Make fixed_point_type_base_type a method of struct type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include "f-lang.h"
43 #include <algorithm>
44 #include "gmp-utils.h"
45
46 /* Initialize BADNESS constants. */
47
48 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
49
50 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
51 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
52
53 const struct rank EXACT_MATCH_BADNESS = {0,0};
54
55 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
56 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
57 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
58 const struct rank CV_CONVERSION_BADNESS = {1, 0};
59 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
60 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
61 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
62 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
63 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
64 const struct rank BASE_CONVERSION_BADNESS = {2,0};
65 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
66 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
67 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
68 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
69 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
70
71 /* Floatformat pairs. */
72 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_half_big,
74 &floatformat_ieee_half_little
75 };
76 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_single_big,
78 &floatformat_ieee_single_little
79 };
80 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_little
83 };
84 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_ieee_double_big,
86 &floatformat_ieee_double_littlebyte_bigword
87 };
88 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_i387_ext,
90 &floatformat_i387_ext
91 };
92 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_m68881_ext,
94 &floatformat_m68881_ext
95 };
96 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_arm_ext_big,
98 &floatformat_arm_ext_littlebyte_bigword
99 };
100 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_spill_big,
102 &floatformat_ia64_spill_little
103 };
104 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_ia64_quad_big,
106 &floatformat_ia64_quad_little
107 };
108 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_f,
110 &floatformat_vax_f
111 };
112 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_vax_d,
114 &floatformat_vax_d
115 };
116 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
117 &floatformat_ibm_long_double_big,
118 &floatformat_ibm_long_double_little
119 };
120 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
121 &floatformat_bfloat16_big,
122 &floatformat_bfloat16_little
123 };
124
125 /* Should opaque types be resolved? */
126
127 static bool opaque_type_resolution = true;
128
129 /* See gdbtypes.h. */
130
131 unsigned int overload_debug = 0;
132
133 /* A flag to enable strict type checking. */
134
135 static bool strict_type_checking = true;
136
137 /* A function to show whether opaque types are resolved. */
138
139 static void
140 show_opaque_type_resolution (struct ui_file *file, int from_tty,
141 struct cmd_list_element *c,
142 const char *value)
143 {
144 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
145 "(if set before loading symbols) is %s.\n"),
146 value);
147 }
148
149 /* A function to show whether C++ overload debugging is enabled. */
150
151 static void
152 show_overload_debug (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
156 value);
157 }
158
159 /* A function to show the status of strict type checking. */
160
161 static void
162 show_strict_type_checking (struct ui_file *file, int from_tty,
163 struct cmd_list_element *c, const char *value)
164 {
165 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
166 }
167
168 \f
169 /* Allocate a new OBJFILE-associated type structure and fill it
170 with some defaults. Space for the type structure is allocated
171 on the objfile's objfile_obstack. */
172
173 struct type *
174 alloc_type (struct objfile *objfile)
175 {
176 struct type *type;
177
178 gdb_assert (objfile != NULL);
179
180 /* Alloc the structure and start off with all fields zeroed. */
181 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
182 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
183 struct main_type);
184 OBJSTAT (objfile, n_types++);
185
186 TYPE_OBJFILE_OWNED (type) = 1;
187 TYPE_OWNER (type).objfile = objfile;
188
189 /* Initialize the fields that might not be zero. */
190
191 type->set_code (TYPE_CODE_UNDEF);
192 TYPE_CHAIN (type) = type; /* Chain back to itself. */
193
194 return type;
195 }
196
197 /* Allocate a new GDBARCH-associated type structure and fill it
198 with some defaults. Space for the type structure is allocated
199 on the obstack associated with GDBARCH. */
200
201 struct type *
202 alloc_type_arch (struct gdbarch *gdbarch)
203 {
204 struct type *type;
205
206 gdb_assert (gdbarch != NULL);
207
208 /* Alloc the structure and start off with all fields zeroed. */
209
210 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
211 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
212
213 TYPE_OBJFILE_OWNED (type) = 0;
214 TYPE_OWNER (type).gdbarch = gdbarch;
215
216 /* Initialize the fields that might not be zero. */
217
218 type->set_code (TYPE_CODE_UNDEF);
219 TYPE_CHAIN (type) = type; /* Chain back to itself. */
220
221 return type;
222 }
223
224 /* If TYPE is objfile-associated, allocate a new type structure
225 associated with the same objfile. If TYPE is gdbarch-associated,
226 allocate a new type structure associated with the same gdbarch. */
227
228 struct type *
229 alloc_type_copy (const struct type *type)
230 {
231 if (TYPE_OBJFILE_OWNED (type))
232 return alloc_type (TYPE_OWNER (type).objfile);
233 else
234 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
235 }
236
237 /* If TYPE is gdbarch-associated, return that architecture.
238 If TYPE is objfile-associated, return that objfile's architecture. */
239
240 struct gdbarch *
241 get_type_arch (const struct type *type)
242 {
243 struct gdbarch *arch;
244
245 if (TYPE_OBJFILE_OWNED (type))
246 arch = TYPE_OWNER (type).objfile->arch ();
247 else
248 arch = TYPE_OWNER (type).gdbarch;
249
250 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
251 a gdbarch, however, this is very rare, and even then, in most cases
252 that get_type_arch is called, we assume that a non-NULL value is
253 returned. */
254 gdb_assert (arch != NULL);
255 return arch;
256 }
257
258 /* See gdbtypes.h. */
259
260 struct type *
261 get_target_type (struct type *type)
262 {
263 if (type != NULL)
264 {
265 type = TYPE_TARGET_TYPE (type);
266 if (type != NULL)
267 type = check_typedef (type);
268 }
269
270 return type;
271 }
272
273 /* See gdbtypes.h. */
274
275 unsigned int
276 type_length_units (struct type *type)
277 {
278 struct gdbarch *arch = get_type_arch (type);
279 int unit_size = gdbarch_addressable_memory_unit_size (arch);
280
281 return TYPE_LENGTH (type) / unit_size;
282 }
283
284 /* Alloc a new type instance structure, fill it with some defaults,
285 and point it at OLDTYPE. Allocate the new type instance from the
286 same place as OLDTYPE. */
287
288 static struct type *
289 alloc_type_instance (struct type *oldtype)
290 {
291 struct type *type;
292
293 /* Allocate the structure. */
294
295 if (! TYPE_OBJFILE_OWNED (oldtype))
296 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
297 else
298 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
299 struct type);
300
301 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
302
303 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
304
305 return type;
306 }
307
308 /* Clear all remnants of the previous type at TYPE, in preparation for
309 replacing it with something else. Preserve owner information. */
310
311 static void
312 smash_type (struct type *type)
313 {
314 int objfile_owned = TYPE_OBJFILE_OWNED (type);
315 union type_owner owner = TYPE_OWNER (type);
316
317 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
318
319 /* Restore owner information. */
320 TYPE_OBJFILE_OWNED (type) = objfile_owned;
321 TYPE_OWNER (type) = owner;
322
323 /* For now, delete the rings. */
324 TYPE_CHAIN (type) = type;
325
326 /* For now, leave the pointer/reference types alone. */
327 }
328
329 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
330 to a pointer to memory where the pointer type should be stored.
331 If *TYPEPTR is zero, update it to point to the pointer type we return.
332 We allocate new memory if needed. */
333
334 struct type *
335 make_pointer_type (struct type *type, struct type **typeptr)
336 {
337 struct type *ntype; /* New type */
338 struct type *chain;
339
340 ntype = TYPE_POINTER_TYPE (type);
341
342 if (ntype)
343 {
344 if (typeptr == 0)
345 return ntype; /* Don't care about alloc,
346 and have new type. */
347 else if (*typeptr == 0)
348 {
349 *typeptr = ntype; /* Tracking alloc, and have new type. */
350 return ntype;
351 }
352 }
353
354 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
355 {
356 ntype = alloc_type_copy (type);
357 if (typeptr)
358 *typeptr = ntype;
359 }
360 else /* We have storage, but need to reset it. */
361 {
362 ntype = *typeptr;
363 chain = TYPE_CHAIN (ntype);
364 smash_type (ntype);
365 TYPE_CHAIN (ntype) = chain;
366 }
367
368 TYPE_TARGET_TYPE (ntype) = type;
369 TYPE_POINTER_TYPE (type) = ntype;
370
371 /* FIXME! Assumes the machine has only one representation for pointers! */
372
373 TYPE_LENGTH (ntype)
374 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
375 ntype->set_code (TYPE_CODE_PTR);
376
377 /* Mark pointers as unsigned. The target converts between pointers
378 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
379 gdbarch_address_to_pointer. */
380 ntype->set_is_unsigned (true);
381
382 /* Update the length of all the other variants of this type. */
383 chain = TYPE_CHAIN (ntype);
384 while (chain != ntype)
385 {
386 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
387 chain = TYPE_CHAIN (chain);
388 }
389
390 return ntype;
391 }
392
393 /* Given a type TYPE, return a type of pointers to that type.
394 May need to construct such a type if this is the first use. */
395
396 struct type *
397 lookup_pointer_type (struct type *type)
398 {
399 return make_pointer_type (type, (struct type **) 0);
400 }
401
402 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
403 points to a pointer to memory where the reference type should be
404 stored. If *TYPEPTR is zero, update it to point to the reference
405 type we return. We allocate new memory if needed. REFCODE denotes
406 the kind of reference type to lookup (lvalue or rvalue reference). */
407
408 struct type *
409 make_reference_type (struct type *type, struct type **typeptr,
410 enum type_code refcode)
411 {
412 struct type *ntype; /* New type */
413 struct type **reftype;
414 struct type *chain;
415
416 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
417
418 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
419 : TYPE_RVALUE_REFERENCE_TYPE (type));
420
421 if (ntype)
422 {
423 if (typeptr == 0)
424 return ntype; /* Don't care about alloc,
425 and have new type. */
426 else if (*typeptr == 0)
427 {
428 *typeptr = ntype; /* Tracking alloc, and have new type. */
429 return ntype;
430 }
431 }
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
435 ntype = alloc_type_copy (type);
436 if (typeptr)
437 *typeptr = ntype;
438 }
439 else /* We have storage, but need to reset it. */
440 {
441 ntype = *typeptr;
442 chain = TYPE_CHAIN (ntype);
443 smash_type (ntype);
444 TYPE_CHAIN (ntype) = chain;
445 }
446
447 TYPE_TARGET_TYPE (ntype) = type;
448 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
449 : &TYPE_RVALUE_REFERENCE_TYPE (type));
450
451 *reftype = ntype;
452
453 /* FIXME! Assume the machine has only one representation for
454 references, and that it matches the (only) representation for
455 pointers! */
456
457 TYPE_LENGTH (ntype) =
458 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
459 ntype->set_code (refcode);
460
461 *reftype = ntype;
462
463 /* Update the length of all the other variants of this type. */
464 chain = TYPE_CHAIN (ntype);
465 while (chain != ntype)
466 {
467 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
468 chain = TYPE_CHAIN (chain);
469 }
470
471 return ntype;
472 }
473
474 /* Same as above, but caller doesn't care about memory allocation
475 details. */
476
477 struct type *
478 lookup_reference_type (struct type *type, enum type_code refcode)
479 {
480 return make_reference_type (type, (struct type **) 0, refcode);
481 }
482
483 /* Lookup the lvalue reference type for the type TYPE. */
484
485 struct type *
486 lookup_lvalue_reference_type (struct type *type)
487 {
488 return lookup_reference_type (type, TYPE_CODE_REF);
489 }
490
491 /* Lookup the rvalue reference type for the type TYPE. */
492
493 struct type *
494 lookup_rvalue_reference_type (struct type *type)
495 {
496 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
497 }
498
499 /* Lookup a function type that returns type TYPE. TYPEPTR, if
500 nonzero, points to a pointer to memory where the function type
501 should be stored. If *TYPEPTR is zero, update it to point to the
502 function type we return. We allocate new memory if needed. */
503
504 struct type *
505 make_function_type (struct type *type, struct type **typeptr)
506 {
507 struct type *ntype; /* New type */
508
509 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
510 {
511 ntype = alloc_type_copy (type);
512 if (typeptr)
513 *typeptr = ntype;
514 }
515 else /* We have storage, but need to reset it. */
516 {
517 ntype = *typeptr;
518 smash_type (ntype);
519 }
520
521 TYPE_TARGET_TYPE (ntype) = type;
522
523 TYPE_LENGTH (ntype) = 1;
524 ntype->set_code (TYPE_CODE_FUNC);
525
526 INIT_FUNC_SPECIFIC (ntype);
527
528 return ntype;
529 }
530
531 /* Given a type TYPE, return a type of functions that return that type.
532 May need to construct such a type if this is the first use. */
533
534 struct type *
535 lookup_function_type (struct type *type)
536 {
537 return make_function_type (type, (struct type **) 0);
538 }
539
540 /* Given a type TYPE and argument types, return the appropriate
541 function type. If the final type in PARAM_TYPES is NULL, make a
542 varargs function. */
543
544 struct type *
545 lookup_function_type_with_arguments (struct type *type,
546 int nparams,
547 struct type **param_types)
548 {
549 struct type *fn = make_function_type (type, (struct type **) 0);
550 int i;
551
552 if (nparams > 0)
553 {
554 if (param_types[nparams - 1] == NULL)
555 {
556 --nparams;
557 fn->set_has_varargs (true);
558 }
559 else if (check_typedef (param_types[nparams - 1])->code ()
560 == TYPE_CODE_VOID)
561 {
562 --nparams;
563 /* Caller should have ensured this. */
564 gdb_assert (nparams == 0);
565 fn->set_is_prototyped (true);
566 }
567 else
568 fn->set_is_prototyped (true);
569 }
570
571 fn->set_num_fields (nparams);
572 fn->set_fields
573 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
574 for (i = 0; i < nparams; ++i)
575 fn->field (i).set_type (param_types[i]);
576
577 return fn;
578 }
579
580 /* Identify address space identifier by name -- return a
581 type_instance_flags. */
582
583 type_instance_flags
584 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
585 const char *space_identifier)
586 {
587 type_instance_flags type_flags;
588
589 /* Check for known address space delimiters. */
590 if (!strcmp (space_identifier, "code"))
591 return TYPE_INSTANCE_FLAG_CODE_SPACE;
592 else if (!strcmp (space_identifier, "data"))
593 return TYPE_INSTANCE_FLAG_DATA_SPACE;
594 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
595 && gdbarch_address_class_name_to_type_flags (gdbarch,
596 space_identifier,
597 &type_flags))
598 return type_flags;
599 else
600 error (_("Unknown address space specifier: \"%s\""), space_identifier);
601 }
602
603 /* Identify address space identifier by type_instance_flags and return
604 the string version of the adress space name. */
605
606 const char *
607 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
608 type_instance_flags space_flag)
609 {
610 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
611 return "code";
612 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
613 return "data";
614 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
615 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
616 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
617 else
618 return NULL;
619 }
620
621 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
622
623 If STORAGE is non-NULL, create the new type instance there.
624 STORAGE must be in the same obstack as TYPE. */
625
626 static struct type *
627 make_qualified_type (struct type *type, type_instance_flags new_flags,
628 struct type *storage)
629 {
630 struct type *ntype;
631
632 ntype = type;
633 do
634 {
635 if (ntype->instance_flags () == new_flags)
636 return ntype;
637 ntype = TYPE_CHAIN (ntype);
638 }
639 while (ntype != type);
640
641 /* Create a new type instance. */
642 if (storage == NULL)
643 ntype = alloc_type_instance (type);
644 else
645 {
646 /* If STORAGE was provided, it had better be in the same objfile
647 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
648 if one objfile is freed and the other kept, we'd have
649 dangling pointers. */
650 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
651
652 ntype = storage;
653 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
654 TYPE_CHAIN (ntype) = ntype;
655 }
656
657 /* Pointers or references to the original type are not relevant to
658 the new type. */
659 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
660 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
661
662 /* Chain the new qualified type to the old type. */
663 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
664 TYPE_CHAIN (type) = ntype;
665
666 /* Now set the instance flags and return the new type. */
667 ntype->set_instance_flags (new_flags);
668
669 /* Set length of new type to that of the original type. */
670 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
671
672 return ntype;
673 }
674
675 /* Make an address-space-delimited variant of a type -- a type that
676 is identical to the one supplied except that it has an address
677 space attribute attached to it (such as "code" or "data").
678
679 The space attributes "code" and "data" are for Harvard
680 architectures. The address space attributes are for architectures
681 which have alternately sized pointers or pointers with alternate
682 representations. */
683
684 struct type *
685 make_type_with_address_space (struct type *type,
686 type_instance_flags space_flag)
687 {
688 type_instance_flags new_flags = ((type->instance_flags ()
689 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
690 | TYPE_INSTANCE_FLAG_DATA_SPACE
691 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
692 | space_flag);
693
694 return make_qualified_type (type, new_flags, NULL);
695 }
696
697 /* Make a "c-v" variant of a type -- a type that is identical to the
698 one supplied except that it may have const or volatile attributes
699 CNST is a flag for setting the const attribute
700 VOLTL is a flag for setting the volatile attribute
701 TYPE is the base type whose variant we are creating.
702
703 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
704 storage to hold the new qualified type; *TYPEPTR and TYPE must be
705 in the same objfile. Otherwise, allocate fresh memory for the new
706 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
707 new type we construct. */
708
709 struct type *
710 make_cv_type (int cnst, int voltl,
711 struct type *type,
712 struct type **typeptr)
713 {
714 struct type *ntype; /* New type */
715
716 type_instance_flags new_flags = (type->instance_flags ()
717 & ~(TYPE_INSTANCE_FLAG_CONST
718 | TYPE_INSTANCE_FLAG_VOLATILE));
719
720 if (cnst)
721 new_flags |= TYPE_INSTANCE_FLAG_CONST;
722
723 if (voltl)
724 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
725
726 if (typeptr && *typeptr != NULL)
727 {
728 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
729 a C-V variant chain that threads across objfiles: if one
730 objfile gets freed, then the other has a broken C-V chain.
731
732 This code used to try to copy over the main type from TYPE to
733 *TYPEPTR if they were in different objfiles, but that's
734 wrong, too: TYPE may have a field list or member function
735 lists, which refer to types of their own, etc. etc. The
736 whole shebang would need to be copied over recursively; you
737 can't have inter-objfile pointers. The only thing to do is
738 to leave stub types as stub types, and look them up afresh by
739 name each time you encounter them. */
740 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
741 }
742
743 ntype = make_qualified_type (type, new_flags,
744 typeptr ? *typeptr : NULL);
745
746 if (typeptr != NULL)
747 *typeptr = ntype;
748
749 return ntype;
750 }
751
752 /* Make a 'restrict'-qualified version of TYPE. */
753
754 struct type *
755 make_restrict_type (struct type *type)
756 {
757 return make_qualified_type (type,
758 (type->instance_flags ()
759 | TYPE_INSTANCE_FLAG_RESTRICT),
760 NULL);
761 }
762
763 /* Make a type without const, volatile, or restrict. */
764
765 struct type *
766 make_unqualified_type (struct type *type)
767 {
768 return make_qualified_type (type,
769 (type->instance_flags ()
770 & ~(TYPE_INSTANCE_FLAG_CONST
771 | TYPE_INSTANCE_FLAG_VOLATILE
772 | TYPE_INSTANCE_FLAG_RESTRICT)),
773 NULL);
774 }
775
776 /* Make a '_Atomic'-qualified version of TYPE. */
777
778 struct type *
779 make_atomic_type (struct type *type)
780 {
781 return make_qualified_type (type,
782 (type->instance_flags ()
783 | TYPE_INSTANCE_FLAG_ATOMIC),
784 NULL);
785 }
786
787 /* Replace the contents of ntype with the type *type. This changes the
788 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
789 the changes are propogated to all types in the TYPE_CHAIN.
790
791 In order to build recursive types, it's inevitable that we'll need
792 to update types in place --- but this sort of indiscriminate
793 smashing is ugly, and needs to be replaced with something more
794 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
795 clear if more steps are needed. */
796
797 void
798 replace_type (struct type *ntype, struct type *type)
799 {
800 struct type *chain;
801
802 /* These two types had better be in the same objfile. Otherwise,
803 the assignment of one type's main type structure to the other
804 will produce a type with references to objects (names; field
805 lists; etc.) allocated on an objfile other than its own. */
806 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
807
808 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
809
810 /* The type length is not a part of the main type. Update it for
811 each type on the variant chain. */
812 chain = ntype;
813 do
814 {
815 /* Assert that this element of the chain has no address-class bits
816 set in its flags. Such type variants might have type lengths
817 which are supposed to be different from the non-address-class
818 variants. This assertion shouldn't ever be triggered because
819 symbol readers which do construct address-class variants don't
820 call replace_type(). */
821 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
822
823 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
824 chain = TYPE_CHAIN (chain);
825 }
826 while (ntype != chain);
827
828 /* Assert that the two types have equivalent instance qualifiers.
829 This should be true for at least all of our debug readers. */
830 gdb_assert (ntype->instance_flags () == type->instance_flags ());
831 }
832
833 /* Implement direct support for MEMBER_TYPE in GNU C++.
834 May need to construct such a type if this is the first use.
835 The TYPE is the type of the member. The DOMAIN is the type
836 of the aggregate that the member belongs to. */
837
838 struct type *
839 lookup_memberptr_type (struct type *type, struct type *domain)
840 {
841 struct type *mtype;
842
843 mtype = alloc_type_copy (type);
844 smash_to_memberptr_type (mtype, domain, type);
845 return mtype;
846 }
847
848 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
849
850 struct type *
851 lookup_methodptr_type (struct type *to_type)
852 {
853 struct type *mtype;
854
855 mtype = alloc_type_copy (to_type);
856 smash_to_methodptr_type (mtype, to_type);
857 return mtype;
858 }
859
860 /* Allocate a stub method whose return type is TYPE. This apparently
861 happens for speed of symbol reading, since parsing out the
862 arguments to the method is cpu-intensive, the way we are doing it.
863 So, we will fill in arguments later. This always returns a fresh
864 type. */
865
866 struct type *
867 allocate_stub_method (struct type *type)
868 {
869 struct type *mtype;
870
871 mtype = alloc_type_copy (type);
872 mtype->set_code (TYPE_CODE_METHOD);
873 TYPE_LENGTH (mtype) = 1;
874 mtype->set_is_stub (true);
875 TYPE_TARGET_TYPE (mtype) = type;
876 /* TYPE_SELF_TYPE (mtype) = unknown yet */
877 return mtype;
878 }
879
880 /* See gdbtypes.h. */
881
882 bool
883 operator== (const dynamic_prop &l, const dynamic_prop &r)
884 {
885 if (l.kind () != r.kind ())
886 return false;
887
888 switch (l.kind ())
889 {
890 case PROP_UNDEFINED:
891 return true;
892 case PROP_CONST:
893 return l.const_val () == r.const_val ();
894 case PROP_ADDR_OFFSET:
895 case PROP_LOCEXPR:
896 case PROP_LOCLIST:
897 return l.baton () == r.baton ();
898 case PROP_VARIANT_PARTS:
899 return l.variant_parts () == r.variant_parts ();
900 case PROP_TYPE:
901 return l.original_type () == r.original_type ();
902 }
903
904 gdb_assert_not_reached ("unhandled dynamic_prop kind");
905 }
906
907 /* See gdbtypes.h. */
908
909 bool
910 operator== (const range_bounds &l, const range_bounds &r)
911 {
912 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
913
914 return (FIELD_EQ (low)
915 && FIELD_EQ (high)
916 && FIELD_EQ (flag_upper_bound_is_count)
917 && FIELD_EQ (flag_bound_evaluated)
918 && FIELD_EQ (bias));
919
920 #undef FIELD_EQ
921 }
922
923 /* Create a range type with a dynamic range from LOW_BOUND to
924 HIGH_BOUND, inclusive. See create_range_type for further details. */
925
926 struct type *
927 create_range_type (struct type *result_type, struct type *index_type,
928 const struct dynamic_prop *low_bound,
929 const struct dynamic_prop *high_bound,
930 LONGEST bias)
931 {
932 /* The INDEX_TYPE should be a type capable of holding the upper and lower
933 bounds, as such a zero sized, or void type makes no sense. */
934 gdb_assert (index_type->code () != TYPE_CODE_VOID);
935 gdb_assert (TYPE_LENGTH (index_type) > 0);
936
937 if (result_type == NULL)
938 result_type = alloc_type_copy (index_type);
939 result_type->set_code (TYPE_CODE_RANGE);
940 TYPE_TARGET_TYPE (result_type) = index_type;
941 if (index_type->is_stub ())
942 result_type->set_target_is_stub (true);
943 else
944 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
945
946 range_bounds *bounds
947 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
948 bounds->low = *low_bound;
949 bounds->high = *high_bound;
950 bounds->bias = bias;
951 bounds->stride.set_const_val (0);
952
953 result_type->set_bounds (bounds);
954
955 if (index_type->code () == TYPE_CODE_FIXED_POINT)
956 result_type->set_is_unsigned (index_type->is_unsigned ());
957 /* Note that the signed-ness of a range type can't simply be copied
958 from the underlying type. Consider a case where the underlying
959 type is 'int', but the range type can hold 0..65535, and where
960 the range is further specified to fit into 16 bits. In this
961 case, if we copy the underlying type's sign, then reading some
962 range values will cause an unwanted sign extension. So, we have
963 some heuristics here instead. */
964 else if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
965 result_type->set_is_unsigned (true);
966 /* Ada allows the declaration of range types whose upper bound is
967 less than the lower bound, so checking the lower bound is not
968 enough. Make sure we do not mark a range type whose upper bound
969 is negative as unsigned. */
970 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
971 result_type->set_is_unsigned (false);
972
973 result_type->set_endianity_is_not_default
974 (index_type->endianity_is_not_default ());
975
976 return result_type;
977 }
978
979 /* See gdbtypes.h. */
980
981 struct type *
982 create_range_type_with_stride (struct type *result_type,
983 struct type *index_type,
984 const struct dynamic_prop *low_bound,
985 const struct dynamic_prop *high_bound,
986 LONGEST bias,
987 const struct dynamic_prop *stride,
988 bool byte_stride_p)
989 {
990 result_type = create_range_type (result_type, index_type, low_bound,
991 high_bound, bias);
992
993 gdb_assert (stride != nullptr);
994 result_type->bounds ()->stride = *stride;
995 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
996
997 return result_type;
998 }
999
1000
1001
1002 /* Create a range type using either a blank type supplied in
1003 RESULT_TYPE, or creating a new type, inheriting the objfile from
1004 INDEX_TYPE.
1005
1006 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1007 to HIGH_BOUND, inclusive.
1008
1009 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1010 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1011
1012 struct type *
1013 create_static_range_type (struct type *result_type, struct type *index_type,
1014 LONGEST low_bound, LONGEST high_bound)
1015 {
1016 struct dynamic_prop low, high;
1017
1018 low.set_const_val (low_bound);
1019 high.set_const_val (high_bound);
1020
1021 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1022
1023 return result_type;
1024 }
1025
1026 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1027 are static, otherwise returns 0. */
1028
1029 static bool
1030 has_static_range (const struct range_bounds *bounds)
1031 {
1032 /* If the range doesn't have a defined stride then its stride field will
1033 be initialized to the constant 0. */
1034 return (bounds->low.kind () == PROP_CONST
1035 && bounds->high.kind () == PROP_CONST
1036 && bounds->stride.kind () == PROP_CONST);
1037 }
1038
1039
1040 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1041 TYPE.
1042
1043 Return 1 if type is a range type with two defined, constant bounds.
1044 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1045 Else, return -1. */
1046
1047 int
1048 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1049 {
1050 type = check_typedef (type);
1051 switch (type->code ())
1052 {
1053 case TYPE_CODE_RANGE:
1054 /* This function currently only works for ranges with two defined,
1055 constant bounds. */
1056 if (type->bounds ()->low.kind () != PROP_CONST
1057 || type->bounds ()->high.kind () != PROP_CONST)
1058 return -1;
1059
1060 *lowp = type->bounds ()->low.const_val ();
1061 *highp = type->bounds ()->high.const_val ();
1062
1063 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1064 {
1065 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1066 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1067 return 0;
1068 }
1069 return 1;
1070 case TYPE_CODE_ENUM:
1071 if (type->num_fields () > 0)
1072 {
1073 /* The enums may not be sorted by value, so search all
1074 entries. */
1075 int i;
1076
1077 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1078 for (i = 0; i < type->num_fields (); i++)
1079 {
1080 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1081 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1082 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1083 *highp = TYPE_FIELD_ENUMVAL (type, i);
1084 }
1085
1086 /* Set unsigned indicator if warranted. */
1087 if (*lowp >= 0)
1088 type->set_is_unsigned (true);
1089 }
1090 else
1091 {
1092 *lowp = 0;
1093 *highp = -1;
1094 }
1095 return 0;
1096 case TYPE_CODE_BOOL:
1097 *lowp = 0;
1098 *highp = 1;
1099 return 0;
1100 case TYPE_CODE_INT:
1101 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1102 return -1;
1103 if (!type->is_unsigned ())
1104 {
1105 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1106 *highp = -*lowp - 1;
1107 return 0;
1108 }
1109 /* fall through */
1110 case TYPE_CODE_CHAR:
1111 *lowp = 0;
1112 /* This round-about calculation is to avoid shifting by
1113 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1114 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1115 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1116 *highp = (*highp - 1) | *highp;
1117 return 0;
1118 default:
1119 return -1;
1120 }
1121 }
1122
1123 /* See gdbtypes.h */
1124
1125 bool
1126 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1127 {
1128 struct type *index = type->index_type ();
1129 LONGEST low = 0;
1130 LONGEST high = 0;
1131 int res;
1132
1133 if (index == NULL)
1134 return false;
1135
1136 res = get_discrete_bounds (index, &low, &high);
1137 if (res == -1)
1138 return false;
1139
1140 if (low_bound)
1141 *low_bound = low;
1142
1143 if (high_bound)
1144 *high_bound = high;
1145
1146 return true;
1147 }
1148
1149 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1150 representation of a value of this type, save the corresponding
1151 position number in POS.
1152
1153 Its differs from VAL only in the case of enumeration types. In
1154 this case, the position number of the value of the first listed
1155 enumeration literal is zero; the position number of the value of
1156 each subsequent enumeration literal is one more than that of its
1157 predecessor in the list.
1158
1159 Return 1 if the operation was successful. Return zero otherwise,
1160 in which case the value of POS is unmodified.
1161 */
1162
1163 int
1164 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1165 {
1166 if (type->code () == TYPE_CODE_RANGE)
1167 type = TYPE_TARGET_TYPE (type);
1168
1169 if (type->code () == TYPE_CODE_ENUM)
1170 {
1171 int i;
1172
1173 for (i = 0; i < type->num_fields (); i += 1)
1174 {
1175 if (val == TYPE_FIELD_ENUMVAL (type, i))
1176 {
1177 *pos = i;
1178 return 1;
1179 }
1180 }
1181 /* Invalid enumeration value. */
1182 return 0;
1183 }
1184 else
1185 {
1186 *pos = val;
1187 return 1;
1188 }
1189 }
1190
1191 /* If the array TYPE has static bounds calculate and update its
1192 size, then return true. Otherwise return false and leave TYPE
1193 unchanged. */
1194
1195 static bool
1196 update_static_array_size (struct type *type)
1197 {
1198 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1199
1200 struct type *range_type = type->index_type ();
1201
1202 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1203 && has_static_range (range_type->bounds ())
1204 && (!type_not_associated (type)
1205 && !type_not_allocated (type)))
1206 {
1207 LONGEST low_bound, high_bound;
1208 int stride;
1209 struct type *element_type;
1210
1211 /* If the array itself doesn't provide a stride value then take
1212 whatever stride the range provides. Don't update BIT_STRIDE as
1213 we don't want to place the stride value from the range into this
1214 arrays bit size field. */
1215 stride = TYPE_FIELD_BITSIZE (type, 0);
1216 if (stride == 0)
1217 stride = range_type->bit_stride ();
1218
1219 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1220 low_bound = high_bound = 0;
1221 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1222 /* Be careful when setting the array length. Ada arrays can be
1223 empty arrays with the high_bound being smaller than the low_bound.
1224 In such cases, the array length should be zero. */
1225 if (high_bound < low_bound)
1226 TYPE_LENGTH (type) = 0;
1227 else if (stride != 0)
1228 {
1229 /* Ensure that the type length is always positive, even in the
1230 case where (for example in Fortran) we have a negative
1231 stride. It is possible to have a single element array with a
1232 negative stride in Fortran (this doesn't mean anything
1233 special, it's still just a single element array) so do
1234 consider that case when touching this code. */
1235 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1236 TYPE_LENGTH (type)
1237 = ((std::abs (stride) * element_count) + 7) / 8;
1238 }
1239 else
1240 TYPE_LENGTH (type) =
1241 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1242
1243 /* If this array's element is itself an array with a bit stride,
1244 then we want to update this array's bit stride to reflect the
1245 size of the sub-array. Otherwise, we'll end up using the
1246 wrong size when trying to find elements of the outer
1247 array. */
1248 if (element_type->code () == TYPE_CODE_ARRAY
1249 && TYPE_LENGTH (element_type) != 0
1250 && TYPE_FIELD_BITSIZE (element_type, 0) != 0
1251 && get_array_bounds (element_type, &low_bound, &high_bound)
1252 && high_bound >= low_bound)
1253 TYPE_FIELD_BITSIZE (type, 0)
1254 = ((high_bound - low_bound + 1)
1255 * TYPE_FIELD_BITSIZE (element_type, 0));
1256
1257 return true;
1258 }
1259
1260 return false;
1261 }
1262
1263 /* Create an array type using either a blank type supplied in
1264 RESULT_TYPE, or creating a new type, inheriting the objfile from
1265 RANGE_TYPE.
1266
1267 Elements will be of type ELEMENT_TYPE, the indices will be of type
1268 RANGE_TYPE.
1269
1270 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1271 This byte stride property is added to the resulting array type
1272 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1273 argument can only be used to create types that are objfile-owned
1274 (see add_dyn_prop), meaning that either this function must be called
1275 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1276
1277 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1278 If BIT_STRIDE is not zero, build a packed array type whose element
1279 size is BIT_STRIDE. Otherwise, ignore this parameter.
1280
1281 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1282 sure it is TYPE_CODE_UNDEF before we bash it into an array
1283 type? */
1284
1285 struct type *
1286 create_array_type_with_stride (struct type *result_type,
1287 struct type *element_type,
1288 struct type *range_type,
1289 struct dynamic_prop *byte_stride_prop,
1290 unsigned int bit_stride)
1291 {
1292 if (byte_stride_prop != NULL
1293 && byte_stride_prop->kind () == PROP_CONST)
1294 {
1295 /* The byte stride is actually not dynamic. Pretend we were
1296 called with bit_stride set instead of byte_stride_prop.
1297 This will give us the same result type, while avoiding
1298 the need to handle this as a special case. */
1299 bit_stride = byte_stride_prop->const_val () * 8;
1300 byte_stride_prop = NULL;
1301 }
1302
1303 if (result_type == NULL)
1304 result_type = alloc_type_copy (range_type);
1305
1306 result_type->set_code (TYPE_CODE_ARRAY);
1307 TYPE_TARGET_TYPE (result_type) = element_type;
1308
1309 result_type->set_num_fields (1);
1310 result_type->set_fields
1311 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1312 result_type->set_index_type (range_type);
1313 if (byte_stride_prop != NULL)
1314 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1315 else if (bit_stride > 0)
1316 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1317
1318 if (!update_static_array_size (result_type))
1319 {
1320 /* This type is dynamic and its length needs to be computed
1321 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1322 undefined by setting it to zero. Although we are not expected
1323 to trust TYPE_LENGTH in this case, setting the size to zero
1324 allows us to avoid allocating objects of random sizes in case
1325 we accidently do. */
1326 TYPE_LENGTH (result_type) = 0;
1327 }
1328
1329 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1330 if (TYPE_LENGTH (result_type) == 0)
1331 result_type->set_target_is_stub (true);
1332
1333 return result_type;
1334 }
1335
1336 /* Same as create_array_type_with_stride but with no bit_stride
1337 (BIT_STRIDE = 0), thus building an unpacked array. */
1338
1339 struct type *
1340 create_array_type (struct type *result_type,
1341 struct type *element_type,
1342 struct type *range_type)
1343 {
1344 return create_array_type_with_stride (result_type, element_type,
1345 range_type, NULL, 0);
1346 }
1347
1348 struct type *
1349 lookup_array_range_type (struct type *element_type,
1350 LONGEST low_bound, LONGEST high_bound)
1351 {
1352 struct type *index_type;
1353 struct type *range_type;
1354
1355 if (TYPE_OBJFILE_OWNED (element_type))
1356 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1357 else
1358 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1359 range_type = create_static_range_type (NULL, index_type,
1360 low_bound, high_bound);
1361
1362 return create_array_type (NULL, element_type, range_type);
1363 }
1364
1365 /* Create a string type using either a blank type supplied in
1366 RESULT_TYPE, or creating a new type. String types are similar
1367 enough to array of char types that we can use create_array_type to
1368 build the basic type and then bash it into a string type.
1369
1370 For fixed length strings, the range type contains 0 as the lower
1371 bound and the length of the string minus one as the upper bound.
1372
1373 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1374 sure it is TYPE_CODE_UNDEF before we bash it into a string
1375 type? */
1376
1377 struct type *
1378 create_string_type (struct type *result_type,
1379 struct type *string_char_type,
1380 struct type *range_type)
1381 {
1382 result_type = create_array_type (result_type,
1383 string_char_type,
1384 range_type);
1385 result_type->set_code (TYPE_CODE_STRING);
1386 return result_type;
1387 }
1388
1389 struct type *
1390 lookup_string_range_type (struct type *string_char_type,
1391 LONGEST low_bound, LONGEST high_bound)
1392 {
1393 struct type *result_type;
1394
1395 result_type = lookup_array_range_type (string_char_type,
1396 low_bound, high_bound);
1397 result_type->set_code (TYPE_CODE_STRING);
1398 return result_type;
1399 }
1400
1401 struct type *
1402 create_set_type (struct type *result_type, struct type *domain_type)
1403 {
1404 if (result_type == NULL)
1405 result_type = alloc_type_copy (domain_type);
1406
1407 result_type->set_code (TYPE_CODE_SET);
1408 result_type->set_num_fields (1);
1409 result_type->set_fields
1410 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1411
1412 if (!domain_type->is_stub ())
1413 {
1414 LONGEST low_bound, high_bound, bit_length;
1415
1416 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1417 low_bound = high_bound = 0;
1418 bit_length = high_bound - low_bound + 1;
1419 TYPE_LENGTH (result_type)
1420 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1421 if (low_bound >= 0)
1422 result_type->set_is_unsigned (true);
1423 }
1424 result_type->field (0).set_type (domain_type);
1425
1426 return result_type;
1427 }
1428
1429 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1430 and any array types nested inside it. */
1431
1432 void
1433 make_vector_type (struct type *array_type)
1434 {
1435 struct type *inner_array, *elt_type;
1436
1437 /* Find the innermost array type, in case the array is
1438 multi-dimensional. */
1439 inner_array = array_type;
1440 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1441 inner_array = TYPE_TARGET_TYPE (inner_array);
1442
1443 elt_type = TYPE_TARGET_TYPE (inner_array);
1444 if (elt_type->code () == TYPE_CODE_INT)
1445 {
1446 type_instance_flags flags
1447 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1448 elt_type = make_qualified_type (elt_type, flags, NULL);
1449 TYPE_TARGET_TYPE (inner_array) = elt_type;
1450 }
1451
1452 array_type->set_is_vector (true);
1453 }
1454
1455 struct type *
1456 init_vector_type (struct type *elt_type, int n)
1457 {
1458 struct type *array_type;
1459
1460 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1461 make_vector_type (array_type);
1462 return array_type;
1463 }
1464
1465 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1466 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1467 confusing. "self" is a common enough replacement for "this".
1468 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1469 TYPE_CODE_METHOD. */
1470
1471 struct type *
1472 internal_type_self_type (struct type *type)
1473 {
1474 switch (type->code ())
1475 {
1476 case TYPE_CODE_METHODPTR:
1477 case TYPE_CODE_MEMBERPTR:
1478 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1479 return NULL;
1480 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1481 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1482 case TYPE_CODE_METHOD:
1483 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1484 return NULL;
1485 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1486 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1487 default:
1488 gdb_assert_not_reached ("bad type");
1489 }
1490 }
1491
1492 /* Set the type of the class that TYPE belongs to.
1493 In c++ this is the class of "this".
1494 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1495 TYPE_CODE_METHOD. */
1496
1497 void
1498 set_type_self_type (struct type *type, struct type *self_type)
1499 {
1500 switch (type->code ())
1501 {
1502 case TYPE_CODE_METHODPTR:
1503 case TYPE_CODE_MEMBERPTR:
1504 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1505 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1506 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1507 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1508 break;
1509 case TYPE_CODE_METHOD:
1510 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1511 INIT_FUNC_SPECIFIC (type);
1512 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1513 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1514 break;
1515 default:
1516 gdb_assert_not_reached ("bad type");
1517 }
1518 }
1519
1520 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1521 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1522 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1523 TYPE doesn't include the offset (that's the value of the MEMBER
1524 itself), but does include the structure type into which it points
1525 (for some reason).
1526
1527 When "smashing" the type, we preserve the objfile that the old type
1528 pointed to, since we aren't changing where the type is actually
1529 allocated. */
1530
1531 void
1532 smash_to_memberptr_type (struct type *type, struct type *self_type,
1533 struct type *to_type)
1534 {
1535 smash_type (type);
1536 type->set_code (TYPE_CODE_MEMBERPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, self_type);
1539 /* Assume that a data member pointer is the same size as a normal
1540 pointer. */
1541 TYPE_LENGTH (type)
1542 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1543 }
1544
1545 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1546
1547 When "smashing" the type, we preserve the objfile that the old type
1548 pointed to, since we aren't changing where the type is actually
1549 allocated. */
1550
1551 void
1552 smash_to_methodptr_type (struct type *type, struct type *to_type)
1553 {
1554 smash_type (type);
1555 type->set_code (TYPE_CODE_METHODPTR);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1558 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1559 }
1560
1561 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1562 METHOD just means `function that gets an extra "this" argument'.
1563
1564 When "smashing" the type, we preserve the objfile that the old type
1565 pointed to, since we aren't changing where the type is actually
1566 allocated. */
1567
1568 void
1569 smash_to_method_type (struct type *type, struct type *self_type,
1570 struct type *to_type, struct field *args,
1571 int nargs, int varargs)
1572 {
1573 smash_type (type);
1574 type->set_code (TYPE_CODE_METHOD);
1575 TYPE_TARGET_TYPE (type) = to_type;
1576 set_type_self_type (type, self_type);
1577 type->set_fields (args);
1578 type->set_num_fields (nargs);
1579 if (varargs)
1580 type->set_has_varargs (true);
1581 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1582 }
1583
1584 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1585 Since GCC PR debug/47510 DWARF provides associated information to detect the
1586 anonymous class linkage name from its typedef.
1587
1588 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1589 apply it itself. */
1590
1591 const char *
1592 type_name_or_error (struct type *type)
1593 {
1594 struct type *saved_type = type;
1595 const char *name;
1596 struct objfile *objfile;
1597
1598 type = check_typedef (type);
1599
1600 name = type->name ();
1601 if (name != NULL)
1602 return name;
1603
1604 name = saved_type->name ();
1605 objfile = TYPE_OBJFILE (saved_type);
1606 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1607 name ? name : "<anonymous>",
1608 objfile ? objfile_name (objfile) : "<arch>");
1609 }
1610
1611 /* Lookup a typedef or primitive type named NAME, visible in lexical
1612 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1613 suitably defined. */
1614
1615 struct type *
1616 lookup_typename (const struct language_defn *language,
1617 const char *name,
1618 const struct block *block, int noerr)
1619 {
1620 struct symbol *sym;
1621
1622 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1623 language->la_language, NULL).symbol;
1624 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1625 return SYMBOL_TYPE (sym);
1626
1627 if (noerr)
1628 return NULL;
1629 error (_("No type named %s."), name);
1630 }
1631
1632 struct type *
1633 lookup_unsigned_typename (const struct language_defn *language,
1634 const char *name)
1635 {
1636 char *uns = (char *) alloca (strlen (name) + 10);
1637
1638 strcpy (uns, "unsigned ");
1639 strcpy (uns + 9, name);
1640 return lookup_typename (language, uns, NULL, 0);
1641 }
1642
1643 struct type *
1644 lookup_signed_typename (const struct language_defn *language, const char *name)
1645 {
1646 struct type *t;
1647 char *uns = (char *) alloca (strlen (name) + 8);
1648
1649 strcpy (uns, "signed ");
1650 strcpy (uns + 7, name);
1651 t = lookup_typename (language, uns, NULL, 1);
1652 /* If we don't find "signed FOO" just try again with plain "FOO". */
1653 if (t != NULL)
1654 return t;
1655 return lookup_typename (language, name, NULL, 0);
1656 }
1657
1658 /* Lookup a structure type named "struct NAME",
1659 visible in lexical block BLOCK. */
1660
1661 struct type *
1662 lookup_struct (const char *name, const struct block *block)
1663 {
1664 struct symbol *sym;
1665
1666 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1667
1668 if (sym == NULL)
1669 {
1670 error (_("No struct type named %s."), name);
1671 }
1672 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1673 {
1674 error (_("This context has class, union or enum %s, not a struct."),
1675 name);
1676 }
1677 return (SYMBOL_TYPE (sym));
1678 }
1679
1680 /* Lookup a union type named "union NAME",
1681 visible in lexical block BLOCK. */
1682
1683 struct type *
1684 lookup_union (const char *name, const struct block *block)
1685 {
1686 struct symbol *sym;
1687 struct type *t;
1688
1689 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1690
1691 if (sym == NULL)
1692 error (_("No union type named %s."), name);
1693
1694 t = SYMBOL_TYPE (sym);
1695
1696 if (t->code () == TYPE_CODE_UNION)
1697 return t;
1698
1699 /* If we get here, it's not a union. */
1700 error (_("This context has class, struct or enum %s, not a union."),
1701 name);
1702 }
1703
1704 /* Lookup an enum type named "enum NAME",
1705 visible in lexical block BLOCK. */
1706
1707 struct type *
1708 lookup_enum (const char *name, const struct block *block)
1709 {
1710 struct symbol *sym;
1711
1712 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1713 if (sym == NULL)
1714 {
1715 error (_("No enum type named %s."), name);
1716 }
1717 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1718 {
1719 error (_("This context has class, struct or union %s, not an enum."),
1720 name);
1721 }
1722 return (SYMBOL_TYPE (sym));
1723 }
1724
1725 /* Lookup a template type named "template NAME<TYPE>",
1726 visible in lexical block BLOCK. */
1727
1728 struct type *
1729 lookup_template_type (const char *name, struct type *type,
1730 const struct block *block)
1731 {
1732 struct symbol *sym;
1733 char *nam = (char *)
1734 alloca (strlen (name) + strlen (type->name ()) + 4);
1735
1736 strcpy (nam, name);
1737 strcat (nam, "<");
1738 strcat (nam, type->name ());
1739 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1740
1741 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1742
1743 if (sym == NULL)
1744 {
1745 error (_("No template type named %s."), name);
1746 }
1747 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1748 {
1749 error (_("This context has class, union or enum %s, not a struct."),
1750 name);
1751 }
1752 return (SYMBOL_TYPE (sym));
1753 }
1754
1755 /* See gdbtypes.h. */
1756
1757 struct_elt
1758 lookup_struct_elt (struct type *type, const char *name, int noerr)
1759 {
1760 int i;
1761
1762 for (;;)
1763 {
1764 type = check_typedef (type);
1765 if (type->code () != TYPE_CODE_PTR
1766 && type->code () != TYPE_CODE_REF)
1767 break;
1768 type = TYPE_TARGET_TYPE (type);
1769 }
1770
1771 if (type->code () != TYPE_CODE_STRUCT
1772 && type->code () != TYPE_CODE_UNION)
1773 {
1774 std::string type_name = type_to_string (type);
1775 error (_("Type %s is not a structure or union type."),
1776 type_name.c_str ());
1777 }
1778
1779 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1780 {
1781 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1782
1783 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1784 {
1785 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1786 }
1787 else if (!t_field_name || *t_field_name == '\0')
1788 {
1789 struct_elt elt
1790 = lookup_struct_elt (type->field (i).type (), name, 1);
1791 if (elt.field != NULL)
1792 {
1793 elt.offset += TYPE_FIELD_BITPOS (type, i);
1794 return elt;
1795 }
1796 }
1797 }
1798
1799 /* OK, it's not in this class. Recursively check the baseclasses. */
1800 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1801 {
1802 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1803 if (elt.field != NULL)
1804 return elt;
1805 }
1806
1807 if (noerr)
1808 return {nullptr, 0};
1809
1810 std::string type_name = type_to_string (type);
1811 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1812 }
1813
1814 /* See gdbtypes.h. */
1815
1816 struct type *
1817 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1818 {
1819 struct_elt elt = lookup_struct_elt (type, name, noerr);
1820 if (elt.field != NULL)
1821 return elt.field->type ();
1822 else
1823 return NULL;
1824 }
1825
1826 /* Store in *MAX the largest number representable by unsigned integer type
1827 TYPE. */
1828
1829 void
1830 get_unsigned_type_max (struct type *type, ULONGEST *max)
1831 {
1832 unsigned int n;
1833
1834 type = check_typedef (type);
1835 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1836 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1837
1838 /* Written this way to avoid overflow. */
1839 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1840 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1841 }
1842
1843 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1844 signed integer type TYPE. */
1845
1846 void
1847 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1848 {
1849 unsigned int n;
1850
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1853 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1854
1855 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1856 *min = -((ULONGEST) 1 << (n - 1));
1857 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1858 }
1859
1860 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1861 cplus_stuff.vptr_fieldno.
1862
1863 cplus_stuff is initialized to cplus_struct_default which does not
1864 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1865 designated initializers). We cope with that here. */
1866
1867 int
1868 internal_type_vptr_fieldno (struct type *type)
1869 {
1870 type = check_typedef (type);
1871 gdb_assert (type->code () == TYPE_CODE_STRUCT
1872 || type->code () == TYPE_CODE_UNION);
1873 if (!HAVE_CPLUS_STRUCT (type))
1874 return -1;
1875 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1876 }
1877
1878 /* Set the value of cplus_stuff.vptr_fieldno. */
1879
1880 void
1881 set_type_vptr_fieldno (struct type *type, int fieldno)
1882 {
1883 type = check_typedef (type);
1884 gdb_assert (type->code () == TYPE_CODE_STRUCT
1885 || type->code () == TYPE_CODE_UNION);
1886 if (!HAVE_CPLUS_STRUCT (type))
1887 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1888 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1889 }
1890
1891 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1892 cplus_stuff.vptr_basetype. */
1893
1894 struct type *
1895 internal_type_vptr_basetype (struct type *type)
1896 {
1897 type = check_typedef (type);
1898 gdb_assert (type->code () == TYPE_CODE_STRUCT
1899 || type->code () == TYPE_CODE_UNION);
1900 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1901 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1902 }
1903
1904 /* Set the value of cplus_stuff.vptr_basetype. */
1905
1906 void
1907 set_type_vptr_basetype (struct type *type, struct type *basetype)
1908 {
1909 type = check_typedef (type);
1910 gdb_assert (type->code () == TYPE_CODE_STRUCT
1911 || type->code () == TYPE_CODE_UNION);
1912 if (!HAVE_CPLUS_STRUCT (type))
1913 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1914 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1915 }
1916
1917 /* Lookup the vptr basetype/fieldno values for TYPE.
1918 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1919 vptr_fieldno. Also, if found and basetype is from the same objfile,
1920 cache the results.
1921 If not found, return -1 and ignore BASETYPEP.
1922 Callers should be aware that in some cases (for example,
1923 the type or one of its baseclasses is a stub type and we are
1924 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1925 this function will not be able to find the
1926 virtual function table pointer, and vptr_fieldno will remain -1 and
1927 vptr_basetype will remain NULL or incomplete. */
1928
1929 int
1930 get_vptr_fieldno (struct type *type, struct type **basetypep)
1931 {
1932 type = check_typedef (type);
1933
1934 if (TYPE_VPTR_FIELDNO (type) < 0)
1935 {
1936 int i;
1937
1938 /* We must start at zero in case the first (and only) baseclass
1939 is virtual (and hence we cannot share the table pointer). */
1940 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1941 {
1942 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1943 int fieldno;
1944 struct type *basetype;
1945
1946 fieldno = get_vptr_fieldno (baseclass, &basetype);
1947 if (fieldno >= 0)
1948 {
1949 /* If the type comes from a different objfile we can't cache
1950 it, it may have a different lifetime. PR 2384 */
1951 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1952 {
1953 set_type_vptr_fieldno (type, fieldno);
1954 set_type_vptr_basetype (type, basetype);
1955 }
1956 if (basetypep)
1957 *basetypep = basetype;
1958 return fieldno;
1959 }
1960 }
1961
1962 /* Not found. */
1963 return -1;
1964 }
1965 else
1966 {
1967 if (basetypep)
1968 *basetypep = TYPE_VPTR_BASETYPE (type);
1969 return TYPE_VPTR_FIELDNO (type);
1970 }
1971 }
1972
1973 static void
1974 stub_noname_complaint (void)
1975 {
1976 complaint (_("stub type has NULL name"));
1977 }
1978
1979 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1980 attached to it, and that property has a non-constant value. */
1981
1982 static int
1983 array_type_has_dynamic_stride (struct type *type)
1984 {
1985 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1986
1987 return (prop != NULL && prop->kind () != PROP_CONST);
1988 }
1989
1990 /* Worker for is_dynamic_type. */
1991
1992 static int
1993 is_dynamic_type_internal (struct type *type, int top_level)
1994 {
1995 type = check_typedef (type);
1996
1997 /* We only want to recognize references at the outermost level. */
1998 if (top_level && type->code () == TYPE_CODE_REF)
1999 type = check_typedef (TYPE_TARGET_TYPE (type));
2000
2001 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
2002 dynamic, even if the type itself is statically defined.
2003 From a user's point of view, this may appear counter-intuitive;
2004 but it makes sense in this context, because the point is to determine
2005 whether any part of the type needs to be resolved before it can
2006 be exploited. */
2007 if (TYPE_DATA_LOCATION (type) != NULL
2008 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
2009 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
2010 return 1;
2011
2012 if (TYPE_ASSOCIATED_PROP (type))
2013 return 1;
2014
2015 if (TYPE_ALLOCATED_PROP (type))
2016 return 1;
2017
2018 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2019 if (prop != nullptr && prop->kind () != PROP_TYPE)
2020 return 1;
2021
2022 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2023 return 1;
2024
2025 switch (type->code ())
2026 {
2027 case TYPE_CODE_RANGE:
2028 {
2029 /* A range type is obviously dynamic if it has at least one
2030 dynamic bound. But also consider the range type to be
2031 dynamic when its subtype is dynamic, even if the bounds
2032 of the range type are static. It allows us to assume that
2033 the subtype of a static range type is also static. */
2034 return (!has_static_range (type->bounds ())
2035 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2036 }
2037
2038 case TYPE_CODE_STRING:
2039 /* Strings are very much like an array of characters, and can be
2040 treated as one here. */
2041 case TYPE_CODE_ARRAY:
2042 {
2043 gdb_assert (type->num_fields () == 1);
2044
2045 /* The array is dynamic if either the bounds are dynamic... */
2046 if (is_dynamic_type_internal (type->index_type (), 0))
2047 return 1;
2048 /* ... or the elements it contains have a dynamic contents... */
2049 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2050 return 1;
2051 /* ... or if it has a dynamic stride... */
2052 if (array_type_has_dynamic_stride (type))
2053 return 1;
2054 return 0;
2055 }
2056
2057 case TYPE_CODE_STRUCT:
2058 case TYPE_CODE_UNION:
2059 {
2060 int i;
2061
2062 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2063
2064 for (i = 0; i < type->num_fields (); ++i)
2065 {
2066 /* Static fields can be ignored here. */
2067 if (field_is_static (&type->field (i)))
2068 continue;
2069 /* If the field has dynamic type, then so does TYPE. */
2070 if (is_dynamic_type_internal (type->field (i).type (), 0))
2071 return 1;
2072 /* If the field is at a fixed offset, then it is not
2073 dynamic. */
2074 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2075 continue;
2076 /* Do not consider C++ virtual base types to be dynamic
2077 due to the field's offset being dynamic; these are
2078 handled via other means. */
2079 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2080 continue;
2081 return 1;
2082 }
2083 }
2084 break;
2085 }
2086
2087 return 0;
2088 }
2089
2090 /* See gdbtypes.h. */
2091
2092 int
2093 is_dynamic_type (struct type *type)
2094 {
2095 return is_dynamic_type_internal (type, 1);
2096 }
2097
2098 static struct type *resolve_dynamic_type_internal
2099 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2100
2101 /* Given a dynamic range type (dyn_range_type) and a stack of
2102 struct property_addr_info elements, return a static version
2103 of that type. */
2104
2105 static struct type *
2106 resolve_dynamic_range (struct type *dyn_range_type,
2107 struct property_addr_info *addr_stack)
2108 {
2109 CORE_ADDR value;
2110 struct type *static_range_type, *static_target_type;
2111 struct dynamic_prop low_bound, high_bound, stride;
2112
2113 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2114
2115 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 low_bound.set_const_val (value);
2118 else
2119 low_bound.set_undefined ();
2120
2121 prop = &dyn_range_type->bounds ()->high;
2122 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2123 {
2124 high_bound.set_const_val (value);
2125
2126 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2127 high_bound.set_const_val
2128 (low_bound.const_val () + high_bound.const_val () - 1);
2129 }
2130 else
2131 high_bound.set_undefined ();
2132
2133 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2134 prop = &dyn_range_type->bounds ()->stride;
2135 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2136 {
2137 stride.set_const_val (value);
2138
2139 /* If we have a bit stride that is not an exact number of bytes then
2140 I really don't think this is going to work with current GDB, the
2141 array indexing code in GDB seems to be pretty heavily tied to byte
2142 offsets right now. Assuming 8 bits in a byte. */
2143 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2144 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2145 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2146 error (_("bit strides that are not a multiple of the byte size "
2147 "are currently not supported"));
2148 }
2149 else
2150 {
2151 stride.set_undefined ();
2152 byte_stride_p = true;
2153 }
2154
2155 static_target_type
2156 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2157 addr_stack, 0);
2158 LONGEST bias = dyn_range_type->bounds ()->bias;
2159 static_range_type = create_range_type_with_stride
2160 (copy_type (dyn_range_type), static_target_type,
2161 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2162 static_range_type->bounds ()->flag_bound_evaluated = 1;
2163 return static_range_type;
2164 }
2165
2166 /* Resolves dynamic bound values of an array or string type TYPE to static
2167 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2168 needed during the dynamic resolution. */
2169
2170 static struct type *
2171 resolve_dynamic_array_or_string (struct type *type,
2172 struct property_addr_info *addr_stack)
2173 {
2174 CORE_ADDR value;
2175 struct type *elt_type;
2176 struct type *range_type;
2177 struct type *ary_dim;
2178 struct dynamic_prop *prop;
2179 unsigned int bit_stride = 0;
2180
2181 /* For dynamic type resolution strings can be treated like arrays of
2182 characters. */
2183 gdb_assert (type->code () == TYPE_CODE_ARRAY
2184 || type->code () == TYPE_CODE_STRING);
2185
2186 type = copy_type (type);
2187
2188 elt_type = type;
2189 range_type = check_typedef (elt_type->index_type ());
2190 range_type = resolve_dynamic_range (range_type, addr_stack);
2191
2192 /* Resolve allocated/associated here before creating a new array type, which
2193 will update the length of the array accordingly. */
2194 prop = TYPE_ALLOCATED_PROP (type);
2195 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2196 prop->set_const_val (value);
2197
2198 prop = TYPE_ASSOCIATED_PROP (type);
2199 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2200 prop->set_const_val (value);
2201
2202 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2203
2204 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2205 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2206 else
2207 elt_type = TYPE_TARGET_TYPE (type);
2208
2209 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2210 if (prop != NULL)
2211 {
2212 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2213 {
2214 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2215 bit_stride = (unsigned int) (value * 8);
2216 }
2217 else
2218 {
2219 /* Could be a bug in our code, but it could also happen
2220 if the DWARF info is not correct. Issue a warning,
2221 and assume no byte/bit stride (leave bit_stride = 0). */
2222 warning (_("cannot determine array stride for type %s"),
2223 type->name () ? type->name () : "<no name>");
2224 }
2225 }
2226 else
2227 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2228
2229 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2230 bit_stride);
2231 }
2232
2233 /* Resolve dynamic bounds of members of the union TYPE to static
2234 bounds. ADDR_STACK is a stack of struct property_addr_info
2235 to be used if needed during the dynamic resolution. */
2236
2237 static struct type *
2238 resolve_dynamic_union (struct type *type,
2239 struct property_addr_info *addr_stack)
2240 {
2241 struct type *resolved_type;
2242 int i;
2243 unsigned int max_len = 0;
2244
2245 gdb_assert (type->code () == TYPE_CODE_UNION);
2246
2247 resolved_type = copy_type (type);
2248 resolved_type->set_fields
2249 ((struct field *)
2250 TYPE_ALLOC (resolved_type,
2251 resolved_type->num_fields () * sizeof (struct field)));
2252 memcpy (resolved_type->fields (),
2253 type->fields (),
2254 resolved_type->num_fields () * sizeof (struct field));
2255 for (i = 0; i < resolved_type->num_fields (); ++i)
2256 {
2257 struct type *t;
2258
2259 if (field_is_static (&type->field (i)))
2260 continue;
2261
2262 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2263 addr_stack, 0);
2264 resolved_type->field (i).set_type (t);
2265
2266 struct type *real_type = check_typedef (t);
2267 if (TYPE_LENGTH (real_type) > max_len)
2268 max_len = TYPE_LENGTH (real_type);
2269 }
2270
2271 TYPE_LENGTH (resolved_type) = max_len;
2272 return resolved_type;
2273 }
2274
2275 /* See gdbtypes.h. */
2276
2277 bool
2278 variant::matches (ULONGEST value, bool is_unsigned) const
2279 {
2280 for (const discriminant_range &range : discriminants)
2281 if (range.contains (value, is_unsigned))
2282 return true;
2283 return false;
2284 }
2285
2286 static void
2287 compute_variant_fields_inner (struct type *type,
2288 struct property_addr_info *addr_stack,
2289 const variant_part &part,
2290 std::vector<bool> &flags);
2291
2292 /* A helper function to determine which variant fields will be active.
2293 This handles both the variant's direct fields, and any variant
2294 parts embedded in this variant. TYPE is the type we're examining.
2295 ADDR_STACK holds information about the concrete object. VARIANT is
2296 the current variant to be handled. FLAGS is where the results are
2297 stored -- this function sets the Nth element in FLAGS if the
2298 corresponding field is enabled. ENABLED is whether this variant is
2299 enabled or not. */
2300
2301 static void
2302 compute_variant_fields_recurse (struct type *type,
2303 struct property_addr_info *addr_stack,
2304 const variant &variant,
2305 std::vector<bool> &flags,
2306 bool enabled)
2307 {
2308 for (int field = variant.first_field; field < variant.last_field; ++field)
2309 flags[field] = enabled;
2310
2311 for (const variant_part &new_part : variant.parts)
2312 {
2313 if (enabled)
2314 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2315 else
2316 {
2317 for (const auto &sub_variant : new_part.variants)
2318 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2319 flags, enabled);
2320 }
2321 }
2322 }
2323
2324 /* A helper function to determine which variant fields will be active.
2325 This evaluates the discriminant, decides which variant (if any) is
2326 active, and then updates FLAGS to reflect which fields should be
2327 available. TYPE is the type we're examining. ADDR_STACK holds
2328 information about the concrete object. VARIANT is the current
2329 variant to be handled. FLAGS is where the results are stored --
2330 this function sets the Nth element in FLAGS if the corresponding
2331 field is enabled. */
2332
2333 static void
2334 compute_variant_fields_inner (struct type *type,
2335 struct property_addr_info *addr_stack,
2336 const variant_part &part,
2337 std::vector<bool> &flags)
2338 {
2339 /* Evaluate the discriminant. */
2340 gdb::optional<ULONGEST> discr_value;
2341 if (part.discriminant_index != -1)
2342 {
2343 int idx = part.discriminant_index;
2344
2345 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2346 error (_("Cannot determine struct field location"
2347 " (invalid location kind)"));
2348
2349 if (addr_stack->valaddr.data () != NULL)
2350 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2351 idx);
2352 else
2353 {
2354 CORE_ADDR addr = (addr_stack->addr
2355 + (TYPE_FIELD_BITPOS (type, idx)
2356 / TARGET_CHAR_BIT));
2357
2358 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2359 LONGEST size = bitsize / 8;
2360 if (size == 0)
2361 size = TYPE_LENGTH (type->field (idx).type ());
2362
2363 gdb_byte bits[sizeof (ULONGEST)];
2364 read_memory (addr, bits, size);
2365
2366 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2367 % TARGET_CHAR_BIT);
2368
2369 discr_value = unpack_bits_as_long (type->field (idx).type (),
2370 bits, bitpos, bitsize);
2371 }
2372 }
2373
2374 /* Go through each variant and see which applies. */
2375 const variant *default_variant = nullptr;
2376 const variant *applied_variant = nullptr;
2377 for (const auto &variant : part.variants)
2378 {
2379 if (variant.is_default ())
2380 default_variant = &variant;
2381 else if (discr_value.has_value ()
2382 && variant.matches (*discr_value, part.is_unsigned))
2383 {
2384 applied_variant = &variant;
2385 break;
2386 }
2387 }
2388 if (applied_variant == nullptr)
2389 applied_variant = default_variant;
2390
2391 for (const auto &variant : part.variants)
2392 compute_variant_fields_recurse (type, addr_stack, variant,
2393 flags, applied_variant == &variant);
2394 }
2395
2396 /* Determine which variant fields are available in TYPE. The enabled
2397 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2398 about the concrete object. PARTS describes the top-level variant
2399 parts for this type. */
2400
2401 static void
2402 compute_variant_fields (struct type *type,
2403 struct type *resolved_type,
2404 struct property_addr_info *addr_stack,
2405 const gdb::array_view<variant_part> &parts)
2406 {
2407 /* Assume all fields are included by default. */
2408 std::vector<bool> flags (resolved_type->num_fields (), true);
2409
2410 /* Now disable fields based on the variants that control them. */
2411 for (const auto &part : parts)
2412 compute_variant_fields_inner (type, addr_stack, part, flags);
2413
2414 resolved_type->set_num_fields
2415 (std::count (flags.begin (), flags.end (), true));
2416 resolved_type->set_fields
2417 ((struct field *)
2418 TYPE_ALLOC (resolved_type,
2419 resolved_type->num_fields () * sizeof (struct field)));
2420
2421 int out = 0;
2422 for (int i = 0; i < type->num_fields (); ++i)
2423 {
2424 if (!flags[i])
2425 continue;
2426
2427 resolved_type->field (out) = type->field (i);
2428 ++out;
2429 }
2430 }
2431
2432 /* Resolve dynamic bounds of members of the struct TYPE to static
2433 bounds. ADDR_STACK is a stack of struct property_addr_info to
2434 be used if needed during the dynamic resolution. */
2435
2436 static struct type *
2437 resolve_dynamic_struct (struct type *type,
2438 struct property_addr_info *addr_stack)
2439 {
2440 struct type *resolved_type;
2441 int i;
2442 unsigned resolved_type_bit_length = 0;
2443
2444 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2445 gdb_assert (type->num_fields () > 0);
2446
2447 resolved_type = copy_type (type);
2448
2449 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2450 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2451 {
2452 compute_variant_fields (type, resolved_type, addr_stack,
2453 *variant_prop->variant_parts ());
2454 /* We want to leave the property attached, so that the Rust code
2455 can tell whether the type was originally an enum. */
2456 variant_prop->set_original_type (type);
2457 }
2458 else
2459 {
2460 resolved_type->set_fields
2461 ((struct field *)
2462 TYPE_ALLOC (resolved_type,
2463 resolved_type->num_fields () * sizeof (struct field)));
2464 memcpy (resolved_type->fields (),
2465 type->fields (),
2466 resolved_type->num_fields () * sizeof (struct field));
2467 }
2468
2469 for (i = 0; i < resolved_type->num_fields (); ++i)
2470 {
2471 unsigned new_bit_length;
2472 struct property_addr_info pinfo;
2473
2474 if (field_is_static (&resolved_type->field (i)))
2475 continue;
2476
2477 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2478 {
2479 struct dwarf2_property_baton baton;
2480 baton.property_type
2481 = lookup_pointer_type (resolved_type->field (i).type ());
2482 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2483
2484 struct dynamic_prop prop;
2485 prop.set_locexpr (&baton);
2486
2487 CORE_ADDR addr;
2488 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2489 true))
2490 SET_FIELD_BITPOS (resolved_type->field (i),
2491 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2492 }
2493
2494 /* As we know this field is not a static field, the field's
2495 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2496 this is the case, but only trigger a simple error rather
2497 than an internal error if that fails. While failing
2498 that verification indicates a bug in our code, the error
2499 is not severe enough to suggest to the user he stops
2500 his debugging session because of it. */
2501 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2502 error (_("Cannot determine struct field location"
2503 " (invalid location kind)"));
2504
2505 pinfo.type = check_typedef (resolved_type->field (i).type ());
2506 pinfo.valaddr = addr_stack->valaddr;
2507 pinfo.addr
2508 = (addr_stack->addr
2509 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2510 pinfo.next = addr_stack;
2511
2512 resolved_type->field (i).set_type
2513 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2514 &pinfo, 0));
2515 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2516 == FIELD_LOC_KIND_BITPOS);
2517
2518 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2519 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2520 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2521 else
2522 {
2523 struct type *real_type
2524 = check_typedef (resolved_type->field (i).type ());
2525
2526 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2527 }
2528
2529 /* Normally, we would use the position and size of the last field
2530 to determine the size of the enclosing structure. But GCC seems
2531 to be encoding the position of some fields incorrectly when
2532 the struct contains a dynamic field that is not placed last.
2533 So we compute the struct size based on the field that has
2534 the highest position + size - probably the best we can do. */
2535 if (new_bit_length > resolved_type_bit_length)
2536 resolved_type_bit_length = new_bit_length;
2537 }
2538
2539 /* The length of a type won't change for fortran, but it does for C and Ada.
2540 For fortran the size of dynamic fields might change over time but not the
2541 type length of the structure. If we adapt it, we run into problems
2542 when calculating the element offset for arrays of structs. */
2543 if (current_language->la_language != language_fortran)
2544 TYPE_LENGTH (resolved_type)
2545 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2546
2547 /* The Ada language uses this field as a cache for static fixed types: reset
2548 it as RESOLVED_TYPE must have its own static fixed type. */
2549 TYPE_TARGET_TYPE (resolved_type) = NULL;
2550
2551 return resolved_type;
2552 }
2553
2554 /* Worker for resolved_dynamic_type. */
2555
2556 static struct type *
2557 resolve_dynamic_type_internal (struct type *type,
2558 struct property_addr_info *addr_stack,
2559 int top_level)
2560 {
2561 struct type *real_type = check_typedef (type);
2562 struct type *resolved_type = nullptr;
2563 struct dynamic_prop *prop;
2564 CORE_ADDR value;
2565
2566 if (!is_dynamic_type_internal (real_type, top_level))
2567 return type;
2568
2569 gdb::optional<CORE_ADDR> type_length;
2570 prop = TYPE_DYNAMIC_LENGTH (type);
2571 if (prop != NULL
2572 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2573 type_length = value;
2574
2575 if (type->code () == TYPE_CODE_TYPEDEF)
2576 {
2577 resolved_type = copy_type (type);
2578 TYPE_TARGET_TYPE (resolved_type)
2579 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2580 top_level);
2581 }
2582 else
2583 {
2584 /* Before trying to resolve TYPE, make sure it is not a stub. */
2585 type = real_type;
2586
2587 switch (type->code ())
2588 {
2589 case TYPE_CODE_REF:
2590 {
2591 struct property_addr_info pinfo;
2592
2593 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2594 pinfo.valaddr = {};
2595 if (addr_stack->valaddr.data () != NULL)
2596 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2597 type);
2598 else
2599 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2600 pinfo.next = addr_stack;
2601
2602 resolved_type = copy_type (type);
2603 TYPE_TARGET_TYPE (resolved_type)
2604 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2605 &pinfo, top_level);
2606 break;
2607 }
2608
2609 case TYPE_CODE_STRING:
2610 /* Strings are very much like an array of characters, and can be
2611 treated as one here. */
2612 case TYPE_CODE_ARRAY:
2613 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2614 break;
2615
2616 case TYPE_CODE_RANGE:
2617 resolved_type = resolve_dynamic_range (type, addr_stack);
2618 break;
2619
2620 case TYPE_CODE_UNION:
2621 resolved_type = resolve_dynamic_union (type, addr_stack);
2622 break;
2623
2624 case TYPE_CODE_STRUCT:
2625 resolved_type = resolve_dynamic_struct (type, addr_stack);
2626 break;
2627 }
2628 }
2629
2630 if (resolved_type == nullptr)
2631 return type;
2632
2633 if (type_length.has_value ())
2634 {
2635 TYPE_LENGTH (resolved_type) = *type_length;
2636 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2637 }
2638
2639 /* Resolve data_location attribute. */
2640 prop = TYPE_DATA_LOCATION (resolved_type);
2641 if (prop != NULL
2642 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2643 {
2644 /* Start of Fortran hack. See comment in f-lang.h for what is going
2645 on here.*/
2646 if (current_language->la_language == language_fortran
2647 && resolved_type->code () == TYPE_CODE_ARRAY)
2648 value = fortran_adjust_dynamic_array_base_address_hack (resolved_type,
2649 value);
2650 /* End of Fortran hack. */
2651 prop->set_const_val (value);
2652 }
2653
2654 return resolved_type;
2655 }
2656
2657 /* See gdbtypes.h */
2658
2659 struct type *
2660 resolve_dynamic_type (struct type *type,
2661 gdb::array_view<const gdb_byte> valaddr,
2662 CORE_ADDR addr)
2663 {
2664 struct property_addr_info pinfo
2665 = {check_typedef (type), valaddr, addr, NULL};
2666
2667 return resolve_dynamic_type_internal (type, &pinfo, 1);
2668 }
2669
2670 /* See gdbtypes.h */
2671
2672 dynamic_prop *
2673 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2674 {
2675 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2676
2677 while (node != NULL)
2678 {
2679 if (node->prop_kind == prop_kind)
2680 return &node->prop;
2681 node = node->next;
2682 }
2683 return NULL;
2684 }
2685
2686 /* See gdbtypes.h */
2687
2688 void
2689 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2690 {
2691 struct dynamic_prop_list *temp;
2692
2693 gdb_assert (TYPE_OBJFILE_OWNED (this));
2694
2695 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2696 struct dynamic_prop_list);
2697 temp->prop_kind = prop_kind;
2698 temp->prop = prop;
2699 temp->next = this->main_type->dyn_prop_list;
2700
2701 this->main_type->dyn_prop_list = temp;
2702 }
2703
2704 /* See gdbtypes.h. */
2705
2706 void
2707 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2708 {
2709 struct dynamic_prop_list *prev_node, *curr_node;
2710
2711 curr_node = this->main_type->dyn_prop_list;
2712 prev_node = NULL;
2713
2714 while (NULL != curr_node)
2715 {
2716 if (curr_node->prop_kind == kind)
2717 {
2718 /* Update the linked list but don't free anything.
2719 The property was allocated on objstack and it is not known
2720 if we are on top of it. Nevertheless, everything is released
2721 when the complete objstack is freed. */
2722 if (NULL == prev_node)
2723 this->main_type->dyn_prop_list = curr_node->next;
2724 else
2725 prev_node->next = curr_node->next;
2726
2727 return;
2728 }
2729
2730 prev_node = curr_node;
2731 curr_node = curr_node->next;
2732 }
2733 }
2734
2735 /* Find the real type of TYPE. This function returns the real type,
2736 after removing all layers of typedefs, and completing opaque or stub
2737 types. Completion changes the TYPE argument, but stripping of
2738 typedefs does not.
2739
2740 Instance flags (e.g. const/volatile) are preserved as typedefs are
2741 stripped. If necessary a new qualified form of the underlying type
2742 is created.
2743
2744 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2745 not been computed and we're either in the middle of reading symbols, or
2746 there was no name for the typedef in the debug info.
2747
2748 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2749 QUITs in the symbol reading code can also throw.
2750 Thus this function can throw an exception.
2751
2752 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2753 the target type.
2754
2755 If this is a stubbed struct (i.e. declared as struct foo *), see if
2756 we can find a full definition in some other file. If so, copy this
2757 definition, so we can use it in future. There used to be a comment
2758 (but not any code) that if we don't find a full definition, we'd
2759 set a flag so we don't spend time in the future checking the same
2760 type. That would be a mistake, though--we might load in more
2761 symbols which contain a full definition for the type. */
2762
2763 struct type *
2764 check_typedef (struct type *type)
2765 {
2766 struct type *orig_type = type;
2767
2768 gdb_assert (type);
2769
2770 /* While we're removing typedefs, we don't want to lose qualifiers.
2771 E.g., const/volatile. */
2772 type_instance_flags instance_flags = type->instance_flags ();
2773
2774 while (type->code () == TYPE_CODE_TYPEDEF)
2775 {
2776 if (!TYPE_TARGET_TYPE (type))
2777 {
2778 const char *name;
2779 struct symbol *sym;
2780
2781 /* It is dangerous to call lookup_symbol if we are currently
2782 reading a symtab. Infinite recursion is one danger. */
2783 if (currently_reading_symtab)
2784 return make_qualified_type (type, instance_flags, NULL);
2785
2786 name = type->name ();
2787 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2788 VAR_DOMAIN as appropriate? */
2789 if (name == NULL)
2790 {
2791 stub_noname_complaint ();
2792 return make_qualified_type (type, instance_flags, NULL);
2793 }
2794 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2795 if (sym)
2796 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2797 else /* TYPE_CODE_UNDEF */
2798 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2799 }
2800 type = TYPE_TARGET_TYPE (type);
2801
2802 /* Preserve the instance flags as we traverse down the typedef chain.
2803
2804 Handling address spaces/classes is nasty, what do we do if there's a
2805 conflict?
2806 E.g., what if an outer typedef marks the type as class_1 and an inner
2807 typedef marks the type as class_2?
2808 This is the wrong place to do such error checking. We leave it to
2809 the code that created the typedef in the first place to flag the
2810 error. We just pick the outer address space (akin to letting the
2811 outer cast in a chain of casting win), instead of assuming
2812 "it can't happen". */
2813 {
2814 const type_instance_flags ALL_SPACES
2815 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2816 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2817 const type_instance_flags ALL_CLASSES
2818 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2819
2820 type_instance_flags new_instance_flags = type->instance_flags ();
2821
2822 /* Treat code vs data spaces and address classes separately. */
2823 if ((instance_flags & ALL_SPACES) != 0)
2824 new_instance_flags &= ~ALL_SPACES;
2825 if ((instance_flags & ALL_CLASSES) != 0)
2826 new_instance_flags &= ~ALL_CLASSES;
2827
2828 instance_flags |= new_instance_flags;
2829 }
2830 }
2831
2832 /* If this is a struct/class/union with no fields, then check
2833 whether a full definition exists somewhere else. This is for
2834 systems where a type definition with no fields is issued for such
2835 types, instead of identifying them as stub types in the first
2836 place. */
2837
2838 if (TYPE_IS_OPAQUE (type)
2839 && opaque_type_resolution
2840 && !currently_reading_symtab)
2841 {
2842 const char *name = type->name ();
2843 struct type *newtype;
2844
2845 if (name == NULL)
2846 {
2847 stub_noname_complaint ();
2848 return make_qualified_type (type, instance_flags, NULL);
2849 }
2850 newtype = lookup_transparent_type (name);
2851
2852 if (newtype)
2853 {
2854 /* If the resolved type and the stub are in the same
2855 objfile, then replace the stub type with the real deal.
2856 But if they're in separate objfiles, leave the stub
2857 alone; we'll just look up the transparent type every time
2858 we call check_typedef. We can't create pointers between
2859 types allocated to different objfiles, since they may
2860 have different lifetimes. Trying to copy NEWTYPE over to
2861 TYPE's objfile is pointless, too, since you'll have to
2862 move over any other types NEWTYPE refers to, which could
2863 be an unbounded amount of stuff. */
2864 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2865 type = make_qualified_type (newtype, type->instance_flags (), type);
2866 else
2867 type = newtype;
2868 }
2869 }
2870 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2871 types. */
2872 else if (type->is_stub () && !currently_reading_symtab)
2873 {
2874 const char *name = type->name ();
2875 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2876 as appropriate? */
2877 struct symbol *sym;
2878
2879 if (name == NULL)
2880 {
2881 stub_noname_complaint ();
2882 return make_qualified_type (type, instance_flags, NULL);
2883 }
2884 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2885 if (sym)
2886 {
2887 /* Same as above for opaque types, we can replace the stub
2888 with the complete type only if they are in the same
2889 objfile. */
2890 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2891 type = make_qualified_type (SYMBOL_TYPE (sym),
2892 type->instance_flags (), type);
2893 else
2894 type = SYMBOL_TYPE (sym);
2895 }
2896 }
2897
2898 if (type->target_is_stub ())
2899 {
2900 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2901
2902 if (target_type->is_stub () || target_type->target_is_stub ())
2903 {
2904 /* Nothing we can do. */
2905 }
2906 else if (type->code () == TYPE_CODE_RANGE)
2907 {
2908 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2909 type->set_target_is_stub (false);
2910 }
2911 else if (type->code () == TYPE_CODE_ARRAY
2912 && update_static_array_size (type))
2913 type->set_target_is_stub (false);
2914 }
2915
2916 type = make_qualified_type (type, instance_flags, NULL);
2917
2918 /* Cache TYPE_LENGTH for future use. */
2919 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2920
2921 return type;
2922 }
2923
2924 /* Parse a type expression in the string [P..P+LENGTH). If an error
2925 occurs, silently return a void type. */
2926
2927 static struct type *
2928 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2929 {
2930 struct ui_file *saved_gdb_stderr;
2931 struct type *type = NULL; /* Initialize to keep gcc happy. */
2932
2933 /* Suppress error messages. */
2934 saved_gdb_stderr = gdb_stderr;
2935 gdb_stderr = &null_stream;
2936
2937 /* Call parse_and_eval_type() without fear of longjmp()s. */
2938 try
2939 {
2940 type = parse_and_eval_type (p, length);
2941 }
2942 catch (const gdb_exception_error &except)
2943 {
2944 type = builtin_type (gdbarch)->builtin_void;
2945 }
2946
2947 /* Stop suppressing error messages. */
2948 gdb_stderr = saved_gdb_stderr;
2949
2950 return type;
2951 }
2952
2953 /* Ugly hack to convert method stubs into method types.
2954
2955 He ain't kiddin'. This demangles the name of the method into a
2956 string including argument types, parses out each argument type,
2957 generates a string casting a zero to that type, evaluates the
2958 string, and stuffs the resulting type into an argtype vector!!!
2959 Then it knows the type of the whole function (including argument
2960 types for overloading), which info used to be in the stab's but was
2961 removed to hack back the space required for them. */
2962
2963 static void
2964 check_stub_method (struct type *type, int method_id, int signature_id)
2965 {
2966 struct gdbarch *gdbarch = get_type_arch (type);
2967 struct fn_field *f;
2968 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2969 char *demangled_name = gdb_demangle (mangled_name,
2970 DMGL_PARAMS | DMGL_ANSI);
2971 char *argtypetext, *p;
2972 int depth = 0, argcount = 1;
2973 struct field *argtypes;
2974 struct type *mtype;
2975
2976 /* Make sure we got back a function string that we can use. */
2977 if (demangled_name)
2978 p = strchr (demangled_name, '(');
2979 else
2980 p = NULL;
2981
2982 if (demangled_name == NULL || p == NULL)
2983 error (_("Internal: Cannot demangle mangled name `%s'."),
2984 mangled_name);
2985
2986 /* Now, read in the parameters that define this type. */
2987 p += 1;
2988 argtypetext = p;
2989 while (*p)
2990 {
2991 if (*p == '(' || *p == '<')
2992 {
2993 depth += 1;
2994 }
2995 else if (*p == ')' || *p == '>')
2996 {
2997 depth -= 1;
2998 }
2999 else if (*p == ',' && depth == 0)
3000 {
3001 argcount += 1;
3002 }
3003
3004 p += 1;
3005 }
3006
3007 /* If we read one argument and it was ``void'', don't count it. */
3008 if (startswith (argtypetext, "(void)"))
3009 argcount -= 1;
3010
3011 /* We need one extra slot, for the THIS pointer. */
3012
3013 argtypes = (struct field *)
3014 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
3015 p = argtypetext;
3016
3017 /* Add THIS pointer for non-static methods. */
3018 f = TYPE_FN_FIELDLIST1 (type, method_id);
3019 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
3020 argcount = 0;
3021 else
3022 {
3023 argtypes[0].set_type (lookup_pointer_type (type));
3024 argcount = 1;
3025 }
3026
3027 if (*p != ')') /* () means no args, skip while. */
3028 {
3029 depth = 0;
3030 while (*p)
3031 {
3032 if (depth <= 0 && (*p == ',' || *p == ')'))
3033 {
3034 /* Avoid parsing of ellipsis, they will be handled below.
3035 Also avoid ``void'' as above. */
3036 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3037 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3038 {
3039 argtypes[argcount].set_type
3040 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3041 argcount += 1;
3042 }
3043 argtypetext = p + 1;
3044 }
3045
3046 if (*p == '(' || *p == '<')
3047 {
3048 depth += 1;
3049 }
3050 else if (*p == ')' || *p == '>')
3051 {
3052 depth -= 1;
3053 }
3054
3055 p += 1;
3056 }
3057 }
3058
3059 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3060
3061 /* Now update the old "stub" type into a real type. */
3062 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3063 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3064 We want a method (TYPE_CODE_METHOD). */
3065 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3066 argtypes, argcount, p[-2] == '.');
3067 mtype->set_is_stub (false);
3068 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3069
3070 xfree (demangled_name);
3071 }
3072
3073 /* This is the external interface to check_stub_method, above. This
3074 function unstubs all of the signatures for TYPE's METHOD_ID method
3075 name. After calling this function TYPE_FN_FIELD_STUB will be
3076 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3077 correct.
3078
3079 This function unfortunately can not die until stabs do. */
3080
3081 void
3082 check_stub_method_group (struct type *type, int method_id)
3083 {
3084 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3085 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3086
3087 for (int j = 0; j < len; j++)
3088 {
3089 if (TYPE_FN_FIELD_STUB (f, j))
3090 check_stub_method (type, method_id, j);
3091 }
3092 }
3093
3094 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3095 const struct cplus_struct_type cplus_struct_default = { };
3096
3097 void
3098 allocate_cplus_struct_type (struct type *type)
3099 {
3100 if (HAVE_CPLUS_STRUCT (type))
3101 /* Structure was already allocated. Nothing more to do. */
3102 return;
3103
3104 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3105 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3106 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3107 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3108 set_type_vptr_fieldno (type, -1);
3109 }
3110
3111 const struct gnat_aux_type gnat_aux_default =
3112 { NULL };
3113
3114 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3115 and allocate the associated gnat-specific data. The gnat-specific
3116 data is also initialized to gnat_aux_default. */
3117
3118 void
3119 allocate_gnat_aux_type (struct type *type)
3120 {
3121 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3122 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3123 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3124 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3125 }
3126
3127 /* Helper function to initialize a newly allocated type. Set type code
3128 to CODE and initialize the type-specific fields accordingly. */
3129
3130 static void
3131 set_type_code (struct type *type, enum type_code code)
3132 {
3133 type->set_code (code);
3134
3135 switch (code)
3136 {
3137 case TYPE_CODE_STRUCT:
3138 case TYPE_CODE_UNION:
3139 case TYPE_CODE_NAMESPACE:
3140 INIT_CPLUS_SPECIFIC (type);
3141 break;
3142 case TYPE_CODE_FLT:
3143 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3144 break;
3145 case TYPE_CODE_FUNC:
3146 INIT_FUNC_SPECIFIC (type);
3147 break;
3148 case TYPE_CODE_FIXED_POINT:
3149 INIT_FIXED_POINT_SPECIFIC (type);
3150 break;
3151 }
3152 }
3153
3154 /* Helper function to verify floating-point format and size.
3155 BIT is the type size in bits; if BIT equals -1, the size is
3156 determined by the floatformat. Returns size to be used. */
3157
3158 static int
3159 verify_floatformat (int bit, const struct floatformat *floatformat)
3160 {
3161 gdb_assert (floatformat != NULL);
3162
3163 if (bit == -1)
3164 bit = floatformat->totalsize;
3165
3166 gdb_assert (bit >= 0);
3167 gdb_assert (bit >= floatformat->totalsize);
3168
3169 return bit;
3170 }
3171
3172 /* Return the floating-point format for a floating-point variable of
3173 type TYPE. */
3174
3175 const struct floatformat *
3176 floatformat_from_type (const struct type *type)
3177 {
3178 gdb_assert (type->code () == TYPE_CODE_FLT);
3179 gdb_assert (TYPE_FLOATFORMAT (type));
3180 return TYPE_FLOATFORMAT (type);
3181 }
3182
3183 /* Helper function to initialize the standard scalar types.
3184
3185 If NAME is non-NULL, then it is used to initialize the type name.
3186 Note that NAME is not copied; it is required to have a lifetime at
3187 least as long as OBJFILE. */
3188
3189 struct type *
3190 init_type (struct objfile *objfile, enum type_code code, int bit,
3191 const char *name)
3192 {
3193 struct type *type;
3194
3195 type = alloc_type (objfile);
3196 set_type_code (type, code);
3197 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3198 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3199 type->set_name (name);
3200
3201 return type;
3202 }
3203
3204 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3205 to use with variables that have no debug info. NAME is the type
3206 name. */
3207
3208 static struct type *
3209 init_nodebug_var_type (struct objfile *objfile, const char *name)
3210 {
3211 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3212 }
3213
3214 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3215 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3216 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3217
3218 struct type *
3219 init_integer_type (struct objfile *objfile,
3220 int bit, int unsigned_p, const char *name)
3221 {
3222 struct type *t;
3223
3224 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3225 if (unsigned_p)
3226 t->set_is_unsigned (true);
3227
3228 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3229 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3230 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3231
3232 return t;
3233 }
3234
3235 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3236 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3237 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3238
3239 struct type *
3240 init_character_type (struct objfile *objfile,
3241 int bit, int unsigned_p, const char *name)
3242 {
3243 struct type *t;
3244
3245 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3246 if (unsigned_p)
3247 t->set_is_unsigned (true);
3248
3249 return t;
3250 }
3251
3252 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3253 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3254 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3255
3256 struct type *
3257 init_boolean_type (struct objfile *objfile,
3258 int bit, int unsigned_p, const char *name)
3259 {
3260 struct type *t;
3261
3262 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3263 if (unsigned_p)
3264 t->set_is_unsigned (true);
3265
3266 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3267 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3268 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3269
3270 return t;
3271 }
3272
3273 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3274 BIT is the type size in bits; if BIT equals -1, the size is
3275 determined by the floatformat. NAME is the type name. Set the
3276 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3277 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3278 order of the objfile's architecture is used. */
3279
3280 struct type *
3281 init_float_type (struct objfile *objfile,
3282 int bit, const char *name,
3283 const struct floatformat **floatformats,
3284 enum bfd_endian byte_order)
3285 {
3286 if (byte_order == BFD_ENDIAN_UNKNOWN)
3287 {
3288 struct gdbarch *gdbarch = objfile->arch ();
3289 byte_order = gdbarch_byte_order (gdbarch);
3290 }
3291 const struct floatformat *fmt = floatformats[byte_order];
3292 struct type *t;
3293
3294 bit = verify_floatformat (bit, fmt);
3295 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3296 TYPE_FLOATFORMAT (t) = fmt;
3297
3298 return t;
3299 }
3300
3301 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3302 BIT is the type size in bits. NAME is the type name. */
3303
3304 struct type *
3305 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3306 {
3307 struct type *t;
3308
3309 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3310 return t;
3311 }
3312
3313 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3314 name. TARGET_TYPE is the component type. */
3315
3316 struct type *
3317 init_complex_type (const char *name, struct type *target_type)
3318 {
3319 struct type *t;
3320
3321 gdb_assert (target_type->code () == TYPE_CODE_INT
3322 || target_type->code () == TYPE_CODE_FLT);
3323
3324 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3325 {
3326 if (name == nullptr && target_type->name () != nullptr)
3327 {
3328 char *new_name
3329 = (char *) TYPE_ALLOC (target_type,
3330 strlen (target_type->name ())
3331 + strlen ("_Complex ") + 1);
3332 strcpy (new_name, "_Complex ");
3333 strcat (new_name, target_type->name ());
3334 name = new_name;
3335 }
3336
3337 t = alloc_type_copy (target_type);
3338 set_type_code (t, TYPE_CODE_COMPLEX);
3339 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3340 t->set_name (name);
3341
3342 TYPE_TARGET_TYPE (t) = target_type;
3343 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3344 }
3345
3346 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3347 }
3348
3349 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3350 BIT is the pointer type size in bits. NAME is the type name.
3351 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3352 TYPE_UNSIGNED flag. */
3353
3354 struct type *
3355 init_pointer_type (struct objfile *objfile,
3356 int bit, const char *name, struct type *target_type)
3357 {
3358 struct type *t;
3359
3360 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3361 TYPE_TARGET_TYPE (t) = target_type;
3362 t->set_is_unsigned (true);
3363 return t;
3364 }
3365
3366 /* Allocate a TYPE_CODE_FIXED_POINT type structure associated with OBJFILE.
3367 BIT is the pointer type size in bits.
3368 UNSIGNED_P should be nonzero if the type is unsigned.
3369 NAME is the type name. */
3370
3371 struct type *
3372 init_fixed_point_type (struct objfile *objfile,
3373 int bit, int unsigned_p, const char *name)
3374 {
3375 struct type *t;
3376
3377 t = init_type (objfile, TYPE_CODE_FIXED_POINT, bit, name);
3378 if (unsigned_p)
3379 t->set_is_unsigned (true);
3380
3381 return t;
3382 }
3383
3384 /* See gdbtypes.h. */
3385
3386 unsigned
3387 type_raw_align (struct type *type)
3388 {
3389 if (type->align_log2 != 0)
3390 return 1 << (type->align_log2 - 1);
3391 return 0;
3392 }
3393
3394 /* See gdbtypes.h. */
3395
3396 unsigned
3397 type_align (struct type *type)
3398 {
3399 /* Check alignment provided in the debug information. */
3400 unsigned raw_align = type_raw_align (type);
3401 if (raw_align != 0)
3402 return raw_align;
3403
3404 /* Allow the architecture to provide an alignment. */
3405 struct gdbarch *arch = get_type_arch (type);
3406 ULONGEST align = gdbarch_type_align (arch, type);
3407 if (align != 0)
3408 return align;
3409
3410 switch (type->code ())
3411 {
3412 case TYPE_CODE_PTR:
3413 case TYPE_CODE_FUNC:
3414 case TYPE_CODE_FLAGS:
3415 case TYPE_CODE_INT:
3416 case TYPE_CODE_RANGE:
3417 case TYPE_CODE_FLT:
3418 case TYPE_CODE_ENUM:
3419 case TYPE_CODE_REF:
3420 case TYPE_CODE_RVALUE_REF:
3421 case TYPE_CODE_CHAR:
3422 case TYPE_CODE_BOOL:
3423 case TYPE_CODE_DECFLOAT:
3424 case TYPE_CODE_METHODPTR:
3425 case TYPE_CODE_MEMBERPTR:
3426 align = type_length_units (check_typedef (type));
3427 break;
3428
3429 case TYPE_CODE_ARRAY:
3430 case TYPE_CODE_COMPLEX:
3431 case TYPE_CODE_TYPEDEF:
3432 align = type_align (TYPE_TARGET_TYPE (type));
3433 break;
3434
3435 case TYPE_CODE_STRUCT:
3436 case TYPE_CODE_UNION:
3437 {
3438 int number_of_non_static_fields = 0;
3439 for (unsigned i = 0; i < type->num_fields (); ++i)
3440 {
3441 if (!field_is_static (&type->field (i)))
3442 {
3443 number_of_non_static_fields++;
3444 ULONGEST f_align = type_align (type->field (i).type ());
3445 if (f_align == 0)
3446 {
3447 /* Don't pretend we know something we don't. */
3448 align = 0;
3449 break;
3450 }
3451 if (f_align > align)
3452 align = f_align;
3453 }
3454 }
3455 /* A struct with no fields, or with only static fields has an
3456 alignment of 1. */
3457 if (number_of_non_static_fields == 0)
3458 align = 1;
3459 }
3460 break;
3461
3462 case TYPE_CODE_SET:
3463 case TYPE_CODE_STRING:
3464 /* Not sure what to do here, and these can't appear in C or C++
3465 anyway. */
3466 break;
3467
3468 case TYPE_CODE_VOID:
3469 align = 1;
3470 break;
3471
3472 case TYPE_CODE_ERROR:
3473 case TYPE_CODE_METHOD:
3474 default:
3475 break;
3476 }
3477
3478 if ((align & (align - 1)) != 0)
3479 {
3480 /* Not a power of 2, so pass. */
3481 align = 0;
3482 }
3483
3484 return align;
3485 }
3486
3487 /* See gdbtypes.h. */
3488
3489 bool
3490 set_type_align (struct type *type, ULONGEST align)
3491 {
3492 /* Must be a power of 2. Zero is ok. */
3493 gdb_assert ((align & (align - 1)) == 0);
3494
3495 unsigned result = 0;
3496 while (align != 0)
3497 {
3498 ++result;
3499 align >>= 1;
3500 }
3501
3502 if (result >= (1 << TYPE_ALIGN_BITS))
3503 return false;
3504
3505 type->align_log2 = result;
3506 return true;
3507 }
3508
3509 \f
3510 /* Queries on types. */
3511
3512 int
3513 can_dereference (struct type *t)
3514 {
3515 /* FIXME: Should we return true for references as well as
3516 pointers? */
3517 t = check_typedef (t);
3518 return
3519 (t != NULL
3520 && t->code () == TYPE_CODE_PTR
3521 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3522 }
3523
3524 int
3525 is_integral_type (struct type *t)
3526 {
3527 t = check_typedef (t);
3528 return
3529 ((t != NULL)
3530 && !is_fixed_point_type (t)
3531 && ((t->code () == TYPE_CODE_INT)
3532 || (t->code () == TYPE_CODE_ENUM)
3533 || (t->code () == TYPE_CODE_FLAGS)
3534 || (t->code () == TYPE_CODE_CHAR)
3535 || (t->code () == TYPE_CODE_RANGE)
3536 || (t->code () == TYPE_CODE_BOOL)));
3537 }
3538
3539 int
3540 is_floating_type (struct type *t)
3541 {
3542 t = check_typedef (t);
3543 return
3544 ((t != NULL)
3545 && ((t->code () == TYPE_CODE_FLT)
3546 || (t->code () == TYPE_CODE_DECFLOAT)));
3547 }
3548
3549 /* Return true if TYPE is scalar. */
3550
3551 int
3552 is_scalar_type (struct type *type)
3553 {
3554 type = check_typedef (type);
3555
3556 if (is_fixed_point_type (type))
3557 return 0; /* Implemented as a scalar, but more like a floating point. */
3558
3559 switch (type->code ())
3560 {
3561 case TYPE_CODE_ARRAY:
3562 case TYPE_CODE_STRUCT:
3563 case TYPE_CODE_UNION:
3564 case TYPE_CODE_SET:
3565 case TYPE_CODE_STRING:
3566 return 0;
3567 default:
3568 return 1;
3569 }
3570 }
3571
3572 /* Return true if T is scalar, or a composite type which in practice has
3573 the memory layout of a scalar type. E.g., an array or struct with only
3574 one scalar element inside it, or a union with only scalar elements. */
3575
3576 int
3577 is_scalar_type_recursive (struct type *t)
3578 {
3579 t = check_typedef (t);
3580
3581 if (is_scalar_type (t))
3582 return 1;
3583 /* Are we dealing with an array or string of known dimensions? */
3584 else if ((t->code () == TYPE_CODE_ARRAY
3585 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3586 && t->index_type ()->code () == TYPE_CODE_RANGE)
3587 {
3588 LONGEST low_bound, high_bound;
3589 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3590
3591 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3592
3593 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3594 }
3595 /* Are we dealing with a struct with one element? */
3596 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3597 return is_scalar_type_recursive (t->field (0).type ());
3598 else if (t->code () == TYPE_CODE_UNION)
3599 {
3600 int i, n = t->num_fields ();
3601
3602 /* If all elements of the union are scalar, then the union is scalar. */
3603 for (i = 0; i < n; i++)
3604 if (!is_scalar_type_recursive (t->field (i).type ()))
3605 return 0;
3606
3607 return 1;
3608 }
3609
3610 return 0;
3611 }
3612
3613 /* Return true is T is a class or a union. False otherwise. */
3614
3615 int
3616 class_or_union_p (const struct type *t)
3617 {
3618 return (t->code () == TYPE_CODE_STRUCT
3619 || t->code () == TYPE_CODE_UNION);
3620 }
3621
3622 /* A helper function which returns true if types A and B represent the
3623 "same" class type. This is true if the types have the same main
3624 type, or the same name. */
3625
3626 int
3627 class_types_same_p (const struct type *a, const struct type *b)
3628 {
3629 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3630 || (a->name () && b->name ()
3631 && !strcmp (a->name (), b->name ())));
3632 }
3633
3634 /* If BASE is an ancestor of DCLASS return the distance between them.
3635 otherwise return -1;
3636 eg:
3637
3638 class A {};
3639 class B: public A {};
3640 class C: public B {};
3641 class D: C {};
3642
3643 distance_to_ancestor (A, A, 0) = 0
3644 distance_to_ancestor (A, B, 0) = 1
3645 distance_to_ancestor (A, C, 0) = 2
3646 distance_to_ancestor (A, D, 0) = 3
3647
3648 If PUBLIC is 1 then only public ancestors are considered,
3649 and the function returns the distance only if BASE is a public ancestor
3650 of DCLASS.
3651 Eg:
3652
3653 distance_to_ancestor (A, D, 1) = -1. */
3654
3655 static int
3656 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3657 {
3658 int i;
3659 int d;
3660
3661 base = check_typedef (base);
3662 dclass = check_typedef (dclass);
3663
3664 if (class_types_same_p (base, dclass))
3665 return 0;
3666
3667 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3668 {
3669 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3670 continue;
3671
3672 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3673 if (d >= 0)
3674 return 1 + d;
3675 }
3676
3677 return -1;
3678 }
3679
3680 /* Check whether BASE is an ancestor or base class or DCLASS
3681 Return 1 if so, and 0 if not.
3682 Note: If BASE and DCLASS are of the same type, this function
3683 will return 1. So for some class A, is_ancestor (A, A) will
3684 return 1. */
3685
3686 int
3687 is_ancestor (struct type *base, struct type *dclass)
3688 {
3689 return distance_to_ancestor (base, dclass, 0) >= 0;
3690 }
3691
3692 /* Like is_ancestor, but only returns true when BASE is a public
3693 ancestor of DCLASS. */
3694
3695 int
3696 is_public_ancestor (struct type *base, struct type *dclass)
3697 {
3698 return distance_to_ancestor (base, dclass, 1) >= 0;
3699 }
3700
3701 /* A helper function for is_unique_ancestor. */
3702
3703 static int
3704 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3705 int *offset,
3706 const gdb_byte *valaddr, int embedded_offset,
3707 CORE_ADDR address, struct value *val)
3708 {
3709 int i, count = 0;
3710
3711 base = check_typedef (base);
3712 dclass = check_typedef (dclass);
3713
3714 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3715 {
3716 struct type *iter;
3717 int this_offset;
3718
3719 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3720
3721 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3722 address, val);
3723
3724 if (class_types_same_p (base, iter))
3725 {
3726 /* If this is the first subclass, set *OFFSET and set count
3727 to 1. Otherwise, if this is at the same offset as
3728 previous instances, do nothing. Otherwise, increment
3729 count. */
3730 if (*offset == -1)
3731 {
3732 *offset = this_offset;
3733 count = 1;
3734 }
3735 else if (this_offset == *offset)
3736 {
3737 /* Nothing. */
3738 }
3739 else
3740 ++count;
3741 }
3742 else
3743 count += is_unique_ancestor_worker (base, iter, offset,
3744 valaddr,
3745 embedded_offset + this_offset,
3746 address, val);
3747 }
3748
3749 return count;
3750 }
3751
3752 /* Like is_ancestor, but only returns true if BASE is a unique base
3753 class of the type of VAL. */
3754
3755 int
3756 is_unique_ancestor (struct type *base, struct value *val)
3757 {
3758 int offset = -1;
3759
3760 return is_unique_ancestor_worker (base, value_type (val), &offset,
3761 value_contents_for_printing (val),
3762 value_embedded_offset (val),
3763 value_address (val), val) == 1;
3764 }
3765
3766 /* See gdbtypes.h. */
3767
3768 enum bfd_endian
3769 type_byte_order (const struct type *type)
3770 {
3771 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3772 if (type->endianity_is_not_default ())
3773 {
3774 if (byteorder == BFD_ENDIAN_BIG)
3775 return BFD_ENDIAN_LITTLE;
3776 else
3777 {
3778 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3779 return BFD_ENDIAN_BIG;
3780 }
3781 }
3782
3783 return byteorder;
3784 }
3785
3786 \f
3787 /* Overload resolution. */
3788
3789 /* Return the sum of the rank of A with the rank of B. */
3790
3791 struct rank
3792 sum_ranks (struct rank a, struct rank b)
3793 {
3794 struct rank c;
3795 c.rank = a.rank + b.rank;
3796 c.subrank = a.subrank + b.subrank;
3797 return c;
3798 }
3799
3800 /* Compare rank A and B and return:
3801 0 if a = b
3802 1 if a is better than b
3803 -1 if b is better than a. */
3804
3805 int
3806 compare_ranks (struct rank a, struct rank b)
3807 {
3808 if (a.rank == b.rank)
3809 {
3810 if (a.subrank == b.subrank)
3811 return 0;
3812 if (a.subrank < b.subrank)
3813 return 1;
3814 if (a.subrank > b.subrank)
3815 return -1;
3816 }
3817
3818 if (a.rank < b.rank)
3819 return 1;
3820
3821 /* a.rank > b.rank */
3822 return -1;
3823 }
3824
3825 /* Functions for overload resolution begin here. */
3826
3827 /* Compare two badness vectors A and B and return the result.
3828 0 => A and B are identical
3829 1 => A and B are incomparable
3830 2 => A is better than B
3831 3 => A is worse than B */
3832
3833 int
3834 compare_badness (const badness_vector &a, const badness_vector &b)
3835 {
3836 int i;
3837 int tmp;
3838 short found_pos = 0; /* any positives in c? */
3839 short found_neg = 0; /* any negatives in c? */
3840
3841 /* differing sizes => incomparable */
3842 if (a.size () != b.size ())
3843 return 1;
3844
3845 /* Subtract b from a */
3846 for (i = 0; i < a.size (); i++)
3847 {
3848 tmp = compare_ranks (b[i], a[i]);
3849 if (tmp > 0)
3850 found_pos = 1;
3851 else if (tmp < 0)
3852 found_neg = 1;
3853 }
3854
3855 if (found_pos)
3856 {
3857 if (found_neg)
3858 return 1; /* incomparable */
3859 else
3860 return 3; /* A > B */
3861 }
3862 else
3863 /* no positives */
3864 {
3865 if (found_neg)
3866 return 2; /* A < B */
3867 else
3868 return 0; /* A == B */
3869 }
3870 }
3871
3872 /* Rank a function by comparing its parameter types (PARMS), to the
3873 types of an argument list (ARGS). Return the badness vector. This
3874 has ARGS.size() + 1 entries. */
3875
3876 badness_vector
3877 rank_function (gdb::array_view<type *> parms,
3878 gdb::array_view<value *> args)
3879 {
3880 /* add 1 for the length-match rank. */
3881 badness_vector bv;
3882 bv.reserve (1 + args.size ());
3883
3884 /* First compare the lengths of the supplied lists.
3885 If there is a mismatch, set it to a high value. */
3886
3887 /* pai/1997-06-03 FIXME: when we have debug info about default
3888 arguments and ellipsis parameter lists, we should consider those
3889 and rank the length-match more finely. */
3890
3891 bv.push_back ((args.size () != parms.size ())
3892 ? LENGTH_MISMATCH_BADNESS
3893 : EXACT_MATCH_BADNESS);
3894
3895 /* Now rank all the parameters of the candidate function. */
3896 size_t min_len = std::min (parms.size (), args.size ());
3897
3898 for (size_t i = 0; i < min_len; i++)
3899 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3900 args[i]));
3901
3902 /* If more arguments than parameters, add dummy entries. */
3903 for (size_t i = min_len; i < args.size (); i++)
3904 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3905
3906 return bv;
3907 }
3908
3909 /* Compare the names of two integer types, assuming that any sign
3910 qualifiers have been checked already. We do it this way because
3911 there may be an "int" in the name of one of the types. */
3912
3913 static int
3914 integer_types_same_name_p (const char *first, const char *second)
3915 {
3916 int first_p, second_p;
3917
3918 /* If both are shorts, return 1; if neither is a short, keep
3919 checking. */
3920 first_p = (strstr (first, "short") != NULL);
3921 second_p = (strstr (second, "short") != NULL);
3922 if (first_p && second_p)
3923 return 1;
3924 if (first_p || second_p)
3925 return 0;
3926
3927 /* Likewise for long. */
3928 first_p = (strstr (first, "long") != NULL);
3929 second_p = (strstr (second, "long") != NULL);
3930 if (first_p && second_p)
3931 return 1;
3932 if (first_p || second_p)
3933 return 0;
3934
3935 /* Likewise for char. */
3936 first_p = (strstr (first, "char") != NULL);
3937 second_p = (strstr (second, "char") != NULL);
3938 if (first_p && second_p)
3939 return 1;
3940 if (first_p || second_p)
3941 return 0;
3942
3943 /* They must both be ints. */
3944 return 1;
3945 }
3946
3947 /* Compares type A to type B. Returns true if they represent the same
3948 type, false otherwise. */
3949
3950 bool
3951 types_equal (struct type *a, struct type *b)
3952 {
3953 /* Identical type pointers. */
3954 /* However, this still doesn't catch all cases of same type for b
3955 and a. The reason is that builtin types are different from
3956 the same ones constructed from the object. */
3957 if (a == b)
3958 return true;
3959
3960 /* Resolve typedefs */
3961 if (a->code () == TYPE_CODE_TYPEDEF)
3962 a = check_typedef (a);
3963 if (b->code () == TYPE_CODE_TYPEDEF)
3964 b = check_typedef (b);
3965
3966 /* If after resolving typedefs a and b are not of the same type
3967 code then they are not equal. */
3968 if (a->code () != b->code ())
3969 return false;
3970
3971 /* If a and b are both pointers types or both reference types then
3972 they are equal of the same type iff the objects they refer to are
3973 of the same type. */
3974 if (a->code () == TYPE_CODE_PTR
3975 || a->code () == TYPE_CODE_REF)
3976 return types_equal (TYPE_TARGET_TYPE (a),
3977 TYPE_TARGET_TYPE (b));
3978
3979 /* Well, damnit, if the names are exactly the same, I'll say they
3980 are exactly the same. This happens when we generate method
3981 stubs. The types won't point to the same address, but they
3982 really are the same. */
3983
3984 if (a->name () && b->name ()
3985 && strcmp (a->name (), b->name ()) == 0)
3986 return true;
3987
3988 /* Check if identical after resolving typedefs. */
3989 if (a == b)
3990 return true;
3991
3992 /* Two function types are equal if their argument and return types
3993 are equal. */
3994 if (a->code () == TYPE_CODE_FUNC)
3995 {
3996 int i;
3997
3998 if (a->num_fields () != b->num_fields ())
3999 return false;
4000
4001 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
4002 return false;
4003
4004 for (i = 0; i < a->num_fields (); ++i)
4005 if (!types_equal (a->field (i).type (), b->field (i).type ()))
4006 return false;
4007
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013 \f
4014 /* Deep comparison of types. */
4015
4016 /* An entry in the type-equality bcache. */
4017
4018 struct type_equality_entry
4019 {
4020 type_equality_entry (struct type *t1, struct type *t2)
4021 : type1 (t1),
4022 type2 (t2)
4023 {
4024 }
4025
4026 struct type *type1, *type2;
4027 };
4028
4029 /* A helper function to compare two strings. Returns true if they are
4030 the same, false otherwise. Handles NULLs properly. */
4031
4032 static bool
4033 compare_maybe_null_strings (const char *s, const char *t)
4034 {
4035 if (s == NULL || t == NULL)
4036 return s == t;
4037 return strcmp (s, t) == 0;
4038 }
4039
4040 /* A helper function for check_types_worklist that checks two types for
4041 "deep" equality. Returns true if the types are considered the
4042 same, false otherwise. */
4043
4044 static bool
4045 check_types_equal (struct type *type1, struct type *type2,
4046 std::vector<type_equality_entry> *worklist)
4047 {
4048 type1 = check_typedef (type1);
4049 type2 = check_typedef (type2);
4050
4051 if (type1 == type2)
4052 return true;
4053
4054 if (type1->code () != type2->code ()
4055 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4056 || type1->is_unsigned () != type2->is_unsigned ()
4057 || type1->has_no_signedness () != type2->has_no_signedness ()
4058 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4059 || type1->has_varargs () != type2->has_varargs ()
4060 || type1->is_vector () != type2->is_vector ()
4061 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4062 || type1->instance_flags () != type2->instance_flags ()
4063 || type1->num_fields () != type2->num_fields ())
4064 return false;
4065
4066 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4067 return false;
4068 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4069 return false;
4070
4071 if (type1->code () == TYPE_CODE_RANGE)
4072 {
4073 if (*type1->bounds () != *type2->bounds ())
4074 return false;
4075 }
4076 else
4077 {
4078 int i;
4079
4080 for (i = 0; i < type1->num_fields (); ++i)
4081 {
4082 const struct field *field1 = &type1->field (i);
4083 const struct field *field2 = &type2->field (i);
4084
4085 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4086 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4087 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4088 return false;
4089 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4090 FIELD_NAME (*field2)))
4091 return false;
4092 switch (FIELD_LOC_KIND (*field1))
4093 {
4094 case FIELD_LOC_KIND_BITPOS:
4095 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4096 return false;
4097 break;
4098 case FIELD_LOC_KIND_ENUMVAL:
4099 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4100 return false;
4101 break;
4102 case FIELD_LOC_KIND_PHYSADDR:
4103 if (FIELD_STATIC_PHYSADDR (*field1)
4104 != FIELD_STATIC_PHYSADDR (*field2))
4105 return false;
4106 break;
4107 case FIELD_LOC_KIND_PHYSNAME:
4108 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4109 FIELD_STATIC_PHYSNAME (*field2)))
4110 return false;
4111 break;
4112 case FIELD_LOC_KIND_DWARF_BLOCK:
4113 {
4114 struct dwarf2_locexpr_baton *block1, *block2;
4115
4116 block1 = FIELD_DWARF_BLOCK (*field1);
4117 block2 = FIELD_DWARF_BLOCK (*field2);
4118 if (block1->per_cu != block2->per_cu
4119 || block1->size != block2->size
4120 || memcmp (block1->data, block2->data, block1->size) != 0)
4121 return false;
4122 }
4123 break;
4124 default:
4125 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4126 "%d by check_types_equal"),
4127 FIELD_LOC_KIND (*field1));
4128 }
4129
4130 worklist->emplace_back (field1->type (), field2->type ());
4131 }
4132 }
4133
4134 if (TYPE_TARGET_TYPE (type1) != NULL)
4135 {
4136 if (TYPE_TARGET_TYPE (type2) == NULL)
4137 return false;
4138
4139 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4140 TYPE_TARGET_TYPE (type2));
4141 }
4142 else if (TYPE_TARGET_TYPE (type2) != NULL)
4143 return false;
4144
4145 return true;
4146 }
4147
4148 /* Check types on a worklist for equality. Returns false if any pair
4149 is not equal, true if they are all considered equal. */
4150
4151 static bool
4152 check_types_worklist (std::vector<type_equality_entry> *worklist,
4153 gdb::bcache *cache)
4154 {
4155 while (!worklist->empty ())
4156 {
4157 bool added;
4158
4159 struct type_equality_entry entry = std::move (worklist->back ());
4160 worklist->pop_back ();
4161
4162 /* If the type pair has already been visited, we know it is
4163 ok. */
4164 cache->insert (&entry, sizeof (entry), &added);
4165 if (!added)
4166 continue;
4167
4168 if (!check_types_equal (entry.type1, entry.type2, worklist))
4169 return false;
4170 }
4171
4172 return true;
4173 }
4174
4175 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4176 "deep comparison". Otherwise return false. */
4177
4178 bool
4179 types_deeply_equal (struct type *type1, struct type *type2)
4180 {
4181 std::vector<type_equality_entry> worklist;
4182
4183 gdb_assert (type1 != NULL && type2 != NULL);
4184
4185 /* Early exit for the simple case. */
4186 if (type1 == type2)
4187 return true;
4188
4189 gdb::bcache cache;
4190 worklist.emplace_back (type1, type2);
4191 return check_types_worklist (&worklist, &cache);
4192 }
4193
4194 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4195 Otherwise return one. */
4196
4197 int
4198 type_not_allocated (const struct type *type)
4199 {
4200 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4201
4202 return (prop != nullptr && prop->kind () == PROP_CONST
4203 && prop->const_val () == 0);
4204 }
4205
4206 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4207 Otherwise return one. */
4208
4209 int
4210 type_not_associated (const struct type *type)
4211 {
4212 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4213
4214 return (prop != nullptr && prop->kind () == PROP_CONST
4215 && prop->const_val () == 0);
4216 }
4217
4218 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4219
4220 static struct rank
4221 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4222 {
4223 struct rank rank = {0,0};
4224
4225 switch (arg->code ())
4226 {
4227 case TYPE_CODE_PTR:
4228
4229 /* Allowed pointer conversions are:
4230 (a) pointer to void-pointer conversion. */
4231 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4232 return VOID_PTR_CONVERSION_BADNESS;
4233
4234 /* (b) pointer to ancestor-pointer conversion. */
4235 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4236 TYPE_TARGET_TYPE (arg),
4237 0);
4238 if (rank.subrank >= 0)
4239 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4240
4241 return INCOMPATIBLE_TYPE_BADNESS;
4242 case TYPE_CODE_ARRAY:
4243 {
4244 struct type *t1 = TYPE_TARGET_TYPE (parm);
4245 struct type *t2 = TYPE_TARGET_TYPE (arg);
4246
4247 if (types_equal (t1, t2))
4248 {
4249 /* Make sure they are CV equal. */
4250 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4251 rank.subrank |= CV_CONVERSION_CONST;
4252 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4253 rank.subrank |= CV_CONVERSION_VOLATILE;
4254 if (rank.subrank != 0)
4255 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4256 return EXACT_MATCH_BADNESS;
4257 }
4258 return INCOMPATIBLE_TYPE_BADNESS;
4259 }
4260 case TYPE_CODE_FUNC:
4261 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4262 case TYPE_CODE_INT:
4263 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4264 {
4265 if (value_as_long (value) == 0)
4266 {
4267 /* Null pointer conversion: allow it to be cast to a pointer.
4268 [4.10.1 of C++ standard draft n3290] */
4269 return NULL_POINTER_CONVERSION_BADNESS;
4270 }
4271 else
4272 {
4273 /* If type checking is disabled, allow the conversion. */
4274 if (!strict_type_checking)
4275 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4276 }
4277 }
4278 /* fall through */
4279 case TYPE_CODE_ENUM:
4280 case TYPE_CODE_FLAGS:
4281 case TYPE_CODE_CHAR:
4282 case TYPE_CODE_RANGE:
4283 case TYPE_CODE_BOOL:
4284 default:
4285 return INCOMPATIBLE_TYPE_BADNESS;
4286 }
4287 }
4288
4289 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4290
4291 static struct rank
4292 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4293 {
4294 switch (arg->code ())
4295 {
4296 case TYPE_CODE_PTR:
4297 case TYPE_CODE_ARRAY:
4298 return rank_one_type (TYPE_TARGET_TYPE (parm),
4299 TYPE_TARGET_TYPE (arg), NULL);
4300 default:
4301 return INCOMPATIBLE_TYPE_BADNESS;
4302 }
4303 }
4304
4305 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4306
4307 static struct rank
4308 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4309 {
4310 switch (arg->code ())
4311 {
4312 case TYPE_CODE_PTR: /* funcptr -> func */
4313 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4314 default:
4315 return INCOMPATIBLE_TYPE_BADNESS;
4316 }
4317 }
4318
4319 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4320
4321 static struct rank
4322 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4323 {
4324 switch (arg->code ())
4325 {
4326 case TYPE_CODE_INT:
4327 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4328 {
4329 /* Deal with signed, unsigned, and plain chars and
4330 signed and unsigned ints. */
4331 if (parm->has_no_signedness ())
4332 {
4333 /* This case only for character types. */
4334 if (arg->has_no_signedness ())
4335 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4336 else /* signed/unsigned char -> plain char */
4337 return INTEGER_CONVERSION_BADNESS;
4338 }
4339 else if (parm->is_unsigned ())
4340 {
4341 if (arg->is_unsigned ())
4342 {
4343 /* unsigned int -> unsigned int, or
4344 unsigned long -> unsigned long */
4345 if (integer_types_same_name_p (parm->name (),
4346 arg->name ()))
4347 return EXACT_MATCH_BADNESS;
4348 else if (integer_types_same_name_p (arg->name (),
4349 "int")
4350 && integer_types_same_name_p (parm->name (),
4351 "long"))
4352 /* unsigned int -> unsigned long */
4353 return INTEGER_PROMOTION_BADNESS;
4354 else
4355 /* unsigned long -> unsigned int */
4356 return INTEGER_CONVERSION_BADNESS;
4357 }
4358 else
4359 {
4360 if (integer_types_same_name_p (arg->name (),
4361 "long")
4362 && integer_types_same_name_p (parm->name (),
4363 "int"))
4364 /* signed long -> unsigned int */
4365 return INTEGER_CONVERSION_BADNESS;
4366 else
4367 /* signed int/long -> unsigned int/long */
4368 return INTEGER_CONVERSION_BADNESS;
4369 }
4370 }
4371 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4372 {
4373 if (integer_types_same_name_p (parm->name (),
4374 arg->name ()))
4375 return EXACT_MATCH_BADNESS;
4376 else if (integer_types_same_name_p (arg->name (),
4377 "int")
4378 && integer_types_same_name_p (parm->name (),
4379 "long"))
4380 return INTEGER_PROMOTION_BADNESS;
4381 else
4382 return INTEGER_CONVERSION_BADNESS;
4383 }
4384 else
4385 return INTEGER_CONVERSION_BADNESS;
4386 }
4387 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4388 return INTEGER_PROMOTION_BADNESS;
4389 else
4390 return INTEGER_CONVERSION_BADNESS;
4391 case TYPE_CODE_ENUM:
4392 case TYPE_CODE_FLAGS:
4393 case TYPE_CODE_CHAR:
4394 case TYPE_CODE_RANGE:
4395 case TYPE_CODE_BOOL:
4396 if (TYPE_DECLARED_CLASS (arg))
4397 return INCOMPATIBLE_TYPE_BADNESS;
4398 return INTEGER_PROMOTION_BADNESS;
4399 case TYPE_CODE_FLT:
4400 return INT_FLOAT_CONVERSION_BADNESS;
4401 case TYPE_CODE_PTR:
4402 return NS_POINTER_CONVERSION_BADNESS;
4403 default:
4404 return INCOMPATIBLE_TYPE_BADNESS;
4405 }
4406 }
4407
4408 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4409
4410 static struct rank
4411 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4412 {
4413 switch (arg->code ())
4414 {
4415 case TYPE_CODE_INT:
4416 case TYPE_CODE_CHAR:
4417 case TYPE_CODE_RANGE:
4418 case TYPE_CODE_BOOL:
4419 case TYPE_CODE_ENUM:
4420 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4421 return INCOMPATIBLE_TYPE_BADNESS;
4422 return INTEGER_CONVERSION_BADNESS;
4423 case TYPE_CODE_FLT:
4424 return INT_FLOAT_CONVERSION_BADNESS;
4425 default:
4426 return INCOMPATIBLE_TYPE_BADNESS;
4427 }
4428 }
4429
4430 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4431
4432 static struct rank
4433 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4434 {
4435 switch (arg->code ())
4436 {
4437 case TYPE_CODE_RANGE:
4438 case TYPE_CODE_BOOL:
4439 case TYPE_CODE_ENUM:
4440 if (TYPE_DECLARED_CLASS (arg))
4441 return INCOMPATIBLE_TYPE_BADNESS;
4442 return INTEGER_CONVERSION_BADNESS;
4443 case TYPE_CODE_FLT:
4444 return INT_FLOAT_CONVERSION_BADNESS;
4445 case TYPE_CODE_INT:
4446 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4447 return INTEGER_CONVERSION_BADNESS;
4448 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4449 return INTEGER_PROMOTION_BADNESS;
4450 /* fall through */
4451 case TYPE_CODE_CHAR:
4452 /* Deal with signed, unsigned, and plain chars for C++ and
4453 with int cases falling through from previous case. */
4454 if (parm->has_no_signedness ())
4455 {
4456 if (arg->has_no_signedness ())
4457 return EXACT_MATCH_BADNESS;
4458 else
4459 return INTEGER_CONVERSION_BADNESS;
4460 }
4461 else if (parm->is_unsigned ())
4462 {
4463 if (arg->is_unsigned ())
4464 return EXACT_MATCH_BADNESS;
4465 else
4466 return INTEGER_PROMOTION_BADNESS;
4467 }
4468 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4469 return EXACT_MATCH_BADNESS;
4470 else
4471 return INTEGER_CONVERSION_BADNESS;
4472 default:
4473 return INCOMPATIBLE_TYPE_BADNESS;
4474 }
4475 }
4476
4477 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4478
4479 static struct rank
4480 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4481 {
4482 switch (arg->code ())
4483 {
4484 case TYPE_CODE_INT:
4485 case TYPE_CODE_CHAR:
4486 case TYPE_CODE_RANGE:
4487 case TYPE_CODE_BOOL:
4488 case TYPE_CODE_ENUM:
4489 return INTEGER_CONVERSION_BADNESS;
4490 case TYPE_CODE_FLT:
4491 return INT_FLOAT_CONVERSION_BADNESS;
4492 default:
4493 return INCOMPATIBLE_TYPE_BADNESS;
4494 }
4495 }
4496
4497 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4498
4499 static struct rank
4500 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4501 {
4502 switch (arg->code ())
4503 {
4504 /* n3290 draft, section 4.12.1 (conv.bool):
4505
4506 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4507 pointer to member type can be converted to a prvalue of type
4508 bool. A zero value, null pointer value, or null member pointer
4509 value is converted to false; any other value is converted to
4510 true. A prvalue of type std::nullptr_t can be converted to a
4511 prvalue of type bool; the resulting value is false." */
4512 case TYPE_CODE_INT:
4513 case TYPE_CODE_CHAR:
4514 case TYPE_CODE_ENUM:
4515 case TYPE_CODE_FLT:
4516 case TYPE_CODE_MEMBERPTR:
4517 case TYPE_CODE_PTR:
4518 return BOOL_CONVERSION_BADNESS;
4519 case TYPE_CODE_RANGE:
4520 return INCOMPATIBLE_TYPE_BADNESS;
4521 case TYPE_CODE_BOOL:
4522 return EXACT_MATCH_BADNESS;
4523 default:
4524 return INCOMPATIBLE_TYPE_BADNESS;
4525 }
4526 }
4527
4528 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4529
4530 static struct rank
4531 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4532 {
4533 switch (arg->code ())
4534 {
4535 case TYPE_CODE_FLT:
4536 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4537 return FLOAT_PROMOTION_BADNESS;
4538 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4539 return EXACT_MATCH_BADNESS;
4540 else
4541 return FLOAT_CONVERSION_BADNESS;
4542 case TYPE_CODE_INT:
4543 case TYPE_CODE_BOOL:
4544 case TYPE_CODE_ENUM:
4545 case TYPE_CODE_RANGE:
4546 case TYPE_CODE_CHAR:
4547 return INT_FLOAT_CONVERSION_BADNESS;
4548 default:
4549 return INCOMPATIBLE_TYPE_BADNESS;
4550 }
4551 }
4552
4553 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4554
4555 static struct rank
4556 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4557 {
4558 switch (arg->code ())
4559 { /* Strictly not needed for C++, but... */
4560 case TYPE_CODE_FLT:
4561 return FLOAT_PROMOTION_BADNESS;
4562 case TYPE_CODE_COMPLEX:
4563 return EXACT_MATCH_BADNESS;
4564 default:
4565 return INCOMPATIBLE_TYPE_BADNESS;
4566 }
4567 }
4568
4569 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4570
4571 static struct rank
4572 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4573 {
4574 struct rank rank = {0, 0};
4575
4576 switch (arg->code ())
4577 {
4578 case TYPE_CODE_STRUCT:
4579 /* Check for derivation */
4580 rank.subrank = distance_to_ancestor (parm, arg, 0);
4581 if (rank.subrank >= 0)
4582 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4583 /* fall through */
4584 default:
4585 return INCOMPATIBLE_TYPE_BADNESS;
4586 }
4587 }
4588
4589 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4590
4591 static struct rank
4592 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4593 {
4594 switch (arg->code ())
4595 {
4596 /* Not in C++ */
4597 case TYPE_CODE_SET:
4598 return rank_one_type (parm->field (0).type (),
4599 arg->field (0).type (), NULL);
4600 default:
4601 return INCOMPATIBLE_TYPE_BADNESS;
4602 }
4603 }
4604
4605 /* Compare one type (PARM) for compatibility with another (ARG).
4606 * PARM is intended to be the parameter type of a function; and
4607 * ARG is the supplied argument's type. This function tests if
4608 * the latter can be converted to the former.
4609 * VALUE is the argument's value or NULL if none (or called recursively)
4610 *
4611 * Return 0 if they are identical types;
4612 * Otherwise, return an integer which corresponds to how compatible
4613 * PARM is to ARG. The higher the return value, the worse the match.
4614 * Generally the "bad" conversions are all uniformly assigned a 100. */
4615
4616 struct rank
4617 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4618 {
4619 struct rank rank = {0,0};
4620
4621 /* Resolve typedefs */
4622 if (parm->code () == TYPE_CODE_TYPEDEF)
4623 parm = check_typedef (parm);
4624 if (arg->code () == TYPE_CODE_TYPEDEF)
4625 arg = check_typedef (arg);
4626
4627 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4628 {
4629 if (VALUE_LVAL (value) == not_lval)
4630 {
4631 /* Rvalues should preferably bind to rvalue references or const
4632 lvalue references. */
4633 if (parm->code () == TYPE_CODE_RVALUE_REF)
4634 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4635 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4636 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4637 else
4638 return INCOMPATIBLE_TYPE_BADNESS;
4639 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4640 }
4641 else
4642 {
4643 /* It's illegal to pass an lvalue as an rvalue. */
4644 if (parm->code () == TYPE_CODE_RVALUE_REF)
4645 return INCOMPATIBLE_TYPE_BADNESS;
4646 }
4647 }
4648
4649 if (types_equal (parm, arg))
4650 {
4651 struct type *t1 = parm;
4652 struct type *t2 = arg;
4653
4654 /* For pointers and references, compare target type. */
4655 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4656 {
4657 t1 = TYPE_TARGET_TYPE (parm);
4658 t2 = TYPE_TARGET_TYPE (arg);
4659 }
4660
4661 /* Make sure they are CV equal, too. */
4662 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4663 rank.subrank |= CV_CONVERSION_CONST;
4664 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4665 rank.subrank |= CV_CONVERSION_VOLATILE;
4666 if (rank.subrank != 0)
4667 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4668 return EXACT_MATCH_BADNESS;
4669 }
4670
4671 /* See through references, since we can almost make non-references
4672 references. */
4673
4674 if (TYPE_IS_REFERENCE (arg))
4675 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4676 REFERENCE_SEE_THROUGH_BADNESS));
4677 if (TYPE_IS_REFERENCE (parm))
4678 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4679 REFERENCE_SEE_THROUGH_BADNESS));
4680 if (overload_debug)
4681 /* Debugging only. */
4682 fprintf_filtered (gdb_stderr,
4683 "------ Arg is %s [%d], parm is %s [%d]\n",
4684 arg->name (), arg->code (),
4685 parm->name (), parm->code ());
4686
4687 /* x -> y means arg of type x being supplied for parameter of type y. */
4688
4689 switch (parm->code ())
4690 {
4691 case TYPE_CODE_PTR:
4692 return rank_one_type_parm_ptr (parm, arg, value);
4693 case TYPE_CODE_ARRAY:
4694 return rank_one_type_parm_array (parm, arg, value);
4695 case TYPE_CODE_FUNC:
4696 return rank_one_type_parm_func (parm, arg, value);
4697 case TYPE_CODE_INT:
4698 return rank_one_type_parm_int (parm, arg, value);
4699 case TYPE_CODE_ENUM:
4700 return rank_one_type_parm_enum (parm, arg, value);
4701 case TYPE_CODE_CHAR:
4702 return rank_one_type_parm_char (parm, arg, value);
4703 case TYPE_CODE_RANGE:
4704 return rank_one_type_parm_range (parm, arg, value);
4705 case TYPE_CODE_BOOL:
4706 return rank_one_type_parm_bool (parm, arg, value);
4707 case TYPE_CODE_FLT:
4708 return rank_one_type_parm_float (parm, arg, value);
4709 case TYPE_CODE_COMPLEX:
4710 return rank_one_type_parm_complex (parm, arg, value);
4711 case TYPE_CODE_STRUCT:
4712 return rank_one_type_parm_struct (parm, arg, value);
4713 case TYPE_CODE_SET:
4714 return rank_one_type_parm_set (parm, arg, value);
4715 default:
4716 return INCOMPATIBLE_TYPE_BADNESS;
4717 } /* switch (arg->code ()) */
4718 }
4719
4720 /* End of functions for overload resolution. */
4721 \f
4722 /* Routines to pretty-print types. */
4723
4724 static void
4725 print_bit_vector (B_TYPE *bits, int nbits)
4726 {
4727 int bitno;
4728
4729 for (bitno = 0; bitno < nbits; bitno++)
4730 {
4731 if ((bitno % 8) == 0)
4732 {
4733 puts_filtered (" ");
4734 }
4735 if (B_TST (bits, bitno))
4736 printf_filtered (("1"));
4737 else
4738 printf_filtered (("0"));
4739 }
4740 }
4741
4742 /* Note the first arg should be the "this" pointer, we may not want to
4743 include it since we may get into a infinitely recursive
4744 situation. */
4745
4746 static void
4747 print_args (struct field *args, int nargs, int spaces)
4748 {
4749 if (args != NULL)
4750 {
4751 int i;
4752
4753 for (i = 0; i < nargs; i++)
4754 {
4755 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4756 args[i].name != NULL ? args[i].name : "<NULL>");
4757 recursive_dump_type (args[i].type (), spaces + 2);
4758 }
4759 }
4760 }
4761
4762 int
4763 field_is_static (struct field *f)
4764 {
4765 /* "static" fields are the fields whose location is not relative
4766 to the address of the enclosing struct. It would be nice to
4767 have a dedicated flag that would be set for static fields when
4768 the type is being created. But in practice, checking the field
4769 loc_kind should give us an accurate answer. */
4770 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4771 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4772 }
4773
4774 static void
4775 dump_fn_fieldlists (struct type *type, int spaces)
4776 {
4777 int method_idx;
4778 int overload_idx;
4779 struct fn_field *f;
4780
4781 printfi_filtered (spaces, "fn_fieldlists ");
4782 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4783 printf_filtered ("\n");
4784 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4785 {
4786 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4787 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4788 method_idx,
4789 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4790 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4791 gdb_stdout);
4792 printf_filtered (_(") length %d\n"),
4793 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4794 for (overload_idx = 0;
4795 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4796 overload_idx++)
4797 {
4798 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4799 overload_idx,
4800 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4801 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4802 gdb_stdout);
4803 printf_filtered (")\n");
4804 printfi_filtered (spaces + 8, "type ");
4805 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4806 gdb_stdout);
4807 printf_filtered ("\n");
4808
4809 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4810 spaces + 8 + 2);
4811
4812 printfi_filtered (spaces + 8, "args ");
4813 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4814 gdb_stdout);
4815 printf_filtered ("\n");
4816 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4817 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4818 spaces + 8 + 2);
4819 printfi_filtered (spaces + 8, "fcontext ");
4820 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4821 gdb_stdout);
4822 printf_filtered ("\n");
4823
4824 printfi_filtered (spaces + 8, "is_const %d\n",
4825 TYPE_FN_FIELD_CONST (f, overload_idx));
4826 printfi_filtered (spaces + 8, "is_volatile %d\n",
4827 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4828 printfi_filtered (spaces + 8, "is_private %d\n",
4829 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4830 printfi_filtered (spaces + 8, "is_protected %d\n",
4831 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4832 printfi_filtered (spaces + 8, "is_stub %d\n",
4833 TYPE_FN_FIELD_STUB (f, overload_idx));
4834 printfi_filtered (spaces + 8, "defaulted %d\n",
4835 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4836 printfi_filtered (spaces + 8, "is_deleted %d\n",
4837 TYPE_FN_FIELD_DELETED (f, overload_idx));
4838 printfi_filtered (spaces + 8, "voffset %u\n",
4839 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4840 }
4841 }
4842 }
4843
4844 static void
4845 print_cplus_stuff (struct type *type, int spaces)
4846 {
4847 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4848 printfi_filtered (spaces, "vptr_basetype ");
4849 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4850 puts_filtered ("\n");
4851 if (TYPE_VPTR_BASETYPE (type) != NULL)
4852 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4853
4854 printfi_filtered (spaces, "n_baseclasses %d\n",
4855 TYPE_N_BASECLASSES (type));
4856 printfi_filtered (spaces, "nfn_fields %d\n",
4857 TYPE_NFN_FIELDS (type));
4858 if (TYPE_N_BASECLASSES (type) > 0)
4859 {
4860 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4861 TYPE_N_BASECLASSES (type));
4862 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4863 gdb_stdout);
4864 printf_filtered (")");
4865
4866 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4867 TYPE_N_BASECLASSES (type));
4868 puts_filtered ("\n");
4869 }
4870 if (type->num_fields () > 0)
4871 {
4872 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4873 {
4874 printfi_filtered (spaces,
4875 "private_field_bits (%d bits at *",
4876 type->num_fields ());
4877 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4878 gdb_stdout);
4879 printf_filtered (")");
4880 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4881 type->num_fields ());
4882 puts_filtered ("\n");
4883 }
4884 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4885 {
4886 printfi_filtered (spaces,
4887 "protected_field_bits (%d bits at *",
4888 type->num_fields ());
4889 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4890 gdb_stdout);
4891 printf_filtered (")");
4892 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4893 type->num_fields ());
4894 puts_filtered ("\n");
4895 }
4896 }
4897 if (TYPE_NFN_FIELDS (type) > 0)
4898 {
4899 dump_fn_fieldlists (type, spaces);
4900 }
4901
4902 printfi_filtered (spaces, "calling_convention %d\n",
4903 TYPE_CPLUS_CALLING_CONVENTION (type));
4904 }
4905
4906 /* Print the contents of the TYPE's type_specific union, assuming that
4907 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4908
4909 static void
4910 print_gnat_stuff (struct type *type, int spaces)
4911 {
4912 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4913
4914 if (descriptive_type == NULL)
4915 printfi_filtered (spaces + 2, "no descriptive type\n");
4916 else
4917 {
4918 printfi_filtered (spaces + 2, "descriptive type\n");
4919 recursive_dump_type (descriptive_type, spaces + 4);
4920 }
4921 }
4922
4923 /* Print the contents of the TYPE's type_specific union, assuming that
4924 its type-specific kind is TYPE_SPECIFIC_FIXED_POINT. */
4925
4926 static void
4927 print_fixed_point_type_info (struct type *type, int spaces)
4928 {
4929 printfi_filtered (spaces + 2, "scaling factor: %s\n",
4930 fixed_point_scaling_factor (type).str ().c_str ());
4931 }
4932
4933 static struct obstack dont_print_type_obstack;
4934
4935 /* Print the dynamic_prop PROP. */
4936
4937 static void
4938 dump_dynamic_prop (dynamic_prop const& prop)
4939 {
4940 switch (prop.kind ())
4941 {
4942 case PROP_CONST:
4943 printf_filtered ("%s", plongest (prop.const_val ()));
4944 break;
4945 case PROP_UNDEFINED:
4946 printf_filtered ("(undefined)");
4947 break;
4948 case PROP_LOCEXPR:
4949 case PROP_LOCLIST:
4950 printf_filtered ("(dynamic)");
4951 break;
4952 default:
4953 gdb_assert_not_reached ("unhandled prop kind");
4954 break;
4955 }
4956 }
4957
4958 void
4959 recursive_dump_type (struct type *type, int spaces)
4960 {
4961 int idx;
4962
4963 if (spaces == 0)
4964 obstack_begin (&dont_print_type_obstack, 0);
4965
4966 if (type->num_fields () > 0
4967 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4968 {
4969 struct type **first_dont_print
4970 = (struct type **) obstack_base (&dont_print_type_obstack);
4971
4972 int i = (struct type **)
4973 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4974
4975 while (--i >= 0)
4976 {
4977 if (type == first_dont_print[i])
4978 {
4979 printfi_filtered (spaces, "type node ");
4980 gdb_print_host_address (type, gdb_stdout);
4981 printf_filtered (_(" <same as already seen type>\n"));
4982 return;
4983 }
4984 }
4985
4986 obstack_ptr_grow (&dont_print_type_obstack, type);
4987 }
4988
4989 printfi_filtered (spaces, "type node ");
4990 gdb_print_host_address (type, gdb_stdout);
4991 printf_filtered ("\n");
4992 printfi_filtered (spaces, "name '%s' (",
4993 type->name () ? type->name () : "<NULL>");
4994 gdb_print_host_address (type->name (), gdb_stdout);
4995 printf_filtered (")\n");
4996 printfi_filtered (spaces, "code 0x%x ", type->code ());
4997 switch (type->code ())
4998 {
4999 case TYPE_CODE_UNDEF:
5000 printf_filtered ("(TYPE_CODE_UNDEF)");
5001 break;
5002 case TYPE_CODE_PTR:
5003 printf_filtered ("(TYPE_CODE_PTR)");
5004 break;
5005 case TYPE_CODE_ARRAY:
5006 printf_filtered ("(TYPE_CODE_ARRAY)");
5007 break;
5008 case TYPE_CODE_STRUCT:
5009 printf_filtered ("(TYPE_CODE_STRUCT)");
5010 break;
5011 case TYPE_CODE_UNION:
5012 printf_filtered ("(TYPE_CODE_UNION)");
5013 break;
5014 case TYPE_CODE_ENUM:
5015 printf_filtered ("(TYPE_CODE_ENUM)");
5016 break;
5017 case TYPE_CODE_FLAGS:
5018 printf_filtered ("(TYPE_CODE_FLAGS)");
5019 break;
5020 case TYPE_CODE_FUNC:
5021 printf_filtered ("(TYPE_CODE_FUNC)");
5022 break;
5023 case TYPE_CODE_INT:
5024 printf_filtered ("(TYPE_CODE_INT)");
5025 break;
5026 case TYPE_CODE_FLT:
5027 printf_filtered ("(TYPE_CODE_FLT)");
5028 break;
5029 case TYPE_CODE_VOID:
5030 printf_filtered ("(TYPE_CODE_VOID)");
5031 break;
5032 case TYPE_CODE_SET:
5033 printf_filtered ("(TYPE_CODE_SET)");
5034 break;
5035 case TYPE_CODE_RANGE:
5036 printf_filtered ("(TYPE_CODE_RANGE)");
5037 break;
5038 case TYPE_CODE_STRING:
5039 printf_filtered ("(TYPE_CODE_STRING)");
5040 break;
5041 case TYPE_CODE_ERROR:
5042 printf_filtered ("(TYPE_CODE_ERROR)");
5043 break;
5044 case TYPE_CODE_MEMBERPTR:
5045 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
5046 break;
5047 case TYPE_CODE_METHODPTR:
5048 printf_filtered ("(TYPE_CODE_METHODPTR)");
5049 break;
5050 case TYPE_CODE_METHOD:
5051 printf_filtered ("(TYPE_CODE_METHOD)");
5052 break;
5053 case TYPE_CODE_REF:
5054 printf_filtered ("(TYPE_CODE_REF)");
5055 break;
5056 case TYPE_CODE_CHAR:
5057 printf_filtered ("(TYPE_CODE_CHAR)");
5058 break;
5059 case TYPE_CODE_BOOL:
5060 printf_filtered ("(TYPE_CODE_BOOL)");
5061 break;
5062 case TYPE_CODE_COMPLEX:
5063 printf_filtered ("(TYPE_CODE_COMPLEX)");
5064 break;
5065 case TYPE_CODE_TYPEDEF:
5066 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5067 break;
5068 case TYPE_CODE_NAMESPACE:
5069 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5070 break;
5071 case TYPE_CODE_FIXED_POINT:
5072 printf_filtered ("(TYPE_CODE_FIXED_POINT)");
5073 break;
5074 default:
5075 printf_filtered ("(UNKNOWN TYPE CODE)");
5076 break;
5077 }
5078 puts_filtered ("\n");
5079 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5080 if (TYPE_OBJFILE_OWNED (type))
5081 {
5082 printfi_filtered (spaces, "objfile ");
5083 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5084 }
5085 else
5086 {
5087 printfi_filtered (spaces, "gdbarch ");
5088 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5089 }
5090 printf_filtered ("\n");
5091 printfi_filtered (spaces, "target_type ");
5092 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5093 printf_filtered ("\n");
5094 if (TYPE_TARGET_TYPE (type) != NULL)
5095 {
5096 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5097 }
5098 printfi_filtered (spaces, "pointer_type ");
5099 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5100 printf_filtered ("\n");
5101 printfi_filtered (spaces, "reference_type ");
5102 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5103 printf_filtered ("\n");
5104 printfi_filtered (spaces, "type_chain ");
5105 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5106 printf_filtered ("\n");
5107 printfi_filtered (spaces, "instance_flags 0x%x",
5108 (unsigned) type->instance_flags ());
5109 if (TYPE_CONST (type))
5110 {
5111 puts_filtered (" TYPE_CONST");
5112 }
5113 if (TYPE_VOLATILE (type))
5114 {
5115 puts_filtered (" TYPE_VOLATILE");
5116 }
5117 if (TYPE_CODE_SPACE (type))
5118 {
5119 puts_filtered (" TYPE_CODE_SPACE");
5120 }
5121 if (TYPE_DATA_SPACE (type))
5122 {
5123 puts_filtered (" TYPE_DATA_SPACE");
5124 }
5125 if (TYPE_ADDRESS_CLASS_1 (type))
5126 {
5127 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5128 }
5129 if (TYPE_ADDRESS_CLASS_2 (type))
5130 {
5131 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5132 }
5133 if (TYPE_RESTRICT (type))
5134 {
5135 puts_filtered (" TYPE_RESTRICT");
5136 }
5137 if (TYPE_ATOMIC (type))
5138 {
5139 puts_filtered (" TYPE_ATOMIC");
5140 }
5141 puts_filtered ("\n");
5142
5143 printfi_filtered (spaces, "flags");
5144 if (type->is_unsigned ())
5145 {
5146 puts_filtered (" TYPE_UNSIGNED");
5147 }
5148 if (type->has_no_signedness ())
5149 {
5150 puts_filtered (" TYPE_NOSIGN");
5151 }
5152 if (type->endianity_is_not_default ())
5153 {
5154 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5155 }
5156 if (type->is_stub ())
5157 {
5158 puts_filtered (" TYPE_STUB");
5159 }
5160 if (type->target_is_stub ())
5161 {
5162 puts_filtered (" TYPE_TARGET_STUB");
5163 }
5164 if (type->is_prototyped ())
5165 {
5166 puts_filtered (" TYPE_PROTOTYPED");
5167 }
5168 if (type->has_varargs ())
5169 {
5170 puts_filtered (" TYPE_VARARGS");
5171 }
5172 /* This is used for things like AltiVec registers on ppc. Gcc emits
5173 an attribute for the array type, which tells whether or not we
5174 have a vector, instead of a regular array. */
5175 if (type->is_vector ())
5176 {
5177 puts_filtered (" TYPE_VECTOR");
5178 }
5179 if (type->is_fixed_instance ())
5180 {
5181 puts_filtered (" TYPE_FIXED_INSTANCE");
5182 }
5183 if (type->stub_is_supported ())
5184 {
5185 puts_filtered (" TYPE_STUB_SUPPORTED");
5186 }
5187 if (TYPE_NOTTEXT (type))
5188 {
5189 puts_filtered (" TYPE_NOTTEXT");
5190 }
5191 puts_filtered ("\n");
5192 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5193 gdb_print_host_address (type->fields (), gdb_stdout);
5194 puts_filtered ("\n");
5195 for (idx = 0; idx < type->num_fields (); idx++)
5196 {
5197 if (type->code () == TYPE_CODE_ENUM)
5198 printfi_filtered (spaces + 2,
5199 "[%d] enumval %s type ",
5200 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5201 else
5202 printfi_filtered (spaces + 2,
5203 "[%d] bitpos %s bitsize %d type ",
5204 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5205 TYPE_FIELD_BITSIZE (type, idx));
5206 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5207 printf_filtered (" name '%s' (",
5208 TYPE_FIELD_NAME (type, idx) != NULL
5209 ? TYPE_FIELD_NAME (type, idx)
5210 : "<NULL>");
5211 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5212 printf_filtered (")\n");
5213 if (type->field (idx).type () != NULL)
5214 {
5215 recursive_dump_type (type->field (idx).type (), spaces + 4);
5216 }
5217 }
5218 if (type->code () == TYPE_CODE_RANGE)
5219 {
5220 printfi_filtered (spaces, "low ");
5221 dump_dynamic_prop (type->bounds ()->low);
5222 printf_filtered (" high ");
5223 dump_dynamic_prop (type->bounds ()->high);
5224 printf_filtered ("\n");
5225 }
5226
5227 switch (TYPE_SPECIFIC_FIELD (type))
5228 {
5229 case TYPE_SPECIFIC_CPLUS_STUFF:
5230 printfi_filtered (spaces, "cplus_stuff ");
5231 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5232 gdb_stdout);
5233 puts_filtered ("\n");
5234 print_cplus_stuff (type, spaces);
5235 break;
5236
5237 case TYPE_SPECIFIC_GNAT_STUFF:
5238 printfi_filtered (spaces, "gnat_stuff ");
5239 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5240 puts_filtered ("\n");
5241 print_gnat_stuff (type, spaces);
5242 break;
5243
5244 case TYPE_SPECIFIC_FLOATFORMAT:
5245 printfi_filtered (spaces, "floatformat ");
5246 if (TYPE_FLOATFORMAT (type) == NULL
5247 || TYPE_FLOATFORMAT (type)->name == NULL)
5248 puts_filtered ("(null)");
5249 else
5250 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5251 puts_filtered ("\n");
5252 break;
5253
5254 case TYPE_SPECIFIC_FUNC:
5255 printfi_filtered (spaces, "calling_convention %d\n",
5256 TYPE_CALLING_CONVENTION (type));
5257 /* tail_call_list is not printed. */
5258 break;
5259
5260 case TYPE_SPECIFIC_SELF_TYPE:
5261 printfi_filtered (spaces, "self_type ");
5262 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5263 puts_filtered ("\n");
5264 break;
5265
5266 case TYPE_SPECIFIC_FIXED_POINT:
5267 printfi_filtered (spaces, "fixed_point_info ");
5268 print_fixed_point_type_info (type, spaces);
5269 puts_filtered ("\n");
5270 break;
5271
5272 case TYPE_SPECIFIC_INT:
5273 if (type->bit_size_differs_p ())
5274 {
5275 unsigned bit_size = type->bit_size ();
5276 unsigned bit_off = type->bit_offset ();
5277 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5278 bit_size, bit_off);
5279 }
5280 break;
5281 }
5282
5283 if (spaces == 0)
5284 obstack_free (&dont_print_type_obstack, NULL);
5285 }
5286 \f
5287 /* Trivial helpers for the libiberty hash table, for mapping one
5288 type to another. */
5289
5290 struct type_pair : public allocate_on_obstack
5291 {
5292 type_pair (struct type *old_, struct type *newobj_)
5293 : old (old_), newobj (newobj_)
5294 {}
5295
5296 struct type * const old, * const newobj;
5297 };
5298
5299 static hashval_t
5300 type_pair_hash (const void *item)
5301 {
5302 const struct type_pair *pair = (const struct type_pair *) item;
5303
5304 return htab_hash_pointer (pair->old);
5305 }
5306
5307 static int
5308 type_pair_eq (const void *item_lhs, const void *item_rhs)
5309 {
5310 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5311 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5312
5313 return lhs->old == rhs->old;
5314 }
5315
5316 /* Allocate the hash table used by copy_type_recursive to walk
5317 types without duplicates. We use OBJFILE's obstack, because
5318 OBJFILE is about to be deleted. */
5319
5320 htab_up
5321 create_copied_types_hash (struct objfile *objfile)
5322 {
5323 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5324 NULL, &objfile->objfile_obstack,
5325 hashtab_obstack_allocate,
5326 dummy_obstack_deallocate));
5327 }
5328
5329 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5330
5331 static struct dynamic_prop_list *
5332 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5333 struct dynamic_prop_list *list)
5334 {
5335 struct dynamic_prop_list *copy = list;
5336 struct dynamic_prop_list **node_ptr = &copy;
5337
5338 while (*node_ptr != NULL)
5339 {
5340 struct dynamic_prop_list *node_copy;
5341
5342 node_copy = ((struct dynamic_prop_list *)
5343 obstack_copy (objfile_obstack, *node_ptr,
5344 sizeof (struct dynamic_prop_list)));
5345 node_copy->prop = (*node_ptr)->prop;
5346 *node_ptr = node_copy;
5347
5348 node_ptr = &node_copy->next;
5349 }
5350
5351 return copy;
5352 }
5353
5354 /* Recursively copy (deep copy) TYPE, if it is associated with
5355 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5356 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5357 it is not associated with OBJFILE. */
5358
5359 struct type *
5360 copy_type_recursive (struct objfile *objfile,
5361 struct type *type,
5362 htab_t copied_types)
5363 {
5364 void **slot;
5365 struct type *new_type;
5366
5367 if (! TYPE_OBJFILE_OWNED (type))
5368 return type;
5369
5370 /* This type shouldn't be pointing to any types in other objfiles;
5371 if it did, the type might disappear unexpectedly. */
5372 gdb_assert (TYPE_OBJFILE (type) == objfile);
5373
5374 struct type_pair pair (type, nullptr);
5375
5376 slot = htab_find_slot (copied_types, &pair, INSERT);
5377 if (*slot != NULL)
5378 return ((struct type_pair *) *slot)->newobj;
5379
5380 new_type = alloc_type_arch (get_type_arch (type));
5381
5382 /* We must add the new type to the hash table immediately, in case
5383 we encounter this type again during a recursive call below. */
5384 struct type_pair *stored
5385 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5386
5387 *slot = stored;
5388
5389 /* Copy the common fields of types. For the main type, we simply
5390 copy the entire thing and then update specific fields as needed. */
5391 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5392 TYPE_OBJFILE_OWNED (new_type) = 0;
5393 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5394
5395 if (type->name ())
5396 new_type->set_name (xstrdup (type->name ()));
5397
5398 new_type->set_instance_flags (type->instance_flags ());
5399 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5400
5401 /* Copy the fields. */
5402 if (type->num_fields ())
5403 {
5404 int i, nfields;
5405
5406 nfields = type->num_fields ();
5407 new_type->set_fields
5408 ((struct field *)
5409 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5410
5411 for (i = 0; i < nfields; i++)
5412 {
5413 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5414 TYPE_FIELD_ARTIFICIAL (type, i);
5415 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5416 if (type->field (i).type ())
5417 new_type->field (i).set_type
5418 (copy_type_recursive (objfile, type->field (i).type (),
5419 copied_types));
5420 if (TYPE_FIELD_NAME (type, i))
5421 TYPE_FIELD_NAME (new_type, i) =
5422 xstrdup (TYPE_FIELD_NAME (type, i));
5423 switch (TYPE_FIELD_LOC_KIND (type, i))
5424 {
5425 case FIELD_LOC_KIND_BITPOS:
5426 SET_FIELD_BITPOS (new_type->field (i),
5427 TYPE_FIELD_BITPOS (type, i));
5428 break;
5429 case FIELD_LOC_KIND_ENUMVAL:
5430 SET_FIELD_ENUMVAL (new_type->field (i),
5431 TYPE_FIELD_ENUMVAL (type, i));
5432 break;
5433 case FIELD_LOC_KIND_PHYSADDR:
5434 SET_FIELD_PHYSADDR (new_type->field (i),
5435 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5436 break;
5437 case FIELD_LOC_KIND_PHYSNAME:
5438 SET_FIELD_PHYSNAME (new_type->field (i),
5439 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5440 i)));
5441 break;
5442 default:
5443 internal_error (__FILE__, __LINE__,
5444 _("Unexpected type field location kind: %d"),
5445 TYPE_FIELD_LOC_KIND (type, i));
5446 }
5447 }
5448 }
5449
5450 /* For range types, copy the bounds information. */
5451 if (type->code () == TYPE_CODE_RANGE)
5452 {
5453 range_bounds *bounds
5454 = ((struct range_bounds *) TYPE_ALLOC
5455 (new_type, sizeof (struct range_bounds)));
5456
5457 *bounds = *type->bounds ();
5458 new_type->set_bounds (bounds);
5459 }
5460
5461 if (type->main_type->dyn_prop_list != NULL)
5462 new_type->main_type->dyn_prop_list
5463 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5464 type->main_type->dyn_prop_list);
5465
5466
5467 /* Copy pointers to other types. */
5468 if (TYPE_TARGET_TYPE (type))
5469 TYPE_TARGET_TYPE (new_type) =
5470 copy_type_recursive (objfile,
5471 TYPE_TARGET_TYPE (type),
5472 copied_types);
5473
5474 /* Maybe copy the type_specific bits.
5475
5476 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5477 base classes and methods. There's no fundamental reason why we
5478 can't, but at the moment it is not needed. */
5479
5480 switch (TYPE_SPECIFIC_FIELD (type))
5481 {
5482 case TYPE_SPECIFIC_NONE:
5483 break;
5484 case TYPE_SPECIFIC_FUNC:
5485 INIT_FUNC_SPECIFIC (new_type);
5486 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5487 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5488 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5489 break;
5490 case TYPE_SPECIFIC_FLOATFORMAT:
5491 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5492 break;
5493 case TYPE_SPECIFIC_CPLUS_STUFF:
5494 INIT_CPLUS_SPECIFIC (new_type);
5495 break;
5496 case TYPE_SPECIFIC_GNAT_STUFF:
5497 INIT_GNAT_SPECIFIC (new_type);
5498 break;
5499 case TYPE_SPECIFIC_SELF_TYPE:
5500 set_type_self_type (new_type,
5501 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5502 copied_types));
5503 break;
5504 case TYPE_SPECIFIC_FIXED_POINT:
5505 INIT_FIXED_POINT_SPECIFIC (new_type);
5506 new_type->fixed_point_info ().scaling_factor
5507 = type->fixed_point_info ().scaling_factor;
5508 break;
5509 case TYPE_SPECIFIC_INT:
5510 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5511 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5512 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5513 break;
5514
5515 default:
5516 gdb_assert_not_reached ("bad type_specific_kind");
5517 }
5518
5519 return new_type;
5520 }
5521
5522 /* Make a copy of the given TYPE, except that the pointer & reference
5523 types are not preserved.
5524
5525 This function assumes that the given type has an associated objfile.
5526 This objfile is used to allocate the new type. */
5527
5528 struct type *
5529 copy_type (const struct type *type)
5530 {
5531 struct type *new_type;
5532
5533 gdb_assert (TYPE_OBJFILE_OWNED (type));
5534
5535 new_type = alloc_type_copy (type);
5536 new_type->set_instance_flags (type->instance_flags ());
5537 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5538 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5539 sizeof (struct main_type));
5540 if (type->main_type->dyn_prop_list != NULL)
5541 new_type->main_type->dyn_prop_list
5542 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5543 type->main_type->dyn_prop_list);
5544
5545 return new_type;
5546 }
5547 \f
5548 /* Helper functions to initialize architecture-specific types. */
5549
5550 /* Allocate a type structure associated with GDBARCH and set its
5551 CODE, LENGTH, and NAME fields. */
5552
5553 struct type *
5554 arch_type (struct gdbarch *gdbarch,
5555 enum type_code code, int bit, const char *name)
5556 {
5557 struct type *type;
5558
5559 type = alloc_type_arch (gdbarch);
5560 set_type_code (type, code);
5561 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5562 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5563
5564 if (name)
5565 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5566
5567 return type;
5568 }
5569
5570 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5571 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5572 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5573
5574 struct type *
5575 arch_integer_type (struct gdbarch *gdbarch,
5576 int bit, int unsigned_p, const char *name)
5577 {
5578 struct type *t;
5579
5580 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5581 if (unsigned_p)
5582 t->set_is_unsigned (true);
5583
5584 return t;
5585 }
5586
5587 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5588 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5589 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5590
5591 struct type *
5592 arch_character_type (struct gdbarch *gdbarch,
5593 int bit, int unsigned_p, const char *name)
5594 {
5595 struct type *t;
5596
5597 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5598 if (unsigned_p)
5599 t->set_is_unsigned (true);
5600
5601 return t;
5602 }
5603
5604 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5605 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5606 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5607
5608 struct type *
5609 arch_boolean_type (struct gdbarch *gdbarch,
5610 int bit, int unsigned_p, const char *name)
5611 {
5612 struct type *t;
5613
5614 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5615 if (unsigned_p)
5616 t->set_is_unsigned (true);
5617
5618 return t;
5619 }
5620
5621 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5622 BIT is the type size in bits; if BIT equals -1, the size is
5623 determined by the floatformat. NAME is the type name. Set the
5624 TYPE_FLOATFORMAT from FLOATFORMATS. */
5625
5626 struct type *
5627 arch_float_type (struct gdbarch *gdbarch,
5628 int bit, const char *name,
5629 const struct floatformat **floatformats)
5630 {
5631 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5632 struct type *t;
5633
5634 bit = verify_floatformat (bit, fmt);
5635 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5636 TYPE_FLOATFORMAT (t) = fmt;
5637
5638 return t;
5639 }
5640
5641 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5642 BIT is the type size in bits. NAME is the type name. */
5643
5644 struct type *
5645 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5646 {
5647 struct type *t;
5648
5649 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5650 return t;
5651 }
5652
5653 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5654 BIT is the pointer type size in bits. NAME is the type name.
5655 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5656 TYPE_UNSIGNED flag. */
5657
5658 struct type *
5659 arch_pointer_type (struct gdbarch *gdbarch,
5660 int bit, const char *name, struct type *target_type)
5661 {
5662 struct type *t;
5663
5664 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5665 TYPE_TARGET_TYPE (t) = target_type;
5666 t->set_is_unsigned (true);
5667 return t;
5668 }
5669
5670 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5671 NAME is the type name. BIT is the size of the flag word in bits. */
5672
5673 struct type *
5674 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5675 {
5676 struct type *type;
5677
5678 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5679 type->set_is_unsigned (true);
5680 type->set_num_fields (0);
5681 /* Pre-allocate enough space assuming every field is one bit. */
5682 type->set_fields
5683 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5684
5685 return type;
5686 }
5687
5688 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5689 position BITPOS is called NAME. Pass NAME as "" for fields that
5690 should not be printed. */
5691
5692 void
5693 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5694 struct type *field_type, const char *name)
5695 {
5696 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5697 int field_nr = type->num_fields ();
5698
5699 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5700 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5701 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5702 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5703 gdb_assert (name != NULL);
5704
5705 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5706 type->field (field_nr).set_type (field_type);
5707 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5708 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5709 type->set_num_fields (type->num_fields () + 1);
5710 }
5711
5712 /* Special version of append_flags_type_field to add a flag field.
5713 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5714 position BITPOS is called NAME. */
5715
5716 void
5717 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5718 {
5719 struct gdbarch *gdbarch = get_type_arch (type);
5720
5721 append_flags_type_field (type, bitpos, 1,
5722 builtin_type (gdbarch)->builtin_bool,
5723 name);
5724 }
5725
5726 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5727 specified by CODE) associated with GDBARCH. NAME is the type name. */
5728
5729 struct type *
5730 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5731 enum type_code code)
5732 {
5733 struct type *t;
5734
5735 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5736 t = arch_type (gdbarch, code, 0, NULL);
5737 t->set_name (name);
5738 INIT_CPLUS_SPECIFIC (t);
5739 return t;
5740 }
5741
5742 /* Add new field with name NAME and type FIELD to composite type T.
5743 Do not set the field's position or adjust the type's length;
5744 the caller should do so. Return the new field. */
5745
5746 struct field *
5747 append_composite_type_field_raw (struct type *t, const char *name,
5748 struct type *field)
5749 {
5750 struct field *f;
5751
5752 t->set_num_fields (t->num_fields () + 1);
5753 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5754 t->num_fields ()));
5755 f = &t->field (t->num_fields () - 1);
5756 memset (f, 0, sizeof f[0]);
5757 f[0].set_type (field);
5758 FIELD_NAME (f[0]) = name;
5759 return f;
5760 }
5761
5762 /* Add new field with name NAME and type FIELD to composite type T.
5763 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5764
5765 void
5766 append_composite_type_field_aligned (struct type *t, const char *name,
5767 struct type *field, int alignment)
5768 {
5769 struct field *f = append_composite_type_field_raw (t, name, field);
5770
5771 if (t->code () == TYPE_CODE_UNION)
5772 {
5773 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5774 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5775 }
5776 else if (t->code () == TYPE_CODE_STRUCT)
5777 {
5778 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5779 if (t->num_fields () > 1)
5780 {
5781 SET_FIELD_BITPOS (f[0],
5782 (FIELD_BITPOS (f[-1])
5783 + (TYPE_LENGTH (f[-1].type ())
5784 * TARGET_CHAR_BIT)));
5785
5786 if (alignment)
5787 {
5788 int left;
5789
5790 alignment *= TARGET_CHAR_BIT;
5791 left = FIELD_BITPOS (f[0]) % alignment;
5792
5793 if (left)
5794 {
5795 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5796 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5797 }
5798 }
5799 }
5800 }
5801 }
5802
5803 /* Add new field with name NAME and type FIELD to composite type T. */
5804
5805 void
5806 append_composite_type_field (struct type *t, const char *name,
5807 struct type *field)
5808 {
5809 append_composite_type_field_aligned (t, name, field, 0);
5810 }
5811
5812 \f
5813
5814 /* We manage the lifetimes of fixed_point_type_info objects by
5815 attaching them to the objfile. Currently, these objects are
5816 modified during construction, and GMP does not provide a way to
5817 hash the contents of an mpq_t; so it's a bit of a pain to hash-cons
5818 them. If we did do this, they could be moved to the per-BFD and
5819 shared across objfiles. */
5820 typedef std::vector<std::unique_ptr<fixed_point_type_info>>
5821 fixed_point_type_storage;
5822
5823 /* Key used for managing the storage of fixed-point type info. */
5824 static const struct objfile_key<fixed_point_type_storage>
5825 fixed_point_objfile_key;
5826
5827 /* See gdbtypes.h. */
5828
5829 void
5830 allocate_fixed_point_type_info (struct type *type)
5831 {
5832 std::unique_ptr<fixed_point_type_info> up (new fixed_point_type_info);
5833 fixed_point_type_info *info;
5834
5835 if (TYPE_OBJFILE_OWNED (type))
5836 {
5837 fixed_point_type_storage *storage
5838 = fixed_point_objfile_key.get (TYPE_OBJFILE (type));
5839 if (storage == nullptr)
5840 storage = fixed_point_objfile_key.emplace (TYPE_OBJFILE (type));
5841 info = up.get ();
5842 storage->push_back (std::move (up));
5843 }
5844 else
5845 {
5846 /* We just leak the memory, because that's what we do generally
5847 for non-objfile-attached types. */
5848 info = up.release ();
5849 }
5850
5851 type->set_fixed_point_info (info);
5852 }
5853
5854 /* See gdbtypes.h. */
5855
5856 bool
5857 is_fixed_point_type (struct type *type)
5858 {
5859 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5860 type = TYPE_TARGET_TYPE (check_typedef (type));
5861 type = check_typedef (type);
5862
5863 return type->code () == TYPE_CODE_FIXED_POINT;
5864 }
5865
5866 /* See gdbtypes.h. */
5867
5868 struct type *
5869 type::fixed_point_type_base_type ()
5870 {
5871 struct type *type = this;
5872
5873 while (check_typedef (type)->code () == TYPE_CODE_RANGE)
5874 type = TYPE_TARGET_TYPE (check_typedef (type));
5875 type = check_typedef (type);
5876
5877 gdb_assert (type->code () == TYPE_CODE_FIXED_POINT);
5878 return type;
5879 }
5880
5881 /* See gdbtypes.h. */
5882
5883 const gdb_mpq &
5884 fixed_point_scaling_factor (struct type *type)
5885 {
5886 type = type->fixed_point_type_base_type ();
5887
5888 return type->fixed_point_info ().scaling_factor;
5889 }
5890
5891 \f
5892
5893 static struct gdbarch_data *gdbtypes_data;
5894
5895 const struct builtin_type *
5896 builtin_type (struct gdbarch *gdbarch)
5897 {
5898 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5899 }
5900
5901 static void *
5902 gdbtypes_post_init (struct gdbarch *gdbarch)
5903 {
5904 struct builtin_type *builtin_type
5905 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5906
5907 /* Basic types. */
5908 builtin_type->builtin_void
5909 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5910 builtin_type->builtin_char
5911 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5912 !gdbarch_char_signed (gdbarch), "char");
5913 builtin_type->builtin_char->set_has_no_signedness (true);
5914 builtin_type->builtin_signed_char
5915 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5916 0, "signed char");
5917 builtin_type->builtin_unsigned_char
5918 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5919 1, "unsigned char");
5920 builtin_type->builtin_short
5921 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5922 0, "short");
5923 builtin_type->builtin_unsigned_short
5924 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5925 1, "unsigned short");
5926 builtin_type->builtin_int
5927 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5928 0, "int");
5929 builtin_type->builtin_unsigned_int
5930 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5931 1, "unsigned int");
5932 builtin_type->builtin_long
5933 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5934 0, "long");
5935 builtin_type->builtin_unsigned_long
5936 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5937 1, "unsigned long");
5938 builtin_type->builtin_long_long
5939 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5940 0, "long long");
5941 builtin_type->builtin_unsigned_long_long
5942 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5943 1, "unsigned long long");
5944 builtin_type->builtin_half
5945 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5946 "half", gdbarch_half_format (gdbarch));
5947 builtin_type->builtin_float
5948 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5949 "float", gdbarch_float_format (gdbarch));
5950 builtin_type->builtin_bfloat16
5951 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5952 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5953 builtin_type->builtin_double
5954 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5955 "double", gdbarch_double_format (gdbarch));
5956 builtin_type->builtin_long_double
5957 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5958 "long double", gdbarch_long_double_format (gdbarch));
5959 builtin_type->builtin_complex
5960 = init_complex_type ("complex", builtin_type->builtin_float);
5961 builtin_type->builtin_double_complex
5962 = init_complex_type ("double complex", builtin_type->builtin_double);
5963 builtin_type->builtin_string
5964 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5965 builtin_type->builtin_bool
5966 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5967
5968 /* The following three are about decimal floating point types, which
5969 are 32-bits, 64-bits and 128-bits respectively. */
5970 builtin_type->builtin_decfloat
5971 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5972 builtin_type->builtin_decdouble
5973 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5974 builtin_type->builtin_declong
5975 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5976
5977 /* "True" character types. */
5978 builtin_type->builtin_true_char
5979 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5980 builtin_type->builtin_true_unsigned_char
5981 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5982
5983 /* Fixed-size integer types. */
5984 builtin_type->builtin_int0
5985 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5986 builtin_type->builtin_int8
5987 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5988 builtin_type->builtin_uint8
5989 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5990 builtin_type->builtin_int16
5991 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5992 builtin_type->builtin_uint16
5993 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5994 builtin_type->builtin_int24
5995 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5996 builtin_type->builtin_uint24
5997 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5998 builtin_type->builtin_int32
5999 = arch_integer_type (gdbarch, 32, 0, "int32_t");
6000 builtin_type->builtin_uint32
6001 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
6002 builtin_type->builtin_int64
6003 = arch_integer_type (gdbarch, 64, 0, "int64_t");
6004 builtin_type->builtin_uint64
6005 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
6006 builtin_type->builtin_int128
6007 = arch_integer_type (gdbarch, 128, 0, "int128_t");
6008 builtin_type->builtin_uint128
6009 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
6010
6011 builtin_type->builtin_int8->set_instance_flags
6012 (builtin_type->builtin_int8->instance_flags ()
6013 | TYPE_INSTANCE_FLAG_NOTTEXT);
6014
6015 builtin_type->builtin_uint8->set_instance_flags
6016 (builtin_type->builtin_uint8->instance_flags ()
6017 | TYPE_INSTANCE_FLAG_NOTTEXT);
6018
6019 /* Wide character types. */
6020 builtin_type->builtin_char16
6021 = arch_integer_type (gdbarch, 16, 1, "char16_t");
6022 builtin_type->builtin_char32
6023 = arch_integer_type (gdbarch, 32, 1, "char32_t");
6024 builtin_type->builtin_wchar
6025 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
6026 !gdbarch_wchar_signed (gdbarch), "wchar_t");
6027
6028 /* Default data/code pointer types. */
6029 builtin_type->builtin_data_ptr
6030 = lookup_pointer_type (builtin_type->builtin_void);
6031 builtin_type->builtin_func_ptr
6032 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
6033 builtin_type->builtin_func_func
6034 = lookup_function_type (builtin_type->builtin_func_ptr);
6035
6036 /* This type represents a GDB internal function. */
6037 builtin_type->internal_fn
6038 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
6039 "<internal function>");
6040
6041 /* This type represents an xmethod. */
6042 builtin_type->xmethod
6043 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
6044
6045 return builtin_type;
6046 }
6047
6048 /* This set of objfile-based types is intended to be used by symbol
6049 readers as basic types. */
6050
6051 static const struct objfile_key<struct objfile_type,
6052 gdb::noop_deleter<struct objfile_type>>
6053 objfile_type_data;
6054
6055 const struct objfile_type *
6056 objfile_type (struct objfile *objfile)
6057 {
6058 struct gdbarch *gdbarch;
6059 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
6060
6061 if (objfile_type)
6062 return objfile_type;
6063
6064 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
6065 1, struct objfile_type);
6066
6067 /* Use the objfile architecture to determine basic type properties. */
6068 gdbarch = objfile->arch ();
6069
6070 /* Basic types. */
6071 objfile_type->builtin_void
6072 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
6073 objfile_type->builtin_char
6074 = init_integer_type (objfile, TARGET_CHAR_BIT,
6075 !gdbarch_char_signed (gdbarch), "char");
6076 objfile_type->builtin_char->set_has_no_signedness (true);
6077 objfile_type->builtin_signed_char
6078 = init_integer_type (objfile, TARGET_CHAR_BIT,
6079 0, "signed char");
6080 objfile_type->builtin_unsigned_char
6081 = init_integer_type (objfile, TARGET_CHAR_BIT,
6082 1, "unsigned char");
6083 objfile_type->builtin_short
6084 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6085 0, "short");
6086 objfile_type->builtin_unsigned_short
6087 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
6088 1, "unsigned short");
6089 objfile_type->builtin_int
6090 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6091 0, "int");
6092 objfile_type->builtin_unsigned_int
6093 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
6094 1, "unsigned int");
6095 objfile_type->builtin_long
6096 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6097 0, "long");
6098 objfile_type->builtin_unsigned_long
6099 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
6100 1, "unsigned long");
6101 objfile_type->builtin_long_long
6102 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6103 0, "long long");
6104 objfile_type->builtin_unsigned_long_long
6105 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
6106 1, "unsigned long long");
6107 objfile_type->builtin_float
6108 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
6109 "float", gdbarch_float_format (gdbarch));
6110 objfile_type->builtin_double
6111 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
6112 "double", gdbarch_double_format (gdbarch));
6113 objfile_type->builtin_long_double
6114 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
6115 "long double", gdbarch_long_double_format (gdbarch));
6116
6117 /* This type represents a type that was unrecognized in symbol read-in. */
6118 objfile_type->builtin_error
6119 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
6120
6121 /* The following set of types is used for symbols with no
6122 debug information. */
6123 objfile_type->nodebug_text_symbol
6124 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6125 "<text variable, no debug info>");
6126
6127 objfile_type->nodebug_text_gnu_ifunc_symbol
6128 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
6129 "<text gnu-indirect-function variable, no debug info>");
6130 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
6131
6132 objfile_type->nodebug_got_plt_symbol
6133 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
6134 "<text from jump slot in .got.plt, no debug info>",
6135 objfile_type->nodebug_text_symbol);
6136 objfile_type->nodebug_data_symbol
6137 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
6138 objfile_type->nodebug_unknown_symbol
6139 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
6140 objfile_type->nodebug_tls_symbol
6141 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
6142
6143 /* NOTE: on some targets, addresses and pointers are not necessarily
6144 the same.
6145
6146 The upshot is:
6147 - gdb's `struct type' always describes the target's
6148 representation.
6149 - gdb's `struct value' objects should always hold values in
6150 target form.
6151 - gdb's CORE_ADDR values are addresses in the unified virtual
6152 address space that the assembler and linker work with. Thus,
6153 since target_read_memory takes a CORE_ADDR as an argument, it
6154 can access any memory on the target, even if the processor has
6155 separate code and data address spaces.
6156
6157 In this context, objfile_type->builtin_core_addr is a bit odd:
6158 it's a target type for a value the target will never see. It's
6159 only used to hold the values of (typeless) linker symbols, which
6160 are indeed in the unified virtual address space. */
6161
6162 objfile_type->builtin_core_addr
6163 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6164 "__CORE_ADDR");
6165
6166 objfile_type_data.set (objfile, objfile_type);
6167 return objfile_type;
6168 }
6169
6170 void _initialize_gdbtypes ();
6171 void
6172 _initialize_gdbtypes ()
6173 {
6174 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6175
6176 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6177 _("Set debugging of C++ overloading."),
6178 _("Show debugging of C++ overloading."),
6179 _("When enabled, ranking of the "
6180 "functions is displayed."),
6181 NULL,
6182 show_overload_debug,
6183 &setdebuglist, &showdebuglist);
6184
6185 /* Add user knob for controlling resolution of opaque types. */
6186 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6187 &opaque_type_resolution,
6188 _("Set resolution of opaque struct/class/union"
6189 " types (if set before loading symbols)."),
6190 _("Show resolution of opaque struct/class/union"
6191 " types (if set before loading symbols)."),
6192 NULL, NULL,
6193 show_opaque_type_resolution,
6194 &setlist, &showlist);
6195
6196 /* Add an option to permit non-strict type checking. */
6197 add_setshow_boolean_cmd ("type", class_support,
6198 &strict_type_checking,
6199 _("Set strict type checking."),
6200 _("Show strict type checking."),
6201 NULL, NULL,
6202 show_strict_type_checking,
6203 &setchecklist, &showchecklist);
6204 }
This page took 0.164146 seconds and 4 git commands to generate.