Do not include config.h directly
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* Worker for is_dynamic_type. */
1615
1616 static int
1617 is_dynamic_type_internal (struct type *type, int top_level)
1618 {
1619 type = check_typedef (type);
1620
1621 /* We only want to recognize references at the outermost level. */
1622 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1623 type = check_typedef (TYPE_TARGET_TYPE (type));
1624
1625 switch (TYPE_CODE (type))
1626 {
1627 case TYPE_CODE_RANGE:
1628 return !has_static_range (TYPE_RANGE_DATA (type));
1629
1630 case TYPE_CODE_ARRAY:
1631 {
1632 gdb_assert (TYPE_NFIELDS (type) == 1);
1633
1634 /* The array is dynamic if either the bounds are dynamic,
1635 or the elements it contains have a dynamic contents. */
1636 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1637 return 1;
1638 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1639 }
1640
1641 case TYPE_CODE_STRUCT:
1642 case TYPE_CODE_UNION:
1643 {
1644 int i;
1645
1646 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1647 if (!field_is_static (&TYPE_FIELD (type, i))
1648 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1649 return 1;
1650 }
1651 break;
1652 }
1653
1654 return 0;
1655 }
1656
1657 /* See gdbtypes.h. */
1658
1659 int
1660 is_dynamic_type (struct type *type)
1661 {
1662 return is_dynamic_type_internal (type, 1);
1663 }
1664
1665 static struct type *resolve_dynamic_type_internal (struct type *type,
1666 CORE_ADDR addr,
1667 int top_level);
1668
1669 /* Given a dynamic range type (dyn_range_type), return a static version
1670 of that type. */
1671
1672 static struct type *
1673 resolve_dynamic_range (struct type *dyn_range_type)
1674 {
1675 CORE_ADDR value;
1676 struct type *static_range_type;
1677 const struct dynamic_prop *prop;
1678 const struct dwarf2_locexpr_baton *baton;
1679 struct dynamic_prop low_bound, high_bound;
1680
1681 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1682
1683 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1684 if (dwarf2_evaluate_property (prop, &value))
1685 {
1686 low_bound.kind = PROP_CONST;
1687 low_bound.data.const_val = value;
1688 }
1689 else
1690 {
1691 low_bound.kind = PROP_UNDEFINED;
1692 low_bound.data.const_val = 0;
1693 }
1694
1695 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1696 if (dwarf2_evaluate_property (prop, &value))
1697 {
1698 high_bound.kind = PROP_CONST;
1699 high_bound.data.const_val = value;
1700
1701 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1702 high_bound.data.const_val
1703 = low_bound.data.const_val + high_bound.data.const_val - 1;
1704 }
1705 else
1706 {
1707 high_bound.kind = PROP_UNDEFINED;
1708 high_bound.data.const_val = 0;
1709 }
1710
1711 static_range_type = create_range_type (copy_type (dyn_range_type),
1712 TYPE_TARGET_TYPE (dyn_range_type),
1713 &low_bound, &high_bound);
1714 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1715 return static_range_type;
1716 }
1717
1718 /* Resolves dynamic bound values of an array type TYPE to static ones.
1719 ADDRESS might be needed to resolve the subrange bounds, it is the location
1720 of the associated array. */
1721
1722 static struct type *
1723 resolve_dynamic_array (struct type *type)
1724 {
1725 CORE_ADDR value;
1726 struct type *elt_type;
1727 struct type *range_type;
1728 struct type *ary_dim;
1729
1730 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1731
1732 elt_type = type;
1733 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1734 range_type = resolve_dynamic_range (range_type);
1735
1736 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1737
1738 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1739 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1740 else
1741 elt_type = TYPE_TARGET_TYPE (type);
1742
1743 return create_array_type (copy_type (type),
1744 elt_type,
1745 range_type);
1746 }
1747
1748 /* Resolve dynamic bounds of members of the union TYPE to static
1749 bounds. */
1750
1751 static struct type *
1752 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1753 {
1754 struct type *resolved_type;
1755 int i;
1756 unsigned int max_len = 0;
1757
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1759
1760 resolved_type = copy_type (type);
1761 TYPE_FIELDS (resolved_type)
1762 = TYPE_ALLOC (resolved_type,
1763 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1764 memcpy (TYPE_FIELDS (resolved_type),
1765 TYPE_FIELDS (type),
1766 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1767 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1768 {
1769 struct type *t;
1770
1771 if (field_is_static (&TYPE_FIELD (type, i)))
1772 continue;
1773
1774 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1775 addr, 0);
1776 TYPE_FIELD_TYPE (resolved_type, i) = t;
1777 if (TYPE_LENGTH (t) > max_len)
1778 max_len = TYPE_LENGTH (t);
1779 }
1780
1781 TYPE_LENGTH (resolved_type) = max_len;
1782 return resolved_type;
1783 }
1784
1785 /* Resolve dynamic bounds of members of the struct TYPE to static
1786 bounds. */
1787
1788 static struct type *
1789 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1790 {
1791 struct type *resolved_type;
1792 int i;
1793 int vla_field = TYPE_NFIELDS (type) - 1;
1794
1795 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1796 gdb_assert (TYPE_NFIELDS (type) > 0);
1797
1798 resolved_type = copy_type (type);
1799 TYPE_FIELDS (resolved_type)
1800 = TYPE_ALLOC (resolved_type,
1801 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1802 memcpy (TYPE_FIELDS (resolved_type),
1803 TYPE_FIELDS (type),
1804 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1805 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1806 {
1807 struct type *t;
1808
1809 if (field_is_static (&TYPE_FIELD (type, i)))
1810 continue;
1811
1812 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1813 addr, 0);
1814
1815 /* This is a bit odd. We do not support a VLA in any position
1816 of a struct except for the last. GCC does have an extension
1817 that allows a VLA in the middle of a structure, but the DWARF
1818 it emits is relatively useless to us, so we can't represent
1819 such a type properly -- and even if we could, we do not have
1820 enough information to redo structure layout anyway.
1821 Nevertheless, we check all the fields in case something odd
1822 slips through, since it's better to see an error than
1823 incorrect results. */
1824 if (t != TYPE_FIELD_TYPE (resolved_type, i)
1825 && i != vla_field)
1826 error (_("Attempt to resolve a variably-sized type which appears "
1827 "in the interior of a structure type"));
1828
1829 TYPE_FIELD_TYPE (resolved_type, i) = t;
1830 }
1831
1832 /* Due to the above restrictions we can successfully compute
1833 the size of the resulting structure here, as the offset of
1834 the final field plus its size. */
1835 TYPE_LENGTH (resolved_type)
1836 = (TYPE_FIELD_BITPOS (resolved_type, vla_field) / TARGET_CHAR_BIT
1837 + TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, vla_field)));
1838 return resolved_type;
1839 }
1840
1841 /* Worker for resolved_dynamic_type. */
1842
1843 static struct type *
1844 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1845 int top_level)
1846 {
1847 struct type *real_type = check_typedef (type);
1848 struct type *resolved_type = type;
1849
1850 if (!is_dynamic_type_internal (real_type, top_level))
1851 return type;
1852
1853 switch (TYPE_CODE (type))
1854 {
1855 case TYPE_CODE_TYPEDEF:
1856 resolved_type = copy_type (type);
1857 TYPE_TARGET_TYPE (resolved_type)
1858 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1859 top_level);
1860 break;
1861
1862 case TYPE_CODE_REF:
1863 {
1864 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1865
1866 resolved_type = copy_type (type);
1867 TYPE_TARGET_TYPE (resolved_type)
1868 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1869 target_addr, top_level);
1870 break;
1871 }
1872
1873 case TYPE_CODE_ARRAY:
1874 resolved_type = resolve_dynamic_array (type);
1875 break;
1876
1877 case TYPE_CODE_RANGE:
1878 resolved_type = resolve_dynamic_range (type);
1879 break;
1880
1881 case TYPE_CODE_UNION:
1882 resolved_type = resolve_dynamic_union (type, addr);
1883 break;
1884
1885 case TYPE_CODE_STRUCT:
1886 resolved_type = resolve_dynamic_struct (type, addr);
1887 break;
1888 }
1889
1890 return resolved_type;
1891 }
1892
1893 /* See gdbtypes.h */
1894
1895 struct type *
1896 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1897 {
1898 return resolve_dynamic_type_internal (type, addr, 1);
1899 }
1900
1901 /* Find the real type of TYPE. This function returns the real type,
1902 after removing all layers of typedefs, and completing opaque or stub
1903 types. Completion changes the TYPE argument, but stripping of
1904 typedefs does not.
1905
1906 Instance flags (e.g. const/volatile) are preserved as typedefs are
1907 stripped. If necessary a new qualified form of the underlying type
1908 is created.
1909
1910 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1911 not been computed and we're either in the middle of reading symbols, or
1912 there was no name for the typedef in the debug info.
1913
1914 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1915 QUITs in the symbol reading code can also throw.
1916 Thus this function can throw an exception.
1917
1918 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1919 the target type.
1920
1921 If this is a stubbed struct (i.e. declared as struct foo *), see if
1922 we can find a full definition in some other file. If so, copy this
1923 definition, so we can use it in future. There used to be a comment
1924 (but not any code) that if we don't find a full definition, we'd
1925 set a flag so we don't spend time in the future checking the same
1926 type. That would be a mistake, though--we might load in more
1927 symbols which contain a full definition for the type. */
1928
1929 struct type *
1930 check_typedef (struct type *type)
1931 {
1932 struct type *orig_type = type;
1933 /* While we're removing typedefs, we don't want to lose qualifiers.
1934 E.g., const/volatile. */
1935 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1936
1937 gdb_assert (type);
1938
1939 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1940 {
1941 if (!TYPE_TARGET_TYPE (type))
1942 {
1943 const char *name;
1944 struct symbol *sym;
1945
1946 /* It is dangerous to call lookup_symbol if we are currently
1947 reading a symtab. Infinite recursion is one danger. */
1948 if (currently_reading_symtab)
1949 return make_qualified_type (type, instance_flags, NULL);
1950
1951 name = type_name_no_tag (type);
1952 /* FIXME: shouldn't we separately check the TYPE_NAME and
1953 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1954 VAR_DOMAIN as appropriate? (this code was written before
1955 TYPE_NAME and TYPE_TAG_NAME were separate). */
1956 if (name == NULL)
1957 {
1958 stub_noname_complaint ();
1959 return make_qualified_type (type, instance_flags, NULL);
1960 }
1961 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1962 if (sym)
1963 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1964 else /* TYPE_CODE_UNDEF */
1965 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1966 }
1967 type = TYPE_TARGET_TYPE (type);
1968
1969 /* Preserve the instance flags as we traverse down the typedef chain.
1970
1971 Handling address spaces/classes is nasty, what do we do if there's a
1972 conflict?
1973 E.g., what if an outer typedef marks the type as class_1 and an inner
1974 typedef marks the type as class_2?
1975 This is the wrong place to do such error checking. We leave it to
1976 the code that created the typedef in the first place to flag the
1977 error. We just pick the outer address space (akin to letting the
1978 outer cast in a chain of casting win), instead of assuming
1979 "it can't happen". */
1980 {
1981 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1982 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1983 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1984 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1985
1986 /* Treat code vs data spaces and address classes separately. */
1987 if ((instance_flags & ALL_SPACES) != 0)
1988 new_instance_flags &= ~ALL_SPACES;
1989 if ((instance_flags & ALL_CLASSES) != 0)
1990 new_instance_flags &= ~ALL_CLASSES;
1991
1992 instance_flags |= new_instance_flags;
1993 }
1994 }
1995
1996 /* If this is a struct/class/union with no fields, then check
1997 whether a full definition exists somewhere else. This is for
1998 systems where a type definition with no fields is issued for such
1999 types, instead of identifying them as stub types in the first
2000 place. */
2001
2002 if (TYPE_IS_OPAQUE (type)
2003 && opaque_type_resolution
2004 && !currently_reading_symtab)
2005 {
2006 const char *name = type_name_no_tag (type);
2007 struct type *newtype;
2008
2009 if (name == NULL)
2010 {
2011 stub_noname_complaint ();
2012 return make_qualified_type (type, instance_flags, NULL);
2013 }
2014 newtype = lookup_transparent_type (name);
2015
2016 if (newtype)
2017 {
2018 /* If the resolved type and the stub are in the same
2019 objfile, then replace the stub type with the real deal.
2020 But if they're in separate objfiles, leave the stub
2021 alone; we'll just look up the transparent type every time
2022 we call check_typedef. We can't create pointers between
2023 types allocated to different objfiles, since they may
2024 have different lifetimes. Trying to copy NEWTYPE over to
2025 TYPE's objfile is pointless, too, since you'll have to
2026 move over any other types NEWTYPE refers to, which could
2027 be an unbounded amount of stuff. */
2028 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2029 type = make_qualified_type (newtype,
2030 TYPE_INSTANCE_FLAGS (type),
2031 type);
2032 else
2033 type = newtype;
2034 }
2035 }
2036 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2037 types. */
2038 else if (TYPE_STUB (type) && !currently_reading_symtab)
2039 {
2040 const char *name = type_name_no_tag (type);
2041 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2042 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2043 as appropriate? (this code was written before TYPE_NAME and
2044 TYPE_TAG_NAME were separate). */
2045 struct symbol *sym;
2046
2047 if (name == NULL)
2048 {
2049 stub_noname_complaint ();
2050 return make_qualified_type (type, instance_flags, NULL);
2051 }
2052 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2053 if (sym)
2054 {
2055 /* Same as above for opaque types, we can replace the stub
2056 with the complete type only if they are in the same
2057 objfile. */
2058 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2059 type = make_qualified_type (SYMBOL_TYPE (sym),
2060 TYPE_INSTANCE_FLAGS (type),
2061 type);
2062 else
2063 type = SYMBOL_TYPE (sym);
2064 }
2065 }
2066
2067 if (TYPE_TARGET_STUB (type))
2068 {
2069 struct type *range_type;
2070 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2071
2072 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2073 {
2074 /* Nothing we can do. */
2075 }
2076 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2077 {
2078 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2079 TYPE_TARGET_STUB (type) = 0;
2080 }
2081 }
2082
2083 type = make_qualified_type (type, instance_flags, NULL);
2084
2085 /* Cache TYPE_LENGTH for future use. */
2086 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2087
2088 return type;
2089 }
2090
2091 /* Parse a type expression in the string [P..P+LENGTH). If an error
2092 occurs, silently return a void type. */
2093
2094 static struct type *
2095 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2096 {
2097 struct ui_file *saved_gdb_stderr;
2098 struct type *type = NULL; /* Initialize to keep gcc happy. */
2099 volatile struct gdb_exception except;
2100
2101 /* Suppress error messages. */
2102 saved_gdb_stderr = gdb_stderr;
2103 gdb_stderr = ui_file_new ();
2104
2105 /* Call parse_and_eval_type() without fear of longjmp()s. */
2106 TRY_CATCH (except, RETURN_MASK_ERROR)
2107 {
2108 type = parse_and_eval_type (p, length);
2109 }
2110
2111 if (except.reason < 0)
2112 type = builtin_type (gdbarch)->builtin_void;
2113
2114 /* Stop suppressing error messages. */
2115 ui_file_delete (gdb_stderr);
2116 gdb_stderr = saved_gdb_stderr;
2117
2118 return type;
2119 }
2120
2121 /* Ugly hack to convert method stubs into method types.
2122
2123 He ain't kiddin'. This demangles the name of the method into a
2124 string including argument types, parses out each argument type,
2125 generates a string casting a zero to that type, evaluates the
2126 string, and stuffs the resulting type into an argtype vector!!!
2127 Then it knows the type of the whole function (including argument
2128 types for overloading), which info used to be in the stab's but was
2129 removed to hack back the space required for them. */
2130
2131 static void
2132 check_stub_method (struct type *type, int method_id, int signature_id)
2133 {
2134 struct gdbarch *gdbarch = get_type_arch (type);
2135 struct fn_field *f;
2136 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2137 char *demangled_name = gdb_demangle (mangled_name,
2138 DMGL_PARAMS | DMGL_ANSI);
2139 char *argtypetext, *p;
2140 int depth = 0, argcount = 1;
2141 struct field *argtypes;
2142 struct type *mtype;
2143
2144 /* Make sure we got back a function string that we can use. */
2145 if (demangled_name)
2146 p = strchr (demangled_name, '(');
2147 else
2148 p = NULL;
2149
2150 if (demangled_name == NULL || p == NULL)
2151 error (_("Internal: Cannot demangle mangled name `%s'."),
2152 mangled_name);
2153
2154 /* Now, read in the parameters that define this type. */
2155 p += 1;
2156 argtypetext = p;
2157 while (*p)
2158 {
2159 if (*p == '(' || *p == '<')
2160 {
2161 depth += 1;
2162 }
2163 else if (*p == ')' || *p == '>')
2164 {
2165 depth -= 1;
2166 }
2167 else if (*p == ',' && depth == 0)
2168 {
2169 argcount += 1;
2170 }
2171
2172 p += 1;
2173 }
2174
2175 /* If we read one argument and it was ``void'', don't count it. */
2176 if (strncmp (argtypetext, "(void)", 6) == 0)
2177 argcount -= 1;
2178
2179 /* We need one extra slot, for the THIS pointer. */
2180
2181 argtypes = (struct field *)
2182 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2183 p = argtypetext;
2184
2185 /* Add THIS pointer for non-static methods. */
2186 f = TYPE_FN_FIELDLIST1 (type, method_id);
2187 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2188 argcount = 0;
2189 else
2190 {
2191 argtypes[0].type = lookup_pointer_type (type);
2192 argcount = 1;
2193 }
2194
2195 if (*p != ')') /* () means no args, skip while. */
2196 {
2197 depth = 0;
2198 while (*p)
2199 {
2200 if (depth <= 0 && (*p == ',' || *p == ')'))
2201 {
2202 /* Avoid parsing of ellipsis, they will be handled below.
2203 Also avoid ``void'' as above. */
2204 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2205 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2206 {
2207 argtypes[argcount].type =
2208 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2209 argcount += 1;
2210 }
2211 argtypetext = p + 1;
2212 }
2213
2214 if (*p == '(' || *p == '<')
2215 {
2216 depth += 1;
2217 }
2218 else if (*p == ')' || *p == '>')
2219 {
2220 depth -= 1;
2221 }
2222
2223 p += 1;
2224 }
2225 }
2226
2227 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2228
2229 /* Now update the old "stub" type into a real type. */
2230 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2231 TYPE_DOMAIN_TYPE (mtype) = type;
2232 TYPE_FIELDS (mtype) = argtypes;
2233 TYPE_NFIELDS (mtype) = argcount;
2234 TYPE_STUB (mtype) = 0;
2235 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2236 if (p[-2] == '.')
2237 TYPE_VARARGS (mtype) = 1;
2238
2239 xfree (demangled_name);
2240 }
2241
2242 /* This is the external interface to check_stub_method, above. This
2243 function unstubs all of the signatures for TYPE's METHOD_ID method
2244 name. After calling this function TYPE_FN_FIELD_STUB will be
2245 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2246 correct.
2247
2248 This function unfortunately can not die until stabs do. */
2249
2250 void
2251 check_stub_method_group (struct type *type, int method_id)
2252 {
2253 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2254 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2255 int j, found_stub = 0;
2256
2257 for (j = 0; j < len; j++)
2258 if (TYPE_FN_FIELD_STUB (f, j))
2259 {
2260 found_stub = 1;
2261 check_stub_method (type, method_id, j);
2262 }
2263
2264 /* GNU v3 methods with incorrect names were corrected when we read
2265 in type information, because it was cheaper to do it then. The
2266 only GNU v2 methods with incorrect method names are operators and
2267 destructors; destructors were also corrected when we read in type
2268 information.
2269
2270 Therefore the only thing we need to handle here are v2 operator
2271 names. */
2272 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2273 {
2274 int ret;
2275 char dem_opname[256];
2276
2277 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2278 method_id),
2279 dem_opname, DMGL_ANSI);
2280 if (!ret)
2281 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2282 method_id),
2283 dem_opname, 0);
2284 if (ret)
2285 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2286 }
2287 }
2288
2289 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2290 const struct cplus_struct_type cplus_struct_default = { };
2291
2292 void
2293 allocate_cplus_struct_type (struct type *type)
2294 {
2295 if (HAVE_CPLUS_STRUCT (type))
2296 /* Structure was already allocated. Nothing more to do. */
2297 return;
2298
2299 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2300 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2301 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2302 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2303 }
2304
2305 const struct gnat_aux_type gnat_aux_default =
2306 { NULL };
2307
2308 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2309 and allocate the associated gnat-specific data. The gnat-specific
2310 data is also initialized to gnat_aux_default. */
2311
2312 void
2313 allocate_gnat_aux_type (struct type *type)
2314 {
2315 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2316 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2317 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2318 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2319 }
2320
2321 /* Helper function to initialize the standard scalar types.
2322
2323 If NAME is non-NULL, then it is used to initialize the type name.
2324 Note that NAME is not copied; it is required to have a lifetime at
2325 least as long as OBJFILE. */
2326
2327 struct type *
2328 init_type (enum type_code code, int length, int flags,
2329 const char *name, struct objfile *objfile)
2330 {
2331 struct type *type;
2332
2333 type = alloc_type (objfile);
2334 TYPE_CODE (type) = code;
2335 TYPE_LENGTH (type) = length;
2336
2337 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2338 if (flags & TYPE_FLAG_UNSIGNED)
2339 TYPE_UNSIGNED (type) = 1;
2340 if (flags & TYPE_FLAG_NOSIGN)
2341 TYPE_NOSIGN (type) = 1;
2342 if (flags & TYPE_FLAG_STUB)
2343 TYPE_STUB (type) = 1;
2344 if (flags & TYPE_FLAG_TARGET_STUB)
2345 TYPE_TARGET_STUB (type) = 1;
2346 if (flags & TYPE_FLAG_STATIC)
2347 TYPE_STATIC (type) = 1;
2348 if (flags & TYPE_FLAG_PROTOTYPED)
2349 TYPE_PROTOTYPED (type) = 1;
2350 if (flags & TYPE_FLAG_INCOMPLETE)
2351 TYPE_INCOMPLETE (type) = 1;
2352 if (flags & TYPE_FLAG_VARARGS)
2353 TYPE_VARARGS (type) = 1;
2354 if (flags & TYPE_FLAG_VECTOR)
2355 TYPE_VECTOR (type) = 1;
2356 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2357 TYPE_STUB_SUPPORTED (type) = 1;
2358 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2359 TYPE_FIXED_INSTANCE (type) = 1;
2360 if (flags & TYPE_FLAG_GNU_IFUNC)
2361 TYPE_GNU_IFUNC (type) = 1;
2362
2363 TYPE_NAME (type) = name;
2364
2365 /* C++ fancies. */
2366
2367 if (name && strcmp (name, "char") == 0)
2368 TYPE_NOSIGN (type) = 1;
2369
2370 switch (code)
2371 {
2372 case TYPE_CODE_STRUCT:
2373 case TYPE_CODE_UNION:
2374 case TYPE_CODE_NAMESPACE:
2375 INIT_CPLUS_SPECIFIC (type);
2376 break;
2377 case TYPE_CODE_FLT:
2378 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2379 break;
2380 case TYPE_CODE_FUNC:
2381 INIT_FUNC_SPECIFIC (type);
2382 break;
2383 }
2384 return type;
2385 }
2386 \f
2387 /* Queries on types. */
2388
2389 int
2390 can_dereference (struct type *t)
2391 {
2392 /* FIXME: Should we return true for references as well as
2393 pointers? */
2394 CHECK_TYPEDEF (t);
2395 return
2396 (t != NULL
2397 && TYPE_CODE (t) == TYPE_CODE_PTR
2398 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2399 }
2400
2401 int
2402 is_integral_type (struct type *t)
2403 {
2404 CHECK_TYPEDEF (t);
2405 return
2406 ((t != NULL)
2407 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2408 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2409 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2410 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2411 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2412 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2413 }
2414
2415 /* Return true if TYPE is scalar. */
2416
2417 static int
2418 is_scalar_type (struct type *type)
2419 {
2420 CHECK_TYPEDEF (type);
2421
2422 switch (TYPE_CODE (type))
2423 {
2424 case TYPE_CODE_ARRAY:
2425 case TYPE_CODE_STRUCT:
2426 case TYPE_CODE_UNION:
2427 case TYPE_CODE_SET:
2428 case TYPE_CODE_STRING:
2429 return 0;
2430 default:
2431 return 1;
2432 }
2433 }
2434
2435 /* Return true if T is scalar, or a composite type which in practice has
2436 the memory layout of a scalar type. E.g., an array or struct with only
2437 one scalar element inside it, or a union with only scalar elements. */
2438
2439 int
2440 is_scalar_type_recursive (struct type *t)
2441 {
2442 CHECK_TYPEDEF (t);
2443
2444 if (is_scalar_type (t))
2445 return 1;
2446 /* Are we dealing with an array or string of known dimensions? */
2447 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2448 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2449 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2450 {
2451 LONGEST low_bound, high_bound;
2452 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2453
2454 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2455
2456 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2457 }
2458 /* Are we dealing with a struct with one element? */
2459 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2460 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2461 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2462 {
2463 int i, n = TYPE_NFIELDS (t);
2464
2465 /* If all elements of the union are scalar, then the union is scalar. */
2466 for (i = 0; i < n; i++)
2467 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2468 return 0;
2469
2470 return 1;
2471 }
2472
2473 return 0;
2474 }
2475
2476 /* A helper function which returns true if types A and B represent the
2477 "same" class type. This is true if the types have the same main
2478 type, or the same name. */
2479
2480 int
2481 class_types_same_p (const struct type *a, const struct type *b)
2482 {
2483 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2484 || (TYPE_NAME (a) && TYPE_NAME (b)
2485 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2486 }
2487
2488 /* If BASE is an ancestor of DCLASS return the distance between them.
2489 otherwise return -1;
2490 eg:
2491
2492 class A {};
2493 class B: public A {};
2494 class C: public B {};
2495 class D: C {};
2496
2497 distance_to_ancestor (A, A, 0) = 0
2498 distance_to_ancestor (A, B, 0) = 1
2499 distance_to_ancestor (A, C, 0) = 2
2500 distance_to_ancestor (A, D, 0) = 3
2501
2502 If PUBLIC is 1 then only public ancestors are considered,
2503 and the function returns the distance only if BASE is a public ancestor
2504 of DCLASS.
2505 Eg:
2506
2507 distance_to_ancestor (A, D, 1) = -1. */
2508
2509 static int
2510 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2511 {
2512 int i;
2513 int d;
2514
2515 CHECK_TYPEDEF (base);
2516 CHECK_TYPEDEF (dclass);
2517
2518 if (class_types_same_p (base, dclass))
2519 return 0;
2520
2521 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2522 {
2523 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2524 continue;
2525
2526 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2527 if (d >= 0)
2528 return 1 + d;
2529 }
2530
2531 return -1;
2532 }
2533
2534 /* Check whether BASE is an ancestor or base class or DCLASS
2535 Return 1 if so, and 0 if not.
2536 Note: If BASE and DCLASS are of the same type, this function
2537 will return 1. So for some class A, is_ancestor (A, A) will
2538 return 1. */
2539
2540 int
2541 is_ancestor (struct type *base, struct type *dclass)
2542 {
2543 return distance_to_ancestor (base, dclass, 0) >= 0;
2544 }
2545
2546 /* Like is_ancestor, but only returns true when BASE is a public
2547 ancestor of DCLASS. */
2548
2549 int
2550 is_public_ancestor (struct type *base, struct type *dclass)
2551 {
2552 return distance_to_ancestor (base, dclass, 1) >= 0;
2553 }
2554
2555 /* A helper function for is_unique_ancestor. */
2556
2557 static int
2558 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2559 int *offset,
2560 const gdb_byte *valaddr, int embedded_offset,
2561 CORE_ADDR address, struct value *val)
2562 {
2563 int i, count = 0;
2564
2565 CHECK_TYPEDEF (base);
2566 CHECK_TYPEDEF (dclass);
2567
2568 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2569 {
2570 struct type *iter;
2571 int this_offset;
2572
2573 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2574
2575 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2576 address, val);
2577
2578 if (class_types_same_p (base, iter))
2579 {
2580 /* If this is the first subclass, set *OFFSET and set count
2581 to 1. Otherwise, if this is at the same offset as
2582 previous instances, do nothing. Otherwise, increment
2583 count. */
2584 if (*offset == -1)
2585 {
2586 *offset = this_offset;
2587 count = 1;
2588 }
2589 else if (this_offset == *offset)
2590 {
2591 /* Nothing. */
2592 }
2593 else
2594 ++count;
2595 }
2596 else
2597 count += is_unique_ancestor_worker (base, iter, offset,
2598 valaddr,
2599 embedded_offset + this_offset,
2600 address, val);
2601 }
2602
2603 return count;
2604 }
2605
2606 /* Like is_ancestor, but only returns true if BASE is a unique base
2607 class of the type of VAL. */
2608
2609 int
2610 is_unique_ancestor (struct type *base, struct value *val)
2611 {
2612 int offset = -1;
2613
2614 return is_unique_ancestor_worker (base, value_type (val), &offset,
2615 value_contents_for_printing (val),
2616 value_embedded_offset (val),
2617 value_address (val), val) == 1;
2618 }
2619
2620 \f
2621 /* Overload resolution. */
2622
2623 /* Return the sum of the rank of A with the rank of B. */
2624
2625 struct rank
2626 sum_ranks (struct rank a, struct rank b)
2627 {
2628 struct rank c;
2629 c.rank = a.rank + b.rank;
2630 c.subrank = a.subrank + b.subrank;
2631 return c;
2632 }
2633
2634 /* Compare rank A and B and return:
2635 0 if a = b
2636 1 if a is better than b
2637 -1 if b is better than a. */
2638
2639 int
2640 compare_ranks (struct rank a, struct rank b)
2641 {
2642 if (a.rank == b.rank)
2643 {
2644 if (a.subrank == b.subrank)
2645 return 0;
2646 if (a.subrank < b.subrank)
2647 return 1;
2648 if (a.subrank > b.subrank)
2649 return -1;
2650 }
2651
2652 if (a.rank < b.rank)
2653 return 1;
2654
2655 /* a.rank > b.rank */
2656 return -1;
2657 }
2658
2659 /* Functions for overload resolution begin here. */
2660
2661 /* Compare two badness vectors A and B and return the result.
2662 0 => A and B are identical
2663 1 => A and B are incomparable
2664 2 => A is better than B
2665 3 => A is worse than B */
2666
2667 int
2668 compare_badness (struct badness_vector *a, struct badness_vector *b)
2669 {
2670 int i;
2671 int tmp;
2672 short found_pos = 0; /* any positives in c? */
2673 short found_neg = 0; /* any negatives in c? */
2674
2675 /* differing lengths => incomparable */
2676 if (a->length != b->length)
2677 return 1;
2678
2679 /* Subtract b from a */
2680 for (i = 0; i < a->length; i++)
2681 {
2682 tmp = compare_ranks (b->rank[i], a->rank[i]);
2683 if (tmp > 0)
2684 found_pos = 1;
2685 else if (tmp < 0)
2686 found_neg = 1;
2687 }
2688
2689 if (found_pos)
2690 {
2691 if (found_neg)
2692 return 1; /* incomparable */
2693 else
2694 return 3; /* A > B */
2695 }
2696 else
2697 /* no positives */
2698 {
2699 if (found_neg)
2700 return 2; /* A < B */
2701 else
2702 return 0; /* A == B */
2703 }
2704 }
2705
2706 /* Rank a function by comparing its parameter types (PARMS, length
2707 NPARMS), to the types of an argument list (ARGS, length NARGS).
2708 Return a pointer to a badness vector. This has NARGS + 1
2709 entries. */
2710
2711 struct badness_vector *
2712 rank_function (struct type **parms, int nparms,
2713 struct value **args, int nargs)
2714 {
2715 int i;
2716 struct badness_vector *bv;
2717 int min_len = nparms < nargs ? nparms : nargs;
2718
2719 bv = xmalloc (sizeof (struct badness_vector));
2720 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2721 bv->rank = XNEWVEC (struct rank, nargs + 1);
2722
2723 /* First compare the lengths of the supplied lists.
2724 If there is a mismatch, set it to a high value. */
2725
2726 /* pai/1997-06-03 FIXME: when we have debug info about default
2727 arguments and ellipsis parameter lists, we should consider those
2728 and rank the length-match more finely. */
2729
2730 LENGTH_MATCH (bv) = (nargs != nparms)
2731 ? LENGTH_MISMATCH_BADNESS
2732 : EXACT_MATCH_BADNESS;
2733
2734 /* Now rank all the parameters of the candidate function. */
2735 for (i = 1; i <= min_len; i++)
2736 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2737 args[i - 1]);
2738
2739 /* If more arguments than parameters, add dummy entries. */
2740 for (i = min_len + 1; i <= nargs; i++)
2741 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2742
2743 return bv;
2744 }
2745
2746 /* Compare the names of two integer types, assuming that any sign
2747 qualifiers have been checked already. We do it this way because
2748 there may be an "int" in the name of one of the types. */
2749
2750 static int
2751 integer_types_same_name_p (const char *first, const char *second)
2752 {
2753 int first_p, second_p;
2754
2755 /* If both are shorts, return 1; if neither is a short, keep
2756 checking. */
2757 first_p = (strstr (first, "short") != NULL);
2758 second_p = (strstr (second, "short") != NULL);
2759 if (first_p && second_p)
2760 return 1;
2761 if (first_p || second_p)
2762 return 0;
2763
2764 /* Likewise for long. */
2765 first_p = (strstr (first, "long") != NULL);
2766 second_p = (strstr (second, "long") != NULL);
2767 if (first_p && second_p)
2768 return 1;
2769 if (first_p || second_p)
2770 return 0;
2771
2772 /* Likewise for char. */
2773 first_p = (strstr (first, "char") != NULL);
2774 second_p = (strstr (second, "char") != NULL);
2775 if (first_p && second_p)
2776 return 1;
2777 if (first_p || second_p)
2778 return 0;
2779
2780 /* They must both be ints. */
2781 return 1;
2782 }
2783
2784 /* Compares type A to type B returns 1 if the represent the same type
2785 0 otherwise. */
2786
2787 int
2788 types_equal (struct type *a, struct type *b)
2789 {
2790 /* Identical type pointers. */
2791 /* However, this still doesn't catch all cases of same type for b
2792 and a. The reason is that builtin types are different from
2793 the same ones constructed from the object. */
2794 if (a == b)
2795 return 1;
2796
2797 /* Resolve typedefs */
2798 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2799 a = check_typedef (a);
2800 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2801 b = check_typedef (b);
2802
2803 /* If after resolving typedefs a and b are not of the same type
2804 code then they are not equal. */
2805 if (TYPE_CODE (a) != TYPE_CODE (b))
2806 return 0;
2807
2808 /* If a and b are both pointers types or both reference types then
2809 they are equal of the same type iff the objects they refer to are
2810 of the same type. */
2811 if (TYPE_CODE (a) == TYPE_CODE_PTR
2812 || TYPE_CODE (a) == TYPE_CODE_REF)
2813 return types_equal (TYPE_TARGET_TYPE (a),
2814 TYPE_TARGET_TYPE (b));
2815
2816 /* Well, damnit, if the names are exactly the same, I'll say they
2817 are exactly the same. This happens when we generate method
2818 stubs. The types won't point to the same address, but they
2819 really are the same. */
2820
2821 if (TYPE_NAME (a) && TYPE_NAME (b)
2822 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2823 return 1;
2824
2825 /* Check if identical after resolving typedefs. */
2826 if (a == b)
2827 return 1;
2828
2829 /* Two function types are equal if their argument and return types
2830 are equal. */
2831 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2832 {
2833 int i;
2834
2835 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2836 return 0;
2837
2838 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2839 return 0;
2840
2841 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2842 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2843 return 0;
2844
2845 return 1;
2846 }
2847
2848 return 0;
2849 }
2850 \f
2851 /* Deep comparison of types. */
2852
2853 /* An entry in the type-equality bcache. */
2854
2855 typedef struct type_equality_entry
2856 {
2857 struct type *type1, *type2;
2858 } type_equality_entry_d;
2859
2860 DEF_VEC_O (type_equality_entry_d);
2861
2862 /* A helper function to compare two strings. Returns 1 if they are
2863 the same, 0 otherwise. Handles NULLs properly. */
2864
2865 static int
2866 compare_maybe_null_strings (const char *s, const char *t)
2867 {
2868 if (s == NULL && t != NULL)
2869 return 0;
2870 else if (s != NULL && t == NULL)
2871 return 0;
2872 else if (s == NULL && t== NULL)
2873 return 1;
2874 return strcmp (s, t) == 0;
2875 }
2876
2877 /* A helper function for check_types_worklist that checks two types for
2878 "deep" equality. Returns non-zero if the types are considered the
2879 same, zero otherwise. */
2880
2881 static int
2882 check_types_equal (struct type *type1, struct type *type2,
2883 VEC (type_equality_entry_d) **worklist)
2884 {
2885 CHECK_TYPEDEF (type1);
2886 CHECK_TYPEDEF (type2);
2887
2888 if (type1 == type2)
2889 return 1;
2890
2891 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2892 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2893 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2894 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2895 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2896 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2897 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2898 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2899 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2900 return 0;
2901
2902 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2903 TYPE_TAG_NAME (type2)))
2904 return 0;
2905 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2906 return 0;
2907
2908 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2909 {
2910 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2911 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2912 return 0;
2913 }
2914 else
2915 {
2916 int i;
2917
2918 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2919 {
2920 const struct field *field1 = &TYPE_FIELD (type1, i);
2921 const struct field *field2 = &TYPE_FIELD (type2, i);
2922 struct type_equality_entry entry;
2923
2924 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2925 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2926 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2927 return 0;
2928 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2929 FIELD_NAME (*field2)))
2930 return 0;
2931 switch (FIELD_LOC_KIND (*field1))
2932 {
2933 case FIELD_LOC_KIND_BITPOS:
2934 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2935 return 0;
2936 break;
2937 case FIELD_LOC_KIND_ENUMVAL:
2938 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2939 return 0;
2940 break;
2941 case FIELD_LOC_KIND_PHYSADDR:
2942 if (FIELD_STATIC_PHYSADDR (*field1)
2943 != FIELD_STATIC_PHYSADDR (*field2))
2944 return 0;
2945 break;
2946 case FIELD_LOC_KIND_PHYSNAME:
2947 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2948 FIELD_STATIC_PHYSNAME (*field2)))
2949 return 0;
2950 break;
2951 case FIELD_LOC_KIND_DWARF_BLOCK:
2952 {
2953 struct dwarf2_locexpr_baton *block1, *block2;
2954
2955 block1 = FIELD_DWARF_BLOCK (*field1);
2956 block2 = FIELD_DWARF_BLOCK (*field2);
2957 if (block1->per_cu != block2->per_cu
2958 || block1->size != block2->size
2959 || memcmp (block1->data, block2->data, block1->size) != 0)
2960 return 0;
2961 }
2962 break;
2963 default:
2964 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2965 "%d by check_types_equal"),
2966 FIELD_LOC_KIND (*field1));
2967 }
2968
2969 entry.type1 = FIELD_TYPE (*field1);
2970 entry.type2 = FIELD_TYPE (*field2);
2971 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2972 }
2973 }
2974
2975 if (TYPE_TARGET_TYPE (type1) != NULL)
2976 {
2977 struct type_equality_entry entry;
2978
2979 if (TYPE_TARGET_TYPE (type2) == NULL)
2980 return 0;
2981
2982 entry.type1 = TYPE_TARGET_TYPE (type1);
2983 entry.type2 = TYPE_TARGET_TYPE (type2);
2984 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2985 }
2986 else if (TYPE_TARGET_TYPE (type2) != NULL)
2987 return 0;
2988
2989 return 1;
2990 }
2991
2992 /* Check types on a worklist for equality. Returns zero if any pair
2993 is not equal, non-zero if they are all considered equal. */
2994
2995 static int
2996 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2997 struct bcache *cache)
2998 {
2999 while (!VEC_empty (type_equality_entry_d, *worklist))
3000 {
3001 struct type_equality_entry entry;
3002 int added;
3003
3004 entry = *VEC_last (type_equality_entry_d, *worklist);
3005 VEC_pop (type_equality_entry_d, *worklist);
3006
3007 /* If the type pair has already been visited, we know it is
3008 ok. */
3009 bcache_full (&entry, sizeof (entry), cache, &added);
3010 if (!added)
3011 continue;
3012
3013 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3014 return 0;
3015 }
3016
3017 return 1;
3018 }
3019
3020 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3021 "deep comparison". Otherwise return zero. */
3022
3023 int
3024 types_deeply_equal (struct type *type1, struct type *type2)
3025 {
3026 volatile struct gdb_exception except;
3027 int result = 0;
3028 struct bcache *cache;
3029 VEC (type_equality_entry_d) *worklist = NULL;
3030 struct type_equality_entry entry;
3031
3032 gdb_assert (type1 != NULL && type2 != NULL);
3033
3034 /* Early exit for the simple case. */
3035 if (type1 == type2)
3036 return 1;
3037
3038 cache = bcache_xmalloc (NULL, NULL);
3039
3040 entry.type1 = type1;
3041 entry.type2 = type2;
3042 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3043
3044 TRY_CATCH (except, RETURN_MASK_ALL)
3045 {
3046 result = check_types_worklist (&worklist, cache);
3047 }
3048 /* check_types_worklist calls several nested helper functions,
3049 some of which can raise a GDB Exception, so we just check
3050 and rethrow here. If there is a GDB exception, a comparison
3051 is not capable (or trusted), so exit. */
3052 bcache_xfree (cache);
3053 VEC_free (type_equality_entry_d, worklist);
3054 /* Rethrow if there was a problem. */
3055 if (except.reason < 0)
3056 throw_exception (except);
3057
3058 return result;
3059 }
3060 \f
3061 /* Compare one type (PARM) for compatibility with another (ARG).
3062 * PARM is intended to be the parameter type of a function; and
3063 * ARG is the supplied argument's type. This function tests if
3064 * the latter can be converted to the former.
3065 * VALUE is the argument's value or NULL if none (or called recursively)
3066 *
3067 * Return 0 if they are identical types;
3068 * Otherwise, return an integer which corresponds to how compatible
3069 * PARM is to ARG. The higher the return value, the worse the match.
3070 * Generally the "bad" conversions are all uniformly assigned a 100. */
3071
3072 struct rank
3073 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3074 {
3075 struct rank rank = {0,0};
3076
3077 if (types_equal (parm, arg))
3078 return EXACT_MATCH_BADNESS;
3079
3080 /* Resolve typedefs */
3081 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3082 parm = check_typedef (parm);
3083 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3084 arg = check_typedef (arg);
3085
3086 /* See through references, since we can almost make non-references
3087 references. */
3088 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3089 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3090 REFERENCE_CONVERSION_BADNESS));
3091 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3092 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3093 REFERENCE_CONVERSION_BADNESS));
3094 if (overload_debug)
3095 /* Debugging only. */
3096 fprintf_filtered (gdb_stderr,
3097 "------ Arg is %s [%d], parm is %s [%d]\n",
3098 TYPE_NAME (arg), TYPE_CODE (arg),
3099 TYPE_NAME (parm), TYPE_CODE (parm));
3100
3101 /* x -> y means arg of type x being supplied for parameter of type y. */
3102
3103 switch (TYPE_CODE (parm))
3104 {
3105 case TYPE_CODE_PTR:
3106 switch (TYPE_CODE (arg))
3107 {
3108 case TYPE_CODE_PTR:
3109
3110 /* Allowed pointer conversions are:
3111 (a) pointer to void-pointer conversion. */
3112 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3113 return VOID_PTR_CONVERSION_BADNESS;
3114
3115 /* (b) pointer to ancestor-pointer conversion. */
3116 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3117 TYPE_TARGET_TYPE (arg),
3118 0);
3119 if (rank.subrank >= 0)
3120 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3121
3122 return INCOMPATIBLE_TYPE_BADNESS;
3123 case TYPE_CODE_ARRAY:
3124 if (types_equal (TYPE_TARGET_TYPE (parm),
3125 TYPE_TARGET_TYPE (arg)))
3126 return EXACT_MATCH_BADNESS;
3127 return INCOMPATIBLE_TYPE_BADNESS;
3128 case TYPE_CODE_FUNC:
3129 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3130 case TYPE_CODE_INT:
3131 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3132 {
3133 if (value_as_long (value) == 0)
3134 {
3135 /* Null pointer conversion: allow it to be cast to a pointer.
3136 [4.10.1 of C++ standard draft n3290] */
3137 return NULL_POINTER_CONVERSION_BADNESS;
3138 }
3139 else
3140 {
3141 /* If type checking is disabled, allow the conversion. */
3142 if (!strict_type_checking)
3143 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3144 }
3145 }
3146 /* fall through */
3147 case TYPE_CODE_ENUM:
3148 case TYPE_CODE_FLAGS:
3149 case TYPE_CODE_CHAR:
3150 case TYPE_CODE_RANGE:
3151 case TYPE_CODE_BOOL:
3152 default:
3153 return INCOMPATIBLE_TYPE_BADNESS;
3154 }
3155 case TYPE_CODE_ARRAY:
3156 switch (TYPE_CODE (arg))
3157 {
3158 case TYPE_CODE_PTR:
3159 case TYPE_CODE_ARRAY:
3160 return rank_one_type (TYPE_TARGET_TYPE (parm),
3161 TYPE_TARGET_TYPE (arg), NULL);
3162 default:
3163 return INCOMPATIBLE_TYPE_BADNESS;
3164 }
3165 case TYPE_CODE_FUNC:
3166 switch (TYPE_CODE (arg))
3167 {
3168 case TYPE_CODE_PTR: /* funcptr -> func */
3169 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3170 default:
3171 return INCOMPATIBLE_TYPE_BADNESS;
3172 }
3173 case TYPE_CODE_INT:
3174 switch (TYPE_CODE (arg))
3175 {
3176 case TYPE_CODE_INT:
3177 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3178 {
3179 /* Deal with signed, unsigned, and plain chars and
3180 signed and unsigned ints. */
3181 if (TYPE_NOSIGN (parm))
3182 {
3183 /* This case only for character types. */
3184 if (TYPE_NOSIGN (arg))
3185 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3186 else /* signed/unsigned char -> plain char */
3187 return INTEGER_CONVERSION_BADNESS;
3188 }
3189 else if (TYPE_UNSIGNED (parm))
3190 {
3191 if (TYPE_UNSIGNED (arg))
3192 {
3193 /* unsigned int -> unsigned int, or
3194 unsigned long -> unsigned long */
3195 if (integer_types_same_name_p (TYPE_NAME (parm),
3196 TYPE_NAME (arg)))
3197 return EXACT_MATCH_BADNESS;
3198 else if (integer_types_same_name_p (TYPE_NAME (arg),
3199 "int")
3200 && integer_types_same_name_p (TYPE_NAME (parm),
3201 "long"))
3202 /* unsigned int -> unsigned long */
3203 return INTEGER_PROMOTION_BADNESS;
3204 else
3205 /* unsigned long -> unsigned int */
3206 return INTEGER_CONVERSION_BADNESS;
3207 }
3208 else
3209 {
3210 if (integer_types_same_name_p (TYPE_NAME (arg),
3211 "long")
3212 && integer_types_same_name_p (TYPE_NAME (parm),
3213 "int"))
3214 /* signed long -> unsigned int */
3215 return INTEGER_CONVERSION_BADNESS;
3216 else
3217 /* signed int/long -> unsigned int/long */
3218 return INTEGER_CONVERSION_BADNESS;
3219 }
3220 }
3221 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3222 {
3223 if (integer_types_same_name_p (TYPE_NAME (parm),
3224 TYPE_NAME (arg)))
3225 return EXACT_MATCH_BADNESS;
3226 else if (integer_types_same_name_p (TYPE_NAME (arg),
3227 "int")
3228 && integer_types_same_name_p (TYPE_NAME (parm),
3229 "long"))
3230 return INTEGER_PROMOTION_BADNESS;
3231 else
3232 return INTEGER_CONVERSION_BADNESS;
3233 }
3234 else
3235 return INTEGER_CONVERSION_BADNESS;
3236 }
3237 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3238 return INTEGER_PROMOTION_BADNESS;
3239 else
3240 return INTEGER_CONVERSION_BADNESS;
3241 case TYPE_CODE_ENUM:
3242 case TYPE_CODE_FLAGS:
3243 case TYPE_CODE_CHAR:
3244 case TYPE_CODE_RANGE:
3245 case TYPE_CODE_BOOL:
3246 if (TYPE_DECLARED_CLASS (arg))
3247 return INCOMPATIBLE_TYPE_BADNESS;
3248 return INTEGER_PROMOTION_BADNESS;
3249 case TYPE_CODE_FLT:
3250 return INT_FLOAT_CONVERSION_BADNESS;
3251 case TYPE_CODE_PTR:
3252 return NS_POINTER_CONVERSION_BADNESS;
3253 default:
3254 return INCOMPATIBLE_TYPE_BADNESS;
3255 }
3256 break;
3257 case TYPE_CODE_ENUM:
3258 switch (TYPE_CODE (arg))
3259 {
3260 case TYPE_CODE_INT:
3261 case TYPE_CODE_CHAR:
3262 case TYPE_CODE_RANGE:
3263 case TYPE_CODE_BOOL:
3264 case TYPE_CODE_ENUM:
3265 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3266 return INCOMPATIBLE_TYPE_BADNESS;
3267 return INTEGER_CONVERSION_BADNESS;
3268 case TYPE_CODE_FLT:
3269 return INT_FLOAT_CONVERSION_BADNESS;
3270 default:
3271 return INCOMPATIBLE_TYPE_BADNESS;
3272 }
3273 break;
3274 case TYPE_CODE_CHAR:
3275 switch (TYPE_CODE (arg))
3276 {
3277 case TYPE_CODE_RANGE:
3278 case TYPE_CODE_BOOL:
3279 case TYPE_CODE_ENUM:
3280 if (TYPE_DECLARED_CLASS (arg))
3281 return INCOMPATIBLE_TYPE_BADNESS;
3282 return INTEGER_CONVERSION_BADNESS;
3283 case TYPE_CODE_FLT:
3284 return INT_FLOAT_CONVERSION_BADNESS;
3285 case TYPE_CODE_INT:
3286 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3287 return INTEGER_CONVERSION_BADNESS;
3288 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3289 return INTEGER_PROMOTION_BADNESS;
3290 /* >>> !! else fall through !! <<< */
3291 case TYPE_CODE_CHAR:
3292 /* Deal with signed, unsigned, and plain chars for C++ and
3293 with int cases falling through from previous case. */
3294 if (TYPE_NOSIGN (parm))
3295 {
3296 if (TYPE_NOSIGN (arg))
3297 return EXACT_MATCH_BADNESS;
3298 else
3299 return INTEGER_CONVERSION_BADNESS;
3300 }
3301 else if (TYPE_UNSIGNED (parm))
3302 {
3303 if (TYPE_UNSIGNED (arg))
3304 return EXACT_MATCH_BADNESS;
3305 else
3306 return INTEGER_PROMOTION_BADNESS;
3307 }
3308 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3309 return EXACT_MATCH_BADNESS;
3310 else
3311 return INTEGER_CONVERSION_BADNESS;
3312 default:
3313 return INCOMPATIBLE_TYPE_BADNESS;
3314 }
3315 break;
3316 case TYPE_CODE_RANGE:
3317 switch (TYPE_CODE (arg))
3318 {
3319 case TYPE_CODE_INT:
3320 case TYPE_CODE_CHAR:
3321 case TYPE_CODE_RANGE:
3322 case TYPE_CODE_BOOL:
3323 case TYPE_CODE_ENUM:
3324 return INTEGER_CONVERSION_BADNESS;
3325 case TYPE_CODE_FLT:
3326 return INT_FLOAT_CONVERSION_BADNESS;
3327 default:
3328 return INCOMPATIBLE_TYPE_BADNESS;
3329 }
3330 break;
3331 case TYPE_CODE_BOOL:
3332 switch (TYPE_CODE (arg))
3333 {
3334 /* n3290 draft, section 4.12.1 (conv.bool):
3335
3336 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3337 pointer to member type can be converted to a prvalue of type
3338 bool. A zero value, null pointer value, or null member pointer
3339 value is converted to false; any other value is converted to
3340 true. A prvalue of type std::nullptr_t can be converted to a
3341 prvalue of type bool; the resulting value is false." */
3342 case TYPE_CODE_INT:
3343 case TYPE_CODE_CHAR:
3344 case TYPE_CODE_ENUM:
3345 case TYPE_CODE_FLT:
3346 case TYPE_CODE_MEMBERPTR:
3347 case TYPE_CODE_PTR:
3348 return BOOL_CONVERSION_BADNESS;
3349 case TYPE_CODE_RANGE:
3350 return INCOMPATIBLE_TYPE_BADNESS;
3351 case TYPE_CODE_BOOL:
3352 return EXACT_MATCH_BADNESS;
3353 default:
3354 return INCOMPATIBLE_TYPE_BADNESS;
3355 }
3356 break;
3357 case TYPE_CODE_FLT:
3358 switch (TYPE_CODE (arg))
3359 {
3360 case TYPE_CODE_FLT:
3361 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3362 return FLOAT_PROMOTION_BADNESS;
3363 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3364 return EXACT_MATCH_BADNESS;
3365 else
3366 return FLOAT_CONVERSION_BADNESS;
3367 case TYPE_CODE_INT:
3368 case TYPE_CODE_BOOL:
3369 case TYPE_CODE_ENUM:
3370 case TYPE_CODE_RANGE:
3371 case TYPE_CODE_CHAR:
3372 return INT_FLOAT_CONVERSION_BADNESS;
3373 default:
3374 return INCOMPATIBLE_TYPE_BADNESS;
3375 }
3376 break;
3377 case TYPE_CODE_COMPLEX:
3378 switch (TYPE_CODE (arg))
3379 { /* Strictly not needed for C++, but... */
3380 case TYPE_CODE_FLT:
3381 return FLOAT_PROMOTION_BADNESS;
3382 case TYPE_CODE_COMPLEX:
3383 return EXACT_MATCH_BADNESS;
3384 default:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 }
3387 break;
3388 case TYPE_CODE_STRUCT:
3389 /* currently same as TYPE_CODE_CLASS. */
3390 switch (TYPE_CODE (arg))
3391 {
3392 case TYPE_CODE_STRUCT:
3393 /* Check for derivation */
3394 rank.subrank = distance_to_ancestor (parm, arg, 0);
3395 if (rank.subrank >= 0)
3396 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3397 /* else fall through */
3398 default:
3399 return INCOMPATIBLE_TYPE_BADNESS;
3400 }
3401 break;
3402 case TYPE_CODE_UNION:
3403 switch (TYPE_CODE (arg))
3404 {
3405 case TYPE_CODE_UNION:
3406 default:
3407 return INCOMPATIBLE_TYPE_BADNESS;
3408 }
3409 break;
3410 case TYPE_CODE_MEMBERPTR:
3411 switch (TYPE_CODE (arg))
3412 {
3413 default:
3414 return INCOMPATIBLE_TYPE_BADNESS;
3415 }
3416 break;
3417 case TYPE_CODE_METHOD:
3418 switch (TYPE_CODE (arg))
3419 {
3420
3421 default:
3422 return INCOMPATIBLE_TYPE_BADNESS;
3423 }
3424 break;
3425 case TYPE_CODE_REF:
3426 switch (TYPE_CODE (arg))
3427 {
3428
3429 default:
3430 return INCOMPATIBLE_TYPE_BADNESS;
3431 }
3432
3433 break;
3434 case TYPE_CODE_SET:
3435 switch (TYPE_CODE (arg))
3436 {
3437 /* Not in C++ */
3438 case TYPE_CODE_SET:
3439 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3440 TYPE_FIELD_TYPE (arg, 0), NULL);
3441 default:
3442 return INCOMPATIBLE_TYPE_BADNESS;
3443 }
3444 break;
3445 case TYPE_CODE_VOID:
3446 default:
3447 return INCOMPATIBLE_TYPE_BADNESS;
3448 } /* switch (TYPE_CODE (arg)) */
3449 }
3450
3451 /* End of functions for overload resolution. */
3452 \f
3453 /* Routines to pretty-print types. */
3454
3455 static void
3456 print_bit_vector (B_TYPE *bits, int nbits)
3457 {
3458 int bitno;
3459
3460 for (bitno = 0; bitno < nbits; bitno++)
3461 {
3462 if ((bitno % 8) == 0)
3463 {
3464 puts_filtered (" ");
3465 }
3466 if (B_TST (bits, bitno))
3467 printf_filtered (("1"));
3468 else
3469 printf_filtered (("0"));
3470 }
3471 }
3472
3473 /* Note the first arg should be the "this" pointer, we may not want to
3474 include it since we may get into a infinitely recursive
3475 situation. */
3476
3477 static void
3478 print_arg_types (struct field *args, int nargs, int spaces)
3479 {
3480 if (args != NULL)
3481 {
3482 int i;
3483
3484 for (i = 0; i < nargs; i++)
3485 recursive_dump_type (args[i].type, spaces + 2);
3486 }
3487 }
3488
3489 int
3490 field_is_static (struct field *f)
3491 {
3492 /* "static" fields are the fields whose location is not relative
3493 to the address of the enclosing struct. It would be nice to
3494 have a dedicated flag that would be set for static fields when
3495 the type is being created. But in practice, checking the field
3496 loc_kind should give us an accurate answer. */
3497 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3498 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3499 }
3500
3501 static void
3502 dump_fn_fieldlists (struct type *type, int spaces)
3503 {
3504 int method_idx;
3505 int overload_idx;
3506 struct fn_field *f;
3507
3508 printfi_filtered (spaces, "fn_fieldlists ");
3509 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3510 printf_filtered ("\n");
3511 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3512 {
3513 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3514 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3515 method_idx,
3516 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3517 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3518 gdb_stdout);
3519 printf_filtered (_(") length %d\n"),
3520 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3521 for (overload_idx = 0;
3522 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3523 overload_idx++)
3524 {
3525 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3526 overload_idx,
3527 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3528 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3529 gdb_stdout);
3530 printf_filtered (")\n");
3531 printfi_filtered (spaces + 8, "type ");
3532 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3533 gdb_stdout);
3534 printf_filtered ("\n");
3535
3536 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3537 spaces + 8 + 2);
3538
3539 printfi_filtered (spaces + 8, "args ");
3540 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3541 gdb_stdout);
3542 printf_filtered ("\n");
3543
3544 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3545 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3546 overload_idx)),
3547 spaces);
3548 printfi_filtered (spaces + 8, "fcontext ");
3549 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3550 gdb_stdout);
3551 printf_filtered ("\n");
3552
3553 printfi_filtered (spaces + 8, "is_const %d\n",
3554 TYPE_FN_FIELD_CONST (f, overload_idx));
3555 printfi_filtered (spaces + 8, "is_volatile %d\n",
3556 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3557 printfi_filtered (spaces + 8, "is_private %d\n",
3558 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3559 printfi_filtered (spaces + 8, "is_protected %d\n",
3560 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3561 printfi_filtered (spaces + 8, "is_stub %d\n",
3562 TYPE_FN_FIELD_STUB (f, overload_idx));
3563 printfi_filtered (spaces + 8, "voffset %u\n",
3564 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3565 }
3566 }
3567 }
3568
3569 static void
3570 print_cplus_stuff (struct type *type, int spaces)
3571 {
3572 printfi_filtered (spaces, "n_baseclasses %d\n",
3573 TYPE_N_BASECLASSES (type));
3574 printfi_filtered (spaces, "nfn_fields %d\n",
3575 TYPE_NFN_FIELDS (type));
3576 if (TYPE_N_BASECLASSES (type) > 0)
3577 {
3578 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3579 TYPE_N_BASECLASSES (type));
3580 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3581 gdb_stdout);
3582 printf_filtered (")");
3583
3584 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3585 TYPE_N_BASECLASSES (type));
3586 puts_filtered ("\n");
3587 }
3588 if (TYPE_NFIELDS (type) > 0)
3589 {
3590 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3591 {
3592 printfi_filtered (spaces,
3593 "private_field_bits (%d bits at *",
3594 TYPE_NFIELDS (type));
3595 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3596 gdb_stdout);
3597 printf_filtered (")");
3598 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3599 TYPE_NFIELDS (type));
3600 puts_filtered ("\n");
3601 }
3602 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3603 {
3604 printfi_filtered (spaces,
3605 "protected_field_bits (%d bits at *",
3606 TYPE_NFIELDS (type));
3607 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3608 gdb_stdout);
3609 printf_filtered (")");
3610 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3611 TYPE_NFIELDS (type));
3612 puts_filtered ("\n");
3613 }
3614 }
3615 if (TYPE_NFN_FIELDS (type) > 0)
3616 {
3617 dump_fn_fieldlists (type, spaces);
3618 }
3619 }
3620
3621 /* Print the contents of the TYPE's type_specific union, assuming that
3622 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3623
3624 static void
3625 print_gnat_stuff (struct type *type, int spaces)
3626 {
3627 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3628
3629 recursive_dump_type (descriptive_type, spaces + 2);
3630 }
3631
3632 static struct obstack dont_print_type_obstack;
3633
3634 void
3635 recursive_dump_type (struct type *type, int spaces)
3636 {
3637 int idx;
3638
3639 if (spaces == 0)
3640 obstack_begin (&dont_print_type_obstack, 0);
3641
3642 if (TYPE_NFIELDS (type) > 0
3643 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3644 {
3645 struct type **first_dont_print
3646 = (struct type **) obstack_base (&dont_print_type_obstack);
3647
3648 int i = (struct type **)
3649 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3650
3651 while (--i >= 0)
3652 {
3653 if (type == first_dont_print[i])
3654 {
3655 printfi_filtered (spaces, "type node ");
3656 gdb_print_host_address (type, gdb_stdout);
3657 printf_filtered (_(" <same as already seen type>\n"));
3658 return;
3659 }
3660 }
3661
3662 obstack_ptr_grow (&dont_print_type_obstack, type);
3663 }
3664
3665 printfi_filtered (spaces, "type node ");
3666 gdb_print_host_address (type, gdb_stdout);
3667 printf_filtered ("\n");
3668 printfi_filtered (spaces, "name '%s' (",
3669 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3670 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3671 printf_filtered (")\n");
3672 printfi_filtered (spaces, "tagname '%s' (",
3673 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3674 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3675 printf_filtered (")\n");
3676 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3677 switch (TYPE_CODE (type))
3678 {
3679 case TYPE_CODE_UNDEF:
3680 printf_filtered ("(TYPE_CODE_UNDEF)");
3681 break;
3682 case TYPE_CODE_PTR:
3683 printf_filtered ("(TYPE_CODE_PTR)");
3684 break;
3685 case TYPE_CODE_ARRAY:
3686 printf_filtered ("(TYPE_CODE_ARRAY)");
3687 break;
3688 case TYPE_CODE_STRUCT:
3689 printf_filtered ("(TYPE_CODE_STRUCT)");
3690 break;
3691 case TYPE_CODE_UNION:
3692 printf_filtered ("(TYPE_CODE_UNION)");
3693 break;
3694 case TYPE_CODE_ENUM:
3695 printf_filtered ("(TYPE_CODE_ENUM)");
3696 break;
3697 case TYPE_CODE_FLAGS:
3698 printf_filtered ("(TYPE_CODE_FLAGS)");
3699 break;
3700 case TYPE_CODE_FUNC:
3701 printf_filtered ("(TYPE_CODE_FUNC)");
3702 break;
3703 case TYPE_CODE_INT:
3704 printf_filtered ("(TYPE_CODE_INT)");
3705 break;
3706 case TYPE_CODE_FLT:
3707 printf_filtered ("(TYPE_CODE_FLT)");
3708 break;
3709 case TYPE_CODE_VOID:
3710 printf_filtered ("(TYPE_CODE_VOID)");
3711 break;
3712 case TYPE_CODE_SET:
3713 printf_filtered ("(TYPE_CODE_SET)");
3714 break;
3715 case TYPE_CODE_RANGE:
3716 printf_filtered ("(TYPE_CODE_RANGE)");
3717 break;
3718 case TYPE_CODE_STRING:
3719 printf_filtered ("(TYPE_CODE_STRING)");
3720 break;
3721 case TYPE_CODE_ERROR:
3722 printf_filtered ("(TYPE_CODE_ERROR)");
3723 break;
3724 case TYPE_CODE_MEMBERPTR:
3725 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3726 break;
3727 case TYPE_CODE_METHODPTR:
3728 printf_filtered ("(TYPE_CODE_METHODPTR)");
3729 break;
3730 case TYPE_CODE_METHOD:
3731 printf_filtered ("(TYPE_CODE_METHOD)");
3732 break;
3733 case TYPE_CODE_REF:
3734 printf_filtered ("(TYPE_CODE_REF)");
3735 break;
3736 case TYPE_CODE_CHAR:
3737 printf_filtered ("(TYPE_CODE_CHAR)");
3738 break;
3739 case TYPE_CODE_BOOL:
3740 printf_filtered ("(TYPE_CODE_BOOL)");
3741 break;
3742 case TYPE_CODE_COMPLEX:
3743 printf_filtered ("(TYPE_CODE_COMPLEX)");
3744 break;
3745 case TYPE_CODE_TYPEDEF:
3746 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3747 break;
3748 case TYPE_CODE_NAMESPACE:
3749 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3750 break;
3751 default:
3752 printf_filtered ("(UNKNOWN TYPE CODE)");
3753 break;
3754 }
3755 puts_filtered ("\n");
3756 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3757 if (TYPE_OBJFILE_OWNED (type))
3758 {
3759 printfi_filtered (spaces, "objfile ");
3760 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3761 }
3762 else
3763 {
3764 printfi_filtered (spaces, "gdbarch ");
3765 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3766 }
3767 printf_filtered ("\n");
3768 printfi_filtered (spaces, "target_type ");
3769 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3770 printf_filtered ("\n");
3771 if (TYPE_TARGET_TYPE (type) != NULL)
3772 {
3773 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3774 }
3775 printfi_filtered (spaces, "pointer_type ");
3776 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3777 printf_filtered ("\n");
3778 printfi_filtered (spaces, "reference_type ");
3779 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3780 printf_filtered ("\n");
3781 printfi_filtered (spaces, "type_chain ");
3782 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3783 printf_filtered ("\n");
3784 printfi_filtered (spaces, "instance_flags 0x%x",
3785 TYPE_INSTANCE_FLAGS (type));
3786 if (TYPE_CONST (type))
3787 {
3788 puts_filtered (" TYPE_FLAG_CONST");
3789 }
3790 if (TYPE_VOLATILE (type))
3791 {
3792 puts_filtered (" TYPE_FLAG_VOLATILE");
3793 }
3794 if (TYPE_CODE_SPACE (type))
3795 {
3796 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3797 }
3798 if (TYPE_DATA_SPACE (type))
3799 {
3800 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3801 }
3802 if (TYPE_ADDRESS_CLASS_1 (type))
3803 {
3804 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3805 }
3806 if (TYPE_ADDRESS_CLASS_2 (type))
3807 {
3808 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3809 }
3810 if (TYPE_RESTRICT (type))
3811 {
3812 puts_filtered (" TYPE_FLAG_RESTRICT");
3813 }
3814 puts_filtered ("\n");
3815
3816 printfi_filtered (spaces, "flags");
3817 if (TYPE_UNSIGNED (type))
3818 {
3819 puts_filtered (" TYPE_FLAG_UNSIGNED");
3820 }
3821 if (TYPE_NOSIGN (type))
3822 {
3823 puts_filtered (" TYPE_FLAG_NOSIGN");
3824 }
3825 if (TYPE_STUB (type))
3826 {
3827 puts_filtered (" TYPE_FLAG_STUB");
3828 }
3829 if (TYPE_TARGET_STUB (type))
3830 {
3831 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3832 }
3833 if (TYPE_STATIC (type))
3834 {
3835 puts_filtered (" TYPE_FLAG_STATIC");
3836 }
3837 if (TYPE_PROTOTYPED (type))
3838 {
3839 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3840 }
3841 if (TYPE_INCOMPLETE (type))
3842 {
3843 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3844 }
3845 if (TYPE_VARARGS (type))
3846 {
3847 puts_filtered (" TYPE_FLAG_VARARGS");
3848 }
3849 /* This is used for things like AltiVec registers on ppc. Gcc emits
3850 an attribute for the array type, which tells whether or not we
3851 have a vector, instead of a regular array. */
3852 if (TYPE_VECTOR (type))
3853 {
3854 puts_filtered (" TYPE_FLAG_VECTOR");
3855 }
3856 if (TYPE_FIXED_INSTANCE (type))
3857 {
3858 puts_filtered (" TYPE_FIXED_INSTANCE");
3859 }
3860 if (TYPE_STUB_SUPPORTED (type))
3861 {
3862 puts_filtered (" TYPE_STUB_SUPPORTED");
3863 }
3864 if (TYPE_NOTTEXT (type))
3865 {
3866 puts_filtered (" TYPE_NOTTEXT");
3867 }
3868 puts_filtered ("\n");
3869 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3870 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3871 puts_filtered ("\n");
3872 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3873 {
3874 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3875 printfi_filtered (spaces + 2,
3876 "[%d] enumval %s type ",
3877 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3878 else
3879 printfi_filtered (spaces + 2,
3880 "[%d] bitpos %d bitsize %d type ",
3881 idx, TYPE_FIELD_BITPOS (type, idx),
3882 TYPE_FIELD_BITSIZE (type, idx));
3883 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3884 printf_filtered (" name '%s' (",
3885 TYPE_FIELD_NAME (type, idx) != NULL
3886 ? TYPE_FIELD_NAME (type, idx)
3887 : "<NULL>");
3888 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3889 printf_filtered (")\n");
3890 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3891 {
3892 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3893 }
3894 }
3895 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3896 {
3897 printfi_filtered (spaces, "low %s%s high %s%s\n",
3898 plongest (TYPE_LOW_BOUND (type)),
3899 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3900 plongest (TYPE_HIGH_BOUND (type)),
3901 TYPE_HIGH_BOUND_UNDEFINED (type)
3902 ? " (undefined)" : "");
3903 }
3904 printfi_filtered (spaces, "vptr_basetype ");
3905 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3906 puts_filtered ("\n");
3907 if (TYPE_VPTR_BASETYPE (type) != NULL)
3908 {
3909 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3910 }
3911 printfi_filtered (spaces, "vptr_fieldno %d\n",
3912 TYPE_VPTR_FIELDNO (type));
3913
3914 switch (TYPE_SPECIFIC_FIELD (type))
3915 {
3916 case TYPE_SPECIFIC_CPLUS_STUFF:
3917 printfi_filtered (spaces, "cplus_stuff ");
3918 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3919 gdb_stdout);
3920 puts_filtered ("\n");
3921 print_cplus_stuff (type, spaces);
3922 break;
3923
3924 case TYPE_SPECIFIC_GNAT_STUFF:
3925 printfi_filtered (spaces, "gnat_stuff ");
3926 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3927 puts_filtered ("\n");
3928 print_gnat_stuff (type, spaces);
3929 break;
3930
3931 case TYPE_SPECIFIC_FLOATFORMAT:
3932 printfi_filtered (spaces, "floatformat ");
3933 if (TYPE_FLOATFORMAT (type) == NULL)
3934 puts_filtered ("(null)");
3935 else
3936 {
3937 puts_filtered ("{ ");
3938 if (TYPE_FLOATFORMAT (type)[0] == NULL
3939 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3940 puts_filtered ("(null)");
3941 else
3942 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3943
3944 puts_filtered (", ");
3945 if (TYPE_FLOATFORMAT (type)[1] == NULL
3946 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3947 puts_filtered ("(null)");
3948 else
3949 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3950
3951 puts_filtered (" }");
3952 }
3953 puts_filtered ("\n");
3954 break;
3955
3956 case TYPE_SPECIFIC_FUNC:
3957 printfi_filtered (spaces, "calling_convention %d\n",
3958 TYPE_CALLING_CONVENTION (type));
3959 /* tail_call_list is not printed. */
3960 break;
3961 }
3962
3963 if (spaces == 0)
3964 obstack_free (&dont_print_type_obstack, NULL);
3965 }
3966 \f
3967 /* Trivial helpers for the libiberty hash table, for mapping one
3968 type to another. */
3969
3970 struct type_pair
3971 {
3972 struct type *old, *new;
3973 };
3974
3975 static hashval_t
3976 type_pair_hash (const void *item)
3977 {
3978 const struct type_pair *pair = item;
3979
3980 return htab_hash_pointer (pair->old);
3981 }
3982
3983 static int
3984 type_pair_eq (const void *item_lhs, const void *item_rhs)
3985 {
3986 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3987
3988 return lhs->old == rhs->old;
3989 }
3990
3991 /* Allocate the hash table used by copy_type_recursive to walk
3992 types without duplicates. We use OBJFILE's obstack, because
3993 OBJFILE is about to be deleted. */
3994
3995 htab_t
3996 create_copied_types_hash (struct objfile *objfile)
3997 {
3998 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3999 NULL, &objfile->objfile_obstack,
4000 hashtab_obstack_allocate,
4001 dummy_obstack_deallocate);
4002 }
4003
4004 /* Recursively copy (deep copy) TYPE, if it is associated with
4005 OBJFILE. Return a new type allocated using malloc, a saved type if
4006 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4007 not associated with OBJFILE. */
4008
4009 struct type *
4010 copy_type_recursive (struct objfile *objfile,
4011 struct type *type,
4012 htab_t copied_types)
4013 {
4014 struct type_pair *stored, pair;
4015 void **slot;
4016 struct type *new_type;
4017
4018 if (! TYPE_OBJFILE_OWNED (type))
4019 return type;
4020
4021 /* This type shouldn't be pointing to any types in other objfiles;
4022 if it did, the type might disappear unexpectedly. */
4023 gdb_assert (TYPE_OBJFILE (type) == objfile);
4024
4025 pair.old = type;
4026 slot = htab_find_slot (copied_types, &pair, INSERT);
4027 if (*slot != NULL)
4028 return ((struct type_pair *) *slot)->new;
4029
4030 new_type = alloc_type_arch (get_type_arch (type));
4031
4032 /* We must add the new type to the hash table immediately, in case
4033 we encounter this type again during a recursive call below. */
4034 stored
4035 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4036 stored->old = type;
4037 stored->new = new_type;
4038 *slot = stored;
4039
4040 /* Copy the common fields of types. For the main type, we simply
4041 copy the entire thing and then update specific fields as needed. */
4042 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4043 TYPE_OBJFILE_OWNED (new_type) = 0;
4044 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4045
4046 if (TYPE_NAME (type))
4047 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4048 if (TYPE_TAG_NAME (type))
4049 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4050
4051 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4052 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4053
4054 /* Copy the fields. */
4055 if (TYPE_NFIELDS (type))
4056 {
4057 int i, nfields;
4058
4059 nfields = TYPE_NFIELDS (type);
4060 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4061 for (i = 0; i < nfields; i++)
4062 {
4063 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4064 TYPE_FIELD_ARTIFICIAL (type, i);
4065 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4066 if (TYPE_FIELD_TYPE (type, i))
4067 TYPE_FIELD_TYPE (new_type, i)
4068 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4069 copied_types);
4070 if (TYPE_FIELD_NAME (type, i))
4071 TYPE_FIELD_NAME (new_type, i) =
4072 xstrdup (TYPE_FIELD_NAME (type, i));
4073 switch (TYPE_FIELD_LOC_KIND (type, i))
4074 {
4075 case FIELD_LOC_KIND_BITPOS:
4076 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4077 TYPE_FIELD_BITPOS (type, i));
4078 break;
4079 case FIELD_LOC_KIND_ENUMVAL:
4080 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4081 TYPE_FIELD_ENUMVAL (type, i));
4082 break;
4083 case FIELD_LOC_KIND_PHYSADDR:
4084 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4085 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4086 break;
4087 case FIELD_LOC_KIND_PHYSNAME:
4088 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4089 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4090 i)));
4091 break;
4092 default:
4093 internal_error (__FILE__, __LINE__,
4094 _("Unexpected type field location kind: %d"),
4095 TYPE_FIELD_LOC_KIND (type, i));
4096 }
4097 }
4098 }
4099
4100 /* For range types, copy the bounds information. */
4101 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4102 {
4103 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4104 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4105 }
4106
4107 /* Copy pointers to other types. */
4108 if (TYPE_TARGET_TYPE (type))
4109 TYPE_TARGET_TYPE (new_type) =
4110 copy_type_recursive (objfile,
4111 TYPE_TARGET_TYPE (type),
4112 copied_types);
4113 if (TYPE_VPTR_BASETYPE (type))
4114 TYPE_VPTR_BASETYPE (new_type) =
4115 copy_type_recursive (objfile,
4116 TYPE_VPTR_BASETYPE (type),
4117 copied_types);
4118 /* Maybe copy the type_specific bits.
4119
4120 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4121 base classes and methods. There's no fundamental reason why we
4122 can't, but at the moment it is not needed. */
4123
4124 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4125 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4126 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4127 || TYPE_CODE (type) == TYPE_CODE_UNION
4128 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4129 INIT_CPLUS_SPECIFIC (new_type);
4130
4131 return new_type;
4132 }
4133
4134 /* Make a copy of the given TYPE, except that the pointer & reference
4135 types are not preserved.
4136
4137 This function assumes that the given type has an associated objfile.
4138 This objfile is used to allocate the new type. */
4139
4140 struct type *
4141 copy_type (const struct type *type)
4142 {
4143 struct type *new_type;
4144
4145 gdb_assert (TYPE_OBJFILE_OWNED (type));
4146
4147 new_type = alloc_type_copy (type);
4148 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4149 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4150 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4151 sizeof (struct main_type));
4152
4153 return new_type;
4154 }
4155 \f
4156 /* Helper functions to initialize architecture-specific types. */
4157
4158 /* Allocate a type structure associated with GDBARCH and set its
4159 CODE, LENGTH, and NAME fields. */
4160
4161 struct type *
4162 arch_type (struct gdbarch *gdbarch,
4163 enum type_code code, int length, char *name)
4164 {
4165 struct type *type;
4166
4167 type = alloc_type_arch (gdbarch);
4168 TYPE_CODE (type) = code;
4169 TYPE_LENGTH (type) = length;
4170
4171 if (name)
4172 TYPE_NAME (type) = xstrdup (name);
4173
4174 return type;
4175 }
4176
4177 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4178 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4179 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4180
4181 struct type *
4182 arch_integer_type (struct gdbarch *gdbarch,
4183 int bit, int unsigned_p, char *name)
4184 {
4185 struct type *t;
4186
4187 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4188 if (unsigned_p)
4189 TYPE_UNSIGNED (t) = 1;
4190 if (name && strcmp (name, "char") == 0)
4191 TYPE_NOSIGN (t) = 1;
4192
4193 return t;
4194 }
4195
4196 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4197 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4198 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4199
4200 struct type *
4201 arch_character_type (struct gdbarch *gdbarch,
4202 int bit, int unsigned_p, char *name)
4203 {
4204 struct type *t;
4205
4206 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4207 if (unsigned_p)
4208 TYPE_UNSIGNED (t) = 1;
4209
4210 return t;
4211 }
4212
4213 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4214 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4215 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4216
4217 struct type *
4218 arch_boolean_type (struct gdbarch *gdbarch,
4219 int bit, int unsigned_p, char *name)
4220 {
4221 struct type *t;
4222
4223 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4224 if (unsigned_p)
4225 TYPE_UNSIGNED (t) = 1;
4226
4227 return t;
4228 }
4229
4230 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4231 BIT is the type size in bits; if BIT equals -1, the size is
4232 determined by the floatformat. NAME is the type name. Set the
4233 TYPE_FLOATFORMAT from FLOATFORMATS. */
4234
4235 struct type *
4236 arch_float_type (struct gdbarch *gdbarch,
4237 int bit, char *name, const struct floatformat **floatformats)
4238 {
4239 struct type *t;
4240
4241 if (bit == -1)
4242 {
4243 gdb_assert (floatformats != NULL);
4244 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4245 bit = floatformats[0]->totalsize;
4246 }
4247 gdb_assert (bit >= 0);
4248
4249 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4250 TYPE_FLOATFORMAT (t) = floatformats;
4251 return t;
4252 }
4253
4254 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4255 NAME is the type name. TARGET_TYPE is the component float type. */
4256
4257 struct type *
4258 arch_complex_type (struct gdbarch *gdbarch,
4259 char *name, struct type *target_type)
4260 {
4261 struct type *t;
4262
4263 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4264 2 * TYPE_LENGTH (target_type), name);
4265 TYPE_TARGET_TYPE (t) = target_type;
4266 return t;
4267 }
4268
4269 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4270 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4271
4272 struct type *
4273 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4274 {
4275 int nfields = length * TARGET_CHAR_BIT;
4276 struct type *type;
4277
4278 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4279 TYPE_UNSIGNED (type) = 1;
4280 TYPE_NFIELDS (type) = nfields;
4281 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4282
4283 return type;
4284 }
4285
4286 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4287 position BITPOS is called NAME. */
4288
4289 void
4290 append_flags_type_flag (struct type *type, int bitpos, char *name)
4291 {
4292 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4293 gdb_assert (bitpos < TYPE_NFIELDS (type));
4294 gdb_assert (bitpos >= 0);
4295
4296 if (name)
4297 {
4298 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4299 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4300 }
4301 else
4302 {
4303 /* Don't show this field to the user. */
4304 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4305 }
4306 }
4307
4308 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4309 specified by CODE) associated with GDBARCH. NAME is the type name. */
4310
4311 struct type *
4312 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4313 {
4314 struct type *t;
4315
4316 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4317 t = arch_type (gdbarch, code, 0, NULL);
4318 TYPE_TAG_NAME (t) = name;
4319 INIT_CPLUS_SPECIFIC (t);
4320 return t;
4321 }
4322
4323 /* Add new field with name NAME and type FIELD to composite type T.
4324 Do not set the field's position or adjust the type's length;
4325 the caller should do so. Return the new field. */
4326
4327 struct field *
4328 append_composite_type_field_raw (struct type *t, char *name,
4329 struct type *field)
4330 {
4331 struct field *f;
4332
4333 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4334 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4335 sizeof (struct field) * TYPE_NFIELDS (t));
4336 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4337 memset (f, 0, sizeof f[0]);
4338 FIELD_TYPE (f[0]) = field;
4339 FIELD_NAME (f[0]) = name;
4340 return f;
4341 }
4342
4343 /* Add new field with name NAME and type FIELD to composite type T.
4344 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4345
4346 void
4347 append_composite_type_field_aligned (struct type *t, char *name,
4348 struct type *field, int alignment)
4349 {
4350 struct field *f = append_composite_type_field_raw (t, name, field);
4351
4352 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4353 {
4354 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4355 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4356 }
4357 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4358 {
4359 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4360 if (TYPE_NFIELDS (t) > 1)
4361 {
4362 SET_FIELD_BITPOS (f[0],
4363 (FIELD_BITPOS (f[-1])
4364 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4365 * TARGET_CHAR_BIT)));
4366
4367 if (alignment)
4368 {
4369 int left;
4370
4371 alignment *= TARGET_CHAR_BIT;
4372 left = FIELD_BITPOS (f[0]) % alignment;
4373
4374 if (left)
4375 {
4376 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4377 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4378 }
4379 }
4380 }
4381 }
4382 }
4383
4384 /* Add new field with name NAME and type FIELD to composite type T. */
4385
4386 void
4387 append_composite_type_field (struct type *t, char *name,
4388 struct type *field)
4389 {
4390 append_composite_type_field_aligned (t, name, field, 0);
4391 }
4392
4393 static struct gdbarch_data *gdbtypes_data;
4394
4395 const struct builtin_type *
4396 builtin_type (struct gdbarch *gdbarch)
4397 {
4398 return gdbarch_data (gdbarch, gdbtypes_data);
4399 }
4400
4401 static void *
4402 gdbtypes_post_init (struct gdbarch *gdbarch)
4403 {
4404 struct builtin_type *builtin_type
4405 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4406
4407 /* Basic types. */
4408 builtin_type->builtin_void
4409 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4410 builtin_type->builtin_char
4411 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4412 !gdbarch_char_signed (gdbarch), "char");
4413 builtin_type->builtin_signed_char
4414 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4415 0, "signed char");
4416 builtin_type->builtin_unsigned_char
4417 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4418 1, "unsigned char");
4419 builtin_type->builtin_short
4420 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4421 0, "short");
4422 builtin_type->builtin_unsigned_short
4423 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4424 1, "unsigned short");
4425 builtin_type->builtin_int
4426 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4427 0, "int");
4428 builtin_type->builtin_unsigned_int
4429 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4430 1, "unsigned int");
4431 builtin_type->builtin_long
4432 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4433 0, "long");
4434 builtin_type->builtin_unsigned_long
4435 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4436 1, "unsigned long");
4437 builtin_type->builtin_long_long
4438 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4439 0, "long long");
4440 builtin_type->builtin_unsigned_long_long
4441 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4442 1, "unsigned long long");
4443 builtin_type->builtin_float
4444 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4445 "float", gdbarch_float_format (gdbarch));
4446 builtin_type->builtin_double
4447 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4448 "double", gdbarch_double_format (gdbarch));
4449 builtin_type->builtin_long_double
4450 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4451 "long double", gdbarch_long_double_format (gdbarch));
4452 builtin_type->builtin_complex
4453 = arch_complex_type (gdbarch, "complex",
4454 builtin_type->builtin_float);
4455 builtin_type->builtin_double_complex
4456 = arch_complex_type (gdbarch, "double complex",
4457 builtin_type->builtin_double);
4458 builtin_type->builtin_string
4459 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4460 builtin_type->builtin_bool
4461 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4462
4463 /* The following three are about decimal floating point types, which
4464 are 32-bits, 64-bits and 128-bits respectively. */
4465 builtin_type->builtin_decfloat
4466 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4467 builtin_type->builtin_decdouble
4468 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4469 builtin_type->builtin_declong
4470 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4471
4472 /* "True" character types. */
4473 builtin_type->builtin_true_char
4474 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4475 builtin_type->builtin_true_unsigned_char
4476 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4477
4478 /* Fixed-size integer types. */
4479 builtin_type->builtin_int0
4480 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4481 builtin_type->builtin_int8
4482 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4483 builtin_type->builtin_uint8
4484 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4485 builtin_type->builtin_int16
4486 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4487 builtin_type->builtin_uint16
4488 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4489 builtin_type->builtin_int32
4490 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4491 builtin_type->builtin_uint32
4492 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4493 builtin_type->builtin_int64
4494 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4495 builtin_type->builtin_uint64
4496 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4497 builtin_type->builtin_int128
4498 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4499 builtin_type->builtin_uint128
4500 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4501 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4502 TYPE_INSTANCE_FLAG_NOTTEXT;
4503 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4504 TYPE_INSTANCE_FLAG_NOTTEXT;
4505
4506 /* Wide character types. */
4507 builtin_type->builtin_char16
4508 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4509 builtin_type->builtin_char32
4510 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4511
4512
4513 /* Default data/code pointer types. */
4514 builtin_type->builtin_data_ptr
4515 = lookup_pointer_type (builtin_type->builtin_void);
4516 builtin_type->builtin_func_ptr
4517 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4518 builtin_type->builtin_func_func
4519 = lookup_function_type (builtin_type->builtin_func_ptr);
4520
4521 /* This type represents a GDB internal function. */
4522 builtin_type->internal_fn
4523 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4524 "<internal function>");
4525
4526 /* This type represents an xmethod. */
4527 builtin_type->xmethod
4528 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4529
4530 return builtin_type;
4531 }
4532
4533 /* This set of objfile-based types is intended to be used by symbol
4534 readers as basic types. */
4535
4536 static const struct objfile_data *objfile_type_data;
4537
4538 const struct objfile_type *
4539 objfile_type (struct objfile *objfile)
4540 {
4541 struct gdbarch *gdbarch;
4542 struct objfile_type *objfile_type
4543 = objfile_data (objfile, objfile_type_data);
4544
4545 if (objfile_type)
4546 return objfile_type;
4547
4548 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4549 1, struct objfile_type);
4550
4551 /* Use the objfile architecture to determine basic type properties. */
4552 gdbarch = get_objfile_arch (objfile);
4553
4554 /* Basic types. */
4555 objfile_type->builtin_void
4556 = init_type (TYPE_CODE_VOID, 1,
4557 0,
4558 "void", objfile);
4559
4560 objfile_type->builtin_char
4561 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4562 (TYPE_FLAG_NOSIGN
4563 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4564 "char", objfile);
4565 objfile_type->builtin_signed_char
4566 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4567 0,
4568 "signed char", objfile);
4569 objfile_type->builtin_unsigned_char
4570 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4571 TYPE_FLAG_UNSIGNED,
4572 "unsigned char", objfile);
4573 objfile_type->builtin_short
4574 = init_type (TYPE_CODE_INT,
4575 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4576 0, "short", objfile);
4577 objfile_type->builtin_unsigned_short
4578 = init_type (TYPE_CODE_INT,
4579 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4580 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4581 objfile_type->builtin_int
4582 = init_type (TYPE_CODE_INT,
4583 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4584 0, "int", objfile);
4585 objfile_type->builtin_unsigned_int
4586 = init_type (TYPE_CODE_INT,
4587 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4588 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4589 objfile_type->builtin_long
4590 = init_type (TYPE_CODE_INT,
4591 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4592 0, "long", objfile);
4593 objfile_type->builtin_unsigned_long
4594 = init_type (TYPE_CODE_INT,
4595 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4596 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4597 objfile_type->builtin_long_long
4598 = init_type (TYPE_CODE_INT,
4599 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4600 0, "long long", objfile);
4601 objfile_type->builtin_unsigned_long_long
4602 = init_type (TYPE_CODE_INT,
4603 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4604 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4605
4606 objfile_type->builtin_float
4607 = init_type (TYPE_CODE_FLT,
4608 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4609 0, "float", objfile);
4610 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4611 = gdbarch_float_format (gdbarch);
4612 objfile_type->builtin_double
4613 = init_type (TYPE_CODE_FLT,
4614 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4615 0, "double", objfile);
4616 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4617 = gdbarch_double_format (gdbarch);
4618 objfile_type->builtin_long_double
4619 = init_type (TYPE_CODE_FLT,
4620 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4621 0, "long double", objfile);
4622 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4623 = gdbarch_long_double_format (gdbarch);
4624
4625 /* This type represents a type that was unrecognized in symbol read-in. */
4626 objfile_type->builtin_error
4627 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4628
4629 /* The following set of types is used for symbols with no
4630 debug information. */
4631 objfile_type->nodebug_text_symbol
4632 = init_type (TYPE_CODE_FUNC, 1, 0,
4633 "<text variable, no debug info>", objfile);
4634 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4635 = objfile_type->builtin_int;
4636 objfile_type->nodebug_text_gnu_ifunc_symbol
4637 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4638 "<text gnu-indirect-function variable, no debug info>",
4639 objfile);
4640 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4641 = objfile_type->nodebug_text_symbol;
4642 objfile_type->nodebug_got_plt_symbol
4643 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4644 "<text from jump slot in .got.plt, no debug info>",
4645 objfile);
4646 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4647 = objfile_type->nodebug_text_symbol;
4648 objfile_type->nodebug_data_symbol
4649 = init_type (TYPE_CODE_INT,
4650 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4651 "<data variable, no debug info>", objfile);
4652 objfile_type->nodebug_unknown_symbol
4653 = init_type (TYPE_CODE_INT, 1, 0,
4654 "<variable (not text or data), no debug info>", objfile);
4655 objfile_type->nodebug_tls_symbol
4656 = init_type (TYPE_CODE_INT,
4657 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4658 "<thread local variable, no debug info>", objfile);
4659
4660 /* NOTE: on some targets, addresses and pointers are not necessarily
4661 the same.
4662
4663 The upshot is:
4664 - gdb's `struct type' always describes the target's
4665 representation.
4666 - gdb's `struct value' objects should always hold values in
4667 target form.
4668 - gdb's CORE_ADDR values are addresses in the unified virtual
4669 address space that the assembler and linker work with. Thus,
4670 since target_read_memory takes a CORE_ADDR as an argument, it
4671 can access any memory on the target, even if the processor has
4672 separate code and data address spaces.
4673
4674 In this context, objfile_type->builtin_core_addr is a bit odd:
4675 it's a target type for a value the target will never see. It's
4676 only used to hold the values of (typeless) linker symbols, which
4677 are indeed in the unified virtual address space. */
4678
4679 objfile_type->builtin_core_addr
4680 = init_type (TYPE_CODE_INT,
4681 gdbarch_addr_bit (gdbarch) / 8,
4682 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4683
4684 set_objfile_data (objfile, objfile_type_data, objfile_type);
4685 return objfile_type;
4686 }
4687
4688 extern initialize_file_ftype _initialize_gdbtypes;
4689
4690 void
4691 _initialize_gdbtypes (void)
4692 {
4693 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4694 objfile_type_data = register_objfile_data ();
4695
4696 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4697 _("Set debugging of C++ overloading."),
4698 _("Show debugging of C++ overloading."),
4699 _("When enabled, ranking of the "
4700 "functions is displayed."),
4701 NULL,
4702 show_overload_debug,
4703 &setdebuglist, &showdebuglist);
4704
4705 /* Add user knob for controlling resolution of opaque types. */
4706 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4707 &opaque_type_resolution,
4708 _("Set resolution of opaque struct/class/union"
4709 " types (if set before loading symbols)."),
4710 _("Show resolution of opaque struct/class/union"
4711 " types (if set before loading symbols)."),
4712 NULL, NULL,
4713 show_opaque_type_resolution,
4714 &setlist, &showlist);
4715
4716 /* Add an option to permit non-strict type checking. */
4717 add_setshow_boolean_cmd ("type", class_support,
4718 &strict_type_checking,
4719 _("Set strict type checking."),
4720 _("Show strict type checking."),
4721 NULL, NULL,
4722 show_strict_type_checking,
4723 &setchecklist, &showchecklist);
4724 }
This page took 0.127328 seconds and 4 git commands to generate.