 names. */
2513 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2514 {
2515 int ret;
2516 char dem_opname[256];
2517
2518 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2519 method_id),
2520 dem_opname, DMGL_ANSI);
2521 if (!ret)
2522 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2523 method_id),
2524 dem_opname, 0);
2525 if (ret)
2526 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2527 }
2528 }
2529
2530 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2531 const struct cplus_struct_type cplus_struct_default = { };
2532
2533 void
2534 allocate_cplus_struct_type (struct type *type)
2535 {
2536 if (HAVE_CPLUS_STRUCT (type))
2537 /* Structure was already allocated. Nothing more to do. */
2538 return;
2539
2540 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2541 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2542 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2543 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2544 set_type_vptr_fieldno (type, -1);
2545 }
2546
2547 const struct gnat_aux_type gnat_aux_default =
2548 { NULL };
2549
2550 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2551 and allocate the associated gnat-specific data. The gnat-specific
2552 data is also initialized to gnat_aux_default. */
2553
2554 void
2555 allocate_gnat_aux_type (struct type *type)
2556 {
2557 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2558 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2559 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2560 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2561 }
2562
2563 /* Helper function to initialize the standard scalar types.
2564
2565 If NAME is non-NULL, then it is used to initialize the type name.
2566 Note that NAME is not copied; it is required to have a lifetime at
2567 least as long as OBJFILE. */
2568
2569 struct type *
2570 init_type (enum type_code code, int length, int flags,
2571 const char *name, struct objfile *objfile)
2572 {
2573 struct type *type;
2574
2575 type = alloc_type (objfile);
2576 TYPE_CODE (type) = code;
2577 TYPE_LENGTH (type) = length;
2578
2579 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2580 if (flags & TYPE_FLAG_UNSIGNED)
2581 TYPE_UNSIGNED (type) = 1;
2582 if (flags & TYPE_FLAG_NOSIGN)
2583 TYPE_NOSIGN (type) = 1;
2584 if (flags & TYPE_FLAG_STUB)
2585 TYPE_STUB (type) = 1;
2586 if (flags & TYPE_FLAG_TARGET_STUB)
2587 TYPE_TARGET_STUB (type) = 1;
2588 if (flags & TYPE_FLAG_STATIC)
2589 TYPE_STATIC (type) = 1;
2590 if (flags & TYPE_FLAG_PROTOTYPED)
2591 TYPE_PROTOTYPED (type) = 1;
2592 if (flags & TYPE_FLAG_INCOMPLETE)
2593 TYPE_INCOMPLETE (type) = 1;
2594 if (flags & TYPE_FLAG_VARARGS)
2595 TYPE_VARARGS (type) = 1;
2596 if (flags & TYPE_FLAG_VECTOR)
2597 TYPE_VECTOR (type) = 1;
2598 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2599 TYPE_STUB_SUPPORTED (type) = 1;
2600 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2601 TYPE_FIXED_INSTANCE (type) = 1;
2602 if (flags & TYPE_FLAG_GNU_IFUNC)
2603 TYPE_GNU_IFUNC (type) = 1;
2604
2605 TYPE_NAME (type) = name;
2606
2607 /* C++ fancies. */
2608
2609 if (name && strcmp (name, "char") == 0)
2610 TYPE_NOSIGN (type) = 1;
2611
2612 switch (code)
2613 {
2614 case TYPE_CODE_STRUCT:
2615 case TYPE_CODE_UNION:
2616 case TYPE_CODE_NAMESPACE:
2617 INIT_CPLUS_SPECIFIC (type);
2618 break;
2619 case TYPE_CODE_FLT:
2620 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2621 break;
2622 case TYPE_CODE_FUNC:
2623 INIT_FUNC_SPECIFIC (type);
2624 break;
2625 }
2626 return type;
2627 }
2628 \f
2629 /* Queries on types. */
2630
2631 int
2632 can_dereference (struct type *t)
2633 {
2634 /* FIXME: Should we return true for references as well as
2635 pointers? */
2636 CHECK_TYPEDEF (t);
2637 return
2638 (t != NULL
2639 && TYPE_CODE (t) == TYPE_CODE_PTR
2640 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2641 }
2642
2643 int
2644 is_integral_type (struct type *t)
2645 {
2646 CHECK_TYPEDEF (t);
2647 return
2648 ((t != NULL)
2649 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2650 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2651 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2652 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2653 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2654 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2655 }
2656
2657 /* Return true if TYPE is scalar. */
2658
2659 static int
2660 is_scalar_type (struct type *type)
2661 {
2662 CHECK_TYPEDEF (type);
2663
2664 switch (TYPE_CODE (type))
2665 {
2666 case TYPE_CODE_ARRAY:
2667 case TYPE_CODE_STRUCT:
2668 case TYPE_CODE_UNION:
2669 case TYPE_CODE_SET:
2670 case TYPE_CODE_STRING:
2671 return 0;
2672 default:
2673 return 1;
2674 }
2675 }
2676
2677 /* Return true if T is scalar, or a composite type which in practice has
2678 the memory layout of a scalar type. E.g., an array or struct with only
2679 one scalar element inside it, or a union with only scalar elements. */
2680
2681 int
2682 is_scalar_type_recursive (struct type *t)
2683 {
2684 CHECK_TYPEDEF (t);
2685
2686 if (is_scalar_type (t))
2687 return 1;
2688 /* Are we dealing with an array or string of known dimensions? */
2689 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2690 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2691 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2692 {
2693 LONGEST low_bound, high_bound;
2694 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2695
2696 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2697
2698 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2699 }
2700 /* Are we dealing with a struct with one element? */
2701 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2702 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2703 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2704 {
2705 int i, n = TYPE_NFIELDS (t);
2706
2707 /* If all elements of the union are scalar, then the union is scalar. */
2708 for (i = 0; i < n; i++)
2709 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2710 return 0;
2711
2712 return 1;
2713 }
2714
2715 return 0;
2716 }
2717
2718 /* Return true is T is a class or a union. False otherwise. */
2719
2720 int
2721 class_or_union_p (const struct type *t)
2722 {
2723 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2724 || TYPE_CODE (t) == TYPE_CODE_UNION);
2725 }
2726
2727 /* A helper function which returns true if types A and B represent the
2728 "same" class type. This is true if the types have the same main
2729 type, or the same name. */
2730
2731 int
2732 class_types_same_p (const struct type *a, const struct type *b)
2733 {
2734 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2735 || (TYPE_NAME (a) && TYPE_NAME (b)
2736 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2737 }
2738
2739 /* If BASE is an ancestor of DCLASS return the distance between them.
2740 otherwise return -1;
2741 eg:
2742
2743 class A {};
2744 class B: public A {};
2745 class C: public B {};
2746 class D: C {};
2747
2748 distance_to_ancestor (A, A, 0) = 0
2749 distance_to_ancestor (A, B, 0) = 1
2750 distance_to_ancestor (A, C, 0) = 2
2751 distance_to_ancestor (A, D, 0) = 3
2752
2753 If PUBLIC is 1 then only public ancestors are considered,
2754 and the function returns the distance only if BASE is a public ancestor
2755 of DCLASS.
2756 Eg:
2757
2758 distance_to_ancestor (A, D, 1) = -1. */
2759
2760 static int
2761 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2762 {
2763 int i;
2764 int d;
2765
2766 CHECK_TYPEDEF (base);
2767 CHECK_TYPEDEF (dclass);
2768
2769 if (class_types_same_p (base, dclass))
2770 return 0;
2771
2772 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2773 {
2774 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2775 continue;
2776
2777 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2778 if (d >= 0)
2779 return 1 + d;
2780 }
2781
2782 return -1;
2783 }
2784
2785 /* Check whether BASE is an ancestor or base class or DCLASS
2786 Return 1 if so, and 0 if not.
2787 Note: If BASE and DCLASS are of the same type, this function
2788 will return 1. So for some class A, is_ancestor (A, A) will
2789 return 1. */
2790
2791 int
2792 is_ancestor (struct type *base, struct type *dclass)
2793 {
2794 return distance_to_ancestor (base, dclass, 0) >= 0;
2795 }
2796
2797 /* Like is_ancestor, but only returns true when BASE is a public
2798 ancestor of DCLASS. */
2799
2800 int
2801 is_public_ancestor (struct type *base, struct type *dclass)
2802 {
2803 return distance_to_ancestor (base, dclass, 1) >= 0;
2804 }
2805
2806 /* A helper function for is_unique_ancestor. */
2807
2808 static int
2809 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2810 int *offset,
2811 const gdb_byte *valaddr, int embedded_offset,
2812 CORE_ADDR address, struct value *val)
2813 {
2814 int i, count = 0;
2815
2816 CHECK_TYPEDEF (base);
2817 CHECK_TYPEDEF (dclass);
2818
2819 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2820 {
2821 struct type *iter;
2822 int this_offset;
2823
2824 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2825
2826 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2827 address, val);
2828
2829 if (class_types_same_p (base, iter))
2830 {
2831 /* If this is the first subclass, set *OFFSET and set count
2832 to 1. Otherwise, if this is at the same offset as
2833 previous instances, do nothing. Otherwise, increment
2834 count. */
2835 if (*offset == -1)
2836 {
2837 *offset = this_offset;
2838 count = 1;
2839 }
2840 else if (this_offset == *offset)
2841 {
2842 /* Nothing. */
2843 }
2844 else
2845 ++count;
2846 }
2847 else
2848 count += is_unique_ancestor_worker (base, iter, offset,
2849 valaddr,
2850 embedded_offset + this_offset,
2851 address, val);
2852 }
2853
2854 return count;
2855 }
2856
2857 /* Like is_ancestor, but only returns true if BASE is a unique base
2858 class of the type of VAL. */
2859
2860 int
2861 is_unique_ancestor (struct type *base, struct value *val)
2862 {
2863 int offset = -1;
2864
2865 return is_unique_ancestor_worker (base, value_type (val), &offset,
2866 value_contents_for_printing (val),
2867 value_embedded_offset (val),
2868 value_address (val), val) == 1;
2869 }
2870
2871 \f
2872 /* Overload resolution. */
2873
2874 /* Return the sum of the rank of A with the rank of B. */
2875
2876 struct rank
2877 sum_ranks (struct rank a, struct rank b)
2878 {
2879 struct rank c;
2880 c.rank = a.rank + b.rank;
2881 c.subrank = a.subrank + b.subrank;
2882 return c;
2883 }
2884
2885 /* Compare rank A and B and return:
2886 0 if a = b
2887 1 if a is better than b
2888 -1 if b is better than a. */
2889
2890 int
2891 compare_ranks (struct rank a, struct rank b)
2892 {
2893 if (a.rank == b.rank)
2894 {
2895 if (a.subrank == b.subrank)
2896 return 0;
2897 if (a.subrank < b.subrank)
2898 return 1;
2899 if (a.subrank > b.subrank)
2900 return -1;
2901 }
2902
2903 if (a.rank < b.rank)
2904 return 1;
2905
2906 /* a.rank > b.rank */
2907 return -1;
2908 }
2909
2910 /* Functions for overload resolution begin here. */
2911
2912 /* Compare two badness vectors A and B and return the result.
2913 0 => A and B are identical
2914 1 => A and B are incomparable
2915 2 => A is better than B
2916 3 => A is worse than B */
2917
2918 int
2919 compare_badness (struct badness_vector *a, struct badness_vector *b)
2920 {
2921 int i;
2922 int tmp;
2923 short found_pos = 0; /* any positives in c? */
2924 short found_neg = 0; /* any negatives in c? */
2925
2926 /* differing lengths => incomparable */
2927 if (a->length != b->length)
2928 return 1;
2929
2930 /* Subtract b from a */
2931 for (i = 0; i < a->length; i++)
2932 {
2933 tmp = compare_ranks (b->rank[i], a->rank[i]);
2934 if (tmp > 0)
2935 found_pos = 1;
2936 else if (tmp < 0)
2937 found_neg = 1;
2938 }
2939
2940 if (found_pos)
2941 {
2942 if (found_neg)
2943 return 1; /* incomparable */
2944 else
2945 return 3; /* A > B */
2946 }
2947 else
2948 /* no positives */
2949 {
2950 if (found_neg)
2951 return 2; /* A < B */
2952 else
2953 return 0; /* A == B */
2954 }
2955 }
2956
2957 /* Rank a function by comparing its parameter types (PARMS, length
2958 NPARMS), to the types of an argument list (ARGS, length NARGS).
2959 Return a pointer to a badness vector. This has NARGS + 1
2960 entries. */
2961
2962 struct badness_vector *
2963 rank_function (struct type **parms, int nparms,
2964 struct value **args, int nargs)
2965 {
2966 int i;
2967 struct badness_vector *bv;
2968 int min_len = nparms < nargs ? nparms : nargs;
2969
2970 bv = xmalloc (sizeof (struct badness_vector));
2971 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2972 bv->rank = XNEWVEC (struct rank, nargs + 1);
2973
2974 /* First compare the lengths of the supplied lists.
2975 If there is a mismatch, set it to a high value. */
2976
2977 /* pai/1997-06-03 FIXME: when we have debug info about default
2978 arguments and ellipsis parameter lists, we should consider those
2979 and rank the length-match more finely. */
2980
2981 LENGTH_MATCH (bv) = (nargs != nparms)
2982 ? LENGTH_MISMATCH_BADNESS
2983 : EXACT_MATCH_BADNESS;
2984
2985 /* Now rank all the parameters of the candidate function. */
2986 for (i = 1; i <= min_len; i++)
2987 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2988 args[i - 1]);
2989
2990 /* If more arguments than parameters, add dummy entries. */
2991 for (i = min_len + 1; i <= nargs; i++)
2992 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2993
2994 return bv;
2995 }
2996
2997 /* Compare the names of two integer types, assuming that any sign
2998 qualifiers have been checked already. We do it this way because
2999 there may be an "int" in the name of one of the types. */
3000
3001 static int
3002 integer_types_same_name_p (const char *first, const char *second)
3003 {
3004 int first_p, second_p;
3005
3006 /* If both are shorts, return 1; if neither is a short, keep
3007 checking. */
3008 first_p = (strstr (first, "short") != NULL);
3009 second_p = (strstr (second, "short") != NULL);
3010 if (first_p && second_p)
3011 return 1;
3012 if (first_p || second_p)
3013 return 0;
3014
3015 /* Likewise for long. */
3016 first_p = (strstr (first, "long") != NULL);
3017 second_p = (strstr (second, "long") != NULL);
3018 if (first_p && second_p)
3019 return 1;
3020 if (first_p || second_p)
3021 return 0;
3022
3023 /* Likewise for char. */
3024 first_p = (strstr (first, "char") != NULL);
3025 second_p = (strstr (second, "char") != NULL);
3026 if (first_p && second_p)
3027 return 1;
3028 if (first_p || second_p)
3029 return 0;
3030
3031 /* They must both be ints. */
3032 return 1;
3033 }
3034
3035 /* Compares type A to type B returns 1 if the represent the same type
3036 0 otherwise. */
3037
3038 int
3039 types_equal (struct type *a, struct type *b)
3040 {
3041 /* Identical type pointers. */
3042 /* However, this still doesn't catch all cases of same type for b
3043 and a. The reason is that builtin types are different from
3044 the same ones constructed from the object. */
3045 if (a == b)
3046 return 1;
3047
3048 /* Resolve typedefs */
3049 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3050 a = check_typedef (a);
3051 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3052 b = check_typedef (b);
3053
3054 /* If after resolving typedefs a and b are not of the same type
3055 code then they are not equal. */
3056 if (TYPE_CODE (a) != TYPE_CODE (b))
3057 return 0;
3058
3059 /* If a and b are both pointers types or both reference types then
3060 they are equal of the same type iff the objects they refer to are
3061 of the same type. */
3062 if (TYPE_CODE (a) == TYPE_CODE_PTR
3063 || TYPE_CODE (a) == TYPE_CODE_REF)
3064 return types_equal (TYPE_TARGET_TYPE (a),
3065 TYPE_TARGET_TYPE (b));
3066
3067 /* Well, damnit, if the names are exactly the same, I'll say they
3068 are exactly the same. This happens when we generate method
3069 stubs. The types won't point to the same address, but they
3070 really are the same. */
3071
3072 if (TYPE_NAME (a) && TYPE_NAME (b)
3073 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3074 return 1;
3075
3076 /* Check if identical after resolving typedefs. */
3077 if (a == b)
3078 return 1;
3079
3080 /* Two function types are equal if their argument and return types
3081 are equal. */
3082 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3083 {
3084 int i;
3085
3086 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3087 return 0;
3088
3089 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3090 return 0;
3091
3092 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3093 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3094 return 0;
3095
3096 return 1;
3097 }
3098
3099 return 0;
3100 }
3101 \f
3102 /* Deep comparison of types. */
3103
3104 /* An entry in the type-equality bcache. */
3105
3106 typedef struct type_equality_entry
3107 {
3108 struct type *type1, *type2;
3109 } type_equality_entry_d;
3110
3111 DEF_VEC_O (type_equality_entry_d);
3112
3113 /* A helper function to compare two strings. Returns 1 if they are
3114 the same, 0 otherwise. Handles NULLs properly. */
3115
3116 static int
3117 compare_maybe_null_strings (const char *s, const char *t)
3118 {
3119 if (s == NULL && t != NULL)
3120 return 0;
3121 else if (s != NULL && t == NULL)
3122 return 0;
3123 else if (s == NULL && t== NULL)
3124 return 1;
3125 return strcmp (s, t) == 0;
3126 }
3127
3128 /* A helper function for check_types_worklist that checks two types for
3129 "deep" equality. Returns non-zero if the types are considered the
3130 same, zero otherwise. */
3131
3132 static int
3133 check_types_equal (struct type *type1, struct type *type2,
3134 VEC (type_equality_entry_d) **worklist)
3135 {
3136 CHECK_TYPEDEF (type1);
3137 CHECK_TYPEDEF (type2);
3138
3139 if (type1 == type2)
3140 return 1;
3141
3142 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3143 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3144 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3145 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3146 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3147 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3148 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3149 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3150 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3151 return 0;
3152
3153 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3154 TYPE_TAG_NAME (type2)))
3155 return 0;
3156 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3157 return 0;
3158
3159 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3160 {
3161 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3162 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3163 return 0;
3164 }
3165 else
3166 {
3167 int i;
3168
3169 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3170 {
3171 const struct field *field1 = &TYPE_FIELD (type1, i);
3172 const struct field *field2 = &TYPE_FIELD (type2, i);
3173 struct type_equality_entry entry;
3174
3175 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3176 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3177 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3178 return 0;
3179 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3180 FIELD_NAME (*field2)))
3181 return 0;
3182 switch (FIELD_LOC_KIND (*field1))
3183 {
3184 case FIELD_LOC_KIND_BITPOS:
3185 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3186 return 0;
3187 break;
3188 case FIELD_LOC_KIND_ENUMVAL:
3189 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3190 return 0;
3191 break;
3192 case FIELD_LOC_KIND_PHYSADDR:
3193 if (FIELD_STATIC_PHYSADDR (*field1)
3194 != FIELD_STATIC_PHYSADDR (*field2))
3195 return 0;
3196 break;
3197 case FIELD_LOC_KIND_PHYSNAME:
3198 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3199 FIELD_STATIC_PHYSNAME (*field2)))
3200 return 0;
3201 break;
3202 case FIELD_LOC_KIND_DWARF_BLOCK:
3203 {
3204 struct dwarf2_locexpr_baton *block1, *block2;
3205
3206 block1 = FIELD_DWARF_BLOCK (*field1);
3207 block2 = FIELD_DWARF_BLOCK (*field2);
3208 if (block1->per_cu != block2->per_cu
3209 || block1->size != block2->size
3210 || memcmp (block1->data, block2->data, block1->size) != 0)
3211 return 0;
3212 }
3213 break;
3214 default:
3215 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3216 "%d by check_types_equal"),
3217 FIELD_LOC_KIND (*field1));
3218 }
3219
3220 entry.type1 = FIELD_TYPE (*field1);
3221 entry.type2 = FIELD_TYPE (*field2);
3222 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3223 }
3224 }
3225
3226 if (TYPE_TARGET_TYPE (type1) != NULL)
3227 {
3228 struct type_equality_entry entry;
3229
3230 if (TYPE_TARGET_TYPE (type2) == NULL)
3231 return 0;
3232
3233 entry.type1 = TYPE_TARGET_TYPE (type1);
3234 entry.type2 = TYPE_TARGET_TYPE (type2);
3235 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3236 }
3237 else if (TYPE_TARGET_TYPE (type2) != NULL)
3238 return 0;
3239
3240 return 1;
3241 }
3242
3243 /* Check types on a worklist for equality. Returns zero if any pair
3244 is not equal, non-zero if they are all considered equal. */
3245
3246 static int
3247 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3248 struct bcache *cache)
3249 {
3250 while (!VEC_empty (type_equality_entry_d, *worklist))
3251 {
3252 struct type_equality_entry entry;
3253 int added;
3254
3255 entry = *VEC_last (type_equality_entry_d, *worklist);
3256 VEC_pop (type_equality_entry_d, *worklist);
3257
3258 /* If the type pair has already been visited, we know it is
3259 ok. */
3260 bcache_full (&entry, sizeof (entry), cache, &added);
3261 if (!added)
3262 continue;
3263
3264 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3265 return 0;
3266 }
3267
3268 return 1;
3269 }
3270
3271 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3272 "deep comparison". Otherwise return zero. */
3273
3274 int
3275 types_deeply_equal (struct type *type1, struct type *type2)
3276 {
3277 struct gdb_exception except = exception_none;
3278 int result = 0;
3279 struct bcache *cache;
3280 VEC (type_equality_entry_d) *worklist = NULL;
3281 struct type_equality_entry entry;
3282
3283 gdb_assert (type1 != NULL && type2 != NULL);
3284
3285 /* Early exit for the simple case. */
3286 if (type1 == type2)
3287 return 1;
3288
3289 cache = bcache_xmalloc (NULL, NULL);
3290
3291 entry.type1 = type1;
3292 entry.type2 = type2;
3293 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3294
3295 /* check_types_worklist calls several nested helper functions, some
3296 of which can raise a GDB exception, so we just check and rethrow
3297 here. If there is a GDB exception, a comparison is not capable
3298 (or trusted), so exit. */
3299 TRY
3300 {
3301 result = check_types_worklist (&worklist, cache);
3302 }
3303 CATCH (ex, RETURN_MASK_ALL)
3304 {
3305 except = ex;
3306 }
3307 END_CATCH
3308
3309 bcache_xfree (cache);
3310 VEC_free (type_equality_entry_d, worklist);
3311
3312 /* Rethrow if there was a problem. */
3313 if (except.reason < 0)
3314 throw_exception (except);
3315
3316 return result;
3317 }
3318 \f
3319 /* Compare one type (PARM) for compatibility with another (ARG).
3320 * PARM is intended to be the parameter type of a function; and
3321 * ARG is the supplied argument's type. This function tests if
3322 * the latter can be converted to the former.
3323 * VALUE is the argument's value or NULL if none (or called recursively)
3324 *
3325 * Return 0 if they are identical types;
3326 * Otherwise, return an integer which corresponds to how compatible
3327 * PARM is to ARG. The higher the return value, the worse the match.
3328 * Generally the "bad" conversions are all uniformly assigned a 100. */
3329
3330 struct rank
3331 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3332 {
3333 struct rank rank = {0,0};
3334
3335 if (types_equal (parm, arg))
3336 return EXACT_MATCH_BADNESS;
3337
3338 /* Resolve typedefs */
3339 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3340 parm = check_typedef (parm);
3341 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3342 arg = check_typedef (arg);
3343
3344 /* See through references, since we can almost make non-references
3345 references. */
3346 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3347 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3348 REFERENCE_CONVERSION_BADNESS));
3349 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3350 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3351 REFERENCE_CONVERSION_BADNESS));
3352 if (overload_debug)
3353 /* Debugging only. */
3354 fprintf_filtered (gdb_stderr,
3355 "------ Arg is %s [%d], parm is %s [%d]\n",
3356 TYPE_NAME (arg), TYPE_CODE (arg),
3357 TYPE_NAME (parm), TYPE_CODE (parm));
3358
3359 /* x -> y means arg of type x being supplied for parameter of type y. */
3360
3361 switch (TYPE_CODE (parm))
3362 {
3363 case TYPE_CODE_PTR:
3364 switch (TYPE_CODE (arg))
3365 {
3366 case TYPE_CODE_PTR:
3367
3368 /* Allowed pointer conversions are:
3369 (a) pointer to void-pointer conversion. */
3370 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3371 return VOID_PTR_CONVERSION_BADNESS;
3372
3373 /* (b) pointer to ancestor-pointer conversion. */
3374 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3375 TYPE_TARGET_TYPE (arg),
3376 0);
3377 if (rank.subrank >= 0)
3378 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3379
3380 return INCOMPATIBLE_TYPE_BADNESS;
3381 case TYPE_CODE_ARRAY:
3382 if (types_equal (TYPE_TARGET_TYPE (parm),
3383 TYPE_TARGET_TYPE (arg)))
3384 return EXACT_MATCH_BADNESS;
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 case TYPE_CODE_FUNC:
3387 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3388 case TYPE_CODE_INT:
3389 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3390 {
3391 if (value_as_long (value) == 0)
3392 {
3393 /* Null pointer conversion: allow it to be cast to a pointer.
3394 [4.10.1 of C++ standard draft n3290] */
3395 return NULL_POINTER_CONVERSION_BADNESS;
3396 }
3397 else
3398 {
3399 /* If type checking is disabled, allow the conversion. */
3400 if (!strict_type_checking)
3401 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3402 }
3403 }
3404 /* fall through */
3405 case TYPE_CODE_ENUM:
3406 case TYPE_CODE_FLAGS:
3407 case TYPE_CODE_CHAR:
3408 case TYPE_CODE_RANGE:
3409 case TYPE_CODE_BOOL:
3410 default:
3411 return INCOMPATIBLE_TYPE_BADNESS;
3412 }
3413 case TYPE_CODE_ARRAY:
3414 switch (TYPE_CODE (arg))
3415 {
3416 case TYPE_CODE_PTR:
3417 case TYPE_CODE_ARRAY:
3418 return rank_one_type (TYPE_TARGET_TYPE (parm),
3419 TYPE_TARGET_TYPE (arg), NULL);
3420 default:
3421 return INCOMPATIBLE_TYPE_BADNESS;
3422 }
3423 case TYPE_CODE_FUNC:
3424 switch (TYPE_CODE (arg))
3425 {
3426 case TYPE_CODE_PTR: /* funcptr -> func */
3427 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3428 default:
3429 return INCOMPATIBLE_TYPE_BADNESS;
3430 }
3431 case TYPE_CODE_INT:
3432 switch (TYPE_CODE (arg))
3433 {
3434 case TYPE_CODE_INT:
3435 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3436 {
3437 /* Deal with signed, unsigned, and plain chars and
3438 signed and unsigned ints. */
3439 if (TYPE_NOSIGN (parm))
3440 {
3441 /* This case only for character types. */
3442 if (TYPE_NOSIGN (arg))
3443 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3444 else /* signed/unsigned char -> plain char */
3445 return INTEGER_CONVERSION_BADNESS;
3446 }
3447 else if (TYPE_UNSIGNED (parm))
3448 {
3449 if (TYPE_UNSIGNED (arg))
3450 {
3451 /* unsigned int -> unsigned int, or
3452 unsigned long -> unsigned long */
3453 if (integer_types_same_name_p (TYPE_NAME (parm),
3454 TYPE_NAME (arg)))
3455 return EXACT_MATCH_BADNESS;
3456 else if (integer_types_same_name_p (TYPE_NAME (arg),
3457 "int")
3458 && integer_types_same_name_p (TYPE_NAME (parm),
3459 "long"))
3460 /* unsigned int -> unsigned long */
3461 return INTEGER_PROMOTION_BADNESS;
3462 else
3463 /* unsigned long -> unsigned int */
3464 return INTEGER_CONVERSION_BADNESS;
3465 }
3466 else
3467 {
3468 if (integer_types_same_name_p (TYPE_NAME (arg),
3469 "long")
3470 && integer_types_same_name_p (TYPE_NAME (parm),
3471 "int"))
3472 /* signed long -> unsigned int */
3473 return INTEGER_CONVERSION_BADNESS;
3474 else
3475 /* signed int/long -> unsigned int/long */
3476 return INTEGER_CONVERSION_BADNESS;
3477 }
3478 }
3479 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3480 {
3481 if (integer_types_same_name_p (TYPE_NAME (parm),
3482 TYPE_NAME (arg)))
3483 return EXACT_MATCH_BADNESS;
3484 else if (integer_types_same_name_p (TYPE_NAME (arg),
3485 "int")
3486 && integer_types_same_name_p (TYPE_NAME (parm),
3487 "long"))
3488 return INTEGER_PROMOTION_BADNESS;
3489 else
3490 return INTEGER_CONVERSION_BADNESS;
3491 }
3492 else
3493 return INTEGER_CONVERSION_BADNESS;
3494 }
3495 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3496 return INTEGER_PROMOTION_BADNESS;
3497 else
3498 return INTEGER_CONVERSION_BADNESS;
3499 case TYPE_CODE_ENUM:
3500 case TYPE_CODE_FLAGS:
3501 case TYPE_CODE_CHAR:
3502 case TYPE_CODE_RANGE:
3503 case TYPE_CODE_BOOL:
3504 if (TYPE_DECLARED_CLASS (arg))
3505 return INCOMPATIBLE_TYPE_BADNESS;
3506 return INTEGER_PROMOTION_BADNESS;
3507 case TYPE_CODE_FLT:
3508 return INT_FLOAT_CONVERSION_BADNESS;
3509 case TYPE_CODE_PTR:
3510 return NS_POINTER_CONVERSION_BADNESS;
3511 default:
3512 return INCOMPATIBLE_TYPE_BADNESS;
3513 }
3514 break;
3515 case TYPE_CODE_ENUM:
3516 switch (TYPE_CODE (arg))
3517 {
3518 case TYPE_CODE_INT:
3519 case TYPE_CODE_CHAR:
3520 case TYPE_CODE_RANGE:
3521 case TYPE_CODE_BOOL:
3522 case TYPE_CODE_ENUM:
3523 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3524 return INCOMPATIBLE_TYPE_BADNESS;
3525 return INTEGER_CONVERSION_BADNESS;
3526 case TYPE_CODE_FLT:
3527 return INT_FLOAT_CONVERSION_BADNESS;
3528 default:
3529 return INCOMPATIBLE_TYPE_BADNESS;
3530 }
3531 break;
3532 case TYPE_CODE_CHAR:
3533 switch (TYPE_CODE (arg))
3534 {
3535 case TYPE_CODE_RANGE:
3536 case TYPE_CODE_BOOL:
3537 case TYPE_CODE_ENUM:
3538 if (TYPE_DECLARED_CLASS (arg))
3539 return INCOMPATIBLE_TYPE_BADNESS;
3540 return INTEGER_CONVERSION_BADNESS;
3541 case TYPE_CODE_FLT:
3542 return INT_FLOAT_CONVERSION_BADNESS;
3543 case TYPE_CODE_INT:
3544 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3545 return INTEGER_CONVERSION_BADNESS;
3546 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3547 return INTEGER_PROMOTION_BADNESS;
3548 /* >>> !! else fall through !! <<< */
3549 case TYPE_CODE_CHAR:
3550 /* Deal with signed, unsigned, and plain chars for C++ and
3551 with int cases falling through from previous case. */
3552 if (TYPE_NOSIGN (parm))
3553 {
3554 if (TYPE_NOSIGN (arg))
3555 return EXACT_MATCH_BADNESS;
3556 else
3557 return INTEGER_CONVERSION_BADNESS;
3558 }
3559 else if (TYPE_UNSIGNED (parm))
3560 {
3561 if (TYPE_UNSIGNED (arg))
3562 return EXACT_MATCH_BADNESS;
3563 else
3564 return INTEGER_PROMOTION_BADNESS;
3565 }
3566 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3567 return EXACT_MATCH_BADNESS;
3568 else
3569 return INTEGER_CONVERSION_BADNESS;
3570 default:
3571 return INCOMPATIBLE_TYPE_BADNESS;
3572 }
3573 break;
3574 case TYPE_CODE_RANGE:
3575 switch (TYPE_CODE (arg))
3576 {
3577 case TYPE_CODE_INT:
3578 case TYPE_CODE_CHAR:
3579 case TYPE_CODE_RANGE:
3580 case TYPE_CODE_BOOL:
3581 case TYPE_CODE_ENUM:
3582 return INTEGER_CONVERSION_BADNESS;
3583 case TYPE_CODE_FLT:
3584 return INT_FLOAT_CONVERSION_BADNESS;
3585 default:
3586 return INCOMPATIBLE_TYPE_BADNESS;
3587 }
3588 break;
3589 case TYPE_CODE_BOOL:
3590 switch (TYPE_CODE (arg))
3591 {
3592 /* n3290 draft, section 4.12.1 (conv.bool):
3593
3594 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3595 pointer to member type can be converted to a prvalue of type
3596 bool. A zero value, null pointer value, or null member pointer
3597 value is converted to false; any other value is converted to
3598 true. A prvalue of type std::nullptr_t can be converted to a
3599 prvalue of type bool; the resulting value is false." */
3600 case TYPE_CODE_INT:
3601 case TYPE_CODE_CHAR:
3602 case TYPE_CODE_ENUM:
3603 case TYPE_CODE_FLT:
3604 case TYPE_CODE_MEMBERPTR:
3605 case TYPE_CODE_PTR:
3606 return BOOL_CONVERSION_BADNESS;
3607 case TYPE_CODE_RANGE:
3608 return INCOMPATIBLE_TYPE_BADNESS;
3609 case TYPE_CODE_BOOL:
3610 return EXACT_MATCH_BADNESS;
3611 default:
3612 return INCOMPATIBLE_TYPE_BADNESS;
3613 }
3614 break;
3615 case TYPE_CODE_FLT:
3616 switch (TYPE_CODE (arg))
3617 {
3618 case TYPE_CODE_FLT:
3619 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3620 return FLOAT_PROMOTION_BADNESS;
3621 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3622 return EXACT_MATCH_BADNESS;
3623 else
3624 return FLOAT_CONVERSION_BADNESS;
3625 case TYPE_CODE_INT:
3626 case TYPE_CODE_BOOL:
3627 case TYPE_CODE_ENUM:
3628 case TYPE_CODE_RANGE:
3629 case TYPE_CODE_CHAR:
3630 return INT_FLOAT_CONVERSION_BADNESS;
3631 default:
3632 return INCOMPATIBLE_TYPE_BADNESS;
3633 }
3634 break;
3635 case TYPE_CODE_COMPLEX:
3636 switch (TYPE_CODE (arg))
3637 { /* Strictly not needed for C++, but... */
3638 case TYPE_CODE_FLT:
3639 return FLOAT_PROMOTION_BADNESS;
3640 case TYPE_CODE_COMPLEX:
3641 return EXACT_MATCH_BADNESS;
3642 default:
3643 return INCOMPATIBLE_TYPE_BADNESS;
3644 }
3645 break;
3646 case TYPE_CODE_STRUCT:
3647 switch (TYPE_CODE (arg))
3648 {
3649 case TYPE_CODE_STRUCT:
3650 /* Check for derivation */
3651 rank.subrank = distance_to_ancestor (parm, arg, 0);
3652 if (rank.subrank >= 0)
3653 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3654 /* else fall through */
3655 default:
3656 return INCOMPATIBLE_TYPE_BADNESS;
3657 }
3658 break;
3659 case TYPE_CODE_UNION:
3660 switch (TYPE_CODE (arg))
3661 {
3662 case TYPE_CODE_UNION:
3663 default:
3664 return INCOMPATIBLE_TYPE_BADNESS;
3665 }
3666 break;
3667 case TYPE_CODE_MEMBERPTR:
3668 switch (TYPE_CODE (arg))
3669 {
3670 default:
3671 return INCOMPATIBLE_TYPE_BADNESS;
3672 }
3673 break;
3674 case TYPE_CODE_METHOD:
3675 switch (TYPE_CODE (arg))
3676 {
3677
3678 default:
3679 return INCOMPATIBLE_TYPE_BADNESS;
3680 }
3681 break;
3682 case TYPE_CODE_REF:
3683 switch (TYPE_CODE (arg))
3684 {
3685
3686 default:
3687 return INCOMPATIBLE_TYPE_BADNESS;
3688 }
3689
3690 break;
3691 case TYPE_CODE_SET:
3692 switch (TYPE_CODE (arg))
3693 {
3694 /* Not in C++ */
3695 case TYPE_CODE_SET:
3696 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3697 TYPE_FIELD_TYPE (arg, 0), NULL);
3698 default:
3699 return INCOMPATIBLE_TYPE_BADNESS;
3700 }
3701 break;
3702 case TYPE_CODE_VOID:
3703 default:
3704 return INCOMPATIBLE_TYPE_BADNESS;
3705 } /* switch (TYPE_CODE (arg)) */
3706 }
3707
3708 /* End of functions for overload resolution. */
3709 \f
3710 /* Routines to pretty-print types. */
3711
3712 static void
3713 print_bit_vector (B_TYPE *bits, int nbits)
3714 {
3715 int bitno;
3716
3717 for (bitno = 0; bitno < nbits; bitno++)
3718 {
3719 if ((bitno % 8) == 0)
3720 {
3721 puts_filtered (" ");
3722 }
3723 if (B_TST (bits, bitno))
3724 printf_filtered (("1"));
3725 else
3726 printf_filtered (("0"));
3727 }
3728 }
3729
3730 /* Note the first arg should be the "this" pointer, we may not want to
3731 include it since we may get into a infinitely recursive
3732 situation. */
3733
3734 static void
3735 print_args (struct field *args, int nargs, int spaces)
3736 {
3737 if (args != NULL)
3738 {
3739 int i;
3740
3741 for (i = 0; i < nargs; i++)
3742 {
3743 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3744 args[i].name != NULL ? args[i].name : "<NULL>");
3745 recursive_dump_type (args[i].type, spaces + 2);
3746 }
3747 }
3748 }
3749
3750 int
3751 field_is_static (struct field *f)
3752 {
3753 /* "static" fields are the fields whose location is not relative
3754 to the address of the enclosing struct. It would be nice to
3755 have a dedicated flag that would be set for static fields when
3756 the type is being created. But in practice, checking the field
3757 loc_kind should give us an accurate answer. */
3758 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3759 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3760 }
3761
3762 static void
3763 dump_fn_fieldlists (struct type *type, int spaces)
3764 {
3765 int method_idx;
3766 int overload_idx;
3767 struct fn_field *f;
3768
3769 printfi_filtered (spaces, "fn_fieldlists ");
3770 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3771 printf_filtered ("\n");
3772 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3773 {
3774 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3775 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3776 method_idx,
3777 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3778 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3779 gdb_stdout);
3780 printf_filtered (_(") length %d\n"),
3781 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3782 for (overload_idx = 0;
3783 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3784 overload_idx++)
3785 {
3786 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3787 overload_idx,
3788 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3789 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3790 gdb_stdout);
3791 printf_filtered (")\n");
3792 printfi_filtered (spaces + 8, "type ");
3793 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3794 gdb_stdout);
3795 printf_filtered ("\n");
3796
3797 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3798 spaces + 8 + 2);
3799
3800 printfi_filtered (spaces + 8, "args ");
3801 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3802 gdb_stdout);
3803 printf_filtered ("\n");
3804 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3805 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3806 spaces + 8 + 2);
3807 printfi_filtered (spaces + 8, "fcontext ");
3808 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3809 gdb_stdout);
3810 printf_filtered ("\n");
3811
3812 printfi_filtered (spaces + 8, "is_const %d\n",
3813 TYPE_FN_FIELD_CONST (f, overload_idx));
3814 printfi_filtered (spaces + 8, "is_volatile %d\n",
3815 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3816 printfi_filtered (spaces + 8, "is_private %d\n",
3817 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3818 printfi_filtered (spaces + 8, "is_protected %d\n",
3819 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3820 printfi_filtered (spaces + 8, "is_stub %d\n",
3821 TYPE_FN_FIELD_STUB (f, overload_idx));
3822 printfi_filtered (spaces + 8, "voffset %u\n",
3823 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3824 }
3825 }
3826 }
3827
3828 static void
3829 print_cplus_stuff (struct type *type, int spaces)
3830 {
3831 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3832 printfi_filtered (spaces, "vptr_basetype ");
3833 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3834 puts_filtered ("\n");
3835 if (TYPE_VPTR_BASETYPE (type) != NULL)
3836 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3837
3838 printfi_filtered (spaces, "n_baseclasses %d\n",
3839 TYPE_N_BASECLASSES (type));
3840 printfi_filtered (spaces, "nfn_fields %d\n",
3841 TYPE_NFN_FIELDS (type));
3842 if (TYPE_N_BASECLASSES (type) > 0)
3843 {
3844 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3845 TYPE_N_BASECLASSES (type));
3846 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3847 gdb_stdout);
3848 printf_filtered (")");
3849
3850 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3851 TYPE_N_BASECLASSES (type));
3852 puts_filtered ("\n");
3853 }
3854 if (TYPE_NFIELDS (type) > 0)
3855 {
3856 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3857 {
3858 printfi_filtered (spaces,
3859 "private_field_bits (%d bits at *",
3860 TYPE_NFIELDS (type));
3861 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3862 gdb_stdout);
3863 printf_filtered (")");
3864 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3865 TYPE_NFIELDS (type));
3866 puts_filtered ("\n");
3867 }
3868 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3869 {
3870 printfi_filtered (spaces,
3871 "protected_field_bits (%d bits at *",
3872 TYPE_NFIELDS (type));
3873 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3874 gdb_stdout);
3875 printf_filtered (")");
3876 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3877 TYPE_NFIELDS (type));
3878 puts_filtered ("\n");
3879 }
3880 }
3881 if (TYPE_NFN_FIELDS (type) > 0)
3882 {
3883 dump_fn_fieldlists (type, spaces);
3884 }
3885 }
3886
3887 /* Print the contents of the TYPE's type_specific union, assuming that
3888 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3889
3890 static void
3891 print_gnat_stuff (struct type *type, int spaces)
3892 {
3893 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3894
3895 if (descriptive_type == NULL)
3896 printfi_filtered (spaces + 2, "no descriptive type\n");
3897 else
3898 {
3899 printfi_filtered (spaces + 2, "descriptive type\n");
3900 recursive_dump_type (descriptive_type, spaces + 4);
3901 }
3902 }
3903
3904 static struct obstack dont_print_type_obstack;
3905
3906 void
3907 recursive_dump_type (struct type *type, int spaces)
3908 {
3909 int idx;
3910
3911 if (spaces == 0)
3912 obstack_begin (&dont_print_type_obstack, 0);
3913
3914 if (TYPE_NFIELDS (type) > 0
3915 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3916 {
3917 struct type **first_dont_print
3918 = (struct type **) obstack_base (&dont_print_type_obstack);
3919
3920 int i = (struct type **)
3921 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3922
3923 while (--i >= 0)
3924 {
3925 if (type == first_dont_print[i])
3926 {
3927 printfi_filtered (spaces, "type node ");
3928 gdb_print_host_address (type, gdb_stdout);
3929 printf_filtered (_(" <same as already seen type>\n"));
3930 return;
3931 }
3932 }
3933
3934 obstack_ptr_grow (&dont_print_type_obstack, type);
3935 }
3936
3937 printfi_filtered (spaces, "type node ");
3938 gdb_print_host_address (type, gdb_stdout);
3939 printf_filtered ("\n");
3940 printfi_filtered (spaces, "name '%s' (",
3941 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3942 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3943 printf_filtered (")\n");
3944 printfi_filtered (spaces, "tagname '%s' (",
3945 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3946 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3947 printf_filtered (")\n");
3948 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3949 switch (TYPE_CODE (type))
3950 {
3951 case TYPE_CODE_UNDEF:
3952 printf_filtered ("(TYPE_CODE_UNDEF)");
3953 break;
3954 case TYPE_CODE_PTR:
3955 printf_filtered ("(TYPE_CODE_PTR)");
3956 break;
3957 case TYPE_CODE_ARRAY:
3958 printf_filtered ("(TYPE_CODE_ARRAY)");
3959 break;
3960 case TYPE_CODE_STRUCT:
3961 printf_filtered ("(TYPE_CODE_STRUCT)");
3962 break;
3963 case TYPE_CODE_UNION:
3964 printf_filtered ("(TYPE_CODE_UNION)");
3965 break;
3966 case TYPE_CODE_ENUM:
3967 printf_filtered ("(TYPE_CODE_ENUM)");
3968 break;
3969 case TYPE_CODE_FLAGS:
3970 printf_filtered ("(TYPE_CODE_FLAGS)");
3971 break;
3972 case TYPE_CODE_FUNC:
3973 printf_filtered ("(TYPE_CODE_FUNC)");
3974 break;
3975 case TYPE_CODE_INT:
3976 printf_filtered ("(TYPE_CODE_INT)");
3977 break;
3978 case TYPE_CODE_FLT:
3979 printf_filtered ("(TYPE_CODE_FLT)");
3980 break;
3981 case TYPE_CODE_VOID:
3982 printf_filtered ("(TYPE_CODE_VOID)");
3983 break;
3984 case TYPE_CODE_SET:
3985 printf_filtered ("(TYPE_CODE_SET)");
3986 break;
3987 case TYPE_CODE_RANGE:
3988 printf_filtered ("(TYPE_CODE_RANGE)");
3989 break;
3990 case TYPE_CODE_STRING:
3991 printf_filtered ("(TYPE_CODE_STRING)");
3992 break;
3993 case TYPE_CODE_ERROR:
3994 printf_filtered ("(TYPE_CODE_ERROR)");
3995 break;
3996 case TYPE_CODE_MEMBERPTR:
3997 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3998 break;
3999 case TYPE_CODE_METHODPTR:
4000 printf_filtered ("(TYPE_CODE_METHODPTR)");
4001 break;
4002 case TYPE_CODE_METHOD:
4003 printf_filtered ("(TYPE_CODE_METHOD)");
4004 break;
4005 case TYPE_CODE_REF:
4006 printf_filtered ("(TYPE_CODE_REF)");
4007 break;
4008 case TYPE_CODE_CHAR:
4009 printf_filtered ("(TYPE_CODE_CHAR)");
4010 break;
4011 case TYPE_CODE_BOOL:
4012 printf_filtered ("(TYPE_CODE_BOOL)");
4013 break;
4014 case TYPE_CODE_COMPLEX:
4015 printf_filtered ("(TYPE_CODE_COMPLEX)");
4016 break;
4017 case TYPE_CODE_TYPEDEF:
4018 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4019 break;
4020 case TYPE_CODE_NAMESPACE:
4021 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4022 break;
4023 default:
4024 printf_filtered ("(UNKNOWN TYPE CODE)");
4025 break;
4026 }
4027 puts_filtered ("\n");
4028 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4029 if (TYPE_OBJFILE_OWNED (type))
4030 {
4031 printfi_filtered (spaces, "objfile ");
4032 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4033 }
4034 else
4035 {
4036 printfi_filtered (spaces, "gdbarch ");
4037 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4038 }
4039 printf_filtered ("\n");
4040 printfi_filtered (spaces, "target_type ");
4041 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4042 printf_filtered ("\n");
4043 if (TYPE_TARGET_TYPE (type) != NULL)
4044 {
4045 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4046 }
4047 printfi_filtered (spaces, "pointer_type ");
4048 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4049 printf_filtered ("\n");
4050 printfi_filtered (spaces, "reference_type ");
4051 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4052 printf_filtered ("\n");
4053 printfi_filtered (spaces, "type_chain ");
4054 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4055 printf_filtered ("\n");
4056 printfi_filtered (spaces, "instance_flags 0x%x",
4057 TYPE_INSTANCE_FLAGS (type));
4058 if (TYPE_CONST (type))
4059 {
4060 puts_filtered (" TYPE_FLAG_CONST");
4061 }
4062 if (TYPE_VOLATILE (type))
4063 {
4064 puts_filtered (" TYPE_FLAG_VOLATILE");
4065 }
4066 if (TYPE_CODE_SPACE (type))
4067 {
4068 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4069 }
4070 if (TYPE_DATA_SPACE (type))
4071 {
4072 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4073 }
4074 if (TYPE_ADDRESS_CLASS_1 (type))
4075 {
4076 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4077 }
4078 if (TYPE_ADDRESS_CLASS_2 (type))
4079 {
4080 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4081 }
4082 if (TYPE_RESTRICT (type))
4083 {
4084 puts_filtered (" TYPE_FLAG_RESTRICT");
4085 }
4086 if (TYPE_ATOMIC (type))
4087 {
4088 puts_filtered (" TYPE_FLAG_ATOMIC");
4089 }
4090 puts_filtered ("\n");
4091
4092 printfi_filtered (spaces, "flags");
4093 if (TYPE_UNSIGNED (type))
4094 {
4095 puts_filtered (" TYPE_FLAG_UNSIGNED");
4096 }
4097 if (TYPE_NOSIGN (type))
4098 {
4099 puts_filtered (" TYPE_FLAG_NOSIGN");
4100 }
4101 if (TYPE_STUB (type))
4102 {
4103 puts_filtered (" TYPE_FLAG_STUB");
4104 }
4105 if (TYPE_TARGET_STUB (type))
4106 {
4107 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4108 }
4109 if (TYPE_STATIC (type))
4110 {
4111 puts_filtered (" TYPE_FLAG_STATIC");
4112 }
4113 if (TYPE_PROTOTYPED (type))
4114 {
4115 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4116 }
4117 if (TYPE_INCOMPLETE (type))
4118 {
4119 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4120 }
4121 if (TYPE_VARARGS (type))
4122 {
4123 puts_filtered (" TYPE_FLAG_VARARGS");
4124 }
4125 /* This is used for things like AltiVec registers on ppc. Gcc emits
4126 an attribute for the array type, which tells whether or not we
4127 have a vector, instead of a regular array. */
4128 if (TYPE_VECTOR (type))
4129 {
4130 puts_filtered (" TYPE_FLAG_VECTOR");
4131 }
4132 if (TYPE_FIXED_INSTANCE (type))
4133 {
4134 puts_filtered (" TYPE_FIXED_INSTANCE");
4135 }
4136 if (TYPE_STUB_SUPPORTED (type))
4137 {
4138 puts_filtered (" TYPE_STUB_SUPPORTED");
4139 }
4140 if (TYPE_NOTTEXT (type))
4141 {
4142 puts_filtered (" TYPE_NOTTEXT");
4143 }
4144 puts_filtered ("\n");
4145 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4146 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4147 puts_filtered ("\n");
4148 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4149 {
4150 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4151 printfi_filtered (spaces + 2,
4152 "[%d] enumval %s type ",
4153 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4154 else
4155 printfi_filtered (spaces + 2,
4156 "[%d] bitpos %d bitsize %d type ",
4157 idx, TYPE_FIELD_BITPOS (type, idx),
4158 TYPE_FIELD_BITSIZE (type, idx));
4159 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4160 printf_filtered (" name '%s' (",
4161 TYPE_FIELD_NAME (type, idx) != NULL
4162 ? TYPE_FIELD_NAME (type, idx)
4163 : "<NULL>");
4164 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4165 printf_filtered (")\n");
4166 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4167 {
4168 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4169 }
4170 }
4171 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4172 {
4173 printfi_filtered (spaces, "low %s%s high %s%s\n",
4174 plongest (TYPE_LOW_BOUND (type)),
4175 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4176 plongest (TYPE_HIGH_BOUND (type)),
4177 TYPE_HIGH_BOUND_UNDEFINED (type)
4178 ? " (undefined)" : "");
4179 }
4180
4181 switch (TYPE_SPECIFIC_FIELD (type))
4182 {
4183 case TYPE_SPECIFIC_CPLUS_STUFF:
4184 printfi_filtered (spaces, "cplus_stuff ");
4185 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4186 gdb_stdout);
4187 puts_filtered ("\n");
4188 print_cplus_stuff (type, spaces);
4189 break;
4190
4191 case TYPE_SPECIFIC_GNAT_STUFF:
4192 printfi_filtered (spaces, "gnat_stuff ");
4193 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4194 puts_filtered ("\n");
4195 print_gnat_stuff (type, spaces);
4196 break;
4197
4198 case TYPE_SPECIFIC_FLOATFORMAT:
4199 printfi_filtered (spaces, "floatformat ");
4200 if (TYPE_FLOATFORMAT (type) == NULL)
4201 puts_filtered ("(null)");
4202 else
4203 {
4204 puts_filtered ("{ ");
4205 if (TYPE_FLOATFORMAT (type)[0] == NULL
4206 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4207 puts_filtered ("(null)");
4208 else
4209 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4210
4211 puts_filtered (", ");
4212 if (TYPE_FLOATFORMAT (type)[1] == NULL
4213 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4214 puts_filtered ("(null)");
4215 else
4216 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4217
4218 puts_filtered (" }");
4219 }
4220 puts_filtered ("\n");
4221 break;
4222
4223 case TYPE_SPECIFIC_FUNC:
4224 printfi_filtered (spaces, "calling_convention %d\n",
4225 TYPE_CALLING_CONVENTION (type));
4226 /* tail_call_list is not printed. */
4227 break;
4228
4229 case TYPE_SPECIFIC_SELF_TYPE:
4230 printfi_filtered (spaces, "self_type ");
4231 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4232 puts_filtered ("\n");
4233 break;
4234 }
4235
4236 if (spaces == 0)
4237 obstack_free (&dont_print_type_obstack, NULL);
4238 }
4239 \f
4240 /* Trivial helpers for the libiberty hash table, for mapping one
4241 type to another. */
4242
4243 struct type_pair
4244 {
4245 struct type *old, *newobj;
4246 };
4247
4248 static hashval_t
4249 type_pair_hash (const void *item)
4250 {
4251 const struct type_pair *pair = item;
4252
4253 return htab_hash_pointer (pair->old);
4254 }
4255
4256 static int
4257 type_pair_eq (const void *item_lhs, const void *item_rhs)
4258 {
4259 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4260
4261 return lhs->old == rhs->old;
4262 }
4263
4264 /* Allocate the hash table used by copy_type_recursive to walk
4265 types without duplicates. We use OBJFILE's obstack, because
4266 OBJFILE is about to be deleted. */
4267
4268 htab_t
4269 create_copied_types_hash (struct objfile *objfile)
4270 {
4271 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4272 NULL, &objfile->objfile_obstack,
4273 hashtab_obstack_allocate,
4274 dummy_obstack_deallocate);
4275 }
4276
4277 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4278
4279 static struct dynamic_prop_list *
4280 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4281 struct dynamic_prop_list *list)
4282 {
4283 struct dynamic_prop_list *copy = list;
4284 struct dynamic_prop_list **node_ptr = &copy;
4285
4286 while (*node_ptr != NULL)
4287 {
4288 struct dynamic_prop_list *node_copy;
4289
4290 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4291 sizeof (struct dynamic_prop_list));
4292 node_copy->prop = (*node_ptr)->prop;
4293 *node_ptr = node_copy;
4294
4295 node_ptr = &node_copy->next;
4296 }
4297
4298 return copy;
4299 }
4300
4301 /* Recursively copy (deep copy) TYPE, if it is associated with
4302 OBJFILE. Return a new type allocated using malloc, a saved type if
4303 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4304 not associated with OBJFILE. */
4305
4306 struct type *
4307 copy_type_recursive (struct objfile *objfile,
4308 struct type *type,
4309 htab_t copied_types)
4310 {
4311 struct type_pair *stored, pair;
4312 void **slot;
4313 struct type *new_type;
4314
4315 if (! TYPE_OBJFILE_OWNED (type))
4316 return type;
4317
4318 /* This type shouldn't be pointing to any types in other objfiles;
4319 if it did, the type might disappear unexpectedly. */
4320 gdb_assert (TYPE_OBJFILE (type) == objfile);
4321
4322 pair.old = type;
4323 slot = htab_find_slot (copied_types, &pair, INSERT);
4324 if (*slot != NULL)
4325 return ((struct type_pair *) *slot)->newobj;
4326
4327 new_type = alloc_type_arch (get_type_arch (type));
4328
4329 /* We must add the new type to the hash table immediately, in case
4330 we encounter this type again during a recursive call below. */
4331 stored
4332 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4333 stored->old = type;
4334 stored->newobj = new_type;
4335 *slot = stored;
4336
4337 /* Copy the common fields of types. For the main type, we simply
4338 copy the entire thing and then update specific fields as needed. */
4339 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4340 TYPE_OBJFILE_OWNED (new_type) = 0;
4341 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4342
4343 if (TYPE_NAME (type))
4344 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4345 if (TYPE_TAG_NAME (type))
4346 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4347
4348 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4349 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4350
4351 /* Copy the fields. */
4352 if (TYPE_NFIELDS (type))
4353 {
4354 int i, nfields;
4355
4356 nfields = TYPE_NFIELDS (type);
4357 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4358 for (i = 0; i < nfields; i++)
4359 {
4360 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4361 TYPE_FIELD_ARTIFICIAL (type, i);
4362 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4363 if (TYPE_FIELD_TYPE (type, i))
4364 TYPE_FIELD_TYPE (new_type, i)
4365 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4366 copied_types);
4367 if (TYPE_FIELD_NAME (type, i))
4368 TYPE_FIELD_NAME (new_type, i) =
4369 xstrdup (TYPE_FIELD_NAME (type, i));
4370 switch (TYPE_FIELD_LOC_KIND (type, i))
4371 {
4372 case FIELD_LOC_KIND_BITPOS:
4373 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4374 TYPE_FIELD_BITPOS (type, i));
4375 break;
4376 case FIELD_LOC_KIND_ENUMVAL:
4377 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4378 TYPE_FIELD_ENUMVAL (type, i));
4379 break;
4380 case FIELD_LOC_KIND_PHYSADDR:
4381 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4382 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4383 break;
4384 case FIELD_LOC_KIND_PHYSNAME:
4385 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4386 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4387 i)));
4388 break;
4389 default:
4390 internal_error (__FILE__, __LINE__,
4391 _("Unexpected type field location kind: %d"),
4392 TYPE_FIELD_LOC_KIND (type, i));
4393 }
4394 }
4395 }
4396
4397 /* For range types, copy the bounds information. */
4398 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4399 {
4400 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4401 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4402 }
4403
4404 if (TYPE_DYN_PROP_LIST (type) != NULL)
4405 TYPE_DYN_PROP_LIST (new_type)
4406 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4407 TYPE_DYN_PROP_LIST (type));
4408
4409
4410 /* Copy pointers to other types. */
4411 if (TYPE_TARGET_TYPE (type))
4412 TYPE_TARGET_TYPE (new_type) =
4413 copy_type_recursive (objfile,
4414 TYPE_TARGET_TYPE (type),
4415 copied_types);
4416
4417 /* Maybe copy the type_specific bits.
4418
4419 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4420 base classes and methods. There's no fundamental reason why we
4421 can't, but at the moment it is not needed. */
4422
4423 switch (TYPE_SPECIFIC_FIELD (type))
4424 {
4425 case TYPE_SPECIFIC_NONE:
4426 break;
4427 case TYPE_SPECIFIC_FUNC:
4428 INIT_FUNC_SPECIFIC (new_type);
4429 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4430 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4431 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4432 break;
4433 case TYPE_SPECIFIC_FLOATFORMAT:
4434 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4435 break;
4436 case TYPE_SPECIFIC_CPLUS_STUFF:
4437 INIT_CPLUS_SPECIFIC (new_type);
4438 break;
4439 case TYPE_SPECIFIC_GNAT_STUFF:
4440 INIT_GNAT_SPECIFIC (new_type);
4441 break;
4442 case TYPE_SPECIFIC_SELF_TYPE:
4443 set_type_self_type (new_type,
4444 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4445 copied_types));
4446 break;
4447 default:
4448 gdb_assert_not_reached ("bad type_specific_kind");
4449 }
4450
4451 return new_type;
4452 }
4453
4454 /* Make a copy of the given TYPE, except that the pointer & reference
4455 types are not preserved.
4456
4457 This function assumes that the given type has an associated objfile.
4458 This objfile is used to allocate the new type. */
4459
4460 struct type *
4461 copy_type (const struct type *type)
4462 {
4463 struct type *new_type;
4464
4465 gdb_assert (TYPE_OBJFILE_OWNED (type));
4466
4467 new_type = alloc_type_copy (type);
4468 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4469 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4470 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4471 sizeof (struct main_type));
4472 if (TYPE_DYN_PROP_LIST (type) != NULL)
4473 TYPE_DYN_PROP_LIST (new_type)
4474 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4475 TYPE_DYN_PROP_LIST (type));
4476
4477 return new_type;
4478 }
4479 \f
4480 /* Helper functions to initialize architecture-specific types. */
4481
4482 /* Allocate a type structure associated with GDBARCH and set its
4483 CODE, LENGTH, and NAME fields. */
4484
4485 struct type *
4486 arch_type (struct gdbarch *gdbarch,
4487 enum type_code code, int length, char *name)
4488 {
4489 struct type *type;
4490
4491 type = alloc_type_arch (gdbarch);
4492 TYPE_CODE (type) = code;
4493 TYPE_LENGTH (type) = length;
4494
4495 if (name)
4496 TYPE_NAME (type) = xstrdup (name);
4497
4498 return type;
4499 }
4500
4501 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4502 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4503 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4504
4505 struct type *
4506 arch_integer_type (struct gdbarch *gdbarch,
4507 int bit, int unsigned_p, char *name)
4508 {
4509 struct type *t;
4510
4511 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4512 if (unsigned_p)
4513 TYPE_UNSIGNED (t) = 1;
4514 if (name && strcmp (name, "char") == 0)
4515 TYPE_NOSIGN (t) = 1;
4516
4517 return t;
4518 }
4519
4520 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4521 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4522 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4523
4524 struct type *
4525 arch_character_type (struct gdbarch *gdbarch,
4526 int bit, int unsigned_p, char *name)
4527 {
4528 struct type *t;
4529
4530 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4531 if (unsigned_p)
4532 TYPE_UNSIGNED (t) = 1;
4533
4534 return t;
4535 }
4536
4537 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4538 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4539 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4540
4541 struct type *
4542 arch_boolean_type (struct gdbarch *gdbarch,
4543 int bit, int unsigned_p, char *name)
4544 {
4545 struct type *t;
4546
4547 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4548 if (unsigned_p)
4549 TYPE_UNSIGNED (t) = 1;
4550
4551 return t;
4552 }
4553
4554 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4555 BIT is the type size in bits; if BIT equals -1, the size is
4556 determined by the floatformat. NAME is the type name. Set the
4557 TYPE_FLOATFORMAT from FLOATFORMATS. */
4558
4559 struct type *
4560 arch_float_type (struct gdbarch *gdbarch,
4561 int bit, char *name, const struct floatformat **floatformats)
4562 {
4563 struct type *t;
4564
4565 if (bit == -1)
4566 {
4567 gdb_assert (floatformats != NULL);
4568 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4569 bit = floatformats[0]->totalsize;
4570 }
4571 gdb_assert (bit >= 0);
4572
4573 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4574 TYPE_FLOATFORMAT (t) = floatformats;
4575 return t;
4576 }
4577
4578 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4579 NAME is the type name. TARGET_TYPE is the component float type. */
4580
4581 struct type *
4582 arch_complex_type (struct gdbarch *gdbarch,
4583 char *name, struct type *target_type)
4584 {
4585 struct type *t;
4586
4587 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4588 2 * TYPE_LENGTH (target_type), name);
4589 TYPE_TARGET_TYPE (t) = target_type;
4590 return t;
4591 }
4592
4593 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4594 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4595
4596 struct type *
4597 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4598 {
4599 int nfields = length * TARGET_CHAR_BIT;
4600 struct type *type;
4601
4602 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4603 TYPE_UNSIGNED (type) = 1;
4604 TYPE_NFIELDS (type) = nfields;
4605 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4606
4607 return type;
4608 }
4609
4610 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4611 position BITPOS is called NAME. */
4612
4613 void
4614 append_flags_type_flag (struct type *type, int bitpos, char *name)
4615 {
4616 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4617 gdb_assert (bitpos < TYPE_NFIELDS (type));
4618 gdb_assert (bitpos >= 0);
4619
4620 if (name)
4621 {
4622 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4623 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4624 }
4625 else
4626 {
4627 /* Don't show this field to the user. */
4628 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4629 }
4630 }
4631
4632 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4633 specified by CODE) associated with GDBARCH. NAME is the type name. */
4634
4635 struct type *
4636 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4637 {
4638 struct type *t;
4639
4640 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4641 t = arch_type (gdbarch, code, 0, NULL);
4642 TYPE_TAG_NAME (t) = name;
4643 INIT_CPLUS_SPECIFIC (t);
4644 return t;
4645 }
4646
4647 /* Add new field with name NAME and type FIELD to composite type T.
4648 Do not set the field's position or adjust the type's length;
4649 the caller should do so. Return the new field. */
4650
4651 struct field *
4652 append_composite_type_field_raw (struct type *t, char *name,
4653 struct type *field)
4654 {
4655 struct field *f;
4656
4657 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4658 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4659 sizeof (struct field) * TYPE_NFIELDS (t));
4660 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4661 memset (f, 0, sizeof f[0]);
4662 FIELD_TYPE (f[0]) = field;
4663 FIELD_NAME (f[0]) = name;
4664 return f;
4665 }
4666
4667 /* Add new field with name NAME and type FIELD to composite type T.
4668 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4669
4670 void
4671 append_composite_type_field_aligned (struct type *t, char *name,
4672 struct type *field, int alignment)
4673 {
4674 struct field *f = append_composite_type_field_raw (t, name, field);
4675
4676 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4677 {
4678 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4679 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4680 }
4681 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4682 {
4683 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4684 if (TYPE_NFIELDS (t) > 1)
4685 {
4686 SET_FIELD_BITPOS (f[0],
4687 (FIELD_BITPOS (f[-1])
4688 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4689 * TARGET_CHAR_BIT)));
4690
4691 if (alignment)
4692 {
4693 int left;
4694
4695 alignment *= TARGET_CHAR_BIT;
4696 left = FIELD_BITPOS (f[0]) % alignment;
4697
4698 if (left)
4699 {
4700 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4701 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4702 }
4703 }
4704 }
4705 }
4706 }
4707
4708 /* Add new field with name NAME and type FIELD to composite type T. */
4709
4710 void
4711 append_composite_type_field (struct type *t, char *name,
4712 struct type *field)
4713 {
4714 append_composite_type_field_aligned (t, name, field, 0);
4715 }
4716
4717 static struct gdbarch_data *gdbtypes_data;
4718
4719 const struct builtin_type *
4720 builtin_type (struct gdbarch *gdbarch)
4721 {
4722 return gdbarch_data (gdbarch, gdbtypes_data);
4723 }
4724
4725 static void *
4726 gdbtypes_post_init (struct gdbarch *gdbarch)
4727 {
4728 struct builtin_type *builtin_type
4729 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4730
4731 /* Basic types. */
4732 builtin_type->builtin_void
4733 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4734 builtin_type->builtin_char
4735 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4736 !gdbarch_char_signed (gdbarch), "char");
4737 builtin_type->builtin_signed_char
4738 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4739 0, "signed char");
4740 builtin_type->builtin_unsigned_char
4741 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4742 1, "unsigned char");
4743 builtin_type->builtin_short
4744 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4745 0, "short");
4746 builtin_type->builtin_unsigned_short
4747 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4748 1, "unsigned short");
4749 builtin_type->builtin_int
4750 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4751 0, "int");
4752 builtin_type->builtin_unsigned_int
4753 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4754 1, "unsigned int");
4755 builtin_type->builtin_long
4756 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4757 0, "long");
4758 builtin_type->builtin_unsigned_long
4759 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4760 1, "unsigned long");
4761 builtin_type->builtin_long_long
4762 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4763 0, "long long");
4764 builtin_type->builtin_unsigned_long_long
4765 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4766 1, "unsigned long long");
4767 builtin_type->builtin_float
4768 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4769 "float", gdbarch_float_format (gdbarch));
4770 builtin_type->builtin_double
4771 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4772 "double", gdbarch_double_format (gdbarch));
4773 builtin_type->builtin_long_double
4774 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4775 "long double", gdbarch_long_double_format (gdbarch));
4776 builtin_type->builtin_complex
4777 = arch_complex_type (gdbarch, "complex",
4778 builtin_type->builtin_float);
4779 builtin_type->builtin_double_complex
4780 = arch_complex_type (gdbarch, "double complex",
4781 builtin_type->builtin_double);
4782 builtin_type->builtin_string
4783 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4784 builtin_type->builtin_bool
4785 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4786
4787 /* The following three are about decimal floating point types, which
4788 are 32-bits, 64-bits and 128-bits respectively. */
4789 builtin_type->builtin_decfloat
4790 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4791 builtin_type->builtin_decdouble
4792 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4793 builtin_type->builtin_declong
4794 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4795
4796 /* "True" character types. */
4797 builtin_type->builtin_true_char
4798 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4799 builtin_type->builtin_true_unsigned_char
4800 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4801
4802 /* Fixed-size integer types. */
4803 builtin_type->builtin_int0
4804 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4805 builtin_type->builtin_int8
4806 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4807 builtin_type->builtin_uint8
4808 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4809 builtin_type->builtin_int16
4810 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4811 builtin_type->builtin_uint16
4812 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4813 builtin_type->builtin_int32
4814 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4815 builtin_type->builtin_uint32
4816 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4817 builtin_type->builtin_int64
4818 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4819 builtin_type->builtin_uint64
4820 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4821 builtin_type->builtin_int128
4822 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4823 builtin_type->builtin_uint128
4824 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4825 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4826 TYPE_INSTANCE_FLAG_NOTTEXT;
4827 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4828 TYPE_INSTANCE_FLAG_NOTTEXT;
4829
4830 /* Wide character types. */
4831 builtin_type->builtin_char16
4832 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4833 builtin_type->builtin_char32
4834 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4835
4836
4837 /* Default data/code pointer types. */
4838 builtin_type->builtin_data_ptr
4839 = lookup_pointer_type (builtin_type->builtin_void);
4840 builtin_type->builtin_func_ptr
4841 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4842 builtin_type->builtin_func_func
4843 = lookup_function_type (builtin_type->builtin_func_ptr);
4844
4845 /* This type represents a GDB internal function. */
4846 builtin_type->internal_fn
4847 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4848 "<internal function>");
4849
4850 /* This type represents an xmethod. */
4851 builtin_type->xmethod
4852 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4853
4854 return builtin_type;
4855 }
4856
4857 /* This set of objfile-based types is intended to be used by symbol
4858 readers as basic types. */
4859
4860 static const struct objfile_data *objfile_type_data;
4861
4862 const struct objfile_type *
4863 objfile_type (struct objfile *objfile)
4864 {
4865 struct gdbarch *gdbarch;
4866 struct objfile_type *objfile_type
4867 = objfile_data (objfile, objfile_type_data);
4868
4869 if (objfile_type)
4870 return objfile_type;
4871
4872 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4873 1, struct objfile_type);
4874
4875 /* Use the objfile architecture to determine basic type properties. */
4876 gdbarch = get_objfile_arch (objfile);
4877
4878 /* Basic types. */
4879 objfile_type->builtin_void
4880 = init_type (TYPE_CODE_VOID, 1,
4881 0,
4882 "void", objfile);
4883
4884 objfile_type->builtin_char
4885 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4886 (TYPE_FLAG_NOSIGN
4887 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4888 "char", objfile);
4889 objfile_type->builtin_signed_char
4890 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4891 0,
4892 "signed char", objfile);
4893 objfile_type->builtin_unsigned_char
4894 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4895 TYPE_FLAG_UNSIGNED,
4896 "unsigned char", objfile);
4897 objfile_type->builtin_short
4898 = init_type (TYPE_CODE_INT,
4899 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4900 0, "short", objfile);
4901 objfile_type->builtin_unsigned_short
4902 = init_type (TYPE_CODE_INT,
4903 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4904 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4905 objfile_type->builtin_int
4906 = init_type (TYPE_CODE_INT,
4907 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4908 0, "int", objfile);
4909 objfile_type->builtin_unsigned_int
4910 = init_type (TYPE_CODE_INT,
4911 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4912 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4913 objfile_type->builtin_long
4914 = init_type (TYPE_CODE_INT,
4915 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4916 0, "long", objfile);
4917 objfile_type->builtin_unsigned_long
4918 = init_type (TYPE_CODE_INT,
4919 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4920 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4921 objfile_type->builtin_long_long
4922 = init_type (TYPE_CODE_INT,
4923 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4924 0, "long long", objfile);
4925 objfile_type->builtin_unsigned_long_long
4926 = init_type (TYPE_CODE_INT,
4927 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4928 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4929
4930 objfile_type->builtin_float
4931 = init_type (TYPE_CODE_FLT,
4932 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4933 0, "float", objfile);
4934 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4935 = gdbarch_float_format (gdbarch);
4936 objfile_type->builtin_double
4937 = init_type (TYPE_CODE_FLT,
4938 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4939 0, "double", objfile);
4940 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4941 = gdbarch_double_format (gdbarch);
4942 objfile_type->builtin_long_double
4943 = init_type (TYPE_CODE_FLT,
4944 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4945 0, "long double", objfile);
4946 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4947 = gdbarch_long_double_format (gdbarch);
4948
4949 /* This type represents a type that was unrecognized in symbol read-in. */
4950 objfile_type->builtin_error
4951 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4952
4953 /* The following set of types is used for symbols with no
4954 debug information. */
4955 objfile_type->nodebug_text_symbol
4956 = init_type (TYPE_CODE_FUNC, 1, 0,
4957 "<text variable, no debug info>", objfile);
4958 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4959 = objfile_type->builtin_int;
4960 objfile_type->nodebug_text_gnu_ifunc_symbol
4961 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4962 "<text gnu-indirect-function variable, no debug info>",
4963 objfile);
4964 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4965 = objfile_type->nodebug_text_symbol;
4966 objfile_type->nodebug_got_plt_symbol
4967 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4968 "<text from jump slot in .got.plt, no debug info>",
4969 objfile);
4970 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4971 = objfile_type->nodebug_text_symbol;
4972 objfile_type->nodebug_data_symbol
4973 = init_type (TYPE_CODE_INT,
4974 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4975 "<data variable, no debug info>", objfile);
4976 objfile_type->nodebug_unknown_symbol
4977 = init_type (TYPE_CODE_INT, 1, 0,
4978 "<variable (not text or data), no debug info>", objfile);
4979 objfile_type->nodebug_tls_symbol
4980 = init_type (TYPE_CODE_INT,
4981 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4982 "<thread local variable, no debug info>", objfile);
4983
4984 /* NOTE: on some targets, addresses and pointers are not necessarily
4985 the same.
4986
4987 The upshot is:
4988 - gdb's `struct type' always describes the target's
4989 representation.
4990 - gdb's `struct value' objects should always hold values in
4991 target form.
4992 - gdb's CORE_ADDR values are addresses in the unified virtual
4993 address space that the assembler and linker work with. Thus,
4994 since target_read_memory takes a CORE_ADDR as an argument, it
4995 can access any memory on the target, even if the processor has
4996 separate code and data address spaces.
4997
4998 In this context, objfile_type->builtin_core_addr is a bit odd:
4999 it's a target type for a value the target will never see. It's
5000 only used to hold the values of (typeless) linker symbols, which
5001 are indeed in the unified virtual address space. */
5002
5003 objfile_type->builtin_core_addr
5004 = init_type (TYPE_CODE_INT,
5005 gdbarch_addr_bit (gdbarch) / 8,
5006 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5007
5008 set_objfile_data (objfile, objfile_type_data, objfile_type);
5009 return objfile_type;
5010 }
5011
5012 extern initialize_file_ftype _initialize_gdbtypes;
5013
5014 void
5015 _initialize_gdbtypes (void)
5016 {
5017 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5018 objfile_type_data = register_objfile_data ();
5019
5020 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5021 _("Set debugging of C++ overloading."),
5022 _("Show debugging of C++ overloading."),
5023 _("When enabled, ranking of the "
5024 "functions is displayed."),
5025 NULL,
5026 show_overload_debug,
5027 &setdebuglist, &showdebuglist);
5028
5029 /* Add user knob for controlling resolution of opaque types. */
5030 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5031 &opaque_type_resolution,
5032 _("Set resolution of opaque struct/class/union"
5033 " types (if set before loading symbols)."),
5034 _("Show resolution of opaque struct/class/union"
5035 " types (if set before loading symbols)."),
5036 NULL, NULL,
5037 show_opaque_type_resolution,
5038 &setlist, &showlist);
5039
5040 /* Add an option to permit non-strict type checking. */
5041 add_setshow_boolean_cmd ("type", class_support,
5042 &strict_type_checking,
5043 _("Set strict type checking."),
5044 _("Show strict type checking."),
5045 NULL, NULL,
5046 show_strict_type_checking,
5047 &setchecklist, &showchecklist);
5048 }
This page took 0.133366 seconds and 4 git commands to generate.