f1f4ec52c7bbeb0928aaa36b314d99282c60dfd5
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121 };
122
123 /* Should opaque types be resolved? */
124
125 static bool opaque_type_resolution = true;
126
127 /* See gdbtypes.h. */
128
129 unsigned int overload_debug = 0;
130
131 /* A flag to enable strict type checking. */
132
133 static bool strict_type_checking = true;
134
135 /* A function to show whether opaque types are resolved. */
136
137 static void
138 show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
140 const char *value)
141 {
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
144 value);
145 }
146
147 /* A function to show whether C++ overload debugging is enabled. */
148
149 static void
150 show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
155 }
156
157 /* A function to show the status of strict type checking. */
158
159 static void
160 show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164 }
165
166 \f
167 /* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
170
171 struct type *
172 alloc_type (struct objfile *objfile)
173 {
174 struct type *type;
175
176 gdb_assert (objfile != NULL);
177
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
183
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
186
187 /* Initialize the fields that might not be zero. */
188
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
191
192 return type;
193 }
194
195 /* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
198
199 struct type *
200 alloc_type_arch (struct gdbarch *gdbarch)
201 {
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220 }
221
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226 struct type *
227 alloc_type_copy (const struct type *type)
228 {
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233 }
234
235 /* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238 struct gdbarch *
239 get_type_arch (const struct type *type)
240 {
241 struct gdbarch *arch;
242
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
245 else
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
254 }
255
256 /* See gdbtypes.h. */
257
258 struct type *
259 get_target_type (struct type *type)
260 {
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269 }
270
271 /* See gdbtypes.h. */
272
273 unsigned int
274 type_length_units (struct type *type)
275 {
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280 }
281
282 /* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286 static struct type *
287 alloc_type_instance (struct type *oldtype)
288 {
289 struct type *type;
290
291 /* Allocate the structure. */
292
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
295 else
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
303 return type;
304 }
305
306 /* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
308
309 static void
310 smash_type (struct type *type)
311 {
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325 }
326
327 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332 struct type *
333 make_pointer_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_POINTER_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
369 /* FIXME! Assumes the machine has only one representation for pointers! */
370
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394 struct type *
395 lookup_pointer_type (struct type *type)
396 {
397 return make_pointer_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406 struct type *
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409 {
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
458
459 *reftype = ntype;
460
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
469 return ntype;
470 }
471
472 /* Same as above, but caller doesn't care about memory allocation
473 details. */
474
475 struct type *
476 lookup_reference_type (struct type *type, enum type_code refcode)
477 {
478 return make_reference_type (type, (struct type **) 0, refcode);
479 }
480
481 /* Lookup the lvalue reference type for the type TYPE. */
482
483 struct type *
484 lookup_lvalue_reference_type (struct type *type)
485 {
486 return lookup_reference_type (type, TYPE_CODE_REF);
487 }
488
489 /* Lookup the rvalue reference type for the type TYPE. */
490
491 struct type *
492 lookup_rvalue_reference_type (struct type *type)
493 {
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
495 }
496
497 /* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
501
502 struct type *
503 make_function_type (struct type *type, struct type **typeptr)
504 {
505 struct type *ntype; /* New type */
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
509 ntype = alloc_type_copy (type);
510 if (typeptr)
511 *typeptr = ntype;
512 }
513 else /* We have storage, but need to reset it. */
514 {
515 ntype = *typeptr;
516 smash_type (ntype);
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
523
524 INIT_FUNC_SPECIFIC (ntype);
525
526 return ntype;
527 }
528
529 /* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532 struct type *
533 lookup_function_type (struct type *type)
534 {
535 return make_function_type (type, (struct type **) 0);
536 }
537
538 /* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
541
542 struct type *
543 lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546 {
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
550 if (nparams > 0)
551 {
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 fn->set_has_varargs (true);
556 }
557 else if (check_typedef (param_types[nparams - 1])->code ()
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 fn->set_is_prototyped (true);
564 }
565 else
566 fn->set_is_prototyped (true);
567 }
568
569 fn->set_num_fields (nparams);
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
574
575 return fn;
576 }
577
578 /* Identify address space identifier by name -- return a
579 type_instance_flags. */
580
581 type_instance_flags
582 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
583 const char *space_identifier)
584 {
585 type_instance_flags type_flags;
586
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
596 return type_flags;
597 else
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
599 }
600
601 /* Identify address space identifier by type_instance_flags and return
602 the string version of the adress space name. */
603
604 const char *
605 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
607 {
608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 return "code";
610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 return "data";
612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
615 else
616 return NULL;
617 }
618
619 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
623
624 static struct type *
625 make_qualified_type (struct type *type, type_instance_flags new_flags,
626 struct type *storage)
627 {
628 struct type *ntype;
629
630 ntype = type;
631 do
632 {
633 if (ntype->instance_flags () == new_flags)
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
638
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
654
655 /* Pointers or references to the original type are not relevant to
656 the new type. */
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
665 ntype->set_instance_flags (new_flags);
666
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
670 return ntype;
671 }
672
673 /* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
681
682 struct type *
683 make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
685 {
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
691
692 return make_qualified_type (type, new_flags, NULL);
693 }
694
695 /* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
700
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
706
707 struct type *
708 make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
711 {
712 struct type *ntype; /* New type */
713
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
717
718 if (cnst)
719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
720
721 if (voltl)
722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
723
724 if (typeptr && *typeptr != NULL)
725 {
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
739 }
740
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
743
744 if (typeptr != NULL)
745 *typeptr = ntype;
746
747 return ntype;
748 }
749
750 /* Make a 'restrict'-qualified version of TYPE. */
751
752 struct type *
753 make_restrict_type (struct type *type)
754 {
755 return make_qualified_type (type,
756 (type->instance_flags ()
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759 }
760
761 /* Make a type without const, volatile, or restrict. */
762
763 struct type *
764 make_unqualified_type (struct type *type)
765 {
766 return make_qualified_type (type,
767 (type->instance_flags ()
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772 }
773
774 /* Make a '_Atomic'-qualified version of TYPE. */
775
776 struct type *
777 make_atomic_type (struct type *type)
778 {
779 return make_qualified_type (type,
780 (type->instance_flags ()
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783 }
784
785 /* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
788
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
794
795 void
796 replace_type (struct type *ntype, struct type *type)
797 {
798 struct type *chain;
799
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
805
806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
807
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
810 chain = ntype;
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
825
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
828 gdb_assert (ntype->instance_flags () == type->instance_flags ());
829 }
830
831 /* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836 struct type *
837 lookup_memberptr_type (struct type *type, struct type *domain)
838 {
839 struct type *mtype;
840
841 mtype = alloc_type_copy (type);
842 smash_to_memberptr_type (mtype, domain, type);
843 return mtype;
844 }
845
846 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848 struct type *
849 lookup_methodptr_type (struct type *to_type)
850 {
851 struct type *mtype;
852
853 mtype = alloc_type_copy (to_type);
854 smash_to_methodptr_type (mtype, to_type);
855 return mtype;
856 }
857
858 /* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
863
864 struct type *
865 allocate_stub_method (struct type *type)
866 {
867 struct type *mtype;
868
869 mtype = alloc_type_copy (type);
870 mtype->set_code (TYPE_CODE_METHOD);
871 TYPE_LENGTH (mtype) = 1;
872 mtype->set_is_stub (true);
873 TYPE_TARGET_TYPE (mtype) = type;
874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
875 return mtype;
876 }
877
878 /* See gdbtypes.h. */
879
880 bool
881 operator== (const dynamic_prop &l, const dynamic_prop &r)
882 {
883 if (l.kind () != r.kind ())
884 return false;
885
886 switch (l.kind ())
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
891 return l.const_val () == r.const_val ();
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
895 return l.baton () == r.baton ();
896 case PROP_VARIANT_PARTS:
897 return l.variant_parts () == r.variant_parts ();
898 case PROP_TYPE:
899 return l.original_type () == r.original_type ();
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903 }
904
905 /* See gdbtypes.h. */
906
907 bool
908 operator== (const range_bounds &l, const range_bounds &r)
909 {
910 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
917
918 #undef FIELD_EQ
919 }
920
921 /* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
923
924 struct type *
925 create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
929 {
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
935 if (result_type == NULL)
936 result_type = alloc_type_copy (index_type);
937 result_type->set_code (TYPE_CODE_RANGE);
938 TYPE_TARGET_TYPE (result_type) = index_type;
939 if (index_type->is_stub ())
940 result_type->set_target_is_stub (true);
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
943
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
949 bounds->stride.set_const_val (0);
950
951 result_type->set_bounds (bounds);
952
953 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
954 result_type->set_is_unsigned (true);
955
956 /* Ada allows the declaration of range types whose upper bound is
957 less than the lower bound, so checking the lower bound is not
958 enough. Make sure we do not mark a range type whose upper bound
959 is negative as unsigned. */
960 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
961 result_type->set_is_unsigned (false);
962
963 result_type->set_endianity_is_not_default
964 (index_type->endianity_is_not_default ());
965
966 return result_type;
967 }
968
969 /* See gdbtypes.h. */
970
971 struct type *
972 create_range_type_with_stride (struct type *result_type,
973 struct type *index_type,
974 const struct dynamic_prop *low_bound,
975 const struct dynamic_prop *high_bound,
976 LONGEST bias,
977 const struct dynamic_prop *stride,
978 bool byte_stride_p)
979 {
980 result_type = create_range_type (result_type, index_type, low_bound,
981 high_bound, bias);
982
983 gdb_assert (stride != nullptr);
984 result_type->bounds ()->stride = *stride;
985 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
986
987 return result_type;
988 }
989
990
991
992 /* Create a range type using either a blank type supplied in
993 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 INDEX_TYPE.
995
996 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
997 to HIGH_BOUND, inclusive.
998
999 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1000 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001
1002 struct type *
1003 create_static_range_type (struct type *result_type, struct type *index_type,
1004 LONGEST low_bound, LONGEST high_bound)
1005 {
1006 struct dynamic_prop low, high;
1007
1008 low.set_const_val (low_bound);
1009 high.set_const_val (high_bound);
1010
1011 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1012
1013 return result_type;
1014 }
1015
1016 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1017 are static, otherwise returns 0. */
1018
1019 static bool
1020 has_static_range (const struct range_bounds *bounds)
1021 {
1022 /* If the range doesn't have a defined stride then its stride field will
1023 be initialized to the constant 0. */
1024 return (bounds->low.kind () == PROP_CONST
1025 && bounds->high.kind () == PROP_CONST
1026 && bounds->stride.kind () == PROP_CONST);
1027 }
1028
1029
1030 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1031 TYPE.
1032
1033 Return 1 if type is a range type with two defined, constant bounds.
1034 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1035 Else, return -1. */
1036
1037 int
1038 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1039 {
1040 type = check_typedef (type);
1041 switch (type->code ())
1042 {
1043 case TYPE_CODE_RANGE:
1044 /* This function currently only works for ranges with two defined,
1045 constant bounds. */
1046 if (type->bounds ()->low.kind () != PROP_CONST
1047 || type->bounds ()->high.kind () != PROP_CONST)
1048 return -1;
1049
1050 *lowp = type->bounds ()->low.const_val ();
1051 *highp = type->bounds ()->high.const_val ();
1052
1053 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 {
1055 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1056 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1057 return 0;
1058 }
1059 return 1;
1060 case TYPE_CODE_ENUM:
1061 if (type->num_fields () > 0)
1062 {
1063 /* The enums may not be sorted by value, so search all
1064 entries. */
1065 int i;
1066
1067 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1068 for (i = 0; i < type->num_fields (); i++)
1069 {
1070 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1071 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1072 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1073 *highp = TYPE_FIELD_ENUMVAL (type, i);
1074 }
1075
1076 /* Set unsigned indicator if warranted. */
1077 if (*lowp >= 0)
1078 type->set_is_unsigned (true);
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1092 return -1;
1093 if (!type->is_unsigned ())
1094 {
1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
1099 /* fall through */
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111 }
1112
1113 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
1117 Return 1 if the operation was successful. Return zero otherwise,
1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1119
1120 int
1121 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122 {
1123 struct type *index = type->index_type ();
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142 }
1143
1144 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156 */
1157
1158 int
1159 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160 {
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
1164 if (type->code () == TYPE_CODE_ENUM)
1165 {
1166 int i;
1167
1168 for (i = 0; i < type->num_fields (); i += 1)
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184 }
1185
1186 /* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190 static bool
1191 update_static_array_size (struct type *type)
1192 {
1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1194
1195 struct type *range_type = type->index_type ();
1196
1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1198 && has_static_range (range_type->bounds ())
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
1212 stride = range_type->bit_stride ();
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242 }
1243
1244 /* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
1265
1266 struct type *
1267 create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
1270 struct dynamic_prop *byte_stride_prop,
1271 unsigned int bit_stride)
1272 {
1273 if (byte_stride_prop != NULL
1274 && byte_stride_prop->kind () == PROP_CONST)
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
1280 bit_stride = byte_stride_prop->const_val () * 8;
1281 byte_stride_prop = NULL;
1282 }
1283
1284 if (result_type == NULL)
1285 result_type = alloc_type_copy (range_type);
1286
1287 result_type->set_code (TYPE_CODE_ARRAY);
1288 TYPE_TARGET_TYPE (result_type) = element_type;
1289
1290 result_type->set_num_fields (1);
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1293 result_type->set_index_type (range_type);
1294 if (byte_stride_prop != NULL)
1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1298
1299 if (!update_static_array_size (result_type))
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1311 if (TYPE_LENGTH (result_type) == 0)
1312 result_type->set_target_is_stub (true);
1313
1314 return result_type;
1315 }
1316
1317 /* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320 struct type *
1321 create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324 {
1325 return create_array_type_with_stride (result_type, element_type,
1326 range_type, NULL, 0);
1327 }
1328
1329 struct type *
1330 lookup_array_range_type (struct type *element_type,
1331 LONGEST low_bound, LONGEST high_bound)
1332 {
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
1342
1343 return create_array_type (NULL, element_type, range_type);
1344 }
1345
1346 /* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
1357
1358 struct type *
1359 create_string_type (struct type *result_type,
1360 struct type *string_char_type,
1361 struct type *range_type)
1362 {
1363 result_type = create_array_type (result_type,
1364 string_char_type,
1365 range_type);
1366 result_type->set_code (TYPE_CODE_STRING);
1367 return result_type;
1368 }
1369
1370 struct type *
1371 lookup_string_range_type (struct type *string_char_type,
1372 LONGEST low_bound, LONGEST high_bound)
1373 {
1374 struct type *result_type;
1375
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
1378 result_type->set_code (TYPE_CODE_STRING);
1379 return result_type;
1380 }
1381
1382 struct type *
1383 create_set_type (struct type *result_type, struct type *domain_type)
1384 {
1385 if (result_type == NULL)
1386 result_type = alloc_type_copy (domain_type);
1387
1388 result_type->set_code (TYPE_CODE_SET);
1389 result_type->set_num_fields (1);
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1392
1393 if (!domain_type->is_stub ())
1394 {
1395 LONGEST low_bound, high_bound, bit_length;
1396
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1402 if (low_bound >= 0)
1403 result_type->set_is_unsigned (true);
1404 }
1405 result_type->field (0).set_type (domain_type);
1406
1407 return result_type;
1408 }
1409
1410 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413 void
1414 make_vector_type (struct type *array_type)
1415 {
1416 struct type *inner_array, *elt_type;
1417
1418 /* Find the innermost array type, in case the array is
1419 multi-dimensional. */
1420 inner_array = array_type;
1421 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1422 inner_array = TYPE_TARGET_TYPE (inner_array);
1423
1424 elt_type = TYPE_TARGET_TYPE (inner_array);
1425 if (elt_type->code () == TYPE_CODE_INT)
1426 {
1427 type_instance_flags flags
1428 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
1433 array_type->set_is_vector (true);
1434 }
1435
1436 struct type *
1437 init_vector_type (struct type *elt_type, int n)
1438 {
1439 struct type *array_type;
1440
1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1442 make_vector_type (array_type);
1443 return array_type;
1444 }
1445
1446 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452 struct type *
1453 internal_type_self_type (struct type *type)
1454 {
1455 switch (type->code ())
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471 }
1472
1473 /* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478 void
1479 set_type_self_type (struct type *type, struct type *self_type)
1480 {
1481 switch (type->code ())
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499 }
1500
1501 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
1507
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
1510 allocated. */
1511
1512 void
1513 smash_to_memberptr_type (struct type *type, struct type *self_type,
1514 struct type *to_type)
1515 {
1516 smash_type (type);
1517 type->set_code (TYPE_CODE_MEMBERPTR);
1518 TYPE_TARGET_TYPE (type) = to_type;
1519 set_type_self_type (type, self_type);
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1524 }
1525
1526 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532 void
1533 smash_to_methodptr_type (struct type *type, struct type *to_type)
1534 {
1535 smash_type (type);
1536 type->set_code (TYPE_CODE_METHODPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1540 }
1541
1542 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1543 METHOD just means `function that gets an extra "this" argument'.
1544
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
1547 allocated. */
1548
1549 void
1550 smash_to_method_type (struct type *type, struct type *self_type,
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
1553 {
1554 smash_type (type);
1555 type->set_code (TYPE_CODE_METHOD);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, self_type);
1558 type->set_fields (args);
1559 type->set_num_fields (nargs);
1560 if (varargs)
1561 type->set_has_varargs (true);
1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1563 }
1564
1565 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572 const char *
1573 type_name_or_error (struct type *type)
1574 {
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
1579 type = check_typedef (type);
1580
1581 name = type->name ();
1582 if (name != NULL)
1583 return name;
1584
1585 name = saved_type->name ();
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
1590 }
1591
1592 /* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
1595
1596 struct type *
1597 lookup_typename (const struct language_defn *language,
1598 const char *name,
1599 const struct block *block, int noerr)
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1604 language->la_language, NULL).symbol;
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
1611 }
1612
1613 struct type *
1614 lookup_unsigned_typename (const struct language_defn *language,
1615 const char *name)
1616 {
1617 char *uns = (char *) alloca (strlen (name) + 10);
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
1621 return lookup_typename (language, uns, NULL, 0);
1622 }
1623
1624 struct type *
1625 lookup_signed_typename (const struct language_defn *language, const char *name)
1626 {
1627 struct type *t;
1628 char *uns = (char *) alloca (strlen (name) + 8);
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
1632 t = lookup_typename (language, uns, NULL, 1);
1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
1634 if (t != NULL)
1635 return t;
1636 return lookup_typename (language, name, NULL, 0);
1637 }
1638
1639 /* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642 struct type *
1643 lookup_struct (const char *name, const struct block *block)
1644 {
1645 struct symbol *sym;
1646
1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1648
1649 if (sym == NULL)
1650 {
1651 error (_("No struct type named %s."), name);
1652 }
1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1654 {
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
1657 }
1658 return (SYMBOL_TYPE (sym));
1659 }
1660
1661 /* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664 struct type *
1665 lookup_union (const char *name, const struct block *block)
1666 {
1667 struct symbol *sym;
1668 struct type *t;
1669
1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1671
1672 if (sym == NULL)
1673 error (_("No union type named %s."), name);
1674
1675 t = SYMBOL_TYPE (sym);
1676
1677 if (t->code () == TYPE_CODE_UNION)
1678 return t;
1679
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
1683 }
1684
1685 /* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688 struct type *
1689 lookup_enum (const char *name, const struct block *block)
1690 {
1691 struct symbol *sym;
1692
1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1694 if (sym == NULL)
1695 {
1696 error (_("No enum type named %s."), name);
1697 }
1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1699 {
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704 }
1705
1706 /* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709 struct type *
1710 lookup_template_type (const char *name, struct type *type,
1711 const struct block *block)
1712 {
1713 struct symbol *sym;
1714 char *nam = (char *)
1715 alloca (strlen (name) + strlen (type->name ()) + 4);
1716
1717 strcpy (nam, name);
1718 strcat (nam, "<");
1719 strcat (nam, type->name ());
1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1721
1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1723
1724 if (sym == NULL)
1725 {
1726 error (_("No template type named %s."), name);
1727 }
1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1729 {
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
1732 }
1733 return (SYMBOL_TYPE (sym));
1734 }
1735
1736 /* See gdbtypes.h. */
1737
1738 struct_elt
1739 lookup_struct_elt (struct type *type, const char *name, int noerr)
1740 {
1741 int i;
1742
1743 for (;;)
1744 {
1745 type = check_typedef (type);
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
1754 {
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
1758 }
1759
1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1761 {
1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1763
1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1765 {
1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1767 }
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
1770 struct_elt elt
1771 = lookup_struct_elt (type->field (i).type (), name, 1);
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
1777 }
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
1786 }
1787
1788 if (noerr)
1789 return {nullptr, 0};
1790
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1793 }
1794
1795 /* See gdbtypes.h. */
1796
1797 struct type *
1798 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799 {
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
1802 return elt.field->type ();
1803 else
1804 return NULL;
1805 }
1806
1807 /* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810 void
1811 get_unsigned_type_max (struct type *type, ULONGEST *max)
1812 {
1813 unsigned int n;
1814
1815 type = check_typedef (type);
1816 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822 }
1823
1824 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827 void
1828 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829 {
1830 unsigned int n;
1831
1832 type = check_typedef (type);
1833 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839 }
1840
1841 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848 int
1849 internal_type_vptr_fieldno (struct type *type)
1850 {
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857 }
1858
1859 /* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861 void
1862 set_type_vptr_fieldno (struct type *type, int fieldno)
1863 {
1864 type = check_typedef (type);
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870 }
1871
1872 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875 struct type *
1876 internal_type_vptr_basetype (struct type *type)
1877 {
1878 type = check_typedef (type);
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883 }
1884
1885 /* Set the value of cplus_stuff.vptr_basetype. */
1886
1887 void
1888 set_type_vptr_basetype (struct type *type, struct type *basetype)
1889 {
1890 type = check_typedef (type);
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896 }
1897
1898 /* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
1904 the type or one of its baseclasses is a stub type and we are
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
1907 virtual function table pointer, and vptr_fieldno will remain -1 and
1908 vptr_basetype will remain NULL or incomplete. */
1909
1910 int
1911 get_vptr_fieldno (struct type *type, struct type **basetypep)
1912 {
1913 type = check_typedef (type);
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
1929 {
1930 /* If the type comes from a different objfile we can't cache
1931 it, it may have a different lifetime. PR 2384 */
1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1933 {
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
1940 }
1941 }
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
1951 }
1952 }
1953
1954 static void
1955 stub_noname_complaint (void)
1956 {
1957 complaint (_("stub type has NULL name"));
1958 }
1959
1960 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963 static int
1964 array_type_has_dynamic_stride (struct type *type)
1965 {
1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1967
1968 return (prop != NULL && prop->kind () != PROP_CONST);
1969 }
1970
1971 /* Worker for is_dynamic_type. */
1972
1973 static int
1974 is_dynamic_type_internal (struct type *type, int top_level)
1975 {
1976 type = check_typedef (type);
1977
1978 /* We only want to recognize references at the outermost level. */
1979 if (top_level && type->code () == TYPE_CODE_REF)
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
2001 return 1;
2002
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
2006 switch (type->code ())
2007 {
2008 case TYPE_CODE_RANGE:
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
2015 return (!has_static_range (type->bounds ())
2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2017 }
2018
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
2022 case TYPE_CODE_ARRAY:
2023 {
2024 gdb_assert (type->num_fields () == 1);
2025
2026 /* The array is dynamic if either the bounds are dynamic... */
2027 if (is_dynamic_type_internal (type->index_type (), 0))
2028 return 1;
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
2036 }
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
2045 for (i = 0; i < type->num_fields (); ++i)
2046 {
2047 /* Static fields can be ignored here. */
2048 if (field_is_static (&type->field (i)))
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
2062 return 1;
2063 }
2064 }
2065 break;
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* See gdbtypes.h. */
2072
2073 int
2074 is_dynamic_type (struct type *type)
2075 {
2076 return is_dynamic_type_internal (type, 1);
2077 }
2078
2079 static struct type *resolve_dynamic_type_internal
2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2081
2082 /* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
2085
2086 static struct type *
2087 resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
2089 {
2090 CORE_ADDR value;
2091 struct type *static_range_type, *static_target_type;
2092 struct dynamic_prop low_bound, high_bound, stride;
2093
2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2095
2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2098 low_bound.set_const_val (value);
2099 else
2100 low_bound.set_undefined ();
2101
2102 prop = &dyn_range_type->bounds ()->high;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2104 {
2105 high_bound.set_const_val (value);
2106
2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
2110 }
2111 else
2112 high_bound.set_undefined ();
2113
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
2118 stride.set_const_val (value);
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
2132 stride.set_undefined ();
2133 byte_stride_p = true;
2134 }
2135
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2138 addr_stack, 0);
2139 LONGEST bias = dyn_range_type->bounds ()->bias;
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
2144 return static_range_type;
2145 }
2146
2147 /* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
2159 struct dynamic_prop *prop;
2160 unsigned int bit_stride = 0;
2161
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
2166
2167 type = copy_type (type);
2168
2169 elt_type = type;
2170 range_type = check_typedef (elt_type->index_type ());
2171 range_type = resolve_dynamic_range (range_type, addr_stack);
2172
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2178
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2181 prop->set_const_val (value);
2182
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2191 if (prop != NULL)
2192 {
2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2194 {
2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
2204 type->name () ? type->name () : "<no name>");
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
2212 }
2213
2214 /* Resolve dynamic bounds of members of the union TYPE to static
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
2217
2218 static struct type *
2219 resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
2221 {
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
2226 gdb_assert (type->code () == TYPE_CODE_UNION);
2227
2228 resolved_type = copy_type (type);
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
2237 {
2238 struct type *t;
2239
2240 if (field_is_static (&type->field (i)))
2241 continue;
2242
2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2244 addr_stack, 0);
2245 resolved_type->field (i).set_type (t);
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254 }
2255
2256 /* See gdbtypes.h. */
2257
2258 bool
2259 variant::matches (ULONGEST value, bool is_unsigned) const
2260 {
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265 }
2266
2267 static void
2268 compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273 /* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282 static void
2283 compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288 {
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303 }
2304
2305 /* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314 static void
2315 compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319 {
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
2342 size = TYPE_LENGTH (type->field (idx).type ());
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375 }
2376
2377 /* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382 static void
2383 compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387 {
2388 /* Assume all fields are included by default. */
2389 std::vector<bool> flags (resolved_type->num_fields (), true);
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
2402 int out = 0;
2403 for (int i = 0; i < type->num_fields (); ++i)
2404 {
2405 if (!flags[i])
2406 continue;
2407
2408 resolved_type->field (out) = type->field (i);
2409 ++out;
2410 }
2411 }
2412
2413 /* Resolve dynamic bounds of members of the struct TYPE to static
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
2416
2417 static struct type *
2418 resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
2420 {
2421 struct type *resolved_type;
2422 int i;
2423 unsigned resolved_type_bit_length = 0;
2424
2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2426 gdb_assert (type->num_fields () > 0);
2427
2428 resolved_type = copy_type (type);
2429
2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
2434 *variant_prop->variant_parts ());
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
2437 variant_prop->set_original_type (type);
2438 }
2439 else
2440 {
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
2447 resolved_type->num_fields () * sizeof (struct field));
2448 }
2449
2450 for (i = 0; i < resolved_type->num_fields (); ++i)
2451 {
2452 unsigned new_bit_length;
2453 struct property_addr_info pinfo;
2454
2455 if (field_is_static (&resolved_type->field (i)))
2456 continue;
2457
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
2462 = lookup_pointer_type (resolved_type->field (i).type ());
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
2466 prop.set_locexpr (&baton);
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
2471 SET_FIELD_BITPOS (resolved_type->field (i),
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
2485
2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
2487 pinfo.valaddr = addr_stack->valaddr;
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2491 pinfo.next = addr_stack;
2492
2493 resolved_type->field (i).set_type
2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2495 &pinfo, 0));
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
2518 }
2519
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2527
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
2532 return resolved_type;
2533 }
2534
2535 /* Worker for resolved_dynamic_type. */
2536
2537 static struct type *
2538 resolve_dynamic_type_internal (struct type *type,
2539 struct property_addr_info *addr_stack,
2540 int top_level)
2541 {
2542 struct type *real_type = check_typedef (type);
2543 struct type *resolved_type = nullptr;
2544 struct dynamic_prop *prop;
2545 CORE_ADDR value;
2546
2547 if (!is_dynamic_type_internal (real_type, top_level))
2548 return type;
2549
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
2556 if (type->code () == TYPE_CODE_TYPEDEF)
2557 {
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
2567
2568 switch (type->code ())
2569 {
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
2593 case TYPE_CODE_ARRAY:
2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2595 break;
2596
2597 case TYPE_CODE_RANGE:
2598 resolved_type = resolve_dynamic_range (type, addr_stack);
2599 break;
2600
2601 case TYPE_CODE_UNION:
2602 resolved_type = resolve_dynamic_union (type, addr_stack);
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
2607 break;
2608 }
2609 }
2610
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2618 }
2619
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2624 prop->set_const_val (value);
2625
2626 return resolved_type;
2627 }
2628
2629 /* See gdbtypes.h */
2630
2631 struct type *
2632 resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
2634 CORE_ADDR addr)
2635 {
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
2638
2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
2640 }
2641
2642 /* See gdbtypes.h */
2643
2644 dynamic_prop *
2645 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2646 {
2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
2652 return &node->prop;
2653 node = node->next;
2654 }
2655 return NULL;
2656 }
2657
2658 /* See gdbtypes.h */
2659
2660 void
2661 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2662 {
2663 struct dynamic_prop_list *temp;
2664
2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
2666
2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2668 struct dynamic_prop_list);
2669 temp->prop_kind = prop_kind;
2670 temp->prop = prop;
2671 temp->next = this->main_type->dyn_prop_list;
2672
2673 this->main_type->dyn_prop_list = temp;
2674 }
2675
2676 /* See gdbtypes.h. */
2677
2678 void
2679 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2680 {
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
2683 curr_node = this->main_type->dyn_prop_list;
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
2688 if (curr_node->prop_kind == kind)
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
2695 this->main_type->dyn_prop_list = curr_node->next;
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705 }
2706
2707 /* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
2728 we can find a full definition in some other file. If so, copy this
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
2733 symbols which contain a full definition for the type. */
2734
2735 struct type *
2736 check_typedef (struct type *type)
2737 {
2738 struct type *orig_type = type;
2739
2740 gdb_assert (type);
2741
2742 /* While we're removing typedefs, we don't want to lose qualifiers.
2743 E.g., const/volatile. */
2744 type_instance_flags instance_flags = type->instance_flags ();
2745
2746 while (type->code () == TYPE_CODE_TYPEDEF)
2747 {
2748 if (!TYPE_TARGET_TYPE (type))
2749 {
2750 const char *name;
2751 struct symbol *sym;
2752
2753 /* It is dangerous to call lookup_symbol if we are currently
2754 reading a symtab. Infinite recursion is one danger. */
2755 if (currently_reading_symtab)
2756 return make_qualified_type (type, instance_flags, NULL);
2757
2758 name = type->name ();
2759 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2760 VAR_DOMAIN as appropriate? */
2761 if (name == NULL)
2762 {
2763 stub_noname_complaint ();
2764 return make_qualified_type (type, instance_flags, NULL);
2765 }
2766 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2767 if (sym)
2768 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2769 else /* TYPE_CODE_UNDEF */
2770 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2771 }
2772 type = TYPE_TARGET_TYPE (type);
2773
2774 /* Preserve the instance flags as we traverse down the typedef chain.
2775
2776 Handling address spaces/classes is nasty, what do we do if there's a
2777 conflict?
2778 E.g., what if an outer typedef marks the type as class_1 and an inner
2779 typedef marks the type as class_2?
2780 This is the wrong place to do such error checking. We leave it to
2781 the code that created the typedef in the first place to flag the
2782 error. We just pick the outer address space (akin to letting the
2783 outer cast in a chain of casting win), instead of assuming
2784 "it can't happen". */
2785 {
2786 const type_instance_flags ALL_SPACES
2787 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2788 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2789 const type_instance_flags ALL_CLASSES
2790 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2791
2792 type_instance_flags new_instance_flags = type->instance_flags ();
2793
2794 /* Treat code vs data spaces and address classes separately. */
2795 if ((instance_flags & ALL_SPACES) != 0)
2796 new_instance_flags &= ~ALL_SPACES;
2797 if ((instance_flags & ALL_CLASSES) != 0)
2798 new_instance_flags &= ~ALL_CLASSES;
2799
2800 instance_flags |= new_instance_flags;
2801 }
2802 }
2803
2804 /* If this is a struct/class/union with no fields, then check
2805 whether a full definition exists somewhere else. This is for
2806 systems where a type definition with no fields is issued for such
2807 types, instead of identifying them as stub types in the first
2808 place. */
2809
2810 if (TYPE_IS_OPAQUE (type)
2811 && opaque_type_resolution
2812 && !currently_reading_symtab)
2813 {
2814 const char *name = type->name ();
2815 struct type *newtype;
2816
2817 if (name == NULL)
2818 {
2819 stub_noname_complaint ();
2820 return make_qualified_type (type, instance_flags, NULL);
2821 }
2822 newtype = lookup_transparent_type (name);
2823
2824 if (newtype)
2825 {
2826 /* If the resolved type and the stub are in the same
2827 objfile, then replace the stub type with the real deal.
2828 But if they're in separate objfiles, leave the stub
2829 alone; we'll just look up the transparent type every time
2830 we call check_typedef. We can't create pointers between
2831 types allocated to different objfiles, since they may
2832 have different lifetimes. Trying to copy NEWTYPE over to
2833 TYPE's objfile is pointless, too, since you'll have to
2834 move over any other types NEWTYPE refers to, which could
2835 be an unbounded amount of stuff. */
2836 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2837 type = make_qualified_type (newtype, type->instance_flags (), type);
2838 else
2839 type = newtype;
2840 }
2841 }
2842 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2843 types. */
2844 else if (type->is_stub () && !currently_reading_symtab)
2845 {
2846 const char *name = type->name ();
2847 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2848 as appropriate? */
2849 struct symbol *sym;
2850
2851 if (name == NULL)
2852 {
2853 stub_noname_complaint ();
2854 return make_qualified_type (type, instance_flags, NULL);
2855 }
2856 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2857 if (sym)
2858 {
2859 /* Same as above for opaque types, we can replace the stub
2860 with the complete type only if they are in the same
2861 objfile. */
2862 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2863 type = make_qualified_type (SYMBOL_TYPE (sym),
2864 type->instance_flags (), type);
2865 else
2866 type = SYMBOL_TYPE (sym);
2867 }
2868 }
2869
2870 if (type->target_is_stub ())
2871 {
2872 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2873
2874 if (target_type->is_stub () || target_type->target_is_stub ())
2875 {
2876 /* Nothing we can do. */
2877 }
2878 else if (type->code () == TYPE_CODE_RANGE)
2879 {
2880 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2881 type->set_target_is_stub (false);
2882 }
2883 else if (type->code () == TYPE_CODE_ARRAY
2884 && update_static_array_size (type))
2885 type->set_target_is_stub (false);
2886 }
2887
2888 type = make_qualified_type (type, instance_flags, NULL);
2889
2890 /* Cache TYPE_LENGTH for future use. */
2891 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2892
2893 return type;
2894 }
2895
2896 /* Parse a type expression in the string [P..P+LENGTH). If an error
2897 occurs, silently return a void type. */
2898
2899 static struct type *
2900 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2901 {
2902 struct ui_file *saved_gdb_stderr;
2903 struct type *type = NULL; /* Initialize to keep gcc happy. */
2904
2905 /* Suppress error messages. */
2906 saved_gdb_stderr = gdb_stderr;
2907 gdb_stderr = &null_stream;
2908
2909 /* Call parse_and_eval_type() without fear of longjmp()s. */
2910 try
2911 {
2912 type = parse_and_eval_type (p, length);
2913 }
2914 catch (const gdb_exception_error &except)
2915 {
2916 type = builtin_type (gdbarch)->builtin_void;
2917 }
2918
2919 /* Stop suppressing error messages. */
2920 gdb_stderr = saved_gdb_stderr;
2921
2922 return type;
2923 }
2924
2925 /* Ugly hack to convert method stubs into method types.
2926
2927 He ain't kiddin'. This demangles the name of the method into a
2928 string including argument types, parses out each argument type,
2929 generates a string casting a zero to that type, evaluates the
2930 string, and stuffs the resulting type into an argtype vector!!!
2931 Then it knows the type of the whole function (including argument
2932 types for overloading), which info used to be in the stab's but was
2933 removed to hack back the space required for them. */
2934
2935 static void
2936 check_stub_method (struct type *type, int method_id, int signature_id)
2937 {
2938 struct gdbarch *gdbarch = get_type_arch (type);
2939 struct fn_field *f;
2940 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2941 char *demangled_name = gdb_demangle (mangled_name,
2942 DMGL_PARAMS | DMGL_ANSI);
2943 char *argtypetext, *p;
2944 int depth = 0, argcount = 1;
2945 struct field *argtypes;
2946 struct type *mtype;
2947
2948 /* Make sure we got back a function string that we can use. */
2949 if (demangled_name)
2950 p = strchr (demangled_name, '(');
2951 else
2952 p = NULL;
2953
2954 if (demangled_name == NULL || p == NULL)
2955 error (_("Internal: Cannot demangle mangled name `%s'."),
2956 mangled_name);
2957
2958 /* Now, read in the parameters that define this type. */
2959 p += 1;
2960 argtypetext = p;
2961 while (*p)
2962 {
2963 if (*p == '(' || *p == '<')
2964 {
2965 depth += 1;
2966 }
2967 else if (*p == ')' || *p == '>')
2968 {
2969 depth -= 1;
2970 }
2971 else if (*p == ',' && depth == 0)
2972 {
2973 argcount += 1;
2974 }
2975
2976 p += 1;
2977 }
2978
2979 /* If we read one argument and it was ``void'', don't count it. */
2980 if (startswith (argtypetext, "(void)"))
2981 argcount -= 1;
2982
2983 /* We need one extra slot, for the THIS pointer. */
2984
2985 argtypes = (struct field *)
2986 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2987 p = argtypetext;
2988
2989 /* Add THIS pointer for non-static methods. */
2990 f = TYPE_FN_FIELDLIST1 (type, method_id);
2991 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2992 argcount = 0;
2993 else
2994 {
2995 argtypes[0].set_type (lookup_pointer_type (type));
2996 argcount = 1;
2997 }
2998
2999 if (*p != ')') /* () means no args, skip while. */
3000 {
3001 depth = 0;
3002 while (*p)
3003 {
3004 if (depth <= 0 && (*p == ',' || *p == ')'))
3005 {
3006 /* Avoid parsing of ellipsis, they will be handled below.
3007 Also avoid ``void'' as above. */
3008 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3009 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3010 {
3011 argtypes[argcount].set_type
3012 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3013 argcount += 1;
3014 }
3015 argtypetext = p + 1;
3016 }
3017
3018 if (*p == '(' || *p == '<')
3019 {
3020 depth += 1;
3021 }
3022 else if (*p == ')' || *p == '>')
3023 {
3024 depth -= 1;
3025 }
3026
3027 p += 1;
3028 }
3029 }
3030
3031 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3032
3033 /* Now update the old "stub" type into a real type. */
3034 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3035 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3036 We want a method (TYPE_CODE_METHOD). */
3037 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3038 argtypes, argcount, p[-2] == '.');
3039 mtype->set_is_stub (false);
3040 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3041
3042 xfree (demangled_name);
3043 }
3044
3045 /* This is the external interface to check_stub_method, above. This
3046 function unstubs all of the signatures for TYPE's METHOD_ID method
3047 name. After calling this function TYPE_FN_FIELD_STUB will be
3048 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3049 correct.
3050
3051 This function unfortunately can not die until stabs do. */
3052
3053 void
3054 check_stub_method_group (struct type *type, int method_id)
3055 {
3056 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3057 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3058
3059 for (int j = 0; j < len; j++)
3060 {
3061 if (TYPE_FN_FIELD_STUB (f, j))
3062 check_stub_method (type, method_id, j);
3063 }
3064 }
3065
3066 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3067 const struct cplus_struct_type cplus_struct_default = { };
3068
3069 void
3070 allocate_cplus_struct_type (struct type *type)
3071 {
3072 if (HAVE_CPLUS_STRUCT (type))
3073 /* Structure was already allocated. Nothing more to do. */
3074 return;
3075
3076 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3077 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3078 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3079 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3080 set_type_vptr_fieldno (type, -1);
3081 }
3082
3083 const struct gnat_aux_type gnat_aux_default =
3084 { NULL };
3085
3086 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3087 and allocate the associated gnat-specific data. The gnat-specific
3088 data is also initialized to gnat_aux_default. */
3089
3090 void
3091 allocate_gnat_aux_type (struct type *type)
3092 {
3093 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3094 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3095 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3096 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3097 }
3098
3099 /* Helper function to initialize a newly allocated type. Set type code
3100 to CODE and initialize the type-specific fields accordingly. */
3101
3102 static void
3103 set_type_code (struct type *type, enum type_code code)
3104 {
3105 type->set_code (code);
3106
3107 switch (code)
3108 {
3109 case TYPE_CODE_STRUCT:
3110 case TYPE_CODE_UNION:
3111 case TYPE_CODE_NAMESPACE:
3112 INIT_CPLUS_SPECIFIC (type);
3113 break;
3114 case TYPE_CODE_FLT:
3115 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3116 break;
3117 case TYPE_CODE_FUNC:
3118 INIT_FUNC_SPECIFIC (type);
3119 break;
3120 }
3121 }
3122
3123 /* Helper function to verify floating-point format and size.
3124 BIT is the type size in bits; if BIT equals -1, the size is
3125 determined by the floatformat. Returns size to be used. */
3126
3127 static int
3128 verify_floatformat (int bit, const struct floatformat *floatformat)
3129 {
3130 gdb_assert (floatformat != NULL);
3131
3132 if (bit == -1)
3133 bit = floatformat->totalsize;
3134
3135 gdb_assert (bit >= 0);
3136 gdb_assert (bit >= floatformat->totalsize);
3137
3138 return bit;
3139 }
3140
3141 /* Return the floating-point format for a floating-point variable of
3142 type TYPE. */
3143
3144 const struct floatformat *
3145 floatformat_from_type (const struct type *type)
3146 {
3147 gdb_assert (type->code () == TYPE_CODE_FLT);
3148 gdb_assert (TYPE_FLOATFORMAT (type));
3149 return TYPE_FLOATFORMAT (type);
3150 }
3151
3152 /* Helper function to initialize the standard scalar types.
3153
3154 If NAME is non-NULL, then it is used to initialize the type name.
3155 Note that NAME is not copied; it is required to have a lifetime at
3156 least as long as OBJFILE. */
3157
3158 struct type *
3159 init_type (struct objfile *objfile, enum type_code code, int bit,
3160 const char *name)
3161 {
3162 struct type *type;
3163
3164 type = alloc_type (objfile);
3165 set_type_code (type, code);
3166 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3167 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3168 type->set_name (name);
3169
3170 return type;
3171 }
3172
3173 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3174 to use with variables that have no debug info. NAME is the type
3175 name. */
3176
3177 static struct type *
3178 init_nodebug_var_type (struct objfile *objfile, const char *name)
3179 {
3180 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3181 }
3182
3183 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3186
3187 struct type *
3188 init_integer_type (struct objfile *objfile,
3189 int bit, int unsigned_p, const char *name)
3190 {
3191 struct type *t;
3192
3193 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3194 if (unsigned_p)
3195 t->set_is_unsigned (true);
3196
3197 return t;
3198 }
3199
3200 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3201 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3202 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3203
3204 struct type *
3205 init_character_type (struct objfile *objfile,
3206 int bit, int unsigned_p, const char *name)
3207 {
3208 struct type *t;
3209
3210 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3211 if (unsigned_p)
3212 t->set_is_unsigned (true);
3213
3214 return t;
3215 }
3216
3217 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3218 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3219 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3220
3221 struct type *
3222 init_boolean_type (struct objfile *objfile,
3223 int bit, int unsigned_p, const char *name)
3224 {
3225 struct type *t;
3226
3227 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3228 if (unsigned_p)
3229 t->set_is_unsigned (true);
3230
3231 return t;
3232 }
3233
3234 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3235 BIT is the type size in bits; if BIT equals -1, the size is
3236 determined by the floatformat. NAME is the type name. Set the
3237 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3238 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3239 order of the objfile's architecture is used. */
3240
3241 struct type *
3242 init_float_type (struct objfile *objfile,
3243 int bit, const char *name,
3244 const struct floatformat **floatformats,
3245 enum bfd_endian byte_order)
3246 {
3247 if (byte_order == BFD_ENDIAN_UNKNOWN)
3248 {
3249 struct gdbarch *gdbarch = objfile->arch ();
3250 byte_order = gdbarch_byte_order (gdbarch);
3251 }
3252 const struct floatformat *fmt = floatformats[byte_order];
3253 struct type *t;
3254
3255 bit = verify_floatformat (bit, fmt);
3256 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3257 TYPE_FLOATFORMAT (t) = fmt;
3258
3259 return t;
3260 }
3261
3262 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3263 BIT is the type size in bits. NAME is the type name. */
3264
3265 struct type *
3266 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3267 {
3268 struct type *t;
3269
3270 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3271 return t;
3272 }
3273
3274 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3275 name. TARGET_TYPE is the component type. */
3276
3277 struct type *
3278 init_complex_type (const char *name, struct type *target_type)
3279 {
3280 struct type *t;
3281
3282 gdb_assert (target_type->code () == TYPE_CODE_INT
3283 || target_type->code () == TYPE_CODE_FLT);
3284
3285 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3286 {
3287 if (name == nullptr)
3288 {
3289 char *new_name
3290 = (char *) TYPE_ALLOC (target_type,
3291 strlen (target_type->name ())
3292 + strlen ("_Complex ") + 1);
3293 strcpy (new_name, "_Complex ");
3294 strcat (new_name, target_type->name ());
3295 name = new_name;
3296 }
3297
3298 t = alloc_type_copy (target_type);
3299 set_type_code (t, TYPE_CODE_COMPLEX);
3300 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3301 t->set_name (name);
3302
3303 TYPE_TARGET_TYPE (t) = target_type;
3304 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3305 }
3306
3307 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3308 }
3309
3310 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3311 BIT is the pointer type size in bits. NAME is the type name.
3312 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3313 TYPE_UNSIGNED flag. */
3314
3315 struct type *
3316 init_pointer_type (struct objfile *objfile,
3317 int bit, const char *name, struct type *target_type)
3318 {
3319 struct type *t;
3320
3321 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3322 TYPE_TARGET_TYPE (t) = target_type;
3323 t->set_is_unsigned (true);
3324 return t;
3325 }
3326
3327 /* See gdbtypes.h. */
3328
3329 unsigned
3330 type_raw_align (struct type *type)
3331 {
3332 if (type->align_log2 != 0)
3333 return 1 << (type->align_log2 - 1);
3334 return 0;
3335 }
3336
3337 /* See gdbtypes.h. */
3338
3339 unsigned
3340 type_align (struct type *type)
3341 {
3342 /* Check alignment provided in the debug information. */
3343 unsigned raw_align = type_raw_align (type);
3344 if (raw_align != 0)
3345 return raw_align;
3346
3347 /* Allow the architecture to provide an alignment. */
3348 struct gdbarch *arch = get_type_arch (type);
3349 ULONGEST align = gdbarch_type_align (arch, type);
3350 if (align != 0)
3351 return align;
3352
3353 switch (type->code ())
3354 {
3355 case TYPE_CODE_PTR:
3356 case TYPE_CODE_FUNC:
3357 case TYPE_CODE_FLAGS:
3358 case TYPE_CODE_INT:
3359 case TYPE_CODE_RANGE:
3360 case TYPE_CODE_FLT:
3361 case TYPE_CODE_ENUM:
3362 case TYPE_CODE_REF:
3363 case TYPE_CODE_RVALUE_REF:
3364 case TYPE_CODE_CHAR:
3365 case TYPE_CODE_BOOL:
3366 case TYPE_CODE_DECFLOAT:
3367 case TYPE_CODE_METHODPTR:
3368 case TYPE_CODE_MEMBERPTR:
3369 align = type_length_units (check_typedef (type));
3370 break;
3371
3372 case TYPE_CODE_ARRAY:
3373 case TYPE_CODE_COMPLEX:
3374 case TYPE_CODE_TYPEDEF:
3375 align = type_align (TYPE_TARGET_TYPE (type));
3376 break;
3377
3378 case TYPE_CODE_STRUCT:
3379 case TYPE_CODE_UNION:
3380 {
3381 int number_of_non_static_fields = 0;
3382 for (unsigned i = 0; i < type->num_fields (); ++i)
3383 {
3384 if (!field_is_static (&type->field (i)))
3385 {
3386 number_of_non_static_fields++;
3387 ULONGEST f_align = type_align (type->field (i).type ());
3388 if (f_align == 0)
3389 {
3390 /* Don't pretend we know something we don't. */
3391 align = 0;
3392 break;
3393 }
3394 if (f_align > align)
3395 align = f_align;
3396 }
3397 }
3398 /* A struct with no fields, or with only static fields has an
3399 alignment of 1. */
3400 if (number_of_non_static_fields == 0)
3401 align = 1;
3402 }
3403 break;
3404
3405 case TYPE_CODE_SET:
3406 case TYPE_CODE_STRING:
3407 /* Not sure what to do here, and these can't appear in C or C++
3408 anyway. */
3409 break;
3410
3411 case TYPE_CODE_VOID:
3412 align = 1;
3413 break;
3414
3415 case TYPE_CODE_ERROR:
3416 case TYPE_CODE_METHOD:
3417 default:
3418 break;
3419 }
3420
3421 if ((align & (align - 1)) != 0)
3422 {
3423 /* Not a power of 2, so pass. */
3424 align = 0;
3425 }
3426
3427 return align;
3428 }
3429
3430 /* See gdbtypes.h. */
3431
3432 bool
3433 set_type_align (struct type *type, ULONGEST align)
3434 {
3435 /* Must be a power of 2. Zero is ok. */
3436 gdb_assert ((align & (align - 1)) == 0);
3437
3438 unsigned result = 0;
3439 while (align != 0)
3440 {
3441 ++result;
3442 align >>= 1;
3443 }
3444
3445 if (result >= (1 << TYPE_ALIGN_BITS))
3446 return false;
3447
3448 type->align_log2 = result;
3449 return true;
3450 }
3451
3452 \f
3453 /* Queries on types. */
3454
3455 int
3456 can_dereference (struct type *t)
3457 {
3458 /* FIXME: Should we return true for references as well as
3459 pointers? */
3460 t = check_typedef (t);
3461 return
3462 (t != NULL
3463 && t->code () == TYPE_CODE_PTR
3464 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3465 }
3466
3467 int
3468 is_integral_type (struct type *t)
3469 {
3470 t = check_typedef (t);
3471 return
3472 ((t != NULL)
3473 && ((t->code () == TYPE_CODE_INT)
3474 || (t->code () == TYPE_CODE_ENUM)
3475 || (t->code () == TYPE_CODE_FLAGS)
3476 || (t->code () == TYPE_CODE_CHAR)
3477 || (t->code () == TYPE_CODE_RANGE)
3478 || (t->code () == TYPE_CODE_BOOL)));
3479 }
3480
3481 int
3482 is_floating_type (struct type *t)
3483 {
3484 t = check_typedef (t);
3485 return
3486 ((t != NULL)
3487 && ((t->code () == TYPE_CODE_FLT)
3488 || (t->code () == TYPE_CODE_DECFLOAT)));
3489 }
3490
3491 /* Return true if TYPE is scalar. */
3492
3493 int
3494 is_scalar_type (struct type *type)
3495 {
3496 type = check_typedef (type);
3497
3498 switch (type->code ())
3499 {
3500 case TYPE_CODE_ARRAY:
3501 case TYPE_CODE_STRUCT:
3502 case TYPE_CODE_UNION:
3503 case TYPE_CODE_SET:
3504 case TYPE_CODE_STRING:
3505 return 0;
3506 default:
3507 return 1;
3508 }
3509 }
3510
3511 /* Return true if T is scalar, or a composite type which in practice has
3512 the memory layout of a scalar type. E.g., an array or struct with only
3513 one scalar element inside it, or a union with only scalar elements. */
3514
3515 int
3516 is_scalar_type_recursive (struct type *t)
3517 {
3518 t = check_typedef (t);
3519
3520 if (is_scalar_type (t))
3521 return 1;
3522 /* Are we dealing with an array or string of known dimensions? */
3523 else if ((t->code () == TYPE_CODE_ARRAY
3524 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3525 && t->index_type ()->code () == TYPE_CODE_RANGE)
3526 {
3527 LONGEST low_bound, high_bound;
3528 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3529
3530 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3531
3532 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3533 }
3534 /* Are we dealing with a struct with one element? */
3535 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3536 return is_scalar_type_recursive (t->field (0).type ());
3537 else if (t->code () == TYPE_CODE_UNION)
3538 {
3539 int i, n = t->num_fields ();
3540
3541 /* If all elements of the union are scalar, then the union is scalar. */
3542 for (i = 0; i < n; i++)
3543 if (!is_scalar_type_recursive (t->field (i).type ()))
3544 return 0;
3545
3546 return 1;
3547 }
3548
3549 return 0;
3550 }
3551
3552 /* Return true is T is a class or a union. False otherwise. */
3553
3554 int
3555 class_or_union_p (const struct type *t)
3556 {
3557 return (t->code () == TYPE_CODE_STRUCT
3558 || t->code () == TYPE_CODE_UNION);
3559 }
3560
3561 /* A helper function which returns true if types A and B represent the
3562 "same" class type. This is true if the types have the same main
3563 type, or the same name. */
3564
3565 int
3566 class_types_same_p (const struct type *a, const struct type *b)
3567 {
3568 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3569 || (a->name () && b->name ()
3570 && !strcmp (a->name (), b->name ())));
3571 }
3572
3573 /* If BASE is an ancestor of DCLASS return the distance between them.
3574 otherwise return -1;
3575 eg:
3576
3577 class A {};
3578 class B: public A {};
3579 class C: public B {};
3580 class D: C {};
3581
3582 distance_to_ancestor (A, A, 0) = 0
3583 distance_to_ancestor (A, B, 0) = 1
3584 distance_to_ancestor (A, C, 0) = 2
3585 distance_to_ancestor (A, D, 0) = 3
3586
3587 If PUBLIC is 1 then only public ancestors are considered,
3588 and the function returns the distance only if BASE is a public ancestor
3589 of DCLASS.
3590 Eg:
3591
3592 distance_to_ancestor (A, D, 1) = -1. */
3593
3594 static int
3595 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3596 {
3597 int i;
3598 int d;
3599
3600 base = check_typedef (base);
3601 dclass = check_typedef (dclass);
3602
3603 if (class_types_same_p (base, dclass))
3604 return 0;
3605
3606 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3607 {
3608 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3609 continue;
3610
3611 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3612 if (d >= 0)
3613 return 1 + d;
3614 }
3615
3616 return -1;
3617 }
3618
3619 /* Check whether BASE is an ancestor or base class or DCLASS
3620 Return 1 if so, and 0 if not.
3621 Note: If BASE and DCLASS are of the same type, this function
3622 will return 1. So for some class A, is_ancestor (A, A) will
3623 return 1. */
3624
3625 int
3626 is_ancestor (struct type *base, struct type *dclass)
3627 {
3628 return distance_to_ancestor (base, dclass, 0) >= 0;
3629 }
3630
3631 /* Like is_ancestor, but only returns true when BASE is a public
3632 ancestor of DCLASS. */
3633
3634 int
3635 is_public_ancestor (struct type *base, struct type *dclass)
3636 {
3637 return distance_to_ancestor (base, dclass, 1) >= 0;
3638 }
3639
3640 /* A helper function for is_unique_ancestor. */
3641
3642 static int
3643 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3644 int *offset,
3645 const gdb_byte *valaddr, int embedded_offset,
3646 CORE_ADDR address, struct value *val)
3647 {
3648 int i, count = 0;
3649
3650 base = check_typedef (base);
3651 dclass = check_typedef (dclass);
3652
3653 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3654 {
3655 struct type *iter;
3656 int this_offset;
3657
3658 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3659
3660 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3661 address, val);
3662
3663 if (class_types_same_p (base, iter))
3664 {
3665 /* If this is the first subclass, set *OFFSET and set count
3666 to 1. Otherwise, if this is at the same offset as
3667 previous instances, do nothing. Otherwise, increment
3668 count. */
3669 if (*offset == -1)
3670 {
3671 *offset = this_offset;
3672 count = 1;
3673 }
3674 else if (this_offset == *offset)
3675 {
3676 /* Nothing. */
3677 }
3678 else
3679 ++count;
3680 }
3681 else
3682 count += is_unique_ancestor_worker (base, iter, offset,
3683 valaddr,
3684 embedded_offset + this_offset,
3685 address, val);
3686 }
3687
3688 return count;
3689 }
3690
3691 /* Like is_ancestor, but only returns true if BASE is a unique base
3692 class of the type of VAL. */
3693
3694 int
3695 is_unique_ancestor (struct type *base, struct value *val)
3696 {
3697 int offset = -1;
3698
3699 return is_unique_ancestor_worker (base, value_type (val), &offset,
3700 value_contents_for_printing (val),
3701 value_embedded_offset (val),
3702 value_address (val), val) == 1;
3703 }
3704
3705 /* See gdbtypes.h. */
3706
3707 enum bfd_endian
3708 type_byte_order (const struct type *type)
3709 {
3710 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3711 if (type->endianity_is_not_default ())
3712 {
3713 if (byteorder == BFD_ENDIAN_BIG)
3714 return BFD_ENDIAN_LITTLE;
3715 else
3716 {
3717 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3718 return BFD_ENDIAN_BIG;
3719 }
3720 }
3721
3722 return byteorder;
3723 }
3724
3725 \f
3726 /* Overload resolution. */
3727
3728 /* Return the sum of the rank of A with the rank of B. */
3729
3730 struct rank
3731 sum_ranks (struct rank a, struct rank b)
3732 {
3733 struct rank c;
3734 c.rank = a.rank + b.rank;
3735 c.subrank = a.subrank + b.subrank;
3736 return c;
3737 }
3738
3739 /* Compare rank A and B and return:
3740 0 if a = b
3741 1 if a is better than b
3742 -1 if b is better than a. */
3743
3744 int
3745 compare_ranks (struct rank a, struct rank b)
3746 {
3747 if (a.rank == b.rank)
3748 {
3749 if (a.subrank == b.subrank)
3750 return 0;
3751 if (a.subrank < b.subrank)
3752 return 1;
3753 if (a.subrank > b.subrank)
3754 return -1;
3755 }
3756
3757 if (a.rank < b.rank)
3758 return 1;
3759
3760 /* a.rank > b.rank */
3761 return -1;
3762 }
3763
3764 /* Functions for overload resolution begin here. */
3765
3766 /* Compare two badness vectors A and B and return the result.
3767 0 => A and B are identical
3768 1 => A and B are incomparable
3769 2 => A is better than B
3770 3 => A is worse than B */
3771
3772 int
3773 compare_badness (const badness_vector &a, const badness_vector &b)
3774 {
3775 int i;
3776 int tmp;
3777 short found_pos = 0; /* any positives in c? */
3778 short found_neg = 0; /* any negatives in c? */
3779
3780 /* differing sizes => incomparable */
3781 if (a.size () != b.size ())
3782 return 1;
3783
3784 /* Subtract b from a */
3785 for (i = 0; i < a.size (); i++)
3786 {
3787 tmp = compare_ranks (b[i], a[i]);
3788 if (tmp > 0)
3789 found_pos = 1;
3790 else if (tmp < 0)
3791 found_neg = 1;
3792 }
3793
3794 if (found_pos)
3795 {
3796 if (found_neg)
3797 return 1; /* incomparable */
3798 else
3799 return 3; /* A > B */
3800 }
3801 else
3802 /* no positives */
3803 {
3804 if (found_neg)
3805 return 2; /* A < B */
3806 else
3807 return 0; /* A == B */
3808 }
3809 }
3810
3811 /* Rank a function by comparing its parameter types (PARMS), to the
3812 types of an argument list (ARGS). Return the badness vector. This
3813 has ARGS.size() + 1 entries. */
3814
3815 badness_vector
3816 rank_function (gdb::array_view<type *> parms,
3817 gdb::array_view<value *> args)
3818 {
3819 /* add 1 for the length-match rank. */
3820 badness_vector bv;
3821 bv.reserve (1 + args.size ());
3822
3823 /* First compare the lengths of the supplied lists.
3824 If there is a mismatch, set it to a high value. */
3825
3826 /* pai/1997-06-03 FIXME: when we have debug info about default
3827 arguments and ellipsis parameter lists, we should consider those
3828 and rank the length-match more finely. */
3829
3830 bv.push_back ((args.size () != parms.size ())
3831 ? LENGTH_MISMATCH_BADNESS
3832 : EXACT_MATCH_BADNESS);
3833
3834 /* Now rank all the parameters of the candidate function. */
3835 size_t min_len = std::min (parms.size (), args.size ());
3836
3837 for (size_t i = 0; i < min_len; i++)
3838 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3839 args[i]));
3840
3841 /* If more arguments than parameters, add dummy entries. */
3842 for (size_t i = min_len; i < args.size (); i++)
3843 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3844
3845 return bv;
3846 }
3847
3848 /* Compare the names of two integer types, assuming that any sign
3849 qualifiers have been checked already. We do it this way because
3850 there may be an "int" in the name of one of the types. */
3851
3852 static int
3853 integer_types_same_name_p (const char *first, const char *second)
3854 {
3855 int first_p, second_p;
3856
3857 /* If both are shorts, return 1; if neither is a short, keep
3858 checking. */
3859 first_p = (strstr (first, "short") != NULL);
3860 second_p = (strstr (second, "short") != NULL);
3861 if (first_p && second_p)
3862 return 1;
3863 if (first_p || second_p)
3864 return 0;
3865
3866 /* Likewise for long. */
3867 first_p = (strstr (first, "long") != NULL);
3868 second_p = (strstr (second, "long") != NULL);
3869 if (first_p && second_p)
3870 return 1;
3871 if (first_p || second_p)
3872 return 0;
3873
3874 /* Likewise for char. */
3875 first_p = (strstr (first, "char") != NULL);
3876 second_p = (strstr (second, "char") != NULL);
3877 if (first_p && second_p)
3878 return 1;
3879 if (first_p || second_p)
3880 return 0;
3881
3882 /* They must both be ints. */
3883 return 1;
3884 }
3885
3886 /* Compares type A to type B. Returns true if they represent the same
3887 type, false otherwise. */
3888
3889 bool
3890 types_equal (struct type *a, struct type *b)
3891 {
3892 /* Identical type pointers. */
3893 /* However, this still doesn't catch all cases of same type for b
3894 and a. The reason is that builtin types are different from
3895 the same ones constructed from the object. */
3896 if (a == b)
3897 return true;
3898
3899 /* Resolve typedefs */
3900 if (a->code () == TYPE_CODE_TYPEDEF)
3901 a = check_typedef (a);
3902 if (b->code () == TYPE_CODE_TYPEDEF)
3903 b = check_typedef (b);
3904
3905 /* If after resolving typedefs a and b are not of the same type
3906 code then they are not equal. */
3907 if (a->code () != b->code ())
3908 return false;
3909
3910 /* If a and b are both pointers types or both reference types then
3911 they are equal of the same type iff the objects they refer to are
3912 of the same type. */
3913 if (a->code () == TYPE_CODE_PTR
3914 || a->code () == TYPE_CODE_REF)
3915 return types_equal (TYPE_TARGET_TYPE (a),
3916 TYPE_TARGET_TYPE (b));
3917
3918 /* Well, damnit, if the names are exactly the same, I'll say they
3919 are exactly the same. This happens when we generate method
3920 stubs. The types won't point to the same address, but they
3921 really are the same. */
3922
3923 if (a->name () && b->name ()
3924 && strcmp (a->name (), b->name ()) == 0)
3925 return true;
3926
3927 /* Check if identical after resolving typedefs. */
3928 if (a == b)
3929 return true;
3930
3931 /* Two function types are equal if their argument and return types
3932 are equal. */
3933 if (a->code () == TYPE_CODE_FUNC)
3934 {
3935 int i;
3936
3937 if (a->num_fields () != b->num_fields ())
3938 return false;
3939
3940 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3941 return false;
3942
3943 for (i = 0; i < a->num_fields (); ++i)
3944 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3945 return false;
3946
3947 return true;
3948 }
3949
3950 return false;
3951 }
3952 \f
3953 /* Deep comparison of types. */
3954
3955 /* An entry in the type-equality bcache. */
3956
3957 struct type_equality_entry
3958 {
3959 type_equality_entry (struct type *t1, struct type *t2)
3960 : type1 (t1),
3961 type2 (t2)
3962 {
3963 }
3964
3965 struct type *type1, *type2;
3966 };
3967
3968 /* A helper function to compare two strings. Returns true if they are
3969 the same, false otherwise. Handles NULLs properly. */
3970
3971 static bool
3972 compare_maybe_null_strings (const char *s, const char *t)
3973 {
3974 if (s == NULL || t == NULL)
3975 return s == t;
3976 return strcmp (s, t) == 0;
3977 }
3978
3979 /* A helper function for check_types_worklist that checks two types for
3980 "deep" equality. Returns true if the types are considered the
3981 same, false otherwise. */
3982
3983 static bool
3984 check_types_equal (struct type *type1, struct type *type2,
3985 std::vector<type_equality_entry> *worklist)
3986 {
3987 type1 = check_typedef (type1);
3988 type2 = check_typedef (type2);
3989
3990 if (type1 == type2)
3991 return true;
3992
3993 if (type1->code () != type2->code ()
3994 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3995 || type1->is_unsigned () != type2->is_unsigned ()
3996 || type1->has_no_signedness () != type2->has_no_signedness ()
3997 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
3998 || type1->has_varargs () != type2->has_varargs ()
3999 || type1->is_vector () != type2->is_vector ()
4000 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4001 || type1->instance_flags () != type2->instance_flags ()
4002 || type1->num_fields () != type2->num_fields ())
4003 return false;
4004
4005 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4006 return false;
4007 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4008 return false;
4009
4010 if (type1->code () == TYPE_CODE_RANGE)
4011 {
4012 if (*type1->bounds () != *type2->bounds ())
4013 return false;
4014 }
4015 else
4016 {
4017 int i;
4018
4019 for (i = 0; i < type1->num_fields (); ++i)
4020 {
4021 const struct field *field1 = &type1->field (i);
4022 const struct field *field2 = &type2->field (i);
4023
4024 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4025 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4026 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4027 return false;
4028 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4029 FIELD_NAME (*field2)))
4030 return false;
4031 switch (FIELD_LOC_KIND (*field1))
4032 {
4033 case FIELD_LOC_KIND_BITPOS:
4034 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4035 return false;
4036 break;
4037 case FIELD_LOC_KIND_ENUMVAL:
4038 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4039 return false;
4040 break;
4041 case FIELD_LOC_KIND_PHYSADDR:
4042 if (FIELD_STATIC_PHYSADDR (*field1)
4043 != FIELD_STATIC_PHYSADDR (*field2))
4044 return false;
4045 break;
4046 case FIELD_LOC_KIND_PHYSNAME:
4047 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4048 FIELD_STATIC_PHYSNAME (*field2)))
4049 return false;
4050 break;
4051 case FIELD_LOC_KIND_DWARF_BLOCK:
4052 {
4053 struct dwarf2_locexpr_baton *block1, *block2;
4054
4055 block1 = FIELD_DWARF_BLOCK (*field1);
4056 block2 = FIELD_DWARF_BLOCK (*field2);
4057 if (block1->per_cu != block2->per_cu
4058 || block1->size != block2->size
4059 || memcmp (block1->data, block2->data, block1->size) != 0)
4060 return false;
4061 }
4062 break;
4063 default:
4064 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4065 "%d by check_types_equal"),
4066 FIELD_LOC_KIND (*field1));
4067 }
4068
4069 worklist->emplace_back (field1->type (), field2->type ());
4070 }
4071 }
4072
4073 if (TYPE_TARGET_TYPE (type1) != NULL)
4074 {
4075 if (TYPE_TARGET_TYPE (type2) == NULL)
4076 return false;
4077
4078 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4079 TYPE_TARGET_TYPE (type2));
4080 }
4081 else if (TYPE_TARGET_TYPE (type2) != NULL)
4082 return false;
4083
4084 return true;
4085 }
4086
4087 /* Check types on a worklist for equality. Returns false if any pair
4088 is not equal, true if they are all considered equal. */
4089
4090 static bool
4091 check_types_worklist (std::vector<type_equality_entry> *worklist,
4092 gdb::bcache *cache)
4093 {
4094 while (!worklist->empty ())
4095 {
4096 bool added;
4097
4098 struct type_equality_entry entry = std::move (worklist->back ());
4099 worklist->pop_back ();
4100
4101 /* If the type pair has already been visited, we know it is
4102 ok. */
4103 cache->insert (&entry, sizeof (entry), &added);
4104 if (!added)
4105 continue;
4106
4107 if (!check_types_equal (entry.type1, entry.type2, worklist))
4108 return false;
4109 }
4110
4111 return true;
4112 }
4113
4114 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4115 "deep comparison". Otherwise return false. */
4116
4117 bool
4118 types_deeply_equal (struct type *type1, struct type *type2)
4119 {
4120 std::vector<type_equality_entry> worklist;
4121
4122 gdb_assert (type1 != NULL && type2 != NULL);
4123
4124 /* Early exit for the simple case. */
4125 if (type1 == type2)
4126 return true;
4127
4128 gdb::bcache cache;
4129 worklist.emplace_back (type1, type2);
4130 return check_types_worklist (&worklist, &cache);
4131 }
4132
4133 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4134 Otherwise return one. */
4135
4136 int
4137 type_not_allocated (const struct type *type)
4138 {
4139 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4140
4141 return (prop != nullptr && prop->kind () == PROP_CONST
4142 && prop->const_val () == 0);
4143 }
4144
4145 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4146 Otherwise return one. */
4147
4148 int
4149 type_not_associated (const struct type *type)
4150 {
4151 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4152
4153 return (prop != nullptr && prop->kind () == PROP_CONST
4154 && prop->const_val () == 0);
4155 }
4156
4157 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4158
4159 static struct rank
4160 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4161 {
4162 struct rank rank = {0,0};
4163
4164 switch (arg->code ())
4165 {
4166 case TYPE_CODE_PTR:
4167
4168 /* Allowed pointer conversions are:
4169 (a) pointer to void-pointer conversion. */
4170 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4171 return VOID_PTR_CONVERSION_BADNESS;
4172
4173 /* (b) pointer to ancestor-pointer conversion. */
4174 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4175 TYPE_TARGET_TYPE (arg),
4176 0);
4177 if (rank.subrank >= 0)
4178 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4179
4180 return INCOMPATIBLE_TYPE_BADNESS;
4181 case TYPE_CODE_ARRAY:
4182 {
4183 struct type *t1 = TYPE_TARGET_TYPE (parm);
4184 struct type *t2 = TYPE_TARGET_TYPE (arg);
4185
4186 if (types_equal (t1, t2))
4187 {
4188 /* Make sure they are CV equal. */
4189 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4190 rank.subrank |= CV_CONVERSION_CONST;
4191 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4192 rank.subrank |= CV_CONVERSION_VOLATILE;
4193 if (rank.subrank != 0)
4194 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4195 return EXACT_MATCH_BADNESS;
4196 }
4197 return INCOMPATIBLE_TYPE_BADNESS;
4198 }
4199 case TYPE_CODE_FUNC:
4200 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4201 case TYPE_CODE_INT:
4202 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4203 {
4204 if (value_as_long (value) == 0)
4205 {
4206 /* Null pointer conversion: allow it to be cast to a pointer.
4207 [4.10.1 of C++ standard draft n3290] */
4208 return NULL_POINTER_CONVERSION_BADNESS;
4209 }
4210 else
4211 {
4212 /* If type checking is disabled, allow the conversion. */
4213 if (!strict_type_checking)
4214 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4215 }
4216 }
4217 /* fall through */
4218 case TYPE_CODE_ENUM:
4219 case TYPE_CODE_FLAGS:
4220 case TYPE_CODE_CHAR:
4221 case TYPE_CODE_RANGE:
4222 case TYPE_CODE_BOOL:
4223 default:
4224 return INCOMPATIBLE_TYPE_BADNESS;
4225 }
4226 }
4227
4228 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4229
4230 static struct rank
4231 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4232 {
4233 switch (arg->code ())
4234 {
4235 case TYPE_CODE_PTR:
4236 case TYPE_CODE_ARRAY:
4237 return rank_one_type (TYPE_TARGET_TYPE (parm),
4238 TYPE_TARGET_TYPE (arg), NULL);
4239 default:
4240 return INCOMPATIBLE_TYPE_BADNESS;
4241 }
4242 }
4243
4244 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4245
4246 static struct rank
4247 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4248 {
4249 switch (arg->code ())
4250 {
4251 case TYPE_CODE_PTR: /* funcptr -> func */
4252 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4253 default:
4254 return INCOMPATIBLE_TYPE_BADNESS;
4255 }
4256 }
4257
4258 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4259
4260 static struct rank
4261 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4262 {
4263 switch (arg->code ())
4264 {
4265 case TYPE_CODE_INT:
4266 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4267 {
4268 /* Deal with signed, unsigned, and plain chars and
4269 signed and unsigned ints. */
4270 if (parm->has_no_signedness ())
4271 {
4272 /* This case only for character types. */
4273 if (arg->has_no_signedness ())
4274 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4275 else /* signed/unsigned char -> plain char */
4276 return INTEGER_CONVERSION_BADNESS;
4277 }
4278 else if (parm->is_unsigned ())
4279 {
4280 if (arg->is_unsigned ())
4281 {
4282 /* unsigned int -> unsigned int, or
4283 unsigned long -> unsigned long */
4284 if (integer_types_same_name_p (parm->name (),
4285 arg->name ()))
4286 return EXACT_MATCH_BADNESS;
4287 else if (integer_types_same_name_p (arg->name (),
4288 "int")
4289 && integer_types_same_name_p (parm->name (),
4290 "long"))
4291 /* unsigned int -> unsigned long */
4292 return INTEGER_PROMOTION_BADNESS;
4293 else
4294 /* unsigned long -> unsigned int */
4295 return INTEGER_CONVERSION_BADNESS;
4296 }
4297 else
4298 {
4299 if (integer_types_same_name_p (arg->name (),
4300 "long")
4301 && integer_types_same_name_p (parm->name (),
4302 "int"))
4303 /* signed long -> unsigned int */
4304 return INTEGER_CONVERSION_BADNESS;
4305 else
4306 /* signed int/long -> unsigned int/long */
4307 return INTEGER_CONVERSION_BADNESS;
4308 }
4309 }
4310 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4311 {
4312 if (integer_types_same_name_p (parm->name (),
4313 arg->name ()))
4314 return EXACT_MATCH_BADNESS;
4315 else if (integer_types_same_name_p (arg->name (),
4316 "int")
4317 && integer_types_same_name_p (parm->name (),
4318 "long"))
4319 return INTEGER_PROMOTION_BADNESS;
4320 else
4321 return INTEGER_CONVERSION_BADNESS;
4322 }
4323 else
4324 return INTEGER_CONVERSION_BADNESS;
4325 }
4326 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4327 return INTEGER_PROMOTION_BADNESS;
4328 else
4329 return INTEGER_CONVERSION_BADNESS;
4330 case TYPE_CODE_ENUM:
4331 case TYPE_CODE_FLAGS:
4332 case TYPE_CODE_CHAR:
4333 case TYPE_CODE_RANGE:
4334 case TYPE_CODE_BOOL:
4335 if (TYPE_DECLARED_CLASS (arg))
4336 return INCOMPATIBLE_TYPE_BADNESS;
4337 return INTEGER_PROMOTION_BADNESS;
4338 case TYPE_CODE_FLT:
4339 return INT_FLOAT_CONVERSION_BADNESS;
4340 case TYPE_CODE_PTR:
4341 return NS_POINTER_CONVERSION_BADNESS;
4342 default:
4343 return INCOMPATIBLE_TYPE_BADNESS;
4344 }
4345 }
4346
4347 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4348
4349 static struct rank
4350 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4351 {
4352 switch (arg->code ())
4353 {
4354 case TYPE_CODE_INT:
4355 case TYPE_CODE_CHAR:
4356 case TYPE_CODE_RANGE:
4357 case TYPE_CODE_BOOL:
4358 case TYPE_CODE_ENUM:
4359 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4360 return INCOMPATIBLE_TYPE_BADNESS;
4361 return INTEGER_CONVERSION_BADNESS;
4362 case TYPE_CODE_FLT:
4363 return INT_FLOAT_CONVERSION_BADNESS;
4364 default:
4365 return INCOMPATIBLE_TYPE_BADNESS;
4366 }
4367 }
4368
4369 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4370
4371 static struct rank
4372 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4373 {
4374 switch (arg->code ())
4375 {
4376 case TYPE_CODE_RANGE:
4377 case TYPE_CODE_BOOL:
4378 case TYPE_CODE_ENUM:
4379 if (TYPE_DECLARED_CLASS (arg))
4380 return INCOMPATIBLE_TYPE_BADNESS;
4381 return INTEGER_CONVERSION_BADNESS;
4382 case TYPE_CODE_FLT:
4383 return INT_FLOAT_CONVERSION_BADNESS;
4384 case TYPE_CODE_INT:
4385 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4386 return INTEGER_CONVERSION_BADNESS;
4387 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4388 return INTEGER_PROMOTION_BADNESS;
4389 /* fall through */
4390 case TYPE_CODE_CHAR:
4391 /* Deal with signed, unsigned, and plain chars for C++ and
4392 with int cases falling through from previous case. */
4393 if (parm->has_no_signedness ())
4394 {
4395 if (arg->has_no_signedness ())
4396 return EXACT_MATCH_BADNESS;
4397 else
4398 return INTEGER_CONVERSION_BADNESS;
4399 }
4400 else if (parm->is_unsigned ())
4401 {
4402 if (arg->is_unsigned ())
4403 return EXACT_MATCH_BADNESS;
4404 else
4405 return INTEGER_PROMOTION_BADNESS;
4406 }
4407 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4408 return EXACT_MATCH_BADNESS;
4409 else
4410 return INTEGER_CONVERSION_BADNESS;
4411 default:
4412 return INCOMPATIBLE_TYPE_BADNESS;
4413 }
4414 }
4415
4416 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4417
4418 static struct rank
4419 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4420 {
4421 switch (arg->code ())
4422 {
4423 case TYPE_CODE_INT:
4424 case TYPE_CODE_CHAR:
4425 case TYPE_CODE_RANGE:
4426 case TYPE_CODE_BOOL:
4427 case TYPE_CODE_ENUM:
4428 return INTEGER_CONVERSION_BADNESS;
4429 case TYPE_CODE_FLT:
4430 return INT_FLOAT_CONVERSION_BADNESS;
4431 default:
4432 return INCOMPATIBLE_TYPE_BADNESS;
4433 }
4434 }
4435
4436 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4437
4438 static struct rank
4439 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4440 {
4441 switch (arg->code ())
4442 {
4443 /* n3290 draft, section 4.12.1 (conv.bool):
4444
4445 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4446 pointer to member type can be converted to a prvalue of type
4447 bool. A zero value, null pointer value, or null member pointer
4448 value is converted to false; any other value is converted to
4449 true. A prvalue of type std::nullptr_t can be converted to a
4450 prvalue of type bool; the resulting value is false." */
4451 case TYPE_CODE_INT:
4452 case TYPE_CODE_CHAR:
4453 case TYPE_CODE_ENUM:
4454 case TYPE_CODE_FLT:
4455 case TYPE_CODE_MEMBERPTR:
4456 case TYPE_CODE_PTR:
4457 return BOOL_CONVERSION_BADNESS;
4458 case TYPE_CODE_RANGE:
4459 return INCOMPATIBLE_TYPE_BADNESS;
4460 case TYPE_CODE_BOOL:
4461 return EXACT_MATCH_BADNESS;
4462 default:
4463 return INCOMPATIBLE_TYPE_BADNESS;
4464 }
4465 }
4466
4467 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4468
4469 static struct rank
4470 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4471 {
4472 switch (arg->code ())
4473 {
4474 case TYPE_CODE_FLT:
4475 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4476 return FLOAT_PROMOTION_BADNESS;
4477 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4478 return EXACT_MATCH_BADNESS;
4479 else
4480 return FLOAT_CONVERSION_BADNESS;
4481 case TYPE_CODE_INT:
4482 case TYPE_CODE_BOOL:
4483 case TYPE_CODE_ENUM:
4484 case TYPE_CODE_RANGE:
4485 case TYPE_CODE_CHAR:
4486 return INT_FLOAT_CONVERSION_BADNESS;
4487 default:
4488 return INCOMPATIBLE_TYPE_BADNESS;
4489 }
4490 }
4491
4492 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4493
4494 static struct rank
4495 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4496 {
4497 switch (arg->code ())
4498 { /* Strictly not needed for C++, but... */
4499 case TYPE_CODE_FLT:
4500 return FLOAT_PROMOTION_BADNESS;
4501 case TYPE_CODE_COMPLEX:
4502 return EXACT_MATCH_BADNESS;
4503 default:
4504 return INCOMPATIBLE_TYPE_BADNESS;
4505 }
4506 }
4507
4508 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4509
4510 static struct rank
4511 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4512 {
4513 struct rank rank = {0, 0};
4514
4515 switch (arg->code ())
4516 {
4517 case TYPE_CODE_STRUCT:
4518 /* Check for derivation */
4519 rank.subrank = distance_to_ancestor (parm, arg, 0);
4520 if (rank.subrank >= 0)
4521 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4522 /* fall through */
4523 default:
4524 return INCOMPATIBLE_TYPE_BADNESS;
4525 }
4526 }
4527
4528 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4529
4530 static struct rank
4531 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4532 {
4533 switch (arg->code ())
4534 {
4535 /* Not in C++ */
4536 case TYPE_CODE_SET:
4537 return rank_one_type (parm->field (0).type (),
4538 arg->field (0).type (), NULL);
4539 default:
4540 return INCOMPATIBLE_TYPE_BADNESS;
4541 }
4542 }
4543
4544 /* Compare one type (PARM) for compatibility with another (ARG).
4545 * PARM is intended to be the parameter type of a function; and
4546 * ARG is the supplied argument's type. This function tests if
4547 * the latter can be converted to the former.
4548 * VALUE is the argument's value or NULL if none (or called recursively)
4549 *
4550 * Return 0 if they are identical types;
4551 * Otherwise, return an integer which corresponds to how compatible
4552 * PARM is to ARG. The higher the return value, the worse the match.
4553 * Generally the "bad" conversions are all uniformly assigned a 100. */
4554
4555 struct rank
4556 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4557 {
4558 struct rank rank = {0,0};
4559
4560 /* Resolve typedefs */
4561 if (parm->code () == TYPE_CODE_TYPEDEF)
4562 parm = check_typedef (parm);
4563 if (arg->code () == TYPE_CODE_TYPEDEF)
4564 arg = check_typedef (arg);
4565
4566 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4567 {
4568 if (VALUE_LVAL (value) == not_lval)
4569 {
4570 /* Rvalues should preferably bind to rvalue references or const
4571 lvalue references. */
4572 if (parm->code () == TYPE_CODE_RVALUE_REF)
4573 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4574 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4575 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4576 else
4577 return INCOMPATIBLE_TYPE_BADNESS;
4578 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4579 }
4580 else
4581 {
4582 /* It's illegal to pass an lvalue as an rvalue. */
4583 if (parm->code () == TYPE_CODE_RVALUE_REF)
4584 return INCOMPATIBLE_TYPE_BADNESS;
4585 }
4586 }
4587
4588 if (types_equal (parm, arg))
4589 {
4590 struct type *t1 = parm;
4591 struct type *t2 = arg;
4592
4593 /* For pointers and references, compare target type. */
4594 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4595 {
4596 t1 = TYPE_TARGET_TYPE (parm);
4597 t2 = TYPE_TARGET_TYPE (arg);
4598 }
4599
4600 /* Make sure they are CV equal, too. */
4601 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4602 rank.subrank |= CV_CONVERSION_CONST;
4603 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4604 rank.subrank |= CV_CONVERSION_VOLATILE;
4605 if (rank.subrank != 0)
4606 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4607 return EXACT_MATCH_BADNESS;
4608 }
4609
4610 /* See through references, since we can almost make non-references
4611 references. */
4612
4613 if (TYPE_IS_REFERENCE (arg))
4614 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4615 REFERENCE_SEE_THROUGH_BADNESS));
4616 if (TYPE_IS_REFERENCE (parm))
4617 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4618 REFERENCE_SEE_THROUGH_BADNESS));
4619 if (overload_debug)
4620 /* Debugging only. */
4621 fprintf_filtered (gdb_stderr,
4622 "------ Arg is %s [%d], parm is %s [%d]\n",
4623 arg->name (), arg->code (),
4624 parm->name (), parm->code ());
4625
4626 /* x -> y means arg of type x being supplied for parameter of type y. */
4627
4628 switch (parm->code ())
4629 {
4630 case TYPE_CODE_PTR:
4631 return rank_one_type_parm_ptr (parm, arg, value);
4632 case TYPE_CODE_ARRAY:
4633 return rank_one_type_parm_array (parm, arg, value);
4634 case TYPE_CODE_FUNC:
4635 return rank_one_type_parm_func (parm, arg, value);
4636 case TYPE_CODE_INT:
4637 return rank_one_type_parm_int (parm, arg, value);
4638 case TYPE_CODE_ENUM:
4639 return rank_one_type_parm_enum (parm, arg, value);
4640 case TYPE_CODE_CHAR:
4641 return rank_one_type_parm_char (parm, arg, value);
4642 case TYPE_CODE_RANGE:
4643 return rank_one_type_parm_range (parm, arg, value);
4644 case TYPE_CODE_BOOL:
4645 return rank_one_type_parm_bool (parm, arg, value);
4646 case TYPE_CODE_FLT:
4647 return rank_one_type_parm_float (parm, arg, value);
4648 case TYPE_CODE_COMPLEX:
4649 return rank_one_type_parm_complex (parm, arg, value);
4650 case TYPE_CODE_STRUCT:
4651 return rank_one_type_parm_struct (parm, arg, value);
4652 case TYPE_CODE_SET:
4653 return rank_one_type_parm_set (parm, arg, value);
4654 default:
4655 return INCOMPATIBLE_TYPE_BADNESS;
4656 } /* switch (arg->code ()) */
4657 }
4658
4659 /* End of functions for overload resolution. */
4660 \f
4661 /* Routines to pretty-print types. */
4662
4663 static void
4664 print_bit_vector (B_TYPE *bits, int nbits)
4665 {
4666 int bitno;
4667
4668 for (bitno = 0; bitno < nbits; bitno++)
4669 {
4670 if ((bitno % 8) == 0)
4671 {
4672 puts_filtered (" ");
4673 }
4674 if (B_TST (bits, bitno))
4675 printf_filtered (("1"));
4676 else
4677 printf_filtered (("0"));
4678 }
4679 }
4680
4681 /* Note the first arg should be the "this" pointer, we may not want to
4682 include it since we may get into a infinitely recursive
4683 situation. */
4684
4685 static void
4686 print_args (struct field *args, int nargs, int spaces)
4687 {
4688 if (args != NULL)
4689 {
4690 int i;
4691
4692 for (i = 0; i < nargs; i++)
4693 {
4694 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4695 args[i].name != NULL ? args[i].name : "<NULL>");
4696 recursive_dump_type (args[i].type (), spaces + 2);
4697 }
4698 }
4699 }
4700
4701 int
4702 field_is_static (struct field *f)
4703 {
4704 /* "static" fields are the fields whose location is not relative
4705 to the address of the enclosing struct. It would be nice to
4706 have a dedicated flag that would be set for static fields when
4707 the type is being created. But in practice, checking the field
4708 loc_kind should give us an accurate answer. */
4709 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4710 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4711 }
4712
4713 static void
4714 dump_fn_fieldlists (struct type *type, int spaces)
4715 {
4716 int method_idx;
4717 int overload_idx;
4718 struct fn_field *f;
4719
4720 printfi_filtered (spaces, "fn_fieldlists ");
4721 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4722 printf_filtered ("\n");
4723 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4724 {
4725 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4726 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4727 method_idx,
4728 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4729 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4730 gdb_stdout);
4731 printf_filtered (_(") length %d\n"),
4732 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4733 for (overload_idx = 0;
4734 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4735 overload_idx++)
4736 {
4737 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4738 overload_idx,
4739 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4740 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4741 gdb_stdout);
4742 printf_filtered (")\n");
4743 printfi_filtered (spaces + 8, "type ");
4744 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4745 gdb_stdout);
4746 printf_filtered ("\n");
4747
4748 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4749 spaces + 8 + 2);
4750
4751 printfi_filtered (spaces + 8, "args ");
4752 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4753 gdb_stdout);
4754 printf_filtered ("\n");
4755 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4756 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4757 spaces + 8 + 2);
4758 printfi_filtered (spaces + 8, "fcontext ");
4759 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4760 gdb_stdout);
4761 printf_filtered ("\n");
4762
4763 printfi_filtered (spaces + 8, "is_const %d\n",
4764 TYPE_FN_FIELD_CONST (f, overload_idx));
4765 printfi_filtered (spaces + 8, "is_volatile %d\n",
4766 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4767 printfi_filtered (spaces + 8, "is_private %d\n",
4768 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4769 printfi_filtered (spaces + 8, "is_protected %d\n",
4770 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4771 printfi_filtered (spaces + 8, "is_stub %d\n",
4772 TYPE_FN_FIELD_STUB (f, overload_idx));
4773 printfi_filtered (spaces + 8, "defaulted %d\n",
4774 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_deleted %d\n",
4776 TYPE_FN_FIELD_DELETED (f, overload_idx));
4777 printfi_filtered (spaces + 8, "voffset %u\n",
4778 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4779 }
4780 }
4781 }
4782
4783 static void
4784 print_cplus_stuff (struct type *type, int spaces)
4785 {
4786 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4787 printfi_filtered (spaces, "vptr_basetype ");
4788 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4789 puts_filtered ("\n");
4790 if (TYPE_VPTR_BASETYPE (type) != NULL)
4791 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4792
4793 printfi_filtered (spaces, "n_baseclasses %d\n",
4794 TYPE_N_BASECLASSES (type));
4795 printfi_filtered (spaces, "nfn_fields %d\n",
4796 TYPE_NFN_FIELDS (type));
4797 if (TYPE_N_BASECLASSES (type) > 0)
4798 {
4799 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4800 TYPE_N_BASECLASSES (type));
4801 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4802 gdb_stdout);
4803 printf_filtered (")");
4804
4805 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4806 TYPE_N_BASECLASSES (type));
4807 puts_filtered ("\n");
4808 }
4809 if (type->num_fields () > 0)
4810 {
4811 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4812 {
4813 printfi_filtered (spaces,
4814 "private_field_bits (%d bits at *",
4815 type->num_fields ());
4816 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4817 gdb_stdout);
4818 printf_filtered (")");
4819 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4820 type->num_fields ());
4821 puts_filtered ("\n");
4822 }
4823 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4824 {
4825 printfi_filtered (spaces,
4826 "protected_field_bits (%d bits at *",
4827 type->num_fields ());
4828 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4829 gdb_stdout);
4830 printf_filtered (")");
4831 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4832 type->num_fields ());
4833 puts_filtered ("\n");
4834 }
4835 }
4836 if (TYPE_NFN_FIELDS (type) > 0)
4837 {
4838 dump_fn_fieldlists (type, spaces);
4839 }
4840
4841 printfi_filtered (spaces, "calling_convention %d\n",
4842 TYPE_CPLUS_CALLING_CONVENTION (type));
4843 }
4844
4845 /* Print the contents of the TYPE's type_specific union, assuming that
4846 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4847
4848 static void
4849 print_gnat_stuff (struct type *type, int spaces)
4850 {
4851 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4852
4853 if (descriptive_type == NULL)
4854 printfi_filtered (spaces + 2, "no descriptive type\n");
4855 else
4856 {
4857 printfi_filtered (spaces + 2, "descriptive type\n");
4858 recursive_dump_type (descriptive_type, spaces + 4);
4859 }
4860 }
4861
4862 static struct obstack dont_print_type_obstack;
4863
4864 /* Print the dynamic_prop PROP. */
4865
4866 static void
4867 dump_dynamic_prop (dynamic_prop const& prop)
4868 {
4869 switch (prop.kind ())
4870 {
4871 case PROP_CONST:
4872 printf_filtered ("%s", plongest (prop.const_val ()));
4873 break;
4874 case PROP_UNDEFINED:
4875 printf_filtered ("(undefined)");
4876 break;
4877 case PROP_LOCEXPR:
4878 case PROP_LOCLIST:
4879 printf_filtered ("(dynamic)");
4880 break;
4881 default:
4882 gdb_assert_not_reached ("unhandled prop kind");
4883 break;
4884 }
4885 }
4886
4887 void
4888 recursive_dump_type (struct type *type, int spaces)
4889 {
4890 int idx;
4891
4892 if (spaces == 0)
4893 obstack_begin (&dont_print_type_obstack, 0);
4894
4895 if (type->num_fields () > 0
4896 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4897 {
4898 struct type **first_dont_print
4899 = (struct type **) obstack_base (&dont_print_type_obstack);
4900
4901 int i = (struct type **)
4902 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4903
4904 while (--i >= 0)
4905 {
4906 if (type == first_dont_print[i])
4907 {
4908 printfi_filtered (spaces, "type node ");
4909 gdb_print_host_address (type, gdb_stdout);
4910 printf_filtered (_(" <same as already seen type>\n"));
4911 return;
4912 }
4913 }
4914
4915 obstack_ptr_grow (&dont_print_type_obstack, type);
4916 }
4917
4918 printfi_filtered (spaces, "type node ");
4919 gdb_print_host_address (type, gdb_stdout);
4920 printf_filtered ("\n");
4921 printfi_filtered (spaces, "name '%s' (",
4922 type->name () ? type->name () : "<NULL>");
4923 gdb_print_host_address (type->name (), gdb_stdout);
4924 printf_filtered (")\n");
4925 printfi_filtered (spaces, "code 0x%x ", type->code ());
4926 switch (type->code ())
4927 {
4928 case TYPE_CODE_UNDEF:
4929 printf_filtered ("(TYPE_CODE_UNDEF)");
4930 break;
4931 case TYPE_CODE_PTR:
4932 printf_filtered ("(TYPE_CODE_PTR)");
4933 break;
4934 case TYPE_CODE_ARRAY:
4935 printf_filtered ("(TYPE_CODE_ARRAY)");
4936 break;
4937 case TYPE_CODE_STRUCT:
4938 printf_filtered ("(TYPE_CODE_STRUCT)");
4939 break;
4940 case TYPE_CODE_UNION:
4941 printf_filtered ("(TYPE_CODE_UNION)");
4942 break;
4943 case TYPE_CODE_ENUM:
4944 printf_filtered ("(TYPE_CODE_ENUM)");
4945 break;
4946 case TYPE_CODE_FLAGS:
4947 printf_filtered ("(TYPE_CODE_FLAGS)");
4948 break;
4949 case TYPE_CODE_FUNC:
4950 printf_filtered ("(TYPE_CODE_FUNC)");
4951 break;
4952 case TYPE_CODE_INT:
4953 printf_filtered ("(TYPE_CODE_INT)");
4954 break;
4955 case TYPE_CODE_FLT:
4956 printf_filtered ("(TYPE_CODE_FLT)");
4957 break;
4958 case TYPE_CODE_VOID:
4959 printf_filtered ("(TYPE_CODE_VOID)");
4960 break;
4961 case TYPE_CODE_SET:
4962 printf_filtered ("(TYPE_CODE_SET)");
4963 break;
4964 case TYPE_CODE_RANGE:
4965 printf_filtered ("(TYPE_CODE_RANGE)");
4966 break;
4967 case TYPE_CODE_STRING:
4968 printf_filtered ("(TYPE_CODE_STRING)");
4969 break;
4970 case TYPE_CODE_ERROR:
4971 printf_filtered ("(TYPE_CODE_ERROR)");
4972 break;
4973 case TYPE_CODE_MEMBERPTR:
4974 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4975 break;
4976 case TYPE_CODE_METHODPTR:
4977 printf_filtered ("(TYPE_CODE_METHODPTR)");
4978 break;
4979 case TYPE_CODE_METHOD:
4980 printf_filtered ("(TYPE_CODE_METHOD)");
4981 break;
4982 case TYPE_CODE_REF:
4983 printf_filtered ("(TYPE_CODE_REF)");
4984 break;
4985 case TYPE_CODE_CHAR:
4986 printf_filtered ("(TYPE_CODE_CHAR)");
4987 break;
4988 case TYPE_CODE_BOOL:
4989 printf_filtered ("(TYPE_CODE_BOOL)");
4990 break;
4991 case TYPE_CODE_COMPLEX:
4992 printf_filtered ("(TYPE_CODE_COMPLEX)");
4993 break;
4994 case TYPE_CODE_TYPEDEF:
4995 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4996 break;
4997 case TYPE_CODE_NAMESPACE:
4998 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4999 break;
5000 default:
5001 printf_filtered ("(UNKNOWN TYPE CODE)");
5002 break;
5003 }
5004 puts_filtered ("\n");
5005 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5006 if (TYPE_OBJFILE_OWNED (type))
5007 {
5008 printfi_filtered (spaces, "objfile ");
5009 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5010 }
5011 else
5012 {
5013 printfi_filtered (spaces, "gdbarch ");
5014 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5015 }
5016 printf_filtered ("\n");
5017 printfi_filtered (spaces, "target_type ");
5018 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5019 printf_filtered ("\n");
5020 if (TYPE_TARGET_TYPE (type) != NULL)
5021 {
5022 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5023 }
5024 printfi_filtered (spaces, "pointer_type ");
5025 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5026 printf_filtered ("\n");
5027 printfi_filtered (spaces, "reference_type ");
5028 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5029 printf_filtered ("\n");
5030 printfi_filtered (spaces, "type_chain ");
5031 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5032 printf_filtered ("\n");
5033 printfi_filtered (spaces, "instance_flags 0x%x",
5034 (unsigned) type->instance_flags ());
5035 if (TYPE_CONST (type))
5036 {
5037 puts_filtered (" TYPE_CONST");
5038 }
5039 if (TYPE_VOLATILE (type))
5040 {
5041 puts_filtered (" TYPE_VOLATILE");
5042 }
5043 if (TYPE_CODE_SPACE (type))
5044 {
5045 puts_filtered (" TYPE_CODE_SPACE");
5046 }
5047 if (TYPE_DATA_SPACE (type))
5048 {
5049 puts_filtered (" TYPE_DATA_SPACE");
5050 }
5051 if (TYPE_ADDRESS_CLASS_1 (type))
5052 {
5053 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5054 }
5055 if (TYPE_ADDRESS_CLASS_2 (type))
5056 {
5057 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5058 }
5059 if (TYPE_RESTRICT (type))
5060 {
5061 puts_filtered (" TYPE_RESTRICT");
5062 }
5063 if (TYPE_ATOMIC (type))
5064 {
5065 puts_filtered (" TYPE_ATOMIC");
5066 }
5067 puts_filtered ("\n");
5068
5069 printfi_filtered (spaces, "flags");
5070 if (type->is_unsigned ())
5071 {
5072 puts_filtered (" TYPE_UNSIGNED");
5073 }
5074 if (type->has_no_signedness ())
5075 {
5076 puts_filtered (" TYPE_NOSIGN");
5077 }
5078 if (type->endianity_is_not_default ())
5079 {
5080 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5081 }
5082 if (type->is_stub ())
5083 {
5084 puts_filtered (" TYPE_STUB");
5085 }
5086 if (type->target_is_stub ())
5087 {
5088 puts_filtered (" TYPE_TARGET_STUB");
5089 }
5090 if (type->is_prototyped ())
5091 {
5092 puts_filtered (" TYPE_PROTOTYPED");
5093 }
5094 if (type->has_varargs ())
5095 {
5096 puts_filtered (" TYPE_VARARGS");
5097 }
5098 /* This is used for things like AltiVec registers on ppc. Gcc emits
5099 an attribute for the array type, which tells whether or not we
5100 have a vector, instead of a regular array. */
5101 if (type->is_vector ())
5102 {
5103 puts_filtered (" TYPE_VECTOR");
5104 }
5105 if (type->is_fixed_instance ())
5106 {
5107 puts_filtered (" TYPE_FIXED_INSTANCE");
5108 }
5109 if (type->stub_is_supported ())
5110 {
5111 puts_filtered (" TYPE_STUB_SUPPORTED");
5112 }
5113 if (TYPE_NOTTEXT (type))
5114 {
5115 puts_filtered (" TYPE_NOTTEXT");
5116 }
5117 puts_filtered ("\n");
5118 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5119 gdb_print_host_address (type->fields (), gdb_stdout);
5120 puts_filtered ("\n");
5121 for (idx = 0; idx < type->num_fields (); idx++)
5122 {
5123 if (type->code () == TYPE_CODE_ENUM)
5124 printfi_filtered (spaces + 2,
5125 "[%d] enumval %s type ",
5126 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5127 else
5128 printfi_filtered (spaces + 2,
5129 "[%d] bitpos %s bitsize %d type ",
5130 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5131 TYPE_FIELD_BITSIZE (type, idx));
5132 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5133 printf_filtered (" name '%s' (",
5134 TYPE_FIELD_NAME (type, idx) != NULL
5135 ? TYPE_FIELD_NAME (type, idx)
5136 : "<NULL>");
5137 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5138 printf_filtered (")\n");
5139 if (type->field (idx).type () != NULL)
5140 {
5141 recursive_dump_type (type->field (idx).type (), spaces + 4);
5142 }
5143 }
5144 if (type->code () == TYPE_CODE_RANGE)
5145 {
5146 printfi_filtered (spaces, "low ");
5147 dump_dynamic_prop (type->bounds ()->low);
5148 printf_filtered (" high ");
5149 dump_dynamic_prop (type->bounds ()->high);
5150 printf_filtered ("\n");
5151 }
5152
5153 switch (TYPE_SPECIFIC_FIELD (type))
5154 {
5155 case TYPE_SPECIFIC_CPLUS_STUFF:
5156 printfi_filtered (spaces, "cplus_stuff ");
5157 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5158 gdb_stdout);
5159 puts_filtered ("\n");
5160 print_cplus_stuff (type, spaces);
5161 break;
5162
5163 case TYPE_SPECIFIC_GNAT_STUFF:
5164 printfi_filtered (spaces, "gnat_stuff ");
5165 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5166 puts_filtered ("\n");
5167 print_gnat_stuff (type, spaces);
5168 break;
5169
5170 case TYPE_SPECIFIC_FLOATFORMAT:
5171 printfi_filtered (spaces, "floatformat ");
5172 if (TYPE_FLOATFORMAT (type) == NULL
5173 || TYPE_FLOATFORMAT (type)->name == NULL)
5174 puts_filtered ("(null)");
5175 else
5176 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5177 puts_filtered ("\n");
5178 break;
5179
5180 case TYPE_SPECIFIC_FUNC:
5181 printfi_filtered (spaces, "calling_convention %d\n",
5182 TYPE_CALLING_CONVENTION (type));
5183 /* tail_call_list is not printed. */
5184 break;
5185
5186 case TYPE_SPECIFIC_SELF_TYPE:
5187 printfi_filtered (spaces, "self_type ");
5188 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5189 puts_filtered ("\n");
5190 break;
5191 }
5192
5193 if (spaces == 0)
5194 obstack_free (&dont_print_type_obstack, NULL);
5195 }
5196 \f
5197 /* Trivial helpers for the libiberty hash table, for mapping one
5198 type to another. */
5199
5200 struct type_pair : public allocate_on_obstack
5201 {
5202 type_pair (struct type *old_, struct type *newobj_)
5203 : old (old_), newobj (newobj_)
5204 {}
5205
5206 struct type * const old, * const newobj;
5207 };
5208
5209 static hashval_t
5210 type_pair_hash (const void *item)
5211 {
5212 const struct type_pair *pair = (const struct type_pair *) item;
5213
5214 return htab_hash_pointer (pair->old);
5215 }
5216
5217 static int
5218 type_pair_eq (const void *item_lhs, const void *item_rhs)
5219 {
5220 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5221 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5222
5223 return lhs->old == rhs->old;
5224 }
5225
5226 /* Allocate the hash table used by copy_type_recursive to walk
5227 types without duplicates. We use OBJFILE's obstack, because
5228 OBJFILE is about to be deleted. */
5229
5230 htab_t
5231 create_copied_types_hash (struct objfile *objfile)
5232 {
5233 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5234 NULL, &objfile->objfile_obstack,
5235 hashtab_obstack_allocate,
5236 dummy_obstack_deallocate);
5237 }
5238
5239 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5240
5241 static struct dynamic_prop_list *
5242 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5243 struct dynamic_prop_list *list)
5244 {
5245 struct dynamic_prop_list *copy = list;
5246 struct dynamic_prop_list **node_ptr = &copy;
5247
5248 while (*node_ptr != NULL)
5249 {
5250 struct dynamic_prop_list *node_copy;
5251
5252 node_copy = ((struct dynamic_prop_list *)
5253 obstack_copy (objfile_obstack, *node_ptr,
5254 sizeof (struct dynamic_prop_list)));
5255 node_copy->prop = (*node_ptr)->prop;
5256 *node_ptr = node_copy;
5257
5258 node_ptr = &node_copy->next;
5259 }
5260
5261 return copy;
5262 }
5263
5264 /* Recursively copy (deep copy) TYPE, if it is associated with
5265 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5266 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5267 it is not associated with OBJFILE. */
5268
5269 struct type *
5270 copy_type_recursive (struct objfile *objfile,
5271 struct type *type,
5272 htab_t copied_types)
5273 {
5274 void **slot;
5275 struct type *new_type;
5276
5277 if (! TYPE_OBJFILE_OWNED (type))
5278 return type;
5279
5280 /* This type shouldn't be pointing to any types in other objfiles;
5281 if it did, the type might disappear unexpectedly. */
5282 gdb_assert (TYPE_OBJFILE (type) == objfile);
5283
5284 struct type_pair pair (type, nullptr);
5285
5286 slot = htab_find_slot (copied_types, &pair, INSERT);
5287 if (*slot != NULL)
5288 return ((struct type_pair *) *slot)->newobj;
5289
5290 new_type = alloc_type_arch (get_type_arch (type));
5291
5292 /* We must add the new type to the hash table immediately, in case
5293 we encounter this type again during a recursive call below. */
5294 struct type_pair *stored
5295 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5296
5297 *slot = stored;
5298
5299 /* Copy the common fields of types. For the main type, we simply
5300 copy the entire thing and then update specific fields as needed. */
5301 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5302 TYPE_OBJFILE_OWNED (new_type) = 0;
5303 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5304
5305 if (type->name ())
5306 new_type->set_name (xstrdup (type->name ()));
5307
5308 new_type->set_instance_flags (type->instance_flags ());
5309 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5310
5311 /* Copy the fields. */
5312 if (type->num_fields ())
5313 {
5314 int i, nfields;
5315
5316 nfields = type->num_fields ();
5317 new_type->set_fields
5318 ((struct field *)
5319 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5320
5321 for (i = 0; i < nfields; i++)
5322 {
5323 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5324 TYPE_FIELD_ARTIFICIAL (type, i);
5325 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5326 if (type->field (i).type ())
5327 new_type->field (i).set_type
5328 (copy_type_recursive (objfile, type->field (i).type (),
5329 copied_types));
5330 if (TYPE_FIELD_NAME (type, i))
5331 TYPE_FIELD_NAME (new_type, i) =
5332 xstrdup (TYPE_FIELD_NAME (type, i));
5333 switch (TYPE_FIELD_LOC_KIND (type, i))
5334 {
5335 case FIELD_LOC_KIND_BITPOS:
5336 SET_FIELD_BITPOS (new_type->field (i),
5337 TYPE_FIELD_BITPOS (type, i));
5338 break;
5339 case FIELD_LOC_KIND_ENUMVAL:
5340 SET_FIELD_ENUMVAL (new_type->field (i),
5341 TYPE_FIELD_ENUMVAL (type, i));
5342 break;
5343 case FIELD_LOC_KIND_PHYSADDR:
5344 SET_FIELD_PHYSADDR (new_type->field (i),
5345 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5346 break;
5347 case FIELD_LOC_KIND_PHYSNAME:
5348 SET_FIELD_PHYSNAME (new_type->field (i),
5349 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5350 i)));
5351 break;
5352 default:
5353 internal_error (__FILE__, __LINE__,
5354 _("Unexpected type field location kind: %d"),
5355 TYPE_FIELD_LOC_KIND (type, i));
5356 }
5357 }
5358 }
5359
5360 /* For range types, copy the bounds information. */
5361 if (type->code () == TYPE_CODE_RANGE)
5362 {
5363 range_bounds *bounds
5364 = ((struct range_bounds *) TYPE_ALLOC
5365 (new_type, sizeof (struct range_bounds)));
5366
5367 *bounds = *type->bounds ();
5368 new_type->set_bounds (bounds);
5369 }
5370
5371 if (type->main_type->dyn_prop_list != NULL)
5372 new_type->main_type->dyn_prop_list
5373 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5374 type->main_type->dyn_prop_list);
5375
5376
5377 /* Copy pointers to other types. */
5378 if (TYPE_TARGET_TYPE (type))
5379 TYPE_TARGET_TYPE (new_type) =
5380 copy_type_recursive (objfile,
5381 TYPE_TARGET_TYPE (type),
5382 copied_types);
5383
5384 /* Maybe copy the type_specific bits.
5385
5386 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5387 base classes and methods. There's no fundamental reason why we
5388 can't, but at the moment it is not needed. */
5389
5390 switch (TYPE_SPECIFIC_FIELD (type))
5391 {
5392 case TYPE_SPECIFIC_NONE:
5393 break;
5394 case TYPE_SPECIFIC_FUNC:
5395 INIT_FUNC_SPECIFIC (new_type);
5396 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5397 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5398 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5399 break;
5400 case TYPE_SPECIFIC_FLOATFORMAT:
5401 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5402 break;
5403 case TYPE_SPECIFIC_CPLUS_STUFF:
5404 INIT_CPLUS_SPECIFIC (new_type);
5405 break;
5406 case TYPE_SPECIFIC_GNAT_STUFF:
5407 INIT_GNAT_SPECIFIC (new_type);
5408 break;
5409 case TYPE_SPECIFIC_SELF_TYPE:
5410 set_type_self_type (new_type,
5411 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5412 copied_types));
5413 break;
5414 default:
5415 gdb_assert_not_reached ("bad type_specific_kind");
5416 }
5417
5418 return new_type;
5419 }
5420
5421 /* Make a copy of the given TYPE, except that the pointer & reference
5422 types are not preserved.
5423
5424 This function assumes that the given type has an associated objfile.
5425 This objfile is used to allocate the new type. */
5426
5427 struct type *
5428 copy_type (const struct type *type)
5429 {
5430 struct type *new_type;
5431
5432 gdb_assert (TYPE_OBJFILE_OWNED (type));
5433
5434 new_type = alloc_type_copy (type);
5435 new_type->set_instance_flags (type->instance_flags ());
5436 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5437 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5438 sizeof (struct main_type));
5439 if (type->main_type->dyn_prop_list != NULL)
5440 new_type->main_type->dyn_prop_list
5441 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5442 type->main_type->dyn_prop_list);
5443
5444 return new_type;
5445 }
5446 \f
5447 /* Helper functions to initialize architecture-specific types. */
5448
5449 /* Allocate a type structure associated with GDBARCH and set its
5450 CODE, LENGTH, and NAME fields. */
5451
5452 struct type *
5453 arch_type (struct gdbarch *gdbarch,
5454 enum type_code code, int bit, const char *name)
5455 {
5456 struct type *type;
5457
5458 type = alloc_type_arch (gdbarch);
5459 set_type_code (type, code);
5460 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5461 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5462
5463 if (name)
5464 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5465
5466 return type;
5467 }
5468
5469 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5470 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5471 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5472
5473 struct type *
5474 arch_integer_type (struct gdbarch *gdbarch,
5475 int bit, int unsigned_p, const char *name)
5476 {
5477 struct type *t;
5478
5479 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5480 if (unsigned_p)
5481 t->set_is_unsigned (true);
5482
5483 return t;
5484 }
5485
5486 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5487 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5488 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5489
5490 struct type *
5491 arch_character_type (struct gdbarch *gdbarch,
5492 int bit, int unsigned_p, const char *name)
5493 {
5494 struct type *t;
5495
5496 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5497 if (unsigned_p)
5498 t->set_is_unsigned (true);
5499
5500 return t;
5501 }
5502
5503 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5504 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5505 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5506
5507 struct type *
5508 arch_boolean_type (struct gdbarch *gdbarch,
5509 int bit, int unsigned_p, const char *name)
5510 {
5511 struct type *t;
5512
5513 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5514 if (unsigned_p)
5515 t->set_is_unsigned (true);
5516
5517 return t;
5518 }
5519
5520 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5521 BIT is the type size in bits; if BIT equals -1, the size is
5522 determined by the floatformat. NAME is the type name. Set the
5523 TYPE_FLOATFORMAT from FLOATFORMATS. */
5524
5525 struct type *
5526 arch_float_type (struct gdbarch *gdbarch,
5527 int bit, const char *name,
5528 const struct floatformat **floatformats)
5529 {
5530 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5531 struct type *t;
5532
5533 bit = verify_floatformat (bit, fmt);
5534 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5535 TYPE_FLOATFORMAT (t) = fmt;
5536
5537 return t;
5538 }
5539
5540 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5541 BIT is the type size in bits. NAME is the type name. */
5542
5543 struct type *
5544 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5545 {
5546 struct type *t;
5547
5548 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5549 return t;
5550 }
5551
5552 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5553 BIT is the pointer type size in bits. NAME is the type name.
5554 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5555 TYPE_UNSIGNED flag. */
5556
5557 struct type *
5558 arch_pointer_type (struct gdbarch *gdbarch,
5559 int bit, const char *name, struct type *target_type)
5560 {
5561 struct type *t;
5562
5563 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5564 TYPE_TARGET_TYPE (t) = target_type;
5565 t->set_is_unsigned (true);
5566 return t;
5567 }
5568
5569 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5570 NAME is the type name. BIT is the size of the flag word in bits. */
5571
5572 struct type *
5573 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5574 {
5575 struct type *type;
5576
5577 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5578 type->set_is_unsigned (true);
5579 type->set_num_fields (0);
5580 /* Pre-allocate enough space assuming every field is one bit. */
5581 type->set_fields
5582 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5583
5584 return type;
5585 }
5586
5587 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5588 position BITPOS is called NAME. Pass NAME as "" for fields that
5589 should not be printed. */
5590
5591 void
5592 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5593 struct type *field_type, const char *name)
5594 {
5595 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5596 int field_nr = type->num_fields ();
5597
5598 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5599 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5600 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5601 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5602 gdb_assert (name != NULL);
5603
5604 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5605 type->field (field_nr).set_type (field_type);
5606 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5607 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5608 type->set_num_fields (type->num_fields () + 1);
5609 }
5610
5611 /* Special version of append_flags_type_field to add a flag field.
5612 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5613 position BITPOS is called NAME. */
5614
5615 void
5616 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5617 {
5618 struct gdbarch *gdbarch = get_type_arch (type);
5619
5620 append_flags_type_field (type, bitpos, 1,
5621 builtin_type (gdbarch)->builtin_bool,
5622 name);
5623 }
5624
5625 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5626 specified by CODE) associated with GDBARCH. NAME is the type name. */
5627
5628 struct type *
5629 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5630 enum type_code code)
5631 {
5632 struct type *t;
5633
5634 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5635 t = arch_type (gdbarch, code, 0, NULL);
5636 t->set_name (name);
5637 INIT_CPLUS_SPECIFIC (t);
5638 return t;
5639 }
5640
5641 /* Add new field with name NAME and type FIELD to composite type T.
5642 Do not set the field's position or adjust the type's length;
5643 the caller should do so. Return the new field. */
5644
5645 struct field *
5646 append_composite_type_field_raw (struct type *t, const char *name,
5647 struct type *field)
5648 {
5649 struct field *f;
5650
5651 t->set_num_fields (t->num_fields () + 1);
5652 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5653 t->num_fields ()));
5654 f = &t->field (t->num_fields () - 1);
5655 memset (f, 0, sizeof f[0]);
5656 f[0].set_type (field);
5657 FIELD_NAME (f[0]) = name;
5658 return f;
5659 }
5660
5661 /* Add new field with name NAME and type FIELD to composite type T.
5662 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5663
5664 void
5665 append_composite_type_field_aligned (struct type *t, const char *name,
5666 struct type *field, int alignment)
5667 {
5668 struct field *f = append_composite_type_field_raw (t, name, field);
5669
5670 if (t->code () == TYPE_CODE_UNION)
5671 {
5672 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5673 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5674 }
5675 else if (t->code () == TYPE_CODE_STRUCT)
5676 {
5677 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5678 if (t->num_fields () > 1)
5679 {
5680 SET_FIELD_BITPOS (f[0],
5681 (FIELD_BITPOS (f[-1])
5682 + (TYPE_LENGTH (f[-1].type ())
5683 * TARGET_CHAR_BIT)));
5684
5685 if (alignment)
5686 {
5687 int left;
5688
5689 alignment *= TARGET_CHAR_BIT;
5690 left = FIELD_BITPOS (f[0]) % alignment;
5691
5692 if (left)
5693 {
5694 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5695 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5696 }
5697 }
5698 }
5699 }
5700 }
5701
5702 /* Add new field with name NAME and type FIELD to composite type T. */
5703
5704 void
5705 append_composite_type_field (struct type *t, const char *name,
5706 struct type *field)
5707 {
5708 append_composite_type_field_aligned (t, name, field, 0);
5709 }
5710
5711 static struct gdbarch_data *gdbtypes_data;
5712
5713 const struct builtin_type *
5714 builtin_type (struct gdbarch *gdbarch)
5715 {
5716 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5717 }
5718
5719 static void *
5720 gdbtypes_post_init (struct gdbarch *gdbarch)
5721 {
5722 struct builtin_type *builtin_type
5723 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5724
5725 /* Basic types. */
5726 builtin_type->builtin_void
5727 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5728 builtin_type->builtin_char
5729 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5730 !gdbarch_char_signed (gdbarch), "char");
5731 builtin_type->builtin_char->set_has_no_signedness (true);
5732 builtin_type->builtin_signed_char
5733 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5734 0, "signed char");
5735 builtin_type->builtin_unsigned_char
5736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5737 1, "unsigned char");
5738 builtin_type->builtin_short
5739 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5740 0, "short");
5741 builtin_type->builtin_unsigned_short
5742 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5743 1, "unsigned short");
5744 builtin_type->builtin_int
5745 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5746 0, "int");
5747 builtin_type->builtin_unsigned_int
5748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 1, "unsigned int");
5750 builtin_type->builtin_long
5751 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5752 0, "long");
5753 builtin_type->builtin_unsigned_long
5754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5755 1, "unsigned long");
5756 builtin_type->builtin_long_long
5757 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5758 0, "long long");
5759 builtin_type->builtin_unsigned_long_long
5760 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5761 1, "unsigned long long");
5762 builtin_type->builtin_half
5763 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5764 "half", gdbarch_half_format (gdbarch));
5765 builtin_type->builtin_float
5766 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5767 "float", gdbarch_float_format (gdbarch));
5768 builtin_type->builtin_bfloat16
5769 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5770 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5771 builtin_type->builtin_double
5772 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5773 "double", gdbarch_double_format (gdbarch));
5774 builtin_type->builtin_long_double
5775 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5776 "long double", gdbarch_long_double_format (gdbarch));
5777 builtin_type->builtin_complex
5778 = init_complex_type ("complex", builtin_type->builtin_float);
5779 builtin_type->builtin_double_complex
5780 = init_complex_type ("double complex", builtin_type->builtin_double);
5781 builtin_type->builtin_string
5782 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5783 builtin_type->builtin_bool
5784 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5785
5786 /* The following three are about decimal floating point types, which
5787 are 32-bits, 64-bits and 128-bits respectively. */
5788 builtin_type->builtin_decfloat
5789 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5790 builtin_type->builtin_decdouble
5791 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5792 builtin_type->builtin_declong
5793 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5794
5795 /* "True" character types. */
5796 builtin_type->builtin_true_char
5797 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5798 builtin_type->builtin_true_unsigned_char
5799 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5800
5801 /* Fixed-size integer types. */
5802 builtin_type->builtin_int0
5803 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5804 builtin_type->builtin_int8
5805 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5806 builtin_type->builtin_uint8
5807 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5808 builtin_type->builtin_int16
5809 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5810 builtin_type->builtin_uint16
5811 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5812 builtin_type->builtin_int24
5813 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5814 builtin_type->builtin_uint24
5815 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5816 builtin_type->builtin_int32
5817 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5818 builtin_type->builtin_uint32
5819 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5820 builtin_type->builtin_int64
5821 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5822 builtin_type->builtin_uint64
5823 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5824 builtin_type->builtin_int128
5825 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5826 builtin_type->builtin_uint128
5827 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5828
5829 builtin_type->builtin_int8->set_instance_flags
5830 (builtin_type->builtin_int8->instance_flags ()
5831 | TYPE_INSTANCE_FLAG_NOTTEXT);
5832
5833 builtin_type->builtin_uint8->set_instance_flags
5834 (builtin_type->builtin_uint8->instance_flags ()
5835 | TYPE_INSTANCE_FLAG_NOTTEXT);
5836
5837 /* Wide character types. */
5838 builtin_type->builtin_char16
5839 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5840 builtin_type->builtin_char32
5841 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5842 builtin_type->builtin_wchar
5843 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5844 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5845
5846 /* Default data/code pointer types. */
5847 builtin_type->builtin_data_ptr
5848 = lookup_pointer_type (builtin_type->builtin_void);
5849 builtin_type->builtin_func_ptr
5850 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5851 builtin_type->builtin_func_func
5852 = lookup_function_type (builtin_type->builtin_func_ptr);
5853
5854 /* This type represents a GDB internal function. */
5855 builtin_type->internal_fn
5856 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5857 "<internal function>");
5858
5859 /* This type represents an xmethod. */
5860 builtin_type->xmethod
5861 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5862
5863 return builtin_type;
5864 }
5865
5866 /* This set of objfile-based types is intended to be used by symbol
5867 readers as basic types. */
5868
5869 static const struct objfile_key<struct objfile_type,
5870 gdb::noop_deleter<struct objfile_type>>
5871 objfile_type_data;
5872
5873 const struct objfile_type *
5874 objfile_type (struct objfile *objfile)
5875 {
5876 struct gdbarch *gdbarch;
5877 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5878
5879 if (objfile_type)
5880 return objfile_type;
5881
5882 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5883 1, struct objfile_type);
5884
5885 /* Use the objfile architecture to determine basic type properties. */
5886 gdbarch = objfile->arch ();
5887
5888 /* Basic types. */
5889 objfile_type->builtin_void
5890 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5891 objfile_type->builtin_char
5892 = init_integer_type (objfile, TARGET_CHAR_BIT,
5893 !gdbarch_char_signed (gdbarch), "char");
5894 objfile_type->builtin_char->set_has_no_signedness (true);
5895 objfile_type->builtin_signed_char
5896 = init_integer_type (objfile, TARGET_CHAR_BIT,
5897 0, "signed char");
5898 objfile_type->builtin_unsigned_char
5899 = init_integer_type (objfile, TARGET_CHAR_BIT,
5900 1, "unsigned char");
5901 objfile_type->builtin_short
5902 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5903 0, "short");
5904 objfile_type->builtin_unsigned_short
5905 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5906 1, "unsigned short");
5907 objfile_type->builtin_int
5908 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5909 0, "int");
5910 objfile_type->builtin_unsigned_int
5911 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5912 1, "unsigned int");
5913 objfile_type->builtin_long
5914 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5915 0, "long");
5916 objfile_type->builtin_unsigned_long
5917 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5918 1, "unsigned long");
5919 objfile_type->builtin_long_long
5920 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5921 0, "long long");
5922 objfile_type->builtin_unsigned_long_long
5923 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5924 1, "unsigned long long");
5925 objfile_type->builtin_float
5926 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5927 "float", gdbarch_float_format (gdbarch));
5928 objfile_type->builtin_double
5929 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5930 "double", gdbarch_double_format (gdbarch));
5931 objfile_type->builtin_long_double
5932 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5933 "long double", gdbarch_long_double_format (gdbarch));
5934
5935 /* This type represents a type that was unrecognized in symbol read-in. */
5936 objfile_type->builtin_error
5937 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5938
5939 /* The following set of types is used for symbols with no
5940 debug information. */
5941 objfile_type->nodebug_text_symbol
5942 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5943 "<text variable, no debug info>");
5944
5945 objfile_type->nodebug_text_gnu_ifunc_symbol
5946 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5947 "<text gnu-indirect-function variable, no debug info>");
5948 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5949
5950 objfile_type->nodebug_got_plt_symbol
5951 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5952 "<text from jump slot in .got.plt, no debug info>",
5953 objfile_type->nodebug_text_symbol);
5954 objfile_type->nodebug_data_symbol
5955 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5956 objfile_type->nodebug_unknown_symbol
5957 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5958 objfile_type->nodebug_tls_symbol
5959 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5960
5961 /* NOTE: on some targets, addresses and pointers are not necessarily
5962 the same.
5963
5964 The upshot is:
5965 - gdb's `struct type' always describes the target's
5966 representation.
5967 - gdb's `struct value' objects should always hold values in
5968 target form.
5969 - gdb's CORE_ADDR values are addresses in the unified virtual
5970 address space that the assembler and linker work with. Thus,
5971 since target_read_memory takes a CORE_ADDR as an argument, it
5972 can access any memory on the target, even if the processor has
5973 separate code and data address spaces.
5974
5975 In this context, objfile_type->builtin_core_addr is a bit odd:
5976 it's a target type for a value the target will never see. It's
5977 only used to hold the values of (typeless) linker symbols, which
5978 are indeed in the unified virtual address space. */
5979
5980 objfile_type->builtin_core_addr
5981 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5982 "__CORE_ADDR");
5983
5984 objfile_type_data.set (objfile, objfile_type);
5985 return objfile_type;
5986 }
5987
5988 void _initialize_gdbtypes ();
5989 void
5990 _initialize_gdbtypes ()
5991 {
5992 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5993
5994 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5995 _("Set debugging of C++ overloading."),
5996 _("Show debugging of C++ overloading."),
5997 _("When enabled, ranking of the "
5998 "functions is displayed."),
5999 NULL,
6000 show_overload_debug,
6001 &setdebuglist, &showdebuglist);
6002
6003 /* Add user knob for controlling resolution of opaque types. */
6004 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6005 &opaque_type_resolution,
6006 _("Set resolution of opaque struct/class/union"
6007 " types (if set before loading symbols)."),
6008 _("Show resolution of opaque struct/class/union"
6009 " types (if set before loading symbols)."),
6010 NULL, NULL,
6011 show_opaque_type_resolution,
6012 &setlist, &showlist);
6013
6014 /* Add an option to permit non-strict type checking. */
6015 add_setshow_boolean_cmd ("type", class_support,
6016 &strict_type_checking,
6017 _("Set strict type checking."),
6018 _("Show strict type checking."),
6019 NULL, NULL,
6020 show_strict_type_checking,
6021 &setchecklist, &showchecklist);
6022 }
This page took 0.142398 seconds and 3 git commands to generate.