Use type_instance_flags more throughout
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121 };
122
123 /* Should opaque types be resolved? */
124
125 static bool opaque_type_resolution = true;
126
127 /* See gdbtypes.h. */
128
129 unsigned int overload_debug = 0;
130
131 /* A flag to enable strict type checking. */
132
133 static bool strict_type_checking = true;
134
135 /* A function to show whether opaque types are resolved. */
136
137 static void
138 show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
140 const char *value)
141 {
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
144 value);
145 }
146
147 /* A function to show whether C++ overload debugging is enabled. */
148
149 static void
150 show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
155 }
156
157 /* A function to show the status of strict type checking. */
158
159 static void
160 show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164 }
165
166 \f
167 /* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
170
171 struct type *
172 alloc_type (struct objfile *objfile)
173 {
174 struct type *type;
175
176 gdb_assert (objfile != NULL);
177
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
183
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
186
187 /* Initialize the fields that might not be zero. */
188
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
191
192 return type;
193 }
194
195 /* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
198
199 struct type *
200 alloc_type_arch (struct gdbarch *gdbarch)
201 {
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220 }
221
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226 struct type *
227 alloc_type_copy (const struct type *type)
228 {
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233 }
234
235 /* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238 struct gdbarch *
239 get_type_arch (const struct type *type)
240 {
241 struct gdbarch *arch;
242
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
245 else
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
254 }
255
256 /* See gdbtypes.h. */
257
258 struct type *
259 get_target_type (struct type *type)
260 {
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269 }
270
271 /* See gdbtypes.h. */
272
273 unsigned int
274 type_length_units (struct type *type)
275 {
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280 }
281
282 /* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286 static struct type *
287 alloc_type_instance (struct type *oldtype)
288 {
289 struct type *type;
290
291 /* Allocate the structure. */
292
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
295 else
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
303 return type;
304 }
305
306 /* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
308
309 static void
310 smash_type (struct type *type)
311 {
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325 }
326
327 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332 struct type *
333 make_pointer_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_POINTER_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
369 /* FIXME! Assumes the machine has only one representation for pointers! */
370
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394 struct type *
395 lookup_pointer_type (struct type *type)
396 {
397 return make_pointer_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406 struct type *
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409 {
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
458
459 *reftype = ntype;
460
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
469 return ntype;
470 }
471
472 /* Same as above, but caller doesn't care about memory allocation
473 details. */
474
475 struct type *
476 lookup_reference_type (struct type *type, enum type_code refcode)
477 {
478 return make_reference_type (type, (struct type **) 0, refcode);
479 }
480
481 /* Lookup the lvalue reference type for the type TYPE. */
482
483 struct type *
484 lookup_lvalue_reference_type (struct type *type)
485 {
486 return lookup_reference_type (type, TYPE_CODE_REF);
487 }
488
489 /* Lookup the rvalue reference type for the type TYPE. */
490
491 struct type *
492 lookup_rvalue_reference_type (struct type *type)
493 {
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
495 }
496
497 /* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
501
502 struct type *
503 make_function_type (struct type *type, struct type **typeptr)
504 {
505 struct type *ntype; /* New type */
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
509 ntype = alloc_type_copy (type);
510 if (typeptr)
511 *typeptr = ntype;
512 }
513 else /* We have storage, but need to reset it. */
514 {
515 ntype = *typeptr;
516 smash_type (ntype);
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
523
524 INIT_FUNC_SPECIFIC (ntype);
525
526 return ntype;
527 }
528
529 /* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532 struct type *
533 lookup_function_type (struct type *type)
534 {
535 return make_function_type (type, (struct type **) 0);
536 }
537
538 /* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
541
542 struct type *
543 lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546 {
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
550 if (nparams > 0)
551 {
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 fn->set_has_varargs (true);
556 }
557 else if (check_typedef (param_types[nparams - 1])->code ()
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 fn->set_is_prototyped (true);
564 }
565 else
566 fn->set_is_prototyped (true);
567 }
568
569 fn->set_num_fields (nparams);
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
574
575 return fn;
576 }
577
578 /* Identify address space identifier by name --
579 return the integer flag defined in gdbtypes.h. */
580
581 type_instance_flags
582 address_space_name_to_int (struct gdbarch *gdbarch,
583 const char *space_identifier)
584 {
585 type_instance_flags type_flags;
586
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
596 return type_flags;
597 else
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
599 }
600
601 /* Identify address space identifier by integer flag as defined in
602 gdbtypes.h -- return the string version of the adress space name. */
603
604 const char *
605 address_space_int_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
607 {
608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 return "code";
610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 return "data";
612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
615 else
616 return NULL;
617 }
618
619 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
623
624 static struct type *
625 make_qualified_type (struct type *type, type_instance_flags new_flags,
626 struct type *storage)
627 {
628 struct type *ntype;
629
630 ntype = type;
631 do
632 {
633 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
638
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
654
655 /* Pointers or references to the original type are not relevant to
656 the new type. */
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
665 ntype->set_instance_flags (new_flags);
666
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
670 return ntype;
671 }
672
673 /* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
681
682 struct type *
683 make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
685 {
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
691
692 return make_qualified_type (type, new_flags, NULL);
693 }
694
695 /* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
700
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
706
707 struct type *
708 make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
711 {
712 struct type *ntype; /* New type */
713
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
717
718 if (cnst)
719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
720
721 if (voltl)
722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
723
724 if (typeptr && *typeptr != NULL)
725 {
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
739 }
740
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
743
744 if (typeptr != NULL)
745 *typeptr = ntype;
746
747 return ntype;
748 }
749
750 /* Make a 'restrict'-qualified version of TYPE. */
751
752 struct type *
753 make_restrict_type (struct type *type)
754 {
755 return make_qualified_type (type,
756 (TYPE_INSTANCE_FLAGS (type)
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759 }
760
761 /* Make a type without const, volatile, or restrict. */
762
763 struct type *
764 make_unqualified_type (struct type *type)
765 {
766 return make_qualified_type (type,
767 (TYPE_INSTANCE_FLAGS (type)
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772 }
773
774 /* Make a '_Atomic'-qualified version of TYPE. */
775
776 struct type *
777 make_atomic_type (struct type *type)
778 {
779 return make_qualified_type (type,
780 (TYPE_INSTANCE_FLAGS (type)
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783 }
784
785 /* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
788
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
794
795 void
796 replace_type (struct type *ntype, struct type *type)
797 {
798 struct type *chain;
799
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
805
806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
807
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
810 chain = ntype;
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
825
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
828 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
829 }
830
831 /* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836 struct type *
837 lookup_memberptr_type (struct type *type, struct type *domain)
838 {
839 struct type *mtype;
840
841 mtype = alloc_type_copy (type);
842 smash_to_memberptr_type (mtype, domain, type);
843 return mtype;
844 }
845
846 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848 struct type *
849 lookup_methodptr_type (struct type *to_type)
850 {
851 struct type *mtype;
852
853 mtype = alloc_type_copy (to_type);
854 smash_to_methodptr_type (mtype, to_type);
855 return mtype;
856 }
857
858 /* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
863
864 struct type *
865 allocate_stub_method (struct type *type)
866 {
867 struct type *mtype;
868
869 mtype = alloc_type_copy (type);
870 mtype->set_code (TYPE_CODE_METHOD);
871 TYPE_LENGTH (mtype) = 1;
872 mtype->set_is_stub (true);
873 TYPE_TARGET_TYPE (mtype) = type;
874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
875 return mtype;
876 }
877
878 /* See gdbtypes.h. */
879
880 bool
881 operator== (const dynamic_prop &l, const dynamic_prop &r)
882 {
883 if (l.kind () != r.kind ())
884 return false;
885
886 switch (l.kind ())
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
891 return l.const_val () == r.const_val ();
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
895 return l.baton () == r.baton ();
896 case PROP_VARIANT_PARTS:
897 return l.variant_parts () == r.variant_parts ();
898 case PROP_TYPE:
899 return l.original_type () == r.original_type ();
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903 }
904
905 /* See gdbtypes.h. */
906
907 bool
908 operator== (const range_bounds &l, const range_bounds &r)
909 {
910 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
917
918 #undef FIELD_EQ
919 }
920
921 /* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
923
924 struct type *
925 create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
929 {
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
935 if (result_type == NULL)
936 result_type = alloc_type_copy (index_type);
937 result_type->set_code (TYPE_CODE_RANGE);
938 TYPE_TARGET_TYPE (result_type) = index_type;
939 if (index_type->is_stub ())
940 result_type->set_target_is_stub (true);
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
943
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
949 bounds->stride.set_const_val (0);
950
951 result_type->set_bounds (bounds);
952
953 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
954 result_type->set_is_unsigned (true);
955
956 /* Ada allows the declaration of range types whose upper bound is
957 less than the lower bound, so checking the lower bound is not
958 enough. Make sure we do not mark a range type whose upper bound
959 is negative as unsigned. */
960 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
961 result_type->set_is_unsigned (false);
962
963 result_type->set_endianity_is_not_default
964 (index_type->endianity_is_not_default ());
965
966 return result_type;
967 }
968
969 /* See gdbtypes.h. */
970
971 struct type *
972 create_range_type_with_stride (struct type *result_type,
973 struct type *index_type,
974 const struct dynamic_prop *low_bound,
975 const struct dynamic_prop *high_bound,
976 LONGEST bias,
977 const struct dynamic_prop *stride,
978 bool byte_stride_p)
979 {
980 result_type = create_range_type (result_type, index_type, low_bound,
981 high_bound, bias);
982
983 gdb_assert (stride != nullptr);
984 result_type->bounds ()->stride = *stride;
985 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
986
987 return result_type;
988 }
989
990
991
992 /* Create a range type using either a blank type supplied in
993 RESULT_TYPE, or creating a new type, inheriting the objfile from
994 INDEX_TYPE.
995
996 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
997 to HIGH_BOUND, inclusive.
998
999 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1000 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1001
1002 struct type *
1003 create_static_range_type (struct type *result_type, struct type *index_type,
1004 LONGEST low_bound, LONGEST high_bound)
1005 {
1006 struct dynamic_prop low, high;
1007
1008 low.set_const_val (low_bound);
1009 high.set_const_val (high_bound);
1010
1011 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1012
1013 return result_type;
1014 }
1015
1016 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1017 are static, otherwise returns 0. */
1018
1019 static bool
1020 has_static_range (const struct range_bounds *bounds)
1021 {
1022 /* If the range doesn't have a defined stride then its stride field will
1023 be initialized to the constant 0. */
1024 return (bounds->low.kind () == PROP_CONST
1025 && bounds->high.kind () == PROP_CONST
1026 && bounds->stride.kind () == PROP_CONST);
1027 }
1028
1029
1030 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1031 TYPE.
1032
1033 Return 1 if type is a range type with two defined, constant bounds.
1034 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1035 Else, return -1. */
1036
1037 int
1038 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1039 {
1040 type = check_typedef (type);
1041 switch (type->code ())
1042 {
1043 case TYPE_CODE_RANGE:
1044 /* This function currently only works for ranges with two defined,
1045 constant bounds. */
1046 if (type->bounds ()->low.kind () != PROP_CONST
1047 || type->bounds ()->high.kind () != PROP_CONST)
1048 return -1;
1049
1050 *lowp = type->bounds ()->low.const_val ();
1051 *highp = type->bounds ()->high.const_val ();
1052
1053 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1054 {
1055 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1056 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1057 return 0;
1058 }
1059 return 1;
1060 case TYPE_CODE_ENUM:
1061 if (type->num_fields () > 0)
1062 {
1063 /* The enums may not be sorted by value, so search all
1064 entries. */
1065 int i;
1066
1067 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1068 for (i = 0; i < type->num_fields (); i++)
1069 {
1070 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1071 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1072 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1073 *highp = TYPE_FIELD_ENUMVAL (type, i);
1074 }
1075
1076 /* Set unsigned indicator if warranted. */
1077 if (*lowp >= 0)
1078 type->set_is_unsigned (true);
1079 }
1080 else
1081 {
1082 *lowp = 0;
1083 *highp = -1;
1084 }
1085 return 0;
1086 case TYPE_CODE_BOOL:
1087 *lowp = 0;
1088 *highp = 1;
1089 return 0;
1090 case TYPE_CODE_INT:
1091 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1092 return -1;
1093 if (!type->is_unsigned ())
1094 {
1095 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1096 *highp = -*lowp - 1;
1097 return 0;
1098 }
1099 /* fall through */
1100 case TYPE_CODE_CHAR:
1101 *lowp = 0;
1102 /* This round-about calculation is to avoid shifting by
1103 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1104 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1105 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1106 *highp = (*highp - 1) | *highp;
1107 return 0;
1108 default:
1109 return -1;
1110 }
1111 }
1112
1113 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1114 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1115 Save the high bound into HIGH_BOUND if not NULL.
1116
1117 Return 1 if the operation was successful. Return zero otherwise,
1118 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1119
1120 int
1121 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1122 {
1123 struct type *index = type->index_type ();
1124 LONGEST low = 0;
1125 LONGEST high = 0;
1126 int res;
1127
1128 if (index == NULL)
1129 return 0;
1130
1131 res = get_discrete_bounds (index, &low, &high);
1132 if (res == -1)
1133 return 0;
1134
1135 if (low_bound)
1136 *low_bound = low;
1137
1138 if (high_bound)
1139 *high_bound = high;
1140
1141 return 1;
1142 }
1143
1144 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1145 representation of a value of this type, save the corresponding
1146 position number in POS.
1147
1148 Its differs from VAL only in the case of enumeration types. In
1149 this case, the position number of the value of the first listed
1150 enumeration literal is zero; the position number of the value of
1151 each subsequent enumeration literal is one more than that of its
1152 predecessor in the list.
1153
1154 Return 1 if the operation was successful. Return zero otherwise,
1155 in which case the value of POS is unmodified.
1156 */
1157
1158 int
1159 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1160 {
1161 if (type->code () == TYPE_CODE_RANGE)
1162 type = TYPE_TARGET_TYPE (type);
1163
1164 if (type->code () == TYPE_CODE_ENUM)
1165 {
1166 int i;
1167
1168 for (i = 0; i < type->num_fields (); i += 1)
1169 {
1170 if (val == TYPE_FIELD_ENUMVAL (type, i))
1171 {
1172 *pos = i;
1173 return 1;
1174 }
1175 }
1176 /* Invalid enumeration value. */
1177 return 0;
1178 }
1179 else
1180 {
1181 *pos = val;
1182 return 1;
1183 }
1184 }
1185
1186 /* If the array TYPE has static bounds calculate and update its
1187 size, then return true. Otherwise return false and leave TYPE
1188 unchanged. */
1189
1190 static bool
1191 update_static_array_size (struct type *type)
1192 {
1193 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1194
1195 struct type *range_type = type->index_type ();
1196
1197 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1198 && has_static_range (range_type->bounds ())
1199 && (!type_not_associated (type)
1200 && !type_not_allocated (type)))
1201 {
1202 LONGEST low_bound, high_bound;
1203 int stride;
1204 struct type *element_type;
1205
1206 /* If the array itself doesn't provide a stride value then take
1207 whatever stride the range provides. Don't update BIT_STRIDE as
1208 we don't want to place the stride value from the range into this
1209 arrays bit size field. */
1210 stride = TYPE_FIELD_BITSIZE (type, 0);
1211 if (stride == 0)
1212 stride = range_type->bit_stride ();
1213
1214 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1215 low_bound = high_bound = 0;
1216 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1217 /* Be careful when setting the array length. Ada arrays can be
1218 empty arrays with the high_bound being smaller than the low_bound.
1219 In such cases, the array length should be zero. */
1220 if (high_bound < low_bound)
1221 TYPE_LENGTH (type) = 0;
1222 else if (stride != 0)
1223 {
1224 /* Ensure that the type length is always positive, even in the
1225 case where (for example in Fortran) we have a negative
1226 stride. It is possible to have a single element array with a
1227 negative stride in Fortran (this doesn't mean anything
1228 special, it's still just a single element array) so do
1229 consider that case when touching this code. */
1230 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1231 TYPE_LENGTH (type)
1232 = ((std::abs (stride) * element_count) + 7) / 8;
1233 }
1234 else
1235 TYPE_LENGTH (type) =
1236 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1237
1238 return true;
1239 }
1240
1241 return false;
1242 }
1243
1244 /* Create an array type using either a blank type supplied in
1245 RESULT_TYPE, or creating a new type, inheriting the objfile from
1246 RANGE_TYPE.
1247
1248 Elements will be of type ELEMENT_TYPE, the indices will be of type
1249 RANGE_TYPE.
1250
1251 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1252 This byte stride property is added to the resulting array type
1253 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1254 argument can only be used to create types that are objfile-owned
1255 (see add_dyn_prop), meaning that either this function must be called
1256 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1257
1258 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1259 If BIT_STRIDE is not zero, build a packed array type whose element
1260 size is BIT_STRIDE. Otherwise, ignore this parameter.
1261
1262 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1263 sure it is TYPE_CODE_UNDEF before we bash it into an array
1264 type? */
1265
1266 struct type *
1267 create_array_type_with_stride (struct type *result_type,
1268 struct type *element_type,
1269 struct type *range_type,
1270 struct dynamic_prop *byte_stride_prop,
1271 unsigned int bit_stride)
1272 {
1273 if (byte_stride_prop != NULL
1274 && byte_stride_prop->kind () == PROP_CONST)
1275 {
1276 /* The byte stride is actually not dynamic. Pretend we were
1277 called with bit_stride set instead of byte_stride_prop.
1278 This will give us the same result type, while avoiding
1279 the need to handle this as a special case. */
1280 bit_stride = byte_stride_prop->const_val () * 8;
1281 byte_stride_prop = NULL;
1282 }
1283
1284 if (result_type == NULL)
1285 result_type = alloc_type_copy (range_type);
1286
1287 result_type->set_code (TYPE_CODE_ARRAY);
1288 TYPE_TARGET_TYPE (result_type) = element_type;
1289
1290 result_type->set_num_fields (1);
1291 result_type->set_fields
1292 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1293 result_type->set_index_type (range_type);
1294 if (byte_stride_prop != NULL)
1295 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1296 else if (bit_stride > 0)
1297 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1298
1299 if (!update_static_array_size (result_type))
1300 {
1301 /* This type is dynamic and its length needs to be computed
1302 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1303 undefined by setting it to zero. Although we are not expected
1304 to trust TYPE_LENGTH in this case, setting the size to zero
1305 allows us to avoid allocating objects of random sizes in case
1306 we accidently do. */
1307 TYPE_LENGTH (result_type) = 0;
1308 }
1309
1310 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1311 if (TYPE_LENGTH (result_type) == 0)
1312 result_type->set_target_is_stub (true);
1313
1314 return result_type;
1315 }
1316
1317 /* Same as create_array_type_with_stride but with no bit_stride
1318 (BIT_STRIDE = 0), thus building an unpacked array. */
1319
1320 struct type *
1321 create_array_type (struct type *result_type,
1322 struct type *element_type,
1323 struct type *range_type)
1324 {
1325 return create_array_type_with_stride (result_type, element_type,
1326 range_type, NULL, 0);
1327 }
1328
1329 struct type *
1330 lookup_array_range_type (struct type *element_type,
1331 LONGEST low_bound, LONGEST high_bound)
1332 {
1333 struct type *index_type;
1334 struct type *range_type;
1335
1336 if (TYPE_OBJFILE_OWNED (element_type))
1337 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1338 else
1339 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1340 range_type = create_static_range_type (NULL, index_type,
1341 low_bound, high_bound);
1342
1343 return create_array_type (NULL, element_type, range_type);
1344 }
1345
1346 /* Create a string type using either a blank type supplied in
1347 RESULT_TYPE, or creating a new type. String types are similar
1348 enough to array of char types that we can use create_array_type to
1349 build the basic type and then bash it into a string type.
1350
1351 For fixed length strings, the range type contains 0 as the lower
1352 bound and the length of the string minus one as the upper bound.
1353
1354 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1355 sure it is TYPE_CODE_UNDEF before we bash it into a string
1356 type? */
1357
1358 struct type *
1359 create_string_type (struct type *result_type,
1360 struct type *string_char_type,
1361 struct type *range_type)
1362 {
1363 result_type = create_array_type (result_type,
1364 string_char_type,
1365 range_type);
1366 result_type->set_code (TYPE_CODE_STRING);
1367 return result_type;
1368 }
1369
1370 struct type *
1371 lookup_string_range_type (struct type *string_char_type,
1372 LONGEST low_bound, LONGEST high_bound)
1373 {
1374 struct type *result_type;
1375
1376 result_type = lookup_array_range_type (string_char_type,
1377 low_bound, high_bound);
1378 result_type->set_code (TYPE_CODE_STRING);
1379 return result_type;
1380 }
1381
1382 struct type *
1383 create_set_type (struct type *result_type, struct type *domain_type)
1384 {
1385 if (result_type == NULL)
1386 result_type = alloc_type_copy (domain_type);
1387
1388 result_type->set_code (TYPE_CODE_SET);
1389 result_type->set_num_fields (1);
1390 result_type->set_fields
1391 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1392
1393 if (!domain_type->is_stub ())
1394 {
1395 LONGEST low_bound, high_bound, bit_length;
1396
1397 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1398 low_bound = high_bound = 0;
1399 bit_length = high_bound - low_bound + 1;
1400 TYPE_LENGTH (result_type)
1401 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1402 if (low_bound >= 0)
1403 result_type->set_is_unsigned (true);
1404 }
1405 result_type->field (0).set_type (domain_type);
1406
1407 return result_type;
1408 }
1409
1410 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1411 and any array types nested inside it. */
1412
1413 void
1414 make_vector_type (struct type *array_type)
1415 {
1416 struct type *inner_array, *elt_type;
1417
1418 /* Find the innermost array type, in case the array is
1419 multi-dimensional. */
1420 inner_array = array_type;
1421 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1422 inner_array = TYPE_TARGET_TYPE (inner_array);
1423
1424 elt_type = TYPE_TARGET_TYPE (inner_array);
1425 if (elt_type->code () == TYPE_CODE_INT)
1426 {
1427 type_instance_flags flags
1428 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1429 elt_type = make_qualified_type (elt_type, flags, NULL);
1430 TYPE_TARGET_TYPE (inner_array) = elt_type;
1431 }
1432
1433 array_type->set_is_vector (true);
1434 }
1435
1436 struct type *
1437 init_vector_type (struct type *elt_type, int n)
1438 {
1439 struct type *array_type;
1440
1441 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1442 make_vector_type (array_type);
1443 return array_type;
1444 }
1445
1446 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1447 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1448 confusing. "self" is a common enough replacement for "this".
1449 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1450 TYPE_CODE_METHOD. */
1451
1452 struct type *
1453 internal_type_self_type (struct type *type)
1454 {
1455 switch (type->code ())
1456 {
1457 case TYPE_CODE_METHODPTR:
1458 case TYPE_CODE_MEMBERPTR:
1459 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1460 return NULL;
1461 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1462 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1463 case TYPE_CODE_METHOD:
1464 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1465 return NULL;
1466 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1467 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1468 default:
1469 gdb_assert_not_reached ("bad type");
1470 }
1471 }
1472
1473 /* Set the type of the class that TYPE belongs to.
1474 In c++ this is the class of "this".
1475 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1476 TYPE_CODE_METHOD. */
1477
1478 void
1479 set_type_self_type (struct type *type, struct type *self_type)
1480 {
1481 switch (type->code ())
1482 {
1483 case TYPE_CODE_METHODPTR:
1484 case TYPE_CODE_MEMBERPTR:
1485 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1486 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1487 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1488 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1489 break;
1490 case TYPE_CODE_METHOD:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 INIT_FUNC_SPECIFIC (type);
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1494 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1495 break;
1496 default:
1497 gdb_assert_not_reached ("bad type");
1498 }
1499 }
1500
1501 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1502 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1503 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1504 TYPE doesn't include the offset (that's the value of the MEMBER
1505 itself), but does include the structure type into which it points
1506 (for some reason).
1507
1508 When "smashing" the type, we preserve the objfile that the old type
1509 pointed to, since we aren't changing where the type is actually
1510 allocated. */
1511
1512 void
1513 smash_to_memberptr_type (struct type *type, struct type *self_type,
1514 struct type *to_type)
1515 {
1516 smash_type (type);
1517 type->set_code (TYPE_CODE_MEMBERPTR);
1518 TYPE_TARGET_TYPE (type) = to_type;
1519 set_type_self_type (type, self_type);
1520 /* Assume that a data member pointer is the same size as a normal
1521 pointer. */
1522 TYPE_LENGTH (type)
1523 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1524 }
1525
1526 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1527
1528 When "smashing" the type, we preserve the objfile that the old type
1529 pointed to, since we aren't changing where the type is actually
1530 allocated. */
1531
1532 void
1533 smash_to_methodptr_type (struct type *type, struct type *to_type)
1534 {
1535 smash_type (type);
1536 type->set_code (TYPE_CODE_METHODPTR);
1537 TYPE_TARGET_TYPE (type) = to_type;
1538 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1539 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1540 }
1541
1542 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1543 METHOD just means `function that gets an extra "this" argument'.
1544
1545 When "smashing" the type, we preserve the objfile that the old type
1546 pointed to, since we aren't changing where the type is actually
1547 allocated. */
1548
1549 void
1550 smash_to_method_type (struct type *type, struct type *self_type,
1551 struct type *to_type, struct field *args,
1552 int nargs, int varargs)
1553 {
1554 smash_type (type);
1555 type->set_code (TYPE_CODE_METHOD);
1556 TYPE_TARGET_TYPE (type) = to_type;
1557 set_type_self_type (type, self_type);
1558 type->set_fields (args);
1559 type->set_num_fields (nargs);
1560 if (varargs)
1561 type->set_has_varargs (true);
1562 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1563 }
1564
1565 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1566 Since GCC PR debug/47510 DWARF provides associated information to detect the
1567 anonymous class linkage name from its typedef.
1568
1569 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1570 apply it itself. */
1571
1572 const char *
1573 type_name_or_error (struct type *type)
1574 {
1575 struct type *saved_type = type;
1576 const char *name;
1577 struct objfile *objfile;
1578
1579 type = check_typedef (type);
1580
1581 name = type->name ();
1582 if (name != NULL)
1583 return name;
1584
1585 name = saved_type->name ();
1586 objfile = TYPE_OBJFILE (saved_type);
1587 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1588 name ? name : "<anonymous>",
1589 objfile ? objfile_name (objfile) : "<arch>");
1590 }
1591
1592 /* Lookup a typedef or primitive type named NAME, visible in lexical
1593 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1594 suitably defined. */
1595
1596 struct type *
1597 lookup_typename (const struct language_defn *language,
1598 const char *name,
1599 const struct block *block, int noerr)
1600 {
1601 struct symbol *sym;
1602
1603 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1604 language->la_language, NULL).symbol;
1605 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1606 return SYMBOL_TYPE (sym);
1607
1608 if (noerr)
1609 return NULL;
1610 error (_("No type named %s."), name);
1611 }
1612
1613 struct type *
1614 lookup_unsigned_typename (const struct language_defn *language,
1615 const char *name)
1616 {
1617 char *uns = (char *) alloca (strlen (name) + 10);
1618
1619 strcpy (uns, "unsigned ");
1620 strcpy (uns + 9, name);
1621 return lookup_typename (language, uns, NULL, 0);
1622 }
1623
1624 struct type *
1625 lookup_signed_typename (const struct language_defn *language, const char *name)
1626 {
1627 struct type *t;
1628 char *uns = (char *) alloca (strlen (name) + 8);
1629
1630 strcpy (uns, "signed ");
1631 strcpy (uns + 7, name);
1632 t = lookup_typename (language, uns, NULL, 1);
1633 /* If we don't find "signed FOO" just try again with plain "FOO". */
1634 if (t != NULL)
1635 return t;
1636 return lookup_typename (language, name, NULL, 0);
1637 }
1638
1639 /* Lookup a structure type named "struct NAME",
1640 visible in lexical block BLOCK. */
1641
1642 struct type *
1643 lookup_struct (const char *name, const struct block *block)
1644 {
1645 struct symbol *sym;
1646
1647 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1648
1649 if (sym == NULL)
1650 {
1651 error (_("No struct type named %s."), name);
1652 }
1653 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1654 {
1655 error (_("This context has class, union or enum %s, not a struct."),
1656 name);
1657 }
1658 return (SYMBOL_TYPE (sym));
1659 }
1660
1661 /* Lookup a union type named "union NAME",
1662 visible in lexical block BLOCK. */
1663
1664 struct type *
1665 lookup_union (const char *name, const struct block *block)
1666 {
1667 struct symbol *sym;
1668 struct type *t;
1669
1670 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1671
1672 if (sym == NULL)
1673 error (_("No union type named %s."), name);
1674
1675 t = SYMBOL_TYPE (sym);
1676
1677 if (t->code () == TYPE_CODE_UNION)
1678 return t;
1679
1680 /* If we get here, it's not a union. */
1681 error (_("This context has class, struct or enum %s, not a union."),
1682 name);
1683 }
1684
1685 /* Lookup an enum type named "enum NAME",
1686 visible in lexical block BLOCK. */
1687
1688 struct type *
1689 lookup_enum (const char *name, const struct block *block)
1690 {
1691 struct symbol *sym;
1692
1693 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1694 if (sym == NULL)
1695 {
1696 error (_("No enum type named %s."), name);
1697 }
1698 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1699 {
1700 error (_("This context has class, struct or union %s, not an enum."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704 }
1705
1706 /* Lookup a template type named "template NAME<TYPE>",
1707 visible in lexical block BLOCK. */
1708
1709 struct type *
1710 lookup_template_type (const char *name, struct type *type,
1711 const struct block *block)
1712 {
1713 struct symbol *sym;
1714 char *nam = (char *)
1715 alloca (strlen (name) + strlen (type->name ()) + 4);
1716
1717 strcpy (nam, name);
1718 strcat (nam, "<");
1719 strcat (nam, type->name ());
1720 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1721
1722 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1723
1724 if (sym == NULL)
1725 {
1726 error (_("No template type named %s."), name);
1727 }
1728 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1729 {
1730 error (_("This context has class, union or enum %s, not a struct."),
1731 name);
1732 }
1733 return (SYMBOL_TYPE (sym));
1734 }
1735
1736 /* See gdbtypes.h. */
1737
1738 struct_elt
1739 lookup_struct_elt (struct type *type, const char *name, int noerr)
1740 {
1741 int i;
1742
1743 for (;;)
1744 {
1745 type = check_typedef (type);
1746 if (type->code () != TYPE_CODE_PTR
1747 && type->code () != TYPE_CODE_REF)
1748 break;
1749 type = TYPE_TARGET_TYPE (type);
1750 }
1751
1752 if (type->code () != TYPE_CODE_STRUCT
1753 && type->code () != TYPE_CODE_UNION)
1754 {
1755 std::string type_name = type_to_string (type);
1756 error (_("Type %s is not a structure or union type."),
1757 type_name.c_str ());
1758 }
1759
1760 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1761 {
1762 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1763
1764 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1765 {
1766 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1767 }
1768 else if (!t_field_name || *t_field_name == '\0')
1769 {
1770 struct_elt elt
1771 = lookup_struct_elt (type->field (i).type (), name, 1);
1772 if (elt.field != NULL)
1773 {
1774 elt.offset += TYPE_FIELD_BITPOS (type, i);
1775 return elt;
1776 }
1777 }
1778 }
1779
1780 /* OK, it's not in this class. Recursively check the baseclasses. */
1781 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1782 {
1783 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1784 if (elt.field != NULL)
1785 return elt;
1786 }
1787
1788 if (noerr)
1789 return {nullptr, 0};
1790
1791 std::string type_name = type_to_string (type);
1792 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1793 }
1794
1795 /* See gdbtypes.h. */
1796
1797 struct type *
1798 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1799 {
1800 struct_elt elt = lookup_struct_elt (type, name, noerr);
1801 if (elt.field != NULL)
1802 return elt.field->type ();
1803 else
1804 return NULL;
1805 }
1806
1807 /* Store in *MAX the largest number representable by unsigned integer type
1808 TYPE. */
1809
1810 void
1811 get_unsigned_type_max (struct type *type, ULONGEST *max)
1812 {
1813 unsigned int n;
1814
1815 type = check_typedef (type);
1816 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1817 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1818
1819 /* Written this way to avoid overflow. */
1820 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1821 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1822 }
1823
1824 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1825 signed integer type TYPE. */
1826
1827 void
1828 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1829 {
1830 unsigned int n;
1831
1832 type = check_typedef (type);
1833 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1834 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1835
1836 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1837 *min = -((ULONGEST) 1 << (n - 1));
1838 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1839 }
1840
1841 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1842 cplus_stuff.vptr_fieldno.
1843
1844 cplus_stuff is initialized to cplus_struct_default which does not
1845 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1846 designated initializers). We cope with that here. */
1847
1848 int
1849 internal_type_vptr_fieldno (struct type *type)
1850 {
1851 type = check_typedef (type);
1852 gdb_assert (type->code () == TYPE_CODE_STRUCT
1853 || type->code () == TYPE_CODE_UNION);
1854 if (!HAVE_CPLUS_STRUCT (type))
1855 return -1;
1856 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1857 }
1858
1859 /* Set the value of cplus_stuff.vptr_fieldno. */
1860
1861 void
1862 set_type_vptr_fieldno (struct type *type, int fieldno)
1863 {
1864 type = check_typedef (type);
1865 gdb_assert (type->code () == TYPE_CODE_STRUCT
1866 || type->code () == TYPE_CODE_UNION);
1867 if (!HAVE_CPLUS_STRUCT (type))
1868 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1869 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1870 }
1871
1872 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1873 cplus_stuff.vptr_basetype. */
1874
1875 struct type *
1876 internal_type_vptr_basetype (struct type *type)
1877 {
1878 type = check_typedef (type);
1879 gdb_assert (type->code () == TYPE_CODE_STRUCT
1880 || type->code () == TYPE_CODE_UNION);
1881 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1882 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1883 }
1884
1885 /* Set the value of cplus_stuff.vptr_basetype. */
1886
1887 void
1888 set_type_vptr_basetype (struct type *type, struct type *basetype)
1889 {
1890 type = check_typedef (type);
1891 gdb_assert (type->code () == TYPE_CODE_STRUCT
1892 || type->code () == TYPE_CODE_UNION);
1893 if (!HAVE_CPLUS_STRUCT (type))
1894 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1895 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1896 }
1897
1898 /* Lookup the vptr basetype/fieldno values for TYPE.
1899 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1900 vptr_fieldno. Also, if found and basetype is from the same objfile,
1901 cache the results.
1902 If not found, return -1 and ignore BASETYPEP.
1903 Callers should be aware that in some cases (for example,
1904 the type or one of its baseclasses is a stub type and we are
1905 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1906 this function will not be able to find the
1907 virtual function table pointer, and vptr_fieldno will remain -1 and
1908 vptr_basetype will remain NULL or incomplete. */
1909
1910 int
1911 get_vptr_fieldno (struct type *type, struct type **basetypep)
1912 {
1913 type = check_typedef (type);
1914
1915 if (TYPE_VPTR_FIELDNO (type) < 0)
1916 {
1917 int i;
1918
1919 /* We must start at zero in case the first (and only) baseclass
1920 is virtual (and hence we cannot share the table pointer). */
1921 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1922 {
1923 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1924 int fieldno;
1925 struct type *basetype;
1926
1927 fieldno = get_vptr_fieldno (baseclass, &basetype);
1928 if (fieldno >= 0)
1929 {
1930 /* If the type comes from a different objfile we can't cache
1931 it, it may have a different lifetime. PR 2384 */
1932 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1933 {
1934 set_type_vptr_fieldno (type, fieldno);
1935 set_type_vptr_basetype (type, basetype);
1936 }
1937 if (basetypep)
1938 *basetypep = basetype;
1939 return fieldno;
1940 }
1941 }
1942
1943 /* Not found. */
1944 return -1;
1945 }
1946 else
1947 {
1948 if (basetypep)
1949 *basetypep = TYPE_VPTR_BASETYPE (type);
1950 return TYPE_VPTR_FIELDNO (type);
1951 }
1952 }
1953
1954 static void
1955 stub_noname_complaint (void)
1956 {
1957 complaint (_("stub type has NULL name"));
1958 }
1959
1960 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1961 attached to it, and that property has a non-constant value. */
1962
1963 static int
1964 array_type_has_dynamic_stride (struct type *type)
1965 {
1966 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1967
1968 return (prop != NULL && prop->kind () != PROP_CONST);
1969 }
1970
1971 /* Worker for is_dynamic_type. */
1972
1973 static int
1974 is_dynamic_type_internal (struct type *type, int top_level)
1975 {
1976 type = check_typedef (type);
1977
1978 /* We only want to recognize references at the outermost level. */
1979 if (top_level && type->code () == TYPE_CODE_REF)
1980 type = check_typedef (TYPE_TARGET_TYPE (type));
1981
1982 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1983 dynamic, even if the type itself is statically defined.
1984 From a user's point of view, this may appear counter-intuitive;
1985 but it makes sense in this context, because the point is to determine
1986 whether any part of the type needs to be resolved before it can
1987 be exploited. */
1988 if (TYPE_DATA_LOCATION (type) != NULL
1989 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1990 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1991 return 1;
1992
1993 if (TYPE_ASSOCIATED_PROP (type))
1994 return 1;
1995
1996 if (TYPE_ALLOCATED_PROP (type))
1997 return 1;
1998
1999 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2000 if (prop != nullptr && prop->kind () != PROP_TYPE)
2001 return 1;
2002
2003 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2004 return 1;
2005
2006 switch (type->code ())
2007 {
2008 case TYPE_CODE_RANGE:
2009 {
2010 /* A range type is obviously dynamic if it has at least one
2011 dynamic bound. But also consider the range type to be
2012 dynamic when its subtype is dynamic, even if the bounds
2013 of the range type are static. It allows us to assume that
2014 the subtype of a static range type is also static. */
2015 return (!has_static_range (type->bounds ())
2016 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2017 }
2018
2019 case TYPE_CODE_STRING:
2020 /* Strings are very much like an array of characters, and can be
2021 treated as one here. */
2022 case TYPE_CODE_ARRAY:
2023 {
2024 gdb_assert (type->num_fields () == 1);
2025
2026 /* The array is dynamic if either the bounds are dynamic... */
2027 if (is_dynamic_type_internal (type->index_type (), 0))
2028 return 1;
2029 /* ... or the elements it contains have a dynamic contents... */
2030 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2031 return 1;
2032 /* ... or if it has a dynamic stride... */
2033 if (array_type_has_dynamic_stride (type))
2034 return 1;
2035 return 0;
2036 }
2037
2038 case TYPE_CODE_STRUCT:
2039 case TYPE_CODE_UNION:
2040 {
2041 int i;
2042
2043 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2044
2045 for (i = 0; i < type->num_fields (); ++i)
2046 {
2047 /* Static fields can be ignored here. */
2048 if (field_is_static (&type->field (i)))
2049 continue;
2050 /* If the field has dynamic type, then so does TYPE. */
2051 if (is_dynamic_type_internal (type->field (i).type (), 0))
2052 return 1;
2053 /* If the field is at a fixed offset, then it is not
2054 dynamic. */
2055 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2056 continue;
2057 /* Do not consider C++ virtual base types to be dynamic
2058 due to the field's offset being dynamic; these are
2059 handled via other means. */
2060 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2061 continue;
2062 return 1;
2063 }
2064 }
2065 break;
2066 }
2067
2068 return 0;
2069 }
2070
2071 /* See gdbtypes.h. */
2072
2073 int
2074 is_dynamic_type (struct type *type)
2075 {
2076 return is_dynamic_type_internal (type, 1);
2077 }
2078
2079 static struct type *resolve_dynamic_type_internal
2080 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2081
2082 /* Given a dynamic range type (dyn_range_type) and a stack of
2083 struct property_addr_info elements, return a static version
2084 of that type. */
2085
2086 static struct type *
2087 resolve_dynamic_range (struct type *dyn_range_type,
2088 struct property_addr_info *addr_stack)
2089 {
2090 CORE_ADDR value;
2091 struct type *static_range_type, *static_target_type;
2092 struct dynamic_prop low_bound, high_bound, stride;
2093
2094 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2095
2096 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2097 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2098 low_bound.set_const_val (value);
2099 else
2100 low_bound.set_undefined ();
2101
2102 prop = &dyn_range_type->bounds ()->high;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2104 {
2105 high_bound.set_const_val (value);
2106
2107 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2108 high_bound.set_const_val
2109 (low_bound.const_val () + high_bound.const_val () - 1);
2110 }
2111 else
2112 high_bound.set_undefined ();
2113
2114 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2115 prop = &dyn_range_type->bounds ()->stride;
2116 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2117 {
2118 stride.set_const_val (value);
2119
2120 /* If we have a bit stride that is not an exact number of bytes then
2121 I really don't think this is going to work with current GDB, the
2122 array indexing code in GDB seems to be pretty heavily tied to byte
2123 offsets right now. Assuming 8 bits in a byte. */
2124 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2125 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2126 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2127 error (_("bit strides that are not a multiple of the byte size "
2128 "are currently not supported"));
2129 }
2130 else
2131 {
2132 stride.set_undefined ();
2133 byte_stride_p = true;
2134 }
2135
2136 static_target_type
2137 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2138 addr_stack, 0);
2139 LONGEST bias = dyn_range_type->bounds ()->bias;
2140 static_range_type = create_range_type_with_stride
2141 (copy_type (dyn_range_type), static_target_type,
2142 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2143 static_range_type->bounds ()->flag_bound_evaluated = 1;
2144 return static_range_type;
2145 }
2146
2147 /* Resolves dynamic bound values of an array or string type TYPE to static
2148 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2149 needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_array_or_string (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 CORE_ADDR value;
2156 struct type *elt_type;
2157 struct type *range_type;
2158 struct type *ary_dim;
2159 struct dynamic_prop *prop;
2160 unsigned int bit_stride = 0;
2161
2162 /* For dynamic type resolution strings can be treated like arrays of
2163 characters. */
2164 gdb_assert (type->code () == TYPE_CODE_ARRAY
2165 || type->code () == TYPE_CODE_STRING);
2166
2167 type = copy_type (type);
2168
2169 elt_type = type;
2170 range_type = check_typedef (elt_type->index_type ());
2171 range_type = resolve_dynamic_range (range_type, addr_stack);
2172
2173 /* Resolve allocated/associated here before creating a new array type, which
2174 will update the length of the array accordingly. */
2175 prop = TYPE_ALLOCATED_PROP (type);
2176 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2177 prop->set_const_val (value);
2178
2179 prop = TYPE_ASSOCIATED_PROP (type);
2180 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2181 prop->set_const_val (value);
2182
2183 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2184
2185 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2186 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2187 else
2188 elt_type = TYPE_TARGET_TYPE (type);
2189
2190 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2191 if (prop != NULL)
2192 {
2193 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2194 {
2195 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2196 bit_stride = (unsigned int) (value * 8);
2197 }
2198 else
2199 {
2200 /* Could be a bug in our code, but it could also happen
2201 if the DWARF info is not correct. Issue a warning,
2202 and assume no byte/bit stride (leave bit_stride = 0). */
2203 warning (_("cannot determine array stride for type %s"),
2204 type->name () ? type->name () : "<no name>");
2205 }
2206 }
2207 else
2208 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2209
2210 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2211 bit_stride);
2212 }
2213
2214 /* Resolve dynamic bounds of members of the union TYPE to static
2215 bounds. ADDR_STACK is a stack of struct property_addr_info
2216 to be used if needed during the dynamic resolution. */
2217
2218 static struct type *
2219 resolve_dynamic_union (struct type *type,
2220 struct property_addr_info *addr_stack)
2221 {
2222 struct type *resolved_type;
2223 int i;
2224 unsigned int max_len = 0;
2225
2226 gdb_assert (type->code () == TYPE_CODE_UNION);
2227
2228 resolved_type = copy_type (type);
2229 resolved_type->set_fields
2230 ((struct field *)
2231 TYPE_ALLOC (resolved_type,
2232 resolved_type->num_fields () * sizeof (struct field)));
2233 memcpy (resolved_type->fields (),
2234 type->fields (),
2235 resolved_type->num_fields () * sizeof (struct field));
2236 for (i = 0; i < resolved_type->num_fields (); ++i)
2237 {
2238 struct type *t;
2239
2240 if (field_is_static (&type->field (i)))
2241 continue;
2242
2243 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2244 addr_stack, 0);
2245 resolved_type->field (i).set_type (t);
2246
2247 struct type *real_type = check_typedef (t);
2248 if (TYPE_LENGTH (real_type) > max_len)
2249 max_len = TYPE_LENGTH (real_type);
2250 }
2251
2252 TYPE_LENGTH (resolved_type) = max_len;
2253 return resolved_type;
2254 }
2255
2256 /* See gdbtypes.h. */
2257
2258 bool
2259 variant::matches (ULONGEST value, bool is_unsigned) const
2260 {
2261 for (const discriminant_range &range : discriminants)
2262 if (range.contains (value, is_unsigned))
2263 return true;
2264 return false;
2265 }
2266
2267 static void
2268 compute_variant_fields_inner (struct type *type,
2269 struct property_addr_info *addr_stack,
2270 const variant_part &part,
2271 std::vector<bool> &flags);
2272
2273 /* A helper function to determine which variant fields will be active.
2274 This handles both the variant's direct fields, and any variant
2275 parts embedded in this variant. TYPE is the type we're examining.
2276 ADDR_STACK holds information about the concrete object. VARIANT is
2277 the current variant to be handled. FLAGS is where the results are
2278 stored -- this function sets the Nth element in FLAGS if the
2279 corresponding field is enabled. ENABLED is whether this variant is
2280 enabled or not. */
2281
2282 static void
2283 compute_variant_fields_recurse (struct type *type,
2284 struct property_addr_info *addr_stack,
2285 const variant &variant,
2286 std::vector<bool> &flags,
2287 bool enabled)
2288 {
2289 for (int field = variant.first_field; field < variant.last_field; ++field)
2290 flags[field] = enabled;
2291
2292 for (const variant_part &new_part : variant.parts)
2293 {
2294 if (enabled)
2295 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2296 else
2297 {
2298 for (const auto &sub_variant : new_part.variants)
2299 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2300 flags, enabled);
2301 }
2302 }
2303 }
2304
2305 /* A helper function to determine which variant fields will be active.
2306 This evaluates the discriminant, decides which variant (if any) is
2307 active, and then updates FLAGS to reflect which fields should be
2308 available. TYPE is the type we're examining. ADDR_STACK holds
2309 information about the concrete object. VARIANT is the current
2310 variant to be handled. FLAGS is where the results are stored --
2311 this function sets the Nth element in FLAGS if the corresponding
2312 field is enabled. */
2313
2314 static void
2315 compute_variant_fields_inner (struct type *type,
2316 struct property_addr_info *addr_stack,
2317 const variant_part &part,
2318 std::vector<bool> &flags)
2319 {
2320 /* Evaluate the discriminant. */
2321 gdb::optional<ULONGEST> discr_value;
2322 if (part.discriminant_index != -1)
2323 {
2324 int idx = part.discriminant_index;
2325
2326 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2327 error (_("Cannot determine struct field location"
2328 " (invalid location kind)"));
2329
2330 if (addr_stack->valaddr.data () != NULL)
2331 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2332 idx);
2333 else
2334 {
2335 CORE_ADDR addr = (addr_stack->addr
2336 + (TYPE_FIELD_BITPOS (type, idx)
2337 / TARGET_CHAR_BIT));
2338
2339 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2340 LONGEST size = bitsize / 8;
2341 if (size == 0)
2342 size = TYPE_LENGTH (type->field (idx).type ());
2343
2344 gdb_byte bits[sizeof (ULONGEST)];
2345 read_memory (addr, bits, size);
2346
2347 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2348 % TARGET_CHAR_BIT);
2349
2350 discr_value = unpack_bits_as_long (type->field (idx).type (),
2351 bits, bitpos, bitsize);
2352 }
2353 }
2354
2355 /* Go through each variant and see which applies. */
2356 const variant *default_variant = nullptr;
2357 const variant *applied_variant = nullptr;
2358 for (const auto &variant : part.variants)
2359 {
2360 if (variant.is_default ())
2361 default_variant = &variant;
2362 else if (discr_value.has_value ()
2363 && variant.matches (*discr_value, part.is_unsigned))
2364 {
2365 applied_variant = &variant;
2366 break;
2367 }
2368 }
2369 if (applied_variant == nullptr)
2370 applied_variant = default_variant;
2371
2372 for (const auto &variant : part.variants)
2373 compute_variant_fields_recurse (type, addr_stack, variant,
2374 flags, applied_variant == &variant);
2375 }
2376
2377 /* Determine which variant fields are available in TYPE. The enabled
2378 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2379 about the concrete object. PARTS describes the top-level variant
2380 parts for this type. */
2381
2382 static void
2383 compute_variant_fields (struct type *type,
2384 struct type *resolved_type,
2385 struct property_addr_info *addr_stack,
2386 const gdb::array_view<variant_part> &parts)
2387 {
2388 /* Assume all fields are included by default. */
2389 std::vector<bool> flags (resolved_type->num_fields (), true);
2390
2391 /* Now disable fields based on the variants that control them. */
2392 for (const auto &part : parts)
2393 compute_variant_fields_inner (type, addr_stack, part, flags);
2394
2395 resolved_type->set_num_fields
2396 (std::count (flags.begin (), flags.end (), true));
2397 resolved_type->set_fields
2398 ((struct field *)
2399 TYPE_ALLOC (resolved_type,
2400 resolved_type->num_fields () * sizeof (struct field)));
2401
2402 int out = 0;
2403 for (int i = 0; i < type->num_fields (); ++i)
2404 {
2405 if (!flags[i])
2406 continue;
2407
2408 resolved_type->field (out) = type->field (i);
2409 ++out;
2410 }
2411 }
2412
2413 /* Resolve dynamic bounds of members of the struct TYPE to static
2414 bounds. ADDR_STACK is a stack of struct property_addr_info to
2415 be used if needed during the dynamic resolution. */
2416
2417 static struct type *
2418 resolve_dynamic_struct (struct type *type,
2419 struct property_addr_info *addr_stack)
2420 {
2421 struct type *resolved_type;
2422 int i;
2423 unsigned resolved_type_bit_length = 0;
2424
2425 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2426 gdb_assert (type->num_fields () > 0);
2427
2428 resolved_type = copy_type (type);
2429
2430 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2431 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2432 {
2433 compute_variant_fields (type, resolved_type, addr_stack,
2434 *variant_prop->variant_parts ());
2435 /* We want to leave the property attached, so that the Rust code
2436 can tell whether the type was originally an enum. */
2437 variant_prop->set_original_type (type);
2438 }
2439 else
2440 {
2441 resolved_type->set_fields
2442 ((struct field *)
2443 TYPE_ALLOC (resolved_type,
2444 resolved_type->num_fields () * sizeof (struct field)));
2445 memcpy (resolved_type->fields (),
2446 type->fields (),
2447 resolved_type->num_fields () * sizeof (struct field));
2448 }
2449
2450 for (i = 0; i < resolved_type->num_fields (); ++i)
2451 {
2452 unsigned new_bit_length;
2453 struct property_addr_info pinfo;
2454
2455 if (field_is_static (&resolved_type->field (i)))
2456 continue;
2457
2458 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2459 {
2460 struct dwarf2_property_baton baton;
2461 baton.property_type
2462 = lookup_pointer_type (resolved_type->field (i).type ());
2463 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2464
2465 struct dynamic_prop prop;
2466 prop.set_locexpr (&baton);
2467
2468 CORE_ADDR addr;
2469 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2470 true))
2471 SET_FIELD_BITPOS (resolved_type->field (i),
2472 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2473 }
2474
2475 /* As we know this field is not a static field, the field's
2476 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2477 this is the case, but only trigger a simple error rather
2478 than an internal error if that fails. While failing
2479 that verification indicates a bug in our code, the error
2480 is not severe enough to suggest to the user he stops
2481 his debugging session because of it. */
2482 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2483 error (_("Cannot determine struct field location"
2484 " (invalid location kind)"));
2485
2486 pinfo.type = check_typedef (resolved_type->field (i).type ());
2487 pinfo.valaddr = addr_stack->valaddr;
2488 pinfo.addr
2489 = (addr_stack->addr
2490 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2491 pinfo.next = addr_stack;
2492
2493 resolved_type->field (i).set_type
2494 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2495 &pinfo, 0));
2496 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2497 == FIELD_LOC_KIND_BITPOS);
2498
2499 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2500 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2501 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2502 else
2503 {
2504 struct type *real_type
2505 = check_typedef (resolved_type->field (i).type ());
2506
2507 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2508 }
2509
2510 /* Normally, we would use the position and size of the last field
2511 to determine the size of the enclosing structure. But GCC seems
2512 to be encoding the position of some fields incorrectly when
2513 the struct contains a dynamic field that is not placed last.
2514 So we compute the struct size based on the field that has
2515 the highest position + size - probably the best we can do. */
2516 if (new_bit_length > resolved_type_bit_length)
2517 resolved_type_bit_length = new_bit_length;
2518 }
2519
2520 /* The length of a type won't change for fortran, but it does for C and Ada.
2521 For fortran the size of dynamic fields might change over time but not the
2522 type length of the structure. If we adapt it, we run into problems
2523 when calculating the element offset for arrays of structs. */
2524 if (current_language->la_language != language_fortran)
2525 TYPE_LENGTH (resolved_type)
2526 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2527
2528 /* The Ada language uses this field as a cache for static fixed types: reset
2529 it as RESOLVED_TYPE must have its own static fixed type. */
2530 TYPE_TARGET_TYPE (resolved_type) = NULL;
2531
2532 return resolved_type;
2533 }
2534
2535 /* Worker for resolved_dynamic_type. */
2536
2537 static struct type *
2538 resolve_dynamic_type_internal (struct type *type,
2539 struct property_addr_info *addr_stack,
2540 int top_level)
2541 {
2542 struct type *real_type = check_typedef (type);
2543 struct type *resolved_type = nullptr;
2544 struct dynamic_prop *prop;
2545 CORE_ADDR value;
2546
2547 if (!is_dynamic_type_internal (real_type, top_level))
2548 return type;
2549
2550 gdb::optional<CORE_ADDR> type_length;
2551 prop = TYPE_DYNAMIC_LENGTH (type);
2552 if (prop != NULL
2553 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2554 type_length = value;
2555
2556 if (type->code () == TYPE_CODE_TYPEDEF)
2557 {
2558 resolved_type = copy_type (type);
2559 TYPE_TARGET_TYPE (resolved_type)
2560 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2561 top_level);
2562 }
2563 else
2564 {
2565 /* Before trying to resolve TYPE, make sure it is not a stub. */
2566 type = real_type;
2567
2568 switch (type->code ())
2569 {
2570 case TYPE_CODE_REF:
2571 {
2572 struct property_addr_info pinfo;
2573
2574 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2575 pinfo.valaddr = {};
2576 if (addr_stack->valaddr.data () != NULL)
2577 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2578 type);
2579 else
2580 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2581 pinfo.next = addr_stack;
2582
2583 resolved_type = copy_type (type);
2584 TYPE_TARGET_TYPE (resolved_type)
2585 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2586 &pinfo, top_level);
2587 break;
2588 }
2589
2590 case TYPE_CODE_STRING:
2591 /* Strings are very much like an array of characters, and can be
2592 treated as one here. */
2593 case TYPE_CODE_ARRAY:
2594 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2595 break;
2596
2597 case TYPE_CODE_RANGE:
2598 resolved_type = resolve_dynamic_range (type, addr_stack);
2599 break;
2600
2601 case TYPE_CODE_UNION:
2602 resolved_type = resolve_dynamic_union (type, addr_stack);
2603 break;
2604
2605 case TYPE_CODE_STRUCT:
2606 resolved_type = resolve_dynamic_struct (type, addr_stack);
2607 break;
2608 }
2609 }
2610
2611 if (resolved_type == nullptr)
2612 return type;
2613
2614 if (type_length.has_value ())
2615 {
2616 TYPE_LENGTH (resolved_type) = *type_length;
2617 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2618 }
2619
2620 /* Resolve data_location attribute. */
2621 prop = TYPE_DATA_LOCATION (resolved_type);
2622 if (prop != NULL
2623 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2624 prop->set_const_val (value);
2625
2626 return resolved_type;
2627 }
2628
2629 /* See gdbtypes.h */
2630
2631 struct type *
2632 resolve_dynamic_type (struct type *type,
2633 gdb::array_view<const gdb_byte> valaddr,
2634 CORE_ADDR addr)
2635 {
2636 struct property_addr_info pinfo
2637 = {check_typedef (type), valaddr, addr, NULL};
2638
2639 return resolve_dynamic_type_internal (type, &pinfo, 1);
2640 }
2641
2642 /* See gdbtypes.h */
2643
2644 dynamic_prop *
2645 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2646 {
2647 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2648
2649 while (node != NULL)
2650 {
2651 if (node->prop_kind == prop_kind)
2652 return &node->prop;
2653 node = node->next;
2654 }
2655 return NULL;
2656 }
2657
2658 /* See gdbtypes.h */
2659
2660 void
2661 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2662 {
2663 struct dynamic_prop_list *temp;
2664
2665 gdb_assert (TYPE_OBJFILE_OWNED (this));
2666
2667 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2668 struct dynamic_prop_list);
2669 temp->prop_kind = prop_kind;
2670 temp->prop = prop;
2671 temp->next = this->main_type->dyn_prop_list;
2672
2673 this->main_type->dyn_prop_list = temp;
2674 }
2675
2676 /* See gdbtypes.h. */
2677
2678 void
2679 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2680 {
2681 struct dynamic_prop_list *prev_node, *curr_node;
2682
2683 curr_node = this->main_type->dyn_prop_list;
2684 prev_node = NULL;
2685
2686 while (NULL != curr_node)
2687 {
2688 if (curr_node->prop_kind == kind)
2689 {
2690 /* Update the linked list but don't free anything.
2691 The property was allocated on objstack and it is not known
2692 if we are on top of it. Nevertheless, everything is released
2693 when the complete objstack is freed. */
2694 if (NULL == prev_node)
2695 this->main_type->dyn_prop_list = curr_node->next;
2696 else
2697 prev_node->next = curr_node->next;
2698
2699 return;
2700 }
2701
2702 prev_node = curr_node;
2703 curr_node = curr_node->next;
2704 }
2705 }
2706
2707 /* Find the real type of TYPE. This function returns the real type,
2708 after removing all layers of typedefs, and completing opaque or stub
2709 types. Completion changes the TYPE argument, but stripping of
2710 typedefs does not.
2711
2712 Instance flags (e.g. const/volatile) are preserved as typedefs are
2713 stripped. If necessary a new qualified form of the underlying type
2714 is created.
2715
2716 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2717 not been computed and we're either in the middle of reading symbols, or
2718 there was no name for the typedef in the debug info.
2719
2720 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2721 QUITs in the symbol reading code can also throw.
2722 Thus this function can throw an exception.
2723
2724 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2725 the target type.
2726
2727 If this is a stubbed struct (i.e. declared as struct foo *), see if
2728 we can find a full definition in some other file. If so, copy this
2729 definition, so we can use it in future. There used to be a comment
2730 (but not any code) that if we don't find a full definition, we'd
2731 set a flag so we don't spend time in the future checking the same
2732 type. That would be a mistake, though--we might load in more
2733 symbols which contain a full definition for the type. */
2734
2735 struct type *
2736 check_typedef (struct type *type)
2737 {
2738 struct type *orig_type = type;
2739
2740 gdb_assert (type);
2741
2742 /* While we're removing typedefs, we don't want to lose qualifiers.
2743 E.g., const/volatile. */
2744 type_instance_flags instance_flags = type->instance_flags ();
2745
2746 while (type->code () == TYPE_CODE_TYPEDEF)
2747 {
2748 if (!TYPE_TARGET_TYPE (type))
2749 {
2750 const char *name;
2751 struct symbol *sym;
2752
2753 /* It is dangerous to call lookup_symbol if we are currently
2754 reading a symtab. Infinite recursion is one danger. */
2755 if (currently_reading_symtab)
2756 return make_qualified_type (type, instance_flags, NULL);
2757
2758 name = type->name ();
2759 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2760 VAR_DOMAIN as appropriate? */
2761 if (name == NULL)
2762 {
2763 stub_noname_complaint ();
2764 return make_qualified_type (type, instance_flags, NULL);
2765 }
2766 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2767 if (sym)
2768 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2769 else /* TYPE_CODE_UNDEF */
2770 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2771 }
2772 type = TYPE_TARGET_TYPE (type);
2773
2774 /* Preserve the instance flags as we traverse down the typedef chain.
2775
2776 Handling address spaces/classes is nasty, what do we do if there's a
2777 conflict?
2778 E.g., what if an outer typedef marks the type as class_1 and an inner
2779 typedef marks the type as class_2?
2780 This is the wrong place to do such error checking. We leave it to
2781 the code that created the typedef in the first place to flag the
2782 error. We just pick the outer address space (akin to letting the
2783 outer cast in a chain of casting win), instead of assuming
2784 "it can't happen". */
2785 {
2786 const type_instance_flags ALL_SPACES
2787 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2788 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2789 const type_instance_flags ALL_CLASSES
2790 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2791
2792 type_instance_flags new_instance_flags = type->instance_flags ();
2793
2794 /* Treat code vs data spaces and address classes separately. */
2795 if ((instance_flags & ALL_SPACES) != 0)
2796 new_instance_flags &= ~ALL_SPACES;
2797 if ((instance_flags & ALL_CLASSES) != 0)
2798 new_instance_flags &= ~ALL_CLASSES;
2799
2800 instance_flags |= new_instance_flags;
2801 }
2802 }
2803
2804 /* If this is a struct/class/union with no fields, then check
2805 whether a full definition exists somewhere else. This is for
2806 systems where a type definition with no fields is issued for such
2807 types, instead of identifying them as stub types in the first
2808 place. */
2809
2810 if (TYPE_IS_OPAQUE (type)
2811 && opaque_type_resolution
2812 && !currently_reading_symtab)
2813 {
2814 const char *name = type->name ();
2815 struct type *newtype;
2816
2817 if (name == NULL)
2818 {
2819 stub_noname_complaint ();
2820 return make_qualified_type (type, instance_flags, NULL);
2821 }
2822 newtype = lookup_transparent_type (name);
2823
2824 if (newtype)
2825 {
2826 /* If the resolved type and the stub are in the same
2827 objfile, then replace the stub type with the real deal.
2828 But if they're in separate objfiles, leave the stub
2829 alone; we'll just look up the transparent type every time
2830 we call check_typedef. We can't create pointers between
2831 types allocated to different objfiles, since they may
2832 have different lifetimes. Trying to copy NEWTYPE over to
2833 TYPE's objfile is pointless, too, since you'll have to
2834 move over any other types NEWTYPE refers to, which could
2835 be an unbounded amount of stuff. */
2836 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2837 type = make_qualified_type (newtype,
2838 TYPE_INSTANCE_FLAGS (type),
2839 type);
2840 else
2841 type = newtype;
2842 }
2843 }
2844 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2845 types. */
2846 else if (type->is_stub () && !currently_reading_symtab)
2847 {
2848 const char *name = type->name ();
2849 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2850 as appropriate? */
2851 struct symbol *sym;
2852
2853 if (name == NULL)
2854 {
2855 stub_noname_complaint ();
2856 return make_qualified_type (type, instance_flags, NULL);
2857 }
2858 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2859 if (sym)
2860 {
2861 /* Same as above for opaque types, we can replace the stub
2862 with the complete type only if they are in the same
2863 objfile. */
2864 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2865 type = make_qualified_type (SYMBOL_TYPE (sym),
2866 TYPE_INSTANCE_FLAGS (type),
2867 type);
2868 else
2869 type = SYMBOL_TYPE (sym);
2870 }
2871 }
2872
2873 if (type->target_is_stub ())
2874 {
2875 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2876
2877 if (target_type->is_stub () || target_type->target_is_stub ())
2878 {
2879 /* Nothing we can do. */
2880 }
2881 else if (type->code () == TYPE_CODE_RANGE)
2882 {
2883 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2884 type->set_target_is_stub (false);
2885 }
2886 else if (type->code () == TYPE_CODE_ARRAY
2887 && update_static_array_size (type))
2888 type->set_target_is_stub (false);
2889 }
2890
2891 type = make_qualified_type (type, instance_flags, NULL);
2892
2893 /* Cache TYPE_LENGTH for future use. */
2894 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2895
2896 return type;
2897 }
2898
2899 /* Parse a type expression in the string [P..P+LENGTH). If an error
2900 occurs, silently return a void type. */
2901
2902 static struct type *
2903 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2904 {
2905 struct ui_file *saved_gdb_stderr;
2906 struct type *type = NULL; /* Initialize to keep gcc happy. */
2907
2908 /* Suppress error messages. */
2909 saved_gdb_stderr = gdb_stderr;
2910 gdb_stderr = &null_stream;
2911
2912 /* Call parse_and_eval_type() without fear of longjmp()s. */
2913 try
2914 {
2915 type = parse_and_eval_type (p, length);
2916 }
2917 catch (const gdb_exception_error &except)
2918 {
2919 type = builtin_type (gdbarch)->builtin_void;
2920 }
2921
2922 /* Stop suppressing error messages. */
2923 gdb_stderr = saved_gdb_stderr;
2924
2925 return type;
2926 }
2927
2928 /* Ugly hack to convert method stubs into method types.
2929
2930 He ain't kiddin'. This demangles the name of the method into a
2931 string including argument types, parses out each argument type,
2932 generates a string casting a zero to that type, evaluates the
2933 string, and stuffs the resulting type into an argtype vector!!!
2934 Then it knows the type of the whole function (including argument
2935 types for overloading), which info used to be in the stab's but was
2936 removed to hack back the space required for them. */
2937
2938 static void
2939 check_stub_method (struct type *type, int method_id, int signature_id)
2940 {
2941 struct gdbarch *gdbarch = get_type_arch (type);
2942 struct fn_field *f;
2943 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2944 char *demangled_name = gdb_demangle (mangled_name,
2945 DMGL_PARAMS | DMGL_ANSI);
2946 char *argtypetext, *p;
2947 int depth = 0, argcount = 1;
2948 struct field *argtypes;
2949 struct type *mtype;
2950
2951 /* Make sure we got back a function string that we can use. */
2952 if (demangled_name)
2953 p = strchr (demangled_name, '(');
2954 else
2955 p = NULL;
2956
2957 if (demangled_name == NULL || p == NULL)
2958 error (_("Internal: Cannot demangle mangled name `%s'."),
2959 mangled_name);
2960
2961 /* Now, read in the parameters that define this type. */
2962 p += 1;
2963 argtypetext = p;
2964 while (*p)
2965 {
2966 if (*p == '(' || *p == '<')
2967 {
2968 depth += 1;
2969 }
2970 else if (*p == ')' || *p == '>')
2971 {
2972 depth -= 1;
2973 }
2974 else if (*p == ',' && depth == 0)
2975 {
2976 argcount += 1;
2977 }
2978
2979 p += 1;
2980 }
2981
2982 /* If we read one argument and it was ``void'', don't count it. */
2983 if (startswith (argtypetext, "(void)"))
2984 argcount -= 1;
2985
2986 /* We need one extra slot, for the THIS pointer. */
2987
2988 argtypes = (struct field *)
2989 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2990 p = argtypetext;
2991
2992 /* Add THIS pointer for non-static methods. */
2993 f = TYPE_FN_FIELDLIST1 (type, method_id);
2994 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2995 argcount = 0;
2996 else
2997 {
2998 argtypes[0].set_type (lookup_pointer_type (type));
2999 argcount = 1;
3000 }
3001
3002 if (*p != ')') /* () means no args, skip while. */
3003 {
3004 depth = 0;
3005 while (*p)
3006 {
3007 if (depth <= 0 && (*p == ',' || *p == ')'))
3008 {
3009 /* Avoid parsing of ellipsis, they will be handled below.
3010 Also avoid ``void'' as above. */
3011 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3012 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3013 {
3014 argtypes[argcount].set_type
3015 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3016 argcount += 1;
3017 }
3018 argtypetext = p + 1;
3019 }
3020
3021 if (*p == '(' || *p == '<')
3022 {
3023 depth += 1;
3024 }
3025 else if (*p == ')' || *p == '>')
3026 {
3027 depth -= 1;
3028 }
3029
3030 p += 1;
3031 }
3032 }
3033
3034 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3035
3036 /* Now update the old "stub" type into a real type. */
3037 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3038 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3039 We want a method (TYPE_CODE_METHOD). */
3040 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3041 argtypes, argcount, p[-2] == '.');
3042 mtype->set_is_stub (false);
3043 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3044
3045 xfree (demangled_name);
3046 }
3047
3048 /* This is the external interface to check_stub_method, above. This
3049 function unstubs all of the signatures for TYPE's METHOD_ID method
3050 name. After calling this function TYPE_FN_FIELD_STUB will be
3051 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3052 correct.
3053
3054 This function unfortunately can not die until stabs do. */
3055
3056 void
3057 check_stub_method_group (struct type *type, int method_id)
3058 {
3059 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3060 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3061
3062 for (int j = 0; j < len; j++)
3063 {
3064 if (TYPE_FN_FIELD_STUB (f, j))
3065 check_stub_method (type, method_id, j);
3066 }
3067 }
3068
3069 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3070 const struct cplus_struct_type cplus_struct_default = { };
3071
3072 void
3073 allocate_cplus_struct_type (struct type *type)
3074 {
3075 if (HAVE_CPLUS_STRUCT (type))
3076 /* Structure was already allocated. Nothing more to do. */
3077 return;
3078
3079 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3080 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3081 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3082 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3083 set_type_vptr_fieldno (type, -1);
3084 }
3085
3086 const struct gnat_aux_type gnat_aux_default =
3087 { NULL };
3088
3089 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3090 and allocate the associated gnat-specific data. The gnat-specific
3091 data is also initialized to gnat_aux_default. */
3092
3093 void
3094 allocate_gnat_aux_type (struct type *type)
3095 {
3096 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3097 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3098 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3099 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3100 }
3101
3102 /* Helper function to initialize a newly allocated type. Set type code
3103 to CODE and initialize the type-specific fields accordingly. */
3104
3105 static void
3106 set_type_code (struct type *type, enum type_code code)
3107 {
3108 type->set_code (code);
3109
3110 switch (code)
3111 {
3112 case TYPE_CODE_STRUCT:
3113 case TYPE_CODE_UNION:
3114 case TYPE_CODE_NAMESPACE:
3115 INIT_CPLUS_SPECIFIC (type);
3116 break;
3117 case TYPE_CODE_FLT:
3118 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3119 break;
3120 case TYPE_CODE_FUNC:
3121 INIT_FUNC_SPECIFIC (type);
3122 break;
3123 }
3124 }
3125
3126 /* Helper function to verify floating-point format and size.
3127 BIT is the type size in bits; if BIT equals -1, the size is
3128 determined by the floatformat. Returns size to be used. */
3129
3130 static int
3131 verify_floatformat (int bit, const struct floatformat *floatformat)
3132 {
3133 gdb_assert (floatformat != NULL);
3134
3135 if (bit == -1)
3136 bit = floatformat->totalsize;
3137
3138 gdb_assert (bit >= 0);
3139 gdb_assert (bit >= floatformat->totalsize);
3140
3141 return bit;
3142 }
3143
3144 /* Return the floating-point format for a floating-point variable of
3145 type TYPE. */
3146
3147 const struct floatformat *
3148 floatformat_from_type (const struct type *type)
3149 {
3150 gdb_assert (type->code () == TYPE_CODE_FLT);
3151 gdb_assert (TYPE_FLOATFORMAT (type));
3152 return TYPE_FLOATFORMAT (type);
3153 }
3154
3155 /* Helper function to initialize the standard scalar types.
3156
3157 If NAME is non-NULL, then it is used to initialize the type name.
3158 Note that NAME is not copied; it is required to have a lifetime at
3159 least as long as OBJFILE. */
3160
3161 struct type *
3162 init_type (struct objfile *objfile, enum type_code code, int bit,
3163 const char *name)
3164 {
3165 struct type *type;
3166
3167 type = alloc_type (objfile);
3168 set_type_code (type, code);
3169 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3170 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3171 type->set_name (name);
3172
3173 return type;
3174 }
3175
3176 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3177 to use with variables that have no debug info. NAME is the type
3178 name. */
3179
3180 static struct type *
3181 init_nodebug_var_type (struct objfile *objfile, const char *name)
3182 {
3183 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3184 }
3185
3186 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3187 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3188 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3189
3190 struct type *
3191 init_integer_type (struct objfile *objfile,
3192 int bit, int unsigned_p, const char *name)
3193 {
3194 struct type *t;
3195
3196 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3197 if (unsigned_p)
3198 t->set_is_unsigned (true);
3199
3200 return t;
3201 }
3202
3203 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3204 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3205 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3206
3207 struct type *
3208 init_character_type (struct objfile *objfile,
3209 int bit, int unsigned_p, const char *name)
3210 {
3211 struct type *t;
3212
3213 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3214 if (unsigned_p)
3215 t->set_is_unsigned (true);
3216
3217 return t;
3218 }
3219
3220 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3221 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3222 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3223
3224 struct type *
3225 init_boolean_type (struct objfile *objfile,
3226 int bit, int unsigned_p, const char *name)
3227 {
3228 struct type *t;
3229
3230 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3231 if (unsigned_p)
3232 t->set_is_unsigned (true);
3233
3234 return t;
3235 }
3236
3237 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3238 BIT is the type size in bits; if BIT equals -1, the size is
3239 determined by the floatformat. NAME is the type name. Set the
3240 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3241 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3242 order of the objfile's architecture is used. */
3243
3244 struct type *
3245 init_float_type (struct objfile *objfile,
3246 int bit, const char *name,
3247 const struct floatformat **floatformats,
3248 enum bfd_endian byte_order)
3249 {
3250 if (byte_order == BFD_ENDIAN_UNKNOWN)
3251 {
3252 struct gdbarch *gdbarch = objfile->arch ();
3253 byte_order = gdbarch_byte_order (gdbarch);
3254 }
3255 const struct floatformat *fmt = floatformats[byte_order];
3256 struct type *t;
3257
3258 bit = verify_floatformat (bit, fmt);
3259 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3260 TYPE_FLOATFORMAT (t) = fmt;
3261
3262 return t;
3263 }
3264
3265 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3266 BIT is the type size in bits. NAME is the type name. */
3267
3268 struct type *
3269 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3270 {
3271 struct type *t;
3272
3273 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3274 return t;
3275 }
3276
3277 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3278 name. TARGET_TYPE is the component type. */
3279
3280 struct type *
3281 init_complex_type (const char *name, struct type *target_type)
3282 {
3283 struct type *t;
3284
3285 gdb_assert (target_type->code () == TYPE_CODE_INT
3286 || target_type->code () == TYPE_CODE_FLT);
3287
3288 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3289 {
3290 if (name == nullptr)
3291 {
3292 char *new_name
3293 = (char *) TYPE_ALLOC (target_type,
3294 strlen (target_type->name ())
3295 + strlen ("_Complex ") + 1);
3296 strcpy (new_name, "_Complex ");
3297 strcat (new_name, target_type->name ());
3298 name = new_name;
3299 }
3300
3301 t = alloc_type_copy (target_type);
3302 set_type_code (t, TYPE_CODE_COMPLEX);
3303 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3304 t->set_name (name);
3305
3306 TYPE_TARGET_TYPE (t) = target_type;
3307 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3308 }
3309
3310 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3311 }
3312
3313 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3314 BIT is the pointer type size in bits. NAME is the type name.
3315 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3316 TYPE_UNSIGNED flag. */
3317
3318 struct type *
3319 init_pointer_type (struct objfile *objfile,
3320 int bit, const char *name, struct type *target_type)
3321 {
3322 struct type *t;
3323
3324 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3325 TYPE_TARGET_TYPE (t) = target_type;
3326 t->set_is_unsigned (true);
3327 return t;
3328 }
3329
3330 /* See gdbtypes.h. */
3331
3332 unsigned
3333 type_raw_align (struct type *type)
3334 {
3335 if (type->align_log2 != 0)
3336 return 1 << (type->align_log2 - 1);
3337 return 0;
3338 }
3339
3340 /* See gdbtypes.h. */
3341
3342 unsigned
3343 type_align (struct type *type)
3344 {
3345 /* Check alignment provided in the debug information. */
3346 unsigned raw_align = type_raw_align (type);
3347 if (raw_align != 0)
3348 return raw_align;
3349
3350 /* Allow the architecture to provide an alignment. */
3351 struct gdbarch *arch = get_type_arch (type);
3352 ULONGEST align = gdbarch_type_align (arch, type);
3353 if (align != 0)
3354 return align;
3355
3356 switch (type->code ())
3357 {
3358 case TYPE_CODE_PTR:
3359 case TYPE_CODE_FUNC:
3360 case TYPE_CODE_FLAGS:
3361 case TYPE_CODE_INT:
3362 case TYPE_CODE_RANGE:
3363 case TYPE_CODE_FLT:
3364 case TYPE_CODE_ENUM:
3365 case TYPE_CODE_REF:
3366 case TYPE_CODE_RVALUE_REF:
3367 case TYPE_CODE_CHAR:
3368 case TYPE_CODE_BOOL:
3369 case TYPE_CODE_DECFLOAT:
3370 case TYPE_CODE_METHODPTR:
3371 case TYPE_CODE_MEMBERPTR:
3372 align = type_length_units (check_typedef (type));
3373 break;
3374
3375 case TYPE_CODE_ARRAY:
3376 case TYPE_CODE_COMPLEX:
3377 case TYPE_CODE_TYPEDEF:
3378 align = type_align (TYPE_TARGET_TYPE (type));
3379 break;
3380
3381 case TYPE_CODE_STRUCT:
3382 case TYPE_CODE_UNION:
3383 {
3384 int number_of_non_static_fields = 0;
3385 for (unsigned i = 0; i < type->num_fields (); ++i)
3386 {
3387 if (!field_is_static (&type->field (i)))
3388 {
3389 number_of_non_static_fields++;
3390 ULONGEST f_align = type_align (type->field (i).type ());
3391 if (f_align == 0)
3392 {
3393 /* Don't pretend we know something we don't. */
3394 align = 0;
3395 break;
3396 }
3397 if (f_align > align)
3398 align = f_align;
3399 }
3400 }
3401 /* A struct with no fields, or with only static fields has an
3402 alignment of 1. */
3403 if (number_of_non_static_fields == 0)
3404 align = 1;
3405 }
3406 break;
3407
3408 case TYPE_CODE_SET:
3409 case TYPE_CODE_STRING:
3410 /* Not sure what to do here, and these can't appear in C or C++
3411 anyway. */
3412 break;
3413
3414 case TYPE_CODE_VOID:
3415 align = 1;
3416 break;
3417
3418 case TYPE_CODE_ERROR:
3419 case TYPE_CODE_METHOD:
3420 default:
3421 break;
3422 }
3423
3424 if ((align & (align - 1)) != 0)
3425 {
3426 /* Not a power of 2, so pass. */
3427 align = 0;
3428 }
3429
3430 return align;
3431 }
3432
3433 /* See gdbtypes.h. */
3434
3435 bool
3436 set_type_align (struct type *type, ULONGEST align)
3437 {
3438 /* Must be a power of 2. Zero is ok. */
3439 gdb_assert ((align & (align - 1)) == 0);
3440
3441 unsigned result = 0;
3442 while (align != 0)
3443 {
3444 ++result;
3445 align >>= 1;
3446 }
3447
3448 if (result >= (1 << TYPE_ALIGN_BITS))
3449 return false;
3450
3451 type->align_log2 = result;
3452 return true;
3453 }
3454
3455 \f
3456 /* Queries on types. */
3457
3458 int
3459 can_dereference (struct type *t)
3460 {
3461 /* FIXME: Should we return true for references as well as
3462 pointers? */
3463 t = check_typedef (t);
3464 return
3465 (t != NULL
3466 && t->code () == TYPE_CODE_PTR
3467 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3468 }
3469
3470 int
3471 is_integral_type (struct type *t)
3472 {
3473 t = check_typedef (t);
3474 return
3475 ((t != NULL)
3476 && ((t->code () == TYPE_CODE_INT)
3477 || (t->code () == TYPE_CODE_ENUM)
3478 || (t->code () == TYPE_CODE_FLAGS)
3479 || (t->code () == TYPE_CODE_CHAR)
3480 || (t->code () == TYPE_CODE_RANGE)
3481 || (t->code () == TYPE_CODE_BOOL)));
3482 }
3483
3484 int
3485 is_floating_type (struct type *t)
3486 {
3487 t = check_typedef (t);
3488 return
3489 ((t != NULL)
3490 && ((t->code () == TYPE_CODE_FLT)
3491 || (t->code () == TYPE_CODE_DECFLOAT)));
3492 }
3493
3494 /* Return true if TYPE is scalar. */
3495
3496 int
3497 is_scalar_type (struct type *type)
3498 {
3499 type = check_typedef (type);
3500
3501 switch (type->code ())
3502 {
3503 case TYPE_CODE_ARRAY:
3504 case TYPE_CODE_STRUCT:
3505 case TYPE_CODE_UNION:
3506 case TYPE_CODE_SET:
3507 case TYPE_CODE_STRING:
3508 return 0;
3509 default:
3510 return 1;
3511 }
3512 }
3513
3514 /* Return true if T is scalar, or a composite type which in practice has
3515 the memory layout of a scalar type. E.g., an array or struct with only
3516 one scalar element inside it, or a union with only scalar elements. */
3517
3518 int
3519 is_scalar_type_recursive (struct type *t)
3520 {
3521 t = check_typedef (t);
3522
3523 if (is_scalar_type (t))
3524 return 1;
3525 /* Are we dealing with an array or string of known dimensions? */
3526 else if ((t->code () == TYPE_CODE_ARRAY
3527 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3528 && t->index_type ()->code () == TYPE_CODE_RANGE)
3529 {
3530 LONGEST low_bound, high_bound;
3531 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3532
3533 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3534
3535 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3536 }
3537 /* Are we dealing with a struct with one element? */
3538 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3539 return is_scalar_type_recursive (t->field (0).type ());
3540 else if (t->code () == TYPE_CODE_UNION)
3541 {
3542 int i, n = t->num_fields ();
3543
3544 /* If all elements of the union are scalar, then the union is scalar. */
3545 for (i = 0; i < n; i++)
3546 if (!is_scalar_type_recursive (t->field (i).type ()))
3547 return 0;
3548
3549 return 1;
3550 }
3551
3552 return 0;
3553 }
3554
3555 /* Return true is T is a class or a union. False otherwise. */
3556
3557 int
3558 class_or_union_p (const struct type *t)
3559 {
3560 return (t->code () == TYPE_CODE_STRUCT
3561 || t->code () == TYPE_CODE_UNION);
3562 }
3563
3564 /* A helper function which returns true if types A and B represent the
3565 "same" class type. This is true if the types have the same main
3566 type, or the same name. */
3567
3568 int
3569 class_types_same_p (const struct type *a, const struct type *b)
3570 {
3571 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3572 || (a->name () && b->name ()
3573 && !strcmp (a->name (), b->name ())));
3574 }
3575
3576 /* If BASE is an ancestor of DCLASS return the distance between them.
3577 otherwise return -1;
3578 eg:
3579
3580 class A {};
3581 class B: public A {};
3582 class C: public B {};
3583 class D: C {};
3584
3585 distance_to_ancestor (A, A, 0) = 0
3586 distance_to_ancestor (A, B, 0) = 1
3587 distance_to_ancestor (A, C, 0) = 2
3588 distance_to_ancestor (A, D, 0) = 3
3589
3590 If PUBLIC is 1 then only public ancestors are considered,
3591 and the function returns the distance only if BASE is a public ancestor
3592 of DCLASS.
3593 Eg:
3594
3595 distance_to_ancestor (A, D, 1) = -1. */
3596
3597 static int
3598 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3599 {
3600 int i;
3601 int d;
3602
3603 base = check_typedef (base);
3604 dclass = check_typedef (dclass);
3605
3606 if (class_types_same_p (base, dclass))
3607 return 0;
3608
3609 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3610 {
3611 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3612 continue;
3613
3614 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3615 if (d >= 0)
3616 return 1 + d;
3617 }
3618
3619 return -1;
3620 }
3621
3622 /* Check whether BASE is an ancestor or base class or DCLASS
3623 Return 1 if so, and 0 if not.
3624 Note: If BASE and DCLASS are of the same type, this function
3625 will return 1. So for some class A, is_ancestor (A, A) will
3626 return 1. */
3627
3628 int
3629 is_ancestor (struct type *base, struct type *dclass)
3630 {
3631 return distance_to_ancestor (base, dclass, 0) >= 0;
3632 }
3633
3634 /* Like is_ancestor, but only returns true when BASE is a public
3635 ancestor of DCLASS. */
3636
3637 int
3638 is_public_ancestor (struct type *base, struct type *dclass)
3639 {
3640 return distance_to_ancestor (base, dclass, 1) >= 0;
3641 }
3642
3643 /* A helper function for is_unique_ancestor. */
3644
3645 static int
3646 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3647 int *offset,
3648 const gdb_byte *valaddr, int embedded_offset,
3649 CORE_ADDR address, struct value *val)
3650 {
3651 int i, count = 0;
3652
3653 base = check_typedef (base);
3654 dclass = check_typedef (dclass);
3655
3656 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3657 {
3658 struct type *iter;
3659 int this_offset;
3660
3661 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3662
3663 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3664 address, val);
3665
3666 if (class_types_same_p (base, iter))
3667 {
3668 /* If this is the first subclass, set *OFFSET and set count
3669 to 1. Otherwise, if this is at the same offset as
3670 previous instances, do nothing. Otherwise, increment
3671 count. */
3672 if (*offset == -1)
3673 {
3674 *offset = this_offset;
3675 count = 1;
3676 }
3677 else if (this_offset == *offset)
3678 {
3679 /* Nothing. */
3680 }
3681 else
3682 ++count;
3683 }
3684 else
3685 count += is_unique_ancestor_worker (base, iter, offset,
3686 valaddr,
3687 embedded_offset + this_offset,
3688 address, val);
3689 }
3690
3691 return count;
3692 }
3693
3694 /* Like is_ancestor, but only returns true if BASE is a unique base
3695 class of the type of VAL. */
3696
3697 int
3698 is_unique_ancestor (struct type *base, struct value *val)
3699 {
3700 int offset = -1;
3701
3702 return is_unique_ancestor_worker (base, value_type (val), &offset,
3703 value_contents_for_printing (val),
3704 value_embedded_offset (val),
3705 value_address (val), val) == 1;
3706 }
3707
3708 /* See gdbtypes.h. */
3709
3710 enum bfd_endian
3711 type_byte_order (const struct type *type)
3712 {
3713 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3714 if (type->endianity_is_not_default ())
3715 {
3716 if (byteorder == BFD_ENDIAN_BIG)
3717 return BFD_ENDIAN_LITTLE;
3718 else
3719 {
3720 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3721 return BFD_ENDIAN_BIG;
3722 }
3723 }
3724
3725 return byteorder;
3726 }
3727
3728 \f
3729 /* Overload resolution. */
3730
3731 /* Return the sum of the rank of A with the rank of B. */
3732
3733 struct rank
3734 sum_ranks (struct rank a, struct rank b)
3735 {
3736 struct rank c;
3737 c.rank = a.rank + b.rank;
3738 c.subrank = a.subrank + b.subrank;
3739 return c;
3740 }
3741
3742 /* Compare rank A and B and return:
3743 0 if a = b
3744 1 if a is better than b
3745 -1 if b is better than a. */
3746
3747 int
3748 compare_ranks (struct rank a, struct rank b)
3749 {
3750 if (a.rank == b.rank)
3751 {
3752 if (a.subrank == b.subrank)
3753 return 0;
3754 if (a.subrank < b.subrank)
3755 return 1;
3756 if (a.subrank > b.subrank)
3757 return -1;
3758 }
3759
3760 if (a.rank < b.rank)
3761 return 1;
3762
3763 /* a.rank > b.rank */
3764 return -1;
3765 }
3766
3767 /* Functions for overload resolution begin here. */
3768
3769 /* Compare two badness vectors A and B and return the result.
3770 0 => A and B are identical
3771 1 => A and B are incomparable
3772 2 => A is better than B
3773 3 => A is worse than B */
3774
3775 int
3776 compare_badness (const badness_vector &a, const badness_vector &b)
3777 {
3778 int i;
3779 int tmp;
3780 short found_pos = 0; /* any positives in c? */
3781 short found_neg = 0; /* any negatives in c? */
3782
3783 /* differing sizes => incomparable */
3784 if (a.size () != b.size ())
3785 return 1;
3786
3787 /* Subtract b from a */
3788 for (i = 0; i < a.size (); i++)
3789 {
3790 tmp = compare_ranks (b[i], a[i]);
3791 if (tmp > 0)
3792 found_pos = 1;
3793 else if (tmp < 0)
3794 found_neg = 1;
3795 }
3796
3797 if (found_pos)
3798 {
3799 if (found_neg)
3800 return 1; /* incomparable */
3801 else
3802 return 3; /* A > B */
3803 }
3804 else
3805 /* no positives */
3806 {
3807 if (found_neg)
3808 return 2; /* A < B */
3809 else
3810 return 0; /* A == B */
3811 }
3812 }
3813
3814 /* Rank a function by comparing its parameter types (PARMS), to the
3815 types of an argument list (ARGS). Return the badness vector. This
3816 has ARGS.size() + 1 entries. */
3817
3818 badness_vector
3819 rank_function (gdb::array_view<type *> parms,
3820 gdb::array_view<value *> args)
3821 {
3822 /* add 1 for the length-match rank. */
3823 badness_vector bv;
3824 bv.reserve (1 + args.size ());
3825
3826 /* First compare the lengths of the supplied lists.
3827 If there is a mismatch, set it to a high value. */
3828
3829 /* pai/1997-06-03 FIXME: when we have debug info about default
3830 arguments and ellipsis parameter lists, we should consider those
3831 and rank the length-match more finely. */
3832
3833 bv.push_back ((args.size () != parms.size ())
3834 ? LENGTH_MISMATCH_BADNESS
3835 : EXACT_MATCH_BADNESS);
3836
3837 /* Now rank all the parameters of the candidate function. */
3838 size_t min_len = std::min (parms.size (), args.size ());
3839
3840 for (size_t i = 0; i < min_len; i++)
3841 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3842 args[i]));
3843
3844 /* If more arguments than parameters, add dummy entries. */
3845 for (size_t i = min_len; i < args.size (); i++)
3846 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3847
3848 return bv;
3849 }
3850
3851 /* Compare the names of two integer types, assuming that any sign
3852 qualifiers have been checked already. We do it this way because
3853 there may be an "int" in the name of one of the types. */
3854
3855 static int
3856 integer_types_same_name_p (const char *first, const char *second)
3857 {
3858 int first_p, second_p;
3859
3860 /* If both are shorts, return 1; if neither is a short, keep
3861 checking. */
3862 first_p = (strstr (first, "short") != NULL);
3863 second_p = (strstr (second, "short") != NULL);
3864 if (first_p && second_p)
3865 return 1;
3866 if (first_p || second_p)
3867 return 0;
3868
3869 /* Likewise for long. */
3870 first_p = (strstr (first, "long") != NULL);
3871 second_p = (strstr (second, "long") != NULL);
3872 if (first_p && second_p)
3873 return 1;
3874 if (first_p || second_p)
3875 return 0;
3876
3877 /* Likewise for char. */
3878 first_p = (strstr (first, "char") != NULL);
3879 second_p = (strstr (second, "char") != NULL);
3880 if (first_p && second_p)
3881 return 1;
3882 if (first_p || second_p)
3883 return 0;
3884
3885 /* They must both be ints. */
3886 return 1;
3887 }
3888
3889 /* Compares type A to type B. Returns true if they represent the same
3890 type, false otherwise. */
3891
3892 bool
3893 types_equal (struct type *a, struct type *b)
3894 {
3895 /* Identical type pointers. */
3896 /* However, this still doesn't catch all cases of same type for b
3897 and a. The reason is that builtin types are different from
3898 the same ones constructed from the object. */
3899 if (a == b)
3900 return true;
3901
3902 /* Resolve typedefs */
3903 if (a->code () == TYPE_CODE_TYPEDEF)
3904 a = check_typedef (a);
3905 if (b->code () == TYPE_CODE_TYPEDEF)
3906 b = check_typedef (b);
3907
3908 /* If after resolving typedefs a and b are not of the same type
3909 code then they are not equal. */
3910 if (a->code () != b->code ())
3911 return false;
3912
3913 /* If a and b are both pointers types or both reference types then
3914 they are equal of the same type iff the objects they refer to are
3915 of the same type. */
3916 if (a->code () == TYPE_CODE_PTR
3917 || a->code () == TYPE_CODE_REF)
3918 return types_equal (TYPE_TARGET_TYPE (a),
3919 TYPE_TARGET_TYPE (b));
3920
3921 /* Well, damnit, if the names are exactly the same, I'll say they
3922 are exactly the same. This happens when we generate method
3923 stubs. The types won't point to the same address, but they
3924 really are the same. */
3925
3926 if (a->name () && b->name ()
3927 && strcmp (a->name (), b->name ()) == 0)
3928 return true;
3929
3930 /* Check if identical after resolving typedefs. */
3931 if (a == b)
3932 return true;
3933
3934 /* Two function types are equal if their argument and return types
3935 are equal. */
3936 if (a->code () == TYPE_CODE_FUNC)
3937 {
3938 int i;
3939
3940 if (a->num_fields () != b->num_fields ())
3941 return false;
3942
3943 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3944 return false;
3945
3946 for (i = 0; i < a->num_fields (); ++i)
3947 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3948 return false;
3949
3950 return true;
3951 }
3952
3953 return false;
3954 }
3955 \f
3956 /* Deep comparison of types. */
3957
3958 /* An entry in the type-equality bcache. */
3959
3960 struct type_equality_entry
3961 {
3962 type_equality_entry (struct type *t1, struct type *t2)
3963 : type1 (t1),
3964 type2 (t2)
3965 {
3966 }
3967
3968 struct type *type1, *type2;
3969 };
3970
3971 /* A helper function to compare two strings. Returns true if they are
3972 the same, false otherwise. Handles NULLs properly. */
3973
3974 static bool
3975 compare_maybe_null_strings (const char *s, const char *t)
3976 {
3977 if (s == NULL || t == NULL)
3978 return s == t;
3979 return strcmp (s, t) == 0;
3980 }
3981
3982 /* A helper function for check_types_worklist that checks two types for
3983 "deep" equality. Returns true if the types are considered the
3984 same, false otherwise. */
3985
3986 static bool
3987 check_types_equal (struct type *type1, struct type *type2,
3988 std::vector<type_equality_entry> *worklist)
3989 {
3990 type1 = check_typedef (type1);
3991 type2 = check_typedef (type2);
3992
3993 if (type1 == type2)
3994 return true;
3995
3996 if (type1->code () != type2->code ()
3997 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3998 || type1->is_unsigned () != type2->is_unsigned ()
3999 || type1->has_no_signedness () != type2->has_no_signedness ()
4000 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4001 || type1->has_varargs () != type2->has_varargs ()
4002 || type1->is_vector () != type2->is_vector ()
4003 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4004 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4005 || type1->num_fields () != type2->num_fields ())
4006 return false;
4007
4008 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4009 return false;
4010 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4011 return false;
4012
4013 if (type1->code () == TYPE_CODE_RANGE)
4014 {
4015 if (*type1->bounds () != *type2->bounds ())
4016 return false;
4017 }
4018 else
4019 {
4020 int i;
4021
4022 for (i = 0; i < type1->num_fields (); ++i)
4023 {
4024 const struct field *field1 = &type1->field (i);
4025 const struct field *field2 = &type2->field (i);
4026
4027 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4028 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4029 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4030 return false;
4031 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4032 FIELD_NAME (*field2)))
4033 return false;
4034 switch (FIELD_LOC_KIND (*field1))
4035 {
4036 case FIELD_LOC_KIND_BITPOS:
4037 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4038 return false;
4039 break;
4040 case FIELD_LOC_KIND_ENUMVAL:
4041 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4042 return false;
4043 break;
4044 case FIELD_LOC_KIND_PHYSADDR:
4045 if (FIELD_STATIC_PHYSADDR (*field1)
4046 != FIELD_STATIC_PHYSADDR (*field2))
4047 return false;
4048 break;
4049 case FIELD_LOC_KIND_PHYSNAME:
4050 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4051 FIELD_STATIC_PHYSNAME (*field2)))
4052 return false;
4053 break;
4054 case FIELD_LOC_KIND_DWARF_BLOCK:
4055 {
4056 struct dwarf2_locexpr_baton *block1, *block2;
4057
4058 block1 = FIELD_DWARF_BLOCK (*field1);
4059 block2 = FIELD_DWARF_BLOCK (*field2);
4060 if (block1->per_cu != block2->per_cu
4061 || block1->size != block2->size
4062 || memcmp (block1->data, block2->data, block1->size) != 0)
4063 return false;
4064 }
4065 break;
4066 default:
4067 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4068 "%d by check_types_equal"),
4069 FIELD_LOC_KIND (*field1));
4070 }
4071
4072 worklist->emplace_back (field1->type (), field2->type ());
4073 }
4074 }
4075
4076 if (TYPE_TARGET_TYPE (type1) != NULL)
4077 {
4078 if (TYPE_TARGET_TYPE (type2) == NULL)
4079 return false;
4080
4081 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4082 TYPE_TARGET_TYPE (type2));
4083 }
4084 else if (TYPE_TARGET_TYPE (type2) != NULL)
4085 return false;
4086
4087 return true;
4088 }
4089
4090 /* Check types on a worklist for equality. Returns false if any pair
4091 is not equal, true if they are all considered equal. */
4092
4093 static bool
4094 check_types_worklist (std::vector<type_equality_entry> *worklist,
4095 gdb::bcache *cache)
4096 {
4097 while (!worklist->empty ())
4098 {
4099 bool added;
4100
4101 struct type_equality_entry entry = std::move (worklist->back ());
4102 worklist->pop_back ();
4103
4104 /* If the type pair has already been visited, we know it is
4105 ok. */
4106 cache->insert (&entry, sizeof (entry), &added);
4107 if (!added)
4108 continue;
4109
4110 if (!check_types_equal (entry.type1, entry.type2, worklist))
4111 return false;
4112 }
4113
4114 return true;
4115 }
4116
4117 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4118 "deep comparison". Otherwise return false. */
4119
4120 bool
4121 types_deeply_equal (struct type *type1, struct type *type2)
4122 {
4123 std::vector<type_equality_entry> worklist;
4124
4125 gdb_assert (type1 != NULL && type2 != NULL);
4126
4127 /* Early exit for the simple case. */
4128 if (type1 == type2)
4129 return true;
4130
4131 gdb::bcache cache;
4132 worklist.emplace_back (type1, type2);
4133 return check_types_worklist (&worklist, &cache);
4134 }
4135
4136 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4137 Otherwise return one. */
4138
4139 int
4140 type_not_allocated (const struct type *type)
4141 {
4142 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4143
4144 return (prop != nullptr && prop->kind () == PROP_CONST
4145 && prop->const_val () == 0);
4146 }
4147
4148 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4149 Otherwise return one. */
4150
4151 int
4152 type_not_associated (const struct type *type)
4153 {
4154 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4155
4156 return (prop != nullptr && prop->kind () == PROP_CONST
4157 && prop->const_val () == 0);
4158 }
4159
4160 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4161
4162 static struct rank
4163 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4164 {
4165 struct rank rank = {0,0};
4166
4167 switch (arg->code ())
4168 {
4169 case TYPE_CODE_PTR:
4170
4171 /* Allowed pointer conversions are:
4172 (a) pointer to void-pointer conversion. */
4173 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4174 return VOID_PTR_CONVERSION_BADNESS;
4175
4176 /* (b) pointer to ancestor-pointer conversion. */
4177 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4178 TYPE_TARGET_TYPE (arg),
4179 0);
4180 if (rank.subrank >= 0)
4181 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4182
4183 return INCOMPATIBLE_TYPE_BADNESS;
4184 case TYPE_CODE_ARRAY:
4185 {
4186 struct type *t1 = TYPE_TARGET_TYPE (parm);
4187 struct type *t2 = TYPE_TARGET_TYPE (arg);
4188
4189 if (types_equal (t1, t2))
4190 {
4191 /* Make sure they are CV equal. */
4192 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4193 rank.subrank |= CV_CONVERSION_CONST;
4194 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4195 rank.subrank |= CV_CONVERSION_VOLATILE;
4196 if (rank.subrank != 0)
4197 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4198 return EXACT_MATCH_BADNESS;
4199 }
4200 return INCOMPATIBLE_TYPE_BADNESS;
4201 }
4202 case TYPE_CODE_FUNC:
4203 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4204 case TYPE_CODE_INT:
4205 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4206 {
4207 if (value_as_long (value) == 0)
4208 {
4209 /* Null pointer conversion: allow it to be cast to a pointer.
4210 [4.10.1 of C++ standard draft n3290] */
4211 return NULL_POINTER_CONVERSION_BADNESS;
4212 }
4213 else
4214 {
4215 /* If type checking is disabled, allow the conversion. */
4216 if (!strict_type_checking)
4217 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4218 }
4219 }
4220 /* fall through */
4221 case TYPE_CODE_ENUM:
4222 case TYPE_CODE_FLAGS:
4223 case TYPE_CODE_CHAR:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_BOOL:
4226 default:
4227 return INCOMPATIBLE_TYPE_BADNESS;
4228 }
4229 }
4230
4231 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4232
4233 static struct rank
4234 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4235 {
4236 switch (arg->code ())
4237 {
4238 case TYPE_CODE_PTR:
4239 case TYPE_CODE_ARRAY:
4240 return rank_one_type (TYPE_TARGET_TYPE (parm),
4241 TYPE_TARGET_TYPE (arg), NULL);
4242 default:
4243 return INCOMPATIBLE_TYPE_BADNESS;
4244 }
4245 }
4246
4247 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4248
4249 static struct rank
4250 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4251 {
4252 switch (arg->code ())
4253 {
4254 case TYPE_CODE_PTR: /* funcptr -> func */
4255 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4256 default:
4257 return INCOMPATIBLE_TYPE_BADNESS;
4258 }
4259 }
4260
4261 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4262
4263 static struct rank
4264 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4265 {
4266 switch (arg->code ())
4267 {
4268 case TYPE_CODE_INT:
4269 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4270 {
4271 /* Deal with signed, unsigned, and plain chars and
4272 signed and unsigned ints. */
4273 if (parm->has_no_signedness ())
4274 {
4275 /* This case only for character types. */
4276 if (arg->has_no_signedness ())
4277 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4278 else /* signed/unsigned char -> plain char */
4279 return INTEGER_CONVERSION_BADNESS;
4280 }
4281 else if (parm->is_unsigned ())
4282 {
4283 if (arg->is_unsigned ())
4284 {
4285 /* unsigned int -> unsigned int, or
4286 unsigned long -> unsigned long */
4287 if (integer_types_same_name_p (parm->name (),
4288 arg->name ()))
4289 return EXACT_MATCH_BADNESS;
4290 else if (integer_types_same_name_p (arg->name (),
4291 "int")
4292 && integer_types_same_name_p (parm->name (),
4293 "long"))
4294 /* unsigned int -> unsigned long */
4295 return INTEGER_PROMOTION_BADNESS;
4296 else
4297 /* unsigned long -> unsigned int */
4298 return INTEGER_CONVERSION_BADNESS;
4299 }
4300 else
4301 {
4302 if (integer_types_same_name_p (arg->name (),
4303 "long")
4304 && integer_types_same_name_p (parm->name (),
4305 "int"))
4306 /* signed long -> unsigned int */
4307 return INTEGER_CONVERSION_BADNESS;
4308 else
4309 /* signed int/long -> unsigned int/long */
4310 return INTEGER_CONVERSION_BADNESS;
4311 }
4312 }
4313 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4314 {
4315 if (integer_types_same_name_p (parm->name (),
4316 arg->name ()))
4317 return EXACT_MATCH_BADNESS;
4318 else if (integer_types_same_name_p (arg->name (),
4319 "int")
4320 && integer_types_same_name_p (parm->name (),
4321 "long"))
4322 return INTEGER_PROMOTION_BADNESS;
4323 else
4324 return INTEGER_CONVERSION_BADNESS;
4325 }
4326 else
4327 return INTEGER_CONVERSION_BADNESS;
4328 }
4329 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4330 return INTEGER_PROMOTION_BADNESS;
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 case TYPE_CODE_ENUM:
4334 case TYPE_CODE_FLAGS:
4335 case TYPE_CODE_CHAR:
4336 case TYPE_CODE_RANGE:
4337 case TYPE_CODE_BOOL:
4338 if (TYPE_DECLARED_CLASS (arg))
4339 return INCOMPATIBLE_TYPE_BADNESS;
4340 return INTEGER_PROMOTION_BADNESS;
4341 case TYPE_CODE_FLT:
4342 return INT_FLOAT_CONVERSION_BADNESS;
4343 case TYPE_CODE_PTR:
4344 return NS_POINTER_CONVERSION_BADNESS;
4345 default:
4346 return INCOMPATIBLE_TYPE_BADNESS;
4347 }
4348 }
4349
4350 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4351
4352 static struct rank
4353 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4354 {
4355 switch (arg->code ())
4356 {
4357 case TYPE_CODE_INT:
4358 case TYPE_CODE_CHAR:
4359 case TYPE_CODE_RANGE:
4360 case TYPE_CODE_BOOL:
4361 case TYPE_CODE_ENUM:
4362 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4363 return INCOMPATIBLE_TYPE_BADNESS;
4364 return INTEGER_CONVERSION_BADNESS;
4365 case TYPE_CODE_FLT:
4366 return INT_FLOAT_CONVERSION_BADNESS;
4367 default:
4368 return INCOMPATIBLE_TYPE_BADNESS;
4369 }
4370 }
4371
4372 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4373
4374 static struct rank
4375 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4376 {
4377 switch (arg->code ())
4378 {
4379 case TYPE_CODE_RANGE:
4380 case TYPE_CODE_BOOL:
4381 case TYPE_CODE_ENUM:
4382 if (TYPE_DECLARED_CLASS (arg))
4383 return INCOMPATIBLE_TYPE_BADNESS;
4384 return INTEGER_CONVERSION_BADNESS;
4385 case TYPE_CODE_FLT:
4386 return INT_FLOAT_CONVERSION_BADNESS;
4387 case TYPE_CODE_INT:
4388 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4389 return INTEGER_CONVERSION_BADNESS;
4390 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4391 return INTEGER_PROMOTION_BADNESS;
4392 /* fall through */
4393 case TYPE_CODE_CHAR:
4394 /* Deal with signed, unsigned, and plain chars for C++ and
4395 with int cases falling through from previous case. */
4396 if (parm->has_no_signedness ())
4397 {
4398 if (arg->has_no_signedness ())
4399 return EXACT_MATCH_BADNESS;
4400 else
4401 return INTEGER_CONVERSION_BADNESS;
4402 }
4403 else if (parm->is_unsigned ())
4404 {
4405 if (arg->is_unsigned ())
4406 return EXACT_MATCH_BADNESS;
4407 else
4408 return INTEGER_PROMOTION_BADNESS;
4409 }
4410 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4411 return EXACT_MATCH_BADNESS;
4412 else
4413 return INTEGER_CONVERSION_BADNESS;
4414 default:
4415 return INCOMPATIBLE_TYPE_BADNESS;
4416 }
4417 }
4418
4419 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4420
4421 static struct rank
4422 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4423 {
4424 switch (arg->code ())
4425 {
4426 case TYPE_CODE_INT:
4427 case TYPE_CODE_CHAR:
4428 case TYPE_CODE_RANGE:
4429 case TYPE_CODE_BOOL:
4430 case TYPE_CODE_ENUM:
4431 return INTEGER_CONVERSION_BADNESS;
4432 case TYPE_CODE_FLT:
4433 return INT_FLOAT_CONVERSION_BADNESS;
4434 default:
4435 return INCOMPATIBLE_TYPE_BADNESS;
4436 }
4437 }
4438
4439 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4440
4441 static struct rank
4442 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4443 {
4444 switch (arg->code ())
4445 {
4446 /* n3290 draft, section 4.12.1 (conv.bool):
4447
4448 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4449 pointer to member type can be converted to a prvalue of type
4450 bool. A zero value, null pointer value, or null member pointer
4451 value is converted to false; any other value is converted to
4452 true. A prvalue of type std::nullptr_t can be converted to a
4453 prvalue of type bool; the resulting value is false." */
4454 case TYPE_CODE_INT:
4455 case TYPE_CODE_CHAR:
4456 case TYPE_CODE_ENUM:
4457 case TYPE_CODE_FLT:
4458 case TYPE_CODE_MEMBERPTR:
4459 case TYPE_CODE_PTR:
4460 return BOOL_CONVERSION_BADNESS;
4461 case TYPE_CODE_RANGE:
4462 return INCOMPATIBLE_TYPE_BADNESS;
4463 case TYPE_CODE_BOOL:
4464 return EXACT_MATCH_BADNESS;
4465 default:
4466 return INCOMPATIBLE_TYPE_BADNESS;
4467 }
4468 }
4469
4470 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4471
4472 static struct rank
4473 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4474 {
4475 switch (arg->code ())
4476 {
4477 case TYPE_CODE_FLT:
4478 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4479 return FLOAT_PROMOTION_BADNESS;
4480 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4481 return EXACT_MATCH_BADNESS;
4482 else
4483 return FLOAT_CONVERSION_BADNESS;
4484 case TYPE_CODE_INT:
4485 case TYPE_CODE_BOOL:
4486 case TYPE_CODE_ENUM:
4487 case TYPE_CODE_RANGE:
4488 case TYPE_CODE_CHAR:
4489 return INT_FLOAT_CONVERSION_BADNESS;
4490 default:
4491 return INCOMPATIBLE_TYPE_BADNESS;
4492 }
4493 }
4494
4495 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4496
4497 static struct rank
4498 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4499 {
4500 switch (arg->code ())
4501 { /* Strictly not needed for C++, but... */
4502 case TYPE_CODE_FLT:
4503 return FLOAT_PROMOTION_BADNESS;
4504 case TYPE_CODE_COMPLEX:
4505 return EXACT_MATCH_BADNESS;
4506 default:
4507 return INCOMPATIBLE_TYPE_BADNESS;
4508 }
4509 }
4510
4511 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4512
4513 static struct rank
4514 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4515 {
4516 struct rank rank = {0, 0};
4517
4518 switch (arg->code ())
4519 {
4520 case TYPE_CODE_STRUCT:
4521 /* Check for derivation */
4522 rank.subrank = distance_to_ancestor (parm, arg, 0);
4523 if (rank.subrank >= 0)
4524 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4525 /* fall through */
4526 default:
4527 return INCOMPATIBLE_TYPE_BADNESS;
4528 }
4529 }
4530
4531 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4532
4533 static struct rank
4534 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4535 {
4536 switch (arg->code ())
4537 {
4538 /* Not in C++ */
4539 case TYPE_CODE_SET:
4540 return rank_one_type (parm->field (0).type (),
4541 arg->field (0).type (), NULL);
4542 default:
4543 return INCOMPATIBLE_TYPE_BADNESS;
4544 }
4545 }
4546
4547 /* Compare one type (PARM) for compatibility with another (ARG).
4548 * PARM is intended to be the parameter type of a function; and
4549 * ARG is the supplied argument's type. This function tests if
4550 * the latter can be converted to the former.
4551 * VALUE is the argument's value or NULL if none (or called recursively)
4552 *
4553 * Return 0 if they are identical types;
4554 * Otherwise, return an integer which corresponds to how compatible
4555 * PARM is to ARG. The higher the return value, the worse the match.
4556 * Generally the "bad" conversions are all uniformly assigned a 100. */
4557
4558 struct rank
4559 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4560 {
4561 struct rank rank = {0,0};
4562
4563 /* Resolve typedefs */
4564 if (parm->code () == TYPE_CODE_TYPEDEF)
4565 parm = check_typedef (parm);
4566 if (arg->code () == TYPE_CODE_TYPEDEF)
4567 arg = check_typedef (arg);
4568
4569 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4570 {
4571 if (VALUE_LVAL (value) == not_lval)
4572 {
4573 /* Rvalues should preferably bind to rvalue references or const
4574 lvalue references. */
4575 if (parm->code () == TYPE_CODE_RVALUE_REF)
4576 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4577 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4578 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4579 else
4580 return INCOMPATIBLE_TYPE_BADNESS;
4581 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4582 }
4583 else
4584 {
4585 /* It's illegal to pass an lvalue as an rvalue. */
4586 if (parm->code () == TYPE_CODE_RVALUE_REF)
4587 return INCOMPATIBLE_TYPE_BADNESS;
4588 }
4589 }
4590
4591 if (types_equal (parm, arg))
4592 {
4593 struct type *t1 = parm;
4594 struct type *t2 = arg;
4595
4596 /* For pointers and references, compare target type. */
4597 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4598 {
4599 t1 = TYPE_TARGET_TYPE (parm);
4600 t2 = TYPE_TARGET_TYPE (arg);
4601 }
4602
4603 /* Make sure they are CV equal, too. */
4604 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4605 rank.subrank |= CV_CONVERSION_CONST;
4606 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4607 rank.subrank |= CV_CONVERSION_VOLATILE;
4608 if (rank.subrank != 0)
4609 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4610 return EXACT_MATCH_BADNESS;
4611 }
4612
4613 /* See through references, since we can almost make non-references
4614 references. */
4615
4616 if (TYPE_IS_REFERENCE (arg))
4617 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4618 REFERENCE_SEE_THROUGH_BADNESS));
4619 if (TYPE_IS_REFERENCE (parm))
4620 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4621 REFERENCE_SEE_THROUGH_BADNESS));
4622 if (overload_debug)
4623 /* Debugging only. */
4624 fprintf_filtered (gdb_stderr,
4625 "------ Arg is %s [%d], parm is %s [%d]\n",
4626 arg->name (), arg->code (),
4627 parm->name (), parm->code ());
4628
4629 /* x -> y means arg of type x being supplied for parameter of type y. */
4630
4631 switch (parm->code ())
4632 {
4633 case TYPE_CODE_PTR:
4634 return rank_one_type_parm_ptr (parm, arg, value);
4635 case TYPE_CODE_ARRAY:
4636 return rank_one_type_parm_array (parm, arg, value);
4637 case TYPE_CODE_FUNC:
4638 return rank_one_type_parm_func (parm, arg, value);
4639 case TYPE_CODE_INT:
4640 return rank_one_type_parm_int (parm, arg, value);
4641 case TYPE_CODE_ENUM:
4642 return rank_one_type_parm_enum (parm, arg, value);
4643 case TYPE_CODE_CHAR:
4644 return rank_one_type_parm_char (parm, arg, value);
4645 case TYPE_CODE_RANGE:
4646 return rank_one_type_parm_range (parm, arg, value);
4647 case TYPE_CODE_BOOL:
4648 return rank_one_type_parm_bool (parm, arg, value);
4649 case TYPE_CODE_FLT:
4650 return rank_one_type_parm_float (parm, arg, value);
4651 case TYPE_CODE_COMPLEX:
4652 return rank_one_type_parm_complex (parm, arg, value);
4653 case TYPE_CODE_STRUCT:
4654 return rank_one_type_parm_struct (parm, arg, value);
4655 case TYPE_CODE_SET:
4656 return rank_one_type_parm_set (parm, arg, value);
4657 default:
4658 return INCOMPATIBLE_TYPE_BADNESS;
4659 } /* switch (arg->code ()) */
4660 }
4661
4662 /* End of functions for overload resolution. */
4663 \f
4664 /* Routines to pretty-print types. */
4665
4666 static void
4667 print_bit_vector (B_TYPE *bits, int nbits)
4668 {
4669 int bitno;
4670
4671 for (bitno = 0; bitno < nbits; bitno++)
4672 {
4673 if ((bitno % 8) == 0)
4674 {
4675 puts_filtered (" ");
4676 }
4677 if (B_TST (bits, bitno))
4678 printf_filtered (("1"));
4679 else
4680 printf_filtered (("0"));
4681 }
4682 }
4683
4684 /* Note the first arg should be the "this" pointer, we may not want to
4685 include it since we may get into a infinitely recursive
4686 situation. */
4687
4688 static void
4689 print_args (struct field *args, int nargs, int spaces)
4690 {
4691 if (args != NULL)
4692 {
4693 int i;
4694
4695 for (i = 0; i < nargs; i++)
4696 {
4697 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4698 args[i].name != NULL ? args[i].name : "<NULL>");
4699 recursive_dump_type (args[i].type (), spaces + 2);
4700 }
4701 }
4702 }
4703
4704 int
4705 field_is_static (struct field *f)
4706 {
4707 /* "static" fields are the fields whose location is not relative
4708 to the address of the enclosing struct. It would be nice to
4709 have a dedicated flag that would be set for static fields when
4710 the type is being created. But in practice, checking the field
4711 loc_kind should give us an accurate answer. */
4712 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4713 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4714 }
4715
4716 static void
4717 dump_fn_fieldlists (struct type *type, int spaces)
4718 {
4719 int method_idx;
4720 int overload_idx;
4721 struct fn_field *f;
4722
4723 printfi_filtered (spaces, "fn_fieldlists ");
4724 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4725 printf_filtered ("\n");
4726 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4727 {
4728 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4729 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4730 method_idx,
4731 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4732 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4733 gdb_stdout);
4734 printf_filtered (_(") length %d\n"),
4735 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4736 for (overload_idx = 0;
4737 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4738 overload_idx++)
4739 {
4740 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4741 overload_idx,
4742 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4743 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4744 gdb_stdout);
4745 printf_filtered (")\n");
4746 printfi_filtered (spaces + 8, "type ");
4747 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4748 gdb_stdout);
4749 printf_filtered ("\n");
4750
4751 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4752 spaces + 8 + 2);
4753
4754 printfi_filtered (spaces + 8, "args ");
4755 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4756 gdb_stdout);
4757 printf_filtered ("\n");
4758 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4759 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4760 spaces + 8 + 2);
4761 printfi_filtered (spaces + 8, "fcontext ");
4762 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4763 gdb_stdout);
4764 printf_filtered ("\n");
4765
4766 printfi_filtered (spaces + 8, "is_const %d\n",
4767 TYPE_FN_FIELD_CONST (f, overload_idx));
4768 printfi_filtered (spaces + 8, "is_volatile %d\n",
4769 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4770 printfi_filtered (spaces + 8, "is_private %d\n",
4771 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4772 printfi_filtered (spaces + 8, "is_protected %d\n",
4773 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4774 printfi_filtered (spaces + 8, "is_stub %d\n",
4775 TYPE_FN_FIELD_STUB (f, overload_idx));
4776 printfi_filtered (spaces + 8, "defaulted %d\n",
4777 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4778 printfi_filtered (spaces + 8, "is_deleted %d\n",
4779 TYPE_FN_FIELD_DELETED (f, overload_idx));
4780 printfi_filtered (spaces + 8, "voffset %u\n",
4781 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4782 }
4783 }
4784 }
4785
4786 static void
4787 print_cplus_stuff (struct type *type, int spaces)
4788 {
4789 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4790 printfi_filtered (spaces, "vptr_basetype ");
4791 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4792 puts_filtered ("\n");
4793 if (TYPE_VPTR_BASETYPE (type) != NULL)
4794 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4795
4796 printfi_filtered (spaces, "n_baseclasses %d\n",
4797 TYPE_N_BASECLASSES (type));
4798 printfi_filtered (spaces, "nfn_fields %d\n",
4799 TYPE_NFN_FIELDS (type));
4800 if (TYPE_N_BASECLASSES (type) > 0)
4801 {
4802 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4803 TYPE_N_BASECLASSES (type));
4804 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4805 gdb_stdout);
4806 printf_filtered (")");
4807
4808 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4809 TYPE_N_BASECLASSES (type));
4810 puts_filtered ("\n");
4811 }
4812 if (type->num_fields () > 0)
4813 {
4814 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4815 {
4816 printfi_filtered (spaces,
4817 "private_field_bits (%d bits at *",
4818 type->num_fields ());
4819 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4820 gdb_stdout);
4821 printf_filtered (")");
4822 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4823 type->num_fields ());
4824 puts_filtered ("\n");
4825 }
4826 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4827 {
4828 printfi_filtered (spaces,
4829 "protected_field_bits (%d bits at *",
4830 type->num_fields ());
4831 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4832 gdb_stdout);
4833 printf_filtered (")");
4834 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4835 type->num_fields ());
4836 puts_filtered ("\n");
4837 }
4838 }
4839 if (TYPE_NFN_FIELDS (type) > 0)
4840 {
4841 dump_fn_fieldlists (type, spaces);
4842 }
4843
4844 printfi_filtered (spaces, "calling_convention %d\n",
4845 TYPE_CPLUS_CALLING_CONVENTION (type));
4846 }
4847
4848 /* Print the contents of the TYPE's type_specific union, assuming that
4849 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4850
4851 static void
4852 print_gnat_stuff (struct type *type, int spaces)
4853 {
4854 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4855
4856 if (descriptive_type == NULL)
4857 printfi_filtered (spaces + 2, "no descriptive type\n");
4858 else
4859 {
4860 printfi_filtered (spaces + 2, "descriptive type\n");
4861 recursive_dump_type (descriptive_type, spaces + 4);
4862 }
4863 }
4864
4865 static struct obstack dont_print_type_obstack;
4866
4867 /* Print the dynamic_prop PROP. */
4868
4869 static void
4870 dump_dynamic_prop (dynamic_prop const& prop)
4871 {
4872 switch (prop.kind ())
4873 {
4874 case PROP_CONST:
4875 printf_filtered ("%s", plongest (prop.const_val ()));
4876 break;
4877 case PROP_UNDEFINED:
4878 printf_filtered ("(undefined)");
4879 break;
4880 case PROP_LOCEXPR:
4881 case PROP_LOCLIST:
4882 printf_filtered ("(dynamic)");
4883 break;
4884 default:
4885 gdb_assert_not_reached ("unhandled prop kind");
4886 break;
4887 }
4888 }
4889
4890 void
4891 recursive_dump_type (struct type *type, int spaces)
4892 {
4893 int idx;
4894
4895 if (spaces == 0)
4896 obstack_begin (&dont_print_type_obstack, 0);
4897
4898 if (type->num_fields () > 0
4899 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4900 {
4901 struct type **first_dont_print
4902 = (struct type **) obstack_base (&dont_print_type_obstack);
4903
4904 int i = (struct type **)
4905 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4906
4907 while (--i >= 0)
4908 {
4909 if (type == first_dont_print[i])
4910 {
4911 printfi_filtered (spaces, "type node ");
4912 gdb_print_host_address (type, gdb_stdout);
4913 printf_filtered (_(" <same as already seen type>\n"));
4914 return;
4915 }
4916 }
4917
4918 obstack_ptr_grow (&dont_print_type_obstack, type);
4919 }
4920
4921 printfi_filtered (spaces, "type node ");
4922 gdb_print_host_address (type, gdb_stdout);
4923 printf_filtered ("\n");
4924 printfi_filtered (spaces, "name '%s' (",
4925 type->name () ? type->name () : "<NULL>");
4926 gdb_print_host_address (type->name (), gdb_stdout);
4927 printf_filtered (")\n");
4928 printfi_filtered (spaces, "code 0x%x ", type->code ());
4929 switch (type->code ())
4930 {
4931 case TYPE_CODE_UNDEF:
4932 printf_filtered ("(TYPE_CODE_UNDEF)");
4933 break;
4934 case TYPE_CODE_PTR:
4935 printf_filtered ("(TYPE_CODE_PTR)");
4936 break;
4937 case TYPE_CODE_ARRAY:
4938 printf_filtered ("(TYPE_CODE_ARRAY)");
4939 break;
4940 case TYPE_CODE_STRUCT:
4941 printf_filtered ("(TYPE_CODE_STRUCT)");
4942 break;
4943 case TYPE_CODE_UNION:
4944 printf_filtered ("(TYPE_CODE_UNION)");
4945 break;
4946 case TYPE_CODE_ENUM:
4947 printf_filtered ("(TYPE_CODE_ENUM)");
4948 break;
4949 case TYPE_CODE_FLAGS:
4950 printf_filtered ("(TYPE_CODE_FLAGS)");
4951 break;
4952 case TYPE_CODE_FUNC:
4953 printf_filtered ("(TYPE_CODE_FUNC)");
4954 break;
4955 case TYPE_CODE_INT:
4956 printf_filtered ("(TYPE_CODE_INT)");
4957 break;
4958 case TYPE_CODE_FLT:
4959 printf_filtered ("(TYPE_CODE_FLT)");
4960 break;
4961 case TYPE_CODE_VOID:
4962 printf_filtered ("(TYPE_CODE_VOID)");
4963 break;
4964 case TYPE_CODE_SET:
4965 printf_filtered ("(TYPE_CODE_SET)");
4966 break;
4967 case TYPE_CODE_RANGE:
4968 printf_filtered ("(TYPE_CODE_RANGE)");
4969 break;
4970 case TYPE_CODE_STRING:
4971 printf_filtered ("(TYPE_CODE_STRING)");
4972 break;
4973 case TYPE_CODE_ERROR:
4974 printf_filtered ("(TYPE_CODE_ERROR)");
4975 break;
4976 case TYPE_CODE_MEMBERPTR:
4977 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4978 break;
4979 case TYPE_CODE_METHODPTR:
4980 printf_filtered ("(TYPE_CODE_METHODPTR)");
4981 break;
4982 case TYPE_CODE_METHOD:
4983 printf_filtered ("(TYPE_CODE_METHOD)");
4984 break;
4985 case TYPE_CODE_REF:
4986 printf_filtered ("(TYPE_CODE_REF)");
4987 break;
4988 case TYPE_CODE_CHAR:
4989 printf_filtered ("(TYPE_CODE_CHAR)");
4990 break;
4991 case TYPE_CODE_BOOL:
4992 printf_filtered ("(TYPE_CODE_BOOL)");
4993 break;
4994 case TYPE_CODE_COMPLEX:
4995 printf_filtered ("(TYPE_CODE_COMPLEX)");
4996 break;
4997 case TYPE_CODE_TYPEDEF:
4998 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4999 break;
5000 case TYPE_CODE_NAMESPACE:
5001 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5002 break;
5003 default:
5004 printf_filtered ("(UNKNOWN TYPE CODE)");
5005 break;
5006 }
5007 puts_filtered ("\n");
5008 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5009 if (TYPE_OBJFILE_OWNED (type))
5010 {
5011 printfi_filtered (spaces, "objfile ");
5012 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5013 }
5014 else
5015 {
5016 printfi_filtered (spaces, "gdbarch ");
5017 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5018 }
5019 printf_filtered ("\n");
5020 printfi_filtered (spaces, "target_type ");
5021 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5022 printf_filtered ("\n");
5023 if (TYPE_TARGET_TYPE (type) != NULL)
5024 {
5025 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5026 }
5027 printfi_filtered (spaces, "pointer_type ");
5028 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5029 printf_filtered ("\n");
5030 printfi_filtered (spaces, "reference_type ");
5031 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5032 printf_filtered ("\n");
5033 printfi_filtered (spaces, "type_chain ");
5034 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5035 printf_filtered ("\n");
5036 printfi_filtered (spaces, "instance_flags 0x%x",
5037 (unsigned) type->instance_flags ());
5038 if (TYPE_CONST (type))
5039 {
5040 puts_filtered (" TYPE_CONST");
5041 }
5042 if (TYPE_VOLATILE (type))
5043 {
5044 puts_filtered (" TYPE_VOLATILE");
5045 }
5046 if (TYPE_CODE_SPACE (type))
5047 {
5048 puts_filtered (" TYPE_CODE_SPACE");
5049 }
5050 if (TYPE_DATA_SPACE (type))
5051 {
5052 puts_filtered (" TYPE_DATA_SPACE");
5053 }
5054 if (TYPE_ADDRESS_CLASS_1 (type))
5055 {
5056 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5057 }
5058 if (TYPE_ADDRESS_CLASS_2 (type))
5059 {
5060 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5061 }
5062 if (TYPE_RESTRICT (type))
5063 {
5064 puts_filtered (" TYPE_RESTRICT");
5065 }
5066 if (TYPE_ATOMIC (type))
5067 {
5068 puts_filtered (" TYPE_ATOMIC");
5069 }
5070 puts_filtered ("\n");
5071
5072 printfi_filtered (spaces, "flags");
5073 if (type->is_unsigned ())
5074 {
5075 puts_filtered (" TYPE_UNSIGNED");
5076 }
5077 if (type->has_no_signedness ())
5078 {
5079 puts_filtered (" TYPE_NOSIGN");
5080 }
5081 if (type->endianity_is_not_default ())
5082 {
5083 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5084 }
5085 if (type->is_stub ())
5086 {
5087 puts_filtered (" TYPE_STUB");
5088 }
5089 if (type->target_is_stub ())
5090 {
5091 puts_filtered (" TYPE_TARGET_STUB");
5092 }
5093 if (type->is_prototyped ())
5094 {
5095 puts_filtered (" TYPE_PROTOTYPED");
5096 }
5097 if (type->has_varargs ())
5098 {
5099 puts_filtered (" TYPE_VARARGS");
5100 }
5101 /* This is used for things like AltiVec registers on ppc. Gcc emits
5102 an attribute for the array type, which tells whether or not we
5103 have a vector, instead of a regular array. */
5104 if (type->is_vector ())
5105 {
5106 puts_filtered (" TYPE_VECTOR");
5107 }
5108 if (type->is_fixed_instance ())
5109 {
5110 puts_filtered (" TYPE_FIXED_INSTANCE");
5111 }
5112 if (type->stub_is_supported ())
5113 {
5114 puts_filtered (" TYPE_STUB_SUPPORTED");
5115 }
5116 if (TYPE_NOTTEXT (type))
5117 {
5118 puts_filtered (" TYPE_NOTTEXT");
5119 }
5120 puts_filtered ("\n");
5121 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5122 gdb_print_host_address (type->fields (), gdb_stdout);
5123 puts_filtered ("\n");
5124 for (idx = 0; idx < type->num_fields (); idx++)
5125 {
5126 if (type->code () == TYPE_CODE_ENUM)
5127 printfi_filtered (spaces + 2,
5128 "[%d] enumval %s type ",
5129 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5130 else
5131 printfi_filtered (spaces + 2,
5132 "[%d] bitpos %s bitsize %d type ",
5133 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5134 TYPE_FIELD_BITSIZE (type, idx));
5135 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5136 printf_filtered (" name '%s' (",
5137 TYPE_FIELD_NAME (type, idx) != NULL
5138 ? TYPE_FIELD_NAME (type, idx)
5139 : "<NULL>");
5140 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5141 printf_filtered (")\n");
5142 if (type->field (idx).type () != NULL)
5143 {
5144 recursive_dump_type (type->field (idx).type (), spaces + 4);
5145 }
5146 }
5147 if (type->code () == TYPE_CODE_RANGE)
5148 {
5149 printfi_filtered (spaces, "low ");
5150 dump_dynamic_prop (type->bounds ()->low);
5151 printf_filtered (" high ");
5152 dump_dynamic_prop (type->bounds ()->high);
5153 printf_filtered ("\n");
5154 }
5155
5156 switch (TYPE_SPECIFIC_FIELD (type))
5157 {
5158 case TYPE_SPECIFIC_CPLUS_STUFF:
5159 printfi_filtered (spaces, "cplus_stuff ");
5160 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5161 gdb_stdout);
5162 puts_filtered ("\n");
5163 print_cplus_stuff (type, spaces);
5164 break;
5165
5166 case TYPE_SPECIFIC_GNAT_STUFF:
5167 printfi_filtered (spaces, "gnat_stuff ");
5168 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5169 puts_filtered ("\n");
5170 print_gnat_stuff (type, spaces);
5171 break;
5172
5173 case TYPE_SPECIFIC_FLOATFORMAT:
5174 printfi_filtered (spaces, "floatformat ");
5175 if (TYPE_FLOATFORMAT (type) == NULL
5176 || TYPE_FLOATFORMAT (type)->name == NULL)
5177 puts_filtered ("(null)");
5178 else
5179 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5180 puts_filtered ("\n");
5181 break;
5182
5183 case TYPE_SPECIFIC_FUNC:
5184 printfi_filtered (spaces, "calling_convention %d\n",
5185 TYPE_CALLING_CONVENTION (type));
5186 /* tail_call_list is not printed. */
5187 break;
5188
5189 case TYPE_SPECIFIC_SELF_TYPE:
5190 printfi_filtered (spaces, "self_type ");
5191 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5192 puts_filtered ("\n");
5193 break;
5194 }
5195
5196 if (spaces == 0)
5197 obstack_free (&dont_print_type_obstack, NULL);
5198 }
5199 \f
5200 /* Trivial helpers for the libiberty hash table, for mapping one
5201 type to another. */
5202
5203 struct type_pair : public allocate_on_obstack
5204 {
5205 type_pair (struct type *old_, struct type *newobj_)
5206 : old (old_), newobj (newobj_)
5207 {}
5208
5209 struct type * const old, * const newobj;
5210 };
5211
5212 static hashval_t
5213 type_pair_hash (const void *item)
5214 {
5215 const struct type_pair *pair = (const struct type_pair *) item;
5216
5217 return htab_hash_pointer (pair->old);
5218 }
5219
5220 static int
5221 type_pair_eq (const void *item_lhs, const void *item_rhs)
5222 {
5223 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5224 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5225
5226 return lhs->old == rhs->old;
5227 }
5228
5229 /* Allocate the hash table used by copy_type_recursive to walk
5230 types without duplicates. We use OBJFILE's obstack, because
5231 OBJFILE is about to be deleted. */
5232
5233 htab_t
5234 create_copied_types_hash (struct objfile *objfile)
5235 {
5236 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5237 NULL, &objfile->objfile_obstack,
5238 hashtab_obstack_allocate,
5239 dummy_obstack_deallocate);
5240 }
5241
5242 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5243
5244 static struct dynamic_prop_list *
5245 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5246 struct dynamic_prop_list *list)
5247 {
5248 struct dynamic_prop_list *copy = list;
5249 struct dynamic_prop_list **node_ptr = &copy;
5250
5251 while (*node_ptr != NULL)
5252 {
5253 struct dynamic_prop_list *node_copy;
5254
5255 node_copy = ((struct dynamic_prop_list *)
5256 obstack_copy (objfile_obstack, *node_ptr,
5257 sizeof (struct dynamic_prop_list)));
5258 node_copy->prop = (*node_ptr)->prop;
5259 *node_ptr = node_copy;
5260
5261 node_ptr = &node_copy->next;
5262 }
5263
5264 return copy;
5265 }
5266
5267 /* Recursively copy (deep copy) TYPE, if it is associated with
5268 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5269 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5270 it is not associated with OBJFILE. */
5271
5272 struct type *
5273 copy_type_recursive (struct objfile *objfile,
5274 struct type *type,
5275 htab_t copied_types)
5276 {
5277 void **slot;
5278 struct type *new_type;
5279
5280 if (! TYPE_OBJFILE_OWNED (type))
5281 return type;
5282
5283 /* This type shouldn't be pointing to any types in other objfiles;
5284 if it did, the type might disappear unexpectedly. */
5285 gdb_assert (TYPE_OBJFILE (type) == objfile);
5286
5287 struct type_pair pair (type, nullptr);
5288
5289 slot = htab_find_slot (copied_types, &pair, INSERT);
5290 if (*slot != NULL)
5291 return ((struct type_pair *) *slot)->newobj;
5292
5293 new_type = alloc_type_arch (get_type_arch (type));
5294
5295 /* We must add the new type to the hash table immediately, in case
5296 we encounter this type again during a recursive call below. */
5297 struct type_pair *stored
5298 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5299
5300 *slot = stored;
5301
5302 /* Copy the common fields of types. For the main type, we simply
5303 copy the entire thing and then update specific fields as needed. */
5304 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5305 TYPE_OBJFILE_OWNED (new_type) = 0;
5306 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5307
5308 if (type->name ())
5309 new_type->set_name (xstrdup (type->name ()));
5310
5311 new_type->set_instance_flags (type->instance_flags ());
5312 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5313
5314 /* Copy the fields. */
5315 if (type->num_fields ())
5316 {
5317 int i, nfields;
5318
5319 nfields = type->num_fields ();
5320 new_type->set_fields
5321 ((struct field *)
5322 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5323
5324 for (i = 0; i < nfields; i++)
5325 {
5326 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5327 TYPE_FIELD_ARTIFICIAL (type, i);
5328 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5329 if (type->field (i).type ())
5330 new_type->field (i).set_type
5331 (copy_type_recursive (objfile, type->field (i).type (),
5332 copied_types));
5333 if (TYPE_FIELD_NAME (type, i))
5334 TYPE_FIELD_NAME (new_type, i) =
5335 xstrdup (TYPE_FIELD_NAME (type, i));
5336 switch (TYPE_FIELD_LOC_KIND (type, i))
5337 {
5338 case FIELD_LOC_KIND_BITPOS:
5339 SET_FIELD_BITPOS (new_type->field (i),
5340 TYPE_FIELD_BITPOS (type, i));
5341 break;
5342 case FIELD_LOC_KIND_ENUMVAL:
5343 SET_FIELD_ENUMVAL (new_type->field (i),
5344 TYPE_FIELD_ENUMVAL (type, i));
5345 break;
5346 case FIELD_LOC_KIND_PHYSADDR:
5347 SET_FIELD_PHYSADDR (new_type->field (i),
5348 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5349 break;
5350 case FIELD_LOC_KIND_PHYSNAME:
5351 SET_FIELD_PHYSNAME (new_type->field (i),
5352 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5353 i)));
5354 break;
5355 default:
5356 internal_error (__FILE__, __LINE__,
5357 _("Unexpected type field location kind: %d"),
5358 TYPE_FIELD_LOC_KIND (type, i));
5359 }
5360 }
5361 }
5362
5363 /* For range types, copy the bounds information. */
5364 if (type->code () == TYPE_CODE_RANGE)
5365 {
5366 range_bounds *bounds
5367 = ((struct range_bounds *) TYPE_ALLOC
5368 (new_type, sizeof (struct range_bounds)));
5369
5370 *bounds = *type->bounds ();
5371 new_type->set_bounds (bounds);
5372 }
5373
5374 if (type->main_type->dyn_prop_list != NULL)
5375 new_type->main_type->dyn_prop_list
5376 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5377 type->main_type->dyn_prop_list);
5378
5379
5380 /* Copy pointers to other types. */
5381 if (TYPE_TARGET_TYPE (type))
5382 TYPE_TARGET_TYPE (new_type) =
5383 copy_type_recursive (objfile,
5384 TYPE_TARGET_TYPE (type),
5385 copied_types);
5386
5387 /* Maybe copy the type_specific bits.
5388
5389 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5390 base classes and methods. There's no fundamental reason why we
5391 can't, but at the moment it is not needed. */
5392
5393 switch (TYPE_SPECIFIC_FIELD (type))
5394 {
5395 case TYPE_SPECIFIC_NONE:
5396 break;
5397 case TYPE_SPECIFIC_FUNC:
5398 INIT_FUNC_SPECIFIC (new_type);
5399 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5400 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5401 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5402 break;
5403 case TYPE_SPECIFIC_FLOATFORMAT:
5404 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5405 break;
5406 case TYPE_SPECIFIC_CPLUS_STUFF:
5407 INIT_CPLUS_SPECIFIC (new_type);
5408 break;
5409 case TYPE_SPECIFIC_GNAT_STUFF:
5410 INIT_GNAT_SPECIFIC (new_type);
5411 break;
5412 case TYPE_SPECIFIC_SELF_TYPE:
5413 set_type_self_type (new_type,
5414 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5415 copied_types));
5416 break;
5417 default:
5418 gdb_assert_not_reached ("bad type_specific_kind");
5419 }
5420
5421 return new_type;
5422 }
5423
5424 /* Make a copy of the given TYPE, except that the pointer & reference
5425 types are not preserved.
5426
5427 This function assumes that the given type has an associated objfile.
5428 This objfile is used to allocate the new type. */
5429
5430 struct type *
5431 copy_type (const struct type *type)
5432 {
5433 struct type *new_type;
5434
5435 gdb_assert (TYPE_OBJFILE_OWNED (type));
5436
5437 new_type = alloc_type_copy (type);
5438 new_type->set_instance_flags (type->instance_flags ());
5439 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5440 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5441 sizeof (struct main_type));
5442 if (type->main_type->dyn_prop_list != NULL)
5443 new_type->main_type->dyn_prop_list
5444 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5445 type->main_type->dyn_prop_list);
5446
5447 return new_type;
5448 }
5449 \f
5450 /* Helper functions to initialize architecture-specific types. */
5451
5452 /* Allocate a type structure associated with GDBARCH and set its
5453 CODE, LENGTH, and NAME fields. */
5454
5455 struct type *
5456 arch_type (struct gdbarch *gdbarch,
5457 enum type_code code, int bit, const char *name)
5458 {
5459 struct type *type;
5460
5461 type = alloc_type_arch (gdbarch);
5462 set_type_code (type, code);
5463 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5464 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5465
5466 if (name)
5467 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5468
5469 return type;
5470 }
5471
5472 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5473 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5474 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5475
5476 struct type *
5477 arch_integer_type (struct gdbarch *gdbarch,
5478 int bit, int unsigned_p, const char *name)
5479 {
5480 struct type *t;
5481
5482 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5483 if (unsigned_p)
5484 t->set_is_unsigned (true);
5485
5486 return t;
5487 }
5488
5489 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5490 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5491 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5492
5493 struct type *
5494 arch_character_type (struct gdbarch *gdbarch,
5495 int bit, int unsigned_p, const char *name)
5496 {
5497 struct type *t;
5498
5499 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5500 if (unsigned_p)
5501 t->set_is_unsigned (true);
5502
5503 return t;
5504 }
5505
5506 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5507 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5508 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5509
5510 struct type *
5511 arch_boolean_type (struct gdbarch *gdbarch,
5512 int bit, int unsigned_p, const char *name)
5513 {
5514 struct type *t;
5515
5516 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5517 if (unsigned_p)
5518 t->set_is_unsigned (true);
5519
5520 return t;
5521 }
5522
5523 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5524 BIT is the type size in bits; if BIT equals -1, the size is
5525 determined by the floatformat. NAME is the type name. Set the
5526 TYPE_FLOATFORMAT from FLOATFORMATS. */
5527
5528 struct type *
5529 arch_float_type (struct gdbarch *gdbarch,
5530 int bit, const char *name,
5531 const struct floatformat **floatformats)
5532 {
5533 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5534 struct type *t;
5535
5536 bit = verify_floatformat (bit, fmt);
5537 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5538 TYPE_FLOATFORMAT (t) = fmt;
5539
5540 return t;
5541 }
5542
5543 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5544 BIT is the type size in bits. NAME is the type name. */
5545
5546 struct type *
5547 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5548 {
5549 struct type *t;
5550
5551 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5552 return t;
5553 }
5554
5555 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5556 BIT is the pointer type size in bits. NAME is the type name.
5557 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5558 TYPE_UNSIGNED flag. */
5559
5560 struct type *
5561 arch_pointer_type (struct gdbarch *gdbarch,
5562 int bit, const char *name, struct type *target_type)
5563 {
5564 struct type *t;
5565
5566 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5567 TYPE_TARGET_TYPE (t) = target_type;
5568 t->set_is_unsigned (true);
5569 return t;
5570 }
5571
5572 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5573 NAME is the type name. BIT is the size of the flag word in bits. */
5574
5575 struct type *
5576 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5577 {
5578 struct type *type;
5579
5580 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5581 type->set_is_unsigned (true);
5582 type->set_num_fields (0);
5583 /* Pre-allocate enough space assuming every field is one bit. */
5584 type->set_fields
5585 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5586
5587 return type;
5588 }
5589
5590 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5591 position BITPOS is called NAME. Pass NAME as "" for fields that
5592 should not be printed. */
5593
5594 void
5595 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5596 struct type *field_type, const char *name)
5597 {
5598 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5599 int field_nr = type->num_fields ();
5600
5601 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5602 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5603 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5604 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5605 gdb_assert (name != NULL);
5606
5607 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5608 type->field (field_nr).set_type (field_type);
5609 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5610 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5611 type->set_num_fields (type->num_fields () + 1);
5612 }
5613
5614 /* Special version of append_flags_type_field to add a flag field.
5615 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5616 position BITPOS is called NAME. */
5617
5618 void
5619 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5620 {
5621 struct gdbarch *gdbarch = get_type_arch (type);
5622
5623 append_flags_type_field (type, bitpos, 1,
5624 builtin_type (gdbarch)->builtin_bool,
5625 name);
5626 }
5627
5628 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5629 specified by CODE) associated with GDBARCH. NAME is the type name. */
5630
5631 struct type *
5632 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5633 enum type_code code)
5634 {
5635 struct type *t;
5636
5637 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5638 t = arch_type (gdbarch, code, 0, NULL);
5639 t->set_name (name);
5640 INIT_CPLUS_SPECIFIC (t);
5641 return t;
5642 }
5643
5644 /* Add new field with name NAME and type FIELD to composite type T.
5645 Do not set the field's position or adjust the type's length;
5646 the caller should do so. Return the new field. */
5647
5648 struct field *
5649 append_composite_type_field_raw (struct type *t, const char *name,
5650 struct type *field)
5651 {
5652 struct field *f;
5653
5654 t->set_num_fields (t->num_fields () + 1);
5655 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5656 t->num_fields ()));
5657 f = &t->field (t->num_fields () - 1);
5658 memset (f, 0, sizeof f[0]);
5659 f[0].set_type (field);
5660 FIELD_NAME (f[0]) = name;
5661 return f;
5662 }
5663
5664 /* Add new field with name NAME and type FIELD to composite type T.
5665 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5666
5667 void
5668 append_composite_type_field_aligned (struct type *t, const char *name,
5669 struct type *field, int alignment)
5670 {
5671 struct field *f = append_composite_type_field_raw (t, name, field);
5672
5673 if (t->code () == TYPE_CODE_UNION)
5674 {
5675 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5676 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5677 }
5678 else if (t->code () == TYPE_CODE_STRUCT)
5679 {
5680 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5681 if (t->num_fields () > 1)
5682 {
5683 SET_FIELD_BITPOS (f[0],
5684 (FIELD_BITPOS (f[-1])
5685 + (TYPE_LENGTH (f[-1].type ())
5686 * TARGET_CHAR_BIT)));
5687
5688 if (alignment)
5689 {
5690 int left;
5691
5692 alignment *= TARGET_CHAR_BIT;
5693 left = FIELD_BITPOS (f[0]) % alignment;
5694
5695 if (left)
5696 {
5697 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5698 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5699 }
5700 }
5701 }
5702 }
5703 }
5704
5705 /* Add new field with name NAME and type FIELD to composite type T. */
5706
5707 void
5708 append_composite_type_field (struct type *t, const char *name,
5709 struct type *field)
5710 {
5711 append_composite_type_field_aligned (t, name, field, 0);
5712 }
5713
5714 static struct gdbarch_data *gdbtypes_data;
5715
5716 const struct builtin_type *
5717 builtin_type (struct gdbarch *gdbarch)
5718 {
5719 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5720 }
5721
5722 static void *
5723 gdbtypes_post_init (struct gdbarch *gdbarch)
5724 {
5725 struct builtin_type *builtin_type
5726 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5727
5728 /* Basic types. */
5729 builtin_type->builtin_void
5730 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5731 builtin_type->builtin_char
5732 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5733 !gdbarch_char_signed (gdbarch), "char");
5734 builtin_type->builtin_char->set_has_no_signedness (true);
5735 builtin_type->builtin_signed_char
5736 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5737 0, "signed char");
5738 builtin_type->builtin_unsigned_char
5739 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5740 1, "unsigned char");
5741 builtin_type->builtin_short
5742 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5743 0, "short");
5744 builtin_type->builtin_unsigned_short
5745 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5746 1, "unsigned short");
5747 builtin_type->builtin_int
5748 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5749 0, "int");
5750 builtin_type->builtin_unsigned_int
5751 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5752 1, "unsigned int");
5753 builtin_type->builtin_long
5754 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5755 0, "long");
5756 builtin_type->builtin_unsigned_long
5757 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5758 1, "unsigned long");
5759 builtin_type->builtin_long_long
5760 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5761 0, "long long");
5762 builtin_type->builtin_unsigned_long_long
5763 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5764 1, "unsigned long long");
5765 builtin_type->builtin_half
5766 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5767 "half", gdbarch_half_format (gdbarch));
5768 builtin_type->builtin_float
5769 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5770 "float", gdbarch_float_format (gdbarch));
5771 builtin_type->builtin_bfloat16
5772 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5773 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5774 builtin_type->builtin_double
5775 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5776 "double", gdbarch_double_format (gdbarch));
5777 builtin_type->builtin_long_double
5778 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5779 "long double", gdbarch_long_double_format (gdbarch));
5780 builtin_type->builtin_complex
5781 = init_complex_type ("complex", builtin_type->builtin_float);
5782 builtin_type->builtin_double_complex
5783 = init_complex_type ("double complex", builtin_type->builtin_double);
5784 builtin_type->builtin_string
5785 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5786 builtin_type->builtin_bool
5787 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5788
5789 /* The following three are about decimal floating point types, which
5790 are 32-bits, 64-bits and 128-bits respectively. */
5791 builtin_type->builtin_decfloat
5792 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5793 builtin_type->builtin_decdouble
5794 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5795 builtin_type->builtin_declong
5796 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5797
5798 /* "True" character types. */
5799 builtin_type->builtin_true_char
5800 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5801 builtin_type->builtin_true_unsigned_char
5802 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5803
5804 /* Fixed-size integer types. */
5805 builtin_type->builtin_int0
5806 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5807 builtin_type->builtin_int8
5808 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5809 builtin_type->builtin_uint8
5810 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5811 builtin_type->builtin_int16
5812 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5813 builtin_type->builtin_uint16
5814 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5815 builtin_type->builtin_int24
5816 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5817 builtin_type->builtin_uint24
5818 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5819 builtin_type->builtin_int32
5820 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5821 builtin_type->builtin_uint32
5822 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5823 builtin_type->builtin_int64
5824 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5825 builtin_type->builtin_uint64
5826 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5827 builtin_type->builtin_int128
5828 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5829 builtin_type->builtin_uint128
5830 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5831
5832 builtin_type->builtin_int8->set_instance_flags
5833 (builtin_type->builtin_int8->instance_flags ()
5834 | TYPE_INSTANCE_FLAG_NOTTEXT);
5835
5836 builtin_type->builtin_uint8->set_instance_flags
5837 (builtin_type->builtin_uint8->instance_flags ()
5838 | TYPE_INSTANCE_FLAG_NOTTEXT);
5839
5840 /* Wide character types. */
5841 builtin_type->builtin_char16
5842 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5843 builtin_type->builtin_char32
5844 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5845 builtin_type->builtin_wchar
5846 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5847 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5848
5849 /* Default data/code pointer types. */
5850 builtin_type->builtin_data_ptr
5851 = lookup_pointer_type (builtin_type->builtin_void);
5852 builtin_type->builtin_func_ptr
5853 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5854 builtin_type->builtin_func_func
5855 = lookup_function_type (builtin_type->builtin_func_ptr);
5856
5857 /* This type represents a GDB internal function. */
5858 builtin_type->internal_fn
5859 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5860 "<internal function>");
5861
5862 /* This type represents an xmethod. */
5863 builtin_type->xmethod
5864 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5865
5866 return builtin_type;
5867 }
5868
5869 /* This set of objfile-based types is intended to be used by symbol
5870 readers as basic types. */
5871
5872 static const struct objfile_key<struct objfile_type,
5873 gdb::noop_deleter<struct objfile_type>>
5874 objfile_type_data;
5875
5876 const struct objfile_type *
5877 objfile_type (struct objfile *objfile)
5878 {
5879 struct gdbarch *gdbarch;
5880 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5881
5882 if (objfile_type)
5883 return objfile_type;
5884
5885 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5886 1, struct objfile_type);
5887
5888 /* Use the objfile architecture to determine basic type properties. */
5889 gdbarch = objfile->arch ();
5890
5891 /* Basic types. */
5892 objfile_type->builtin_void
5893 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5894 objfile_type->builtin_char
5895 = init_integer_type (objfile, TARGET_CHAR_BIT,
5896 !gdbarch_char_signed (gdbarch), "char");
5897 objfile_type->builtin_char->set_has_no_signedness (true);
5898 objfile_type->builtin_signed_char
5899 = init_integer_type (objfile, TARGET_CHAR_BIT,
5900 0, "signed char");
5901 objfile_type->builtin_unsigned_char
5902 = init_integer_type (objfile, TARGET_CHAR_BIT,
5903 1, "unsigned char");
5904 objfile_type->builtin_short
5905 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5906 0, "short");
5907 objfile_type->builtin_unsigned_short
5908 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5909 1, "unsigned short");
5910 objfile_type->builtin_int
5911 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5912 0, "int");
5913 objfile_type->builtin_unsigned_int
5914 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5915 1, "unsigned int");
5916 objfile_type->builtin_long
5917 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5918 0, "long");
5919 objfile_type->builtin_unsigned_long
5920 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5921 1, "unsigned long");
5922 objfile_type->builtin_long_long
5923 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5924 0, "long long");
5925 objfile_type->builtin_unsigned_long_long
5926 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5927 1, "unsigned long long");
5928 objfile_type->builtin_float
5929 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5930 "float", gdbarch_float_format (gdbarch));
5931 objfile_type->builtin_double
5932 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5933 "double", gdbarch_double_format (gdbarch));
5934 objfile_type->builtin_long_double
5935 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5936 "long double", gdbarch_long_double_format (gdbarch));
5937
5938 /* This type represents a type that was unrecognized in symbol read-in. */
5939 objfile_type->builtin_error
5940 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5941
5942 /* The following set of types is used for symbols with no
5943 debug information. */
5944 objfile_type->nodebug_text_symbol
5945 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5946 "<text variable, no debug info>");
5947
5948 objfile_type->nodebug_text_gnu_ifunc_symbol
5949 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5950 "<text gnu-indirect-function variable, no debug info>");
5951 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5952
5953 objfile_type->nodebug_got_plt_symbol
5954 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5955 "<text from jump slot in .got.plt, no debug info>",
5956 objfile_type->nodebug_text_symbol);
5957 objfile_type->nodebug_data_symbol
5958 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5959 objfile_type->nodebug_unknown_symbol
5960 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5961 objfile_type->nodebug_tls_symbol
5962 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5963
5964 /* NOTE: on some targets, addresses and pointers are not necessarily
5965 the same.
5966
5967 The upshot is:
5968 - gdb's `struct type' always describes the target's
5969 representation.
5970 - gdb's `struct value' objects should always hold values in
5971 target form.
5972 - gdb's CORE_ADDR values are addresses in the unified virtual
5973 address space that the assembler and linker work with. Thus,
5974 since target_read_memory takes a CORE_ADDR as an argument, it
5975 can access any memory on the target, even if the processor has
5976 separate code and data address spaces.
5977
5978 In this context, objfile_type->builtin_core_addr is a bit odd:
5979 it's a target type for a value the target will never see. It's
5980 only used to hold the values of (typeless) linker symbols, which
5981 are indeed in the unified virtual address space. */
5982
5983 objfile_type->builtin_core_addr
5984 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5985 "__CORE_ADDR");
5986
5987 objfile_type_data.set (objfile, objfile_type);
5988 return objfile_type;
5989 }
5990
5991 void _initialize_gdbtypes ();
5992 void
5993 _initialize_gdbtypes ()
5994 {
5995 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5996
5997 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5998 _("Set debugging of C++ overloading."),
5999 _("Show debugging of C++ overloading."),
6000 _("When enabled, ranking of the "
6001 "functions is displayed."),
6002 NULL,
6003 show_overload_debug,
6004 &setdebuglist, &showdebuglist);
6005
6006 /* Add user knob for controlling resolution of opaque types. */
6007 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6008 &opaque_type_resolution,
6009 _("Set resolution of opaque struct/class/union"
6010 " types (if set before loading symbols)."),
6011 _("Show resolution of opaque struct/class/union"
6012 " types (if set before loading symbols)."),
6013 NULL, NULL,
6014 show_opaque_type_resolution,
6015 &setlist, &showlist);
6016
6017 /* Add an option to permit non-strict type checking. */
6018 add_setshow_boolean_cmd ("type", class_support,
6019 &strict_type_checking,
6020 _("Set strict type checking."),
6021 _("Show strict type checking."),
6022 NULL, NULL,
6023 show_strict_type_checking,
6024 &setchecklist, &showchecklist);
6025 }
This page took 0.156245 seconds and 5 git commands to generate.