b4f3b773220e46ca5a1059a55e909dc4c4e27e25
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_half_big,
47 &floatformat_ieee_half_little
48 };
49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_single_big,
51 &floatformat_ieee_single_little
52 };
53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_little
56 };
57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_ieee_double_big,
59 &floatformat_ieee_double_littlebyte_bigword
60 };
61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_i387_ext,
63 &floatformat_i387_ext
64 };
65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_m68881_ext,
67 &floatformat_m68881_ext
68 };
69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_arm_ext_big,
71 &floatformat_arm_ext_littlebyte_bigword
72 };
73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_spill_big,
75 &floatformat_ia64_spill_little
76 };
77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ia64_quad_big,
79 &floatformat_ia64_quad_little
80 };
81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_f,
83 &floatformat_vax_f
84 };
85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_vax_d,
87 &floatformat_vax_d
88 };
89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_ibm_long_double,
91 &floatformat_ibm_long_double
92 };
93
94
95 int opaque_type_resolution = 1;
96 static void
97 show_opaque_type_resolution (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c,
99 const char *value)
100 {
101 fprintf_filtered (file, _("\
102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
103 value);
104 }
105
106 int overload_debug = 0;
107 static void
108 show_overload_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
112 value);
113 }
114
115 struct extra
116 {
117 char str[128];
118 int len;
119 }; /* Maximum extension is 128! FIXME */
120
121 static void print_bit_vector (B_TYPE *, int);
122 static void print_arg_types (struct field *, int, int);
123 static void dump_fn_fieldlists (struct type *, int);
124 static void print_cplus_stuff (struct type *, int);
125
126
127 /* Allocate a new OBJFILE-associated type structure and fill it
128 with some defaults. Space for the type structure is allocated
129 on the objfile's objfile_obstack. */
130
131 struct type *
132 alloc_type (struct objfile *objfile)
133 {
134 struct type *type;
135
136 gdb_assert (objfile != NULL);
137
138 /* Alloc the structure and start off with all fields zeroed. */
139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
141 struct main_type);
142 OBJSTAT (objfile, n_types++);
143
144 TYPE_OBJFILE_OWNED (type) = 1;
145 TYPE_OWNER (type).objfile = objfile;
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_VPTR_FIELDNO (type) = -1;
151 TYPE_CHAIN (type) = type; /* Chain back to itself. */
152
153 return type;
154 }
155
156 /* Allocate a new GDBARCH-associated type structure and fill it
157 with some defaults. Space for the type structure is allocated
158 on the heap. */
159
160 struct type *
161 alloc_type_arch (struct gdbarch *gdbarch)
162 {
163 struct type *type;
164
165 gdb_assert (gdbarch != NULL);
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 type = XZALLOC (struct type);
170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
171
172 TYPE_OBJFILE_OWNED (type) = 0;
173 TYPE_OWNER (type).gdbarch = gdbarch;
174
175 /* Initialize the fields that might not be zero. */
176
177 TYPE_CODE (type) = TYPE_CODE_UNDEF;
178 TYPE_VPTR_FIELDNO (type) = -1;
179 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180
181 return type;
182 }
183
184 /* If TYPE is objfile-associated, allocate a new type structure
185 associated with the same objfile. If TYPE is gdbarch-associated,
186 allocate a new type structure associated with the same gdbarch. */
187
188 struct type *
189 alloc_type_copy (const struct type *type)
190 {
191 if (TYPE_OBJFILE_OWNED (type))
192 return alloc_type (TYPE_OWNER (type).objfile);
193 else
194 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
195 }
196
197 /* If TYPE is gdbarch-associated, return that architecture.
198 If TYPE is objfile-associated, return that objfile's architecture. */
199
200 struct gdbarch *
201 get_type_arch (const struct type *type)
202 {
203 if (TYPE_OBJFILE_OWNED (type))
204 return get_objfile_arch (TYPE_OWNER (type).objfile);
205 else
206 return TYPE_OWNER (type).gdbarch;
207 }
208
209
210 /* Alloc a new type instance structure, fill it with some defaults,
211 and point it at OLDTYPE. Allocate the new type instance from the
212 same place as OLDTYPE. */
213
214 static struct type *
215 alloc_type_instance (struct type *oldtype)
216 {
217 struct type *type;
218
219 /* Allocate the structure. */
220
221 if (! TYPE_OBJFILE_OWNED (oldtype))
222 type = XZALLOC (struct type);
223 else
224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
225 struct type);
226
227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
228
229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
230
231 return type;
232 }
233
234 /* Clear all remnants of the previous type at TYPE, in preparation for
235 replacing it with something else. Preserve owner information. */
236 static void
237 smash_type (struct type *type)
238 {
239 int objfile_owned = TYPE_OBJFILE_OWNED (type);
240 union type_owner owner = TYPE_OWNER (type);
241
242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
243
244 /* Restore owner information. */
245 TYPE_OBJFILE_OWNED (type) = objfile_owned;
246 TYPE_OWNER (type) = owner;
247
248 /* For now, delete the rings. */
249 TYPE_CHAIN (type) = type;
250
251 /* For now, leave the pointer/reference types alone. */
252 }
253
254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
255 to a pointer to memory where the pointer type should be stored.
256 If *TYPEPTR is zero, update it to point to the pointer type we return.
257 We allocate new memory if needed. */
258
259 struct type *
260 make_pointer_type (struct type *type, struct type **typeptr)
261 {
262 struct type *ntype; /* New type */
263 struct type *chain;
264
265 ntype = TYPE_POINTER_TYPE (type);
266
267 if (ntype)
268 {
269 if (typeptr == 0)
270 return ntype; /* Don't care about alloc,
271 and have new type. */
272 else if (*typeptr == 0)
273 {
274 *typeptr = ntype; /* Tracking alloc, and have new type. */
275 return ntype;
276 }
277 }
278
279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
280 {
281 ntype = alloc_type_copy (type);
282 if (typeptr)
283 *typeptr = ntype;
284 }
285 else /* We have storage, but need to reset it. */
286 {
287 ntype = *typeptr;
288 chain = TYPE_CHAIN (ntype);
289 smash_type (ntype);
290 TYPE_CHAIN (ntype) = chain;
291 }
292
293 TYPE_TARGET_TYPE (ntype) = type;
294 TYPE_POINTER_TYPE (type) = ntype;
295
296 /* FIXME! Assume the machine has only one representation for
297 pointers! */
298
299 TYPE_LENGTH (ntype)
300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
301 TYPE_CODE (ntype) = TYPE_CODE_PTR;
302
303 /* Mark pointers as unsigned. The target converts between pointers
304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
305 gdbarch_address_to_pointer. */
306 TYPE_UNSIGNED (ntype) = 1;
307
308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
309 TYPE_POINTER_TYPE (type) = ntype;
310
311 /* Update the length of all the other variants of this type. */
312 chain = TYPE_CHAIN (ntype);
313 while (chain != ntype)
314 {
315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
316 chain = TYPE_CHAIN (chain);
317 }
318
319 return ntype;
320 }
321
322 /* Given a type TYPE, return a type of pointers to that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_pointer_type (struct type *type)
327 {
328 return make_pointer_type (type, (struct type **) 0);
329 }
330
331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
332 points to a pointer to memory where the reference type should be
333 stored. If *TYPEPTR is zero, update it to point to the reference
334 type we return. We allocate new memory if needed. */
335
336 struct type *
337 make_reference_type (struct type *type, struct type **typeptr)
338 {
339 struct type *ntype; /* New type */
340 struct type *chain;
341
342 ntype = TYPE_REFERENCE_TYPE (type);
343
344 if (ntype)
345 {
346 if (typeptr == 0)
347 return ntype; /* Don't care about alloc,
348 and have new type. */
349 else if (*typeptr == 0)
350 {
351 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 return ntype;
353 }
354 }
355
356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
357 {
358 ntype = alloc_type_copy (type);
359 if (typeptr)
360 *typeptr = ntype;
361 }
362 else /* We have storage, but need to reset it. */
363 {
364 ntype = *typeptr;
365 chain = TYPE_CHAIN (ntype);
366 smash_type (ntype);
367 TYPE_CHAIN (ntype) = chain;
368 }
369
370 TYPE_TARGET_TYPE (ntype) = type;
371 TYPE_REFERENCE_TYPE (type) = ntype;
372
373 /* FIXME! Assume the machine has only one representation for
374 references, and that it matches the (only) representation for
375 pointers! */
376
377 TYPE_LENGTH (ntype) =
378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
379 TYPE_CODE (ntype) = TYPE_CODE_REF;
380
381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
382 TYPE_REFERENCE_TYPE (type) = ntype;
383
384 /* Update the length of all the other variants of this type. */
385 chain = TYPE_CHAIN (ntype);
386 while (chain != ntype)
387 {
388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
389 chain = TYPE_CHAIN (chain);
390 }
391
392 return ntype;
393 }
394
395 /* Same as above, but caller doesn't care about memory allocation
396 details. */
397
398 struct type *
399 lookup_reference_type (struct type *type)
400 {
401 return make_reference_type (type, (struct type **) 0);
402 }
403
404 /* Lookup a function type that returns type TYPE. TYPEPTR, if
405 nonzero, points to a pointer to memory where the function type
406 should be stored. If *TYPEPTR is zero, update it to point to the
407 function type we return. We allocate new memory if needed. */
408
409 struct type *
410 make_function_type (struct type *type, struct type **typeptr)
411 {
412 struct type *ntype; /* New type */
413
414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
415 {
416 ntype = alloc_type_copy (type);
417 if (typeptr)
418 *typeptr = ntype;
419 }
420 else /* We have storage, but need to reset it. */
421 {
422 ntype = *typeptr;
423 smash_type (ntype);
424 }
425
426 TYPE_TARGET_TYPE (ntype) = type;
427
428 TYPE_LENGTH (ntype) = 1;
429 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
430
431 return ntype;
432 }
433
434
435 /* Given a type TYPE, return a type of functions that return that type.
436 May need to construct such a type if this is the first use. */
437
438 struct type *
439 lookup_function_type (struct type *type)
440 {
441 return make_function_type (type, (struct type **) 0);
442 }
443
444 /* Identify address space identifier by name --
445 return the integer flag defined in gdbtypes.h. */
446 extern int
447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
448 {
449 int type_flags;
450
451 /* Check for known address space delimiters. */
452 if (!strcmp (space_identifier, "code"))
453 return TYPE_INSTANCE_FLAG_CODE_SPACE;
454 else if (!strcmp (space_identifier, "data"))
455 return TYPE_INSTANCE_FLAG_DATA_SPACE;
456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
457 && gdbarch_address_class_name_to_type_flags (gdbarch,
458 space_identifier,
459 &type_flags))
460 return type_flags;
461 else
462 error (_("Unknown address space specifier: \"%s\""), space_identifier);
463 }
464
465 /* Identify address space identifier by integer flag as defined in
466 gdbtypes.h -- return the string version of the adress space name. */
467
468 const char *
469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
470 {
471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
472 return "code";
473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
474 return "data";
475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
476 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
478 else
479 return NULL;
480 }
481
482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
483
484 If STORAGE is non-NULL, create the new type instance there.
485 STORAGE must be in the same obstack as TYPE. */
486
487 static struct type *
488 make_qualified_type (struct type *type, int new_flags,
489 struct type *storage)
490 {
491 struct type *ntype;
492
493 ntype = type;
494 do
495 {
496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
497 return ntype;
498 ntype = TYPE_CHAIN (ntype);
499 }
500 while (ntype != type);
501
502 /* Create a new type instance. */
503 if (storage == NULL)
504 ntype = alloc_type_instance (type);
505 else
506 {
507 /* If STORAGE was provided, it had better be in the same objfile
508 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
509 if one objfile is freed and the other kept, we'd have
510 dangling pointers. */
511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
512
513 ntype = storage;
514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
515 TYPE_CHAIN (ntype) = ntype;
516 }
517
518 /* Pointers or references to the original type are not relevant to
519 the new type. */
520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
522
523 /* Chain the new qualified type to the old type. */
524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
525 TYPE_CHAIN (type) = ntype;
526
527 /* Now set the instance flags and return the new type. */
528 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
529
530 /* Set length of new type to that of the original type. */
531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
532
533 return ntype;
534 }
535
536 /* Make an address-space-delimited variant of a type -- a type that
537 is identical to the one supplied except that it has an address
538 space attribute attached to it (such as "code" or "data").
539
540 The space attributes "code" and "data" are for Harvard
541 architectures. The address space attributes are for architectures
542 which have alternately sized pointers or pointers with alternate
543 representations. */
544
545 struct type *
546 make_type_with_address_space (struct type *type, int space_flag)
547 {
548 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
550 | TYPE_INSTANCE_FLAG_DATA_SPACE
551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
552 | space_flag);
553
554 return make_qualified_type (type, new_flags, NULL);
555 }
556
557 /* Make a "c-v" variant of a type -- a type that is identical to the
558 one supplied except that it may have const or volatile attributes
559 CNST is a flag for setting the const attribute
560 VOLTL is a flag for setting the volatile attribute
561 TYPE is the base type whose variant we are creating.
562
563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
564 storage to hold the new qualified type; *TYPEPTR and TYPE must be
565 in the same objfile. Otherwise, allocate fresh memory for the new
566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
567 new type we construct. */
568 struct type *
569 make_cv_type (int cnst, int voltl,
570 struct type *type,
571 struct type **typeptr)
572 {
573 struct type *ntype; /* New type */
574
575 int new_flags = (TYPE_INSTANCE_FLAGS (type)
576 & ~(TYPE_INSTANCE_FLAG_CONST
577 | TYPE_INSTANCE_FLAG_VOLATILE));
578
579 if (cnst)
580 new_flags |= TYPE_INSTANCE_FLAG_CONST;
581
582 if (voltl)
583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
584
585 if (typeptr && *typeptr != NULL)
586 {
587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
588 a C-V variant chain that threads across objfiles: if one
589 objfile gets freed, then the other has a broken C-V chain.
590
591 This code used to try to copy over the main type from TYPE to
592 *TYPEPTR if they were in different objfiles, but that's
593 wrong, too: TYPE may have a field list or member function
594 lists, which refer to types of their own, etc. etc. The
595 whole shebang would need to be copied over recursively; you
596 can't have inter-objfile pointers. The only thing to do is
597 to leave stub types as stub types, and look them up afresh by
598 name each time you encounter them. */
599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
600 }
601
602 ntype = make_qualified_type (type, new_flags,
603 typeptr ? *typeptr : NULL);
604
605 if (typeptr != NULL)
606 *typeptr = ntype;
607
608 return ntype;
609 }
610
611 /* Replace the contents of ntype with the type *type. This changes the
612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
613 the changes are propogated to all types in the TYPE_CHAIN.
614
615 In order to build recursive types, it's inevitable that we'll need
616 to update types in place --- but this sort of indiscriminate
617 smashing is ugly, and needs to be replaced with something more
618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
619 clear if more steps are needed. */
620 void
621 replace_type (struct type *ntype, struct type *type)
622 {
623 struct type *chain;
624
625 /* These two types had better be in the same objfile. Otherwise,
626 the assignment of one type's main type structure to the other
627 will produce a type with references to objects (names; field
628 lists; etc.) allocated on an objfile other than its own. */
629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
630
631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
632
633 /* The type length is not a part of the main type. Update it for
634 each type on the variant chain. */
635 chain = ntype;
636 do
637 {
638 /* Assert that this element of the chain has no address-class bits
639 set in its flags. Such type variants might have type lengths
640 which are supposed to be different from the non-address-class
641 variants. This assertion shouldn't ever be triggered because
642 symbol readers which do construct address-class variants don't
643 call replace_type(). */
644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
645
646 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
647 chain = TYPE_CHAIN (chain);
648 }
649 while (ntype != chain);
650
651 /* Assert that the two types have equivalent instance qualifiers.
652 This should be true for at least all of our debug readers. */
653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
654 }
655
656 /* Implement direct support for MEMBER_TYPE in GNU C++.
657 May need to construct such a type if this is the first use.
658 The TYPE is the type of the member. The DOMAIN is the type
659 of the aggregate that the member belongs to. */
660
661 struct type *
662 lookup_memberptr_type (struct type *type, struct type *domain)
663 {
664 struct type *mtype;
665
666 mtype = alloc_type_copy (type);
667 smash_to_memberptr_type (mtype, domain, type);
668 return mtype;
669 }
670
671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
672
673 struct type *
674 lookup_methodptr_type (struct type *to_type)
675 {
676 struct type *mtype;
677
678 mtype = alloc_type_copy (to_type);
679 smash_to_methodptr_type (mtype, to_type);
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860
861 return create_array_type (NULL, element_type, range_type);
862 }
863
864 /* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
875
876 struct type *
877 create_string_type (struct type *result_type,
878 struct type *string_char_type,
879 struct type *range_type)
880 {
881 result_type = create_array_type (result_type,
882 string_char_type,
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
885 return result_type;
886 }
887
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891 {
892 struct type *result_type;
893
894 result_type = lookup_array_range_type (string_char_type,
895 low_bound, high_bound);
896 TYPE_CODE (result_type) = TYPE_CODE_STRING;
897 return result_type;
898 }
899
900 struct type *
901 create_set_type (struct type *result_type, struct type *domain_type)
902 {
903 if (result_type == NULL)
904 result_type = alloc_type_copy (domain_type);
905
906 TYPE_CODE (result_type) = TYPE_CODE_SET;
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
909
910 if (!TYPE_STUB (domain_type))
911 {
912 LONGEST low_bound, high_bound, bit_length;
913
914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
915 low_bound = high_bound = 0;
916 bit_length = high_bound - low_bound + 1;
917 TYPE_LENGTH (result_type)
918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
919 if (low_bound >= 0)
920 TYPE_UNSIGNED (result_type) = 1;
921 }
922 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
923
924 return result_type;
925 }
926
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930 void
931 make_vector_type (struct type *array_type)
932 {
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_VECTOR (array_type) = 1;
951 }
952
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
955 {
956 struct type *array_type;
957
958 array_type = lookup_array_range_type (elt_type, 0, n - 1);
959 make_vector_type (array_type);
960 return array_type;
961 }
962
963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
966 TYPE doesn't include the offset (that's the value of the MEMBER
967 itself), but does include the structure type into which it points
968 (for some reason).
969
970 When "smashing" the type, we preserve the objfile that the old type
971 pointed to, since we aren't changing where the type is actually
972 allocated. */
973
974 void
975 smash_to_memberptr_type (struct type *type, struct type *domain,
976 struct type *to_type)
977 {
978 smash_type (type);
979 TYPE_TARGET_TYPE (type) = to_type;
980 TYPE_DOMAIN_TYPE (type) = domain;
981 /* Assume that a data member pointer is the same size as a normal
982 pointer. */
983 TYPE_LENGTH (type)
984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
986 }
987
988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
989
990 When "smashing" the type, we preserve the objfile that the old type
991 pointed to, since we aren't changing where the type is actually
992 allocated. */
993
994 void
995 smash_to_methodptr_type (struct type *type, struct type *to_type)
996 {
997 smash_type (type);
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1002 }
1003
1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1005 METHOD just means `function that gets an extra "this" argument'.
1006
1007 When "smashing" the type, we preserve the objfile that the old type
1008 pointed to, since we aren't changing where the type is actually
1009 allocated. */
1010
1011 void
1012 smash_to_method_type (struct type *type, struct type *domain,
1013 struct type *to_type, struct field *args,
1014 int nargs, int varargs)
1015 {
1016 smash_type (type);
1017 TYPE_TARGET_TYPE (type) = to_type;
1018 TYPE_DOMAIN_TYPE (type) = domain;
1019 TYPE_FIELDS (type) = args;
1020 TYPE_NFIELDS (type) = nargs;
1021 if (varargs)
1022 TYPE_VARARGS (type) = 1;
1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1024 TYPE_CODE (type) = TYPE_CODE_METHOD;
1025 }
1026
1027 /* Return a typename for a struct/union/enum type without "struct ",
1028 "union ", or "enum ". If the type has a NULL name, return NULL. */
1029
1030 char *
1031 type_name_no_tag (const struct type *type)
1032 {
1033 if (TYPE_TAG_NAME (type) != NULL)
1034 return TYPE_TAG_NAME (type);
1035
1036 /* Is there code which expects this to return the name if there is
1037 no tag name? My guess is that this is mainly used for C++ in
1038 cases where the two will always be the same. */
1039 return TYPE_NAME (type);
1040 }
1041
1042 /* Lookup a typedef or primitive type named NAME, visible in lexical
1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1044 suitably defined. */
1045
1046 struct type *
1047 lookup_typename (const struct language_defn *language,
1048 struct gdbarch *gdbarch, char *name,
1049 const struct block *block, int noerr)
1050 {
1051 struct symbol *sym;
1052 struct type *tmp;
1053
1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1056 {
1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1058 if (tmp)
1059 {
1060 return tmp;
1061 }
1062 else if (!tmp && noerr)
1063 {
1064 return NULL;
1065 }
1066 else
1067 {
1068 error (_("No type named %s."), name);
1069 }
1070 }
1071 return (SYMBOL_TYPE (sym));
1072 }
1073
1074 struct type *
1075 lookup_unsigned_typename (const struct language_defn *language,
1076 struct gdbarch *gdbarch, char *name)
1077 {
1078 char *uns = alloca (strlen (name) + 10);
1079
1080 strcpy (uns, "unsigned ");
1081 strcpy (uns + 9, name);
1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1083 }
1084
1085 struct type *
1086 lookup_signed_typename (const struct language_defn *language,
1087 struct gdbarch *gdbarch, char *name)
1088 {
1089 struct type *t;
1090 char *uns = alloca (strlen (name) + 8);
1091
1092 strcpy (uns, "signed ");
1093 strcpy (uns + 7, name);
1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1095 /* If we don't find "signed FOO" just try again with plain "FOO". */
1096 if (t != NULL)
1097 return t;
1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1099 }
1100
1101 /* Lookup a structure type named "struct NAME",
1102 visible in lexical block BLOCK. */
1103
1104 struct type *
1105 lookup_struct (char *name, struct block *block)
1106 {
1107 struct symbol *sym;
1108
1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1110
1111 if (sym == NULL)
1112 {
1113 error (_("No struct type named %s."), name);
1114 }
1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1116 {
1117 error (_("This context has class, union or enum %s, not a struct."),
1118 name);
1119 }
1120 return (SYMBOL_TYPE (sym));
1121 }
1122
1123 /* Lookup a union type named "union NAME",
1124 visible in lexical block BLOCK. */
1125
1126 struct type *
1127 lookup_union (char *name, struct block *block)
1128 {
1129 struct symbol *sym;
1130 struct type *t;
1131
1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1133
1134 if (sym == NULL)
1135 error (_("No union type named %s."), name);
1136
1137 t = SYMBOL_TYPE (sym);
1138
1139 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1140 return t;
1141
1142 /* If we get here, it's not a union. */
1143 error (_("This context has class, struct or enum %s, not a union."),
1144 name);
1145 }
1146
1147
1148 /* Lookup an enum type named "enum NAME",
1149 visible in lexical block BLOCK. */
1150
1151 struct type *
1152 lookup_enum (char *name, struct block *block)
1153 {
1154 struct symbol *sym;
1155
1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1157 if (sym == NULL)
1158 {
1159 error (_("No enum type named %s."), name);
1160 }
1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1162 {
1163 error (_("This context has class, struct or union %s, not an enum."),
1164 name);
1165 }
1166 return (SYMBOL_TYPE (sym));
1167 }
1168
1169 /* Lookup a template type named "template NAME<TYPE>",
1170 visible in lexical block BLOCK. */
1171
1172 struct type *
1173 lookup_template_type (char *name, struct type *type,
1174 struct block *block)
1175 {
1176 struct symbol *sym;
1177 char *nam = (char *)
1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1179
1180 strcpy (nam, name);
1181 strcat (nam, "<");
1182 strcat (nam, TYPE_NAME (type));
1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1184
1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1186
1187 if (sym == NULL)
1188 {
1189 error (_("No template type named %s."), name);
1190 }
1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1192 {
1193 error (_("This context has class, union or enum %s, not a struct."),
1194 name);
1195 }
1196 return (SYMBOL_TYPE (sym));
1197 }
1198
1199 /* Given a type TYPE, lookup the type of the component of type named
1200 NAME.
1201
1202 TYPE can be either a struct or union, or a pointer or reference to
1203 a struct or union. If it is a pointer or reference, its target
1204 type is automatically used. Thus '.' and '->' are interchangable,
1205 as specified for the definitions of the expression element types
1206 STRUCTOP_STRUCT and STRUCTOP_PTR.
1207
1208 If NOERR is nonzero, return zero if NAME is not suitably defined.
1209 If NAME is the name of a baseclass type, return that type. */
1210
1211 struct type *
1212 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1213 {
1214 int i;
1215 char *typename;
1216
1217 for (;;)
1218 {
1219 CHECK_TYPEDEF (type);
1220 if (TYPE_CODE (type) != TYPE_CODE_PTR
1221 && TYPE_CODE (type) != TYPE_CODE_REF)
1222 break;
1223 type = TYPE_TARGET_TYPE (type);
1224 }
1225
1226 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1227 && TYPE_CODE (type) != TYPE_CODE_UNION)
1228 {
1229 typename = type_to_string (type);
1230 make_cleanup (xfree, typename);
1231 error (_("Type %s is not a structure or union type."), typename);
1232 }
1233
1234 #if 0
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
1243 if (typename != NULL && strcmp (typename, name) == 0)
1244 return type;
1245 }
1246 #endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 else if (!t_field_name || *t_field_name == '\0')
1257 {
1258 struct type *subtype
1259 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1260
1261 if (subtype != NULL)
1262 return subtype;
1263 }
1264 }
1265
1266 /* OK, it's not in this class. Recursively check the baseclasses. */
1267 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1268 {
1269 struct type *t;
1270
1271 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1272 if (t != NULL)
1273 {
1274 return t;
1275 }
1276 }
1277
1278 if (noerr)
1279 {
1280 return NULL;
1281 }
1282
1283 typename = type_to_string (type);
1284 make_cleanup (xfree, typename);
1285 error (_("Type %s has no component named %s."), typename, name);
1286 }
1287
1288 /* Lookup the vptr basetype/fieldno values for TYPE.
1289 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1290 vptr_fieldno. Also, if found and basetype is from the same objfile,
1291 cache the results.
1292 If not found, return -1 and ignore BASETYPEP.
1293 Callers should be aware that in some cases (for example,
1294 the type or one of its baseclasses is a stub type and we are
1295 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1296 this function will not be able to find the
1297 virtual function table pointer, and vptr_fieldno will remain -1 and
1298 vptr_basetype will remain NULL or incomplete. */
1299
1300 int
1301 get_vptr_fieldno (struct type *type, struct type **basetypep)
1302 {
1303 CHECK_TYPEDEF (type);
1304
1305 if (TYPE_VPTR_FIELDNO (type) < 0)
1306 {
1307 int i;
1308
1309 /* We must start at zero in case the first (and only) baseclass
1310 is virtual (and hence we cannot share the table pointer). */
1311 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1312 {
1313 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1314 int fieldno;
1315 struct type *basetype;
1316
1317 fieldno = get_vptr_fieldno (baseclass, &basetype);
1318 if (fieldno >= 0)
1319 {
1320 /* If the type comes from a different objfile we can't cache
1321 it, it may have a different lifetime. PR 2384 */
1322 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1323 {
1324 TYPE_VPTR_FIELDNO (type) = fieldno;
1325 TYPE_VPTR_BASETYPE (type) = basetype;
1326 }
1327 if (basetypep)
1328 *basetypep = basetype;
1329 return fieldno;
1330 }
1331 }
1332
1333 /* Not found. */
1334 return -1;
1335 }
1336 else
1337 {
1338 if (basetypep)
1339 *basetypep = TYPE_VPTR_BASETYPE (type);
1340 return TYPE_VPTR_FIELDNO (type);
1341 }
1342 }
1343
1344 static void
1345 stub_noname_complaint (void)
1346 {
1347 complaint (&symfile_complaints, _("stub type has NULL name"));
1348 }
1349
1350 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1351
1352 If this is a stubbed struct (i.e. declared as struct foo *), see if
1353 we can find a full definition in some other file. If so, copy this
1354 definition, so we can use it in future. There used to be a comment
1355 (but not any code) that if we don't find a full definition, we'd
1356 set a flag so we don't spend time in the future checking the same
1357 type. That would be a mistake, though--we might load in more
1358 symbols which contain a full definition for the type.
1359
1360 This used to be coded as a macro, but I don't think it is called
1361 often enough to merit such treatment.
1362
1363 Find the real type of TYPE. This function returns the real type,
1364 after removing all layers of typedefs and completing opaque or stub
1365 types. Completion changes the TYPE argument, but stripping of
1366 typedefs does not.
1367
1368 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1369 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1370 check_typedef can still return different type than the original TYPE
1371 pointer. */
1372
1373 struct type *
1374 check_typedef (struct type *type)
1375 {
1376 struct type *orig_type = type;
1377 int is_const, is_volatile;
1378
1379 gdb_assert (type);
1380
1381 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1382 {
1383 if (!TYPE_TARGET_TYPE (type))
1384 {
1385 char *name;
1386 struct symbol *sym;
1387
1388 /* It is dangerous to call lookup_symbol if we are currently
1389 reading a symtab. Infinite recursion is one danger. */
1390 if (currently_reading_symtab)
1391 return type;
1392
1393 name = type_name_no_tag (type);
1394 /* FIXME: shouldn't we separately check the TYPE_NAME and
1395 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1396 VAR_DOMAIN as appropriate? (this code was written before
1397 TYPE_NAME and TYPE_TAG_NAME were separate). */
1398 if (name == NULL)
1399 {
1400 stub_noname_complaint ();
1401 return type;
1402 }
1403 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1404 if (sym)
1405 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1406 else /* TYPE_CODE_UNDEF */
1407 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1408 }
1409 type = TYPE_TARGET_TYPE (type);
1410 }
1411
1412 is_const = TYPE_CONST (type);
1413 is_volatile = TYPE_VOLATILE (type);
1414
1415 /* If this is a struct/class/union with no fields, then check
1416 whether a full definition exists somewhere else. This is for
1417 systems where a type definition with no fields is issued for such
1418 types, instead of identifying them as stub types in the first
1419 place. */
1420
1421 if (TYPE_IS_OPAQUE (type)
1422 && opaque_type_resolution
1423 && !currently_reading_symtab)
1424 {
1425 char *name = type_name_no_tag (type);
1426 struct type *newtype;
1427
1428 if (name == NULL)
1429 {
1430 stub_noname_complaint ();
1431 return type;
1432 }
1433 newtype = lookup_transparent_type (name);
1434
1435 if (newtype)
1436 {
1437 /* If the resolved type and the stub are in the same
1438 objfile, then replace the stub type with the real deal.
1439 But if they're in separate objfiles, leave the stub
1440 alone; we'll just look up the transparent type every time
1441 we call check_typedef. We can't create pointers between
1442 types allocated to different objfiles, since they may
1443 have different lifetimes. Trying to copy NEWTYPE over to
1444 TYPE's objfile is pointless, too, since you'll have to
1445 move over any other types NEWTYPE refers to, which could
1446 be an unbounded amount of stuff. */
1447 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1448 make_cv_type (is_const, is_volatile, newtype, &type);
1449 else
1450 type = newtype;
1451 }
1452 }
1453 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1454 types. */
1455 else if (TYPE_STUB (type) && !currently_reading_symtab)
1456 {
1457 char *name = type_name_no_tag (type);
1458 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1459 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1460 as appropriate? (this code was written before TYPE_NAME and
1461 TYPE_TAG_NAME were separate). */
1462 struct symbol *sym;
1463
1464 if (name == NULL)
1465 {
1466 stub_noname_complaint ();
1467 return type;
1468 }
1469 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1470 if (sym)
1471 {
1472 /* Same as above for opaque types, we can replace the stub
1473 with the complete type only if they are int the same
1474 objfile. */
1475 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1476 make_cv_type (is_const, is_volatile,
1477 SYMBOL_TYPE (sym), &type);
1478 else
1479 type = SYMBOL_TYPE (sym);
1480 }
1481 }
1482
1483 if (TYPE_TARGET_STUB (type))
1484 {
1485 struct type *range_type;
1486 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1487
1488 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1489 {
1490 /* Empty. */
1491 }
1492 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1493 && TYPE_NFIELDS (type) == 1
1494 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1495 == TYPE_CODE_RANGE))
1496 {
1497 /* Now recompute the length of the array type, based on its
1498 number of elements and the target type's length.
1499 Watch out for Ada null Ada arrays where the high bound
1500 is smaller than the low bound. */
1501 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1502 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1503 ULONGEST len;
1504
1505 if (high_bound < low_bound)
1506 len = 0;
1507 else
1508 {
1509 /* For now, we conservatively take the array length to be 0
1510 if its length exceeds UINT_MAX. The code below assumes
1511 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1512 which is technically not guaranteed by C, but is usually true
1513 (because it would be true if x were unsigned with its
1514 high-order bit on). It uses the fact that
1515 high_bound-low_bound is always representable in
1516 ULONGEST and that if high_bound-low_bound+1 overflows,
1517 it overflows to 0. We must change these tests if we
1518 decide to increase the representation of TYPE_LENGTH
1519 from unsigned int to ULONGEST. */
1520 ULONGEST ulow = low_bound, uhigh = high_bound;
1521 ULONGEST tlen = TYPE_LENGTH (target_type);
1522
1523 len = tlen * (uhigh - ulow + 1);
1524 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1525 || len > UINT_MAX)
1526 len = 0;
1527 }
1528 TYPE_LENGTH (type) = len;
1529 TYPE_TARGET_STUB (type) = 0;
1530 }
1531 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1532 {
1533 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1534 TYPE_TARGET_STUB (type) = 0;
1535 }
1536 }
1537 /* Cache TYPE_LENGTH for future use. */
1538 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1539 return type;
1540 }
1541
1542 /* Parse a type expression in the string [P..P+LENGTH). If an error
1543 occurs, silently return a void type. */
1544
1545 static struct type *
1546 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1547 {
1548 struct ui_file *saved_gdb_stderr;
1549 struct type *type;
1550
1551 /* Suppress error messages. */
1552 saved_gdb_stderr = gdb_stderr;
1553 gdb_stderr = ui_file_new ();
1554
1555 /* Call parse_and_eval_type() without fear of longjmp()s. */
1556 if (!gdb_parse_and_eval_type (p, length, &type))
1557 type = builtin_type (gdbarch)->builtin_void;
1558
1559 /* Stop suppressing error messages. */
1560 ui_file_delete (gdb_stderr);
1561 gdb_stderr = saved_gdb_stderr;
1562
1563 return type;
1564 }
1565
1566 /* Ugly hack to convert method stubs into method types.
1567
1568 He ain't kiddin'. This demangles the name of the method into a
1569 string including argument types, parses out each argument type,
1570 generates a string casting a zero to that type, evaluates the
1571 string, and stuffs the resulting type into an argtype vector!!!
1572 Then it knows the type of the whole function (including argument
1573 types for overloading), which info used to be in the stab's but was
1574 removed to hack back the space required for them. */
1575
1576 static void
1577 check_stub_method (struct type *type, int method_id, int signature_id)
1578 {
1579 struct gdbarch *gdbarch = get_type_arch (type);
1580 struct fn_field *f;
1581 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1582 char *demangled_name = cplus_demangle (mangled_name,
1583 DMGL_PARAMS | DMGL_ANSI);
1584 char *argtypetext, *p;
1585 int depth = 0, argcount = 1;
1586 struct field *argtypes;
1587 struct type *mtype;
1588
1589 /* Make sure we got back a function string that we can use. */
1590 if (demangled_name)
1591 p = strchr (demangled_name, '(');
1592 else
1593 p = NULL;
1594
1595 if (demangled_name == NULL || p == NULL)
1596 error (_("Internal: Cannot demangle mangled name `%s'."),
1597 mangled_name);
1598
1599 /* Now, read in the parameters that define this type. */
1600 p += 1;
1601 argtypetext = p;
1602 while (*p)
1603 {
1604 if (*p == '(' || *p == '<')
1605 {
1606 depth += 1;
1607 }
1608 else if (*p == ')' || *p == '>')
1609 {
1610 depth -= 1;
1611 }
1612 else if (*p == ',' && depth == 0)
1613 {
1614 argcount += 1;
1615 }
1616
1617 p += 1;
1618 }
1619
1620 /* If we read one argument and it was ``void'', don't count it. */
1621 if (strncmp (argtypetext, "(void)", 6) == 0)
1622 argcount -= 1;
1623
1624 /* We need one extra slot, for the THIS pointer. */
1625
1626 argtypes = (struct field *)
1627 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1628 p = argtypetext;
1629
1630 /* Add THIS pointer for non-static methods. */
1631 f = TYPE_FN_FIELDLIST1 (type, method_id);
1632 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1633 argcount = 0;
1634 else
1635 {
1636 argtypes[0].type = lookup_pointer_type (type);
1637 argcount = 1;
1638 }
1639
1640 if (*p != ')') /* () means no args, skip while */
1641 {
1642 depth = 0;
1643 while (*p)
1644 {
1645 if (depth <= 0 && (*p == ',' || *p == ')'))
1646 {
1647 /* Avoid parsing of ellipsis, they will be handled below.
1648 Also avoid ``void'' as above. */
1649 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1650 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1651 {
1652 argtypes[argcount].type =
1653 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1654 argcount += 1;
1655 }
1656 argtypetext = p + 1;
1657 }
1658
1659 if (*p == '(' || *p == '<')
1660 {
1661 depth += 1;
1662 }
1663 else if (*p == ')' || *p == '>')
1664 {
1665 depth -= 1;
1666 }
1667
1668 p += 1;
1669 }
1670 }
1671
1672 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1673
1674 /* Now update the old "stub" type into a real type. */
1675 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1676 TYPE_DOMAIN_TYPE (mtype) = type;
1677 TYPE_FIELDS (mtype) = argtypes;
1678 TYPE_NFIELDS (mtype) = argcount;
1679 TYPE_STUB (mtype) = 0;
1680 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1681 if (p[-2] == '.')
1682 TYPE_VARARGS (mtype) = 1;
1683
1684 xfree (demangled_name);
1685 }
1686
1687 /* This is the external interface to check_stub_method, above. This
1688 function unstubs all of the signatures for TYPE's METHOD_ID method
1689 name. After calling this function TYPE_FN_FIELD_STUB will be
1690 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1691 correct.
1692
1693 This function unfortunately can not die until stabs do. */
1694
1695 void
1696 check_stub_method_group (struct type *type, int method_id)
1697 {
1698 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1699 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1700 int j, found_stub = 0;
1701
1702 for (j = 0; j < len; j++)
1703 if (TYPE_FN_FIELD_STUB (f, j))
1704 {
1705 found_stub = 1;
1706 check_stub_method (type, method_id, j);
1707 }
1708
1709 /* GNU v3 methods with incorrect names were corrected when we read
1710 in type information, because it was cheaper to do it then. The
1711 only GNU v2 methods with incorrect method names are operators and
1712 destructors; destructors were also corrected when we read in type
1713 information.
1714
1715 Therefore the only thing we need to handle here are v2 operator
1716 names. */
1717 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1718 {
1719 int ret;
1720 char dem_opname[256];
1721
1722 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1723 method_id),
1724 dem_opname, DMGL_ANSI);
1725 if (!ret)
1726 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1727 method_id),
1728 dem_opname, 0);
1729 if (ret)
1730 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1731 }
1732 }
1733
1734 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1735 const struct cplus_struct_type cplus_struct_default = { };
1736
1737 void
1738 allocate_cplus_struct_type (struct type *type)
1739 {
1740 if (HAVE_CPLUS_STRUCT (type))
1741 /* Structure was already allocated. Nothing more to do. */
1742 return;
1743
1744 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1745 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1746 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1747 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1748 }
1749
1750 const struct gnat_aux_type gnat_aux_default =
1751 { NULL };
1752
1753 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1754 and allocate the associated gnat-specific data. The gnat-specific
1755 data is also initialized to gnat_aux_default. */
1756 void
1757 allocate_gnat_aux_type (struct type *type)
1758 {
1759 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1760 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1761 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1762 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1763 }
1764
1765
1766 /* Helper function to initialize the standard scalar types.
1767
1768 If NAME is non-NULL, then we make a copy of the string pointed
1769 to by name in the objfile_obstack for that objfile, and initialize
1770 the type name to that copy. There are places (mipsread.c in particular),
1771 where init_type is called with a NULL value for NAME). */
1772
1773 struct type *
1774 init_type (enum type_code code, int length, int flags,
1775 char *name, struct objfile *objfile)
1776 {
1777 struct type *type;
1778
1779 type = alloc_type (objfile);
1780 TYPE_CODE (type) = code;
1781 TYPE_LENGTH (type) = length;
1782
1783 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1784 if (flags & TYPE_FLAG_UNSIGNED)
1785 TYPE_UNSIGNED (type) = 1;
1786 if (flags & TYPE_FLAG_NOSIGN)
1787 TYPE_NOSIGN (type) = 1;
1788 if (flags & TYPE_FLAG_STUB)
1789 TYPE_STUB (type) = 1;
1790 if (flags & TYPE_FLAG_TARGET_STUB)
1791 TYPE_TARGET_STUB (type) = 1;
1792 if (flags & TYPE_FLAG_STATIC)
1793 TYPE_STATIC (type) = 1;
1794 if (flags & TYPE_FLAG_PROTOTYPED)
1795 TYPE_PROTOTYPED (type) = 1;
1796 if (flags & TYPE_FLAG_INCOMPLETE)
1797 TYPE_INCOMPLETE (type) = 1;
1798 if (flags & TYPE_FLAG_VARARGS)
1799 TYPE_VARARGS (type) = 1;
1800 if (flags & TYPE_FLAG_VECTOR)
1801 TYPE_VECTOR (type) = 1;
1802 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1803 TYPE_STUB_SUPPORTED (type) = 1;
1804 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1805 TYPE_FIXED_INSTANCE (type) = 1;
1806
1807 if (name)
1808 TYPE_NAME (type) = obsavestring (name, strlen (name),
1809 &objfile->objfile_obstack);
1810
1811 /* C++ fancies. */
1812
1813 if (name && strcmp (name, "char") == 0)
1814 TYPE_NOSIGN (type) = 1;
1815
1816 switch (code)
1817 {
1818 case TYPE_CODE_STRUCT:
1819 case TYPE_CODE_UNION:
1820 case TYPE_CODE_NAMESPACE:
1821 INIT_CPLUS_SPECIFIC (type);
1822 break;
1823 case TYPE_CODE_FLT:
1824 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1825 break;
1826 case TYPE_CODE_FUNC:
1827 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1828 break;
1829 }
1830 return type;
1831 }
1832
1833 int
1834 can_dereference (struct type *t)
1835 {
1836 /* FIXME: Should we return true for references as well as
1837 pointers? */
1838 CHECK_TYPEDEF (t);
1839 return
1840 (t != NULL
1841 && TYPE_CODE (t) == TYPE_CODE_PTR
1842 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1843 }
1844
1845 int
1846 is_integral_type (struct type *t)
1847 {
1848 CHECK_TYPEDEF (t);
1849 return
1850 ((t != NULL)
1851 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1852 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1853 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1854 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1855 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1856 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1857 }
1858
1859 /* A helper function which returns true if types A and B represent the
1860 "same" class type. This is true if the types have the same main
1861 type, or the same name. */
1862
1863 int
1864 class_types_same_p (const struct type *a, const struct type *b)
1865 {
1866 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1867 || (TYPE_NAME (a) && TYPE_NAME (b)
1868 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1869 }
1870
1871 /* Check whether BASE is an ancestor or base class of DCLASS
1872 Return 1 if so, and 0 if not. If PUBLIC is 1 then only public
1873 ancestors are considered, and the function returns 1 only if
1874 BASE is a public ancestor of DCLASS. */
1875
1876 static int
1877 do_is_ancestor (struct type *base, struct type *dclass, int public)
1878 {
1879 int i;
1880
1881 CHECK_TYPEDEF (base);
1882 CHECK_TYPEDEF (dclass);
1883
1884 if (class_types_same_p (base, dclass))
1885 return 1;
1886
1887 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1888 {
1889 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
1890 continue;
1891
1892 if (do_is_ancestor (base, TYPE_BASECLASS (dclass, i), public))
1893 return 1;
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* Check whether BASE is an ancestor or base class or DCLASS
1900 Return 1 if so, and 0 if not.
1901 Note: If BASE and DCLASS are of the same type, this function
1902 will return 1. So for some class A, is_ancestor (A, A) will
1903 return 1. */
1904
1905 int
1906 is_ancestor (struct type *base, struct type *dclass)
1907 {
1908 return do_is_ancestor (base, dclass, 0);
1909 }
1910
1911 /* Like is_ancestor, but only returns true when BASE is a public
1912 ancestor of DCLASS. */
1913
1914 int
1915 is_public_ancestor (struct type *base, struct type *dclass)
1916 {
1917 return do_is_ancestor (base, dclass, 1);
1918 }
1919
1920 /* A helper function for is_unique_ancestor. */
1921
1922 static int
1923 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1924 int *offset,
1925 const bfd_byte *contents, CORE_ADDR address)
1926 {
1927 int i, count = 0;
1928
1929 CHECK_TYPEDEF (base);
1930 CHECK_TYPEDEF (dclass);
1931
1932 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1933 {
1934 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1935 int this_offset = baseclass_offset (dclass, i, contents, address);
1936
1937 if (this_offset == -1)
1938 error (_("virtual baseclass botch"));
1939
1940 if (class_types_same_p (base, iter))
1941 {
1942 /* If this is the first subclass, set *OFFSET and set count
1943 to 1. Otherwise, if this is at the same offset as
1944 previous instances, do nothing. Otherwise, increment
1945 count. */
1946 if (*offset == -1)
1947 {
1948 *offset = this_offset;
1949 count = 1;
1950 }
1951 else if (this_offset == *offset)
1952 {
1953 /* Nothing. */
1954 }
1955 else
1956 ++count;
1957 }
1958 else
1959 count += is_unique_ancestor_worker (base, iter, offset,
1960 contents + this_offset,
1961 address + this_offset);
1962 }
1963
1964 return count;
1965 }
1966
1967 /* Like is_ancestor, but only returns true if BASE is a unique base
1968 class of the type of VAL. */
1969
1970 int
1971 is_unique_ancestor (struct type *base, struct value *val)
1972 {
1973 int offset = -1;
1974
1975 return is_unique_ancestor_worker (base, value_type (val), &offset,
1976 value_contents (val),
1977 value_address (val)) == 1;
1978 }
1979
1980 \f
1981
1982
1983 /* Functions for overload resolution begin here */
1984
1985 /* Compare two badness vectors A and B and return the result.
1986 0 => A and B are identical
1987 1 => A and B are incomparable
1988 2 => A is better than B
1989 3 => A is worse than B */
1990
1991 int
1992 compare_badness (struct badness_vector *a, struct badness_vector *b)
1993 {
1994 int i;
1995 int tmp;
1996 short found_pos = 0; /* any positives in c? */
1997 short found_neg = 0; /* any negatives in c? */
1998
1999 /* differing lengths => incomparable */
2000 if (a->length != b->length)
2001 return 1;
2002
2003 /* Subtract b from a */
2004 for (i = 0; i < a->length; i++)
2005 {
2006 tmp = a->rank[i] - b->rank[i];
2007 if (tmp > 0)
2008 found_pos = 1;
2009 else if (tmp < 0)
2010 found_neg = 1;
2011 }
2012
2013 if (found_pos)
2014 {
2015 if (found_neg)
2016 return 1; /* incomparable */
2017 else
2018 return 3; /* A > B */
2019 }
2020 else
2021 /* no positives */
2022 {
2023 if (found_neg)
2024 return 2; /* A < B */
2025 else
2026 return 0; /* A == B */
2027 }
2028 }
2029
2030 /* Rank a function by comparing its parameter types (PARMS, length
2031 NPARMS), to the types of an argument list (ARGS, length NARGS).
2032 Return a pointer to a badness vector. This has NARGS + 1
2033 entries. */
2034
2035 struct badness_vector *
2036 rank_function (struct type **parms, int nparms,
2037 struct type **args, int nargs)
2038 {
2039 int i;
2040 struct badness_vector *bv;
2041 int min_len = nparms < nargs ? nparms : nargs;
2042
2043 bv = xmalloc (sizeof (struct badness_vector));
2044 bv->length = nargs + 1; /* add 1 for the length-match rank */
2045 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2046
2047 /* First compare the lengths of the supplied lists.
2048 If there is a mismatch, set it to a high value. */
2049
2050 /* pai/1997-06-03 FIXME: when we have debug info about default
2051 arguments and ellipsis parameter lists, we should consider those
2052 and rank the length-match more finely. */
2053
2054 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2055
2056 /* Now rank all the parameters of the candidate function */
2057 for (i = 1; i <= min_len; i++)
2058 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2059
2060 /* If more arguments than parameters, add dummy entries */
2061 for (i = min_len + 1; i <= nargs; i++)
2062 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2063
2064 return bv;
2065 }
2066
2067 /* Compare the names of two integer types, assuming that any sign
2068 qualifiers have been checked already. We do it this way because
2069 there may be an "int" in the name of one of the types. */
2070
2071 static int
2072 integer_types_same_name_p (const char *first, const char *second)
2073 {
2074 int first_p, second_p;
2075
2076 /* If both are shorts, return 1; if neither is a short, keep
2077 checking. */
2078 first_p = (strstr (first, "short") != NULL);
2079 second_p = (strstr (second, "short") != NULL);
2080 if (first_p && second_p)
2081 return 1;
2082 if (first_p || second_p)
2083 return 0;
2084
2085 /* Likewise for long. */
2086 first_p = (strstr (first, "long") != NULL);
2087 second_p = (strstr (second, "long") != NULL);
2088 if (first_p && second_p)
2089 return 1;
2090 if (first_p || second_p)
2091 return 0;
2092
2093 /* Likewise for char. */
2094 first_p = (strstr (first, "char") != NULL);
2095 second_p = (strstr (second, "char") != NULL);
2096 if (first_p && second_p)
2097 return 1;
2098 if (first_p || second_p)
2099 return 0;
2100
2101 /* They must both be ints. */
2102 return 1;
2103 }
2104
2105 /* Compare one type (PARM) for compatibility with another (ARG).
2106 * PARM is intended to be the parameter type of a function; and
2107 * ARG is the supplied argument's type. This function tests if
2108 * the latter can be converted to the former.
2109 *
2110 * Return 0 if they are identical types;
2111 * Otherwise, return an integer which corresponds to how compatible
2112 * PARM is to ARG. The higher the return value, the worse the match.
2113 * Generally the "bad" conversions are all uniformly assigned a 100. */
2114
2115 int
2116 rank_one_type (struct type *parm, struct type *arg)
2117 {
2118 /* Identical type pointers. */
2119 /* However, this still doesn't catch all cases of same type for arg
2120 and param. The reason is that builtin types are different from
2121 the same ones constructed from the object. */
2122 if (parm == arg)
2123 return 0;
2124
2125 /* Resolve typedefs */
2126 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2127 parm = check_typedef (parm);
2128 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2129 arg = check_typedef (arg);
2130
2131 /*
2132 Well, damnit, if the names are exactly the same, I'll say they
2133 are exactly the same. This happens when we generate method
2134 stubs. The types won't point to the same address, but they
2135 really are the same.
2136 */
2137
2138 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2139 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2140 return 0;
2141
2142 /* Check if identical after resolving typedefs. */
2143 if (parm == arg)
2144 return 0;
2145
2146 /* See through references, since we can almost make non-references
2147 references. */
2148 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2149 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2150 + REFERENCE_CONVERSION_BADNESS);
2151 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2152 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2153 + REFERENCE_CONVERSION_BADNESS);
2154 if (overload_debug)
2155 /* Debugging only. */
2156 fprintf_filtered (gdb_stderr,
2157 "------ Arg is %s [%d], parm is %s [%d]\n",
2158 TYPE_NAME (arg), TYPE_CODE (arg),
2159 TYPE_NAME (parm), TYPE_CODE (parm));
2160
2161 /* x -> y means arg of type x being supplied for parameter of type y */
2162
2163 switch (TYPE_CODE (parm))
2164 {
2165 case TYPE_CODE_PTR:
2166 switch (TYPE_CODE (arg))
2167 {
2168 case TYPE_CODE_PTR:
2169 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2170 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2171 return VOID_PTR_CONVERSION_BADNESS;
2172 else
2173 return rank_one_type (TYPE_TARGET_TYPE (parm),
2174 TYPE_TARGET_TYPE (arg));
2175 case TYPE_CODE_ARRAY:
2176 return rank_one_type (TYPE_TARGET_TYPE (parm),
2177 TYPE_TARGET_TYPE (arg));
2178 case TYPE_CODE_FUNC:
2179 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2180 case TYPE_CODE_INT:
2181 case TYPE_CODE_ENUM:
2182 case TYPE_CODE_FLAGS:
2183 case TYPE_CODE_CHAR:
2184 case TYPE_CODE_RANGE:
2185 case TYPE_CODE_BOOL:
2186 return POINTER_CONVERSION_BADNESS;
2187 default:
2188 return INCOMPATIBLE_TYPE_BADNESS;
2189 }
2190 case TYPE_CODE_ARRAY:
2191 switch (TYPE_CODE (arg))
2192 {
2193 case TYPE_CODE_PTR:
2194 case TYPE_CODE_ARRAY:
2195 return rank_one_type (TYPE_TARGET_TYPE (parm),
2196 TYPE_TARGET_TYPE (arg));
2197 default:
2198 return INCOMPATIBLE_TYPE_BADNESS;
2199 }
2200 case TYPE_CODE_FUNC:
2201 switch (TYPE_CODE (arg))
2202 {
2203 case TYPE_CODE_PTR: /* funcptr -> func */
2204 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2205 default:
2206 return INCOMPATIBLE_TYPE_BADNESS;
2207 }
2208 case TYPE_CODE_INT:
2209 switch (TYPE_CODE (arg))
2210 {
2211 case TYPE_CODE_INT:
2212 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2213 {
2214 /* Deal with signed, unsigned, and plain chars and
2215 signed and unsigned ints. */
2216 if (TYPE_NOSIGN (parm))
2217 {
2218 /* This case only for character types */
2219 if (TYPE_NOSIGN (arg))
2220 return 0; /* plain char -> plain char */
2221 else /* signed/unsigned char -> plain char */
2222 return INTEGER_CONVERSION_BADNESS;
2223 }
2224 else if (TYPE_UNSIGNED (parm))
2225 {
2226 if (TYPE_UNSIGNED (arg))
2227 {
2228 /* unsigned int -> unsigned int, or
2229 unsigned long -> unsigned long */
2230 if (integer_types_same_name_p (TYPE_NAME (parm),
2231 TYPE_NAME (arg)))
2232 return 0;
2233 else if (integer_types_same_name_p (TYPE_NAME (arg),
2234 "int")
2235 && integer_types_same_name_p (TYPE_NAME (parm),
2236 "long"))
2237 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2238 else
2239 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2240 }
2241 else
2242 {
2243 if (integer_types_same_name_p (TYPE_NAME (arg),
2244 "long")
2245 && integer_types_same_name_p (TYPE_NAME (parm),
2246 "int"))
2247 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2248 else
2249 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2250 }
2251 }
2252 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2253 {
2254 if (integer_types_same_name_p (TYPE_NAME (parm),
2255 TYPE_NAME (arg)))
2256 return 0;
2257 else if (integer_types_same_name_p (TYPE_NAME (arg),
2258 "int")
2259 && integer_types_same_name_p (TYPE_NAME (parm),
2260 "long"))
2261 return INTEGER_PROMOTION_BADNESS;
2262 else
2263 return INTEGER_CONVERSION_BADNESS;
2264 }
2265 else
2266 return INTEGER_CONVERSION_BADNESS;
2267 }
2268 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2269 return INTEGER_PROMOTION_BADNESS;
2270 else
2271 return INTEGER_CONVERSION_BADNESS;
2272 case TYPE_CODE_ENUM:
2273 case TYPE_CODE_FLAGS:
2274 case TYPE_CODE_CHAR:
2275 case TYPE_CODE_RANGE:
2276 case TYPE_CODE_BOOL:
2277 return INTEGER_PROMOTION_BADNESS;
2278 case TYPE_CODE_FLT:
2279 return INT_FLOAT_CONVERSION_BADNESS;
2280 case TYPE_CODE_PTR:
2281 return NS_POINTER_CONVERSION_BADNESS;
2282 default:
2283 return INCOMPATIBLE_TYPE_BADNESS;
2284 }
2285 break;
2286 case TYPE_CODE_ENUM:
2287 switch (TYPE_CODE (arg))
2288 {
2289 case TYPE_CODE_INT:
2290 case TYPE_CODE_CHAR:
2291 case TYPE_CODE_RANGE:
2292 case TYPE_CODE_BOOL:
2293 case TYPE_CODE_ENUM:
2294 return INTEGER_CONVERSION_BADNESS;
2295 case TYPE_CODE_FLT:
2296 return INT_FLOAT_CONVERSION_BADNESS;
2297 default:
2298 return INCOMPATIBLE_TYPE_BADNESS;
2299 }
2300 break;
2301 case TYPE_CODE_CHAR:
2302 switch (TYPE_CODE (arg))
2303 {
2304 case TYPE_CODE_RANGE:
2305 case TYPE_CODE_BOOL:
2306 case TYPE_CODE_ENUM:
2307 return INTEGER_CONVERSION_BADNESS;
2308 case TYPE_CODE_FLT:
2309 return INT_FLOAT_CONVERSION_BADNESS;
2310 case TYPE_CODE_INT:
2311 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2312 return INTEGER_CONVERSION_BADNESS;
2313 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2314 return INTEGER_PROMOTION_BADNESS;
2315 /* >>> !! else fall through !! <<< */
2316 case TYPE_CODE_CHAR:
2317 /* Deal with signed, unsigned, and plain chars for C++ and
2318 with int cases falling through from previous case. */
2319 if (TYPE_NOSIGN (parm))
2320 {
2321 if (TYPE_NOSIGN (arg))
2322 return 0;
2323 else
2324 return INTEGER_CONVERSION_BADNESS;
2325 }
2326 else if (TYPE_UNSIGNED (parm))
2327 {
2328 if (TYPE_UNSIGNED (arg))
2329 return 0;
2330 else
2331 return INTEGER_PROMOTION_BADNESS;
2332 }
2333 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2334 return 0;
2335 else
2336 return INTEGER_CONVERSION_BADNESS;
2337 default:
2338 return INCOMPATIBLE_TYPE_BADNESS;
2339 }
2340 break;
2341 case TYPE_CODE_RANGE:
2342 switch (TYPE_CODE (arg))
2343 {
2344 case TYPE_CODE_INT:
2345 case TYPE_CODE_CHAR:
2346 case TYPE_CODE_RANGE:
2347 case TYPE_CODE_BOOL:
2348 case TYPE_CODE_ENUM:
2349 return INTEGER_CONVERSION_BADNESS;
2350 case TYPE_CODE_FLT:
2351 return INT_FLOAT_CONVERSION_BADNESS;
2352 default:
2353 return INCOMPATIBLE_TYPE_BADNESS;
2354 }
2355 break;
2356 case TYPE_CODE_BOOL:
2357 switch (TYPE_CODE (arg))
2358 {
2359 case TYPE_CODE_INT:
2360 case TYPE_CODE_CHAR:
2361 case TYPE_CODE_RANGE:
2362 case TYPE_CODE_ENUM:
2363 case TYPE_CODE_FLT:
2364 case TYPE_CODE_PTR:
2365 return BOOLEAN_CONVERSION_BADNESS;
2366 case TYPE_CODE_BOOL:
2367 return 0;
2368 default:
2369 return INCOMPATIBLE_TYPE_BADNESS;
2370 }
2371 break;
2372 case TYPE_CODE_FLT:
2373 switch (TYPE_CODE (arg))
2374 {
2375 case TYPE_CODE_FLT:
2376 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2377 return FLOAT_PROMOTION_BADNESS;
2378 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2379 return 0;
2380 else
2381 return FLOAT_CONVERSION_BADNESS;
2382 case TYPE_CODE_INT:
2383 case TYPE_CODE_BOOL:
2384 case TYPE_CODE_ENUM:
2385 case TYPE_CODE_RANGE:
2386 case TYPE_CODE_CHAR:
2387 return INT_FLOAT_CONVERSION_BADNESS;
2388 default:
2389 return INCOMPATIBLE_TYPE_BADNESS;
2390 }
2391 break;
2392 case TYPE_CODE_COMPLEX:
2393 switch (TYPE_CODE (arg))
2394 { /* Strictly not needed for C++, but... */
2395 case TYPE_CODE_FLT:
2396 return FLOAT_PROMOTION_BADNESS;
2397 case TYPE_CODE_COMPLEX:
2398 return 0;
2399 default:
2400 return INCOMPATIBLE_TYPE_BADNESS;
2401 }
2402 break;
2403 case TYPE_CODE_STRUCT:
2404 /* currently same as TYPE_CODE_CLASS */
2405 switch (TYPE_CODE (arg))
2406 {
2407 case TYPE_CODE_STRUCT:
2408 /* Check for derivation */
2409 if (is_ancestor (parm, arg))
2410 return BASE_CONVERSION_BADNESS;
2411 /* else fall through */
2412 default:
2413 return INCOMPATIBLE_TYPE_BADNESS;
2414 }
2415 break;
2416 case TYPE_CODE_UNION:
2417 switch (TYPE_CODE (arg))
2418 {
2419 case TYPE_CODE_UNION:
2420 default:
2421 return INCOMPATIBLE_TYPE_BADNESS;
2422 }
2423 break;
2424 case TYPE_CODE_MEMBERPTR:
2425 switch (TYPE_CODE (arg))
2426 {
2427 default:
2428 return INCOMPATIBLE_TYPE_BADNESS;
2429 }
2430 break;
2431 case TYPE_CODE_METHOD:
2432 switch (TYPE_CODE (arg))
2433 {
2434
2435 default:
2436 return INCOMPATIBLE_TYPE_BADNESS;
2437 }
2438 break;
2439 case TYPE_CODE_REF:
2440 switch (TYPE_CODE (arg))
2441 {
2442
2443 default:
2444 return INCOMPATIBLE_TYPE_BADNESS;
2445 }
2446
2447 break;
2448 case TYPE_CODE_SET:
2449 switch (TYPE_CODE (arg))
2450 {
2451 /* Not in C++ */
2452 case TYPE_CODE_SET:
2453 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2454 TYPE_FIELD_TYPE (arg, 0));
2455 default:
2456 return INCOMPATIBLE_TYPE_BADNESS;
2457 }
2458 break;
2459 case TYPE_CODE_VOID:
2460 default:
2461 return INCOMPATIBLE_TYPE_BADNESS;
2462 } /* switch (TYPE_CODE (arg)) */
2463 }
2464
2465
2466 /* End of functions for overload resolution */
2467
2468 static void
2469 print_bit_vector (B_TYPE *bits, int nbits)
2470 {
2471 int bitno;
2472
2473 for (bitno = 0; bitno < nbits; bitno++)
2474 {
2475 if ((bitno % 8) == 0)
2476 {
2477 puts_filtered (" ");
2478 }
2479 if (B_TST (bits, bitno))
2480 printf_filtered (("1"));
2481 else
2482 printf_filtered (("0"));
2483 }
2484 }
2485
2486 /* Note the first arg should be the "this" pointer, we may not want to
2487 include it since we may get into a infinitely recursive
2488 situation. */
2489
2490 static void
2491 print_arg_types (struct field *args, int nargs, int spaces)
2492 {
2493 if (args != NULL)
2494 {
2495 int i;
2496
2497 for (i = 0; i < nargs; i++)
2498 recursive_dump_type (args[i].type, spaces + 2);
2499 }
2500 }
2501
2502 int
2503 field_is_static (struct field *f)
2504 {
2505 /* "static" fields are the fields whose location is not relative
2506 to the address of the enclosing struct. It would be nice to
2507 have a dedicated flag that would be set for static fields when
2508 the type is being created. But in practice, checking the field
2509 loc_kind should give us an accurate answer. */
2510 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2511 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2512 }
2513
2514 static void
2515 dump_fn_fieldlists (struct type *type, int spaces)
2516 {
2517 int method_idx;
2518 int overload_idx;
2519 struct fn_field *f;
2520
2521 printfi_filtered (spaces, "fn_fieldlists ");
2522 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2523 printf_filtered ("\n");
2524 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2525 {
2526 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2527 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2528 method_idx,
2529 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2530 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2531 gdb_stdout);
2532 printf_filtered (_(") length %d\n"),
2533 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2534 for (overload_idx = 0;
2535 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2536 overload_idx++)
2537 {
2538 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2539 overload_idx,
2540 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2541 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2542 gdb_stdout);
2543 printf_filtered (")\n");
2544 printfi_filtered (spaces + 8, "type ");
2545 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2546 gdb_stdout);
2547 printf_filtered ("\n");
2548
2549 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2550 spaces + 8 + 2);
2551
2552 printfi_filtered (spaces + 8, "args ");
2553 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2554 gdb_stdout);
2555 printf_filtered ("\n");
2556
2557 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2558 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2559 overload_idx)),
2560 spaces);
2561 printfi_filtered (spaces + 8, "fcontext ");
2562 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2563 gdb_stdout);
2564 printf_filtered ("\n");
2565
2566 printfi_filtered (spaces + 8, "is_const %d\n",
2567 TYPE_FN_FIELD_CONST (f, overload_idx));
2568 printfi_filtered (spaces + 8, "is_volatile %d\n",
2569 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2570 printfi_filtered (spaces + 8, "is_private %d\n",
2571 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2572 printfi_filtered (spaces + 8, "is_protected %d\n",
2573 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2574 printfi_filtered (spaces + 8, "is_stub %d\n",
2575 TYPE_FN_FIELD_STUB (f, overload_idx));
2576 printfi_filtered (spaces + 8, "voffset %u\n",
2577 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2578 }
2579 }
2580 }
2581
2582 static void
2583 print_cplus_stuff (struct type *type, int spaces)
2584 {
2585 printfi_filtered (spaces, "n_baseclasses %d\n",
2586 TYPE_N_BASECLASSES (type));
2587 printfi_filtered (spaces, "nfn_fields %d\n",
2588 TYPE_NFN_FIELDS (type));
2589 printfi_filtered (spaces, "nfn_fields_total %d\n",
2590 TYPE_NFN_FIELDS_TOTAL (type));
2591 if (TYPE_N_BASECLASSES (type) > 0)
2592 {
2593 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2594 TYPE_N_BASECLASSES (type));
2595 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2596 gdb_stdout);
2597 printf_filtered (")");
2598
2599 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2600 TYPE_N_BASECLASSES (type));
2601 puts_filtered ("\n");
2602 }
2603 if (TYPE_NFIELDS (type) > 0)
2604 {
2605 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2606 {
2607 printfi_filtered (spaces,
2608 "private_field_bits (%d bits at *",
2609 TYPE_NFIELDS (type));
2610 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2611 gdb_stdout);
2612 printf_filtered (")");
2613 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2614 TYPE_NFIELDS (type));
2615 puts_filtered ("\n");
2616 }
2617 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2618 {
2619 printfi_filtered (spaces,
2620 "protected_field_bits (%d bits at *",
2621 TYPE_NFIELDS (type));
2622 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2623 gdb_stdout);
2624 printf_filtered (")");
2625 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2626 TYPE_NFIELDS (type));
2627 puts_filtered ("\n");
2628 }
2629 }
2630 if (TYPE_NFN_FIELDS (type) > 0)
2631 {
2632 dump_fn_fieldlists (type, spaces);
2633 }
2634 }
2635
2636 /* Print the contents of the TYPE's type_specific union, assuming that
2637 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2638
2639 static void
2640 print_gnat_stuff (struct type *type, int spaces)
2641 {
2642 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2643
2644 recursive_dump_type (descriptive_type, spaces + 2);
2645 }
2646
2647 static struct obstack dont_print_type_obstack;
2648
2649 void
2650 recursive_dump_type (struct type *type, int spaces)
2651 {
2652 int idx;
2653
2654 if (spaces == 0)
2655 obstack_begin (&dont_print_type_obstack, 0);
2656
2657 if (TYPE_NFIELDS (type) > 0
2658 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2659 {
2660 struct type **first_dont_print
2661 = (struct type **) obstack_base (&dont_print_type_obstack);
2662
2663 int i = (struct type **)
2664 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2665
2666 while (--i >= 0)
2667 {
2668 if (type == first_dont_print[i])
2669 {
2670 printfi_filtered (spaces, "type node ");
2671 gdb_print_host_address (type, gdb_stdout);
2672 printf_filtered (_(" <same as already seen type>\n"));
2673 return;
2674 }
2675 }
2676
2677 obstack_ptr_grow (&dont_print_type_obstack, type);
2678 }
2679
2680 printfi_filtered (spaces, "type node ");
2681 gdb_print_host_address (type, gdb_stdout);
2682 printf_filtered ("\n");
2683 printfi_filtered (spaces, "name '%s' (",
2684 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2685 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2686 printf_filtered (")\n");
2687 printfi_filtered (spaces, "tagname '%s' (",
2688 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2689 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2690 printf_filtered (")\n");
2691 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2692 switch (TYPE_CODE (type))
2693 {
2694 case TYPE_CODE_UNDEF:
2695 printf_filtered ("(TYPE_CODE_UNDEF)");
2696 break;
2697 case TYPE_CODE_PTR:
2698 printf_filtered ("(TYPE_CODE_PTR)");
2699 break;
2700 case TYPE_CODE_ARRAY:
2701 printf_filtered ("(TYPE_CODE_ARRAY)");
2702 break;
2703 case TYPE_CODE_STRUCT:
2704 printf_filtered ("(TYPE_CODE_STRUCT)");
2705 break;
2706 case TYPE_CODE_UNION:
2707 printf_filtered ("(TYPE_CODE_UNION)");
2708 break;
2709 case TYPE_CODE_ENUM:
2710 printf_filtered ("(TYPE_CODE_ENUM)");
2711 break;
2712 case TYPE_CODE_FLAGS:
2713 printf_filtered ("(TYPE_CODE_FLAGS)");
2714 break;
2715 case TYPE_CODE_FUNC:
2716 printf_filtered ("(TYPE_CODE_FUNC)");
2717 break;
2718 case TYPE_CODE_INT:
2719 printf_filtered ("(TYPE_CODE_INT)");
2720 break;
2721 case TYPE_CODE_FLT:
2722 printf_filtered ("(TYPE_CODE_FLT)");
2723 break;
2724 case TYPE_CODE_VOID:
2725 printf_filtered ("(TYPE_CODE_VOID)");
2726 break;
2727 case TYPE_CODE_SET:
2728 printf_filtered ("(TYPE_CODE_SET)");
2729 break;
2730 case TYPE_CODE_RANGE:
2731 printf_filtered ("(TYPE_CODE_RANGE)");
2732 break;
2733 case TYPE_CODE_STRING:
2734 printf_filtered ("(TYPE_CODE_STRING)");
2735 break;
2736 case TYPE_CODE_BITSTRING:
2737 printf_filtered ("(TYPE_CODE_BITSTRING)");
2738 break;
2739 case TYPE_CODE_ERROR:
2740 printf_filtered ("(TYPE_CODE_ERROR)");
2741 break;
2742 case TYPE_CODE_MEMBERPTR:
2743 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2744 break;
2745 case TYPE_CODE_METHODPTR:
2746 printf_filtered ("(TYPE_CODE_METHODPTR)");
2747 break;
2748 case TYPE_CODE_METHOD:
2749 printf_filtered ("(TYPE_CODE_METHOD)");
2750 break;
2751 case TYPE_CODE_REF:
2752 printf_filtered ("(TYPE_CODE_REF)");
2753 break;
2754 case TYPE_CODE_CHAR:
2755 printf_filtered ("(TYPE_CODE_CHAR)");
2756 break;
2757 case TYPE_CODE_BOOL:
2758 printf_filtered ("(TYPE_CODE_BOOL)");
2759 break;
2760 case TYPE_CODE_COMPLEX:
2761 printf_filtered ("(TYPE_CODE_COMPLEX)");
2762 break;
2763 case TYPE_CODE_TYPEDEF:
2764 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2765 break;
2766 case TYPE_CODE_NAMESPACE:
2767 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2768 break;
2769 default:
2770 printf_filtered ("(UNKNOWN TYPE CODE)");
2771 break;
2772 }
2773 puts_filtered ("\n");
2774 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2775 if (TYPE_OBJFILE_OWNED (type))
2776 {
2777 printfi_filtered (spaces, "objfile ");
2778 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2779 }
2780 else
2781 {
2782 printfi_filtered (spaces, "gdbarch ");
2783 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2784 }
2785 printf_filtered ("\n");
2786 printfi_filtered (spaces, "target_type ");
2787 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2788 printf_filtered ("\n");
2789 if (TYPE_TARGET_TYPE (type) != NULL)
2790 {
2791 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2792 }
2793 printfi_filtered (spaces, "pointer_type ");
2794 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2795 printf_filtered ("\n");
2796 printfi_filtered (spaces, "reference_type ");
2797 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2798 printf_filtered ("\n");
2799 printfi_filtered (spaces, "type_chain ");
2800 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2801 printf_filtered ("\n");
2802 printfi_filtered (spaces, "instance_flags 0x%x",
2803 TYPE_INSTANCE_FLAGS (type));
2804 if (TYPE_CONST (type))
2805 {
2806 puts_filtered (" TYPE_FLAG_CONST");
2807 }
2808 if (TYPE_VOLATILE (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_VOLATILE");
2811 }
2812 if (TYPE_CODE_SPACE (type))
2813 {
2814 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2815 }
2816 if (TYPE_DATA_SPACE (type))
2817 {
2818 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2819 }
2820 if (TYPE_ADDRESS_CLASS_1 (type))
2821 {
2822 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2823 }
2824 if (TYPE_ADDRESS_CLASS_2 (type))
2825 {
2826 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2827 }
2828 puts_filtered ("\n");
2829
2830 printfi_filtered (spaces, "flags");
2831 if (TYPE_UNSIGNED (type))
2832 {
2833 puts_filtered (" TYPE_FLAG_UNSIGNED");
2834 }
2835 if (TYPE_NOSIGN (type))
2836 {
2837 puts_filtered (" TYPE_FLAG_NOSIGN");
2838 }
2839 if (TYPE_STUB (type))
2840 {
2841 puts_filtered (" TYPE_FLAG_STUB");
2842 }
2843 if (TYPE_TARGET_STUB (type))
2844 {
2845 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2846 }
2847 if (TYPE_STATIC (type))
2848 {
2849 puts_filtered (" TYPE_FLAG_STATIC");
2850 }
2851 if (TYPE_PROTOTYPED (type))
2852 {
2853 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2854 }
2855 if (TYPE_INCOMPLETE (type))
2856 {
2857 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2858 }
2859 if (TYPE_VARARGS (type))
2860 {
2861 puts_filtered (" TYPE_FLAG_VARARGS");
2862 }
2863 /* This is used for things like AltiVec registers on ppc. Gcc emits
2864 an attribute for the array type, which tells whether or not we
2865 have a vector, instead of a regular array. */
2866 if (TYPE_VECTOR (type))
2867 {
2868 puts_filtered (" TYPE_FLAG_VECTOR");
2869 }
2870 if (TYPE_FIXED_INSTANCE (type))
2871 {
2872 puts_filtered (" TYPE_FIXED_INSTANCE");
2873 }
2874 if (TYPE_STUB_SUPPORTED (type))
2875 {
2876 puts_filtered (" TYPE_STUB_SUPPORTED");
2877 }
2878 if (TYPE_NOTTEXT (type))
2879 {
2880 puts_filtered (" TYPE_NOTTEXT");
2881 }
2882 puts_filtered ("\n");
2883 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2884 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2885 puts_filtered ("\n");
2886 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2887 {
2888 printfi_filtered (spaces + 2,
2889 "[%d] bitpos %d bitsize %d type ",
2890 idx, TYPE_FIELD_BITPOS (type, idx),
2891 TYPE_FIELD_BITSIZE (type, idx));
2892 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2893 printf_filtered (" name '%s' (",
2894 TYPE_FIELD_NAME (type, idx) != NULL
2895 ? TYPE_FIELD_NAME (type, idx)
2896 : "<NULL>");
2897 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2898 printf_filtered (")\n");
2899 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2900 {
2901 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2902 }
2903 }
2904 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2905 {
2906 printfi_filtered (spaces, "low %s%s high %s%s\n",
2907 plongest (TYPE_LOW_BOUND (type)),
2908 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2909 plongest (TYPE_HIGH_BOUND (type)),
2910 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2911 }
2912 printfi_filtered (spaces, "vptr_basetype ");
2913 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2914 puts_filtered ("\n");
2915 if (TYPE_VPTR_BASETYPE (type) != NULL)
2916 {
2917 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2918 }
2919 printfi_filtered (spaces, "vptr_fieldno %d\n",
2920 TYPE_VPTR_FIELDNO (type));
2921
2922 switch (TYPE_SPECIFIC_FIELD (type))
2923 {
2924 case TYPE_SPECIFIC_CPLUS_STUFF:
2925 printfi_filtered (spaces, "cplus_stuff ");
2926 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2927 gdb_stdout);
2928 puts_filtered ("\n");
2929 print_cplus_stuff (type, spaces);
2930 break;
2931
2932 case TYPE_SPECIFIC_GNAT_STUFF:
2933 printfi_filtered (spaces, "gnat_stuff ");
2934 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2935 puts_filtered ("\n");
2936 print_gnat_stuff (type, spaces);
2937 break;
2938
2939 case TYPE_SPECIFIC_FLOATFORMAT:
2940 printfi_filtered (spaces, "floatformat ");
2941 if (TYPE_FLOATFORMAT (type) == NULL)
2942 puts_filtered ("(null)");
2943 else
2944 {
2945 puts_filtered ("{ ");
2946 if (TYPE_FLOATFORMAT (type)[0] == NULL
2947 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2948 puts_filtered ("(null)");
2949 else
2950 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2951
2952 puts_filtered (", ");
2953 if (TYPE_FLOATFORMAT (type)[1] == NULL
2954 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2955 puts_filtered ("(null)");
2956 else
2957 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2958
2959 puts_filtered (" }");
2960 }
2961 puts_filtered ("\n");
2962 break;
2963
2964 case TYPE_SPECIFIC_CALLING_CONVENTION:
2965 printfi_filtered (spaces, "calling_convention %d\n",
2966 TYPE_CALLING_CONVENTION (type));
2967 break;
2968 }
2969
2970 if (spaces == 0)
2971 obstack_free (&dont_print_type_obstack, NULL);
2972 }
2973
2974 /* Trivial helpers for the libiberty hash table, for mapping one
2975 type to another. */
2976
2977 struct type_pair
2978 {
2979 struct type *old, *new;
2980 };
2981
2982 static hashval_t
2983 type_pair_hash (const void *item)
2984 {
2985 const struct type_pair *pair = item;
2986
2987 return htab_hash_pointer (pair->old);
2988 }
2989
2990 static int
2991 type_pair_eq (const void *item_lhs, const void *item_rhs)
2992 {
2993 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2994
2995 return lhs->old == rhs->old;
2996 }
2997
2998 /* Allocate the hash table used by copy_type_recursive to walk
2999 types without duplicates. We use OBJFILE's obstack, because
3000 OBJFILE is about to be deleted. */
3001
3002 htab_t
3003 create_copied_types_hash (struct objfile *objfile)
3004 {
3005 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3006 NULL, &objfile->objfile_obstack,
3007 hashtab_obstack_allocate,
3008 dummy_obstack_deallocate);
3009 }
3010
3011 /* Recursively copy (deep copy) TYPE, if it is associated with
3012 OBJFILE. Return a new type allocated using malloc, a saved type if
3013 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3014 not associated with OBJFILE. */
3015
3016 struct type *
3017 copy_type_recursive (struct objfile *objfile,
3018 struct type *type,
3019 htab_t copied_types)
3020 {
3021 struct type_pair *stored, pair;
3022 void **slot;
3023 struct type *new_type;
3024
3025 if (! TYPE_OBJFILE_OWNED (type))
3026 return type;
3027
3028 /* This type shouldn't be pointing to any types in other objfiles;
3029 if it did, the type might disappear unexpectedly. */
3030 gdb_assert (TYPE_OBJFILE (type) == objfile);
3031
3032 pair.old = type;
3033 slot = htab_find_slot (copied_types, &pair, INSERT);
3034 if (*slot != NULL)
3035 return ((struct type_pair *) *slot)->new;
3036
3037 new_type = alloc_type_arch (get_type_arch (type));
3038
3039 /* We must add the new type to the hash table immediately, in case
3040 we encounter this type again during a recursive call below. */
3041 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3042 stored->old = type;
3043 stored->new = new_type;
3044 *slot = stored;
3045
3046 /* Copy the common fields of types. For the main type, we simply
3047 copy the entire thing and then update specific fields as needed. */
3048 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3049 TYPE_OBJFILE_OWNED (new_type) = 0;
3050 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3051
3052 if (TYPE_NAME (type))
3053 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3054 if (TYPE_TAG_NAME (type))
3055 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3056
3057 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3058 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3059
3060 /* Copy the fields. */
3061 if (TYPE_NFIELDS (type))
3062 {
3063 int i, nfields;
3064
3065 nfields = TYPE_NFIELDS (type);
3066 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3067 for (i = 0; i < nfields; i++)
3068 {
3069 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3070 TYPE_FIELD_ARTIFICIAL (type, i);
3071 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3072 if (TYPE_FIELD_TYPE (type, i))
3073 TYPE_FIELD_TYPE (new_type, i)
3074 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3075 copied_types);
3076 if (TYPE_FIELD_NAME (type, i))
3077 TYPE_FIELD_NAME (new_type, i) =
3078 xstrdup (TYPE_FIELD_NAME (type, i));
3079 switch (TYPE_FIELD_LOC_KIND (type, i))
3080 {
3081 case FIELD_LOC_KIND_BITPOS:
3082 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3083 TYPE_FIELD_BITPOS (type, i));
3084 break;
3085 case FIELD_LOC_KIND_PHYSADDR:
3086 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3087 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3088 break;
3089 case FIELD_LOC_KIND_PHYSNAME:
3090 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3091 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3092 i)));
3093 break;
3094 default:
3095 internal_error (__FILE__, __LINE__,
3096 _("Unexpected type field location kind: %d"),
3097 TYPE_FIELD_LOC_KIND (type, i));
3098 }
3099 }
3100 }
3101
3102 /* For range types, copy the bounds information. */
3103 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3104 {
3105 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3106 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3107 }
3108
3109 /* Copy pointers to other types. */
3110 if (TYPE_TARGET_TYPE (type))
3111 TYPE_TARGET_TYPE (new_type) =
3112 copy_type_recursive (objfile,
3113 TYPE_TARGET_TYPE (type),
3114 copied_types);
3115 if (TYPE_VPTR_BASETYPE (type))
3116 TYPE_VPTR_BASETYPE (new_type) =
3117 copy_type_recursive (objfile,
3118 TYPE_VPTR_BASETYPE (type),
3119 copied_types);
3120 /* Maybe copy the type_specific bits.
3121
3122 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3123 base classes and methods. There's no fundamental reason why we
3124 can't, but at the moment it is not needed. */
3125
3126 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3127 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3128 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3129 || TYPE_CODE (type) == TYPE_CODE_UNION
3130 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3131 INIT_CPLUS_SPECIFIC (new_type);
3132
3133 return new_type;
3134 }
3135
3136 /* Make a copy of the given TYPE, except that the pointer & reference
3137 types are not preserved.
3138
3139 This function assumes that the given type has an associated objfile.
3140 This objfile is used to allocate the new type. */
3141
3142 struct type *
3143 copy_type (const struct type *type)
3144 {
3145 struct type *new_type;
3146
3147 gdb_assert (TYPE_OBJFILE_OWNED (type));
3148
3149 new_type = alloc_type_copy (type);
3150 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3151 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3152 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3153 sizeof (struct main_type));
3154
3155 return new_type;
3156 }
3157
3158
3159 /* Helper functions to initialize architecture-specific types. */
3160
3161 /* Allocate a type structure associated with GDBARCH and set its
3162 CODE, LENGTH, and NAME fields. */
3163 struct type *
3164 arch_type (struct gdbarch *gdbarch,
3165 enum type_code code, int length, char *name)
3166 {
3167 struct type *type;
3168
3169 type = alloc_type_arch (gdbarch);
3170 TYPE_CODE (type) = code;
3171 TYPE_LENGTH (type) = length;
3172
3173 if (name)
3174 TYPE_NAME (type) = xstrdup (name);
3175
3176 return type;
3177 }
3178
3179 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3180 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3181 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3182 struct type *
3183 arch_integer_type (struct gdbarch *gdbarch,
3184 int bit, int unsigned_p, char *name)
3185 {
3186 struct type *t;
3187
3188 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3189 if (unsigned_p)
3190 TYPE_UNSIGNED (t) = 1;
3191 if (name && strcmp (name, "char") == 0)
3192 TYPE_NOSIGN (t) = 1;
3193
3194 return t;
3195 }
3196
3197 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3198 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3199 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3200 struct type *
3201 arch_character_type (struct gdbarch *gdbarch,
3202 int bit, int unsigned_p, char *name)
3203 {
3204 struct type *t;
3205
3206 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3207 if (unsigned_p)
3208 TYPE_UNSIGNED (t) = 1;
3209
3210 return t;
3211 }
3212
3213 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3214 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3215 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3216 struct type *
3217 arch_boolean_type (struct gdbarch *gdbarch,
3218 int bit, int unsigned_p, char *name)
3219 {
3220 struct type *t;
3221
3222 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3223 if (unsigned_p)
3224 TYPE_UNSIGNED (t) = 1;
3225
3226 return t;
3227 }
3228
3229 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3230 BIT is the type size in bits; if BIT equals -1, the size is
3231 determined by the floatformat. NAME is the type name. Set the
3232 TYPE_FLOATFORMAT from FLOATFORMATS. */
3233 struct type *
3234 arch_float_type (struct gdbarch *gdbarch,
3235 int bit, char *name, const struct floatformat **floatformats)
3236 {
3237 struct type *t;
3238
3239 if (bit == -1)
3240 {
3241 gdb_assert (floatformats != NULL);
3242 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3243 bit = floatformats[0]->totalsize;
3244 }
3245 gdb_assert (bit >= 0);
3246
3247 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3248 TYPE_FLOATFORMAT (t) = floatformats;
3249 return t;
3250 }
3251
3252 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3253 NAME is the type name. TARGET_TYPE is the component float type. */
3254 struct type *
3255 arch_complex_type (struct gdbarch *gdbarch,
3256 char *name, struct type *target_type)
3257 {
3258 struct type *t;
3259
3260 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3261 2 * TYPE_LENGTH (target_type), name);
3262 TYPE_TARGET_TYPE (t) = target_type;
3263 return t;
3264 }
3265
3266 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3267 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3268 struct type *
3269 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3270 {
3271 int nfields = length * TARGET_CHAR_BIT;
3272 struct type *type;
3273
3274 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3275 TYPE_UNSIGNED (type) = 1;
3276 TYPE_NFIELDS (type) = nfields;
3277 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3278
3279 return type;
3280 }
3281
3282 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3283 position BITPOS is called NAME. */
3284 void
3285 append_flags_type_flag (struct type *type, int bitpos, char *name)
3286 {
3287 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3288 gdb_assert (bitpos < TYPE_NFIELDS (type));
3289 gdb_assert (bitpos >= 0);
3290
3291 if (name)
3292 {
3293 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3294 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3295 }
3296 else
3297 {
3298 /* Don't show this field to the user. */
3299 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3300 }
3301 }
3302
3303 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3304 specified by CODE) associated with GDBARCH. NAME is the type name. */
3305 struct type *
3306 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3307 {
3308 struct type *t;
3309
3310 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3311 t = arch_type (gdbarch, code, 0, NULL);
3312 TYPE_TAG_NAME (t) = name;
3313 INIT_CPLUS_SPECIFIC (t);
3314 return t;
3315 }
3316
3317 /* Add new field with name NAME and type FIELD to composite type T.
3318 Do not set the field's position or adjust the type's length;
3319 the caller should do so. Return the new field. */
3320 struct field *
3321 append_composite_type_field_raw (struct type *t, char *name,
3322 struct type *field)
3323 {
3324 struct field *f;
3325
3326 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3327 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3328 sizeof (struct field) * TYPE_NFIELDS (t));
3329 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3330 memset (f, 0, sizeof f[0]);
3331 FIELD_TYPE (f[0]) = field;
3332 FIELD_NAME (f[0]) = name;
3333 return f;
3334 }
3335
3336 /* Add new field with name NAME and type FIELD to composite type T.
3337 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3338 void
3339 append_composite_type_field_aligned (struct type *t, char *name,
3340 struct type *field, int alignment)
3341 {
3342 struct field *f = append_composite_type_field_raw (t, name, field);
3343
3344 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3345 {
3346 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3347 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3348 }
3349 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3350 {
3351 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3352 if (TYPE_NFIELDS (t) > 1)
3353 {
3354 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3355 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3356 * TARGET_CHAR_BIT));
3357
3358 if (alignment)
3359 {
3360 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3361
3362 if (left)
3363 {
3364 FIELD_BITPOS (f[0]) += left;
3365 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3366 }
3367 }
3368 }
3369 }
3370 }
3371
3372 /* Add new field with name NAME and type FIELD to composite type T. */
3373 void
3374 append_composite_type_field (struct type *t, char *name,
3375 struct type *field)
3376 {
3377 append_composite_type_field_aligned (t, name, field, 0);
3378 }
3379
3380
3381 static struct gdbarch_data *gdbtypes_data;
3382
3383 const struct builtin_type *
3384 builtin_type (struct gdbarch *gdbarch)
3385 {
3386 return gdbarch_data (gdbarch, gdbtypes_data);
3387 }
3388
3389 static void *
3390 gdbtypes_post_init (struct gdbarch *gdbarch)
3391 {
3392 struct builtin_type *builtin_type
3393 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3394
3395 /* Basic types. */
3396 builtin_type->builtin_void
3397 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3398 builtin_type->builtin_char
3399 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3400 !gdbarch_char_signed (gdbarch), "char");
3401 builtin_type->builtin_signed_char
3402 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3403 0, "signed char");
3404 builtin_type->builtin_unsigned_char
3405 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3406 1, "unsigned char");
3407 builtin_type->builtin_short
3408 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3409 0, "short");
3410 builtin_type->builtin_unsigned_short
3411 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3412 1, "unsigned short");
3413 builtin_type->builtin_int
3414 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3415 0, "int");
3416 builtin_type->builtin_unsigned_int
3417 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3418 1, "unsigned int");
3419 builtin_type->builtin_long
3420 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3421 0, "long");
3422 builtin_type->builtin_unsigned_long
3423 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3424 1, "unsigned long");
3425 builtin_type->builtin_long_long
3426 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3427 0, "long long");
3428 builtin_type->builtin_unsigned_long_long
3429 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3430 1, "unsigned long long");
3431 builtin_type->builtin_float
3432 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3433 "float", gdbarch_float_format (gdbarch));
3434 builtin_type->builtin_double
3435 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3436 "double", gdbarch_double_format (gdbarch));
3437 builtin_type->builtin_long_double
3438 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3439 "long double", gdbarch_long_double_format (gdbarch));
3440 builtin_type->builtin_complex
3441 = arch_complex_type (gdbarch, "complex",
3442 builtin_type->builtin_float);
3443 builtin_type->builtin_double_complex
3444 = arch_complex_type (gdbarch, "double complex",
3445 builtin_type->builtin_double);
3446 builtin_type->builtin_string
3447 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3448 builtin_type->builtin_bool
3449 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3450
3451 /* The following three are about decimal floating point types, which
3452 are 32-bits, 64-bits and 128-bits respectively. */
3453 builtin_type->builtin_decfloat
3454 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3455 builtin_type->builtin_decdouble
3456 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3457 builtin_type->builtin_declong
3458 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3459
3460 /* "True" character types. */
3461 builtin_type->builtin_true_char
3462 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3463 builtin_type->builtin_true_unsigned_char
3464 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3465
3466 /* Fixed-size integer types. */
3467 builtin_type->builtin_int0
3468 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3469 builtin_type->builtin_int8
3470 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3471 builtin_type->builtin_uint8
3472 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3473 builtin_type->builtin_int16
3474 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3475 builtin_type->builtin_uint16
3476 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3477 builtin_type->builtin_int32
3478 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3479 builtin_type->builtin_uint32
3480 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3481 builtin_type->builtin_int64
3482 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3483 builtin_type->builtin_uint64
3484 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3485 builtin_type->builtin_int128
3486 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3487 builtin_type->builtin_uint128
3488 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3489 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3490 TYPE_INSTANCE_FLAG_NOTTEXT;
3491 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3492 TYPE_INSTANCE_FLAG_NOTTEXT;
3493
3494 /* Wide character types. */
3495 builtin_type->builtin_char16
3496 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3497 builtin_type->builtin_char32
3498 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3499
3500
3501 /* Default data/code pointer types. */
3502 builtin_type->builtin_data_ptr
3503 = lookup_pointer_type (builtin_type->builtin_void);
3504 builtin_type->builtin_func_ptr
3505 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3506
3507 /* This type represents a GDB internal function. */
3508 builtin_type->internal_fn
3509 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3510 "<internal function>");
3511
3512 return builtin_type;
3513 }
3514
3515
3516 /* This set of objfile-based types is intended to be used by symbol
3517 readers as basic types. */
3518
3519 static const struct objfile_data *objfile_type_data;
3520
3521 const struct objfile_type *
3522 objfile_type (struct objfile *objfile)
3523 {
3524 struct gdbarch *gdbarch;
3525 struct objfile_type *objfile_type
3526 = objfile_data (objfile, objfile_type_data);
3527
3528 if (objfile_type)
3529 return objfile_type;
3530
3531 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3532 1, struct objfile_type);
3533
3534 /* Use the objfile architecture to determine basic type properties. */
3535 gdbarch = get_objfile_arch (objfile);
3536
3537 /* Basic types. */
3538 objfile_type->builtin_void
3539 = init_type (TYPE_CODE_VOID, 1,
3540 0,
3541 "void", objfile);
3542
3543 objfile_type->builtin_char
3544 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3545 (TYPE_FLAG_NOSIGN
3546 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3547 "char", objfile);
3548 objfile_type->builtin_signed_char
3549 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3550 0,
3551 "signed char", objfile);
3552 objfile_type->builtin_unsigned_char
3553 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3554 TYPE_FLAG_UNSIGNED,
3555 "unsigned char", objfile);
3556 objfile_type->builtin_short
3557 = init_type (TYPE_CODE_INT,
3558 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3559 0, "short", objfile);
3560 objfile_type->builtin_unsigned_short
3561 = init_type (TYPE_CODE_INT,
3562 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3563 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3564 objfile_type->builtin_int
3565 = init_type (TYPE_CODE_INT,
3566 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3567 0, "int", objfile);
3568 objfile_type->builtin_unsigned_int
3569 = init_type (TYPE_CODE_INT,
3570 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3571 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3572 objfile_type->builtin_long
3573 = init_type (TYPE_CODE_INT,
3574 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3575 0, "long", objfile);
3576 objfile_type->builtin_unsigned_long
3577 = init_type (TYPE_CODE_INT,
3578 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3579 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3580 objfile_type->builtin_long_long
3581 = init_type (TYPE_CODE_INT,
3582 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3583 0, "long long", objfile);
3584 objfile_type->builtin_unsigned_long_long
3585 = init_type (TYPE_CODE_INT,
3586 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3587 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3588
3589 objfile_type->builtin_float
3590 = init_type (TYPE_CODE_FLT,
3591 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3592 0, "float", objfile);
3593 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3594 = gdbarch_float_format (gdbarch);
3595 objfile_type->builtin_double
3596 = init_type (TYPE_CODE_FLT,
3597 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3598 0, "double", objfile);
3599 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3600 = gdbarch_double_format (gdbarch);
3601 objfile_type->builtin_long_double
3602 = init_type (TYPE_CODE_FLT,
3603 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3604 0, "long double", objfile);
3605 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3606 = gdbarch_long_double_format (gdbarch);
3607
3608 /* This type represents a type that was unrecognized in symbol read-in. */
3609 objfile_type->builtin_error
3610 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3611
3612 /* The following set of types is used for symbols with no
3613 debug information. */
3614 objfile_type->nodebug_text_symbol
3615 = init_type (TYPE_CODE_FUNC, 1, 0,
3616 "<text variable, no debug info>", objfile);
3617 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3618 = objfile_type->builtin_int;
3619 objfile_type->nodebug_data_symbol
3620 = init_type (TYPE_CODE_INT,
3621 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3622 "<data variable, no debug info>", objfile);
3623 objfile_type->nodebug_unknown_symbol
3624 = init_type (TYPE_CODE_INT, 1, 0,
3625 "<variable (not text or data), no debug info>", objfile);
3626 objfile_type->nodebug_tls_symbol
3627 = init_type (TYPE_CODE_INT,
3628 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3629 "<thread local variable, no debug info>", objfile);
3630
3631 /* NOTE: on some targets, addresses and pointers are not necessarily
3632 the same --- for example, on the D10V, pointers are 16 bits long,
3633 but addresses are 32 bits long. See doc/gdbint.texinfo,
3634 ``Pointers Are Not Always Addresses''.
3635
3636 The upshot is:
3637 - gdb's `struct type' always describes the target's
3638 representation.
3639 - gdb's `struct value' objects should always hold values in
3640 target form.
3641 - gdb's CORE_ADDR values are addresses in the unified virtual
3642 address space that the assembler and linker work with. Thus,
3643 since target_read_memory takes a CORE_ADDR as an argument, it
3644 can access any memory on the target, even if the processor has
3645 separate code and data address spaces.
3646
3647 So, for example:
3648 - If v is a value holding a D10V code pointer, its contents are
3649 in target form: a big-endian address left-shifted two bits.
3650 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3651 sizeof (void *) == 2 on the target.
3652
3653 In this context, objfile_type->builtin_core_addr is a bit odd:
3654 it's a target type for a value the target will never see. It's
3655 only used to hold the values of (typeless) linker symbols, which
3656 are indeed in the unified virtual address space. */
3657
3658 objfile_type->builtin_core_addr
3659 = init_type (TYPE_CODE_INT,
3660 gdbarch_addr_bit (gdbarch) / 8,
3661 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3662
3663 set_objfile_data (objfile, objfile_type_data, objfile_type);
3664 return objfile_type;
3665 }
3666
3667
3668 extern void _initialize_gdbtypes (void);
3669 void
3670 _initialize_gdbtypes (void)
3671 {
3672 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3673 objfile_type_data = register_objfile_data ();
3674
3675 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3676 Set debugging of C++ overloading."), _("\
3677 Show debugging of C++ overloading."), _("\
3678 When enabled, ranking of the functions is displayed."),
3679 NULL,
3680 show_overload_debug,
3681 &setdebuglist, &showdebuglist);
3682
3683 /* Add user knob for controlling resolution of opaque types. */
3684 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3685 &opaque_type_resolution, _("\
3686 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3687 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3688 NULL,
3689 show_opaque_type_resolution,
3690 &setlist, &showlist);
3691 }
This page took 0.111858 seconds and 4 git commands to generate.