From Craig Silverstein: Templatize the Dwarf reader.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41
42 /* These variables point to the objects
43 representing the predefined C data types. */
44
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
56
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61 };
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65 };
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69 };
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73 };
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77 };
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85 };
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89 };
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93 };
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97 };
98
99 struct type *builtin_type_ieee_single;
100 struct type *builtin_type_ieee_double;
101 struct type *builtin_type_i387_ext;
102 struct type *builtin_type_m68881_ext;
103 struct type *builtin_type_arm_ext;
104 struct type *builtin_type_ia64_spill;
105 struct type *builtin_type_ia64_quad;
106
107
108 int opaque_type_resolution = 1;
109 static void
110 show_opaque_type_resolution (struct ui_file *file, int from_tty,
111 struct cmd_list_element *c,
112 const char *value)
113 {
114 fprintf_filtered (file, _("\
115 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
116 value);
117 }
118
119 int overload_debug = 0;
120 static void
121 show_overload_debug (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c, const char *value)
123 {
124 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
125 value);
126 }
127
128 struct extra
129 {
130 char str[128];
131 int len;
132 }; /* Maximum extension is 128! FIXME */
133
134 static void print_bit_vector (B_TYPE *, int);
135 static void print_arg_types (struct field *, int, int);
136 static void dump_fn_fieldlists (struct type *, int);
137 static void print_cplus_stuff (struct type *, int);
138
139
140 /* Alloc a new type structure and fill it with some defaults. If
141 OBJFILE is non-NULL, then allocate the space for the type structure
142 in that objfile's objfile_obstack. Otherwise allocate the new type
143 structure by xmalloc () (for permanent types). */
144
145 struct type *
146 alloc_type (struct objfile *objfile)
147 {
148 struct type *type;
149
150 /* Alloc the structure and start off with all fields zeroed. */
151
152 if (objfile == NULL)
153 {
154 type = xmalloc (sizeof (struct type));
155 memset (type, 0, sizeof (struct type));
156 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
157 }
158 else
159 {
160 type = obstack_alloc (&objfile->objfile_obstack,
161 sizeof (struct type));
162 memset (type, 0, sizeof (struct type));
163 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
164 sizeof (struct main_type));
165 OBJSTAT (objfile, n_types++);
166 }
167 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_OBJFILE (type) = objfile;
173 TYPE_VPTR_FIELDNO (type) = -1;
174 TYPE_CHAIN (type) = type; /* Chain back to itself. */
175
176 return (type);
177 }
178
179 /* Alloc a new type instance structure, fill it with some defaults,
180 and point it at OLDTYPE. Allocate the new type instance from the
181 same place as OLDTYPE. */
182
183 static struct type *
184 alloc_type_instance (struct type *oldtype)
185 {
186 struct type *type;
187
188 /* Allocate the structure. */
189
190 if (TYPE_OBJFILE (oldtype) == NULL)
191 {
192 type = xmalloc (sizeof (struct type));
193 memset (type, 0, sizeof (struct type));
194 }
195 else
196 {
197 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
198 sizeof (struct type));
199 memset (type, 0, sizeof (struct type));
200 }
201 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
202
203 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
204
205 return (type);
206 }
207
208 /* Clear all remnants of the previous type at TYPE, in preparation for
209 replacing it with something else. */
210 static void
211 smash_type (struct type *type)
212 {
213 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
214
215 /* For now, delete the rings. */
216 TYPE_CHAIN (type) = type;
217
218 /* For now, leave the pointer/reference types alone. */
219 }
220
221 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
222 to a pointer to memory where the pointer type should be stored.
223 If *TYPEPTR is zero, update it to point to the pointer type we return.
224 We allocate new memory if needed. */
225
226 struct type *
227 make_pointer_type (struct type *type, struct type **typeptr)
228 {
229 struct type *ntype; /* New type */
230 struct objfile *objfile;
231 struct type *chain;
232
233 ntype = TYPE_POINTER_TYPE (type);
234
235 if (ntype)
236 {
237 if (typeptr == 0)
238 return ntype; /* Don't care about alloc,
239 and have new type. */
240 else if (*typeptr == 0)
241 {
242 *typeptr = ntype; /* Tracking alloc, and have new type. */
243 return ntype;
244 }
245 }
246
247 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
248 {
249 ntype = alloc_type (TYPE_OBJFILE (type));
250 if (typeptr)
251 *typeptr = ntype;
252 }
253 else /* We have storage, but need to reset it. */
254 {
255 ntype = *typeptr;
256 objfile = TYPE_OBJFILE (ntype);
257 chain = TYPE_CHAIN (ntype);
258 smash_type (ntype);
259 TYPE_CHAIN (ntype) = chain;
260 TYPE_OBJFILE (ntype) = objfile;
261 }
262
263 TYPE_TARGET_TYPE (ntype) = type;
264 TYPE_POINTER_TYPE (type) = ntype;
265
266 /* FIXME! Assume the machine has only one representation for
267 pointers! */
268
269 TYPE_LENGTH (ntype) =
270 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
271 TYPE_CODE (ntype) = TYPE_CODE_PTR;
272
273 /* Mark pointers as unsigned. The target converts between pointers
274 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
275 gdbarch_address_to_pointer. */
276 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
277
278 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
279 TYPE_POINTER_TYPE (type) = ntype;
280
281 /* Update the length of all the other variants of this type. */
282 chain = TYPE_CHAIN (ntype);
283 while (chain != ntype)
284 {
285 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
286 chain = TYPE_CHAIN (chain);
287 }
288
289 return ntype;
290 }
291
292 /* Given a type TYPE, return a type of pointers to that type.
293 May need to construct such a type if this is the first use. */
294
295 struct type *
296 lookup_pointer_type (struct type *type)
297 {
298 return make_pointer_type (type, (struct type **) 0);
299 }
300
301 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
302 points to a pointer to memory where the reference type should be
303 stored. If *TYPEPTR is zero, update it to point to the reference
304 type we return. We allocate new memory if needed. */
305
306 struct type *
307 make_reference_type (struct type *type, struct type **typeptr)
308 {
309 struct type *ntype; /* New type */
310 struct objfile *objfile;
311 struct type *chain;
312
313 ntype = TYPE_REFERENCE_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type (TYPE_OBJFILE (type));
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 objfile = TYPE_OBJFILE (ntype);
337 chain = TYPE_CHAIN (ntype);
338 smash_type (ntype);
339 TYPE_CHAIN (ntype) = chain;
340 TYPE_OBJFILE (ntype) = objfile;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_REFERENCE_TYPE (type) = ntype;
345
346 /* FIXME! Assume the machine has only one representation for
347 references, and that it matches the (only) representation for
348 pointers! */
349
350 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_REF;
352
353 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
354 TYPE_REFERENCE_TYPE (type) = ntype;
355
356 /* Update the length of all the other variants of this type. */
357 chain = TYPE_CHAIN (ntype);
358 while (chain != ntype)
359 {
360 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
361 chain = TYPE_CHAIN (chain);
362 }
363
364 return ntype;
365 }
366
367 /* Same as above, but caller doesn't care about memory allocation
368 details. */
369
370 struct type *
371 lookup_reference_type (struct type *type)
372 {
373 return make_reference_type (type, (struct type **) 0);
374 }
375
376 /* Lookup a function type that returns type TYPE. TYPEPTR, if
377 nonzero, points to a pointer to memory where the function type
378 should be stored. If *TYPEPTR is zero, update it to point to the
379 function type we return. We allocate new memory if needed. */
380
381 struct type *
382 make_function_type (struct type *type, struct type **typeptr)
383 {
384 struct type *ntype; /* New type */
385 struct objfile *objfile;
386
387 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
388 {
389 ntype = alloc_type (TYPE_OBJFILE (type));
390 if (typeptr)
391 *typeptr = ntype;
392 }
393 else /* We have storage, but need to reset it. */
394 {
395 ntype = *typeptr;
396 objfile = TYPE_OBJFILE (ntype);
397 smash_type (ntype);
398 TYPE_OBJFILE (ntype) = objfile;
399 }
400
401 TYPE_TARGET_TYPE (ntype) = type;
402
403 TYPE_LENGTH (ntype) = 1;
404 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
405
406 return ntype;
407 }
408
409
410 /* Given a type TYPE, return a type of functions that return that type.
411 May need to construct such a type if this is the first use. */
412
413 struct type *
414 lookup_function_type (struct type *type)
415 {
416 return make_function_type (type, (struct type **) 0);
417 }
418
419 /* Identify address space identifier by name --
420 return the integer flag defined in gdbtypes.h. */
421 extern int
422 address_space_name_to_int (char *space_identifier)
423 {
424 struct gdbarch *gdbarch = current_gdbarch;
425 int type_flags;
426 /* Check for known address space delimiters. */
427 if (!strcmp (space_identifier, "code"))
428 return TYPE_FLAG_CODE_SPACE;
429 else if (!strcmp (space_identifier, "data"))
430 return TYPE_FLAG_DATA_SPACE;
431 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
432 && gdbarch_address_class_name_to_type_flags (gdbarch,
433 space_identifier,
434 &type_flags))
435 return type_flags;
436 else
437 error (_("Unknown address space specifier: \"%s\""), space_identifier);
438 }
439
440 /* Identify address space identifier by integer flag as defined in
441 gdbtypes.h -- return the string version of the adress space name. */
442
443 const char *
444 address_space_int_to_name (int space_flag)
445 {
446 struct gdbarch *gdbarch = current_gdbarch;
447 if (space_flag & TYPE_FLAG_CODE_SPACE)
448 return "code";
449 else if (space_flag & TYPE_FLAG_DATA_SPACE)
450 return "data";
451 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
452 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
453 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
454 else
455 return NULL;
456 }
457
458 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
459
460 If STORAGE is non-NULL, create the new type instance there.
461 STORAGE must be in the same obstack as TYPE. */
462
463 static struct type *
464 make_qualified_type (struct type *type, int new_flags,
465 struct type *storage)
466 {
467 struct type *ntype;
468
469 ntype = type;
470 do {
471 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
472 return ntype;
473 ntype = TYPE_CHAIN (ntype);
474 } while (ntype != type);
475
476 /* Create a new type instance. */
477 if (storage == NULL)
478 ntype = alloc_type_instance (type);
479 else
480 {
481 /* If STORAGE was provided, it had better be in the same objfile
482 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
483 if one objfile is freed and the other kept, we'd have
484 dangling pointers. */
485 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
486
487 ntype = storage;
488 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
489 TYPE_CHAIN (ntype) = ntype;
490 }
491
492 /* Pointers or references to the original type are not relevant to
493 the new type. */
494 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
495 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
496
497 /* Chain the new qualified type to the old type. */
498 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
499 TYPE_CHAIN (type) = ntype;
500
501 /* Now set the instance flags and return the new type. */
502 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
503
504 /* Set length of new type to that of the original type. */
505 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
506
507 return ntype;
508 }
509
510 /* Make an address-space-delimited variant of a type -- a type that
511 is identical to the one supplied except that it has an address
512 space attribute attached to it (such as "code" or "data").
513
514 The space attributes "code" and "data" are for Harvard
515 architectures. The address space attributes are for architectures
516 which have alternately sized pointers or pointers with alternate
517 representations. */
518
519 struct type *
520 make_type_with_address_space (struct type *type, int space_flag)
521 {
522 struct type *ntype;
523 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
524 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
525 | TYPE_FLAG_ADDRESS_CLASS_ALL))
526 | space_flag);
527
528 return make_qualified_type (type, new_flags, NULL);
529 }
530
531 /* Make a "c-v" variant of a type -- a type that is identical to the
532 one supplied except that it may have const or volatile attributes
533 CNST is a flag for setting the const attribute
534 VOLTL is a flag for setting the volatile attribute
535 TYPE is the base type whose variant we are creating.
536
537 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
538 storage to hold the new qualified type; *TYPEPTR and TYPE must be
539 in the same objfile. Otherwise, allocate fresh memory for the new
540 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
541 new type we construct. */
542 struct type *
543 make_cv_type (int cnst, int voltl,
544 struct type *type,
545 struct type **typeptr)
546 {
547 struct type *ntype; /* New type */
548 struct type *tmp_type = type; /* tmp type */
549 struct objfile *objfile;
550
551 int new_flags = (TYPE_INSTANCE_FLAGS (type)
552 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
553
554 if (cnst)
555 new_flags |= TYPE_FLAG_CONST;
556
557 if (voltl)
558 new_flags |= TYPE_FLAG_VOLATILE;
559
560 if (typeptr && *typeptr != NULL)
561 {
562 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
563 a C-V variant chain that threads across objfiles: if one
564 objfile gets freed, then the other has a broken C-V chain.
565
566 This code used to try to copy over the main type from TYPE to
567 *TYPEPTR if they were in different objfiles, but that's
568 wrong, too: TYPE may have a field list or member function
569 lists, which refer to types of their own, etc. etc. The
570 whole shebang would need to be copied over recursively; you
571 can't have inter-objfile pointers. The only thing to do is
572 to leave stub types as stub types, and look them up afresh by
573 name each time you encounter them. */
574 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
575 }
576
577 ntype = make_qualified_type (type, new_flags,
578 typeptr ? *typeptr : NULL);
579
580 if (typeptr != NULL)
581 *typeptr = ntype;
582
583 return ntype;
584 }
585
586 /* Replace the contents of ntype with the type *type. This changes the
587 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
588 the changes are propogated to all types in the TYPE_CHAIN.
589
590 In order to build recursive types, it's inevitable that we'll need
591 to update types in place --- but this sort of indiscriminate
592 smashing is ugly, and needs to be replaced with something more
593 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
594 clear if more steps are needed. */
595 void
596 replace_type (struct type *ntype, struct type *type)
597 {
598 struct type *chain;
599
600 /* These two types had better be in the same objfile. Otherwise,
601 the assignment of one type's main type structure to the other
602 will produce a type with references to objects (names; field
603 lists; etc.) allocated on an objfile other than its own. */
604 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
605
606 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
607
608 /* The type length is not a part of the main type. Update it for
609 each type on the variant chain. */
610 chain = ntype;
611 do {
612 /* Assert that this element of the chain has no address-class bits
613 set in its flags. Such type variants might have type lengths
614 which are supposed to be different from the non-address-class
615 variants. This assertion shouldn't ever be triggered because
616 symbol readers which do construct address-class variants don't
617 call replace_type(). */
618 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
619
620 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
621 chain = TYPE_CHAIN (chain);
622 } while (ntype != chain);
623
624 /* Assert that the two types have equivalent instance qualifiers.
625 This should be true for at least all of our debug readers. */
626 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
627 }
628
629 /* Implement direct support for MEMBER_TYPE in GNU C++.
630 May need to construct such a type if this is the first use.
631 The TYPE is the type of the member. The DOMAIN is the type
632 of the aggregate that the member belongs to. */
633
634 struct type *
635 lookup_memberptr_type (struct type *type, struct type *domain)
636 {
637 struct type *mtype;
638
639 mtype = alloc_type (TYPE_OBJFILE (type));
640 smash_to_memberptr_type (mtype, domain, type);
641 return (mtype);
642 }
643
644 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
645
646 struct type *
647 lookup_methodptr_type (struct type *to_type)
648 {
649 struct type *mtype;
650
651 mtype = alloc_type (TYPE_OBJFILE (to_type));
652 TYPE_TARGET_TYPE (mtype) = to_type;
653 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
654 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
655 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
656 return mtype;
657 }
658
659 /* Allocate a stub method whose return type is TYPE. This apparently
660 happens for speed of symbol reading, since parsing out the
661 arguments to the method is cpu-intensive, the way we are doing it.
662 So, we will fill in arguments later. This always returns a fresh
663 type. */
664
665 struct type *
666 allocate_stub_method (struct type *type)
667 {
668 struct type *mtype;
669
670 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
671 TYPE_OBJFILE (type));
672 TYPE_TARGET_TYPE (mtype) = type;
673 /* _DOMAIN_TYPE (mtype) = unknown yet */
674 return (mtype);
675 }
676
677 /* Create a range type using either a blank type supplied in
678 RESULT_TYPE, or creating a new type, inheriting the objfile from
679 INDEX_TYPE.
680
681 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
682 to HIGH_BOUND, inclusive.
683
684 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
685 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
686
687 struct type *
688 create_range_type (struct type *result_type, struct type *index_type,
689 int low_bound, int high_bound)
690 {
691 if (result_type == NULL)
692 {
693 result_type = alloc_type (TYPE_OBJFILE (index_type));
694 }
695 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
696 TYPE_TARGET_TYPE (result_type) = index_type;
697 if (TYPE_STUB (index_type))
698 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
699 else
700 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
701 TYPE_NFIELDS (result_type) = 2;
702 TYPE_FIELDS (result_type) = (struct field *)
703 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
704 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
705 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
706 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
707
708 if (low_bound >= 0)
709 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
710
711 return (result_type);
712 }
713
714 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
715 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
716 bounds will fit in LONGEST), or -1 otherwise. */
717
718 int
719 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
720 {
721 CHECK_TYPEDEF (type);
722 switch (TYPE_CODE (type))
723 {
724 case TYPE_CODE_RANGE:
725 *lowp = TYPE_LOW_BOUND (type);
726 *highp = TYPE_HIGH_BOUND (type);
727 return 1;
728 case TYPE_CODE_ENUM:
729 if (TYPE_NFIELDS (type) > 0)
730 {
731 /* The enums may not be sorted by value, so search all
732 entries */
733 int i;
734
735 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
736 for (i = 0; i < TYPE_NFIELDS (type); i++)
737 {
738 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
739 *lowp = TYPE_FIELD_BITPOS (type, i);
740 if (TYPE_FIELD_BITPOS (type, i) > *highp)
741 *highp = TYPE_FIELD_BITPOS (type, i);
742 }
743
744 /* Set unsigned indicator if warranted. */
745 if (*lowp >= 0)
746 {
747 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
748 }
749 }
750 else
751 {
752 *lowp = 0;
753 *highp = -1;
754 }
755 return 0;
756 case TYPE_CODE_BOOL:
757 *lowp = 0;
758 *highp = 1;
759 return 0;
760 case TYPE_CODE_INT:
761 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
762 return -1;
763 if (!TYPE_UNSIGNED (type))
764 {
765 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
766 *highp = -*lowp - 1;
767 return 0;
768 }
769 /* ... fall through for unsigned ints ... */
770 case TYPE_CODE_CHAR:
771 *lowp = 0;
772 /* This round-about calculation is to avoid shifting by
773 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
774 if TYPE_LENGTH (type) == sizeof (LONGEST). */
775 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
776 *highp = (*highp - 1) | *highp;
777 return 0;
778 default:
779 return -1;
780 }
781 }
782
783 /* Create an array type using either a blank type supplied in
784 RESULT_TYPE, or creating a new type, inheriting the objfile from
785 RANGE_TYPE.
786
787 Elements will be of type ELEMENT_TYPE, the indices will be of type
788 RANGE_TYPE.
789
790 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
791 sure it is TYPE_CODE_UNDEF before we bash it into an array
792 type? */
793
794 struct type *
795 create_array_type (struct type *result_type,
796 struct type *element_type,
797 struct type *range_type)
798 {
799 LONGEST low_bound, high_bound;
800
801 if (result_type == NULL)
802 {
803 result_type = alloc_type (TYPE_OBJFILE (range_type));
804 }
805 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
806 TYPE_TARGET_TYPE (result_type) = element_type;
807 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
808 low_bound = high_bound = 0;
809 CHECK_TYPEDEF (element_type);
810 TYPE_LENGTH (result_type) =
811 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
812 TYPE_NFIELDS (result_type) = 1;
813 TYPE_FIELDS (result_type) =
814 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
815 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
816 TYPE_FIELD_TYPE (result_type, 0) = range_type;
817 TYPE_VPTR_FIELDNO (result_type) = -1;
818
819 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
820 if (TYPE_LENGTH (result_type) == 0)
821 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
822
823 return (result_type);
824 }
825
826 /* Create a string type using either a blank type supplied in
827 RESULT_TYPE, or creating a new type. String types are similar
828 enough to array of char types that we can use create_array_type to
829 build the basic type and then bash it into a string type.
830
831 For fixed length strings, the range type contains 0 as the lower
832 bound and the length of the string minus one as the upper bound.
833
834 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
835 sure it is TYPE_CODE_UNDEF before we bash it into a string
836 type? */
837
838 struct type *
839 create_string_type (struct type *result_type,
840 struct type *range_type)
841 {
842 struct type *string_char_type;
843
844 string_char_type = language_string_char_type (current_language,
845 current_gdbarch);
846 result_type = create_array_type (result_type,
847 string_char_type,
848 range_type);
849 TYPE_CODE (result_type) = TYPE_CODE_STRING;
850 return (result_type);
851 }
852
853 struct type *
854 create_set_type (struct type *result_type, struct type *domain_type)
855 {
856 if (result_type == NULL)
857 {
858 result_type = alloc_type (TYPE_OBJFILE (domain_type));
859 }
860 TYPE_CODE (result_type) = TYPE_CODE_SET;
861 TYPE_NFIELDS (result_type) = 1;
862 TYPE_FIELDS (result_type) = (struct field *)
863 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
864 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
865
866 if (!TYPE_STUB (domain_type))
867 {
868 LONGEST low_bound, high_bound, bit_length;
869 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
870 low_bound = high_bound = 0;
871 bit_length = high_bound - low_bound + 1;
872 TYPE_LENGTH (result_type)
873 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
874 if (low_bound >= 0)
875 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
876 }
877 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
878
879 return (result_type);
880 }
881
882 void
883 append_flags_type_flag (struct type *type, int bitpos, char *name)
884 {
885 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
886 gdb_assert (bitpos < TYPE_NFIELDS (type));
887 gdb_assert (bitpos >= 0);
888
889 if (name)
890 {
891 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
892 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
893 }
894 else
895 {
896 /* Don't show this field to the user. */
897 TYPE_FIELD_BITPOS (type, bitpos) = -1;
898 }
899 }
900
901 struct type *
902 init_flags_type (char *name, int length)
903 {
904 int nfields = length * TARGET_CHAR_BIT;
905 struct type *type;
906
907 type = init_type (TYPE_CODE_FLAGS, length,
908 TYPE_FLAG_UNSIGNED, name, NULL);
909 TYPE_NFIELDS (type) = nfields;
910 TYPE_FIELDS (type) = TYPE_ALLOC (type,
911 nfields * sizeof (struct field));
912 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
913
914 return type;
915 }
916
917 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
918 and any array types nested inside it. */
919
920 void
921 make_vector_type (struct type *array_type)
922 {
923 struct type *inner_array, *elt_type;
924 int flags;
925
926 /* Find the innermost array type, in case the array is
927 multi-dimensional. */
928 inner_array = array_type;
929 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
930 inner_array = TYPE_TARGET_TYPE (inner_array);
931
932 elt_type = TYPE_TARGET_TYPE (inner_array);
933 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
934 {
935 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
936 elt_type = make_qualified_type (elt_type, flags, NULL);
937 TYPE_TARGET_TYPE (inner_array) = elt_type;
938 }
939
940 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
941 }
942
943 struct type *
944 init_vector_type (struct type *elt_type, int n)
945 {
946 struct type *array_type;
947
948 array_type = create_array_type (0, elt_type,
949 create_range_type (0,
950 builtin_type_int32,
951 0, n-1));
952 make_vector_type (array_type);
953 return array_type;
954 }
955
956 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
957 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
958 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
959 TYPE doesn't include the offset (that's the value of the MEMBER
960 itself), but does include the structure type into which it points
961 (for some reason).
962
963 When "smashing" the type, we preserve the objfile that the old type
964 pointed to, since we aren't changing where the type is actually
965 allocated. */
966
967 void
968 smash_to_memberptr_type (struct type *type, struct type *domain,
969 struct type *to_type)
970 {
971 struct objfile *objfile;
972
973 objfile = TYPE_OBJFILE (type);
974
975 smash_type (type);
976 TYPE_OBJFILE (type) = objfile;
977 TYPE_TARGET_TYPE (type) = to_type;
978 TYPE_DOMAIN_TYPE (type) = domain;
979 /* Assume that a data member pointer is the same size as a normal
980 pointer. */
981 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
982 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
983 }
984
985 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
986 METHOD just means `function that gets an extra "this" argument'.
987
988 When "smashing" the type, we preserve the objfile that the old type
989 pointed to, since we aren't changing where the type is actually
990 allocated. */
991
992 void
993 smash_to_method_type (struct type *type, struct type *domain,
994 struct type *to_type, struct field *args,
995 int nargs, int varargs)
996 {
997 struct objfile *objfile;
998
999 objfile = TYPE_OBJFILE (type);
1000
1001 smash_type (type);
1002 TYPE_OBJFILE (type) = objfile;
1003 TYPE_TARGET_TYPE (type) = to_type;
1004 TYPE_DOMAIN_TYPE (type) = domain;
1005 TYPE_FIELDS (type) = args;
1006 TYPE_NFIELDS (type) = nargs;
1007 if (varargs)
1008 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1009 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1010 TYPE_CODE (type) = TYPE_CODE_METHOD;
1011 }
1012
1013 /* Return a typename for a struct/union/enum type without "struct ",
1014 "union ", or "enum ". If the type has a NULL name, return NULL. */
1015
1016 char *
1017 type_name_no_tag (const struct type *type)
1018 {
1019 if (TYPE_TAG_NAME (type) != NULL)
1020 return TYPE_TAG_NAME (type);
1021
1022 /* Is there code which expects this to return the name if there is
1023 no tag name? My guess is that this is mainly used for C++ in
1024 cases where the two will always be the same. */
1025 return TYPE_NAME (type);
1026 }
1027
1028 /* Lookup a typedef or primitive type named NAME, visible in lexical
1029 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1030 suitably defined. */
1031
1032 struct type *
1033 lookup_typename (char *name, struct block *block, int noerr)
1034 {
1035 struct symbol *sym;
1036 struct type *tmp;
1037
1038 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1039 (struct symtab **) NULL);
1040 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1041 {
1042 tmp = language_lookup_primitive_type_by_name (current_language,
1043 current_gdbarch,
1044 name);
1045 if (tmp)
1046 {
1047 return (tmp);
1048 }
1049 else if (!tmp && noerr)
1050 {
1051 return (NULL);
1052 }
1053 else
1054 {
1055 error (_("No type named %s."), name);
1056 }
1057 }
1058 return (SYMBOL_TYPE (sym));
1059 }
1060
1061 struct type *
1062 lookup_unsigned_typename (char *name)
1063 {
1064 char *uns = alloca (strlen (name) + 10);
1065
1066 strcpy (uns, "unsigned ");
1067 strcpy (uns + 9, name);
1068 return (lookup_typename (uns, (struct block *) NULL, 0));
1069 }
1070
1071 struct type *
1072 lookup_signed_typename (char *name)
1073 {
1074 struct type *t;
1075 char *uns = alloca (strlen (name) + 8);
1076
1077 strcpy (uns, "signed ");
1078 strcpy (uns + 7, name);
1079 t = lookup_typename (uns, (struct block *) NULL, 1);
1080 /* If we don't find "signed FOO" just try again with plain "FOO". */
1081 if (t != NULL)
1082 return t;
1083 return lookup_typename (name, (struct block *) NULL, 0);
1084 }
1085
1086 /* Lookup a structure type named "struct NAME",
1087 visible in lexical block BLOCK. */
1088
1089 struct type *
1090 lookup_struct (char *name, struct block *block)
1091 {
1092 struct symbol *sym;
1093
1094 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1095 (struct symtab **) NULL);
1096
1097 if (sym == NULL)
1098 {
1099 error (_("No struct type named %s."), name);
1100 }
1101 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1102 {
1103 error (_("This context has class, union or enum %s, not a struct."),
1104 name);
1105 }
1106 return (SYMBOL_TYPE (sym));
1107 }
1108
1109 /* Lookup a union type named "union NAME",
1110 visible in lexical block BLOCK. */
1111
1112 struct type *
1113 lookup_union (char *name, struct block *block)
1114 {
1115 struct symbol *sym;
1116 struct type *t;
1117
1118 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1119 (struct symtab **) NULL);
1120
1121 if (sym == NULL)
1122 error (_("No union type named %s."), name);
1123
1124 t = SYMBOL_TYPE (sym);
1125
1126 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1127 return (t);
1128
1129 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1130 * a further "declared_type" field to discover it is really a union.
1131 */
1132 if (HAVE_CPLUS_STRUCT (t))
1133 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1134 return (t);
1135
1136 /* If we get here, it's not a union. */
1137 error (_("This context has class, struct or enum %s, not a union."),
1138 name);
1139 }
1140
1141
1142 /* Lookup an enum type named "enum NAME",
1143 visible in lexical block BLOCK. */
1144
1145 struct type *
1146 lookup_enum (char *name, struct block *block)
1147 {
1148 struct symbol *sym;
1149
1150 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1151 (struct symtab **) NULL);
1152 if (sym == NULL)
1153 {
1154 error (_("No enum type named %s."), name);
1155 }
1156 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1157 {
1158 error (_("This context has class, struct or union %s, not an enum."),
1159 name);
1160 }
1161 return (SYMBOL_TYPE (sym));
1162 }
1163
1164 /* Lookup a template type named "template NAME<TYPE>",
1165 visible in lexical block BLOCK. */
1166
1167 struct type *
1168 lookup_template_type (char *name, struct type *type,
1169 struct block *block)
1170 {
1171 struct symbol *sym;
1172 char *nam = (char *)
1173 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1174 strcpy (nam, name);
1175 strcat (nam, "<");
1176 strcat (nam, TYPE_NAME (type));
1177 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1178
1179 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1180 (struct symtab **) NULL);
1181
1182 if (sym == NULL)
1183 {
1184 error (_("No template type named %s."), name);
1185 }
1186 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1187 {
1188 error (_("This context has class, union or enum %s, not a struct."),
1189 name);
1190 }
1191 return (SYMBOL_TYPE (sym));
1192 }
1193
1194 /* Given a type TYPE, lookup the type of the component of type named
1195 NAME.
1196
1197 TYPE can be either a struct or union, or a pointer or reference to
1198 a struct or union. If it is a pointer or reference, its target
1199 type is automatically used. Thus '.' and '->' are interchangable,
1200 as specified for the definitions of the expression element types
1201 STRUCTOP_STRUCT and STRUCTOP_PTR.
1202
1203 If NOERR is nonzero, return zero if NAME is not suitably defined.
1204 If NAME is the name of a baseclass type, return that type. */
1205
1206 struct type *
1207 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1208 {
1209 int i;
1210
1211 for (;;)
1212 {
1213 CHECK_TYPEDEF (type);
1214 if (TYPE_CODE (type) != TYPE_CODE_PTR
1215 && TYPE_CODE (type) != TYPE_CODE_REF)
1216 break;
1217 type = TYPE_TARGET_TYPE (type);
1218 }
1219
1220 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1221 && TYPE_CODE (type) != TYPE_CODE_UNION)
1222 {
1223 target_terminal_ours ();
1224 gdb_flush (gdb_stdout);
1225 fprintf_unfiltered (gdb_stderr, "Type ");
1226 type_print (type, "", gdb_stderr, -1);
1227 error (_(" is not a structure or union type."));
1228 }
1229
1230 #if 0
1231 /* FIXME: This change put in by Michael seems incorrect for the case
1232 where the structure tag name is the same as the member name.
1233 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1234 foo; } bell;" Disabled by fnf. */
1235 {
1236 char *typename;
1237
1238 typename = type_name_no_tag (type);
1239 if (typename != NULL && strcmp (typename, name) == 0)
1240 return type;
1241 }
1242 #endif
1243
1244 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1245 {
1246 char *t_field_name = TYPE_FIELD_NAME (type, i);
1247
1248 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1249 {
1250 return TYPE_FIELD_TYPE (type, i);
1251 }
1252 }
1253
1254 /* OK, it's not in this class. Recursively check the baseclasses. */
1255 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1256 {
1257 struct type *t;
1258
1259 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1260 if (t != NULL)
1261 {
1262 return t;
1263 }
1264 }
1265
1266 if (noerr)
1267 {
1268 return NULL;
1269 }
1270
1271 target_terminal_ours ();
1272 gdb_flush (gdb_stdout);
1273 fprintf_unfiltered (gdb_stderr, "Type ");
1274 type_print (type, "", gdb_stderr, -1);
1275 fprintf_unfiltered (gdb_stderr, " has no component named ");
1276 fputs_filtered (name, gdb_stderr);
1277 error (("."));
1278 return (struct type *) -1; /* For lint */
1279 }
1280
1281 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1282 valid. Callers should be aware that in some cases (for example,
1283 the type or one of its baseclasses is a stub type and we are
1284 debugging a .o file), this function will not be able to find the
1285 virtual function table pointer, and vptr_fieldno will remain -1 and
1286 vptr_basetype will remain NULL. */
1287
1288 void
1289 fill_in_vptr_fieldno (struct type *type)
1290 {
1291 CHECK_TYPEDEF (type);
1292
1293 if (TYPE_VPTR_FIELDNO (type) < 0)
1294 {
1295 int i;
1296
1297 /* We must start at zero in case the first (and only) baseclass
1298 is virtual (and hence we cannot share the table pointer). */
1299 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1300 {
1301 struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
1302 i));
1303 fill_in_vptr_fieldno (baseclass);
1304 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
1305 {
1306 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1307 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
1308 break;
1309 }
1310 }
1311 }
1312 }
1313
1314 /* Find the method and field indices for the destructor in class type T.
1315 Return 1 if the destructor was found, otherwise, return 0. */
1316
1317 int
1318 get_destructor_fn_field (struct type *t,
1319 int *method_indexp,
1320 int *field_indexp)
1321 {
1322 int i;
1323
1324 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1325 {
1326 int j;
1327 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1328
1329 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1330 {
1331 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1332 {
1333 *method_indexp = i;
1334 *field_indexp = j;
1335 return 1;
1336 }
1337 }
1338 }
1339 return 0;
1340 }
1341
1342 static void
1343 stub_noname_complaint (void)
1344 {
1345 complaint (&symfile_complaints, _("stub type has NULL name"));
1346 }
1347
1348 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1349
1350 If this is a stubbed struct (i.e. declared as struct foo *), see if
1351 we can find a full definition in some other file. If so, copy this
1352 definition, so we can use it in future. There used to be a comment
1353 (but not any code) that if we don't find a full definition, we'd
1354 set a flag so we don't spend time in the future checking the same
1355 type. That would be a mistake, though--we might load in more
1356 symbols which contain a full definition for the type.
1357
1358 This used to be coded as a macro, but I don't think it is called
1359 often enough to merit such treatment. */
1360
1361 /* Find the real type of TYPE. This function returns the real type,
1362 after removing all layers of typedefs and completing opaque or stub
1363 types. Completion changes the TYPE argument, but stripping of
1364 typedefs does not. */
1365
1366 struct type *
1367 check_typedef (struct type *type)
1368 {
1369 struct type *orig_type = type;
1370 int is_const, is_volatile;
1371
1372 gdb_assert (type);
1373
1374 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1375 {
1376 if (!TYPE_TARGET_TYPE (type))
1377 {
1378 char *name;
1379 struct symbol *sym;
1380
1381 /* It is dangerous to call lookup_symbol if we are currently
1382 reading a symtab. Infinite recursion is one danger. */
1383 if (currently_reading_symtab)
1384 return type;
1385
1386 name = type_name_no_tag (type);
1387 /* FIXME: shouldn't we separately check the TYPE_NAME and
1388 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1389 VAR_DOMAIN as appropriate? (this code was written before
1390 TYPE_NAME and TYPE_TAG_NAME were separate). */
1391 if (name == NULL)
1392 {
1393 stub_noname_complaint ();
1394 return type;
1395 }
1396 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1397 (struct symtab **) NULL);
1398 if (sym)
1399 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1400 else /* TYPE_CODE_UNDEF */
1401 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1402 }
1403 type = TYPE_TARGET_TYPE (type);
1404 }
1405
1406 is_const = TYPE_CONST (type);
1407 is_volatile = TYPE_VOLATILE (type);
1408
1409 /* If this is a struct/class/union with no fields, then check
1410 whether a full definition exists somewhere else. This is for
1411 systems where a type definition with no fields is issued for such
1412 types, instead of identifying them as stub types in the first
1413 place. */
1414
1415 if (TYPE_IS_OPAQUE (type)
1416 && opaque_type_resolution
1417 && !currently_reading_symtab)
1418 {
1419 char *name = type_name_no_tag (type);
1420 struct type *newtype;
1421 if (name == NULL)
1422 {
1423 stub_noname_complaint ();
1424 return type;
1425 }
1426 newtype = lookup_transparent_type (name);
1427
1428 if (newtype)
1429 {
1430 /* If the resolved type and the stub are in the same
1431 objfile, then replace the stub type with the real deal.
1432 But if they're in separate objfiles, leave the stub
1433 alone; we'll just look up the transparent type every time
1434 we call check_typedef. We can't create pointers between
1435 types allocated to different objfiles, since they may
1436 have different lifetimes. Trying to copy NEWTYPE over to
1437 TYPE's objfile is pointless, too, since you'll have to
1438 move over any other types NEWTYPE refers to, which could
1439 be an unbounded amount of stuff. */
1440 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1441 make_cv_type (is_const, is_volatile, newtype, &type);
1442 else
1443 type = newtype;
1444 }
1445 }
1446 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1447 types. */
1448 else if (TYPE_STUB (type) && !currently_reading_symtab)
1449 {
1450 char *name = type_name_no_tag (type);
1451 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1452 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1453 as appropriate? (this code was written before TYPE_NAME and
1454 TYPE_TAG_NAME were separate). */
1455 struct symbol *sym;
1456 if (name == NULL)
1457 {
1458 stub_noname_complaint ();
1459 return type;
1460 }
1461 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1462 0, (struct symtab **) NULL);
1463 if (sym)
1464 {
1465 /* Same as above for opaque types, we can replace the stub
1466 with the complete type only if they are int the same
1467 objfile. */
1468 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1469 make_cv_type (is_const, is_volatile,
1470 SYMBOL_TYPE (sym), &type);
1471 else
1472 type = SYMBOL_TYPE (sym);
1473 }
1474 }
1475
1476 if (TYPE_TARGET_STUB (type))
1477 {
1478 struct type *range_type;
1479 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1480
1481 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1482 {
1483 /* Empty. */
1484 }
1485 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1486 && TYPE_NFIELDS (type) == 1
1487 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1488 == TYPE_CODE_RANGE))
1489 {
1490 /* Now recompute the length of the array type, based on its
1491 number of elements and the target type's length. */
1492 TYPE_LENGTH (type) =
1493 ((TYPE_FIELD_BITPOS (range_type, 1)
1494 - TYPE_FIELD_BITPOS (range_type, 0) + 1)
1495 * TYPE_LENGTH (target_type));
1496 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1497 }
1498 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1499 {
1500 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1501 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1502 }
1503 }
1504 /* Cache TYPE_LENGTH for future use. */
1505 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1506 return type;
1507 }
1508
1509 /* Parse a type expression in the string [P..P+LENGTH). If an error
1510 occurs, silently return builtin_type_void. */
1511
1512 static struct type *
1513 safe_parse_type (char *p, int length)
1514 {
1515 struct ui_file *saved_gdb_stderr;
1516 struct type *type;
1517
1518 /* Suppress error messages. */
1519 saved_gdb_stderr = gdb_stderr;
1520 gdb_stderr = ui_file_new ();
1521
1522 /* Call parse_and_eval_type() without fear of longjmp()s. */
1523 if (!gdb_parse_and_eval_type (p, length, &type))
1524 type = builtin_type_void;
1525
1526 /* Stop suppressing error messages. */
1527 ui_file_delete (gdb_stderr);
1528 gdb_stderr = saved_gdb_stderr;
1529
1530 return type;
1531 }
1532
1533 /* Ugly hack to convert method stubs into method types.
1534
1535 He ain't kiddin'. This demangles the name of the method into a
1536 string including argument types, parses out each argument type,
1537 generates a string casting a zero to that type, evaluates the
1538 string, and stuffs the resulting type into an argtype vector!!!
1539 Then it knows the type of the whole function (including argument
1540 types for overloading), which info used to be in the stab's but was
1541 removed to hack back the space required for them. */
1542
1543 static void
1544 check_stub_method (struct type *type, int method_id, int signature_id)
1545 {
1546 struct fn_field *f;
1547 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1548 char *demangled_name = cplus_demangle (mangled_name,
1549 DMGL_PARAMS | DMGL_ANSI);
1550 char *argtypetext, *p;
1551 int depth = 0, argcount = 1;
1552 struct field *argtypes;
1553 struct type *mtype;
1554
1555 /* Make sure we got back a function string that we can use. */
1556 if (demangled_name)
1557 p = strchr (demangled_name, '(');
1558 else
1559 p = NULL;
1560
1561 if (demangled_name == NULL || p == NULL)
1562 error (_("Internal: Cannot demangle mangled name `%s'."),
1563 mangled_name);
1564
1565 /* Now, read in the parameters that define this type. */
1566 p += 1;
1567 argtypetext = p;
1568 while (*p)
1569 {
1570 if (*p == '(' || *p == '<')
1571 {
1572 depth += 1;
1573 }
1574 else if (*p == ')' || *p == '>')
1575 {
1576 depth -= 1;
1577 }
1578 else if (*p == ',' && depth == 0)
1579 {
1580 argcount += 1;
1581 }
1582
1583 p += 1;
1584 }
1585
1586 /* If we read one argument and it was ``void'', don't count it. */
1587 if (strncmp (argtypetext, "(void)", 6) == 0)
1588 argcount -= 1;
1589
1590 /* We need one extra slot, for the THIS pointer. */
1591
1592 argtypes = (struct field *)
1593 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1594 p = argtypetext;
1595
1596 /* Add THIS pointer for non-static methods. */
1597 f = TYPE_FN_FIELDLIST1 (type, method_id);
1598 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1599 argcount = 0;
1600 else
1601 {
1602 argtypes[0].type = lookup_pointer_type (type);
1603 argcount = 1;
1604 }
1605
1606 if (*p != ')') /* () means no args, skip while */
1607 {
1608 depth = 0;
1609 while (*p)
1610 {
1611 if (depth <= 0 && (*p == ',' || *p == ')'))
1612 {
1613 /* Avoid parsing of ellipsis, they will be handled below.
1614 Also avoid ``void'' as above. */
1615 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1616 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1617 {
1618 argtypes[argcount].type =
1619 safe_parse_type (argtypetext, p - argtypetext);
1620 argcount += 1;
1621 }
1622 argtypetext = p + 1;
1623 }
1624
1625 if (*p == '(' || *p == '<')
1626 {
1627 depth += 1;
1628 }
1629 else if (*p == ')' || *p == '>')
1630 {
1631 depth -= 1;
1632 }
1633
1634 p += 1;
1635 }
1636 }
1637
1638 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1639
1640 /* Now update the old "stub" type into a real type. */
1641 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1642 TYPE_DOMAIN_TYPE (mtype) = type;
1643 TYPE_FIELDS (mtype) = argtypes;
1644 TYPE_NFIELDS (mtype) = argcount;
1645 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1646 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1647 if (p[-2] == '.')
1648 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1649
1650 xfree (demangled_name);
1651 }
1652
1653 /* This is the external interface to check_stub_method, above. This
1654 function unstubs all of the signatures for TYPE's METHOD_ID method
1655 name. After calling this function TYPE_FN_FIELD_STUB will be
1656 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1657 correct.
1658
1659 This function unfortunately can not die until stabs do. */
1660
1661 void
1662 check_stub_method_group (struct type *type, int method_id)
1663 {
1664 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1665 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1666 int j, found_stub = 0;
1667
1668 for (j = 0; j < len; j++)
1669 if (TYPE_FN_FIELD_STUB (f, j))
1670 {
1671 found_stub = 1;
1672 check_stub_method (type, method_id, j);
1673 }
1674
1675 /* GNU v3 methods with incorrect names were corrected when we read
1676 in type information, because it was cheaper to do it then. The
1677 only GNU v2 methods with incorrect method names are operators and
1678 destructors; destructors were also corrected when we read in type
1679 information.
1680
1681 Therefore the only thing we need to handle here are v2 operator
1682 names. */
1683 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1684 {
1685 int ret;
1686 char dem_opname[256];
1687
1688 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1689 method_id),
1690 dem_opname, DMGL_ANSI);
1691 if (!ret)
1692 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1693 method_id),
1694 dem_opname, 0);
1695 if (ret)
1696 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1697 }
1698 }
1699
1700 const struct cplus_struct_type cplus_struct_default;
1701
1702 void
1703 allocate_cplus_struct_type (struct type *type)
1704 {
1705 if (!HAVE_CPLUS_STRUCT (type))
1706 {
1707 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1708 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1709 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1710 }
1711 }
1712
1713 /* Helper function to initialize the standard scalar types.
1714
1715 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1716 the string pointed to by name in the objfile_obstack for that
1717 objfile, and initialize the type name to that copy. There are
1718 places (mipsread.c in particular, where init_type is called with a
1719 NULL value for NAME). */
1720
1721 struct type *
1722 init_type (enum type_code code, int length, int flags,
1723 char *name, struct objfile *objfile)
1724 {
1725 struct type *type;
1726
1727 type = alloc_type (objfile);
1728 TYPE_CODE (type) = code;
1729 TYPE_LENGTH (type) = length;
1730 TYPE_FLAGS (type) |= flags;
1731 if ((name != NULL) && (objfile != NULL))
1732 {
1733 TYPE_NAME (type) = obsavestring (name, strlen (name),
1734 &objfile->objfile_obstack);
1735 }
1736 else
1737 {
1738 TYPE_NAME (type) = name;
1739 }
1740
1741 /* C++ fancies. */
1742
1743 if (name && strcmp (name, "char") == 0)
1744 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1745
1746 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1747 || code == TYPE_CODE_NAMESPACE)
1748 {
1749 INIT_CPLUS_SPECIFIC (type);
1750 }
1751 return (type);
1752 }
1753
1754 /* Helper function. Create an empty composite type. */
1755
1756 struct type *
1757 init_composite_type (char *name, enum type_code code)
1758 {
1759 struct type *t;
1760 gdb_assert (code == TYPE_CODE_STRUCT
1761 || code == TYPE_CODE_UNION);
1762 t = init_type (code, 0, 0, NULL, NULL);
1763 TYPE_TAG_NAME (t) = name;
1764 return t;
1765 }
1766
1767 /* Helper function. Append a field to a composite type. */
1768
1769 void
1770 append_composite_type_field (struct type *t, char *name,
1771 struct type *field)
1772 {
1773 struct field *f;
1774 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1775 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1776 sizeof (struct field) * TYPE_NFIELDS (t));
1777 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1778 memset (f, 0, sizeof f[0]);
1779 FIELD_TYPE (f[0]) = field;
1780 FIELD_NAME (f[0]) = name;
1781 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1782 {
1783 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1784 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1785 }
1786 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1787 {
1788 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1789 if (TYPE_NFIELDS (t) > 1)
1790 {
1791 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1792 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1793 }
1794 }
1795 }
1796
1797 /* Look up a fundamental type for the specified objfile.
1798 May need to construct such a type if this is the first use.
1799
1800 Some object file formats (ELF, COFF, etc) do not define fundamental
1801 types such as "int" or "double". Others (stabs for example), do
1802 define fundamental types.
1803
1804 For the formats which don't provide fundamental types, gdb can
1805 create such types, using defaults reasonable for the current
1806 language and the current target machine.
1807
1808 NOTE: This routine is obsolescent. Each debugging format reader
1809 should manage it's own fundamental types, either creating them from
1810 suitable defaults or reading them from the debugging information,
1811 whichever is appropriate. The DWARF reader has already been fixed
1812 to do this. Once the other readers are fixed, this routine will go
1813 away. Also note that fundamental types should be managed on a
1814 compilation unit basis in a multi-language environment, not on a
1815 linkage unit basis as is done here. */
1816
1817
1818 struct type *
1819 lookup_fundamental_type (struct objfile *objfile, int typeid)
1820 {
1821 struct type **typep;
1822 int nbytes;
1823
1824 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1825 {
1826 error (_("internal error - invalid fundamental type id %d"),
1827 typeid);
1828 }
1829
1830 /* If this is the first time we need a fundamental type for this
1831 objfile then we need to initialize the vector of type
1832 pointers. */
1833
1834 if (objfile->fundamental_types == NULL)
1835 {
1836 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1837 objfile->fundamental_types = (struct type **)
1838 obstack_alloc (&objfile->objfile_obstack, nbytes);
1839 memset ((char *) objfile->fundamental_types, 0, nbytes);
1840 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1841 }
1842
1843 /* Look for this particular type in the fundamental type vector. If
1844 one is not found, create and install one appropriate for the
1845 current language. */
1846
1847 typep = objfile->fundamental_types + typeid;
1848 if (*typep == NULL)
1849 {
1850 *typep = create_fundamental_type (objfile, typeid);
1851 }
1852
1853 return (*typep);
1854 }
1855
1856 int
1857 can_dereference (struct type *t)
1858 {
1859 /* FIXME: Should we return true for references as well as
1860 pointers? */
1861 CHECK_TYPEDEF (t);
1862 return
1863 (t != NULL
1864 && TYPE_CODE (t) == TYPE_CODE_PTR
1865 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1866 }
1867
1868 int
1869 is_integral_type (struct type *t)
1870 {
1871 CHECK_TYPEDEF (t);
1872 return
1873 ((t != NULL)
1874 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1875 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1876 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1877 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1878 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1879 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1880 }
1881
1882 /* Check whether BASE is an ancestor or base class or DCLASS
1883 Return 1 if so, and 0 if not.
1884 Note: callers may want to check for identity of the types before
1885 calling this function -- identical types are considered to satisfy
1886 the ancestor relationship even if they're identical. */
1887
1888 int
1889 is_ancestor (struct type *base, struct type *dclass)
1890 {
1891 int i;
1892
1893 CHECK_TYPEDEF (base);
1894 CHECK_TYPEDEF (dclass);
1895
1896 if (base == dclass)
1897 return 1;
1898 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1899 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1900 return 1;
1901
1902 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1903 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1904 return 1;
1905
1906 return 0;
1907 }
1908 \f
1909
1910
1911 /* Functions for overload resolution begin here */
1912
1913 /* Compare two badness vectors A and B and return the result.
1914 0 => A and B are identical
1915 1 => A and B are incomparable
1916 2 => A is better than B
1917 3 => A is worse than B */
1918
1919 int
1920 compare_badness (struct badness_vector *a, struct badness_vector *b)
1921 {
1922 int i;
1923 int tmp;
1924 short found_pos = 0; /* any positives in c? */
1925 short found_neg = 0; /* any negatives in c? */
1926
1927 /* differing lengths => incomparable */
1928 if (a->length != b->length)
1929 return 1;
1930
1931 /* Subtract b from a */
1932 for (i = 0; i < a->length; i++)
1933 {
1934 tmp = a->rank[i] - b->rank[i];
1935 if (tmp > 0)
1936 found_pos = 1;
1937 else if (tmp < 0)
1938 found_neg = 1;
1939 }
1940
1941 if (found_pos)
1942 {
1943 if (found_neg)
1944 return 1; /* incomparable */
1945 else
1946 return 3; /* A > B */
1947 }
1948 else
1949 /* no positives */
1950 {
1951 if (found_neg)
1952 return 2; /* A < B */
1953 else
1954 return 0; /* A == B */
1955 }
1956 }
1957
1958 /* Rank a function by comparing its parameter types (PARMS, length
1959 NPARMS), to the types of an argument list (ARGS, length NARGS).
1960 Return a pointer to a badness vector. This has NARGS + 1
1961 entries. */
1962
1963 struct badness_vector *
1964 rank_function (struct type **parms, int nparms,
1965 struct type **args, int nargs)
1966 {
1967 int i;
1968 struct badness_vector *bv;
1969 int min_len = nparms < nargs ? nparms : nargs;
1970
1971 bv = xmalloc (sizeof (struct badness_vector));
1972 bv->length = nargs + 1; /* add 1 for the length-match rank */
1973 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1974
1975 /* First compare the lengths of the supplied lists.
1976 If there is a mismatch, set it to a high value. */
1977
1978 /* pai/1997-06-03 FIXME: when we have debug info about default
1979 arguments and ellipsis parameter lists, we should consider those
1980 and rank the length-match more finely. */
1981
1982 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1983
1984 /* Now rank all the parameters of the candidate function */
1985 for (i = 1; i <= min_len; i++)
1986 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1987
1988 /* If more arguments than parameters, add dummy entries */
1989 for (i = min_len + 1; i <= nargs; i++)
1990 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1991
1992 return bv;
1993 }
1994
1995 /* Compare the names of two integer types, assuming that any sign
1996 qualifiers have been checked already. We do it this way because
1997 there may be an "int" in the name of one of the types. */
1998
1999 static int
2000 integer_types_same_name_p (const char *first, const char *second)
2001 {
2002 int first_p, second_p;
2003
2004 /* If both are shorts, return 1; if neither is a short, keep
2005 checking. */
2006 first_p = (strstr (first, "short") != NULL);
2007 second_p = (strstr (second, "short") != NULL);
2008 if (first_p && second_p)
2009 return 1;
2010 if (first_p || second_p)
2011 return 0;
2012
2013 /* Likewise for long. */
2014 first_p = (strstr (first, "long") != NULL);
2015 second_p = (strstr (second, "long") != NULL);
2016 if (first_p && second_p)
2017 return 1;
2018 if (first_p || second_p)
2019 return 0;
2020
2021 /* Likewise for char. */
2022 first_p = (strstr (first, "char") != NULL);
2023 second_p = (strstr (second, "char") != NULL);
2024 if (first_p && second_p)
2025 return 1;
2026 if (first_p || second_p)
2027 return 0;
2028
2029 /* They must both be ints. */
2030 return 1;
2031 }
2032
2033 /* Compare one type (PARM) for compatibility with another (ARG).
2034 * PARM is intended to be the parameter type of a function; and
2035 * ARG is the supplied argument's type. This function tests if
2036 * the latter can be converted to the former.
2037 *
2038 * Return 0 if they are identical types;
2039 * Otherwise, return an integer which corresponds to how compatible
2040 * PARM is to ARG. The higher the return value, the worse the match.
2041 * Generally the "bad" conversions are all uniformly assigned a 100. */
2042
2043 int
2044 rank_one_type (struct type *parm, struct type *arg)
2045 {
2046 /* Identical type pointers. */
2047 /* However, this still doesn't catch all cases of same type for arg
2048 and param. The reason is that builtin types are different from
2049 the same ones constructed from the object. */
2050 if (parm == arg)
2051 return 0;
2052
2053 /* Resolve typedefs */
2054 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2055 parm = check_typedef (parm);
2056 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2057 arg = check_typedef (arg);
2058
2059 /*
2060 Well, damnit, if the names are exactly the same, I'll say they
2061 are exactly the same. This happens when we generate method
2062 stubs. The types won't point to the same address, but they
2063 really are the same.
2064 */
2065
2066 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2067 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2068 return 0;
2069
2070 /* Check if identical after resolving typedefs. */
2071 if (parm == arg)
2072 return 0;
2073
2074 /* See through references, since we can almost make non-references
2075 references. */
2076 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2077 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2078 + REFERENCE_CONVERSION_BADNESS);
2079 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2080 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2081 + REFERENCE_CONVERSION_BADNESS);
2082 if (overload_debug)
2083 /* Debugging only. */
2084 fprintf_filtered (gdb_stderr,
2085 "------ Arg is %s [%d], parm is %s [%d]\n",
2086 TYPE_NAME (arg), TYPE_CODE (arg),
2087 TYPE_NAME (parm), TYPE_CODE (parm));
2088
2089 /* x -> y means arg of type x being supplied for parameter of type y */
2090
2091 switch (TYPE_CODE (parm))
2092 {
2093 case TYPE_CODE_PTR:
2094 switch (TYPE_CODE (arg))
2095 {
2096 case TYPE_CODE_PTR:
2097 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2098 return VOID_PTR_CONVERSION_BADNESS;
2099 else
2100 return rank_one_type (TYPE_TARGET_TYPE (parm),
2101 TYPE_TARGET_TYPE (arg));
2102 case TYPE_CODE_ARRAY:
2103 return rank_one_type (TYPE_TARGET_TYPE (parm),
2104 TYPE_TARGET_TYPE (arg));
2105 case TYPE_CODE_FUNC:
2106 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2107 case TYPE_CODE_INT:
2108 case TYPE_CODE_ENUM:
2109 case TYPE_CODE_FLAGS:
2110 case TYPE_CODE_CHAR:
2111 case TYPE_CODE_RANGE:
2112 case TYPE_CODE_BOOL:
2113 return POINTER_CONVERSION_BADNESS;
2114 default:
2115 return INCOMPATIBLE_TYPE_BADNESS;
2116 }
2117 case TYPE_CODE_ARRAY:
2118 switch (TYPE_CODE (arg))
2119 {
2120 case TYPE_CODE_PTR:
2121 case TYPE_CODE_ARRAY:
2122 return rank_one_type (TYPE_TARGET_TYPE (parm),
2123 TYPE_TARGET_TYPE (arg));
2124 default:
2125 return INCOMPATIBLE_TYPE_BADNESS;
2126 }
2127 case TYPE_CODE_FUNC:
2128 switch (TYPE_CODE (arg))
2129 {
2130 case TYPE_CODE_PTR: /* funcptr -> func */
2131 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2132 default:
2133 return INCOMPATIBLE_TYPE_BADNESS;
2134 }
2135 case TYPE_CODE_INT:
2136 switch (TYPE_CODE (arg))
2137 {
2138 case TYPE_CODE_INT:
2139 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2140 {
2141 /* Deal with signed, unsigned, and plain chars and
2142 signed and unsigned ints. */
2143 if (TYPE_NOSIGN (parm))
2144 {
2145 /* This case only for character types */
2146 if (TYPE_NOSIGN (arg))
2147 return 0; /* plain char -> plain char */
2148 else /* signed/unsigned char -> plain char */
2149 return INTEGER_CONVERSION_BADNESS;
2150 }
2151 else if (TYPE_UNSIGNED (parm))
2152 {
2153 if (TYPE_UNSIGNED (arg))
2154 {
2155 /* unsigned int -> unsigned int, or
2156 unsigned long -> unsigned long */
2157 if (integer_types_same_name_p (TYPE_NAME (parm),
2158 TYPE_NAME (arg)))
2159 return 0;
2160 else if (integer_types_same_name_p (TYPE_NAME (arg),
2161 "int")
2162 && integer_types_same_name_p (TYPE_NAME (parm),
2163 "long"))
2164 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2165 else
2166 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2167 }
2168 else
2169 {
2170 if (integer_types_same_name_p (TYPE_NAME (arg),
2171 "long")
2172 && integer_types_same_name_p (TYPE_NAME (parm),
2173 "int"))
2174 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2175 else
2176 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2177 }
2178 }
2179 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2180 {
2181 if (integer_types_same_name_p (TYPE_NAME (parm),
2182 TYPE_NAME (arg)))
2183 return 0;
2184 else if (integer_types_same_name_p (TYPE_NAME (arg),
2185 "int")
2186 && integer_types_same_name_p (TYPE_NAME (parm),
2187 "long"))
2188 return INTEGER_PROMOTION_BADNESS;
2189 else
2190 return INTEGER_CONVERSION_BADNESS;
2191 }
2192 else
2193 return INTEGER_CONVERSION_BADNESS;
2194 }
2195 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2196 return INTEGER_PROMOTION_BADNESS;
2197 else
2198 return INTEGER_CONVERSION_BADNESS;
2199 case TYPE_CODE_ENUM:
2200 case TYPE_CODE_FLAGS:
2201 case TYPE_CODE_CHAR:
2202 case TYPE_CODE_RANGE:
2203 case TYPE_CODE_BOOL:
2204 return INTEGER_PROMOTION_BADNESS;
2205 case TYPE_CODE_FLT:
2206 return INT_FLOAT_CONVERSION_BADNESS;
2207 case TYPE_CODE_PTR:
2208 return NS_POINTER_CONVERSION_BADNESS;
2209 default:
2210 return INCOMPATIBLE_TYPE_BADNESS;
2211 }
2212 break;
2213 case TYPE_CODE_ENUM:
2214 switch (TYPE_CODE (arg))
2215 {
2216 case TYPE_CODE_INT:
2217 case TYPE_CODE_CHAR:
2218 case TYPE_CODE_RANGE:
2219 case TYPE_CODE_BOOL:
2220 case TYPE_CODE_ENUM:
2221 return INTEGER_CONVERSION_BADNESS;
2222 case TYPE_CODE_FLT:
2223 return INT_FLOAT_CONVERSION_BADNESS;
2224 default:
2225 return INCOMPATIBLE_TYPE_BADNESS;
2226 }
2227 break;
2228 case TYPE_CODE_CHAR:
2229 switch (TYPE_CODE (arg))
2230 {
2231 case TYPE_CODE_RANGE:
2232 case TYPE_CODE_BOOL:
2233 case TYPE_CODE_ENUM:
2234 return INTEGER_CONVERSION_BADNESS;
2235 case TYPE_CODE_FLT:
2236 return INT_FLOAT_CONVERSION_BADNESS;
2237 case TYPE_CODE_INT:
2238 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2239 return INTEGER_CONVERSION_BADNESS;
2240 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2241 return INTEGER_PROMOTION_BADNESS;
2242 /* >>> !! else fall through !! <<< */
2243 case TYPE_CODE_CHAR:
2244 /* Deal with signed, unsigned, and plain chars for C++ and
2245 with int cases falling through from previous case. */
2246 if (TYPE_NOSIGN (parm))
2247 {
2248 if (TYPE_NOSIGN (arg))
2249 return 0;
2250 else
2251 return INTEGER_CONVERSION_BADNESS;
2252 }
2253 else if (TYPE_UNSIGNED (parm))
2254 {
2255 if (TYPE_UNSIGNED (arg))
2256 return 0;
2257 else
2258 return INTEGER_PROMOTION_BADNESS;
2259 }
2260 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2261 return 0;
2262 else
2263 return INTEGER_CONVERSION_BADNESS;
2264 default:
2265 return INCOMPATIBLE_TYPE_BADNESS;
2266 }
2267 break;
2268 case TYPE_CODE_RANGE:
2269 switch (TYPE_CODE (arg))
2270 {
2271 case TYPE_CODE_INT:
2272 case TYPE_CODE_CHAR:
2273 case TYPE_CODE_RANGE:
2274 case TYPE_CODE_BOOL:
2275 case TYPE_CODE_ENUM:
2276 return INTEGER_CONVERSION_BADNESS;
2277 case TYPE_CODE_FLT:
2278 return INT_FLOAT_CONVERSION_BADNESS;
2279 default:
2280 return INCOMPATIBLE_TYPE_BADNESS;
2281 }
2282 break;
2283 case TYPE_CODE_BOOL:
2284 switch (TYPE_CODE (arg))
2285 {
2286 case TYPE_CODE_INT:
2287 case TYPE_CODE_CHAR:
2288 case TYPE_CODE_RANGE:
2289 case TYPE_CODE_ENUM:
2290 case TYPE_CODE_FLT:
2291 case TYPE_CODE_PTR:
2292 return BOOLEAN_CONVERSION_BADNESS;
2293 case TYPE_CODE_BOOL:
2294 return 0;
2295 default:
2296 return INCOMPATIBLE_TYPE_BADNESS;
2297 }
2298 break;
2299 case TYPE_CODE_FLT:
2300 switch (TYPE_CODE (arg))
2301 {
2302 case TYPE_CODE_FLT:
2303 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2304 return FLOAT_PROMOTION_BADNESS;
2305 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2306 return 0;
2307 else
2308 return FLOAT_CONVERSION_BADNESS;
2309 case TYPE_CODE_INT:
2310 case TYPE_CODE_BOOL:
2311 case TYPE_CODE_ENUM:
2312 case TYPE_CODE_RANGE:
2313 case TYPE_CODE_CHAR:
2314 return INT_FLOAT_CONVERSION_BADNESS;
2315 default:
2316 return INCOMPATIBLE_TYPE_BADNESS;
2317 }
2318 break;
2319 case TYPE_CODE_COMPLEX:
2320 switch (TYPE_CODE (arg))
2321 { /* Strictly not needed for C++, but... */
2322 case TYPE_CODE_FLT:
2323 return FLOAT_PROMOTION_BADNESS;
2324 case TYPE_CODE_COMPLEX:
2325 return 0;
2326 default:
2327 return INCOMPATIBLE_TYPE_BADNESS;
2328 }
2329 break;
2330 case TYPE_CODE_STRUCT:
2331 /* currently same as TYPE_CODE_CLASS */
2332 switch (TYPE_CODE (arg))
2333 {
2334 case TYPE_CODE_STRUCT:
2335 /* Check for derivation */
2336 if (is_ancestor (parm, arg))
2337 return BASE_CONVERSION_BADNESS;
2338 /* else fall through */
2339 default:
2340 return INCOMPATIBLE_TYPE_BADNESS;
2341 }
2342 break;
2343 case TYPE_CODE_UNION:
2344 switch (TYPE_CODE (arg))
2345 {
2346 case TYPE_CODE_UNION:
2347 default:
2348 return INCOMPATIBLE_TYPE_BADNESS;
2349 }
2350 break;
2351 case TYPE_CODE_MEMBERPTR:
2352 switch (TYPE_CODE (arg))
2353 {
2354 default:
2355 return INCOMPATIBLE_TYPE_BADNESS;
2356 }
2357 break;
2358 case TYPE_CODE_METHOD:
2359 switch (TYPE_CODE (arg))
2360 {
2361
2362 default:
2363 return INCOMPATIBLE_TYPE_BADNESS;
2364 }
2365 break;
2366 case TYPE_CODE_REF:
2367 switch (TYPE_CODE (arg))
2368 {
2369
2370 default:
2371 return INCOMPATIBLE_TYPE_BADNESS;
2372 }
2373
2374 break;
2375 case TYPE_CODE_SET:
2376 switch (TYPE_CODE (arg))
2377 {
2378 /* Not in C++ */
2379 case TYPE_CODE_SET:
2380 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2381 TYPE_FIELD_TYPE (arg, 0));
2382 default:
2383 return INCOMPATIBLE_TYPE_BADNESS;
2384 }
2385 break;
2386 case TYPE_CODE_VOID:
2387 default:
2388 return INCOMPATIBLE_TYPE_BADNESS;
2389 } /* switch (TYPE_CODE (arg)) */
2390 }
2391
2392
2393 /* End of functions for overload resolution */
2394
2395 static void
2396 print_bit_vector (B_TYPE *bits, int nbits)
2397 {
2398 int bitno;
2399
2400 for (bitno = 0; bitno < nbits; bitno++)
2401 {
2402 if ((bitno % 8) == 0)
2403 {
2404 puts_filtered (" ");
2405 }
2406 if (B_TST (bits, bitno))
2407 printf_filtered (("1"));
2408 else
2409 printf_filtered (("0"));
2410 }
2411 }
2412
2413 /* Note the first arg should be the "this" pointer, we may not want to
2414 include it since we may get into a infinitely recursive
2415 situation. */
2416
2417 static void
2418 print_arg_types (struct field *args, int nargs, int spaces)
2419 {
2420 if (args != NULL)
2421 {
2422 int i;
2423
2424 for (i = 0; i < nargs; i++)
2425 recursive_dump_type (args[i].type, spaces + 2);
2426 }
2427 }
2428
2429 static void
2430 dump_fn_fieldlists (struct type *type, int spaces)
2431 {
2432 int method_idx;
2433 int overload_idx;
2434 struct fn_field *f;
2435
2436 printfi_filtered (spaces, "fn_fieldlists ");
2437 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2438 printf_filtered ("\n");
2439 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2440 {
2441 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2442 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2443 method_idx,
2444 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2445 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2446 gdb_stdout);
2447 printf_filtered (_(") length %d\n"),
2448 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2449 for (overload_idx = 0;
2450 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2451 overload_idx++)
2452 {
2453 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2454 overload_idx,
2455 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2456 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2457 gdb_stdout);
2458 printf_filtered (")\n");
2459 printfi_filtered (spaces + 8, "type ");
2460 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2461 gdb_stdout);
2462 printf_filtered ("\n");
2463
2464 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2465 spaces + 8 + 2);
2466
2467 printfi_filtered (spaces + 8, "args ");
2468 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2469 gdb_stdout);
2470 printf_filtered ("\n");
2471
2472 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2473 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2474 overload_idx)),
2475 spaces);
2476 printfi_filtered (spaces + 8, "fcontext ");
2477 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2478 gdb_stdout);
2479 printf_filtered ("\n");
2480
2481 printfi_filtered (spaces + 8, "is_const %d\n",
2482 TYPE_FN_FIELD_CONST (f, overload_idx));
2483 printfi_filtered (spaces + 8, "is_volatile %d\n",
2484 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2485 printfi_filtered (spaces + 8, "is_private %d\n",
2486 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2487 printfi_filtered (spaces + 8, "is_protected %d\n",
2488 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2489 printfi_filtered (spaces + 8, "is_stub %d\n",
2490 TYPE_FN_FIELD_STUB (f, overload_idx));
2491 printfi_filtered (spaces + 8, "voffset %u\n",
2492 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2493 }
2494 }
2495 }
2496
2497 static void
2498 print_cplus_stuff (struct type *type, int spaces)
2499 {
2500 printfi_filtered (spaces, "n_baseclasses %d\n",
2501 TYPE_N_BASECLASSES (type));
2502 printfi_filtered (spaces, "nfn_fields %d\n",
2503 TYPE_NFN_FIELDS (type));
2504 printfi_filtered (spaces, "nfn_fields_total %d\n",
2505 TYPE_NFN_FIELDS_TOTAL (type));
2506 if (TYPE_N_BASECLASSES (type) > 0)
2507 {
2508 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2509 TYPE_N_BASECLASSES (type));
2510 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2511 gdb_stdout);
2512 printf_filtered (")");
2513
2514 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2515 TYPE_N_BASECLASSES (type));
2516 puts_filtered ("\n");
2517 }
2518 if (TYPE_NFIELDS (type) > 0)
2519 {
2520 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2521 {
2522 printfi_filtered (spaces,
2523 "private_field_bits (%d bits at *",
2524 TYPE_NFIELDS (type));
2525 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2526 gdb_stdout);
2527 printf_filtered (")");
2528 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2529 TYPE_NFIELDS (type));
2530 puts_filtered ("\n");
2531 }
2532 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2533 {
2534 printfi_filtered (spaces,
2535 "protected_field_bits (%d bits at *",
2536 TYPE_NFIELDS (type));
2537 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2538 gdb_stdout);
2539 printf_filtered (")");
2540 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2541 TYPE_NFIELDS (type));
2542 puts_filtered ("\n");
2543 }
2544 }
2545 if (TYPE_NFN_FIELDS (type) > 0)
2546 {
2547 dump_fn_fieldlists (type, spaces);
2548 }
2549 }
2550
2551 static void
2552 print_bound_type (int bt)
2553 {
2554 switch (bt)
2555 {
2556 case BOUND_CANNOT_BE_DETERMINED:
2557 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2558 break;
2559 case BOUND_BY_REF_ON_STACK:
2560 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2561 break;
2562 case BOUND_BY_VALUE_ON_STACK:
2563 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2564 break;
2565 case BOUND_BY_REF_IN_REG:
2566 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2567 break;
2568 case BOUND_BY_VALUE_IN_REG:
2569 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2570 break;
2571 case BOUND_SIMPLE:
2572 printf_filtered ("(BOUND_SIMPLE)");
2573 break;
2574 default:
2575 printf_filtered (_("(unknown bound type)"));
2576 break;
2577 }
2578 }
2579
2580 static struct obstack dont_print_type_obstack;
2581
2582 void
2583 recursive_dump_type (struct type *type, int spaces)
2584 {
2585 int idx;
2586
2587 if (spaces == 0)
2588 obstack_begin (&dont_print_type_obstack, 0);
2589
2590 if (TYPE_NFIELDS (type) > 0
2591 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2592 {
2593 struct type **first_dont_print
2594 = (struct type **) obstack_base (&dont_print_type_obstack);
2595
2596 int i = (struct type **)
2597 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2598
2599 while (--i >= 0)
2600 {
2601 if (type == first_dont_print[i])
2602 {
2603 printfi_filtered (spaces, "type node ");
2604 gdb_print_host_address (type, gdb_stdout);
2605 printf_filtered (_(" <same as already seen type>\n"));
2606 return;
2607 }
2608 }
2609
2610 obstack_ptr_grow (&dont_print_type_obstack, type);
2611 }
2612
2613 printfi_filtered (spaces, "type node ");
2614 gdb_print_host_address (type, gdb_stdout);
2615 printf_filtered ("\n");
2616 printfi_filtered (spaces, "name '%s' (",
2617 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2618 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2619 printf_filtered (")\n");
2620 printfi_filtered (spaces, "tagname '%s' (",
2621 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2622 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2623 printf_filtered (")\n");
2624 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2625 switch (TYPE_CODE (type))
2626 {
2627 case TYPE_CODE_UNDEF:
2628 printf_filtered ("(TYPE_CODE_UNDEF)");
2629 break;
2630 case TYPE_CODE_PTR:
2631 printf_filtered ("(TYPE_CODE_PTR)");
2632 break;
2633 case TYPE_CODE_ARRAY:
2634 printf_filtered ("(TYPE_CODE_ARRAY)");
2635 break;
2636 case TYPE_CODE_STRUCT:
2637 printf_filtered ("(TYPE_CODE_STRUCT)");
2638 break;
2639 case TYPE_CODE_UNION:
2640 printf_filtered ("(TYPE_CODE_UNION)");
2641 break;
2642 case TYPE_CODE_ENUM:
2643 printf_filtered ("(TYPE_CODE_ENUM)");
2644 break;
2645 case TYPE_CODE_FLAGS:
2646 printf_filtered ("(TYPE_CODE_FLAGS)");
2647 break;
2648 case TYPE_CODE_FUNC:
2649 printf_filtered ("(TYPE_CODE_FUNC)");
2650 break;
2651 case TYPE_CODE_INT:
2652 printf_filtered ("(TYPE_CODE_INT)");
2653 break;
2654 case TYPE_CODE_FLT:
2655 printf_filtered ("(TYPE_CODE_FLT)");
2656 break;
2657 case TYPE_CODE_VOID:
2658 printf_filtered ("(TYPE_CODE_VOID)");
2659 break;
2660 case TYPE_CODE_SET:
2661 printf_filtered ("(TYPE_CODE_SET)");
2662 break;
2663 case TYPE_CODE_RANGE:
2664 printf_filtered ("(TYPE_CODE_RANGE)");
2665 break;
2666 case TYPE_CODE_STRING:
2667 printf_filtered ("(TYPE_CODE_STRING)");
2668 break;
2669 case TYPE_CODE_BITSTRING:
2670 printf_filtered ("(TYPE_CODE_BITSTRING)");
2671 break;
2672 case TYPE_CODE_ERROR:
2673 printf_filtered ("(TYPE_CODE_ERROR)");
2674 break;
2675 case TYPE_CODE_MEMBERPTR:
2676 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2677 break;
2678 case TYPE_CODE_METHODPTR:
2679 printf_filtered ("(TYPE_CODE_METHODPTR)");
2680 break;
2681 case TYPE_CODE_METHOD:
2682 printf_filtered ("(TYPE_CODE_METHOD)");
2683 break;
2684 case TYPE_CODE_REF:
2685 printf_filtered ("(TYPE_CODE_REF)");
2686 break;
2687 case TYPE_CODE_CHAR:
2688 printf_filtered ("(TYPE_CODE_CHAR)");
2689 break;
2690 case TYPE_CODE_BOOL:
2691 printf_filtered ("(TYPE_CODE_BOOL)");
2692 break;
2693 case TYPE_CODE_COMPLEX:
2694 printf_filtered ("(TYPE_CODE_COMPLEX)");
2695 break;
2696 case TYPE_CODE_TYPEDEF:
2697 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2698 break;
2699 case TYPE_CODE_TEMPLATE:
2700 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2701 break;
2702 case TYPE_CODE_TEMPLATE_ARG:
2703 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2704 break;
2705 case TYPE_CODE_NAMESPACE:
2706 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2707 break;
2708 default:
2709 printf_filtered ("(UNKNOWN TYPE CODE)");
2710 break;
2711 }
2712 puts_filtered ("\n");
2713 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2714 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2715 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2716 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2717 puts_filtered ("\n");
2718 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2719 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2720 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2721 puts_filtered ("\n");
2722 printfi_filtered (spaces, "objfile ");
2723 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2724 printf_filtered ("\n");
2725 printfi_filtered (spaces, "target_type ");
2726 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2727 printf_filtered ("\n");
2728 if (TYPE_TARGET_TYPE (type) != NULL)
2729 {
2730 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2731 }
2732 printfi_filtered (spaces, "pointer_type ");
2733 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2734 printf_filtered ("\n");
2735 printfi_filtered (spaces, "reference_type ");
2736 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2737 printf_filtered ("\n");
2738 printfi_filtered (spaces, "type_chain ");
2739 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2740 printf_filtered ("\n");
2741 printfi_filtered (spaces, "instance_flags 0x%x",
2742 TYPE_INSTANCE_FLAGS (type));
2743 if (TYPE_CONST (type))
2744 {
2745 puts_filtered (" TYPE_FLAG_CONST");
2746 }
2747 if (TYPE_VOLATILE (type))
2748 {
2749 puts_filtered (" TYPE_FLAG_VOLATILE");
2750 }
2751 if (TYPE_CODE_SPACE (type))
2752 {
2753 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2754 }
2755 if (TYPE_DATA_SPACE (type))
2756 {
2757 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2758 }
2759 if (TYPE_ADDRESS_CLASS_1 (type))
2760 {
2761 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2762 }
2763 if (TYPE_ADDRESS_CLASS_2 (type))
2764 {
2765 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2766 }
2767 puts_filtered ("\n");
2768 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2769 if (TYPE_UNSIGNED (type))
2770 {
2771 puts_filtered (" TYPE_FLAG_UNSIGNED");
2772 }
2773 if (TYPE_NOSIGN (type))
2774 {
2775 puts_filtered (" TYPE_FLAG_NOSIGN");
2776 }
2777 if (TYPE_STUB (type))
2778 {
2779 puts_filtered (" TYPE_FLAG_STUB");
2780 }
2781 if (TYPE_TARGET_STUB (type))
2782 {
2783 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2784 }
2785 if (TYPE_STATIC (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_STATIC");
2788 }
2789 if (TYPE_PROTOTYPED (type))
2790 {
2791 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2792 }
2793 if (TYPE_INCOMPLETE (type))
2794 {
2795 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2796 }
2797 if (TYPE_VARARGS (type))
2798 {
2799 puts_filtered (" TYPE_FLAG_VARARGS");
2800 }
2801 /* This is used for things like AltiVec registers on ppc. Gcc emits
2802 an attribute for the array type, which tells whether or not we
2803 have a vector, instead of a regular array. */
2804 if (TYPE_VECTOR (type))
2805 {
2806 puts_filtered (" TYPE_FLAG_VECTOR");
2807 }
2808 puts_filtered ("\n");
2809 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2810 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2811 puts_filtered ("\n");
2812 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2813 {
2814 printfi_filtered (spaces + 2,
2815 "[%d] bitpos %d bitsize %d type ",
2816 idx, TYPE_FIELD_BITPOS (type, idx),
2817 TYPE_FIELD_BITSIZE (type, idx));
2818 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2819 printf_filtered (" name '%s' (",
2820 TYPE_FIELD_NAME (type, idx) != NULL
2821 ? TYPE_FIELD_NAME (type, idx)
2822 : "<NULL>");
2823 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2824 printf_filtered (")\n");
2825 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2826 {
2827 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2828 }
2829 }
2830 printfi_filtered (spaces, "vptr_basetype ");
2831 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2832 puts_filtered ("\n");
2833 if (TYPE_VPTR_BASETYPE (type) != NULL)
2834 {
2835 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2836 }
2837 printfi_filtered (spaces, "vptr_fieldno %d\n",
2838 TYPE_VPTR_FIELDNO (type));
2839 switch (TYPE_CODE (type))
2840 {
2841 case TYPE_CODE_STRUCT:
2842 printfi_filtered (spaces, "cplus_stuff ");
2843 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2844 gdb_stdout);
2845 puts_filtered ("\n");
2846 print_cplus_stuff (type, spaces);
2847 break;
2848
2849 case TYPE_CODE_FLT:
2850 printfi_filtered (spaces, "floatformat ");
2851 if (TYPE_FLOATFORMAT (type) == NULL)
2852 puts_filtered ("(null)");
2853 else
2854 {
2855 puts_filtered ("{ ");
2856 if (TYPE_FLOATFORMAT (type)[0] == NULL
2857 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2858 puts_filtered ("(null)");
2859 else
2860 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2861
2862 puts_filtered (", ");
2863 if (TYPE_FLOATFORMAT (type)[1] == NULL
2864 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2865 puts_filtered ("(null)");
2866 else
2867 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2868
2869 puts_filtered (" }");
2870 }
2871 puts_filtered ("\n");
2872 break;
2873
2874 default:
2875 /* We have to pick one of the union types to be able print and
2876 test the value. Pick cplus_struct_type, even though we know
2877 it isn't any particular one. */
2878 printfi_filtered (spaces, "type_specific ");
2879 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2880 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2881 {
2882 printf_filtered (_(" (unknown data form)"));
2883 }
2884 printf_filtered ("\n");
2885 break;
2886
2887 }
2888 if (spaces == 0)
2889 obstack_free (&dont_print_type_obstack, NULL);
2890 }
2891
2892 /* Trivial helpers for the libiberty hash table, for mapping one
2893 type to another. */
2894
2895 struct type_pair
2896 {
2897 struct type *old, *new;
2898 };
2899
2900 static hashval_t
2901 type_pair_hash (const void *item)
2902 {
2903 const struct type_pair *pair = item;
2904 return htab_hash_pointer (pair->old);
2905 }
2906
2907 static int
2908 type_pair_eq (const void *item_lhs, const void *item_rhs)
2909 {
2910 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2911 return lhs->old == rhs->old;
2912 }
2913
2914 /* Allocate the hash table used by copy_type_recursive to walk
2915 types without duplicates. We use OBJFILE's obstack, because
2916 OBJFILE is about to be deleted. */
2917
2918 htab_t
2919 create_copied_types_hash (struct objfile *objfile)
2920 {
2921 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2922 NULL, &objfile->objfile_obstack,
2923 hashtab_obstack_allocate,
2924 dummy_obstack_deallocate);
2925 }
2926
2927 /* Recursively copy (deep copy) TYPE, if it is associated with
2928 OBJFILE. Return a new type allocated using malloc, a saved type if
2929 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2930 not associated with OBJFILE. */
2931
2932 struct type *
2933 copy_type_recursive (struct objfile *objfile,
2934 struct type *type,
2935 htab_t copied_types)
2936 {
2937 struct type_pair *stored, pair;
2938 void **slot;
2939 struct type *new_type;
2940
2941 if (TYPE_OBJFILE (type) == NULL)
2942 return type;
2943
2944 /* This type shouldn't be pointing to any types in other objfiles;
2945 if it did, the type might disappear unexpectedly. */
2946 gdb_assert (TYPE_OBJFILE (type) == objfile);
2947
2948 pair.old = type;
2949 slot = htab_find_slot (copied_types, &pair, INSERT);
2950 if (*slot != NULL)
2951 return ((struct type_pair *) *slot)->new;
2952
2953 new_type = alloc_type (NULL);
2954
2955 /* We must add the new type to the hash table immediately, in case
2956 we encounter this type again during a recursive call below. */
2957 stored = xmalloc (sizeof (struct type_pair));
2958 stored->old = type;
2959 stored->new = new_type;
2960 *slot = stored;
2961
2962 /* Copy the common fields of types. */
2963 TYPE_CODE (new_type) = TYPE_CODE (type);
2964 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2965 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2966 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2967 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
2968 if (TYPE_NAME (type))
2969 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2970 if (TYPE_TAG_NAME (type))
2971 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2972 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2973 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2974
2975 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2976 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2977
2978 /* Copy the fields. */
2979 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2980 if (TYPE_NFIELDS (type))
2981 {
2982 int i, nfields;
2983
2984 nfields = TYPE_NFIELDS (type);
2985 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2986 for (i = 0; i < nfields; i++)
2987 {
2988 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2989 TYPE_FIELD_ARTIFICIAL (type, i);
2990 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2991 if (TYPE_FIELD_TYPE (type, i))
2992 TYPE_FIELD_TYPE (new_type, i)
2993 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2994 copied_types);
2995 if (TYPE_FIELD_NAME (type, i))
2996 TYPE_FIELD_NAME (new_type, i) =
2997 xstrdup (TYPE_FIELD_NAME (type, i));
2998 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
2999 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3000 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3001 else if (TYPE_FIELD_STATIC (type, i))
3002 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3003 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3004 i)));
3005 else
3006 {
3007 TYPE_FIELD_BITPOS (new_type, i) =
3008 TYPE_FIELD_BITPOS (type, i);
3009 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
3010 }
3011 }
3012 }
3013
3014 /* Copy pointers to other types. */
3015 if (TYPE_TARGET_TYPE (type))
3016 TYPE_TARGET_TYPE (new_type) =
3017 copy_type_recursive (objfile,
3018 TYPE_TARGET_TYPE (type),
3019 copied_types);
3020 if (TYPE_VPTR_BASETYPE (type))
3021 TYPE_VPTR_BASETYPE (new_type) =
3022 copy_type_recursive (objfile,
3023 TYPE_VPTR_BASETYPE (type),
3024 copied_types);
3025 /* Maybe copy the type_specific bits.
3026
3027 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3028 base classes and methods. There's no fundamental reason why we
3029 can't, but at the moment it is not needed. */
3030
3031 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3032 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3033 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3034 || TYPE_CODE (type) == TYPE_CODE_UNION
3035 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3036 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3037 INIT_CPLUS_SPECIFIC (new_type);
3038
3039 return new_type;
3040 }
3041
3042 static struct type *
3043 build_flt (int bit, char *name, const struct floatformat **floatformats)
3044 {
3045 struct type *t;
3046
3047 if (bit == -1)
3048 {
3049 gdb_assert (floatformats != NULL);
3050 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3051 bit = floatformats[0]->totalsize;
3052 }
3053 gdb_assert (bit >= 0);
3054
3055 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3056 TYPE_FLOATFORMAT (t) = floatformats;
3057 return t;
3058 }
3059
3060 static struct gdbarch_data *gdbtypes_data;
3061
3062 const struct builtin_type *
3063 builtin_type (struct gdbarch *gdbarch)
3064 {
3065 return gdbarch_data (gdbarch, gdbtypes_data);
3066 }
3067
3068
3069 static struct type *
3070 build_complex (int bit, char *name, struct type *target_type)
3071 {
3072 struct type *t;
3073 if (bit <= 0 || target_type == builtin_type_error)
3074 {
3075 gdb_assert (builtin_type_error != NULL);
3076 return builtin_type_error;
3077 }
3078 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3079 0, name, (struct objfile *) NULL);
3080 TYPE_TARGET_TYPE (t) = target_type;
3081 return t;
3082 }
3083
3084 static void *
3085 gdbtypes_post_init (struct gdbarch *gdbarch)
3086 {
3087 struct builtin_type *builtin_type
3088 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3089
3090 builtin_type->builtin_void =
3091 init_type (TYPE_CODE_VOID, 1,
3092 0,
3093 "void", (struct objfile *) NULL);
3094 builtin_type->builtin_char =
3095 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3096 (TYPE_FLAG_NOSIGN
3097 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3098 "char", (struct objfile *) NULL);
3099 builtin_type->builtin_true_char =
3100 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3101 0,
3102 "true character", (struct objfile *) NULL);
3103 builtin_type->builtin_true_unsigned_char =
3104 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3105 TYPE_FLAG_UNSIGNED,
3106 "true character", (struct objfile *) NULL);
3107 builtin_type->builtin_signed_char =
3108 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3109 0,
3110 "signed char", (struct objfile *) NULL);
3111 builtin_type->builtin_unsigned_char =
3112 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3113 TYPE_FLAG_UNSIGNED,
3114 "unsigned char", (struct objfile *) NULL);
3115 builtin_type->builtin_short =
3116 init_type (TYPE_CODE_INT,
3117 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3118 0, "short", (struct objfile *) NULL);
3119 builtin_type->builtin_unsigned_short =
3120 init_type (TYPE_CODE_INT,
3121 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3122 TYPE_FLAG_UNSIGNED, "unsigned short",
3123 (struct objfile *) NULL);
3124 builtin_type->builtin_int =
3125 init_type (TYPE_CODE_INT,
3126 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3127 0, "int", (struct objfile *) NULL);
3128 builtin_type->builtin_unsigned_int =
3129 init_type (TYPE_CODE_INT,
3130 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3131 TYPE_FLAG_UNSIGNED, "unsigned int",
3132 (struct objfile *) NULL);
3133 builtin_type->builtin_long =
3134 init_type (TYPE_CODE_INT,
3135 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3136 0, "long", (struct objfile *) NULL);
3137 builtin_type->builtin_unsigned_long =
3138 init_type (TYPE_CODE_INT,
3139 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3140 TYPE_FLAG_UNSIGNED, "unsigned long",
3141 (struct objfile *) NULL);
3142 builtin_type->builtin_long_long =
3143 init_type (TYPE_CODE_INT,
3144 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3145 0, "long long", (struct objfile *) NULL);
3146 builtin_type->builtin_unsigned_long_long =
3147 init_type (TYPE_CODE_INT,
3148 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3149 TYPE_FLAG_UNSIGNED, "unsigned long long",
3150 (struct objfile *) NULL);
3151 builtin_type->builtin_float
3152 = build_flt (gdbarch_float_bit (gdbarch), "float",
3153 gdbarch_float_format (gdbarch));
3154 builtin_type->builtin_double
3155 = build_flt (gdbarch_double_bit (gdbarch), "double",
3156 gdbarch_double_format (gdbarch));
3157 builtin_type->builtin_long_double
3158 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3159 gdbarch_long_double_format (gdbarch));
3160 builtin_type->builtin_complex
3161 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3162 builtin_type->builtin_float);
3163 builtin_type->builtin_double_complex
3164 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3165 builtin_type->builtin_double);
3166 builtin_type->builtin_string =
3167 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3168 0,
3169 "string", (struct objfile *) NULL);
3170 builtin_type->builtin_bool =
3171 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3172 0,
3173 "bool", (struct objfile *) NULL);
3174
3175 /* The following three are about decimal floating point types, which
3176 are 32-bits, 64-bits and 128-bits respectively. */
3177 builtin_type->builtin_decfloat
3178 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3179 0,
3180 "decimal float", (struct objfile *) NULL);
3181 builtin_type->builtin_decdouble
3182 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3183 0,
3184 "decimal double", (struct objfile *) NULL);
3185 builtin_type->builtin_declong
3186 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3187 0,
3188 "decimal long double", (struct objfile *) NULL);
3189
3190 /* Pointer/Address types. */
3191
3192 /* NOTE: on some targets, addresses and pointers are not necessarily
3193 the same --- for example, on the D10V, pointers are 16 bits long,
3194 but addresses are 32 bits long. See doc/gdbint.texinfo,
3195 ``Pointers Are Not Always Addresses''.
3196
3197 The upshot is:
3198 - gdb's `struct type' always describes the target's
3199 representation.
3200 - gdb's `struct value' objects should always hold values in
3201 target form.
3202 - gdb's CORE_ADDR values are addresses in the unified virtual
3203 address space that the assembler and linker work with. Thus,
3204 since target_read_memory takes a CORE_ADDR as an argument, it
3205 can access any memory on the target, even if the processor has
3206 separate code and data address spaces.
3207
3208 So, for example:
3209 - If v is a value holding a D10V code pointer, its contents are
3210 in target form: a big-endian address left-shifted two bits.
3211 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3212 sizeof (void *) == 2 on the target.
3213
3214 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3215 target type for a value the target will never see. It's only
3216 used to hold the values of (typeless) linker symbols, which are
3217 indeed in the unified virtual address space. */
3218
3219 builtin_type->builtin_data_ptr =
3220 make_pointer_type (builtin_type->builtin_void, NULL);
3221 builtin_type->builtin_func_ptr =
3222 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3223 builtin_type->builtin_core_addr =
3224 init_type (TYPE_CODE_INT,
3225 gdbarch_addr_bit (gdbarch) / 8,
3226 TYPE_FLAG_UNSIGNED,
3227 "__CORE_ADDR", (struct objfile *) NULL);
3228
3229
3230 /* The following set of types is used for symbols with no
3231 debug information. */
3232 builtin_type->nodebug_text_symbol =
3233 init_type (TYPE_CODE_FUNC, 1, 0,
3234 "<text variable, no debug info>", NULL);
3235 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3236 builtin_type->builtin_int;
3237 builtin_type->nodebug_data_symbol =
3238 init_type (TYPE_CODE_INT,
3239 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3240 "<data variable, no debug info>", NULL);
3241 builtin_type->nodebug_unknown_symbol =
3242 init_type (TYPE_CODE_INT, 1, 0,
3243 "<variable (not text or data), no debug info>", NULL);
3244 builtin_type->nodebug_tls_symbol =
3245 init_type (TYPE_CODE_INT,
3246 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3247 "<thread local variable, no debug info>", NULL);
3248
3249 return builtin_type;
3250 }
3251
3252 extern void _initialize_gdbtypes (void);
3253 void
3254 _initialize_gdbtypes (void)
3255 {
3256 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3257
3258 /* FIXME: The following types are architecture-neutral. However,
3259 they contain pointer_type and reference_type fields potentially
3260 caching pointer or reference types that *are* architecture
3261 dependent. */
3262
3263 builtin_type_int0 =
3264 init_type (TYPE_CODE_INT, 0 / 8,
3265 0,
3266 "int0_t", (struct objfile *) NULL);
3267 builtin_type_int8 =
3268 init_type (TYPE_CODE_INT, 8 / 8,
3269 TYPE_FLAG_NOTTEXT,
3270 "int8_t", (struct objfile *) NULL);
3271 builtin_type_uint8 =
3272 init_type (TYPE_CODE_INT, 8 / 8,
3273 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3274 "uint8_t", (struct objfile *) NULL);
3275 builtin_type_int16 =
3276 init_type (TYPE_CODE_INT, 16 / 8,
3277 0,
3278 "int16_t", (struct objfile *) NULL);
3279 builtin_type_uint16 =
3280 init_type (TYPE_CODE_INT, 16 / 8,
3281 TYPE_FLAG_UNSIGNED,
3282 "uint16_t", (struct objfile *) NULL);
3283 builtin_type_int32 =
3284 init_type (TYPE_CODE_INT, 32 / 8,
3285 0,
3286 "int32_t", (struct objfile *) NULL);
3287 builtin_type_uint32 =
3288 init_type (TYPE_CODE_INT, 32 / 8,
3289 TYPE_FLAG_UNSIGNED,
3290 "uint32_t", (struct objfile *) NULL);
3291 builtin_type_int64 =
3292 init_type (TYPE_CODE_INT, 64 / 8,
3293 0,
3294 "int64_t", (struct objfile *) NULL);
3295 builtin_type_uint64 =
3296 init_type (TYPE_CODE_INT, 64 / 8,
3297 TYPE_FLAG_UNSIGNED,
3298 "uint64_t", (struct objfile *) NULL);
3299 builtin_type_int128 =
3300 init_type (TYPE_CODE_INT, 128 / 8,
3301 0,
3302 "int128_t", (struct objfile *) NULL);
3303 builtin_type_uint128 =
3304 init_type (TYPE_CODE_INT, 128 / 8,
3305 TYPE_FLAG_UNSIGNED,
3306 "uint128_t", (struct objfile *) NULL);
3307
3308 builtin_type_ieee_single =
3309 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3310 builtin_type_ieee_double =
3311 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3312 builtin_type_i387_ext =
3313 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3314 builtin_type_m68881_ext =
3315 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3316 builtin_type_arm_ext =
3317 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3318 builtin_type_ia64_spill =
3319 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3320 builtin_type_ia64_quad =
3321 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3322
3323 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3324 Set debugging of C++ overloading."), _("\
3325 Show debugging of C++ overloading."), _("\
3326 When enabled, ranking of the functions is displayed."),
3327 NULL,
3328 show_overload_debug,
3329 &setdebuglist, &showdebuglist);
3330
3331 /* Add user knob for controlling resolution of opaque types. */
3332 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3333 &opaque_type_resolution, _("\
3334 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3335 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3336 NULL,
3337 show_opaque_type_resolution,
3338 &setlist, &showlist);
3339 }
This page took 0.0998289999999999 seconds and 4 git commands to generate.