ba35883ec7273975425a0173b72a2c20e13ce13e
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_RANGE:
1627 return !has_static_range (TYPE_RANGE_DATA (type));
1628
1629 case TYPE_CODE_ARRAY:
1630 {
1631 gdb_assert (TYPE_NFIELDS (type) == 1);
1632
1633 /* The array is dynamic if either the bounds are dynamic,
1634 or the elements it contains have a dynamic contents. */
1635 if (is_dynamic_type (TYPE_INDEX_TYPE (type)))
1636 return 1;
1637 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1638 }
1639 }
1640
1641 return 0;
1642 }
1643
1644 static struct type *
1645 resolve_dynamic_range (struct type *dyn_range_type)
1646 {
1647 CORE_ADDR value;
1648 struct type *static_range_type;
1649 const struct dynamic_prop *prop;
1650 const struct dwarf2_locexpr_baton *baton;
1651 struct dynamic_prop low_bound, high_bound;
1652
1653 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1654
1655 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1656 if (dwarf2_evaluate_property (prop, &value))
1657 {
1658 low_bound.kind = PROP_CONST;
1659 low_bound.data.const_val = value;
1660 }
1661 else
1662 {
1663 low_bound.kind = PROP_UNDEFINED;
1664 low_bound.data.const_val = 0;
1665 }
1666
1667 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1668 if (dwarf2_evaluate_property (prop, &value))
1669 {
1670 high_bound.kind = PROP_CONST;
1671 high_bound.data.const_val = value;
1672
1673 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1674 high_bound.data.const_val
1675 = low_bound.data.const_val + high_bound.data.const_val - 1;
1676 }
1677 else
1678 {
1679 high_bound.kind = PROP_UNDEFINED;
1680 high_bound.data.const_val = 0;
1681 }
1682
1683 static_range_type = create_range_type (copy_type (dyn_range_type),
1684 TYPE_TARGET_TYPE (dyn_range_type),
1685 &low_bound, &high_bound);
1686 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1687 return static_range_type;
1688 }
1689
1690 /* Resolves dynamic bound values of an array type TYPE to static ones.
1691 ADDRESS might be needed to resolve the subrange bounds, it is the location
1692 of the associated array. */
1693
1694 static struct type *
1695 resolve_dynamic_array (struct type *type)
1696 {
1697 CORE_ADDR value;
1698 struct type *elt_type;
1699 struct type *range_type;
1700 struct type *ary_dim;
1701
1702 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1703
1704 elt_type = type;
1705 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1706 range_type = resolve_dynamic_range (range_type);
1707
1708 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1709
1710 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1711 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1712 else
1713 elt_type = TYPE_TARGET_TYPE (type);
1714
1715 return create_array_type (copy_type (type),
1716 elt_type,
1717 range_type);
1718 }
1719
1720 /* See gdbtypes.h */
1721
1722 struct type *
1723 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1724 {
1725 struct type *real_type = check_typedef (type);
1726 struct type *resolved_type = type;
1727
1728 if (!is_dynamic_type (real_type))
1729 return type;
1730
1731 switch (TYPE_CODE (type))
1732 {
1733 case TYPE_CODE_TYPEDEF:
1734 resolved_type = copy_type (type);
1735 TYPE_TARGET_TYPE (resolved_type)
1736 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), addr);
1737 break;
1738
1739 case TYPE_CODE_REF:
1740 {
1741 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1742
1743 resolved_type = copy_type (type);
1744 TYPE_TARGET_TYPE (resolved_type)
1745 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), target_addr);
1746 break;
1747 }
1748
1749 case TYPE_CODE_ARRAY:
1750 resolved_type = resolve_dynamic_array (type);
1751 break;
1752
1753 case TYPE_CODE_RANGE:
1754 resolved_type = resolve_dynamic_range (type);
1755 break;
1756 }
1757
1758 return resolved_type;
1759 }
1760
1761 /* Find the real type of TYPE. This function returns the real type,
1762 after removing all layers of typedefs, and completing opaque or stub
1763 types. Completion changes the TYPE argument, but stripping of
1764 typedefs does not.
1765
1766 Instance flags (e.g. const/volatile) are preserved as typedefs are
1767 stripped. If necessary a new qualified form of the underlying type
1768 is created.
1769
1770 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1771 not been computed and we're either in the middle of reading symbols, or
1772 there was no name for the typedef in the debug info.
1773
1774 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1775 QUITs in the symbol reading code can also throw.
1776 Thus this function can throw an exception.
1777
1778 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1779 the target type.
1780
1781 If this is a stubbed struct (i.e. declared as struct foo *), see if
1782 we can find a full definition in some other file. If so, copy this
1783 definition, so we can use it in future. There used to be a comment
1784 (but not any code) that if we don't find a full definition, we'd
1785 set a flag so we don't spend time in the future checking the same
1786 type. That would be a mistake, though--we might load in more
1787 symbols which contain a full definition for the type. */
1788
1789 struct type *
1790 check_typedef (struct type *type)
1791 {
1792 struct type *orig_type = type;
1793 /* While we're removing typedefs, we don't want to lose qualifiers.
1794 E.g., const/volatile. */
1795 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1796
1797 gdb_assert (type);
1798
1799 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1800 {
1801 if (!TYPE_TARGET_TYPE (type))
1802 {
1803 const char *name;
1804 struct symbol *sym;
1805
1806 /* It is dangerous to call lookup_symbol if we are currently
1807 reading a symtab. Infinite recursion is one danger. */
1808 if (currently_reading_symtab)
1809 return make_qualified_type (type, instance_flags, NULL);
1810
1811 name = type_name_no_tag (type);
1812 /* FIXME: shouldn't we separately check the TYPE_NAME and
1813 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1814 VAR_DOMAIN as appropriate? (this code was written before
1815 TYPE_NAME and TYPE_TAG_NAME were separate). */
1816 if (name == NULL)
1817 {
1818 stub_noname_complaint ();
1819 return make_qualified_type (type, instance_flags, NULL);
1820 }
1821 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1822 if (sym)
1823 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1824 else /* TYPE_CODE_UNDEF */
1825 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1826 }
1827 type = TYPE_TARGET_TYPE (type);
1828
1829 /* Preserve the instance flags as we traverse down the typedef chain.
1830
1831 Handling address spaces/classes is nasty, what do we do if there's a
1832 conflict?
1833 E.g., what if an outer typedef marks the type as class_1 and an inner
1834 typedef marks the type as class_2?
1835 This is the wrong place to do such error checking. We leave it to
1836 the code that created the typedef in the first place to flag the
1837 error. We just pick the outer address space (akin to letting the
1838 outer cast in a chain of casting win), instead of assuming
1839 "it can't happen". */
1840 {
1841 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1842 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1843 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1844 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1845
1846 /* Treat code vs data spaces and address classes separately. */
1847 if ((instance_flags & ALL_SPACES) != 0)
1848 new_instance_flags &= ~ALL_SPACES;
1849 if ((instance_flags & ALL_CLASSES) != 0)
1850 new_instance_flags &= ~ALL_CLASSES;
1851
1852 instance_flags |= new_instance_flags;
1853 }
1854 }
1855
1856 /* If this is a struct/class/union with no fields, then check
1857 whether a full definition exists somewhere else. This is for
1858 systems where a type definition with no fields is issued for such
1859 types, instead of identifying them as stub types in the first
1860 place. */
1861
1862 if (TYPE_IS_OPAQUE (type)
1863 && opaque_type_resolution
1864 && !currently_reading_symtab)
1865 {
1866 const char *name = type_name_no_tag (type);
1867 struct type *newtype;
1868
1869 if (name == NULL)
1870 {
1871 stub_noname_complaint ();
1872 return make_qualified_type (type, instance_flags, NULL);
1873 }
1874 newtype = lookup_transparent_type (name);
1875
1876 if (newtype)
1877 {
1878 /* If the resolved type and the stub are in the same
1879 objfile, then replace the stub type with the real deal.
1880 But if they're in separate objfiles, leave the stub
1881 alone; we'll just look up the transparent type every time
1882 we call check_typedef. We can't create pointers between
1883 types allocated to different objfiles, since they may
1884 have different lifetimes. Trying to copy NEWTYPE over to
1885 TYPE's objfile is pointless, too, since you'll have to
1886 move over any other types NEWTYPE refers to, which could
1887 be an unbounded amount of stuff. */
1888 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1889 type = make_qualified_type (newtype,
1890 TYPE_INSTANCE_FLAGS (type),
1891 type);
1892 else
1893 type = newtype;
1894 }
1895 }
1896 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1897 types. */
1898 else if (TYPE_STUB (type) && !currently_reading_symtab)
1899 {
1900 const char *name = type_name_no_tag (type);
1901 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1902 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1903 as appropriate? (this code was written before TYPE_NAME and
1904 TYPE_TAG_NAME were separate). */
1905 struct symbol *sym;
1906
1907 if (name == NULL)
1908 {
1909 stub_noname_complaint ();
1910 return make_qualified_type (type, instance_flags, NULL);
1911 }
1912 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1913 if (sym)
1914 {
1915 /* Same as above for opaque types, we can replace the stub
1916 with the complete type only if they are in the same
1917 objfile. */
1918 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1919 type = make_qualified_type (SYMBOL_TYPE (sym),
1920 TYPE_INSTANCE_FLAGS (type),
1921 type);
1922 else
1923 type = SYMBOL_TYPE (sym);
1924 }
1925 }
1926
1927 if (TYPE_TARGET_STUB (type))
1928 {
1929 struct type *range_type;
1930 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1931
1932 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1933 {
1934 /* Nothing we can do. */
1935 }
1936 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1937 {
1938 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1939 TYPE_TARGET_STUB (type) = 0;
1940 }
1941 }
1942
1943 type = make_qualified_type (type, instance_flags, NULL);
1944
1945 /* Cache TYPE_LENGTH for future use. */
1946 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1947
1948 return type;
1949 }
1950
1951 /* Parse a type expression in the string [P..P+LENGTH). If an error
1952 occurs, silently return a void type. */
1953
1954 static struct type *
1955 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1956 {
1957 struct ui_file *saved_gdb_stderr;
1958 struct type *type = NULL; /* Initialize to keep gcc happy. */
1959 volatile struct gdb_exception except;
1960
1961 /* Suppress error messages. */
1962 saved_gdb_stderr = gdb_stderr;
1963 gdb_stderr = ui_file_new ();
1964
1965 /* Call parse_and_eval_type() without fear of longjmp()s. */
1966 TRY_CATCH (except, RETURN_MASK_ERROR)
1967 {
1968 type = parse_and_eval_type (p, length);
1969 }
1970
1971 if (except.reason < 0)
1972 type = builtin_type (gdbarch)->builtin_void;
1973
1974 /* Stop suppressing error messages. */
1975 ui_file_delete (gdb_stderr);
1976 gdb_stderr = saved_gdb_stderr;
1977
1978 return type;
1979 }
1980
1981 /* Ugly hack to convert method stubs into method types.
1982
1983 He ain't kiddin'. This demangles the name of the method into a
1984 string including argument types, parses out each argument type,
1985 generates a string casting a zero to that type, evaluates the
1986 string, and stuffs the resulting type into an argtype vector!!!
1987 Then it knows the type of the whole function (including argument
1988 types for overloading), which info used to be in the stab's but was
1989 removed to hack back the space required for them. */
1990
1991 static void
1992 check_stub_method (struct type *type, int method_id, int signature_id)
1993 {
1994 struct gdbarch *gdbarch = get_type_arch (type);
1995 struct fn_field *f;
1996 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1997 char *demangled_name = gdb_demangle (mangled_name,
1998 DMGL_PARAMS | DMGL_ANSI);
1999 char *argtypetext, *p;
2000 int depth = 0, argcount = 1;
2001 struct field *argtypes;
2002 struct type *mtype;
2003
2004 /* Make sure we got back a function string that we can use. */
2005 if (demangled_name)
2006 p = strchr (demangled_name, '(');
2007 else
2008 p = NULL;
2009
2010 if (demangled_name == NULL || p == NULL)
2011 error (_("Internal: Cannot demangle mangled name `%s'."),
2012 mangled_name);
2013
2014 /* Now, read in the parameters that define this type. */
2015 p += 1;
2016 argtypetext = p;
2017 while (*p)
2018 {
2019 if (*p == '(' || *p == '<')
2020 {
2021 depth += 1;
2022 }
2023 else if (*p == ')' || *p == '>')
2024 {
2025 depth -= 1;
2026 }
2027 else if (*p == ',' && depth == 0)
2028 {
2029 argcount += 1;
2030 }
2031
2032 p += 1;
2033 }
2034
2035 /* If we read one argument and it was ``void'', don't count it. */
2036 if (strncmp (argtypetext, "(void)", 6) == 0)
2037 argcount -= 1;
2038
2039 /* We need one extra slot, for the THIS pointer. */
2040
2041 argtypes = (struct field *)
2042 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2043 p = argtypetext;
2044
2045 /* Add THIS pointer for non-static methods. */
2046 f = TYPE_FN_FIELDLIST1 (type, method_id);
2047 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2048 argcount = 0;
2049 else
2050 {
2051 argtypes[0].type = lookup_pointer_type (type);
2052 argcount = 1;
2053 }
2054
2055 if (*p != ')') /* () means no args, skip while. */
2056 {
2057 depth = 0;
2058 while (*p)
2059 {
2060 if (depth <= 0 && (*p == ',' || *p == ')'))
2061 {
2062 /* Avoid parsing of ellipsis, they will be handled below.
2063 Also avoid ``void'' as above. */
2064 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2065 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2066 {
2067 argtypes[argcount].type =
2068 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2069 argcount += 1;
2070 }
2071 argtypetext = p + 1;
2072 }
2073
2074 if (*p == '(' || *p == '<')
2075 {
2076 depth += 1;
2077 }
2078 else if (*p == ')' || *p == '>')
2079 {
2080 depth -= 1;
2081 }
2082
2083 p += 1;
2084 }
2085 }
2086
2087 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2088
2089 /* Now update the old "stub" type into a real type. */
2090 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2091 TYPE_DOMAIN_TYPE (mtype) = type;
2092 TYPE_FIELDS (mtype) = argtypes;
2093 TYPE_NFIELDS (mtype) = argcount;
2094 TYPE_STUB (mtype) = 0;
2095 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2096 if (p[-2] == '.')
2097 TYPE_VARARGS (mtype) = 1;
2098
2099 xfree (demangled_name);
2100 }
2101
2102 /* This is the external interface to check_stub_method, above. This
2103 function unstubs all of the signatures for TYPE's METHOD_ID method
2104 name. After calling this function TYPE_FN_FIELD_STUB will be
2105 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2106 correct.
2107
2108 This function unfortunately can not die until stabs do. */
2109
2110 void
2111 check_stub_method_group (struct type *type, int method_id)
2112 {
2113 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2114 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2115 int j, found_stub = 0;
2116
2117 for (j = 0; j < len; j++)
2118 if (TYPE_FN_FIELD_STUB (f, j))
2119 {
2120 found_stub = 1;
2121 check_stub_method (type, method_id, j);
2122 }
2123
2124 /* GNU v3 methods with incorrect names were corrected when we read
2125 in type information, because it was cheaper to do it then. The
2126 only GNU v2 methods with incorrect method names are operators and
2127 destructors; destructors were also corrected when we read in type
2128 information.
2129
2130 Therefore the only thing we need to handle here are v2 operator
2131 names. */
2132 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2133 {
2134 int ret;
2135 char dem_opname[256];
2136
2137 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2138 method_id),
2139 dem_opname, DMGL_ANSI);
2140 if (!ret)
2141 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2142 method_id),
2143 dem_opname, 0);
2144 if (ret)
2145 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2146 }
2147 }
2148
2149 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2150 const struct cplus_struct_type cplus_struct_default = { };
2151
2152 void
2153 allocate_cplus_struct_type (struct type *type)
2154 {
2155 if (HAVE_CPLUS_STRUCT (type))
2156 /* Structure was already allocated. Nothing more to do. */
2157 return;
2158
2159 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2160 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2161 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2162 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2163 }
2164
2165 const struct gnat_aux_type gnat_aux_default =
2166 { NULL };
2167
2168 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2169 and allocate the associated gnat-specific data. The gnat-specific
2170 data is also initialized to gnat_aux_default. */
2171
2172 void
2173 allocate_gnat_aux_type (struct type *type)
2174 {
2175 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2176 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2177 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2178 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2179 }
2180
2181 /* Helper function to initialize the standard scalar types.
2182
2183 If NAME is non-NULL, then it is used to initialize the type name.
2184 Note that NAME is not copied; it is required to have a lifetime at
2185 least as long as OBJFILE. */
2186
2187 struct type *
2188 init_type (enum type_code code, int length, int flags,
2189 const char *name, struct objfile *objfile)
2190 {
2191 struct type *type;
2192
2193 type = alloc_type (objfile);
2194 TYPE_CODE (type) = code;
2195 TYPE_LENGTH (type) = length;
2196
2197 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2198 if (flags & TYPE_FLAG_UNSIGNED)
2199 TYPE_UNSIGNED (type) = 1;
2200 if (flags & TYPE_FLAG_NOSIGN)
2201 TYPE_NOSIGN (type) = 1;
2202 if (flags & TYPE_FLAG_STUB)
2203 TYPE_STUB (type) = 1;
2204 if (flags & TYPE_FLAG_TARGET_STUB)
2205 TYPE_TARGET_STUB (type) = 1;
2206 if (flags & TYPE_FLAG_STATIC)
2207 TYPE_STATIC (type) = 1;
2208 if (flags & TYPE_FLAG_PROTOTYPED)
2209 TYPE_PROTOTYPED (type) = 1;
2210 if (flags & TYPE_FLAG_INCOMPLETE)
2211 TYPE_INCOMPLETE (type) = 1;
2212 if (flags & TYPE_FLAG_VARARGS)
2213 TYPE_VARARGS (type) = 1;
2214 if (flags & TYPE_FLAG_VECTOR)
2215 TYPE_VECTOR (type) = 1;
2216 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2217 TYPE_STUB_SUPPORTED (type) = 1;
2218 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2219 TYPE_FIXED_INSTANCE (type) = 1;
2220 if (flags & TYPE_FLAG_GNU_IFUNC)
2221 TYPE_GNU_IFUNC (type) = 1;
2222
2223 TYPE_NAME (type) = name;
2224
2225 /* C++ fancies. */
2226
2227 if (name && strcmp (name, "char") == 0)
2228 TYPE_NOSIGN (type) = 1;
2229
2230 switch (code)
2231 {
2232 case TYPE_CODE_STRUCT:
2233 case TYPE_CODE_UNION:
2234 case TYPE_CODE_NAMESPACE:
2235 INIT_CPLUS_SPECIFIC (type);
2236 break;
2237 case TYPE_CODE_FLT:
2238 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2239 break;
2240 case TYPE_CODE_FUNC:
2241 INIT_FUNC_SPECIFIC (type);
2242 break;
2243 }
2244 return type;
2245 }
2246 \f
2247 /* Queries on types. */
2248
2249 int
2250 can_dereference (struct type *t)
2251 {
2252 /* FIXME: Should we return true for references as well as
2253 pointers? */
2254 CHECK_TYPEDEF (t);
2255 return
2256 (t != NULL
2257 && TYPE_CODE (t) == TYPE_CODE_PTR
2258 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2259 }
2260
2261 int
2262 is_integral_type (struct type *t)
2263 {
2264 CHECK_TYPEDEF (t);
2265 return
2266 ((t != NULL)
2267 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2268 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2269 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2270 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2271 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2272 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2273 }
2274
2275 /* Return true if TYPE is scalar. */
2276
2277 static int
2278 is_scalar_type (struct type *type)
2279 {
2280 CHECK_TYPEDEF (type);
2281
2282 switch (TYPE_CODE (type))
2283 {
2284 case TYPE_CODE_ARRAY:
2285 case TYPE_CODE_STRUCT:
2286 case TYPE_CODE_UNION:
2287 case TYPE_CODE_SET:
2288 case TYPE_CODE_STRING:
2289 return 0;
2290 default:
2291 return 1;
2292 }
2293 }
2294
2295 /* Return true if T is scalar, or a composite type which in practice has
2296 the memory layout of a scalar type. E.g., an array or struct with only
2297 one scalar element inside it, or a union with only scalar elements. */
2298
2299 int
2300 is_scalar_type_recursive (struct type *t)
2301 {
2302 CHECK_TYPEDEF (t);
2303
2304 if (is_scalar_type (t))
2305 return 1;
2306 /* Are we dealing with an array or string of known dimensions? */
2307 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2308 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2309 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2310 {
2311 LONGEST low_bound, high_bound;
2312 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2313
2314 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2315
2316 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2317 }
2318 /* Are we dealing with a struct with one element? */
2319 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2320 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2321 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2322 {
2323 int i, n = TYPE_NFIELDS (t);
2324
2325 /* If all elements of the union are scalar, then the union is scalar. */
2326 for (i = 0; i < n; i++)
2327 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2328 return 0;
2329
2330 return 1;
2331 }
2332
2333 return 0;
2334 }
2335
2336 /* A helper function which returns true if types A and B represent the
2337 "same" class type. This is true if the types have the same main
2338 type, or the same name. */
2339
2340 int
2341 class_types_same_p (const struct type *a, const struct type *b)
2342 {
2343 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2344 || (TYPE_NAME (a) && TYPE_NAME (b)
2345 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2346 }
2347
2348 /* If BASE is an ancestor of DCLASS return the distance between them.
2349 otherwise return -1;
2350 eg:
2351
2352 class A {};
2353 class B: public A {};
2354 class C: public B {};
2355 class D: C {};
2356
2357 distance_to_ancestor (A, A, 0) = 0
2358 distance_to_ancestor (A, B, 0) = 1
2359 distance_to_ancestor (A, C, 0) = 2
2360 distance_to_ancestor (A, D, 0) = 3
2361
2362 If PUBLIC is 1 then only public ancestors are considered,
2363 and the function returns the distance only if BASE is a public ancestor
2364 of DCLASS.
2365 Eg:
2366
2367 distance_to_ancestor (A, D, 1) = -1. */
2368
2369 static int
2370 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2371 {
2372 int i;
2373 int d;
2374
2375 CHECK_TYPEDEF (base);
2376 CHECK_TYPEDEF (dclass);
2377
2378 if (class_types_same_p (base, dclass))
2379 return 0;
2380
2381 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2382 {
2383 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2384 continue;
2385
2386 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2387 if (d >= 0)
2388 return 1 + d;
2389 }
2390
2391 return -1;
2392 }
2393
2394 /* Check whether BASE is an ancestor or base class or DCLASS
2395 Return 1 if so, and 0 if not.
2396 Note: If BASE and DCLASS are of the same type, this function
2397 will return 1. So for some class A, is_ancestor (A, A) will
2398 return 1. */
2399
2400 int
2401 is_ancestor (struct type *base, struct type *dclass)
2402 {
2403 return distance_to_ancestor (base, dclass, 0) >= 0;
2404 }
2405
2406 /* Like is_ancestor, but only returns true when BASE is a public
2407 ancestor of DCLASS. */
2408
2409 int
2410 is_public_ancestor (struct type *base, struct type *dclass)
2411 {
2412 return distance_to_ancestor (base, dclass, 1) >= 0;
2413 }
2414
2415 /* A helper function for is_unique_ancestor. */
2416
2417 static int
2418 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2419 int *offset,
2420 const gdb_byte *valaddr, int embedded_offset,
2421 CORE_ADDR address, struct value *val)
2422 {
2423 int i, count = 0;
2424
2425 CHECK_TYPEDEF (base);
2426 CHECK_TYPEDEF (dclass);
2427
2428 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2429 {
2430 struct type *iter;
2431 int this_offset;
2432
2433 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2434
2435 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2436 address, val);
2437
2438 if (class_types_same_p (base, iter))
2439 {
2440 /* If this is the first subclass, set *OFFSET and set count
2441 to 1. Otherwise, if this is at the same offset as
2442 previous instances, do nothing. Otherwise, increment
2443 count. */
2444 if (*offset == -1)
2445 {
2446 *offset = this_offset;
2447 count = 1;
2448 }
2449 else if (this_offset == *offset)
2450 {
2451 /* Nothing. */
2452 }
2453 else
2454 ++count;
2455 }
2456 else
2457 count += is_unique_ancestor_worker (base, iter, offset,
2458 valaddr,
2459 embedded_offset + this_offset,
2460 address, val);
2461 }
2462
2463 return count;
2464 }
2465
2466 /* Like is_ancestor, but only returns true if BASE is a unique base
2467 class of the type of VAL. */
2468
2469 int
2470 is_unique_ancestor (struct type *base, struct value *val)
2471 {
2472 int offset = -1;
2473
2474 return is_unique_ancestor_worker (base, value_type (val), &offset,
2475 value_contents_for_printing (val),
2476 value_embedded_offset (val),
2477 value_address (val), val) == 1;
2478 }
2479
2480 \f
2481 /* Overload resolution. */
2482
2483 /* Return the sum of the rank of A with the rank of B. */
2484
2485 struct rank
2486 sum_ranks (struct rank a, struct rank b)
2487 {
2488 struct rank c;
2489 c.rank = a.rank + b.rank;
2490 c.subrank = a.subrank + b.subrank;
2491 return c;
2492 }
2493
2494 /* Compare rank A and B and return:
2495 0 if a = b
2496 1 if a is better than b
2497 -1 if b is better than a. */
2498
2499 int
2500 compare_ranks (struct rank a, struct rank b)
2501 {
2502 if (a.rank == b.rank)
2503 {
2504 if (a.subrank == b.subrank)
2505 return 0;
2506 if (a.subrank < b.subrank)
2507 return 1;
2508 if (a.subrank > b.subrank)
2509 return -1;
2510 }
2511
2512 if (a.rank < b.rank)
2513 return 1;
2514
2515 /* a.rank > b.rank */
2516 return -1;
2517 }
2518
2519 /* Functions for overload resolution begin here. */
2520
2521 /* Compare two badness vectors A and B and return the result.
2522 0 => A and B are identical
2523 1 => A and B are incomparable
2524 2 => A is better than B
2525 3 => A is worse than B */
2526
2527 int
2528 compare_badness (struct badness_vector *a, struct badness_vector *b)
2529 {
2530 int i;
2531 int tmp;
2532 short found_pos = 0; /* any positives in c? */
2533 short found_neg = 0; /* any negatives in c? */
2534
2535 /* differing lengths => incomparable */
2536 if (a->length != b->length)
2537 return 1;
2538
2539 /* Subtract b from a */
2540 for (i = 0; i < a->length; i++)
2541 {
2542 tmp = compare_ranks (b->rank[i], a->rank[i]);
2543 if (tmp > 0)
2544 found_pos = 1;
2545 else if (tmp < 0)
2546 found_neg = 1;
2547 }
2548
2549 if (found_pos)
2550 {
2551 if (found_neg)
2552 return 1; /* incomparable */
2553 else
2554 return 3; /* A > B */
2555 }
2556 else
2557 /* no positives */
2558 {
2559 if (found_neg)
2560 return 2; /* A < B */
2561 else
2562 return 0; /* A == B */
2563 }
2564 }
2565
2566 /* Rank a function by comparing its parameter types (PARMS, length
2567 NPARMS), to the types of an argument list (ARGS, length NARGS).
2568 Return a pointer to a badness vector. This has NARGS + 1
2569 entries. */
2570
2571 struct badness_vector *
2572 rank_function (struct type **parms, int nparms,
2573 struct value **args, int nargs)
2574 {
2575 int i;
2576 struct badness_vector *bv;
2577 int min_len = nparms < nargs ? nparms : nargs;
2578
2579 bv = xmalloc (sizeof (struct badness_vector));
2580 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2581 bv->rank = XNEWVEC (struct rank, nargs + 1);
2582
2583 /* First compare the lengths of the supplied lists.
2584 If there is a mismatch, set it to a high value. */
2585
2586 /* pai/1997-06-03 FIXME: when we have debug info about default
2587 arguments and ellipsis parameter lists, we should consider those
2588 and rank the length-match more finely. */
2589
2590 LENGTH_MATCH (bv) = (nargs != nparms)
2591 ? LENGTH_MISMATCH_BADNESS
2592 : EXACT_MATCH_BADNESS;
2593
2594 /* Now rank all the parameters of the candidate function. */
2595 for (i = 1; i <= min_len; i++)
2596 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2597 args[i - 1]);
2598
2599 /* If more arguments than parameters, add dummy entries. */
2600 for (i = min_len + 1; i <= nargs; i++)
2601 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2602
2603 return bv;
2604 }
2605
2606 /* Compare the names of two integer types, assuming that any sign
2607 qualifiers have been checked already. We do it this way because
2608 there may be an "int" in the name of one of the types. */
2609
2610 static int
2611 integer_types_same_name_p (const char *first, const char *second)
2612 {
2613 int first_p, second_p;
2614
2615 /* If both are shorts, return 1; if neither is a short, keep
2616 checking. */
2617 first_p = (strstr (first, "short") != NULL);
2618 second_p = (strstr (second, "short") != NULL);
2619 if (first_p && second_p)
2620 return 1;
2621 if (first_p || second_p)
2622 return 0;
2623
2624 /* Likewise for long. */
2625 first_p = (strstr (first, "long") != NULL);
2626 second_p = (strstr (second, "long") != NULL);
2627 if (first_p && second_p)
2628 return 1;
2629 if (first_p || second_p)
2630 return 0;
2631
2632 /* Likewise for char. */
2633 first_p = (strstr (first, "char") != NULL);
2634 second_p = (strstr (second, "char") != NULL);
2635 if (first_p && second_p)
2636 return 1;
2637 if (first_p || second_p)
2638 return 0;
2639
2640 /* They must both be ints. */
2641 return 1;
2642 }
2643
2644 /* Compares type A to type B returns 1 if the represent the same type
2645 0 otherwise. */
2646
2647 int
2648 types_equal (struct type *a, struct type *b)
2649 {
2650 /* Identical type pointers. */
2651 /* However, this still doesn't catch all cases of same type for b
2652 and a. The reason is that builtin types are different from
2653 the same ones constructed from the object. */
2654 if (a == b)
2655 return 1;
2656
2657 /* Resolve typedefs */
2658 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2659 a = check_typedef (a);
2660 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2661 b = check_typedef (b);
2662
2663 /* If after resolving typedefs a and b are not of the same type
2664 code then they are not equal. */
2665 if (TYPE_CODE (a) != TYPE_CODE (b))
2666 return 0;
2667
2668 /* If a and b are both pointers types or both reference types then
2669 they are equal of the same type iff the objects they refer to are
2670 of the same type. */
2671 if (TYPE_CODE (a) == TYPE_CODE_PTR
2672 || TYPE_CODE (a) == TYPE_CODE_REF)
2673 return types_equal (TYPE_TARGET_TYPE (a),
2674 TYPE_TARGET_TYPE (b));
2675
2676 /* Well, damnit, if the names are exactly the same, I'll say they
2677 are exactly the same. This happens when we generate method
2678 stubs. The types won't point to the same address, but they
2679 really are the same. */
2680
2681 if (TYPE_NAME (a) && TYPE_NAME (b)
2682 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2683 return 1;
2684
2685 /* Check if identical after resolving typedefs. */
2686 if (a == b)
2687 return 1;
2688
2689 /* Two function types are equal if their argument and return types
2690 are equal. */
2691 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2692 {
2693 int i;
2694
2695 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2696 return 0;
2697
2698 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2699 return 0;
2700
2701 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2702 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2703 return 0;
2704
2705 return 1;
2706 }
2707
2708 return 0;
2709 }
2710 \f
2711 /* Deep comparison of types. */
2712
2713 /* An entry in the type-equality bcache. */
2714
2715 typedef struct type_equality_entry
2716 {
2717 struct type *type1, *type2;
2718 } type_equality_entry_d;
2719
2720 DEF_VEC_O (type_equality_entry_d);
2721
2722 /* A helper function to compare two strings. Returns 1 if they are
2723 the same, 0 otherwise. Handles NULLs properly. */
2724
2725 static int
2726 compare_maybe_null_strings (const char *s, const char *t)
2727 {
2728 if (s == NULL && t != NULL)
2729 return 0;
2730 else if (s != NULL && t == NULL)
2731 return 0;
2732 else if (s == NULL && t== NULL)
2733 return 1;
2734 return strcmp (s, t) == 0;
2735 }
2736
2737 /* A helper function for check_types_worklist that checks two types for
2738 "deep" equality. Returns non-zero if the types are considered the
2739 same, zero otherwise. */
2740
2741 static int
2742 check_types_equal (struct type *type1, struct type *type2,
2743 VEC (type_equality_entry_d) **worklist)
2744 {
2745 CHECK_TYPEDEF (type1);
2746 CHECK_TYPEDEF (type2);
2747
2748 if (type1 == type2)
2749 return 1;
2750
2751 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2752 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2753 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2754 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2755 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2756 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2757 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2758 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2759 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2760 return 0;
2761
2762 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2763 TYPE_TAG_NAME (type2)))
2764 return 0;
2765 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2766 return 0;
2767
2768 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2769 {
2770 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2771 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2772 return 0;
2773 }
2774 else
2775 {
2776 int i;
2777
2778 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2779 {
2780 const struct field *field1 = &TYPE_FIELD (type1, i);
2781 const struct field *field2 = &TYPE_FIELD (type2, i);
2782 struct type_equality_entry entry;
2783
2784 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2785 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2786 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2787 return 0;
2788 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2789 FIELD_NAME (*field2)))
2790 return 0;
2791 switch (FIELD_LOC_KIND (*field1))
2792 {
2793 case FIELD_LOC_KIND_BITPOS:
2794 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2795 return 0;
2796 break;
2797 case FIELD_LOC_KIND_ENUMVAL:
2798 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2799 return 0;
2800 break;
2801 case FIELD_LOC_KIND_PHYSADDR:
2802 if (FIELD_STATIC_PHYSADDR (*field1)
2803 != FIELD_STATIC_PHYSADDR (*field2))
2804 return 0;
2805 break;
2806 case FIELD_LOC_KIND_PHYSNAME:
2807 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2808 FIELD_STATIC_PHYSNAME (*field2)))
2809 return 0;
2810 break;
2811 case FIELD_LOC_KIND_DWARF_BLOCK:
2812 {
2813 struct dwarf2_locexpr_baton *block1, *block2;
2814
2815 block1 = FIELD_DWARF_BLOCK (*field1);
2816 block2 = FIELD_DWARF_BLOCK (*field2);
2817 if (block1->per_cu != block2->per_cu
2818 || block1->size != block2->size
2819 || memcmp (block1->data, block2->data, block1->size) != 0)
2820 return 0;
2821 }
2822 break;
2823 default:
2824 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2825 "%d by check_types_equal"),
2826 FIELD_LOC_KIND (*field1));
2827 }
2828
2829 entry.type1 = FIELD_TYPE (*field1);
2830 entry.type2 = FIELD_TYPE (*field2);
2831 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2832 }
2833 }
2834
2835 if (TYPE_TARGET_TYPE (type1) != NULL)
2836 {
2837 struct type_equality_entry entry;
2838
2839 if (TYPE_TARGET_TYPE (type2) == NULL)
2840 return 0;
2841
2842 entry.type1 = TYPE_TARGET_TYPE (type1);
2843 entry.type2 = TYPE_TARGET_TYPE (type2);
2844 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2845 }
2846 else if (TYPE_TARGET_TYPE (type2) != NULL)
2847 return 0;
2848
2849 return 1;
2850 }
2851
2852 /* Check types on a worklist for equality. Returns zero if any pair
2853 is not equal, non-zero if they are all considered equal. */
2854
2855 static int
2856 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2857 struct bcache *cache)
2858 {
2859 while (!VEC_empty (type_equality_entry_d, *worklist))
2860 {
2861 struct type_equality_entry entry;
2862 int added;
2863
2864 entry = *VEC_last (type_equality_entry_d, *worklist);
2865 VEC_pop (type_equality_entry_d, *worklist);
2866
2867 /* If the type pair has already been visited, we know it is
2868 ok. */
2869 bcache_full (&entry, sizeof (entry), cache, &added);
2870 if (!added)
2871 continue;
2872
2873 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2874 return 0;
2875 }
2876
2877 return 1;
2878 }
2879
2880 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2881 "deep comparison". Otherwise return zero. */
2882
2883 int
2884 types_deeply_equal (struct type *type1, struct type *type2)
2885 {
2886 volatile struct gdb_exception except;
2887 int result = 0;
2888 struct bcache *cache;
2889 VEC (type_equality_entry_d) *worklist = NULL;
2890 struct type_equality_entry entry;
2891
2892 gdb_assert (type1 != NULL && type2 != NULL);
2893
2894 /* Early exit for the simple case. */
2895 if (type1 == type2)
2896 return 1;
2897
2898 cache = bcache_xmalloc (NULL, NULL);
2899
2900 entry.type1 = type1;
2901 entry.type2 = type2;
2902 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2903
2904 TRY_CATCH (except, RETURN_MASK_ALL)
2905 {
2906 result = check_types_worklist (&worklist, cache);
2907 }
2908 /* check_types_worklist calls several nested helper functions,
2909 some of which can raise a GDB Exception, so we just check
2910 and rethrow here. If there is a GDB exception, a comparison
2911 is not capable (or trusted), so exit. */
2912 bcache_xfree (cache);
2913 VEC_free (type_equality_entry_d, worklist);
2914 /* Rethrow if there was a problem. */
2915 if (except.reason < 0)
2916 throw_exception (except);
2917
2918 return result;
2919 }
2920 \f
2921 /* Compare one type (PARM) for compatibility with another (ARG).
2922 * PARM is intended to be the parameter type of a function; and
2923 * ARG is the supplied argument's type. This function tests if
2924 * the latter can be converted to the former.
2925 * VALUE is the argument's value or NULL if none (or called recursively)
2926 *
2927 * Return 0 if they are identical types;
2928 * Otherwise, return an integer which corresponds to how compatible
2929 * PARM is to ARG. The higher the return value, the worse the match.
2930 * Generally the "bad" conversions are all uniformly assigned a 100. */
2931
2932 struct rank
2933 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2934 {
2935 struct rank rank = {0,0};
2936
2937 if (types_equal (parm, arg))
2938 return EXACT_MATCH_BADNESS;
2939
2940 /* Resolve typedefs */
2941 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2942 parm = check_typedef (parm);
2943 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2944 arg = check_typedef (arg);
2945
2946 /* See through references, since we can almost make non-references
2947 references. */
2948 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2949 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2950 REFERENCE_CONVERSION_BADNESS));
2951 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2952 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2953 REFERENCE_CONVERSION_BADNESS));
2954 if (overload_debug)
2955 /* Debugging only. */
2956 fprintf_filtered (gdb_stderr,
2957 "------ Arg is %s [%d], parm is %s [%d]\n",
2958 TYPE_NAME (arg), TYPE_CODE (arg),
2959 TYPE_NAME (parm), TYPE_CODE (parm));
2960
2961 /* x -> y means arg of type x being supplied for parameter of type y. */
2962
2963 switch (TYPE_CODE (parm))
2964 {
2965 case TYPE_CODE_PTR:
2966 switch (TYPE_CODE (arg))
2967 {
2968 case TYPE_CODE_PTR:
2969
2970 /* Allowed pointer conversions are:
2971 (a) pointer to void-pointer conversion. */
2972 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2973 return VOID_PTR_CONVERSION_BADNESS;
2974
2975 /* (b) pointer to ancestor-pointer conversion. */
2976 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2977 TYPE_TARGET_TYPE (arg),
2978 0);
2979 if (rank.subrank >= 0)
2980 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2981
2982 return INCOMPATIBLE_TYPE_BADNESS;
2983 case TYPE_CODE_ARRAY:
2984 if (types_equal (TYPE_TARGET_TYPE (parm),
2985 TYPE_TARGET_TYPE (arg)))
2986 return EXACT_MATCH_BADNESS;
2987 return INCOMPATIBLE_TYPE_BADNESS;
2988 case TYPE_CODE_FUNC:
2989 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2990 case TYPE_CODE_INT:
2991 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2992 {
2993 if (value_as_long (value) == 0)
2994 {
2995 /* Null pointer conversion: allow it to be cast to a pointer.
2996 [4.10.1 of C++ standard draft n3290] */
2997 return NULL_POINTER_CONVERSION_BADNESS;
2998 }
2999 else
3000 {
3001 /* If type checking is disabled, allow the conversion. */
3002 if (!strict_type_checking)
3003 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3004 }
3005 }
3006 /* fall through */
3007 case TYPE_CODE_ENUM:
3008 case TYPE_CODE_FLAGS:
3009 case TYPE_CODE_CHAR:
3010 case TYPE_CODE_RANGE:
3011 case TYPE_CODE_BOOL:
3012 default:
3013 return INCOMPATIBLE_TYPE_BADNESS;
3014 }
3015 case TYPE_CODE_ARRAY:
3016 switch (TYPE_CODE (arg))
3017 {
3018 case TYPE_CODE_PTR:
3019 case TYPE_CODE_ARRAY:
3020 return rank_one_type (TYPE_TARGET_TYPE (parm),
3021 TYPE_TARGET_TYPE (arg), NULL);
3022 default:
3023 return INCOMPATIBLE_TYPE_BADNESS;
3024 }
3025 case TYPE_CODE_FUNC:
3026 switch (TYPE_CODE (arg))
3027 {
3028 case TYPE_CODE_PTR: /* funcptr -> func */
3029 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3030 default:
3031 return INCOMPATIBLE_TYPE_BADNESS;
3032 }
3033 case TYPE_CODE_INT:
3034 switch (TYPE_CODE (arg))
3035 {
3036 case TYPE_CODE_INT:
3037 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3038 {
3039 /* Deal with signed, unsigned, and plain chars and
3040 signed and unsigned ints. */
3041 if (TYPE_NOSIGN (parm))
3042 {
3043 /* This case only for character types. */
3044 if (TYPE_NOSIGN (arg))
3045 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3046 else /* signed/unsigned char -> plain char */
3047 return INTEGER_CONVERSION_BADNESS;
3048 }
3049 else if (TYPE_UNSIGNED (parm))
3050 {
3051 if (TYPE_UNSIGNED (arg))
3052 {
3053 /* unsigned int -> unsigned int, or
3054 unsigned long -> unsigned long */
3055 if (integer_types_same_name_p (TYPE_NAME (parm),
3056 TYPE_NAME (arg)))
3057 return EXACT_MATCH_BADNESS;
3058 else if (integer_types_same_name_p (TYPE_NAME (arg),
3059 "int")
3060 && integer_types_same_name_p (TYPE_NAME (parm),
3061 "long"))
3062 /* unsigned int -> unsigned long */
3063 return INTEGER_PROMOTION_BADNESS;
3064 else
3065 /* unsigned long -> unsigned int */
3066 return INTEGER_CONVERSION_BADNESS;
3067 }
3068 else
3069 {
3070 if (integer_types_same_name_p (TYPE_NAME (arg),
3071 "long")
3072 && integer_types_same_name_p (TYPE_NAME (parm),
3073 "int"))
3074 /* signed long -> unsigned int */
3075 return INTEGER_CONVERSION_BADNESS;
3076 else
3077 /* signed int/long -> unsigned int/long */
3078 return INTEGER_CONVERSION_BADNESS;
3079 }
3080 }
3081 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3082 {
3083 if (integer_types_same_name_p (TYPE_NAME (parm),
3084 TYPE_NAME (arg)))
3085 return EXACT_MATCH_BADNESS;
3086 else if (integer_types_same_name_p (TYPE_NAME (arg),
3087 "int")
3088 && integer_types_same_name_p (TYPE_NAME (parm),
3089 "long"))
3090 return INTEGER_PROMOTION_BADNESS;
3091 else
3092 return INTEGER_CONVERSION_BADNESS;
3093 }
3094 else
3095 return INTEGER_CONVERSION_BADNESS;
3096 }
3097 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3098 return INTEGER_PROMOTION_BADNESS;
3099 else
3100 return INTEGER_CONVERSION_BADNESS;
3101 case TYPE_CODE_ENUM:
3102 case TYPE_CODE_FLAGS:
3103 case TYPE_CODE_CHAR:
3104 case TYPE_CODE_RANGE:
3105 case TYPE_CODE_BOOL:
3106 if (TYPE_DECLARED_CLASS (arg))
3107 return INCOMPATIBLE_TYPE_BADNESS;
3108 return INTEGER_PROMOTION_BADNESS;
3109 case TYPE_CODE_FLT:
3110 return INT_FLOAT_CONVERSION_BADNESS;
3111 case TYPE_CODE_PTR:
3112 return NS_POINTER_CONVERSION_BADNESS;
3113 default:
3114 return INCOMPATIBLE_TYPE_BADNESS;
3115 }
3116 break;
3117 case TYPE_CODE_ENUM:
3118 switch (TYPE_CODE (arg))
3119 {
3120 case TYPE_CODE_INT:
3121 case TYPE_CODE_CHAR:
3122 case TYPE_CODE_RANGE:
3123 case TYPE_CODE_BOOL:
3124 case TYPE_CODE_ENUM:
3125 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3126 return INCOMPATIBLE_TYPE_BADNESS;
3127 return INTEGER_CONVERSION_BADNESS;
3128 case TYPE_CODE_FLT:
3129 return INT_FLOAT_CONVERSION_BADNESS;
3130 default:
3131 return INCOMPATIBLE_TYPE_BADNESS;
3132 }
3133 break;
3134 case TYPE_CODE_CHAR:
3135 switch (TYPE_CODE (arg))
3136 {
3137 case TYPE_CODE_RANGE:
3138 case TYPE_CODE_BOOL:
3139 case TYPE_CODE_ENUM:
3140 if (TYPE_DECLARED_CLASS (arg))
3141 return INCOMPATIBLE_TYPE_BADNESS;
3142 return INTEGER_CONVERSION_BADNESS;
3143 case TYPE_CODE_FLT:
3144 return INT_FLOAT_CONVERSION_BADNESS;
3145 case TYPE_CODE_INT:
3146 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3147 return INTEGER_CONVERSION_BADNESS;
3148 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3149 return INTEGER_PROMOTION_BADNESS;
3150 /* >>> !! else fall through !! <<< */
3151 case TYPE_CODE_CHAR:
3152 /* Deal with signed, unsigned, and plain chars for C++ and
3153 with int cases falling through from previous case. */
3154 if (TYPE_NOSIGN (parm))
3155 {
3156 if (TYPE_NOSIGN (arg))
3157 return EXACT_MATCH_BADNESS;
3158 else
3159 return INTEGER_CONVERSION_BADNESS;
3160 }
3161 else if (TYPE_UNSIGNED (parm))
3162 {
3163 if (TYPE_UNSIGNED (arg))
3164 return EXACT_MATCH_BADNESS;
3165 else
3166 return INTEGER_PROMOTION_BADNESS;
3167 }
3168 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3169 return EXACT_MATCH_BADNESS;
3170 else
3171 return INTEGER_CONVERSION_BADNESS;
3172 default:
3173 return INCOMPATIBLE_TYPE_BADNESS;
3174 }
3175 break;
3176 case TYPE_CODE_RANGE:
3177 switch (TYPE_CODE (arg))
3178 {
3179 case TYPE_CODE_INT:
3180 case TYPE_CODE_CHAR:
3181 case TYPE_CODE_RANGE:
3182 case TYPE_CODE_BOOL:
3183 case TYPE_CODE_ENUM:
3184 return INTEGER_CONVERSION_BADNESS;
3185 case TYPE_CODE_FLT:
3186 return INT_FLOAT_CONVERSION_BADNESS;
3187 default:
3188 return INCOMPATIBLE_TYPE_BADNESS;
3189 }
3190 break;
3191 case TYPE_CODE_BOOL:
3192 switch (TYPE_CODE (arg))
3193 {
3194 /* n3290 draft, section 4.12.1 (conv.bool):
3195
3196 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3197 pointer to member type can be converted to a prvalue of type
3198 bool. A zero value, null pointer value, or null member pointer
3199 value is converted to false; any other value is converted to
3200 true. A prvalue of type std::nullptr_t can be converted to a
3201 prvalue of type bool; the resulting value is false." */
3202 case TYPE_CODE_INT:
3203 case TYPE_CODE_CHAR:
3204 case TYPE_CODE_ENUM:
3205 case TYPE_CODE_FLT:
3206 case TYPE_CODE_MEMBERPTR:
3207 case TYPE_CODE_PTR:
3208 return BOOL_CONVERSION_BADNESS;
3209 case TYPE_CODE_RANGE:
3210 return INCOMPATIBLE_TYPE_BADNESS;
3211 case TYPE_CODE_BOOL:
3212 return EXACT_MATCH_BADNESS;
3213 default:
3214 return INCOMPATIBLE_TYPE_BADNESS;
3215 }
3216 break;
3217 case TYPE_CODE_FLT:
3218 switch (TYPE_CODE (arg))
3219 {
3220 case TYPE_CODE_FLT:
3221 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3222 return FLOAT_PROMOTION_BADNESS;
3223 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3224 return EXACT_MATCH_BADNESS;
3225 else
3226 return FLOAT_CONVERSION_BADNESS;
3227 case TYPE_CODE_INT:
3228 case TYPE_CODE_BOOL:
3229 case TYPE_CODE_ENUM:
3230 case TYPE_CODE_RANGE:
3231 case TYPE_CODE_CHAR:
3232 return INT_FLOAT_CONVERSION_BADNESS;
3233 default:
3234 return INCOMPATIBLE_TYPE_BADNESS;
3235 }
3236 break;
3237 case TYPE_CODE_COMPLEX:
3238 switch (TYPE_CODE (arg))
3239 { /* Strictly not needed for C++, but... */
3240 case TYPE_CODE_FLT:
3241 return FLOAT_PROMOTION_BADNESS;
3242 case TYPE_CODE_COMPLEX:
3243 return EXACT_MATCH_BADNESS;
3244 default:
3245 return INCOMPATIBLE_TYPE_BADNESS;
3246 }
3247 break;
3248 case TYPE_CODE_STRUCT:
3249 /* currently same as TYPE_CODE_CLASS. */
3250 switch (TYPE_CODE (arg))
3251 {
3252 case TYPE_CODE_STRUCT:
3253 /* Check for derivation */
3254 rank.subrank = distance_to_ancestor (parm, arg, 0);
3255 if (rank.subrank >= 0)
3256 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3257 /* else fall through */
3258 default:
3259 return INCOMPATIBLE_TYPE_BADNESS;
3260 }
3261 break;
3262 case TYPE_CODE_UNION:
3263 switch (TYPE_CODE (arg))
3264 {
3265 case TYPE_CODE_UNION:
3266 default:
3267 return INCOMPATIBLE_TYPE_BADNESS;
3268 }
3269 break;
3270 case TYPE_CODE_MEMBERPTR:
3271 switch (TYPE_CODE (arg))
3272 {
3273 default:
3274 return INCOMPATIBLE_TYPE_BADNESS;
3275 }
3276 break;
3277 case TYPE_CODE_METHOD:
3278 switch (TYPE_CODE (arg))
3279 {
3280
3281 default:
3282 return INCOMPATIBLE_TYPE_BADNESS;
3283 }
3284 break;
3285 case TYPE_CODE_REF:
3286 switch (TYPE_CODE (arg))
3287 {
3288
3289 default:
3290 return INCOMPATIBLE_TYPE_BADNESS;
3291 }
3292
3293 break;
3294 case TYPE_CODE_SET:
3295 switch (TYPE_CODE (arg))
3296 {
3297 /* Not in C++ */
3298 case TYPE_CODE_SET:
3299 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3300 TYPE_FIELD_TYPE (arg, 0), NULL);
3301 default:
3302 return INCOMPATIBLE_TYPE_BADNESS;
3303 }
3304 break;
3305 case TYPE_CODE_VOID:
3306 default:
3307 return INCOMPATIBLE_TYPE_BADNESS;
3308 } /* switch (TYPE_CODE (arg)) */
3309 }
3310
3311 /* End of functions for overload resolution. */
3312 \f
3313 /* Routines to pretty-print types. */
3314
3315 static void
3316 print_bit_vector (B_TYPE *bits, int nbits)
3317 {
3318 int bitno;
3319
3320 for (bitno = 0; bitno < nbits; bitno++)
3321 {
3322 if ((bitno % 8) == 0)
3323 {
3324 puts_filtered (" ");
3325 }
3326 if (B_TST (bits, bitno))
3327 printf_filtered (("1"));
3328 else
3329 printf_filtered (("0"));
3330 }
3331 }
3332
3333 /* Note the first arg should be the "this" pointer, we may not want to
3334 include it since we may get into a infinitely recursive
3335 situation. */
3336
3337 static void
3338 print_arg_types (struct field *args, int nargs, int spaces)
3339 {
3340 if (args != NULL)
3341 {
3342 int i;
3343
3344 for (i = 0; i < nargs; i++)
3345 recursive_dump_type (args[i].type, spaces + 2);
3346 }
3347 }
3348
3349 int
3350 field_is_static (struct field *f)
3351 {
3352 /* "static" fields are the fields whose location is not relative
3353 to the address of the enclosing struct. It would be nice to
3354 have a dedicated flag that would be set for static fields when
3355 the type is being created. But in practice, checking the field
3356 loc_kind should give us an accurate answer. */
3357 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3358 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3359 }
3360
3361 static void
3362 dump_fn_fieldlists (struct type *type, int spaces)
3363 {
3364 int method_idx;
3365 int overload_idx;
3366 struct fn_field *f;
3367
3368 printfi_filtered (spaces, "fn_fieldlists ");
3369 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3370 printf_filtered ("\n");
3371 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3372 {
3373 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3374 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3375 method_idx,
3376 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3377 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3378 gdb_stdout);
3379 printf_filtered (_(") length %d\n"),
3380 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3381 for (overload_idx = 0;
3382 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3383 overload_idx++)
3384 {
3385 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3386 overload_idx,
3387 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3388 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3389 gdb_stdout);
3390 printf_filtered (")\n");
3391 printfi_filtered (spaces + 8, "type ");
3392 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3393 gdb_stdout);
3394 printf_filtered ("\n");
3395
3396 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3397 spaces + 8 + 2);
3398
3399 printfi_filtered (spaces + 8, "args ");
3400 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3401 gdb_stdout);
3402 printf_filtered ("\n");
3403
3404 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3405 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3406 overload_idx)),
3407 spaces);
3408 printfi_filtered (spaces + 8, "fcontext ");
3409 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3410 gdb_stdout);
3411 printf_filtered ("\n");
3412
3413 printfi_filtered (spaces + 8, "is_const %d\n",
3414 TYPE_FN_FIELD_CONST (f, overload_idx));
3415 printfi_filtered (spaces + 8, "is_volatile %d\n",
3416 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3417 printfi_filtered (spaces + 8, "is_private %d\n",
3418 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3419 printfi_filtered (spaces + 8, "is_protected %d\n",
3420 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3421 printfi_filtered (spaces + 8, "is_stub %d\n",
3422 TYPE_FN_FIELD_STUB (f, overload_idx));
3423 printfi_filtered (spaces + 8, "voffset %u\n",
3424 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3425 }
3426 }
3427 }
3428
3429 static void
3430 print_cplus_stuff (struct type *type, int spaces)
3431 {
3432 printfi_filtered (spaces, "n_baseclasses %d\n",
3433 TYPE_N_BASECLASSES (type));
3434 printfi_filtered (spaces, "nfn_fields %d\n",
3435 TYPE_NFN_FIELDS (type));
3436 if (TYPE_N_BASECLASSES (type) > 0)
3437 {
3438 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3439 TYPE_N_BASECLASSES (type));
3440 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3441 gdb_stdout);
3442 printf_filtered (")");
3443
3444 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3445 TYPE_N_BASECLASSES (type));
3446 puts_filtered ("\n");
3447 }
3448 if (TYPE_NFIELDS (type) > 0)
3449 {
3450 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3451 {
3452 printfi_filtered (spaces,
3453 "private_field_bits (%d bits at *",
3454 TYPE_NFIELDS (type));
3455 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3456 gdb_stdout);
3457 printf_filtered (")");
3458 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3459 TYPE_NFIELDS (type));
3460 puts_filtered ("\n");
3461 }
3462 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3463 {
3464 printfi_filtered (spaces,
3465 "protected_field_bits (%d bits at *",
3466 TYPE_NFIELDS (type));
3467 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3468 gdb_stdout);
3469 printf_filtered (")");
3470 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3471 TYPE_NFIELDS (type));
3472 puts_filtered ("\n");
3473 }
3474 }
3475 if (TYPE_NFN_FIELDS (type) > 0)
3476 {
3477 dump_fn_fieldlists (type, spaces);
3478 }
3479 }
3480
3481 /* Print the contents of the TYPE's type_specific union, assuming that
3482 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3483
3484 static void
3485 print_gnat_stuff (struct type *type, int spaces)
3486 {
3487 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3488
3489 recursive_dump_type (descriptive_type, spaces + 2);
3490 }
3491
3492 static struct obstack dont_print_type_obstack;
3493
3494 void
3495 recursive_dump_type (struct type *type, int spaces)
3496 {
3497 int idx;
3498
3499 if (spaces == 0)
3500 obstack_begin (&dont_print_type_obstack, 0);
3501
3502 if (TYPE_NFIELDS (type) > 0
3503 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3504 {
3505 struct type **first_dont_print
3506 = (struct type **) obstack_base (&dont_print_type_obstack);
3507
3508 int i = (struct type **)
3509 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3510
3511 while (--i >= 0)
3512 {
3513 if (type == first_dont_print[i])
3514 {
3515 printfi_filtered (spaces, "type node ");
3516 gdb_print_host_address (type, gdb_stdout);
3517 printf_filtered (_(" <same as already seen type>\n"));
3518 return;
3519 }
3520 }
3521
3522 obstack_ptr_grow (&dont_print_type_obstack, type);
3523 }
3524
3525 printfi_filtered (spaces, "type node ");
3526 gdb_print_host_address (type, gdb_stdout);
3527 printf_filtered ("\n");
3528 printfi_filtered (spaces, "name '%s' (",
3529 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3530 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3531 printf_filtered (")\n");
3532 printfi_filtered (spaces, "tagname '%s' (",
3533 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3534 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3535 printf_filtered (")\n");
3536 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3537 switch (TYPE_CODE (type))
3538 {
3539 case TYPE_CODE_UNDEF:
3540 printf_filtered ("(TYPE_CODE_UNDEF)");
3541 break;
3542 case TYPE_CODE_PTR:
3543 printf_filtered ("(TYPE_CODE_PTR)");
3544 break;
3545 case TYPE_CODE_ARRAY:
3546 printf_filtered ("(TYPE_CODE_ARRAY)");
3547 break;
3548 case TYPE_CODE_STRUCT:
3549 printf_filtered ("(TYPE_CODE_STRUCT)");
3550 break;
3551 case TYPE_CODE_UNION:
3552 printf_filtered ("(TYPE_CODE_UNION)");
3553 break;
3554 case TYPE_CODE_ENUM:
3555 printf_filtered ("(TYPE_CODE_ENUM)");
3556 break;
3557 case TYPE_CODE_FLAGS:
3558 printf_filtered ("(TYPE_CODE_FLAGS)");
3559 break;
3560 case TYPE_CODE_FUNC:
3561 printf_filtered ("(TYPE_CODE_FUNC)");
3562 break;
3563 case TYPE_CODE_INT:
3564 printf_filtered ("(TYPE_CODE_INT)");
3565 break;
3566 case TYPE_CODE_FLT:
3567 printf_filtered ("(TYPE_CODE_FLT)");
3568 break;
3569 case TYPE_CODE_VOID:
3570 printf_filtered ("(TYPE_CODE_VOID)");
3571 break;
3572 case TYPE_CODE_SET:
3573 printf_filtered ("(TYPE_CODE_SET)");
3574 break;
3575 case TYPE_CODE_RANGE:
3576 printf_filtered ("(TYPE_CODE_RANGE)");
3577 break;
3578 case TYPE_CODE_STRING:
3579 printf_filtered ("(TYPE_CODE_STRING)");
3580 break;
3581 case TYPE_CODE_ERROR:
3582 printf_filtered ("(TYPE_CODE_ERROR)");
3583 break;
3584 case TYPE_CODE_MEMBERPTR:
3585 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3586 break;
3587 case TYPE_CODE_METHODPTR:
3588 printf_filtered ("(TYPE_CODE_METHODPTR)");
3589 break;
3590 case TYPE_CODE_METHOD:
3591 printf_filtered ("(TYPE_CODE_METHOD)");
3592 break;
3593 case TYPE_CODE_REF:
3594 printf_filtered ("(TYPE_CODE_REF)");
3595 break;
3596 case TYPE_CODE_CHAR:
3597 printf_filtered ("(TYPE_CODE_CHAR)");
3598 break;
3599 case TYPE_CODE_BOOL:
3600 printf_filtered ("(TYPE_CODE_BOOL)");
3601 break;
3602 case TYPE_CODE_COMPLEX:
3603 printf_filtered ("(TYPE_CODE_COMPLEX)");
3604 break;
3605 case TYPE_CODE_TYPEDEF:
3606 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3607 break;
3608 case TYPE_CODE_NAMESPACE:
3609 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3610 break;
3611 default:
3612 printf_filtered ("(UNKNOWN TYPE CODE)");
3613 break;
3614 }
3615 puts_filtered ("\n");
3616 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3617 if (TYPE_OBJFILE_OWNED (type))
3618 {
3619 printfi_filtered (spaces, "objfile ");
3620 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3621 }
3622 else
3623 {
3624 printfi_filtered (spaces, "gdbarch ");
3625 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3626 }
3627 printf_filtered ("\n");
3628 printfi_filtered (spaces, "target_type ");
3629 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3630 printf_filtered ("\n");
3631 if (TYPE_TARGET_TYPE (type) != NULL)
3632 {
3633 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3634 }
3635 printfi_filtered (spaces, "pointer_type ");
3636 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3637 printf_filtered ("\n");
3638 printfi_filtered (spaces, "reference_type ");
3639 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3640 printf_filtered ("\n");
3641 printfi_filtered (spaces, "type_chain ");
3642 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3643 printf_filtered ("\n");
3644 printfi_filtered (spaces, "instance_flags 0x%x",
3645 TYPE_INSTANCE_FLAGS (type));
3646 if (TYPE_CONST (type))
3647 {
3648 puts_filtered (" TYPE_FLAG_CONST");
3649 }
3650 if (TYPE_VOLATILE (type))
3651 {
3652 puts_filtered (" TYPE_FLAG_VOLATILE");
3653 }
3654 if (TYPE_CODE_SPACE (type))
3655 {
3656 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3657 }
3658 if (TYPE_DATA_SPACE (type))
3659 {
3660 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3661 }
3662 if (TYPE_ADDRESS_CLASS_1 (type))
3663 {
3664 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3665 }
3666 if (TYPE_ADDRESS_CLASS_2 (type))
3667 {
3668 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3669 }
3670 if (TYPE_RESTRICT (type))
3671 {
3672 puts_filtered (" TYPE_FLAG_RESTRICT");
3673 }
3674 puts_filtered ("\n");
3675
3676 printfi_filtered (spaces, "flags");
3677 if (TYPE_UNSIGNED (type))
3678 {
3679 puts_filtered (" TYPE_FLAG_UNSIGNED");
3680 }
3681 if (TYPE_NOSIGN (type))
3682 {
3683 puts_filtered (" TYPE_FLAG_NOSIGN");
3684 }
3685 if (TYPE_STUB (type))
3686 {
3687 puts_filtered (" TYPE_FLAG_STUB");
3688 }
3689 if (TYPE_TARGET_STUB (type))
3690 {
3691 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3692 }
3693 if (TYPE_STATIC (type))
3694 {
3695 puts_filtered (" TYPE_FLAG_STATIC");
3696 }
3697 if (TYPE_PROTOTYPED (type))
3698 {
3699 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3700 }
3701 if (TYPE_INCOMPLETE (type))
3702 {
3703 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3704 }
3705 if (TYPE_VARARGS (type))
3706 {
3707 puts_filtered (" TYPE_FLAG_VARARGS");
3708 }
3709 /* This is used for things like AltiVec registers on ppc. Gcc emits
3710 an attribute for the array type, which tells whether or not we
3711 have a vector, instead of a regular array. */
3712 if (TYPE_VECTOR (type))
3713 {
3714 puts_filtered (" TYPE_FLAG_VECTOR");
3715 }
3716 if (TYPE_FIXED_INSTANCE (type))
3717 {
3718 puts_filtered (" TYPE_FIXED_INSTANCE");
3719 }
3720 if (TYPE_STUB_SUPPORTED (type))
3721 {
3722 puts_filtered (" TYPE_STUB_SUPPORTED");
3723 }
3724 if (TYPE_NOTTEXT (type))
3725 {
3726 puts_filtered (" TYPE_NOTTEXT");
3727 }
3728 puts_filtered ("\n");
3729 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3730 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3731 puts_filtered ("\n");
3732 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3733 {
3734 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3735 printfi_filtered (spaces + 2,
3736 "[%d] enumval %s type ",
3737 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3738 else
3739 printfi_filtered (spaces + 2,
3740 "[%d] bitpos %d bitsize %d type ",
3741 idx, TYPE_FIELD_BITPOS (type, idx),
3742 TYPE_FIELD_BITSIZE (type, idx));
3743 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3744 printf_filtered (" name '%s' (",
3745 TYPE_FIELD_NAME (type, idx) != NULL
3746 ? TYPE_FIELD_NAME (type, idx)
3747 : "<NULL>");
3748 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3749 printf_filtered (")\n");
3750 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3751 {
3752 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3753 }
3754 }
3755 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3756 {
3757 printfi_filtered (spaces, "low %s%s high %s%s\n",
3758 plongest (TYPE_LOW_BOUND (type)),
3759 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3760 plongest (TYPE_HIGH_BOUND (type)),
3761 TYPE_HIGH_BOUND_UNDEFINED (type)
3762 ? " (undefined)" : "");
3763 }
3764 printfi_filtered (spaces, "vptr_basetype ");
3765 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3766 puts_filtered ("\n");
3767 if (TYPE_VPTR_BASETYPE (type) != NULL)
3768 {
3769 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3770 }
3771 printfi_filtered (spaces, "vptr_fieldno %d\n",
3772 TYPE_VPTR_FIELDNO (type));
3773
3774 switch (TYPE_SPECIFIC_FIELD (type))
3775 {
3776 case TYPE_SPECIFIC_CPLUS_STUFF:
3777 printfi_filtered (spaces, "cplus_stuff ");
3778 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3779 gdb_stdout);
3780 puts_filtered ("\n");
3781 print_cplus_stuff (type, spaces);
3782 break;
3783
3784 case TYPE_SPECIFIC_GNAT_STUFF:
3785 printfi_filtered (spaces, "gnat_stuff ");
3786 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3787 puts_filtered ("\n");
3788 print_gnat_stuff (type, spaces);
3789 break;
3790
3791 case TYPE_SPECIFIC_FLOATFORMAT:
3792 printfi_filtered (spaces, "floatformat ");
3793 if (TYPE_FLOATFORMAT (type) == NULL)
3794 puts_filtered ("(null)");
3795 else
3796 {
3797 puts_filtered ("{ ");
3798 if (TYPE_FLOATFORMAT (type)[0] == NULL
3799 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3800 puts_filtered ("(null)");
3801 else
3802 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3803
3804 puts_filtered (", ");
3805 if (TYPE_FLOATFORMAT (type)[1] == NULL
3806 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3807 puts_filtered ("(null)");
3808 else
3809 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3810
3811 puts_filtered (" }");
3812 }
3813 puts_filtered ("\n");
3814 break;
3815
3816 case TYPE_SPECIFIC_FUNC:
3817 printfi_filtered (spaces, "calling_convention %d\n",
3818 TYPE_CALLING_CONVENTION (type));
3819 /* tail_call_list is not printed. */
3820 break;
3821 }
3822
3823 if (spaces == 0)
3824 obstack_free (&dont_print_type_obstack, NULL);
3825 }
3826 \f
3827 /* Trivial helpers for the libiberty hash table, for mapping one
3828 type to another. */
3829
3830 struct type_pair
3831 {
3832 struct type *old, *new;
3833 };
3834
3835 static hashval_t
3836 type_pair_hash (const void *item)
3837 {
3838 const struct type_pair *pair = item;
3839
3840 return htab_hash_pointer (pair->old);
3841 }
3842
3843 static int
3844 type_pair_eq (const void *item_lhs, const void *item_rhs)
3845 {
3846 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3847
3848 return lhs->old == rhs->old;
3849 }
3850
3851 /* Allocate the hash table used by copy_type_recursive to walk
3852 types without duplicates. We use OBJFILE's obstack, because
3853 OBJFILE is about to be deleted. */
3854
3855 htab_t
3856 create_copied_types_hash (struct objfile *objfile)
3857 {
3858 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3859 NULL, &objfile->objfile_obstack,
3860 hashtab_obstack_allocate,
3861 dummy_obstack_deallocate);
3862 }
3863
3864 /* Recursively copy (deep copy) TYPE, if it is associated with
3865 OBJFILE. Return a new type allocated using malloc, a saved type if
3866 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3867 not associated with OBJFILE. */
3868
3869 struct type *
3870 copy_type_recursive (struct objfile *objfile,
3871 struct type *type,
3872 htab_t copied_types)
3873 {
3874 struct type_pair *stored, pair;
3875 void **slot;
3876 struct type *new_type;
3877
3878 if (! TYPE_OBJFILE_OWNED (type))
3879 return type;
3880
3881 /* This type shouldn't be pointing to any types in other objfiles;
3882 if it did, the type might disappear unexpectedly. */
3883 gdb_assert (TYPE_OBJFILE (type) == objfile);
3884
3885 pair.old = type;
3886 slot = htab_find_slot (copied_types, &pair, INSERT);
3887 if (*slot != NULL)
3888 return ((struct type_pair *) *slot)->new;
3889
3890 new_type = alloc_type_arch (get_type_arch (type));
3891
3892 /* We must add the new type to the hash table immediately, in case
3893 we encounter this type again during a recursive call below. */
3894 stored
3895 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3896 stored->old = type;
3897 stored->new = new_type;
3898 *slot = stored;
3899
3900 /* Copy the common fields of types. For the main type, we simply
3901 copy the entire thing and then update specific fields as needed. */
3902 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3903 TYPE_OBJFILE_OWNED (new_type) = 0;
3904 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3905
3906 if (TYPE_NAME (type))
3907 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3908 if (TYPE_TAG_NAME (type))
3909 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3910
3911 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3912 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3913
3914 /* Copy the fields. */
3915 if (TYPE_NFIELDS (type))
3916 {
3917 int i, nfields;
3918
3919 nfields = TYPE_NFIELDS (type);
3920 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3921 for (i = 0; i < nfields; i++)
3922 {
3923 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3924 TYPE_FIELD_ARTIFICIAL (type, i);
3925 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3926 if (TYPE_FIELD_TYPE (type, i))
3927 TYPE_FIELD_TYPE (new_type, i)
3928 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3929 copied_types);
3930 if (TYPE_FIELD_NAME (type, i))
3931 TYPE_FIELD_NAME (new_type, i) =
3932 xstrdup (TYPE_FIELD_NAME (type, i));
3933 switch (TYPE_FIELD_LOC_KIND (type, i))
3934 {
3935 case FIELD_LOC_KIND_BITPOS:
3936 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3937 TYPE_FIELD_BITPOS (type, i));
3938 break;
3939 case FIELD_LOC_KIND_ENUMVAL:
3940 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3941 TYPE_FIELD_ENUMVAL (type, i));
3942 break;
3943 case FIELD_LOC_KIND_PHYSADDR:
3944 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3945 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3946 break;
3947 case FIELD_LOC_KIND_PHYSNAME:
3948 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3949 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3950 i)));
3951 break;
3952 default:
3953 internal_error (__FILE__, __LINE__,
3954 _("Unexpected type field location kind: %d"),
3955 TYPE_FIELD_LOC_KIND (type, i));
3956 }
3957 }
3958 }
3959
3960 /* For range types, copy the bounds information. */
3961 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3962 {
3963 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3964 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3965 }
3966
3967 /* Copy pointers to other types. */
3968 if (TYPE_TARGET_TYPE (type))
3969 TYPE_TARGET_TYPE (new_type) =
3970 copy_type_recursive (objfile,
3971 TYPE_TARGET_TYPE (type),
3972 copied_types);
3973 if (TYPE_VPTR_BASETYPE (type))
3974 TYPE_VPTR_BASETYPE (new_type) =
3975 copy_type_recursive (objfile,
3976 TYPE_VPTR_BASETYPE (type),
3977 copied_types);
3978 /* Maybe copy the type_specific bits.
3979
3980 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3981 base classes and methods. There's no fundamental reason why we
3982 can't, but at the moment it is not needed. */
3983
3984 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3985 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3986 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3987 || TYPE_CODE (type) == TYPE_CODE_UNION
3988 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3989 INIT_CPLUS_SPECIFIC (new_type);
3990
3991 return new_type;
3992 }
3993
3994 /* Make a copy of the given TYPE, except that the pointer & reference
3995 types are not preserved.
3996
3997 This function assumes that the given type has an associated objfile.
3998 This objfile is used to allocate the new type. */
3999
4000 struct type *
4001 copy_type (const struct type *type)
4002 {
4003 struct type *new_type;
4004
4005 gdb_assert (TYPE_OBJFILE_OWNED (type));
4006
4007 new_type = alloc_type_copy (type);
4008 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4009 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4010 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4011 sizeof (struct main_type));
4012
4013 return new_type;
4014 }
4015 \f
4016 /* Helper functions to initialize architecture-specific types. */
4017
4018 /* Allocate a type structure associated with GDBARCH and set its
4019 CODE, LENGTH, and NAME fields. */
4020
4021 struct type *
4022 arch_type (struct gdbarch *gdbarch,
4023 enum type_code code, int length, char *name)
4024 {
4025 struct type *type;
4026
4027 type = alloc_type_arch (gdbarch);
4028 TYPE_CODE (type) = code;
4029 TYPE_LENGTH (type) = length;
4030
4031 if (name)
4032 TYPE_NAME (type) = xstrdup (name);
4033
4034 return type;
4035 }
4036
4037 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4038 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4039 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4040
4041 struct type *
4042 arch_integer_type (struct gdbarch *gdbarch,
4043 int bit, int unsigned_p, char *name)
4044 {
4045 struct type *t;
4046
4047 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4048 if (unsigned_p)
4049 TYPE_UNSIGNED (t) = 1;
4050 if (name && strcmp (name, "char") == 0)
4051 TYPE_NOSIGN (t) = 1;
4052
4053 return t;
4054 }
4055
4056 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4057 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4058 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4059
4060 struct type *
4061 arch_character_type (struct gdbarch *gdbarch,
4062 int bit, int unsigned_p, char *name)
4063 {
4064 struct type *t;
4065
4066 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4067 if (unsigned_p)
4068 TYPE_UNSIGNED (t) = 1;
4069
4070 return t;
4071 }
4072
4073 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4074 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4075 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4076
4077 struct type *
4078 arch_boolean_type (struct gdbarch *gdbarch,
4079 int bit, int unsigned_p, char *name)
4080 {
4081 struct type *t;
4082
4083 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4084 if (unsigned_p)
4085 TYPE_UNSIGNED (t) = 1;
4086
4087 return t;
4088 }
4089
4090 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4091 BIT is the type size in bits; if BIT equals -1, the size is
4092 determined by the floatformat. NAME is the type name. Set the
4093 TYPE_FLOATFORMAT from FLOATFORMATS. */
4094
4095 struct type *
4096 arch_float_type (struct gdbarch *gdbarch,
4097 int bit, char *name, const struct floatformat **floatformats)
4098 {
4099 struct type *t;
4100
4101 if (bit == -1)
4102 {
4103 gdb_assert (floatformats != NULL);
4104 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4105 bit = floatformats[0]->totalsize;
4106 }
4107 gdb_assert (bit >= 0);
4108
4109 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4110 TYPE_FLOATFORMAT (t) = floatformats;
4111 return t;
4112 }
4113
4114 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4115 NAME is the type name. TARGET_TYPE is the component float type. */
4116
4117 struct type *
4118 arch_complex_type (struct gdbarch *gdbarch,
4119 char *name, struct type *target_type)
4120 {
4121 struct type *t;
4122
4123 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4124 2 * TYPE_LENGTH (target_type), name);
4125 TYPE_TARGET_TYPE (t) = target_type;
4126 return t;
4127 }
4128
4129 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4130 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4131
4132 struct type *
4133 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4134 {
4135 int nfields = length * TARGET_CHAR_BIT;
4136 struct type *type;
4137
4138 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4139 TYPE_UNSIGNED (type) = 1;
4140 TYPE_NFIELDS (type) = nfields;
4141 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4142
4143 return type;
4144 }
4145
4146 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4147 position BITPOS is called NAME. */
4148
4149 void
4150 append_flags_type_flag (struct type *type, int bitpos, char *name)
4151 {
4152 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4153 gdb_assert (bitpos < TYPE_NFIELDS (type));
4154 gdb_assert (bitpos >= 0);
4155
4156 if (name)
4157 {
4158 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4159 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4160 }
4161 else
4162 {
4163 /* Don't show this field to the user. */
4164 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4165 }
4166 }
4167
4168 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4169 specified by CODE) associated with GDBARCH. NAME is the type name. */
4170
4171 struct type *
4172 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4173 {
4174 struct type *t;
4175
4176 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4177 t = arch_type (gdbarch, code, 0, NULL);
4178 TYPE_TAG_NAME (t) = name;
4179 INIT_CPLUS_SPECIFIC (t);
4180 return t;
4181 }
4182
4183 /* Add new field with name NAME and type FIELD to composite type T.
4184 Do not set the field's position or adjust the type's length;
4185 the caller should do so. Return the new field. */
4186
4187 struct field *
4188 append_composite_type_field_raw (struct type *t, char *name,
4189 struct type *field)
4190 {
4191 struct field *f;
4192
4193 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4194 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4195 sizeof (struct field) * TYPE_NFIELDS (t));
4196 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4197 memset (f, 0, sizeof f[0]);
4198 FIELD_TYPE (f[0]) = field;
4199 FIELD_NAME (f[0]) = name;
4200 return f;
4201 }
4202
4203 /* Add new field with name NAME and type FIELD to composite type T.
4204 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4205
4206 void
4207 append_composite_type_field_aligned (struct type *t, char *name,
4208 struct type *field, int alignment)
4209 {
4210 struct field *f = append_composite_type_field_raw (t, name, field);
4211
4212 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4213 {
4214 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4215 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4216 }
4217 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4218 {
4219 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4220 if (TYPE_NFIELDS (t) > 1)
4221 {
4222 SET_FIELD_BITPOS (f[0],
4223 (FIELD_BITPOS (f[-1])
4224 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4225 * TARGET_CHAR_BIT)));
4226
4227 if (alignment)
4228 {
4229 int left;
4230
4231 alignment *= TARGET_CHAR_BIT;
4232 left = FIELD_BITPOS (f[0]) % alignment;
4233
4234 if (left)
4235 {
4236 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4237 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4238 }
4239 }
4240 }
4241 }
4242 }
4243
4244 /* Add new field with name NAME and type FIELD to composite type T. */
4245
4246 void
4247 append_composite_type_field (struct type *t, char *name,
4248 struct type *field)
4249 {
4250 append_composite_type_field_aligned (t, name, field, 0);
4251 }
4252
4253 static struct gdbarch_data *gdbtypes_data;
4254
4255 const struct builtin_type *
4256 builtin_type (struct gdbarch *gdbarch)
4257 {
4258 return gdbarch_data (gdbarch, gdbtypes_data);
4259 }
4260
4261 static void *
4262 gdbtypes_post_init (struct gdbarch *gdbarch)
4263 {
4264 struct builtin_type *builtin_type
4265 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4266
4267 /* Basic types. */
4268 builtin_type->builtin_void
4269 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4270 builtin_type->builtin_char
4271 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4272 !gdbarch_char_signed (gdbarch), "char");
4273 builtin_type->builtin_signed_char
4274 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4275 0, "signed char");
4276 builtin_type->builtin_unsigned_char
4277 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4278 1, "unsigned char");
4279 builtin_type->builtin_short
4280 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4281 0, "short");
4282 builtin_type->builtin_unsigned_short
4283 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4284 1, "unsigned short");
4285 builtin_type->builtin_int
4286 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4287 0, "int");
4288 builtin_type->builtin_unsigned_int
4289 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4290 1, "unsigned int");
4291 builtin_type->builtin_long
4292 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4293 0, "long");
4294 builtin_type->builtin_unsigned_long
4295 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4296 1, "unsigned long");
4297 builtin_type->builtin_long_long
4298 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4299 0, "long long");
4300 builtin_type->builtin_unsigned_long_long
4301 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4302 1, "unsigned long long");
4303 builtin_type->builtin_float
4304 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4305 "float", gdbarch_float_format (gdbarch));
4306 builtin_type->builtin_double
4307 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4308 "double", gdbarch_double_format (gdbarch));
4309 builtin_type->builtin_long_double
4310 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4311 "long double", gdbarch_long_double_format (gdbarch));
4312 builtin_type->builtin_complex
4313 = arch_complex_type (gdbarch, "complex",
4314 builtin_type->builtin_float);
4315 builtin_type->builtin_double_complex
4316 = arch_complex_type (gdbarch, "double complex",
4317 builtin_type->builtin_double);
4318 builtin_type->builtin_string
4319 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4320 builtin_type->builtin_bool
4321 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4322
4323 /* The following three are about decimal floating point types, which
4324 are 32-bits, 64-bits and 128-bits respectively. */
4325 builtin_type->builtin_decfloat
4326 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4327 builtin_type->builtin_decdouble
4328 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4329 builtin_type->builtin_declong
4330 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4331
4332 /* "True" character types. */
4333 builtin_type->builtin_true_char
4334 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4335 builtin_type->builtin_true_unsigned_char
4336 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4337
4338 /* Fixed-size integer types. */
4339 builtin_type->builtin_int0
4340 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4341 builtin_type->builtin_int8
4342 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4343 builtin_type->builtin_uint8
4344 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4345 builtin_type->builtin_int16
4346 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4347 builtin_type->builtin_uint16
4348 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4349 builtin_type->builtin_int32
4350 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4351 builtin_type->builtin_uint32
4352 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4353 builtin_type->builtin_int64
4354 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4355 builtin_type->builtin_uint64
4356 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4357 builtin_type->builtin_int128
4358 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4359 builtin_type->builtin_uint128
4360 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4361 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4362 TYPE_INSTANCE_FLAG_NOTTEXT;
4363 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4364 TYPE_INSTANCE_FLAG_NOTTEXT;
4365
4366 /* Wide character types. */
4367 builtin_type->builtin_char16
4368 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4369 builtin_type->builtin_char32
4370 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4371
4372
4373 /* Default data/code pointer types. */
4374 builtin_type->builtin_data_ptr
4375 = lookup_pointer_type (builtin_type->builtin_void);
4376 builtin_type->builtin_func_ptr
4377 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4378 builtin_type->builtin_func_func
4379 = lookup_function_type (builtin_type->builtin_func_ptr);
4380
4381 /* This type represents a GDB internal function. */
4382 builtin_type->internal_fn
4383 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4384 "<internal function>");
4385
4386 /* This type represents an xmethod. */
4387 builtin_type->xmethod
4388 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4389
4390 return builtin_type;
4391 }
4392
4393 /* This set of objfile-based types is intended to be used by symbol
4394 readers as basic types. */
4395
4396 static const struct objfile_data *objfile_type_data;
4397
4398 const struct objfile_type *
4399 objfile_type (struct objfile *objfile)
4400 {
4401 struct gdbarch *gdbarch;
4402 struct objfile_type *objfile_type
4403 = objfile_data (objfile, objfile_type_data);
4404
4405 if (objfile_type)
4406 return objfile_type;
4407
4408 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4409 1, struct objfile_type);
4410
4411 /* Use the objfile architecture to determine basic type properties. */
4412 gdbarch = get_objfile_arch (objfile);
4413
4414 /* Basic types. */
4415 objfile_type->builtin_void
4416 = init_type (TYPE_CODE_VOID, 1,
4417 0,
4418 "void", objfile);
4419
4420 objfile_type->builtin_char
4421 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4422 (TYPE_FLAG_NOSIGN
4423 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4424 "char", objfile);
4425 objfile_type->builtin_signed_char
4426 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4427 0,
4428 "signed char", objfile);
4429 objfile_type->builtin_unsigned_char
4430 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4431 TYPE_FLAG_UNSIGNED,
4432 "unsigned char", objfile);
4433 objfile_type->builtin_short
4434 = init_type (TYPE_CODE_INT,
4435 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4436 0, "short", objfile);
4437 objfile_type->builtin_unsigned_short
4438 = init_type (TYPE_CODE_INT,
4439 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4440 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4441 objfile_type->builtin_int
4442 = init_type (TYPE_CODE_INT,
4443 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4444 0, "int", objfile);
4445 objfile_type->builtin_unsigned_int
4446 = init_type (TYPE_CODE_INT,
4447 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4448 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4449 objfile_type->builtin_long
4450 = init_type (TYPE_CODE_INT,
4451 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4452 0, "long", objfile);
4453 objfile_type->builtin_unsigned_long
4454 = init_type (TYPE_CODE_INT,
4455 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4456 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4457 objfile_type->builtin_long_long
4458 = init_type (TYPE_CODE_INT,
4459 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4460 0, "long long", objfile);
4461 objfile_type->builtin_unsigned_long_long
4462 = init_type (TYPE_CODE_INT,
4463 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4464 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4465
4466 objfile_type->builtin_float
4467 = init_type (TYPE_CODE_FLT,
4468 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4469 0, "float", objfile);
4470 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4471 = gdbarch_float_format (gdbarch);
4472 objfile_type->builtin_double
4473 = init_type (TYPE_CODE_FLT,
4474 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4475 0, "double", objfile);
4476 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4477 = gdbarch_double_format (gdbarch);
4478 objfile_type->builtin_long_double
4479 = init_type (TYPE_CODE_FLT,
4480 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4481 0, "long double", objfile);
4482 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4483 = gdbarch_long_double_format (gdbarch);
4484
4485 /* This type represents a type that was unrecognized in symbol read-in. */
4486 objfile_type->builtin_error
4487 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4488
4489 /* The following set of types is used for symbols with no
4490 debug information. */
4491 objfile_type->nodebug_text_symbol
4492 = init_type (TYPE_CODE_FUNC, 1, 0,
4493 "<text variable, no debug info>", objfile);
4494 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4495 = objfile_type->builtin_int;
4496 objfile_type->nodebug_text_gnu_ifunc_symbol
4497 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4498 "<text gnu-indirect-function variable, no debug info>",
4499 objfile);
4500 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4501 = objfile_type->nodebug_text_symbol;
4502 objfile_type->nodebug_got_plt_symbol
4503 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4504 "<text from jump slot in .got.plt, no debug info>",
4505 objfile);
4506 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4507 = objfile_type->nodebug_text_symbol;
4508 objfile_type->nodebug_data_symbol
4509 = init_type (TYPE_CODE_INT,
4510 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4511 "<data variable, no debug info>", objfile);
4512 objfile_type->nodebug_unknown_symbol
4513 = init_type (TYPE_CODE_INT, 1, 0,
4514 "<variable (not text or data), no debug info>", objfile);
4515 objfile_type->nodebug_tls_symbol
4516 = init_type (TYPE_CODE_INT,
4517 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4518 "<thread local variable, no debug info>", objfile);
4519
4520 /* NOTE: on some targets, addresses and pointers are not necessarily
4521 the same.
4522
4523 The upshot is:
4524 - gdb's `struct type' always describes the target's
4525 representation.
4526 - gdb's `struct value' objects should always hold values in
4527 target form.
4528 - gdb's CORE_ADDR values are addresses in the unified virtual
4529 address space that the assembler and linker work with. Thus,
4530 since target_read_memory takes a CORE_ADDR as an argument, it
4531 can access any memory on the target, even if the processor has
4532 separate code and data address spaces.
4533
4534 In this context, objfile_type->builtin_core_addr is a bit odd:
4535 it's a target type for a value the target will never see. It's
4536 only used to hold the values of (typeless) linker symbols, which
4537 are indeed in the unified virtual address space. */
4538
4539 objfile_type->builtin_core_addr
4540 = init_type (TYPE_CODE_INT,
4541 gdbarch_addr_bit (gdbarch) / 8,
4542 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4543
4544 set_objfile_data (objfile, objfile_type_data, objfile_type);
4545 return objfile_type;
4546 }
4547
4548 extern initialize_file_ftype _initialize_gdbtypes;
4549
4550 void
4551 _initialize_gdbtypes (void)
4552 {
4553 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4554 objfile_type_data = register_objfile_data ();
4555
4556 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4557 _("Set debugging of C++ overloading."),
4558 _("Show debugging of C++ overloading."),
4559 _("When enabled, ranking of the "
4560 "functions is displayed."),
4561 NULL,
4562 show_overload_debug,
4563 &setdebuglist, &showdebuglist);
4564
4565 /* Add user knob for controlling resolution of opaque types. */
4566 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4567 &opaque_type_resolution,
4568 _("Set resolution of opaque struct/class/union"
4569 " types (if set before loading symbols)."),
4570 _("Show resolution of opaque struct/class/union"
4571 " types (if set before loading symbols)."),
4572 NULL, NULL,
4573 show_opaque_type_resolution,
4574 &setlist, &showlist);
4575
4576 /* Add an option to permit non-strict type checking. */
4577 add_setshow_boolean_cmd ("type", class_support,
4578 &strict_type_checking,
4579 _("Set strict type checking."),
4580 _("Show strict type checking."),
4581 NULL, NULL,
4582 show_strict_type_checking,
4583 &setchecklist, &showchecklist);
4584 }
This page took 0.129888 seconds and 4 git commands to generate.