* linux-thread-db.c (thread_db_mourn_inferior): Remove breakpoints
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2006 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include "bfd.h"
28 #include "symtab.h"
29 #include "symfile.h"
30 #include "objfiles.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "language.h"
34 #include "target.h"
35 #include "value.h"
36 #include "demangle.h"
37 #include "complaints.h"
38 #include "gdbcmd.h"
39 #include "wrapper.h"
40 #include "cp-abi.h"
41 #include "gdb_assert.h"
42
43 /* These variables point to the objects
44 representing the predefined C data types. */
45
46 struct type *builtin_type_void;
47 struct type *builtin_type_char;
48 struct type *builtin_type_true_char;
49 struct type *builtin_type_short;
50 struct type *builtin_type_int;
51 struct type *builtin_type_long;
52 struct type *builtin_type_long_long;
53 struct type *builtin_type_signed_char;
54 struct type *builtin_type_unsigned_char;
55 struct type *builtin_type_unsigned_short;
56 struct type *builtin_type_unsigned_int;
57 struct type *builtin_type_unsigned_long;
58 struct type *builtin_type_unsigned_long_long;
59 struct type *builtin_type_float;
60 struct type *builtin_type_double;
61 struct type *builtin_type_long_double;
62 struct type *builtin_type_complex;
63 struct type *builtin_type_double_complex;
64 struct type *builtin_type_string;
65 struct type *builtin_type_int0;
66 struct type *builtin_type_int8;
67 struct type *builtin_type_uint8;
68 struct type *builtin_type_int16;
69 struct type *builtin_type_uint16;
70 struct type *builtin_type_int32;
71 struct type *builtin_type_uint32;
72 struct type *builtin_type_int64;
73 struct type *builtin_type_uint64;
74 struct type *builtin_type_int128;
75 struct type *builtin_type_uint128;
76 struct type *builtin_type_bool;
77
78 /* 128 bit long vector types */
79 struct type *builtin_type_v2_double;
80 struct type *builtin_type_v4_float;
81 struct type *builtin_type_v2_int64;
82 struct type *builtin_type_v4_int32;
83 struct type *builtin_type_v8_int16;
84 struct type *builtin_type_v16_int8;
85 /* 64 bit long vector types */
86 struct type *builtin_type_v2_float;
87 struct type *builtin_type_v2_int32;
88 struct type *builtin_type_v4_int16;
89 struct type *builtin_type_v8_int8;
90
91 struct type *builtin_type_v4sf;
92 struct type *builtin_type_v4si;
93 struct type *builtin_type_v16qi;
94 struct type *builtin_type_v8qi;
95 struct type *builtin_type_v8hi;
96 struct type *builtin_type_v4hi;
97 struct type *builtin_type_v2si;
98 struct type *builtin_type_vec64;
99 struct type *builtin_type_vec128;
100 struct type *builtin_type_ieee_single[BFD_ENDIAN_UNKNOWN];
101 struct type *builtin_type_ieee_single_big;
102 struct type *builtin_type_ieee_single_little;
103 struct type *builtin_type_ieee_double[BFD_ENDIAN_UNKNOWN];
104 struct type *builtin_type_ieee_double_big;
105 struct type *builtin_type_ieee_double_little;
106 struct type *builtin_type_ieee_double_littlebyte_bigword;
107 struct type *builtin_type_i387_ext;
108 struct type *builtin_type_m68881_ext;
109 struct type *builtin_type_i960_ext;
110 struct type *builtin_type_m88110_ext;
111 struct type *builtin_type_m88110_harris_ext;
112 struct type *builtin_type_arm_ext[BFD_ENDIAN_UNKNOWN];
113 struct type *builtin_type_arm_ext_big;
114 struct type *builtin_type_arm_ext_littlebyte_bigword;
115 struct type *builtin_type_ia64_spill[BFD_ENDIAN_UNKNOWN];
116 struct type *builtin_type_ia64_spill_big;
117 struct type *builtin_type_ia64_spill_little;
118 struct type *builtin_type_ia64_quad[BFD_ENDIAN_UNKNOWN];
119 struct type *builtin_type_ia64_quad_big;
120 struct type *builtin_type_ia64_quad_little;
121 struct type *builtin_type_void_data_ptr;
122 struct type *builtin_type_void_func_ptr;
123 struct type *builtin_type_CORE_ADDR;
124 struct type *builtin_type_bfd_vma;
125
126 int opaque_type_resolution = 1;
127 static void
128 show_opaque_type_resolution (struct ui_file *file, int from_tty,
129 struct cmd_list_element *c, const char *value)
130 {
131 fprintf_filtered (file, _("\
132 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
133 value);
134 }
135
136 int overload_debug = 0;
137 static void
138 show_overload_debug (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c, const char *value)
140 {
141 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"), value);
142 }
143
144 struct extra
145 {
146 char str[128];
147 int len;
148 }; /* maximum extension is 128! FIXME */
149
150 static void print_bit_vector (B_TYPE *, int);
151 static void print_arg_types (struct field *, int, int);
152 static void dump_fn_fieldlists (struct type *, int);
153 static void print_cplus_stuff (struct type *, int);
154 static void virtual_base_list_aux (struct type *dclass);
155
156
157 /* Alloc a new type structure and fill it with some defaults. If
158 OBJFILE is non-NULL, then allocate the space for the type structure
159 in that objfile's objfile_obstack. Otherwise allocate the new type structure
160 by xmalloc () (for permanent types). */
161
162 struct type *
163 alloc_type (struct objfile *objfile)
164 {
165 struct type *type;
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 if (objfile == NULL)
170 {
171 type = xmalloc (sizeof (struct type));
172 memset (type, 0, sizeof (struct type));
173 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
174 }
175 else
176 {
177 type = obstack_alloc (&objfile->objfile_obstack,
178 sizeof (struct type));
179 memset (type, 0, sizeof (struct type));
180 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
181 sizeof (struct main_type));
182 OBJSTAT (objfile, n_types++);
183 }
184 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
185
186 /* Initialize the fields that might not be zero. */
187
188 TYPE_CODE (type) = TYPE_CODE_UNDEF;
189 TYPE_OBJFILE (type) = objfile;
190 TYPE_VPTR_FIELDNO (type) = -1;
191 TYPE_CHAIN (type) = type; /* Chain back to itself. */
192
193 return (type);
194 }
195
196 /* Alloc a new type instance structure, fill it with some defaults,
197 and point it at OLDTYPE. Allocate the new type instance from the
198 same place as OLDTYPE. */
199
200 static struct type *
201 alloc_type_instance (struct type *oldtype)
202 {
203 struct type *type;
204
205 /* Allocate the structure. */
206
207 if (TYPE_OBJFILE (oldtype) == NULL)
208 {
209 type = xmalloc (sizeof (struct type));
210 memset (type, 0, sizeof (struct type));
211 }
212 else
213 {
214 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
215 sizeof (struct type));
216 memset (type, 0, sizeof (struct type));
217 }
218 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
219
220 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
221
222 return (type);
223 }
224
225 /* Clear all remnants of the previous type at TYPE, in preparation for
226 replacing it with something else. */
227 static void
228 smash_type (struct type *type)
229 {
230 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
231
232 /* For now, delete the rings. */
233 TYPE_CHAIN (type) = type;
234
235 /* For now, leave the pointer/reference types alone. */
236 }
237
238 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
239 to a pointer to memory where the pointer type should be stored.
240 If *TYPEPTR is zero, update it to point to the pointer type we return.
241 We allocate new memory if needed. */
242
243 struct type *
244 make_pointer_type (struct type *type, struct type **typeptr)
245 {
246 struct type *ntype; /* New type */
247 struct objfile *objfile;
248
249 ntype = TYPE_POINTER_TYPE (type);
250
251 if (ntype)
252 {
253 if (typeptr == 0)
254 return ntype; /* Don't care about alloc, and have new type. */
255 else if (*typeptr == 0)
256 {
257 *typeptr = ntype; /* Tracking alloc, and we have new type. */
258 return ntype;
259 }
260 }
261
262 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
263 {
264 ntype = alloc_type (TYPE_OBJFILE (type));
265 if (typeptr)
266 *typeptr = ntype;
267 }
268 else
269 /* We have storage, but need to reset it. */
270 {
271 ntype = *typeptr;
272 objfile = TYPE_OBJFILE (ntype);
273 smash_type (ntype);
274 TYPE_OBJFILE (ntype) = objfile;
275 }
276
277 TYPE_TARGET_TYPE (ntype) = type;
278 TYPE_POINTER_TYPE (type) = ntype;
279
280 /* FIXME! Assume the machine has only one representation for pointers! */
281
282 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
283 TYPE_CODE (ntype) = TYPE_CODE_PTR;
284
285 /* Mark pointers as unsigned. The target converts between pointers
286 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
287 ADDRESS_TO_POINTER(). */
288 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
289
290 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
291 TYPE_POINTER_TYPE (type) = ntype;
292
293 return ntype;
294 }
295
296 /* Given a type TYPE, return a type of pointers to that type.
297 May need to construct such a type if this is the first use. */
298
299 struct type *
300 lookup_pointer_type (struct type *type)
301 {
302 return make_pointer_type (type, (struct type **) 0);
303 }
304
305 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the reference type should be stored.
307 If *TYPEPTR is zero, update it to point to the reference type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_reference_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct objfile *objfile;
315
316 ntype = TYPE_REFERENCE_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc, and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and we have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type (TYPE_OBJFILE (type));
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else
336 /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 objfile = TYPE_OBJFILE (ntype);
340 smash_type (ntype);
341 TYPE_OBJFILE (ntype) = objfile;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_REFERENCE_TYPE (type) = ntype;
346
347 /* FIXME! Assume the machine has only one representation for references,
348 and that it matches the (only) representation for pointers! */
349
350 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_REF;
352
353 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
354 TYPE_REFERENCE_TYPE (type) = ntype;
355
356 return ntype;
357 }
358
359 /* Same as above, but caller doesn't care about memory allocation details. */
360
361 struct type *
362 lookup_reference_type (struct type *type)
363 {
364 return make_reference_type (type, (struct type **) 0);
365 }
366
367 /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
368 to a pointer to memory where the function type should be stored.
369 If *TYPEPTR is zero, update it to point to the function type we return.
370 We allocate new memory if needed. */
371
372 struct type *
373 make_function_type (struct type *type, struct type **typeptr)
374 {
375 struct type *ntype; /* New type */
376 struct objfile *objfile;
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type (TYPE_OBJFILE (type));
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else
385 /* We have storage, but need to reset it. */
386 {
387 ntype = *typeptr;
388 objfile = TYPE_OBJFILE (ntype);
389 smash_type (ntype);
390 TYPE_OBJFILE (ntype) = objfile;
391 }
392
393 TYPE_TARGET_TYPE (ntype) = type;
394
395 TYPE_LENGTH (ntype) = 1;
396 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
397
398 return ntype;
399 }
400
401
402 /* Given a type TYPE, return a type of functions that return that type.
403 May need to construct such a type if this is the first use. */
404
405 struct type *
406 lookup_function_type (struct type *type)
407 {
408 return make_function_type (type, (struct type **) 0);
409 }
410
411 /* Identify address space identifier by name --
412 return the integer flag defined in gdbtypes.h. */
413 extern int
414 address_space_name_to_int (char *space_identifier)
415 {
416 struct gdbarch *gdbarch = current_gdbarch;
417 int type_flags;
418 /* Check for known address space delimiters. */
419 if (!strcmp (space_identifier, "code"))
420 return TYPE_FLAG_CODE_SPACE;
421 else if (!strcmp (space_identifier, "data"))
422 return TYPE_FLAG_DATA_SPACE;
423 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
424 && gdbarch_address_class_name_to_type_flags (gdbarch,
425 space_identifier,
426 &type_flags))
427 return type_flags;
428 else
429 error (_("Unknown address space specifier: \"%s\""), space_identifier);
430 }
431
432 /* Identify address space identifier by integer flag as defined in
433 gdbtypes.h -- return the string version of the adress space name. */
434
435 const char *
436 address_space_int_to_name (int space_flag)
437 {
438 struct gdbarch *gdbarch = current_gdbarch;
439 if (space_flag & TYPE_FLAG_CODE_SPACE)
440 return "code";
441 else if (space_flag & TYPE_FLAG_DATA_SPACE)
442 return "data";
443 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
444 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
445 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
446 else
447 return NULL;
448 }
449
450 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
451
452 If STORAGE is non-NULL, create the new type instance there.
453 STORAGE must be in the same obstack as TYPE. */
454
455 static struct type *
456 make_qualified_type (struct type *type, int new_flags,
457 struct type *storage)
458 {
459 struct type *ntype;
460
461 ntype = type;
462 do {
463 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
464 return ntype;
465 ntype = TYPE_CHAIN (ntype);
466 } while (ntype != type);
467
468 /* Create a new type instance. */
469 if (storage == NULL)
470 ntype = alloc_type_instance (type);
471 else
472 {
473 /* If STORAGE was provided, it had better be in the same objfile as
474 TYPE. Otherwise, we can't link it into TYPE's cv chain: if one
475 objfile is freed and the other kept, we'd have dangling
476 pointers. */
477 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
478
479 ntype = storage;
480 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
481 TYPE_CHAIN (ntype) = ntype;
482 }
483
484 /* Pointers or references to the original type are not relevant to
485 the new type. */
486 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
487 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
488
489 /* Chain the new qualified type to the old type. */
490 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
491 TYPE_CHAIN (type) = ntype;
492
493 /* Now set the instance flags and return the new type. */
494 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
495
496 /* Set length of new type to that of the original type. */
497 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
498
499 return ntype;
500 }
501
502 /* Make an address-space-delimited variant of a type -- a type that
503 is identical to the one supplied except that it has an address
504 space attribute attached to it (such as "code" or "data").
505
506 The space attributes "code" and "data" are for Harvard architectures.
507 The address space attributes are for architectures which have
508 alternately sized pointers or pointers with alternate representations. */
509
510 struct type *
511 make_type_with_address_space (struct type *type, int space_flag)
512 {
513 struct type *ntype;
514 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
515 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
516 | TYPE_FLAG_ADDRESS_CLASS_ALL))
517 | space_flag);
518
519 return make_qualified_type (type, new_flags, NULL);
520 }
521
522 /* Make a "c-v" variant of a type -- a type that is identical to the
523 one supplied except that it may have const or volatile attributes
524 CNST is a flag for setting the const attribute
525 VOLTL is a flag for setting the volatile attribute
526 TYPE is the base type whose variant we are creating.
527
528 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
529 storage to hold the new qualified type; *TYPEPTR and TYPE must be
530 in the same objfile. Otherwise, allocate fresh memory for the new
531 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
532 new type we construct. */
533 struct type *
534 make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
535 {
536 struct type *ntype; /* New type */
537 struct type *tmp_type = type; /* tmp type */
538 struct objfile *objfile;
539
540 int new_flags = (TYPE_INSTANCE_FLAGS (type)
541 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
542
543 if (cnst)
544 new_flags |= TYPE_FLAG_CONST;
545
546 if (voltl)
547 new_flags |= TYPE_FLAG_VOLATILE;
548
549 if (typeptr && *typeptr != NULL)
550 {
551 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
552 a C-V variant chain that threads across objfiles: if one
553 objfile gets freed, then the other has a broken C-V chain.
554
555 This code used to try to copy over the main type from TYPE to
556 *TYPEPTR if they were in different objfiles, but that's
557 wrong, too: TYPE may have a field list or member function
558 lists, which refer to types of their own, etc. etc. The
559 whole shebang would need to be copied over recursively; you
560 can't have inter-objfile pointers. The only thing to do is
561 to leave stub types as stub types, and look them up afresh by
562 name each time you encounter them. */
563 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
564 }
565
566 ntype = make_qualified_type (type, new_flags, typeptr ? *typeptr : NULL);
567
568 if (typeptr != NULL)
569 *typeptr = ntype;
570
571 return ntype;
572 }
573
574 /* Replace the contents of ntype with the type *type. This changes the
575 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
576 the changes are propogated to all types in the TYPE_CHAIN.
577
578 In order to build recursive types, it's inevitable that we'll need
579 to update types in place --- but this sort of indiscriminate
580 smashing is ugly, and needs to be replaced with something more
581 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
582 clear if more steps are needed. */
583 void
584 replace_type (struct type *ntype, struct type *type)
585 {
586 struct type *chain;
587
588 /* These two types had better be in the same objfile. Otherwise,
589 the assignment of one type's main type structure to the other
590 will produce a type with references to objects (names; field
591 lists; etc.) allocated on an objfile other than its own. */
592 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
593
594 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
595
596 /* The type length is not a part of the main type. Update it for each
597 type on the variant chain. */
598 chain = ntype;
599 do {
600 /* Assert that this element of the chain has no address-class bits
601 set in its flags. Such type variants might have type lengths
602 which are supposed to be different from the non-address-class
603 variants. This assertion shouldn't ever be triggered because
604 symbol readers which do construct address-class variants don't
605 call replace_type(). */
606 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
607
608 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
609 chain = TYPE_CHAIN (chain);
610 } while (ntype != chain);
611
612 /* Assert that the two types have equivalent instance qualifiers.
613 This should be true for at least all of our debug readers. */
614 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
615 }
616
617 /* Implement direct support for MEMBER_TYPE in GNU C++.
618 May need to construct such a type if this is the first use.
619 The TYPE is the type of the member. The DOMAIN is the type
620 of the aggregate that the member belongs to. */
621
622 struct type *
623 lookup_member_type (struct type *type, struct type *domain)
624 {
625 struct type *mtype;
626
627 mtype = alloc_type (TYPE_OBJFILE (type));
628 smash_to_member_type (mtype, domain, type);
629 return (mtype);
630 }
631
632 /* Allocate a stub method whose return type is TYPE.
633 This apparently happens for speed of symbol reading, since parsing
634 out the arguments to the method is cpu-intensive, the way we are doing
635 it. So, we will fill in arguments later.
636 This always returns a fresh type. */
637
638 struct type *
639 allocate_stub_method (struct type *type)
640 {
641 struct type *mtype;
642
643 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
644 TYPE_OBJFILE (type));
645 TYPE_TARGET_TYPE (mtype) = type;
646 /* _DOMAIN_TYPE (mtype) = unknown yet */
647 return (mtype);
648 }
649
650 /* Create a range type using either a blank type supplied in RESULT_TYPE,
651 or creating a new type, inheriting the objfile from INDEX_TYPE.
652
653 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
654 HIGH_BOUND, inclusive.
655
656 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
657 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
658
659 struct type *
660 create_range_type (struct type *result_type, struct type *index_type,
661 int low_bound, int high_bound)
662 {
663 if (result_type == NULL)
664 {
665 result_type = alloc_type (TYPE_OBJFILE (index_type));
666 }
667 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
668 TYPE_TARGET_TYPE (result_type) = index_type;
669 if (TYPE_STUB (index_type))
670 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
671 else
672 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
673 TYPE_NFIELDS (result_type) = 2;
674 TYPE_FIELDS (result_type) = (struct field *)
675 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
676 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
677 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
678 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
679 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
680 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
681
682 if (low_bound >= 0)
683 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
684
685 return (result_type);
686 }
687
688 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
689 Return 1 if type is a range type, 0 if it is discrete (and bounds
690 will fit in LONGEST), or -1 otherwise. */
691
692 int
693 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
694 {
695 CHECK_TYPEDEF (type);
696 switch (TYPE_CODE (type))
697 {
698 case TYPE_CODE_RANGE:
699 *lowp = TYPE_LOW_BOUND (type);
700 *highp = TYPE_HIGH_BOUND (type);
701 return 1;
702 case TYPE_CODE_ENUM:
703 if (TYPE_NFIELDS (type) > 0)
704 {
705 /* The enums may not be sorted by value, so search all
706 entries */
707 int i;
708
709 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
710 for (i = 0; i < TYPE_NFIELDS (type); i++)
711 {
712 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
713 *lowp = TYPE_FIELD_BITPOS (type, i);
714 if (TYPE_FIELD_BITPOS (type, i) > *highp)
715 *highp = TYPE_FIELD_BITPOS (type, i);
716 }
717
718 /* Set unsigned indicator if warranted. */
719 if (*lowp >= 0)
720 {
721 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
722 }
723 }
724 else
725 {
726 *lowp = 0;
727 *highp = -1;
728 }
729 return 0;
730 case TYPE_CODE_BOOL:
731 *lowp = 0;
732 *highp = 1;
733 return 0;
734 case TYPE_CODE_INT:
735 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
736 return -1;
737 if (!TYPE_UNSIGNED (type))
738 {
739 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
740 *highp = -*lowp - 1;
741 return 0;
742 }
743 /* ... fall through for unsigned ints ... */
744 case TYPE_CODE_CHAR:
745 *lowp = 0;
746 /* This round-about calculation is to avoid shifting by
747 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
748 if TYPE_LENGTH (type) == sizeof (LONGEST). */
749 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
750 *highp = (*highp - 1) | *highp;
751 return 0;
752 default:
753 return -1;
754 }
755 }
756
757 /* Create an array type using either a blank type supplied in RESULT_TYPE,
758 or creating a new type, inheriting the objfile from RANGE_TYPE.
759
760 Elements will be of type ELEMENT_TYPE, the indices will be of type
761 RANGE_TYPE.
762
763 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
764 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
765
766 struct type *
767 create_array_type (struct type *result_type, struct type *element_type,
768 struct type *range_type)
769 {
770 LONGEST low_bound, high_bound;
771
772 if (result_type == NULL)
773 {
774 result_type = alloc_type (TYPE_OBJFILE (range_type));
775 }
776 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
777 TYPE_TARGET_TYPE (result_type) = element_type;
778 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
779 low_bound = high_bound = 0;
780 CHECK_TYPEDEF (element_type);
781 TYPE_LENGTH (result_type) =
782 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
783 TYPE_NFIELDS (result_type) = 1;
784 TYPE_FIELDS (result_type) =
785 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
786 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
787 TYPE_FIELD_TYPE (result_type, 0) = range_type;
788 TYPE_VPTR_FIELDNO (result_type) = -1;
789
790 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
791 if (TYPE_LENGTH (result_type) == 0)
792 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
793
794 return (result_type);
795 }
796
797 /* Create a string type using either a blank type supplied in RESULT_TYPE,
798 or creating a new type. String types are similar enough to array of
799 char types that we can use create_array_type to build the basic type
800 and then bash it into a string type.
801
802 For fixed length strings, the range type contains 0 as the lower
803 bound and the length of the string minus one as the upper bound.
804
805 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
806 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
807
808 struct type *
809 create_string_type (struct type *result_type, struct type *range_type)
810 {
811 struct type *string_char_type;
812
813 string_char_type = language_string_char_type (current_language,
814 current_gdbarch);
815 result_type = create_array_type (result_type,
816 string_char_type,
817 range_type);
818 TYPE_CODE (result_type) = TYPE_CODE_STRING;
819 return (result_type);
820 }
821
822 struct type *
823 create_set_type (struct type *result_type, struct type *domain_type)
824 {
825 LONGEST low_bound, high_bound, bit_length;
826 if (result_type == NULL)
827 {
828 result_type = alloc_type (TYPE_OBJFILE (domain_type));
829 }
830 TYPE_CODE (result_type) = TYPE_CODE_SET;
831 TYPE_NFIELDS (result_type) = 1;
832 TYPE_FIELDS (result_type) = (struct field *)
833 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
834 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
835
836 if (!TYPE_STUB (domain_type))
837 {
838 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
839 low_bound = high_bound = 0;
840 bit_length = high_bound - low_bound + 1;
841 TYPE_LENGTH (result_type)
842 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
843 }
844 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
845
846 if (low_bound >= 0)
847 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
848
849 return (result_type);
850 }
851
852 void
853 append_flags_type_flag (struct type *type, int bitpos, char *name)
854 {
855 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
856 gdb_assert (bitpos < TYPE_NFIELDS (type));
857 gdb_assert (bitpos >= 0);
858
859 if (name)
860 {
861 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
862 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
863 }
864 else
865 {
866 /* Don't show this field to the user. */
867 TYPE_FIELD_BITPOS (type, bitpos) = -1;
868 }
869 }
870
871 struct type *
872 init_flags_type (char *name, int length)
873 {
874 int nfields = length * TARGET_CHAR_BIT;
875 struct type *type;
876
877 type = init_type (TYPE_CODE_FLAGS, length, TYPE_FLAG_UNSIGNED, name, NULL);
878 TYPE_NFIELDS (type) = nfields;
879 TYPE_FIELDS (type) = TYPE_ALLOC (type, nfields * sizeof (struct field));
880 memset (TYPE_FIELDS (type), 0, sizeof (struct field));
881
882 return type;
883 }
884
885 /* Construct and return a type of the form:
886 struct NAME { ELT_TYPE ELT_NAME[N]; }
887 We use these types for SIMD registers. For example, the type of
888 the SSE registers on the late x86-family processors is:
889 struct __builtin_v4sf { float f[4]; }
890 built by the function call:
891 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
892 The type returned is a permanent type, allocated using malloc; it
893 doesn't live in any objfile's obstack. */
894 static struct type *
895 init_simd_type (char *name,
896 struct type *elt_type,
897 char *elt_name,
898 int n)
899 {
900 struct type *simd_type;
901 struct type *array_type;
902
903 simd_type = init_composite_type (name, TYPE_CODE_STRUCT);
904 array_type = create_array_type (0, elt_type,
905 create_range_type (0, builtin_type_int,
906 0, n-1));
907 append_composite_type_field (simd_type, elt_name, array_type);
908 return simd_type;
909 }
910
911 static struct type *
912 init_vector_type (struct type *elt_type, int n)
913 {
914 struct type *array_type;
915
916 array_type = create_array_type (0, elt_type,
917 create_range_type (0, builtin_type_int,
918 0, n-1));
919 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
920 return array_type;
921 }
922
923 static struct type *
924 build_builtin_type_vec64 (void)
925 {
926 /* Construct a type for the 64 bit registers. The type we're
927 building is this: */
928 #if 0
929 union __gdb_builtin_type_vec64
930 {
931 int64_t uint64;
932 float v2_float[2];
933 int32_t v2_int32[2];
934 int16_t v4_int16[4];
935 int8_t v8_int8[8];
936 };
937 #endif
938
939 struct type *t;
940
941 t = init_composite_type ("__gdb_builtin_type_vec64", TYPE_CODE_UNION);
942 append_composite_type_field (t, "uint64", builtin_type_int64);
943 append_composite_type_field (t, "v2_float", builtin_type_v2_float);
944 append_composite_type_field (t, "v2_int32", builtin_type_v2_int32);
945 append_composite_type_field (t, "v4_int16", builtin_type_v4_int16);
946 append_composite_type_field (t, "v8_int8", builtin_type_v8_int8);
947
948 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
949 TYPE_NAME (t) = "builtin_type_vec64";
950 return t;
951 }
952
953 static struct type *
954 build_builtin_type_vec128 (void)
955 {
956 /* Construct a type for the 128 bit registers. The type we're
957 building is this: */
958 #if 0
959 union __gdb_builtin_type_vec128
960 {
961 int128_t uint128;
962 float v4_float[4];
963 int32_t v4_int32[4];
964 int16_t v8_int16[8];
965 int8_t v16_int8[16];
966 };
967 #endif
968
969 struct type *t;
970
971 t = init_composite_type ("__gdb_builtin_type_vec128", TYPE_CODE_UNION);
972 append_composite_type_field (t, "uint128", builtin_type_int128);
973 append_composite_type_field (t, "v4_float", builtin_type_v4_float);
974 append_composite_type_field (t, "v4_int32", builtin_type_v4_int32);
975 append_composite_type_field (t, "v8_int16", builtin_type_v8_int16);
976 append_composite_type_field (t, "v16_int8", builtin_type_v16_int8);
977
978 TYPE_FLAGS (t) |= TYPE_FLAG_VECTOR;
979 TYPE_NAME (t) = "builtin_type_vec128";
980 return t;
981 }
982
983 /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
984 A MEMBER is a wierd thing -- it amounts to a typed offset into
985 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
986 include the offset (that's the value of the MEMBER itself), but does
987 include the structure type into which it points (for some reason).
988
989 When "smashing" the type, we preserve the objfile that the
990 old type pointed to, since we aren't changing where the type is actually
991 allocated. */
992
993 void
994 smash_to_member_type (struct type *type, struct type *domain,
995 struct type *to_type)
996 {
997 struct objfile *objfile;
998
999 objfile = TYPE_OBJFILE (type);
1000
1001 smash_type (type);
1002 TYPE_OBJFILE (type) = objfile;
1003 TYPE_TARGET_TYPE (type) = to_type;
1004 TYPE_DOMAIN_TYPE (type) = domain;
1005 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1006 TYPE_CODE (type) = TYPE_CODE_MEMBER;
1007 }
1008
1009 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1010 METHOD just means `function that gets an extra "this" argument'.
1011
1012 When "smashing" the type, we preserve the objfile that the
1013 old type pointed to, since we aren't changing where the type is actually
1014 allocated. */
1015
1016 void
1017 smash_to_method_type (struct type *type, struct type *domain,
1018 struct type *to_type, struct field *args,
1019 int nargs, int varargs)
1020 {
1021 struct objfile *objfile;
1022
1023 objfile = TYPE_OBJFILE (type);
1024
1025 smash_type (type);
1026 TYPE_OBJFILE (type) = objfile;
1027 TYPE_TARGET_TYPE (type) = to_type;
1028 TYPE_DOMAIN_TYPE (type) = domain;
1029 TYPE_FIELDS (type) = args;
1030 TYPE_NFIELDS (type) = nargs;
1031 if (varargs)
1032 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1033 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1034 TYPE_CODE (type) = TYPE_CODE_METHOD;
1035 }
1036
1037 /* Return a typename for a struct/union/enum type without "struct ",
1038 "union ", or "enum ". If the type has a NULL name, return NULL. */
1039
1040 char *
1041 type_name_no_tag (const struct type *type)
1042 {
1043 if (TYPE_TAG_NAME (type) != NULL)
1044 return TYPE_TAG_NAME (type);
1045
1046 /* Is there code which expects this to return the name if there is no
1047 tag name? My guess is that this is mainly used for C++ in cases where
1048 the two will always be the same. */
1049 return TYPE_NAME (type);
1050 }
1051
1052 /* Lookup a typedef or primitive type named NAME,
1053 visible in lexical block BLOCK.
1054 If NOERR is nonzero, return zero if NAME is not suitably defined. */
1055
1056 struct type *
1057 lookup_typename (char *name, struct block *block, int noerr)
1058 {
1059 struct symbol *sym;
1060 struct type *tmp;
1061
1062 sym = lookup_symbol (name, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
1063 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1064 {
1065 tmp = language_lookup_primitive_type_by_name (current_language,
1066 current_gdbarch,
1067 name);
1068 if (tmp)
1069 {
1070 return (tmp);
1071 }
1072 else if (!tmp && noerr)
1073 {
1074 return (NULL);
1075 }
1076 else
1077 {
1078 error (_("No type named %s."), name);
1079 }
1080 }
1081 return (SYMBOL_TYPE (sym));
1082 }
1083
1084 struct type *
1085 lookup_unsigned_typename (char *name)
1086 {
1087 char *uns = alloca (strlen (name) + 10);
1088
1089 strcpy (uns, "unsigned ");
1090 strcpy (uns + 9, name);
1091 return (lookup_typename (uns, (struct block *) NULL, 0));
1092 }
1093
1094 struct type *
1095 lookup_signed_typename (char *name)
1096 {
1097 struct type *t;
1098 char *uns = alloca (strlen (name) + 8);
1099
1100 strcpy (uns, "signed ");
1101 strcpy (uns + 7, name);
1102 t = lookup_typename (uns, (struct block *) NULL, 1);
1103 /* If we don't find "signed FOO" just try again with plain "FOO". */
1104 if (t != NULL)
1105 return t;
1106 return lookup_typename (name, (struct block *) NULL, 0);
1107 }
1108
1109 /* Lookup a structure type named "struct NAME",
1110 visible in lexical block BLOCK. */
1111
1112 struct type *
1113 lookup_struct (char *name, struct block *block)
1114 {
1115 struct symbol *sym;
1116
1117 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1118 (struct symtab **) NULL);
1119
1120 if (sym == NULL)
1121 {
1122 error (_("No struct type named %s."), name);
1123 }
1124 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1125 {
1126 error (_("This context has class, union or enum %s, not a struct."), name);
1127 }
1128 return (SYMBOL_TYPE (sym));
1129 }
1130
1131 /* Lookup a union type named "union NAME",
1132 visible in lexical block BLOCK. */
1133
1134 struct type *
1135 lookup_union (char *name, struct block *block)
1136 {
1137 struct symbol *sym;
1138 struct type *t;
1139
1140 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1141 (struct symtab **) NULL);
1142
1143 if (sym == NULL)
1144 error (_("No union type named %s."), name);
1145
1146 t = SYMBOL_TYPE (sym);
1147
1148 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1149 return (t);
1150
1151 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1152 * a further "declared_type" field to discover it is really a union.
1153 */
1154 if (HAVE_CPLUS_STRUCT (t))
1155 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1156 return (t);
1157
1158 /* If we get here, it's not a union */
1159 error (_("This context has class, struct or enum %s, not a union."), name);
1160 }
1161
1162
1163 /* Lookup an enum type named "enum NAME",
1164 visible in lexical block BLOCK. */
1165
1166 struct type *
1167 lookup_enum (char *name, struct block *block)
1168 {
1169 struct symbol *sym;
1170
1171 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1172 (struct symtab **) NULL);
1173 if (sym == NULL)
1174 {
1175 error (_("No enum type named %s."), name);
1176 }
1177 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1178 {
1179 error (_("This context has class, struct or union %s, not an enum."), name);
1180 }
1181 return (SYMBOL_TYPE (sym));
1182 }
1183
1184 /* Lookup a template type named "template NAME<TYPE>",
1185 visible in lexical block BLOCK. */
1186
1187 struct type *
1188 lookup_template_type (char *name, struct type *type, struct block *block)
1189 {
1190 struct symbol *sym;
1191 char *nam = (char *) alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1192 strcpy (nam, name);
1193 strcat (nam, "<");
1194 strcat (nam, TYPE_NAME (type));
1195 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1196
1197 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0, (struct symtab **) NULL);
1198
1199 if (sym == NULL)
1200 {
1201 error (_("No template type named %s."), name);
1202 }
1203 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1204 {
1205 error (_("This context has class, union or enum %s, not a struct."), name);
1206 }
1207 return (SYMBOL_TYPE (sym));
1208 }
1209
1210 /* Given a type TYPE, lookup the type of the component of type named NAME.
1211
1212 TYPE can be either a struct or union, or a pointer or reference to a struct or
1213 union. If it is a pointer or reference, its target type is automatically used.
1214 Thus '.' and '->' are interchangable, as specified for the definitions of the
1215 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1216
1217 If NOERR is nonzero, return zero if NAME is not suitably defined.
1218 If NAME is the name of a baseclass type, return that type. */
1219
1220 struct type *
1221 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1222 {
1223 int i;
1224
1225 for (;;)
1226 {
1227 CHECK_TYPEDEF (type);
1228 if (TYPE_CODE (type) != TYPE_CODE_PTR
1229 && TYPE_CODE (type) != TYPE_CODE_REF)
1230 break;
1231 type = TYPE_TARGET_TYPE (type);
1232 }
1233
1234 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1235 TYPE_CODE (type) != TYPE_CODE_UNION)
1236 {
1237 target_terminal_ours ();
1238 gdb_flush (gdb_stdout);
1239 fprintf_unfiltered (gdb_stderr, "Type ");
1240 type_print (type, "", gdb_stderr, -1);
1241 error (_(" is not a structure or union type."));
1242 }
1243
1244 #if 0
1245 /* FIXME: This change put in by Michael seems incorrect for the case where
1246 the structure tag name is the same as the member name. I.E. when doing
1247 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1248 Disabled by fnf. */
1249 {
1250 char *typename;
1251
1252 typename = type_name_no_tag (type);
1253 if (typename != NULL && strcmp (typename, name) == 0)
1254 return type;
1255 }
1256 #endif
1257
1258 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1259 {
1260 char *t_field_name = TYPE_FIELD_NAME (type, i);
1261
1262 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1263 {
1264 return TYPE_FIELD_TYPE (type, i);
1265 }
1266 }
1267
1268 /* OK, it's not in this class. Recursively check the baseclasses. */
1269 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1270 {
1271 struct type *t;
1272
1273 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1274 if (t != NULL)
1275 {
1276 return t;
1277 }
1278 }
1279
1280 if (noerr)
1281 {
1282 return NULL;
1283 }
1284
1285 target_terminal_ours ();
1286 gdb_flush (gdb_stdout);
1287 fprintf_unfiltered (gdb_stderr, "Type ");
1288 type_print (type, "", gdb_stderr, -1);
1289 fprintf_unfiltered (gdb_stderr, " has no component named ");
1290 fputs_filtered (name, gdb_stderr);
1291 error (("."));
1292 return (struct type *) -1; /* For lint */
1293 }
1294
1295 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1296 valid. Callers should be aware that in some cases (for example,
1297 the type or one of its baseclasses is a stub type and we are
1298 debugging a .o file), this function will not be able to find the virtual
1299 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1300 will remain NULL. */
1301
1302 void
1303 fill_in_vptr_fieldno (struct type *type)
1304 {
1305 CHECK_TYPEDEF (type);
1306
1307 if (TYPE_VPTR_FIELDNO (type) < 0)
1308 {
1309 int i;
1310
1311 /* We must start at zero in case the first (and only) baseclass is
1312 virtual (and hence we cannot share the table pointer). */
1313 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1314 {
1315 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1316 fill_in_vptr_fieldno (baseclass);
1317 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
1318 {
1319 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1320 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
1321 break;
1322 }
1323 }
1324 }
1325 }
1326
1327 /* Find the method and field indices for the destructor in class type T.
1328 Return 1 if the destructor was found, otherwise, return 0. */
1329
1330 int
1331 get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
1332 {
1333 int i;
1334
1335 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1336 {
1337 int j;
1338 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1339
1340 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1341 {
1342 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1343 {
1344 *method_indexp = i;
1345 *field_indexp = j;
1346 return 1;
1347 }
1348 }
1349 }
1350 return 0;
1351 }
1352
1353 static void
1354 stub_noname_complaint (void)
1355 {
1356 complaint (&symfile_complaints, _("stub type has NULL name"));
1357 }
1358
1359 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1360
1361 If this is a stubbed struct (i.e. declared as struct foo *), see if
1362 we can find a full definition in some other file. If so, copy this
1363 definition, so we can use it in future. There used to be a comment (but
1364 not any code) that if we don't find a full definition, we'd set a flag
1365 so we don't spend time in the future checking the same type. That would
1366 be a mistake, though--we might load in more symbols which contain a
1367 full definition for the type.
1368
1369 This used to be coded as a macro, but I don't think it is called
1370 often enough to merit such treatment. */
1371
1372 /* Find the real type of TYPE. This function returns the real type, after
1373 removing all layers of typedefs and completing opaque or stub types.
1374 Completion changes the TYPE argument, but stripping of typedefs does
1375 not. */
1376
1377 struct type *
1378 check_typedef (struct type *type)
1379 {
1380 struct type *orig_type = type;
1381 int is_const, is_volatile;
1382
1383 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1384 {
1385 if (!TYPE_TARGET_TYPE (type))
1386 {
1387 char *name;
1388 struct symbol *sym;
1389
1390 /* It is dangerous to call lookup_symbol if we are currently
1391 reading a symtab. Infinite recursion is one danger. */
1392 if (currently_reading_symtab)
1393 return type;
1394
1395 name = type_name_no_tag (type);
1396 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1397 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1398 as appropriate? (this code was written before TYPE_NAME and
1399 TYPE_TAG_NAME were separate). */
1400 if (name == NULL)
1401 {
1402 stub_noname_complaint ();
1403 return type;
1404 }
1405 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1406 (struct symtab **) NULL);
1407 if (sym)
1408 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1409 else
1410 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
1411 }
1412 type = TYPE_TARGET_TYPE (type);
1413 }
1414
1415 is_const = TYPE_CONST (type);
1416 is_volatile = TYPE_VOLATILE (type);
1417
1418 /* If this is a struct/class/union with no fields, then check whether a
1419 full definition exists somewhere else. This is for systems where a
1420 type definition with no fields is issued for such types, instead of
1421 identifying them as stub types in the first place */
1422
1423 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1424 {
1425 char *name = type_name_no_tag (type);
1426 struct type *newtype;
1427 if (name == NULL)
1428 {
1429 stub_noname_complaint ();
1430 return type;
1431 }
1432 newtype = lookup_transparent_type (name);
1433
1434 if (newtype)
1435 {
1436 /* If the resolved type and the stub are in the same objfile,
1437 then replace the stub type with the real deal. But if
1438 they're in separate objfiles, leave the stub alone; we'll
1439 just look up the transparent type every time we call
1440 check_typedef. We can't create pointers between types
1441 allocated to different objfiles, since they may have
1442 different lifetimes. Trying to copy NEWTYPE over to TYPE's
1443 objfile is pointless, too, since you'll have to move over any
1444 other types NEWTYPE refers to, which could be an unbounded
1445 amount of stuff. */
1446 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1447 make_cv_type (is_const, is_volatile, newtype, &type);
1448 else
1449 type = newtype;
1450 }
1451 }
1452 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
1453 else if (TYPE_STUB (type) && !currently_reading_symtab)
1454 {
1455 char *name = type_name_no_tag (type);
1456 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1457 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1458 as appropriate? (this code was written before TYPE_NAME and
1459 TYPE_TAG_NAME were separate). */
1460 struct symbol *sym;
1461 if (name == NULL)
1462 {
1463 stub_noname_complaint ();
1464 return type;
1465 }
1466 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0, (struct symtab **) NULL);
1467 if (sym)
1468 make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
1469 }
1470
1471 if (TYPE_TARGET_STUB (type))
1472 {
1473 struct type *range_type;
1474 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1475
1476 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1477 {
1478 }
1479 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1480 && TYPE_NFIELDS (type) == 1
1481 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1482 == TYPE_CODE_RANGE))
1483 {
1484 /* Now recompute the length of the array type, based on its
1485 number of elements and the target type's length. */
1486 TYPE_LENGTH (type) =
1487 ((TYPE_FIELD_BITPOS (range_type, 1)
1488 - TYPE_FIELD_BITPOS (range_type, 0)
1489 + 1)
1490 * TYPE_LENGTH (target_type));
1491 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1492 }
1493 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1494 {
1495 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1496 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1497 }
1498 }
1499 /* Cache TYPE_LENGTH for future use. */
1500 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1501 return type;
1502 }
1503
1504 /* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1505 silently return builtin_type_void. */
1506
1507 static struct type *
1508 safe_parse_type (char *p, int length)
1509 {
1510 struct ui_file *saved_gdb_stderr;
1511 struct type *type;
1512
1513 /* Suppress error messages. */
1514 saved_gdb_stderr = gdb_stderr;
1515 gdb_stderr = ui_file_new ();
1516
1517 /* Call parse_and_eval_type() without fear of longjmp()s. */
1518 if (!gdb_parse_and_eval_type (p, length, &type))
1519 type = builtin_type_void;
1520
1521 /* Stop suppressing error messages. */
1522 ui_file_delete (gdb_stderr);
1523 gdb_stderr = saved_gdb_stderr;
1524
1525 return type;
1526 }
1527
1528 /* Ugly hack to convert method stubs into method types.
1529
1530 He ain't kiddin'. This demangles the name of the method into a string
1531 including argument types, parses out each argument type, generates
1532 a string casting a zero to that type, evaluates the string, and stuffs
1533 the resulting type into an argtype vector!!! Then it knows the type
1534 of the whole function (including argument types for overloading),
1535 which info used to be in the stab's but was removed to hack back
1536 the space required for them. */
1537
1538 static void
1539 check_stub_method (struct type *type, int method_id, int signature_id)
1540 {
1541 struct fn_field *f;
1542 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1543 char *demangled_name = cplus_demangle (mangled_name,
1544 DMGL_PARAMS | DMGL_ANSI);
1545 char *argtypetext, *p;
1546 int depth = 0, argcount = 1;
1547 struct field *argtypes;
1548 struct type *mtype;
1549
1550 /* Make sure we got back a function string that we can use. */
1551 if (demangled_name)
1552 p = strchr (demangled_name, '(');
1553 else
1554 p = NULL;
1555
1556 if (demangled_name == NULL || p == NULL)
1557 error (_("Internal: Cannot demangle mangled name `%s'."), mangled_name);
1558
1559 /* Now, read in the parameters that define this type. */
1560 p += 1;
1561 argtypetext = p;
1562 while (*p)
1563 {
1564 if (*p == '(' || *p == '<')
1565 {
1566 depth += 1;
1567 }
1568 else if (*p == ')' || *p == '>')
1569 {
1570 depth -= 1;
1571 }
1572 else if (*p == ',' && depth == 0)
1573 {
1574 argcount += 1;
1575 }
1576
1577 p += 1;
1578 }
1579
1580 /* If we read one argument and it was ``void'', don't count it. */
1581 if (strncmp (argtypetext, "(void)", 6) == 0)
1582 argcount -= 1;
1583
1584 /* We need one extra slot, for the THIS pointer. */
1585
1586 argtypes = (struct field *)
1587 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1588 p = argtypetext;
1589
1590 /* Add THIS pointer for non-static methods. */
1591 f = TYPE_FN_FIELDLIST1 (type, method_id);
1592 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1593 argcount = 0;
1594 else
1595 {
1596 argtypes[0].type = lookup_pointer_type (type);
1597 argcount = 1;
1598 }
1599
1600 if (*p != ')') /* () means no args, skip while */
1601 {
1602 depth = 0;
1603 while (*p)
1604 {
1605 if (depth <= 0 && (*p == ',' || *p == ')'))
1606 {
1607 /* Avoid parsing of ellipsis, they will be handled below.
1608 Also avoid ``void'' as above. */
1609 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1610 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1611 {
1612 argtypes[argcount].type =
1613 safe_parse_type (argtypetext, p - argtypetext);
1614 argcount += 1;
1615 }
1616 argtypetext = p + 1;
1617 }
1618
1619 if (*p == '(' || *p == '<')
1620 {
1621 depth += 1;
1622 }
1623 else if (*p == ')' || *p == '>')
1624 {
1625 depth -= 1;
1626 }
1627
1628 p += 1;
1629 }
1630 }
1631
1632 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1633
1634 /* Now update the old "stub" type into a real type. */
1635 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1636 TYPE_DOMAIN_TYPE (mtype) = type;
1637 TYPE_FIELDS (mtype) = argtypes;
1638 TYPE_NFIELDS (mtype) = argcount;
1639 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1640 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1641 if (p[-2] == '.')
1642 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1643
1644 xfree (demangled_name);
1645 }
1646
1647 /* This is the external interface to check_stub_method, above. This function
1648 unstubs all of the signatures for TYPE's METHOD_ID method name. After
1649 calling this function TYPE_FN_FIELD_STUB will be cleared for each signature
1650 and TYPE_FN_FIELDLIST_NAME will be correct.
1651
1652 This function unfortunately can not die until stabs do. */
1653
1654 void
1655 check_stub_method_group (struct type *type, int method_id)
1656 {
1657 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1658 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1659 int j, found_stub = 0;
1660
1661 for (j = 0; j < len; j++)
1662 if (TYPE_FN_FIELD_STUB (f, j))
1663 {
1664 found_stub = 1;
1665 check_stub_method (type, method_id, j);
1666 }
1667
1668 /* GNU v3 methods with incorrect names were corrected when we read in
1669 type information, because it was cheaper to do it then. The only GNU v2
1670 methods with incorrect method names are operators and destructors;
1671 destructors were also corrected when we read in type information.
1672
1673 Therefore the only thing we need to handle here are v2 operator
1674 names. */
1675 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1676 {
1677 int ret;
1678 char dem_opname[256];
1679
1680 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
1681 dem_opname, DMGL_ANSI);
1682 if (!ret)
1683 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type, method_id),
1684 dem_opname, 0);
1685 if (ret)
1686 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1687 }
1688 }
1689
1690 const struct cplus_struct_type cplus_struct_default;
1691
1692 void
1693 allocate_cplus_struct_type (struct type *type)
1694 {
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 {
1697 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1698 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1699 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1700 }
1701 }
1702
1703 /* Helper function to initialize the standard scalar types.
1704
1705 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1706 of the string pointed to by name in the objfile_obstack for that objfile,
1707 and initialize the type name to that copy. There are places (mipsread.c
1708 in particular, where init_type is called with a NULL value for NAME). */
1709
1710 struct type *
1711 init_type (enum type_code code, int length, int flags, char *name,
1712 struct objfile *objfile)
1713 {
1714 struct type *type;
1715
1716 type = alloc_type (objfile);
1717 TYPE_CODE (type) = code;
1718 TYPE_LENGTH (type) = length;
1719 TYPE_FLAGS (type) |= flags;
1720 if ((name != NULL) && (objfile != NULL))
1721 {
1722 TYPE_NAME (type) =
1723 obsavestring (name, strlen (name), &objfile->objfile_obstack);
1724 }
1725 else
1726 {
1727 TYPE_NAME (type) = name;
1728 }
1729
1730 /* C++ fancies. */
1731
1732 if (name && strcmp (name, "char") == 0)
1733 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1734
1735 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1736 || code == TYPE_CODE_NAMESPACE)
1737 {
1738 INIT_CPLUS_SPECIFIC (type);
1739 }
1740 return (type);
1741 }
1742
1743 /* Helper function. Create an empty composite type. */
1744
1745 struct type *
1746 init_composite_type (char *name, enum type_code code)
1747 {
1748 struct type *t;
1749 gdb_assert (code == TYPE_CODE_STRUCT
1750 || code == TYPE_CODE_UNION);
1751 t = init_type (code, 0, 0, NULL, NULL);
1752 TYPE_TAG_NAME (t) = name;
1753 return t;
1754 }
1755
1756 /* Helper function. Append a field to a composite type. */
1757
1758 void
1759 append_composite_type_field (struct type *t, char *name, struct type *field)
1760 {
1761 struct field *f;
1762 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1763 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1764 sizeof (struct field) * TYPE_NFIELDS (t));
1765 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1766 memset (f, 0, sizeof f[0]);
1767 FIELD_TYPE (f[0]) = field;
1768 FIELD_NAME (f[0]) = name;
1769 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1770 {
1771 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1772 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1773 }
1774 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1775 {
1776 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1777 if (TYPE_NFIELDS (t) > 1)
1778 {
1779 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1780 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1781 }
1782 }
1783 }
1784
1785 /* Look up a fundamental type for the specified objfile.
1786 May need to construct such a type if this is the first use.
1787
1788 Some object file formats (ELF, COFF, etc) do not define fundamental
1789 types such as "int" or "double". Others (stabs for example), do
1790 define fundamental types.
1791
1792 For the formats which don't provide fundamental types, gdb can create
1793 such types, using defaults reasonable for the current language and
1794 the current target machine.
1795
1796 NOTE: This routine is obsolescent. Each debugging format reader
1797 should manage it's own fundamental types, either creating them from
1798 suitable defaults or reading them from the debugging information,
1799 whichever is appropriate. The DWARF reader has already been
1800 fixed to do this. Once the other readers are fixed, this routine
1801 will go away. Also note that fundamental types should be managed
1802 on a compilation unit basis in a multi-language environment, not
1803 on a linkage unit basis as is done here. */
1804
1805
1806 struct type *
1807 lookup_fundamental_type (struct objfile *objfile, int typeid)
1808 {
1809 struct type **typep;
1810 int nbytes;
1811
1812 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1813 {
1814 error (_("internal error - invalid fundamental type id %d"), typeid);
1815 }
1816
1817 /* If this is the first time we need a fundamental type for this objfile
1818 then we need to initialize the vector of type pointers. */
1819
1820 if (objfile->fundamental_types == NULL)
1821 {
1822 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1823 objfile->fundamental_types = (struct type **)
1824 obstack_alloc (&objfile->objfile_obstack, nbytes);
1825 memset ((char *) objfile->fundamental_types, 0, nbytes);
1826 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1827 }
1828
1829 /* Look for this particular type in the fundamental type vector. If one is
1830 not found, create and install one appropriate for the current language. */
1831
1832 typep = objfile->fundamental_types + typeid;
1833 if (*typep == NULL)
1834 {
1835 *typep = create_fundamental_type (objfile, typeid);
1836 }
1837
1838 return (*typep);
1839 }
1840
1841 int
1842 can_dereference (struct type *t)
1843 {
1844 /* FIXME: Should we return true for references as well as pointers? */
1845 CHECK_TYPEDEF (t);
1846 return
1847 (t != NULL
1848 && TYPE_CODE (t) == TYPE_CODE_PTR
1849 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1850 }
1851
1852 int
1853 is_integral_type (struct type *t)
1854 {
1855 CHECK_TYPEDEF (t);
1856 return
1857 ((t != NULL)
1858 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1859 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1860 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1861 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1862 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1863 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1864 }
1865
1866 /* Check whether BASE is an ancestor or base class or DCLASS
1867 Return 1 if so, and 0 if not.
1868 Note: callers may want to check for identity of the types before
1869 calling this function -- identical types are considered to satisfy
1870 the ancestor relationship even if they're identical */
1871
1872 int
1873 is_ancestor (struct type *base, struct type *dclass)
1874 {
1875 int i;
1876
1877 CHECK_TYPEDEF (base);
1878 CHECK_TYPEDEF (dclass);
1879
1880 if (base == dclass)
1881 return 1;
1882 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1883 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1884 return 1;
1885
1886 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1887 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1888 return 1;
1889
1890 return 0;
1891 }
1892
1893
1894
1895 /* See whether DCLASS has a virtual table. This routine is aimed at
1896 the HP/Taligent ANSI C++ runtime model, and may not work with other
1897 runtime models. Return 1 => Yes, 0 => No. */
1898
1899 int
1900 has_vtable (struct type *dclass)
1901 {
1902 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1903 has virtual functions or virtual bases. */
1904
1905 int i;
1906
1907 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1908 return 0;
1909
1910 /* First check for the presence of virtual bases */
1911 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1912 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1913 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1914 return 1;
1915
1916 /* Next check for virtual functions */
1917 if (TYPE_FN_FIELDLISTS (dclass))
1918 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1919 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1920 return 1;
1921
1922 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1923 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1924 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1925 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1926 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1927 return 1;
1928
1929 /* Well, maybe we don't need a virtual table */
1930 return 0;
1931 }
1932
1933 /* Return a pointer to the "primary base class" of DCLASS.
1934
1935 A NULL return indicates that DCLASS has no primary base, or that it
1936 couldn't be found (insufficient information).
1937
1938 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1939 and may not work with other runtime models. */
1940
1941 struct type *
1942 primary_base_class (struct type *dclass)
1943 {
1944 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1945 is the first directly inherited, non-virtual base class that
1946 requires a virtual table */
1947
1948 int i;
1949
1950 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1951 return NULL;
1952
1953 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1954 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1955 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1956 return TYPE_FIELD_TYPE (dclass, i);
1957
1958 return NULL;
1959 }
1960
1961 /* Global manipulated by virtual_base_list[_aux]() */
1962
1963 static struct vbase *current_vbase_list = NULL;
1964
1965 /* Return a pointer to a null-terminated list of struct vbase
1966 items. The vbasetype pointer of each item in the list points to the
1967 type information for a virtual base of the argument DCLASS.
1968
1969 Helper function for virtual_base_list().
1970 Note: the list goes backward, right-to-left. virtual_base_list()
1971 copies the items out in reverse order. */
1972
1973 static void
1974 virtual_base_list_aux (struct type *dclass)
1975 {
1976 struct vbase *tmp_vbase;
1977 int i;
1978
1979 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1980 return;
1981
1982 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1983 {
1984 /* Recurse on this ancestor, first */
1985 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
1986
1987 /* If this current base is itself virtual, add it to the list */
1988 if (BASETYPE_VIA_VIRTUAL (dclass, i))
1989 {
1990 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
1991
1992 /* Check if base already recorded */
1993 tmp_vbase = current_vbase_list;
1994 while (tmp_vbase)
1995 {
1996 if (tmp_vbase->vbasetype == basetype)
1997 break; /* found it */
1998 tmp_vbase = tmp_vbase->next;
1999 }
2000
2001 if (!tmp_vbase) /* normal exit from loop */
2002 {
2003 /* Allocate new item for this virtual base */
2004 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
2005
2006 /* Stick it on at the end of the list */
2007 tmp_vbase->vbasetype = basetype;
2008 tmp_vbase->next = current_vbase_list;
2009 current_vbase_list = tmp_vbase;
2010 }
2011 } /* if virtual */
2012 } /* for loop over bases */
2013 }
2014
2015
2016 /* Compute the list of virtual bases in the right order. Virtual
2017 bases are laid out in the object's memory area in order of their
2018 occurrence in a depth-first, left-to-right search through the
2019 ancestors.
2020
2021 Argument DCLASS is the type whose virtual bases are required.
2022 Return value is the address of a null-terminated array of pointers
2023 to struct type items.
2024
2025 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2026 and may not work with other runtime models.
2027
2028 This routine merely hands off the argument to virtual_base_list_aux()
2029 and then copies the result into an array to save space. */
2030
2031 struct type **
2032 virtual_base_list (struct type *dclass)
2033 {
2034 struct vbase *tmp_vbase;
2035 struct vbase *tmp_vbase_2;
2036 int i;
2037 int count;
2038 struct type **vbase_array;
2039
2040 current_vbase_list = NULL;
2041 virtual_base_list_aux (dclass);
2042
2043 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2044 /* no body */ ;
2045
2046 count = i;
2047
2048 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
2049
2050 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
2051 vbase_array[i] = tmp_vbase->vbasetype;
2052
2053 /* Get rid of constructed chain */
2054 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2055 while (tmp_vbase)
2056 {
2057 tmp_vbase = tmp_vbase->next;
2058 xfree (tmp_vbase_2);
2059 tmp_vbase_2 = tmp_vbase;
2060 }
2061
2062 vbase_array[count] = NULL;
2063 return vbase_array;
2064 }
2065
2066 /* Return the length of the virtual base list of the type DCLASS. */
2067
2068 int
2069 virtual_base_list_length (struct type *dclass)
2070 {
2071 int i;
2072 struct vbase *tmp_vbase;
2073
2074 current_vbase_list = NULL;
2075 virtual_base_list_aux (dclass);
2076
2077 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2078 /* no body */ ;
2079 return i;
2080 }
2081
2082 /* Return the number of elements of the virtual base list of the type
2083 DCLASS, ignoring those appearing in the primary base (and its
2084 primary base, recursively). */
2085
2086 int
2087 virtual_base_list_length_skip_primaries (struct type *dclass)
2088 {
2089 int i;
2090 struct vbase *tmp_vbase;
2091 struct type *primary;
2092
2093 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2094
2095 if (!primary)
2096 return virtual_base_list_length (dclass);
2097
2098 current_vbase_list = NULL;
2099 virtual_base_list_aux (dclass);
2100
2101 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
2102 {
2103 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
2104 continue;
2105 i++;
2106 }
2107 return i;
2108 }
2109
2110
2111 /* Return the index (position) of type BASE, which is a virtual base
2112 class of DCLASS, in the latter's virtual base list. A return of -1
2113 indicates "not found" or a problem. */
2114
2115 int
2116 virtual_base_index (struct type *base, struct type *dclass)
2117 {
2118 struct type *vbase;
2119 int i;
2120
2121 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2122 (TYPE_CODE (base) != TYPE_CODE_CLASS))
2123 return -1;
2124
2125 i = 0;
2126 vbase = virtual_base_list (dclass)[0];
2127 while (vbase)
2128 {
2129 if (vbase == base)
2130 break;
2131 vbase = virtual_base_list (dclass)[++i];
2132 }
2133
2134 return vbase ? i : -1;
2135 }
2136
2137
2138
2139 /* Return the index (position) of type BASE, which is a virtual base
2140 class of DCLASS, in the latter's virtual base list. Skip over all
2141 bases that may appear in the virtual base list of the primary base
2142 class of DCLASS (recursively). A return of -1 indicates "not
2143 found" or a problem. */
2144
2145 int
2146 virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
2147 {
2148 struct type *vbase;
2149 int i, j;
2150 struct type *primary;
2151
2152 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2153 (TYPE_CODE (base) != TYPE_CODE_CLASS))
2154 return -1;
2155
2156 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2157
2158 j = -1;
2159 i = 0;
2160 vbase = virtual_base_list (dclass)[0];
2161 while (vbase)
2162 {
2163 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2164 j++;
2165 if (vbase == base)
2166 break;
2167 vbase = virtual_base_list (dclass)[++i];
2168 }
2169
2170 return vbase ? j : -1;
2171 }
2172
2173 /* Return position of a derived class DCLASS in the list of
2174 * primary bases starting with the remotest ancestor.
2175 * Position returned is 0-based. */
2176
2177 int
2178 class_index_in_primary_list (struct type *dclass)
2179 {
2180 struct type *pbc; /* primary base class */
2181
2182 /* Simply recurse on primary base */
2183 pbc = TYPE_PRIMARY_BASE (dclass);
2184 if (pbc)
2185 return 1 + class_index_in_primary_list (pbc);
2186 else
2187 return 0;
2188 }
2189
2190 /* Return a count of the number of virtual functions a type has.
2191 * This includes all the virtual functions it inherits from its
2192 * base classes too.
2193 */
2194
2195 /* pai: FIXME This doesn't do the right thing: count redefined virtual
2196 * functions only once (latest redefinition)
2197 */
2198
2199 int
2200 count_virtual_fns (struct type *dclass)
2201 {
2202 int fn, oi; /* function and overloaded instance indices */
2203 int vfuncs; /* count to return */
2204
2205 /* recurse on bases that can share virtual table */
2206 struct type *pbc = primary_base_class (dclass);
2207 if (pbc)
2208 vfuncs = count_virtual_fns (pbc);
2209 else
2210 vfuncs = 0;
2211
2212 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2213 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2214 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
2215 vfuncs++;
2216
2217 return vfuncs;
2218 }
2219 \f
2220
2221
2222 /* Functions for overload resolution begin here */
2223
2224 /* Compare two badness vectors A and B and return the result.
2225 * 0 => A and B are identical
2226 * 1 => A and B are incomparable
2227 * 2 => A is better than B
2228 * 3 => A is worse than B */
2229
2230 int
2231 compare_badness (struct badness_vector *a, struct badness_vector *b)
2232 {
2233 int i;
2234 int tmp;
2235 short found_pos = 0; /* any positives in c? */
2236 short found_neg = 0; /* any negatives in c? */
2237
2238 /* differing lengths => incomparable */
2239 if (a->length != b->length)
2240 return 1;
2241
2242 /* Subtract b from a */
2243 for (i = 0; i < a->length; i++)
2244 {
2245 tmp = a->rank[i] - b->rank[i];
2246 if (tmp > 0)
2247 found_pos = 1;
2248 else if (tmp < 0)
2249 found_neg = 1;
2250 }
2251
2252 if (found_pos)
2253 {
2254 if (found_neg)
2255 return 1; /* incomparable */
2256 else
2257 return 3; /* A > B */
2258 }
2259 else
2260 /* no positives */
2261 {
2262 if (found_neg)
2263 return 2; /* A < B */
2264 else
2265 return 0; /* A == B */
2266 }
2267 }
2268
2269 /* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2270 * to the types of an argument list (ARGS, length NARGS).
2271 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2272
2273 struct badness_vector *
2274 rank_function (struct type **parms, int nparms, struct type **args, int nargs)
2275 {
2276 int i;
2277 struct badness_vector *bv;
2278 int min_len = nparms < nargs ? nparms : nargs;
2279
2280 bv = xmalloc (sizeof (struct badness_vector));
2281 bv->length = nargs + 1; /* add 1 for the length-match rank */
2282 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2283
2284 /* First compare the lengths of the supplied lists.
2285 * If there is a mismatch, set it to a high value. */
2286
2287 /* pai/1997-06-03 FIXME: when we have debug info about default
2288 * arguments and ellipsis parameter lists, we should consider those
2289 * and rank the length-match more finely. */
2290
2291 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2292
2293 /* Now rank all the parameters of the candidate function */
2294 for (i = 1; i <= min_len; i++)
2295 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2296
2297 /* If more arguments than parameters, add dummy entries */
2298 for (i = min_len + 1; i <= nargs; i++)
2299 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2300
2301 return bv;
2302 }
2303
2304 /* Compare the names of two integer types, assuming that any sign
2305 qualifiers have been checked already. We do it this way because
2306 there may be an "int" in the name of one of the types. */
2307
2308 static int
2309 integer_types_same_name_p (const char *first, const char *second)
2310 {
2311 int first_p, second_p;
2312
2313 /* If both are shorts, return 1; if neither is a short, keep checking. */
2314 first_p = (strstr (first, "short") != NULL);
2315 second_p = (strstr (second, "short") != NULL);
2316 if (first_p && second_p)
2317 return 1;
2318 if (first_p || second_p)
2319 return 0;
2320
2321 /* Likewise for long. */
2322 first_p = (strstr (first, "long") != NULL);
2323 second_p = (strstr (second, "long") != NULL);
2324 if (first_p && second_p)
2325 return 1;
2326 if (first_p || second_p)
2327 return 0;
2328
2329 /* Likewise for char. */
2330 first_p = (strstr (first, "char") != NULL);
2331 second_p = (strstr (second, "char") != NULL);
2332 if (first_p && second_p)
2333 return 1;
2334 if (first_p || second_p)
2335 return 0;
2336
2337 /* They must both be ints. */
2338 return 1;
2339 }
2340
2341 /* Compare one type (PARM) for compatibility with another (ARG).
2342 * PARM is intended to be the parameter type of a function; and
2343 * ARG is the supplied argument's type. This function tests if
2344 * the latter can be converted to the former.
2345 *
2346 * Return 0 if they are identical types;
2347 * Otherwise, return an integer which corresponds to how compatible
2348 * PARM is to ARG. The higher the return value, the worse the match.
2349 * Generally the "bad" conversions are all uniformly assigned a 100 */
2350
2351 int
2352 rank_one_type (struct type *parm, struct type *arg)
2353 {
2354 /* Identical type pointers */
2355 /* However, this still doesn't catch all cases of same type for arg
2356 * and param. The reason is that builtin types are different from
2357 * the same ones constructed from the object. */
2358 if (parm == arg)
2359 return 0;
2360
2361 /* Resolve typedefs */
2362 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2363 parm = check_typedef (parm);
2364 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2365 arg = check_typedef (arg);
2366
2367 /*
2368 Well, damnit, if the names are exactly the same,
2369 i'll say they are exactly the same. This happens when we generate
2370 method stubs. The types won't point to the same address, but they
2371 really are the same.
2372 */
2373
2374 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2375 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2376 return 0;
2377
2378 /* Check if identical after resolving typedefs */
2379 if (parm == arg)
2380 return 0;
2381
2382 /* See through references, since we can almost make non-references
2383 references. */
2384 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2385 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2386 + REFERENCE_CONVERSION_BADNESS);
2387 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2388 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2389 + REFERENCE_CONVERSION_BADNESS);
2390 if (overload_debug)
2391 /* Debugging only. */
2392 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2393 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
2394
2395 /* x -> y means arg of type x being supplied for parameter of type y */
2396
2397 switch (TYPE_CODE (parm))
2398 {
2399 case TYPE_CODE_PTR:
2400 switch (TYPE_CODE (arg))
2401 {
2402 case TYPE_CODE_PTR:
2403 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2404 return VOID_PTR_CONVERSION_BADNESS;
2405 else
2406 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2407 case TYPE_CODE_ARRAY:
2408 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2409 case TYPE_CODE_FUNC:
2410 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2411 case TYPE_CODE_INT:
2412 case TYPE_CODE_ENUM:
2413 case TYPE_CODE_FLAGS:
2414 case TYPE_CODE_CHAR:
2415 case TYPE_CODE_RANGE:
2416 case TYPE_CODE_BOOL:
2417 return POINTER_CONVERSION_BADNESS;
2418 default:
2419 return INCOMPATIBLE_TYPE_BADNESS;
2420 }
2421 case TYPE_CODE_ARRAY:
2422 switch (TYPE_CODE (arg))
2423 {
2424 case TYPE_CODE_PTR:
2425 case TYPE_CODE_ARRAY:
2426 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2427 default:
2428 return INCOMPATIBLE_TYPE_BADNESS;
2429 }
2430 case TYPE_CODE_FUNC:
2431 switch (TYPE_CODE (arg))
2432 {
2433 case TYPE_CODE_PTR: /* funcptr -> func */
2434 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2435 default:
2436 return INCOMPATIBLE_TYPE_BADNESS;
2437 }
2438 case TYPE_CODE_INT:
2439 switch (TYPE_CODE (arg))
2440 {
2441 case TYPE_CODE_INT:
2442 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2443 {
2444 /* Deal with signed, unsigned, and plain chars and
2445 signed and unsigned ints */
2446 if (TYPE_NOSIGN (parm))
2447 {
2448 /* This case only for character types */
2449 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2450 return 0;
2451 else
2452 return INTEGER_CONVERSION_BADNESS; /* signed/unsigned char -> plain char */
2453 }
2454 else if (TYPE_UNSIGNED (parm))
2455 {
2456 if (TYPE_UNSIGNED (arg))
2457 {
2458 /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
2459 if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
2460 return 0;
2461 else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
2462 && integer_types_same_name_p (TYPE_NAME (parm), "long"))
2463 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2464 else
2465 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2466 }
2467 else
2468 {
2469 if (integer_types_same_name_p (TYPE_NAME (arg), "long")
2470 && integer_types_same_name_p (TYPE_NAME (parm), "int"))
2471 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2472 else
2473 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2474 }
2475 }
2476 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2477 {
2478 if (integer_types_same_name_p (TYPE_NAME (parm), TYPE_NAME (arg)))
2479 return 0;
2480 else if (integer_types_same_name_p (TYPE_NAME (arg), "int")
2481 && integer_types_same_name_p (TYPE_NAME (parm), "long"))
2482 return INTEGER_PROMOTION_BADNESS;
2483 else
2484 return INTEGER_CONVERSION_BADNESS;
2485 }
2486 else
2487 return INTEGER_CONVERSION_BADNESS;
2488 }
2489 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2490 return INTEGER_PROMOTION_BADNESS;
2491 else
2492 return INTEGER_CONVERSION_BADNESS;
2493 case TYPE_CODE_ENUM:
2494 case TYPE_CODE_FLAGS:
2495 case TYPE_CODE_CHAR:
2496 case TYPE_CODE_RANGE:
2497 case TYPE_CODE_BOOL:
2498 return INTEGER_PROMOTION_BADNESS;
2499 case TYPE_CODE_FLT:
2500 return INT_FLOAT_CONVERSION_BADNESS;
2501 case TYPE_CODE_PTR:
2502 return NS_POINTER_CONVERSION_BADNESS;
2503 default:
2504 return INCOMPATIBLE_TYPE_BADNESS;
2505 }
2506 break;
2507 case TYPE_CODE_ENUM:
2508 switch (TYPE_CODE (arg))
2509 {
2510 case TYPE_CODE_INT:
2511 case TYPE_CODE_CHAR:
2512 case TYPE_CODE_RANGE:
2513 case TYPE_CODE_BOOL:
2514 case TYPE_CODE_ENUM:
2515 return INTEGER_CONVERSION_BADNESS;
2516 case TYPE_CODE_FLT:
2517 return INT_FLOAT_CONVERSION_BADNESS;
2518 default:
2519 return INCOMPATIBLE_TYPE_BADNESS;
2520 }
2521 break;
2522 case TYPE_CODE_CHAR:
2523 switch (TYPE_CODE (arg))
2524 {
2525 case TYPE_CODE_RANGE:
2526 case TYPE_CODE_BOOL:
2527 case TYPE_CODE_ENUM:
2528 return INTEGER_CONVERSION_BADNESS;
2529 case TYPE_CODE_FLT:
2530 return INT_FLOAT_CONVERSION_BADNESS;
2531 case TYPE_CODE_INT:
2532 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2533 return INTEGER_CONVERSION_BADNESS;
2534 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2535 return INTEGER_PROMOTION_BADNESS;
2536 /* >>> !! else fall through !! <<< */
2537 case TYPE_CODE_CHAR:
2538 /* Deal with signed, unsigned, and plain chars for C++
2539 and with int cases falling through from previous case */
2540 if (TYPE_NOSIGN (parm))
2541 {
2542 if (TYPE_NOSIGN (arg))
2543 return 0;
2544 else
2545 return INTEGER_CONVERSION_BADNESS;
2546 }
2547 else if (TYPE_UNSIGNED (parm))
2548 {
2549 if (TYPE_UNSIGNED (arg))
2550 return 0;
2551 else
2552 return INTEGER_PROMOTION_BADNESS;
2553 }
2554 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2555 return 0;
2556 else
2557 return INTEGER_CONVERSION_BADNESS;
2558 default:
2559 return INCOMPATIBLE_TYPE_BADNESS;
2560 }
2561 break;
2562 case TYPE_CODE_RANGE:
2563 switch (TYPE_CODE (arg))
2564 {
2565 case TYPE_CODE_INT:
2566 case TYPE_CODE_CHAR:
2567 case TYPE_CODE_RANGE:
2568 case TYPE_CODE_BOOL:
2569 case TYPE_CODE_ENUM:
2570 return INTEGER_CONVERSION_BADNESS;
2571 case TYPE_CODE_FLT:
2572 return INT_FLOAT_CONVERSION_BADNESS;
2573 default:
2574 return INCOMPATIBLE_TYPE_BADNESS;
2575 }
2576 break;
2577 case TYPE_CODE_BOOL:
2578 switch (TYPE_CODE (arg))
2579 {
2580 case TYPE_CODE_INT:
2581 case TYPE_CODE_CHAR:
2582 case TYPE_CODE_RANGE:
2583 case TYPE_CODE_ENUM:
2584 case TYPE_CODE_FLT:
2585 case TYPE_CODE_PTR:
2586 return BOOLEAN_CONVERSION_BADNESS;
2587 case TYPE_CODE_BOOL:
2588 return 0;
2589 default:
2590 return INCOMPATIBLE_TYPE_BADNESS;
2591 }
2592 break;
2593 case TYPE_CODE_FLT:
2594 switch (TYPE_CODE (arg))
2595 {
2596 case TYPE_CODE_FLT:
2597 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2598 return FLOAT_PROMOTION_BADNESS;
2599 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2600 return 0;
2601 else
2602 return FLOAT_CONVERSION_BADNESS;
2603 case TYPE_CODE_INT:
2604 case TYPE_CODE_BOOL:
2605 case TYPE_CODE_ENUM:
2606 case TYPE_CODE_RANGE:
2607 case TYPE_CODE_CHAR:
2608 return INT_FLOAT_CONVERSION_BADNESS;
2609 default:
2610 return INCOMPATIBLE_TYPE_BADNESS;
2611 }
2612 break;
2613 case TYPE_CODE_COMPLEX:
2614 switch (TYPE_CODE (arg))
2615 { /* Strictly not needed for C++, but... */
2616 case TYPE_CODE_FLT:
2617 return FLOAT_PROMOTION_BADNESS;
2618 case TYPE_CODE_COMPLEX:
2619 return 0;
2620 default:
2621 return INCOMPATIBLE_TYPE_BADNESS;
2622 }
2623 break;
2624 case TYPE_CODE_STRUCT:
2625 /* currently same as TYPE_CODE_CLASS */
2626 switch (TYPE_CODE (arg))
2627 {
2628 case TYPE_CODE_STRUCT:
2629 /* Check for derivation */
2630 if (is_ancestor (parm, arg))
2631 return BASE_CONVERSION_BADNESS;
2632 /* else fall through */
2633 default:
2634 return INCOMPATIBLE_TYPE_BADNESS;
2635 }
2636 break;
2637 case TYPE_CODE_UNION:
2638 switch (TYPE_CODE (arg))
2639 {
2640 case TYPE_CODE_UNION:
2641 default:
2642 return INCOMPATIBLE_TYPE_BADNESS;
2643 }
2644 break;
2645 case TYPE_CODE_MEMBER:
2646 switch (TYPE_CODE (arg))
2647 {
2648 default:
2649 return INCOMPATIBLE_TYPE_BADNESS;
2650 }
2651 break;
2652 case TYPE_CODE_METHOD:
2653 switch (TYPE_CODE (arg))
2654 {
2655
2656 default:
2657 return INCOMPATIBLE_TYPE_BADNESS;
2658 }
2659 break;
2660 case TYPE_CODE_REF:
2661 switch (TYPE_CODE (arg))
2662 {
2663
2664 default:
2665 return INCOMPATIBLE_TYPE_BADNESS;
2666 }
2667
2668 break;
2669 case TYPE_CODE_SET:
2670 switch (TYPE_CODE (arg))
2671 {
2672 /* Not in C++ */
2673 case TYPE_CODE_SET:
2674 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2675 default:
2676 return INCOMPATIBLE_TYPE_BADNESS;
2677 }
2678 break;
2679 case TYPE_CODE_VOID:
2680 default:
2681 return INCOMPATIBLE_TYPE_BADNESS;
2682 } /* switch (TYPE_CODE (arg)) */
2683 }
2684
2685
2686 /* End of functions for overload resolution */
2687
2688 static void
2689 print_bit_vector (B_TYPE *bits, int nbits)
2690 {
2691 int bitno;
2692
2693 for (bitno = 0; bitno < nbits; bitno++)
2694 {
2695 if ((bitno % 8) == 0)
2696 {
2697 puts_filtered (" ");
2698 }
2699 if (B_TST (bits, bitno))
2700 printf_filtered (("1"));
2701 else
2702 printf_filtered (("0"));
2703 }
2704 }
2705
2706 /* Note the first arg should be the "this" pointer, we may not want to
2707 include it since we may get into a infinitely recursive situation. */
2708
2709 static void
2710 print_arg_types (struct field *args, int nargs, int spaces)
2711 {
2712 if (args != NULL)
2713 {
2714 int i;
2715
2716 for (i = 0; i < nargs; i++)
2717 recursive_dump_type (args[i].type, spaces + 2);
2718 }
2719 }
2720
2721 static void
2722 dump_fn_fieldlists (struct type *type, int spaces)
2723 {
2724 int method_idx;
2725 int overload_idx;
2726 struct fn_field *f;
2727
2728 printfi_filtered (spaces, "fn_fieldlists ");
2729 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2730 printf_filtered ("\n");
2731 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2732 {
2733 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2734 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2735 method_idx,
2736 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2737 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2738 gdb_stdout);
2739 printf_filtered (_(") length %d\n"),
2740 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2741 for (overload_idx = 0;
2742 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2743 overload_idx++)
2744 {
2745 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2746 overload_idx,
2747 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2748 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2749 gdb_stdout);
2750 printf_filtered (")\n");
2751 printfi_filtered (spaces + 8, "type ");
2752 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
2753 printf_filtered ("\n");
2754
2755 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2756 spaces + 8 + 2);
2757
2758 printfi_filtered (spaces + 8, "args ");
2759 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
2760 printf_filtered ("\n");
2761
2762 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2763 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
2764 spaces);
2765 printfi_filtered (spaces + 8, "fcontext ");
2766 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2767 gdb_stdout);
2768 printf_filtered ("\n");
2769
2770 printfi_filtered (spaces + 8, "is_const %d\n",
2771 TYPE_FN_FIELD_CONST (f, overload_idx));
2772 printfi_filtered (spaces + 8, "is_volatile %d\n",
2773 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2774 printfi_filtered (spaces + 8, "is_private %d\n",
2775 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2776 printfi_filtered (spaces + 8, "is_protected %d\n",
2777 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2778 printfi_filtered (spaces + 8, "is_stub %d\n",
2779 TYPE_FN_FIELD_STUB (f, overload_idx));
2780 printfi_filtered (spaces + 8, "voffset %u\n",
2781 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2782 }
2783 }
2784 }
2785
2786 static void
2787 print_cplus_stuff (struct type *type, int spaces)
2788 {
2789 printfi_filtered (spaces, "n_baseclasses %d\n",
2790 TYPE_N_BASECLASSES (type));
2791 printfi_filtered (spaces, "nfn_fields %d\n",
2792 TYPE_NFN_FIELDS (type));
2793 printfi_filtered (spaces, "nfn_fields_total %d\n",
2794 TYPE_NFN_FIELDS_TOTAL (type));
2795 if (TYPE_N_BASECLASSES (type) > 0)
2796 {
2797 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2798 TYPE_N_BASECLASSES (type));
2799 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
2800 printf_filtered (")");
2801
2802 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2803 TYPE_N_BASECLASSES (type));
2804 puts_filtered ("\n");
2805 }
2806 if (TYPE_NFIELDS (type) > 0)
2807 {
2808 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2809 {
2810 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2811 TYPE_NFIELDS (type));
2812 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
2813 printf_filtered (")");
2814 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2815 TYPE_NFIELDS (type));
2816 puts_filtered ("\n");
2817 }
2818 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2819 {
2820 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2821 TYPE_NFIELDS (type));
2822 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
2823 printf_filtered (")");
2824 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2825 TYPE_NFIELDS (type));
2826 puts_filtered ("\n");
2827 }
2828 }
2829 if (TYPE_NFN_FIELDS (type) > 0)
2830 {
2831 dump_fn_fieldlists (type, spaces);
2832 }
2833 }
2834
2835 static void
2836 print_bound_type (int bt)
2837 {
2838 switch (bt)
2839 {
2840 case BOUND_CANNOT_BE_DETERMINED:
2841 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2842 break;
2843 case BOUND_BY_REF_ON_STACK:
2844 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2845 break;
2846 case BOUND_BY_VALUE_ON_STACK:
2847 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2848 break;
2849 case BOUND_BY_REF_IN_REG:
2850 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2851 break;
2852 case BOUND_BY_VALUE_IN_REG:
2853 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2854 break;
2855 case BOUND_SIMPLE:
2856 printf_filtered ("(BOUND_SIMPLE)");
2857 break;
2858 default:
2859 printf_filtered (_("(unknown bound type)"));
2860 break;
2861 }
2862 }
2863
2864 static struct obstack dont_print_type_obstack;
2865
2866 void
2867 recursive_dump_type (struct type *type, int spaces)
2868 {
2869 int idx;
2870
2871 if (spaces == 0)
2872 obstack_begin (&dont_print_type_obstack, 0);
2873
2874 if (TYPE_NFIELDS (type) > 0
2875 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2876 {
2877 struct type **first_dont_print
2878 = (struct type **) obstack_base (&dont_print_type_obstack);
2879
2880 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2881 - first_dont_print;
2882
2883 while (--i >= 0)
2884 {
2885 if (type == first_dont_print[i])
2886 {
2887 printfi_filtered (spaces, "type node ");
2888 gdb_print_host_address (type, gdb_stdout);
2889 printf_filtered (_(" <same as already seen type>\n"));
2890 return;
2891 }
2892 }
2893
2894 obstack_ptr_grow (&dont_print_type_obstack, type);
2895 }
2896
2897 printfi_filtered (spaces, "type node ");
2898 gdb_print_host_address (type, gdb_stdout);
2899 printf_filtered ("\n");
2900 printfi_filtered (spaces, "name '%s' (",
2901 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2902 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2903 printf_filtered (")\n");
2904 printfi_filtered (spaces, "tagname '%s' (",
2905 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2906 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2907 printf_filtered (")\n");
2908 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2909 switch (TYPE_CODE (type))
2910 {
2911 case TYPE_CODE_UNDEF:
2912 printf_filtered ("(TYPE_CODE_UNDEF)");
2913 break;
2914 case TYPE_CODE_PTR:
2915 printf_filtered ("(TYPE_CODE_PTR)");
2916 break;
2917 case TYPE_CODE_ARRAY:
2918 printf_filtered ("(TYPE_CODE_ARRAY)");
2919 break;
2920 case TYPE_CODE_STRUCT:
2921 printf_filtered ("(TYPE_CODE_STRUCT)");
2922 break;
2923 case TYPE_CODE_UNION:
2924 printf_filtered ("(TYPE_CODE_UNION)");
2925 break;
2926 case TYPE_CODE_ENUM:
2927 printf_filtered ("(TYPE_CODE_ENUM)");
2928 break;
2929 case TYPE_CODE_FLAGS:
2930 printf_filtered ("(TYPE_CODE_FLAGS)");
2931 break;
2932 case TYPE_CODE_FUNC:
2933 printf_filtered ("(TYPE_CODE_FUNC)");
2934 break;
2935 case TYPE_CODE_INT:
2936 printf_filtered ("(TYPE_CODE_INT)");
2937 break;
2938 case TYPE_CODE_FLT:
2939 printf_filtered ("(TYPE_CODE_FLT)");
2940 break;
2941 case TYPE_CODE_VOID:
2942 printf_filtered ("(TYPE_CODE_VOID)");
2943 break;
2944 case TYPE_CODE_SET:
2945 printf_filtered ("(TYPE_CODE_SET)");
2946 break;
2947 case TYPE_CODE_RANGE:
2948 printf_filtered ("(TYPE_CODE_RANGE)");
2949 break;
2950 case TYPE_CODE_STRING:
2951 printf_filtered ("(TYPE_CODE_STRING)");
2952 break;
2953 case TYPE_CODE_BITSTRING:
2954 printf_filtered ("(TYPE_CODE_BITSTRING)");
2955 break;
2956 case TYPE_CODE_ERROR:
2957 printf_filtered ("(TYPE_CODE_ERROR)");
2958 break;
2959 case TYPE_CODE_MEMBER:
2960 printf_filtered ("(TYPE_CODE_MEMBER)");
2961 break;
2962 case TYPE_CODE_METHOD:
2963 printf_filtered ("(TYPE_CODE_METHOD)");
2964 break;
2965 case TYPE_CODE_REF:
2966 printf_filtered ("(TYPE_CODE_REF)");
2967 break;
2968 case TYPE_CODE_CHAR:
2969 printf_filtered ("(TYPE_CODE_CHAR)");
2970 break;
2971 case TYPE_CODE_BOOL:
2972 printf_filtered ("(TYPE_CODE_BOOL)");
2973 break;
2974 case TYPE_CODE_COMPLEX:
2975 printf_filtered ("(TYPE_CODE_COMPLEX)");
2976 break;
2977 case TYPE_CODE_TYPEDEF:
2978 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2979 break;
2980 case TYPE_CODE_TEMPLATE:
2981 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2982 break;
2983 case TYPE_CODE_TEMPLATE_ARG:
2984 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2985 break;
2986 case TYPE_CODE_NAMESPACE:
2987 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2988 break;
2989 default:
2990 printf_filtered ("(UNKNOWN TYPE CODE)");
2991 break;
2992 }
2993 puts_filtered ("\n");
2994 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2995 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2996 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2997 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2998 puts_filtered ("\n");
2999 printfi_filtered (spaces, "lower_bound_type 0x%x ",
3000 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3001 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
3002 puts_filtered ("\n");
3003 printfi_filtered (spaces, "objfile ");
3004 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
3005 printf_filtered ("\n");
3006 printfi_filtered (spaces, "target_type ");
3007 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3008 printf_filtered ("\n");
3009 if (TYPE_TARGET_TYPE (type) != NULL)
3010 {
3011 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3012 }
3013 printfi_filtered (spaces, "pointer_type ");
3014 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3015 printf_filtered ("\n");
3016 printfi_filtered (spaces, "reference_type ");
3017 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3018 printf_filtered ("\n");
3019 printfi_filtered (spaces, "type_chain ");
3020 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3021 printf_filtered ("\n");
3022 printfi_filtered (spaces, "instance_flags 0x%x", TYPE_INSTANCE_FLAGS (type));
3023 if (TYPE_CONST (type))
3024 {
3025 puts_filtered (" TYPE_FLAG_CONST");
3026 }
3027 if (TYPE_VOLATILE (type))
3028 {
3029 puts_filtered (" TYPE_FLAG_VOLATILE");
3030 }
3031 if (TYPE_CODE_SPACE (type))
3032 {
3033 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3034 }
3035 if (TYPE_DATA_SPACE (type))
3036 {
3037 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3038 }
3039 if (TYPE_ADDRESS_CLASS_1 (type))
3040 {
3041 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3042 }
3043 if (TYPE_ADDRESS_CLASS_2 (type))
3044 {
3045 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3046 }
3047 puts_filtered ("\n");
3048 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
3049 if (TYPE_UNSIGNED (type))
3050 {
3051 puts_filtered (" TYPE_FLAG_UNSIGNED");
3052 }
3053 if (TYPE_NOSIGN (type))
3054 {
3055 puts_filtered (" TYPE_FLAG_NOSIGN");
3056 }
3057 if (TYPE_STUB (type))
3058 {
3059 puts_filtered (" TYPE_FLAG_STUB");
3060 }
3061 if (TYPE_TARGET_STUB (type))
3062 {
3063 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3064 }
3065 if (TYPE_STATIC (type))
3066 {
3067 puts_filtered (" TYPE_FLAG_STATIC");
3068 }
3069 if (TYPE_PROTOTYPED (type))
3070 {
3071 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3072 }
3073 if (TYPE_INCOMPLETE (type))
3074 {
3075 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3076 }
3077 if (TYPE_VARARGS (type))
3078 {
3079 puts_filtered (" TYPE_FLAG_VARARGS");
3080 }
3081 /* This is used for things like AltiVec registers on ppc. Gcc emits
3082 an attribute for the array type, which tells whether or not we
3083 have a vector, instead of a regular array. */
3084 if (TYPE_VECTOR (type))
3085 {
3086 puts_filtered (" TYPE_FLAG_VECTOR");
3087 }
3088 puts_filtered ("\n");
3089 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3090 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3091 puts_filtered ("\n");
3092 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3093 {
3094 printfi_filtered (spaces + 2,
3095 "[%d] bitpos %d bitsize %d type ",
3096 idx, TYPE_FIELD_BITPOS (type, idx),
3097 TYPE_FIELD_BITSIZE (type, idx));
3098 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3099 printf_filtered (" name '%s' (",
3100 TYPE_FIELD_NAME (type, idx) != NULL
3101 ? TYPE_FIELD_NAME (type, idx)
3102 : "<NULL>");
3103 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3104 printf_filtered (")\n");
3105 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3106 {
3107 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3108 }
3109 }
3110 printfi_filtered (spaces, "vptr_basetype ");
3111 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3112 puts_filtered ("\n");
3113 if (TYPE_VPTR_BASETYPE (type) != NULL)
3114 {
3115 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3116 }
3117 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3118 switch (TYPE_CODE (type))
3119 {
3120 case TYPE_CODE_STRUCT:
3121 printfi_filtered (spaces, "cplus_stuff ");
3122 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3123 puts_filtered ("\n");
3124 print_cplus_stuff (type, spaces);
3125 break;
3126
3127 case TYPE_CODE_FLT:
3128 printfi_filtered (spaces, "floatformat ");
3129 if (TYPE_FLOATFORMAT (type) == NULL
3130 || TYPE_FLOATFORMAT (type)->name == NULL)
3131 puts_filtered ("(null)");
3132 else
3133 puts_filtered (TYPE_FLOATFORMAT (type)->name);
3134 puts_filtered ("\n");
3135 break;
3136
3137 default:
3138 /* We have to pick one of the union types to be able print and test
3139 the value. Pick cplus_struct_type, even though we know it isn't
3140 any particular one. */
3141 printfi_filtered (spaces, "type_specific ");
3142 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3143 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3144 {
3145 printf_filtered (_(" (unknown data form)"));
3146 }
3147 printf_filtered ("\n");
3148 break;
3149
3150 }
3151 if (spaces == 0)
3152 obstack_free (&dont_print_type_obstack, NULL);
3153 }
3154
3155 static void build_gdbtypes (void);
3156 static void
3157 build_gdbtypes (void)
3158 {
3159 builtin_type_void =
3160 init_type (TYPE_CODE_VOID, 1,
3161 0,
3162 "void", (struct objfile *) NULL);
3163 builtin_type_char =
3164 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3165 (TYPE_FLAG_NOSIGN
3166 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
3167 "char", (struct objfile *) NULL);
3168 builtin_type_true_char =
3169 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3170 0,
3171 "true character", (struct objfile *) NULL);
3172 builtin_type_signed_char =
3173 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3174 0,
3175 "signed char", (struct objfile *) NULL);
3176 builtin_type_unsigned_char =
3177 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3178 TYPE_FLAG_UNSIGNED,
3179 "unsigned char", (struct objfile *) NULL);
3180 builtin_type_short =
3181 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3182 0,
3183 "short", (struct objfile *) NULL);
3184 builtin_type_unsigned_short =
3185 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3186 TYPE_FLAG_UNSIGNED,
3187 "unsigned short", (struct objfile *) NULL);
3188 builtin_type_int =
3189 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3190 0,
3191 "int", (struct objfile *) NULL);
3192 builtin_type_unsigned_int =
3193 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3194 TYPE_FLAG_UNSIGNED,
3195 "unsigned int", (struct objfile *) NULL);
3196 builtin_type_long =
3197 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3198 0,
3199 "long", (struct objfile *) NULL);
3200 builtin_type_unsigned_long =
3201 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3202 TYPE_FLAG_UNSIGNED,
3203 "unsigned long", (struct objfile *) NULL);
3204 builtin_type_long_long =
3205 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3206 0,
3207 "long long", (struct objfile *) NULL);
3208 builtin_type_unsigned_long_long =
3209 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3210 TYPE_FLAG_UNSIGNED,
3211 "unsigned long long", (struct objfile *) NULL);
3212 builtin_type_float =
3213 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3214 0,
3215 "float", (struct objfile *) NULL);
3216 /* vinschen@redhat.com 2002-02-08:
3217 The below lines are disabled since they are doing the wrong
3218 thing for non-multiarch targets. They are setting the correct
3219 type of floats for the target but while on multiarch targets
3220 this is done everytime the architecture changes, it's done on
3221 non-multiarch targets only on startup, leaving the wrong values
3222 in even if the architecture changes (eg. from big-endian to
3223 little-endian). */
3224 #if 0
3225 TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
3226 #endif
3227 builtin_type_double =
3228 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3229 0,
3230 "double", (struct objfile *) NULL);
3231 #if 0
3232 TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
3233 #endif
3234 builtin_type_long_double =
3235 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3236 0,
3237 "long double", (struct objfile *) NULL);
3238 #if 0
3239 TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
3240 #endif
3241 builtin_type_complex =
3242 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3243 0,
3244 "complex", (struct objfile *) NULL);
3245 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3246 builtin_type_double_complex =
3247 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3248 0,
3249 "double complex", (struct objfile *) NULL);
3250 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3251 builtin_type_string =
3252 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3253 0,
3254 "string", (struct objfile *) NULL);
3255 builtin_type_bool =
3256 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3257 0,
3258 "bool", (struct objfile *) NULL);
3259
3260 /* Add user knob for controlling resolution of opaque types */
3261 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3262 &opaque_type_resolution, _("\
3263 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3264 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3265 NULL,
3266 show_opaque_type_resolution,
3267 &setlist, &showlist);
3268 opaque_type_resolution = 1;
3269
3270 /* Build SIMD types. */
3271 builtin_type_v4sf
3272 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
3273 builtin_type_v4si
3274 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
3275 builtin_type_v16qi
3276 = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
3277 builtin_type_v8qi
3278 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
3279 builtin_type_v8hi
3280 = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
3281 builtin_type_v4hi
3282 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3283 builtin_type_v2si
3284 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
3285
3286 /* 128 bit vectors. */
3287 builtin_type_v2_double = init_vector_type (builtin_type_double, 2);
3288 builtin_type_v4_float = init_vector_type (builtin_type_float, 4);
3289 builtin_type_v2_int64 = init_vector_type (builtin_type_int64, 2);
3290 builtin_type_v4_int32 = init_vector_type (builtin_type_int32, 4);
3291 builtin_type_v8_int16 = init_vector_type (builtin_type_int16, 8);
3292 builtin_type_v16_int8 = init_vector_type (builtin_type_int8, 16);
3293 /* 64 bit vectors. */
3294 builtin_type_v2_float = init_vector_type (builtin_type_float, 2);
3295 builtin_type_v2_int32 = init_vector_type (builtin_type_int32, 2);
3296 builtin_type_v4_int16 = init_vector_type (builtin_type_int16, 4);
3297 builtin_type_v8_int8 = init_vector_type (builtin_type_int8, 8);
3298
3299 /* Vector types. */
3300 builtin_type_vec64 = build_builtin_type_vec64 ();
3301 builtin_type_vec128 = build_builtin_type_vec128 ();
3302
3303 /* Pointer/Address types. */
3304
3305 /* NOTE: on some targets, addresses and pointers are not necessarily
3306 the same --- for example, on the D10V, pointers are 16 bits long,
3307 but addresses are 32 bits long. See doc/gdbint.texinfo,
3308 ``Pointers Are Not Always Addresses''.
3309
3310 The upshot is:
3311 - gdb's `struct type' always describes the target's
3312 representation.
3313 - gdb's `struct value' objects should always hold values in
3314 target form.
3315 - gdb's CORE_ADDR values are addresses in the unified virtual
3316 address space that the assembler and linker work with. Thus,
3317 since target_read_memory takes a CORE_ADDR as an argument, it
3318 can access any memory on the target, even if the processor has
3319 separate code and data address spaces.
3320
3321 So, for example:
3322 - If v is a value holding a D10V code pointer, its contents are
3323 in target form: a big-endian address left-shifted two bits.
3324 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3325 sizeof (void *) == 2 on the target.
3326
3327 In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3328 target type for a value the target will never see. It's only
3329 used to hold the values of (typeless) linker symbols, which are
3330 indeed in the unified virtual address space. */
3331 builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
3332 builtin_type_void_func_ptr
3333 = lookup_pointer_type (lookup_function_type (builtin_type_void));
3334 builtin_type_CORE_ADDR =
3335 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
3336 TYPE_FLAG_UNSIGNED,
3337 "__CORE_ADDR", (struct objfile *) NULL);
3338 builtin_type_bfd_vma =
3339 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3340 TYPE_FLAG_UNSIGNED,
3341 "__bfd_vma", (struct objfile *) NULL);
3342 }
3343
3344 static struct gdbarch_data *gdbtypes_data;
3345
3346 const struct builtin_type *
3347 builtin_type (struct gdbarch *gdbarch)
3348 {
3349 return gdbarch_data (gdbarch, gdbtypes_data);
3350 }
3351
3352
3353 static struct type *
3354 build_flt (int bit, char *name, const struct floatformat *floatformat)
3355 {
3356 struct type *t;
3357 if (bit <= 0 || floatformat == NULL)
3358 {
3359 gdb_assert (builtin_type_error != NULL);
3360 return builtin_type_error;
3361 }
3362 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT,
3363 0, name, (struct objfile *) NULL);
3364 TYPE_FLOATFORMAT (t) = floatformat;
3365 return t;
3366 }
3367
3368 static struct type *
3369 build_complex (int bit, char *name, struct type *target_type)
3370 {
3371 struct type *t;
3372 if (bit <= 0 || target_type == builtin_type_error)
3373 {
3374 gdb_assert (builtin_type_error != NULL);
3375 return builtin_type_error;
3376 }
3377 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3378 0, name, (struct objfile *) NULL);
3379 TYPE_TARGET_TYPE (t) = target_type;
3380 return t;
3381 }
3382
3383 static void *
3384 gdbtypes_post_init (struct gdbarch *gdbarch)
3385 {
3386 struct builtin_type *builtin_type
3387 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3388
3389 builtin_type->builtin_void =
3390 init_type (TYPE_CODE_VOID, 1,
3391 0,
3392 "void", (struct objfile *) NULL);
3393 builtin_type->builtin_char =
3394 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3395 (TYPE_FLAG_NOSIGN
3396 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
3397 "char", (struct objfile *) NULL);
3398 builtin_type->builtin_true_char =
3399 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3400 0,
3401 "true character", (struct objfile *) NULL);
3402 builtin_type->builtin_signed_char =
3403 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3404 0,
3405 "signed char", (struct objfile *) NULL);
3406 builtin_type->builtin_unsigned_char =
3407 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3408 TYPE_FLAG_UNSIGNED,
3409 "unsigned char", (struct objfile *) NULL);
3410 builtin_type->builtin_short =
3411 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3412 0,
3413 "short", (struct objfile *) NULL);
3414 builtin_type->builtin_unsigned_short =
3415 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3416 TYPE_FLAG_UNSIGNED,
3417 "unsigned short", (struct objfile *) NULL);
3418 builtin_type->builtin_int =
3419 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3420 0,
3421 "int", (struct objfile *) NULL);
3422 builtin_type->builtin_unsigned_int =
3423 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3424 TYPE_FLAG_UNSIGNED,
3425 "unsigned int", (struct objfile *) NULL);
3426 builtin_type->builtin_long =
3427 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3428 0,
3429 "long", (struct objfile *) NULL);
3430 builtin_type->builtin_unsigned_long =
3431 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3432 TYPE_FLAG_UNSIGNED,
3433 "unsigned long", (struct objfile *) NULL);
3434 builtin_type->builtin_long_long =
3435 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3436 0,
3437 "long long", (struct objfile *) NULL);
3438 builtin_type->builtin_unsigned_long_long =
3439 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3440 TYPE_FLAG_UNSIGNED,
3441 "unsigned long long", (struct objfile *) NULL);
3442 builtin_type->builtin_float
3443 = build_flt (gdbarch_float_bit (gdbarch), "float",
3444 gdbarch_float_format (gdbarch));
3445 builtin_type->builtin_double
3446 = build_flt (gdbarch_double_bit (gdbarch), "double",
3447 gdbarch_double_format (gdbarch));
3448 builtin_type->builtin_long_double
3449 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3450 gdbarch_long_double_format (gdbarch));
3451 builtin_type->builtin_complex
3452 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3453 builtin_type->builtin_float);
3454 builtin_type->builtin_double_complex
3455 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3456 builtin_type->builtin_double);
3457 builtin_type->builtin_string =
3458 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3459 0,
3460 "string", (struct objfile *) NULL);
3461 builtin_type->builtin_bool =
3462 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3463 0,
3464 "bool", (struct objfile *) NULL);
3465
3466 /* Pointer/Address types. */
3467
3468 /* NOTE: on some targets, addresses and pointers are not necessarily
3469 the same --- for example, on the D10V, pointers are 16 bits long,
3470 but addresses are 32 bits long. See doc/gdbint.texinfo,
3471 ``Pointers Are Not Always Addresses''.
3472
3473 The upshot is:
3474 - gdb's `struct type' always describes the target's
3475 representation.
3476 - gdb's `struct value' objects should always hold values in
3477 target form.
3478 - gdb's CORE_ADDR values are addresses in the unified virtual
3479 address space that the assembler and linker work with. Thus,
3480 since target_read_memory takes a CORE_ADDR as an argument, it
3481 can access any memory on the target, even if the processor has
3482 separate code and data address spaces.
3483
3484 So, for example:
3485 - If v is a value holding a D10V code pointer, its contents are
3486 in target form: a big-endian address left-shifted two bits.
3487 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3488 sizeof (void *) == 2 on the target.
3489
3490 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3491 target type for a value the target will never see. It's only
3492 used to hold the values of (typeless) linker symbols, which are
3493 indeed in the unified virtual address space. */
3494 builtin_type->builtin_data_ptr
3495 = make_pointer_type (builtin_type->builtin_void, NULL);
3496 builtin_type->builtin_func_ptr
3497 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3498 builtin_type->builtin_core_addr =
3499 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
3500 TYPE_FLAG_UNSIGNED,
3501 "__CORE_ADDR", (struct objfile *) NULL);
3502
3503 return builtin_type;
3504 }
3505
3506 extern void _initialize_gdbtypes (void);
3507 void
3508 _initialize_gdbtypes (void)
3509 {
3510 struct cmd_list_element *c;
3511
3512 builtin_type_int0 =
3513 init_type (TYPE_CODE_INT, 0 / 8,
3514 0,
3515 "int0_t", (struct objfile *) NULL);
3516 builtin_type_int8 =
3517 init_type (TYPE_CODE_INT, 8 / 8,
3518 0,
3519 "int8_t", (struct objfile *) NULL);
3520 builtin_type_uint8 =
3521 init_type (TYPE_CODE_INT, 8 / 8,
3522 TYPE_FLAG_UNSIGNED,
3523 "uint8_t", (struct objfile *) NULL);
3524 builtin_type_int16 =
3525 init_type (TYPE_CODE_INT, 16 / 8,
3526 0,
3527 "int16_t", (struct objfile *) NULL);
3528 builtin_type_uint16 =
3529 init_type (TYPE_CODE_INT, 16 / 8,
3530 TYPE_FLAG_UNSIGNED,
3531 "uint16_t", (struct objfile *) NULL);
3532 builtin_type_int32 =
3533 init_type (TYPE_CODE_INT, 32 / 8,
3534 0,
3535 "int32_t", (struct objfile *) NULL);
3536 builtin_type_uint32 =
3537 init_type (TYPE_CODE_INT, 32 / 8,
3538 TYPE_FLAG_UNSIGNED,
3539 "uint32_t", (struct objfile *) NULL);
3540 builtin_type_int64 =
3541 init_type (TYPE_CODE_INT, 64 / 8,
3542 0,
3543 "int64_t", (struct objfile *) NULL);
3544 builtin_type_uint64 =
3545 init_type (TYPE_CODE_INT, 64 / 8,
3546 TYPE_FLAG_UNSIGNED,
3547 "uint64_t", (struct objfile *) NULL);
3548 builtin_type_int128 =
3549 init_type (TYPE_CODE_INT, 128 / 8,
3550 0,
3551 "int128_t", (struct objfile *) NULL);
3552 builtin_type_uint128 =
3553 init_type (TYPE_CODE_INT, 128 / 8,
3554 TYPE_FLAG_UNSIGNED,
3555 "uint128_t", (struct objfile *) NULL);
3556
3557 build_gdbtypes ();
3558
3559 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3560
3561 /* FIXME - For the moment, handle types by swapping them in and out.
3562 Should be using the per-architecture data-pointer and a large
3563 struct. */
3564 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void);
3565 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_char);
3566 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_short);
3567 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_int);
3568 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long);
3569 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_long);
3570 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_signed_char);
3571 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_char);
3572 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_short);
3573 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_int);
3574 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long);
3575 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_unsigned_long_long);
3576 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_float);
3577 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double);
3578 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_long_double);
3579 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_complex);
3580 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_double_complex);
3581 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_string);
3582 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4sf);
3583 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4si);
3584 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16qi);
3585 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8qi);
3586 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8hi);
3587 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4hi);
3588 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2si);
3589 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_double);
3590 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_float);
3591 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int64);
3592 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int32);
3593 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int16);
3594 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v16_int8);
3595 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_float);
3596 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v2_int32);
3597 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v8_int8);
3598 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_v4_int16);
3599 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_vec128);
3600 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
3601 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
3602 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3603 DEPRECATED_REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
3604 deprecated_register_gdbarch_swap (NULL, 0, build_gdbtypes);
3605
3606 /* Note: These types do not need to be swapped - they are target
3607 neutral. */
3608 builtin_type_ieee_single_big =
3609 init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3610 0, "builtin_type_ieee_single_big", NULL);
3611 TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3612 builtin_type_ieee_single_little =
3613 init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3614 0, "builtin_type_ieee_single_little", NULL);
3615 TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
3616 builtin_type_ieee_single[BFD_ENDIAN_BIG]
3617 = build_flt (floatformat_ieee_single_big.totalsize,
3618 "builtin_type_ieee_single_big",
3619 &floatformat_ieee_single_big);
3620 builtin_type_ieee_single[BFD_ENDIAN_LITTLE]
3621 = build_flt (floatformat_ieee_single_little.totalsize,
3622 "builtin_type_ieee_single_little",
3623 &floatformat_ieee_single_little);
3624 builtin_type_ieee_double_big =
3625 init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3626 0, "builtin_type_ieee_double_big", NULL);
3627 TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
3628 builtin_type_ieee_double_little =
3629 init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3630 0, "builtin_type_ieee_double_little", NULL);
3631 TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
3632 builtin_type_ieee_double[BFD_ENDIAN_BIG]
3633 = build_flt (floatformat_ieee_double_big.totalsize,
3634 "builtin_type_ieee_double_big",
3635 &floatformat_ieee_double_big);
3636 builtin_type_ieee_double[BFD_ENDIAN_LITTLE]
3637 = build_flt (floatformat_ieee_double_little.totalsize,
3638 "builtin_type_ieee_double_little",
3639 &floatformat_ieee_double_little);
3640 builtin_type_ieee_double_littlebyte_bigword =
3641 init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3642 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
3643 TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
3644 builtin_type_i387_ext =
3645 init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3646 0, "builtin_type_i387_ext", NULL);
3647 TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
3648 builtin_type_m68881_ext =
3649 init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3650 0, "builtin_type_m68881_ext", NULL);
3651 TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
3652 builtin_type_i960_ext =
3653 init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3654 0, "builtin_type_i960_ext", NULL);
3655 TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
3656 builtin_type_m88110_ext =
3657 init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3658 0, "builtin_type_m88110_ext", NULL);
3659 TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
3660 builtin_type_m88110_harris_ext =
3661 init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3662 0, "builtin_type_m88110_harris_ext", NULL);
3663 TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
3664 builtin_type_arm_ext_big =
3665 init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3666 0, "builtin_type_arm_ext_big", NULL);
3667 TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
3668 builtin_type_arm_ext_littlebyte_bigword =
3669 init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3670 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
3671 TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
3672 builtin_type_arm_ext[BFD_ENDIAN_BIG]
3673 = build_flt (floatformat_arm_ext_big.totalsize,
3674 "builtin_type_arm_ext_big",
3675 &floatformat_arm_ext_big);
3676 builtin_type_arm_ext[BFD_ENDIAN_LITTLE]
3677 = build_flt (floatformat_arm_ext_littlebyte_bigword.totalsize,
3678 "builtin_type_arm_ext_littlebyte_bigword",
3679 &floatformat_arm_ext_littlebyte_bigword);
3680 builtin_type_ia64_spill_big =
3681 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3682 0, "builtin_type_ia64_spill_big", NULL);
3683 TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
3684 builtin_type_ia64_spill_little =
3685 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3686 0, "builtin_type_ia64_spill_little", NULL);
3687 TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
3688 builtin_type_ia64_spill[BFD_ENDIAN_BIG]
3689 = build_flt (floatformat_ia64_spill_big.totalsize,
3690 "builtin_type_ia64_spill_big",
3691 &floatformat_ia64_spill_big);
3692 builtin_type_ia64_spill[BFD_ENDIAN_LITTLE]
3693 = build_flt (floatformat_ia64_spill_little.totalsize,
3694 "builtin_type_ia64_spill_little",
3695 &floatformat_ia64_spill_little);
3696 builtin_type_ia64_quad_big =
3697 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3698 0, "builtin_type_ia64_quad_big", NULL);
3699 TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
3700 builtin_type_ia64_quad_little =
3701 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3702 0, "builtin_type_ia64_quad_little", NULL);
3703 TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
3704 builtin_type_ia64_quad[BFD_ENDIAN_BIG]
3705 = build_flt (floatformat_ia64_quad_big.totalsize,
3706 "builtin_type_ia64_quad_big",
3707 &floatformat_ia64_quad_big);
3708 builtin_type_ia64_quad[BFD_ENDIAN_LITTLE]
3709 = build_flt (floatformat_ia64_quad_little.totalsize,
3710 "builtin_type_ia64_quad_little",
3711 &floatformat_ia64_quad_little);
3712
3713 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3714 Set debugging of C++ overloading."), _("\
3715 Show debugging of C++ overloading."), _("\
3716 When enabled, ranking of the functions is displayed."),
3717 NULL,
3718 show_overload_debug,
3719 &setdebuglist, &showdebuglist);
3720 }
This page took 0.187985 seconds and 4 git commands to generate.