gdb, gdbserver, gdbsupport: fix leading space vs tabs issues
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118 const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN] = {
119 &floatformat_bfloat16_big,
120 &floatformat_bfloat16_little
121 };
122
123 /* Should opaque types be resolved? */
124
125 static bool opaque_type_resolution = true;
126
127 /* See gdbtypes.h. */
128
129 unsigned int overload_debug = 0;
130
131 /* A flag to enable strict type checking. */
132
133 static bool strict_type_checking = true;
134
135 /* A function to show whether opaque types are resolved. */
136
137 static void
138 show_opaque_type_resolution (struct ui_file *file, int from_tty,
139 struct cmd_list_element *c,
140 const char *value)
141 {
142 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
143 "(if set before loading symbols) is %s.\n"),
144 value);
145 }
146
147 /* A function to show whether C++ overload debugging is enabled. */
148
149 static void
150 show_overload_debug (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
154 value);
155 }
156
157 /* A function to show the status of strict type checking. */
158
159 static void
160 show_strict_type_checking (struct ui_file *file, int from_tty,
161 struct cmd_list_element *c, const char *value)
162 {
163 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
164 }
165
166 \f
167 /* Allocate a new OBJFILE-associated type structure and fill it
168 with some defaults. Space for the type structure is allocated
169 on the objfile's objfile_obstack. */
170
171 struct type *
172 alloc_type (struct objfile *objfile)
173 {
174 struct type *type;
175
176 gdb_assert (objfile != NULL);
177
178 /* Alloc the structure and start off with all fields zeroed. */
179 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
180 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
181 struct main_type);
182 OBJSTAT (objfile, n_types++);
183
184 TYPE_OBJFILE_OWNED (type) = 1;
185 TYPE_OWNER (type).objfile = objfile;
186
187 /* Initialize the fields that might not be zero. */
188
189 type->set_code (TYPE_CODE_UNDEF);
190 TYPE_CHAIN (type) = type; /* Chain back to itself. */
191
192 return type;
193 }
194
195 /* Allocate a new GDBARCH-associated type structure and fill it
196 with some defaults. Space for the type structure is allocated
197 on the obstack associated with GDBARCH. */
198
199 struct type *
200 alloc_type_arch (struct gdbarch *gdbarch)
201 {
202 struct type *type;
203
204 gdb_assert (gdbarch != NULL);
205
206 /* Alloc the structure and start off with all fields zeroed. */
207
208 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
209 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
210
211 TYPE_OBJFILE_OWNED (type) = 0;
212 TYPE_OWNER (type).gdbarch = gdbarch;
213
214 /* Initialize the fields that might not be zero. */
215
216 type->set_code (TYPE_CODE_UNDEF);
217 TYPE_CHAIN (type) = type; /* Chain back to itself. */
218
219 return type;
220 }
221
222 /* If TYPE is objfile-associated, allocate a new type structure
223 associated with the same objfile. If TYPE is gdbarch-associated,
224 allocate a new type structure associated with the same gdbarch. */
225
226 struct type *
227 alloc_type_copy (const struct type *type)
228 {
229 if (TYPE_OBJFILE_OWNED (type))
230 return alloc_type (TYPE_OWNER (type).objfile);
231 else
232 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
233 }
234
235 /* If TYPE is gdbarch-associated, return that architecture.
236 If TYPE is objfile-associated, return that objfile's architecture. */
237
238 struct gdbarch *
239 get_type_arch (const struct type *type)
240 {
241 struct gdbarch *arch;
242
243 if (TYPE_OBJFILE_OWNED (type))
244 arch = TYPE_OWNER (type).objfile->arch ();
245 else
246 arch = TYPE_OWNER (type).gdbarch;
247
248 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
249 a gdbarch, however, this is very rare, and even then, in most cases
250 that get_type_arch is called, we assume that a non-NULL value is
251 returned. */
252 gdb_assert (arch != NULL);
253 return arch;
254 }
255
256 /* See gdbtypes.h. */
257
258 struct type *
259 get_target_type (struct type *type)
260 {
261 if (type != NULL)
262 {
263 type = TYPE_TARGET_TYPE (type);
264 if (type != NULL)
265 type = check_typedef (type);
266 }
267
268 return type;
269 }
270
271 /* See gdbtypes.h. */
272
273 unsigned int
274 type_length_units (struct type *type)
275 {
276 struct gdbarch *arch = get_type_arch (type);
277 int unit_size = gdbarch_addressable_memory_unit_size (arch);
278
279 return TYPE_LENGTH (type) / unit_size;
280 }
281
282 /* Alloc a new type instance structure, fill it with some defaults,
283 and point it at OLDTYPE. Allocate the new type instance from the
284 same place as OLDTYPE. */
285
286 static struct type *
287 alloc_type_instance (struct type *oldtype)
288 {
289 struct type *type;
290
291 /* Allocate the structure. */
292
293 if (! TYPE_OBJFILE_OWNED (oldtype))
294 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
295 else
296 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
297 struct type);
298
299 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
300
301 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
302
303 return type;
304 }
305
306 /* Clear all remnants of the previous type at TYPE, in preparation for
307 replacing it with something else. Preserve owner information. */
308
309 static void
310 smash_type (struct type *type)
311 {
312 int objfile_owned = TYPE_OBJFILE_OWNED (type);
313 union type_owner owner = TYPE_OWNER (type);
314
315 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
316
317 /* Restore owner information. */
318 TYPE_OBJFILE_OWNED (type) = objfile_owned;
319 TYPE_OWNER (type) = owner;
320
321 /* For now, delete the rings. */
322 TYPE_CHAIN (type) = type;
323
324 /* For now, leave the pointer/reference types alone. */
325 }
326
327 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
328 to a pointer to memory where the pointer type should be stored.
329 If *TYPEPTR is zero, update it to point to the pointer type we return.
330 We allocate new memory if needed. */
331
332 struct type *
333 make_pointer_type (struct type *type, struct type **typeptr)
334 {
335 struct type *ntype; /* New type */
336 struct type *chain;
337
338 ntype = TYPE_POINTER_TYPE (type);
339
340 if (ntype)
341 {
342 if (typeptr == 0)
343 return ntype; /* Don't care about alloc,
344 and have new type. */
345 else if (*typeptr == 0)
346 {
347 *typeptr = ntype; /* Tracking alloc, and have new type. */
348 return ntype;
349 }
350 }
351
352 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
353 {
354 ntype = alloc_type_copy (type);
355 if (typeptr)
356 *typeptr = ntype;
357 }
358 else /* We have storage, but need to reset it. */
359 {
360 ntype = *typeptr;
361 chain = TYPE_CHAIN (ntype);
362 smash_type (ntype);
363 TYPE_CHAIN (ntype) = chain;
364 }
365
366 TYPE_TARGET_TYPE (ntype) = type;
367 TYPE_POINTER_TYPE (type) = ntype;
368
369 /* FIXME! Assumes the machine has only one representation for pointers! */
370
371 TYPE_LENGTH (ntype)
372 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
373 ntype->set_code (TYPE_CODE_PTR);
374
375 /* Mark pointers as unsigned. The target converts between pointers
376 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
377 gdbarch_address_to_pointer. */
378 ntype->set_is_unsigned (true);
379
380 /* Update the length of all the other variants of this type. */
381 chain = TYPE_CHAIN (ntype);
382 while (chain != ntype)
383 {
384 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
385 chain = TYPE_CHAIN (chain);
386 }
387
388 return ntype;
389 }
390
391 /* Given a type TYPE, return a type of pointers to that type.
392 May need to construct such a type if this is the first use. */
393
394 struct type *
395 lookup_pointer_type (struct type *type)
396 {
397 return make_pointer_type (type, (struct type **) 0);
398 }
399
400 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
401 points to a pointer to memory where the reference type should be
402 stored. If *TYPEPTR is zero, update it to point to the reference
403 type we return. We allocate new memory if needed. REFCODE denotes
404 the kind of reference type to lookup (lvalue or rvalue reference). */
405
406 struct type *
407 make_reference_type (struct type *type, struct type **typeptr,
408 enum type_code refcode)
409 {
410 struct type *ntype; /* New type */
411 struct type **reftype;
412 struct type *chain;
413
414 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
415
416 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
417 : TYPE_RVALUE_REFERENCE_TYPE (type));
418
419 if (ntype)
420 {
421 if (typeptr == 0)
422 return ntype; /* Don't care about alloc,
423 and have new type. */
424 else if (*typeptr == 0)
425 {
426 *typeptr = ntype; /* Tracking alloc, and have new type. */
427 return ntype;
428 }
429 }
430
431 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
432 {
433 ntype = alloc_type_copy (type);
434 if (typeptr)
435 *typeptr = ntype;
436 }
437 else /* We have storage, but need to reset it. */
438 {
439 ntype = *typeptr;
440 chain = TYPE_CHAIN (ntype);
441 smash_type (ntype);
442 TYPE_CHAIN (ntype) = chain;
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
447 : &TYPE_RVALUE_REFERENCE_TYPE (type));
448
449 *reftype = ntype;
450
451 /* FIXME! Assume the machine has only one representation for
452 references, and that it matches the (only) representation for
453 pointers! */
454
455 TYPE_LENGTH (ntype) =
456 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
457 ntype->set_code (refcode);
458
459 *reftype = ntype;
460
461 /* Update the length of all the other variants of this type. */
462 chain = TYPE_CHAIN (ntype);
463 while (chain != ntype)
464 {
465 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
466 chain = TYPE_CHAIN (chain);
467 }
468
469 return ntype;
470 }
471
472 /* Same as above, but caller doesn't care about memory allocation
473 details. */
474
475 struct type *
476 lookup_reference_type (struct type *type, enum type_code refcode)
477 {
478 return make_reference_type (type, (struct type **) 0, refcode);
479 }
480
481 /* Lookup the lvalue reference type for the type TYPE. */
482
483 struct type *
484 lookup_lvalue_reference_type (struct type *type)
485 {
486 return lookup_reference_type (type, TYPE_CODE_REF);
487 }
488
489 /* Lookup the rvalue reference type for the type TYPE. */
490
491 struct type *
492 lookup_rvalue_reference_type (struct type *type)
493 {
494 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
495 }
496
497 /* Lookup a function type that returns type TYPE. TYPEPTR, if
498 nonzero, points to a pointer to memory where the function type
499 should be stored. If *TYPEPTR is zero, update it to point to the
500 function type we return. We allocate new memory if needed. */
501
502 struct type *
503 make_function_type (struct type *type, struct type **typeptr)
504 {
505 struct type *ntype; /* New type */
506
507 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
508 {
509 ntype = alloc_type_copy (type);
510 if (typeptr)
511 *typeptr = ntype;
512 }
513 else /* We have storage, but need to reset it. */
514 {
515 ntype = *typeptr;
516 smash_type (ntype);
517 }
518
519 TYPE_TARGET_TYPE (ntype) = type;
520
521 TYPE_LENGTH (ntype) = 1;
522 ntype->set_code (TYPE_CODE_FUNC);
523
524 INIT_FUNC_SPECIFIC (ntype);
525
526 return ntype;
527 }
528
529 /* Given a type TYPE, return a type of functions that return that type.
530 May need to construct such a type if this is the first use. */
531
532 struct type *
533 lookup_function_type (struct type *type)
534 {
535 return make_function_type (type, (struct type **) 0);
536 }
537
538 /* Given a type TYPE and argument types, return the appropriate
539 function type. If the final type in PARAM_TYPES is NULL, make a
540 varargs function. */
541
542 struct type *
543 lookup_function_type_with_arguments (struct type *type,
544 int nparams,
545 struct type **param_types)
546 {
547 struct type *fn = make_function_type (type, (struct type **) 0);
548 int i;
549
550 if (nparams > 0)
551 {
552 if (param_types[nparams - 1] == NULL)
553 {
554 --nparams;
555 fn->set_has_varargs (true);
556 }
557 else if (check_typedef (param_types[nparams - 1])->code ()
558 == TYPE_CODE_VOID)
559 {
560 --nparams;
561 /* Caller should have ensured this. */
562 gdb_assert (nparams == 0);
563 fn->set_is_prototyped (true);
564 }
565 else
566 fn->set_is_prototyped (true);
567 }
568
569 fn->set_num_fields (nparams);
570 fn->set_fields
571 ((struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field)));
572 for (i = 0; i < nparams; ++i)
573 fn->field (i).set_type (param_types[i]);
574
575 return fn;
576 }
577
578 /* Identify address space identifier by name -- return a
579 type_instance_flags. */
580
581 type_instance_flags
582 address_space_name_to_type_instance_flags (struct gdbarch *gdbarch,
583 const char *space_identifier)
584 {
585 type_instance_flags type_flags;
586
587 /* Check for known address space delimiters. */
588 if (!strcmp (space_identifier, "code"))
589 return TYPE_INSTANCE_FLAG_CODE_SPACE;
590 else if (!strcmp (space_identifier, "data"))
591 return TYPE_INSTANCE_FLAG_DATA_SPACE;
592 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
593 && gdbarch_address_class_name_to_type_flags (gdbarch,
594 space_identifier,
595 &type_flags))
596 return type_flags;
597 else
598 error (_("Unknown address space specifier: \"%s\""), space_identifier);
599 }
600
601 /* Identify address space identifier by type_instance_flags and return
602 the string version of the adress space name. */
603
604 const char *
605 address_space_type_instance_flags_to_name (struct gdbarch *gdbarch,
606 type_instance_flags space_flag)
607 {
608 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
609 return "code";
610 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
611 return "data";
612 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
613 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
614 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
615 else
616 return NULL;
617 }
618
619 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
620
621 If STORAGE is non-NULL, create the new type instance there.
622 STORAGE must be in the same obstack as TYPE. */
623
624 static struct type *
625 make_qualified_type (struct type *type, type_instance_flags new_flags,
626 struct type *storage)
627 {
628 struct type *ntype;
629
630 ntype = type;
631 do
632 {
633 if (ntype->instance_flags () == new_flags)
634 return ntype;
635 ntype = TYPE_CHAIN (ntype);
636 }
637 while (ntype != type);
638
639 /* Create a new type instance. */
640 if (storage == NULL)
641 ntype = alloc_type_instance (type);
642 else
643 {
644 /* If STORAGE was provided, it had better be in the same objfile
645 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
646 if one objfile is freed and the other kept, we'd have
647 dangling pointers. */
648 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
649
650 ntype = storage;
651 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
652 TYPE_CHAIN (ntype) = ntype;
653 }
654
655 /* Pointers or references to the original type are not relevant to
656 the new type. */
657 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
658 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
659
660 /* Chain the new qualified type to the old type. */
661 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
662 TYPE_CHAIN (type) = ntype;
663
664 /* Now set the instance flags and return the new type. */
665 ntype->set_instance_flags (new_flags);
666
667 /* Set length of new type to that of the original type. */
668 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
669
670 return ntype;
671 }
672
673 /* Make an address-space-delimited variant of a type -- a type that
674 is identical to the one supplied except that it has an address
675 space attribute attached to it (such as "code" or "data").
676
677 The space attributes "code" and "data" are for Harvard
678 architectures. The address space attributes are for architectures
679 which have alternately sized pointers or pointers with alternate
680 representations. */
681
682 struct type *
683 make_type_with_address_space (struct type *type,
684 type_instance_flags space_flag)
685 {
686 type_instance_flags new_flags = ((type->instance_flags ()
687 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
688 | TYPE_INSTANCE_FLAG_DATA_SPACE
689 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
690 | space_flag);
691
692 return make_qualified_type (type, new_flags, NULL);
693 }
694
695 /* Make a "c-v" variant of a type -- a type that is identical to the
696 one supplied except that it may have const or volatile attributes
697 CNST is a flag for setting the const attribute
698 VOLTL is a flag for setting the volatile attribute
699 TYPE is the base type whose variant we are creating.
700
701 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
702 storage to hold the new qualified type; *TYPEPTR and TYPE must be
703 in the same objfile. Otherwise, allocate fresh memory for the new
704 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
705 new type we construct. */
706
707 struct type *
708 make_cv_type (int cnst, int voltl,
709 struct type *type,
710 struct type **typeptr)
711 {
712 struct type *ntype; /* New type */
713
714 type_instance_flags new_flags = (type->instance_flags ()
715 & ~(TYPE_INSTANCE_FLAG_CONST
716 | TYPE_INSTANCE_FLAG_VOLATILE));
717
718 if (cnst)
719 new_flags |= TYPE_INSTANCE_FLAG_CONST;
720
721 if (voltl)
722 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
723
724 if (typeptr && *typeptr != NULL)
725 {
726 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
727 a C-V variant chain that threads across objfiles: if one
728 objfile gets freed, then the other has a broken C-V chain.
729
730 This code used to try to copy over the main type from TYPE to
731 *TYPEPTR if they were in different objfiles, but that's
732 wrong, too: TYPE may have a field list or member function
733 lists, which refer to types of their own, etc. etc. The
734 whole shebang would need to be copied over recursively; you
735 can't have inter-objfile pointers. The only thing to do is
736 to leave stub types as stub types, and look them up afresh by
737 name each time you encounter them. */
738 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
739 }
740
741 ntype = make_qualified_type (type, new_flags,
742 typeptr ? *typeptr : NULL);
743
744 if (typeptr != NULL)
745 *typeptr = ntype;
746
747 return ntype;
748 }
749
750 /* Make a 'restrict'-qualified version of TYPE. */
751
752 struct type *
753 make_restrict_type (struct type *type)
754 {
755 return make_qualified_type (type,
756 (type->instance_flags ()
757 | TYPE_INSTANCE_FLAG_RESTRICT),
758 NULL);
759 }
760
761 /* Make a type without const, volatile, or restrict. */
762
763 struct type *
764 make_unqualified_type (struct type *type)
765 {
766 return make_qualified_type (type,
767 (type->instance_flags ()
768 & ~(TYPE_INSTANCE_FLAG_CONST
769 | TYPE_INSTANCE_FLAG_VOLATILE
770 | TYPE_INSTANCE_FLAG_RESTRICT)),
771 NULL);
772 }
773
774 /* Make a '_Atomic'-qualified version of TYPE. */
775
776 struct type *
777 make_atomic_type (struct type *type)
778 {
779 return make_qualified_type (type,
780 (type->instance_flags ()
781 | TYPE_INSTANCE_FLAG_ATOMIC),
782 NULL);
783 }
784
785 /* Replace the contents of ntype with the type *type. This changes the
786 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
787 the changes are propogated to all types in the TYPE_CHAIN.
788
789 In order to build recursive types, it's inevitable that we'll need
790 to update types in place --- but this sort of indiscriminate
791 smashing is ugly, and needs to be replaced with something more
792 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
793 clear if more steps are needed. */
794
795 void
796 replace_type (struct type *ntype, struct type *type)
797 {
798 struct type *chain;
799
800 /* These two types had better be in the same objfile. Otherwise,
801 the assignment of one type's main type structure to the other
802 will produce a type with references to objects (names; field
803 lists; etc.) allocated on an objfile other than its own. */
804 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
805
806 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
807
808 /* The type length is not a part of the main type. Update it for
809 each type on the variant chain. */
810 chain = ntype;
811 do
812 {
813 /* Assert that this element of the chain has no address-class bits
814 set in its flags. Such type variants might have type lengths
815 which are supposed to be different from the non-address-class
816 variants. This assertion shouldn't ever be triggered because
817 symbol readers which do construct address-class variants don't
818 call replace_type(). */
819 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
820
821 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
822 chain = TYPE_CHAIN (chain);
823 }
824 while (ntype != chain);
825
826 /* Assert that the two types have equivalent instance qualifiers.
827 This should be true for at least all of our debug readers. */
828 gdb_assert (ntype->instance_flags () == type->instance_flags ());
829 }
830
831 /* Implement direct support for MEMBER_TYPE in GNU C++.
832 May need to construct such a type if this is the first use.
833 The TYPE is the type of the member. The DOMAIN is the type
834 of the aggregate that the member belongs to. */
835
836 struct type *
837 lookup_memberptr_type (struct type *type, struct type *domain)
838 {
839 struct type *mtype;
840
841 mtype = alloc_type_copy (type);
842 smash_to_memberptr_type (mtype, domain, type);
843 return mtype;
844 }
845
846 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
847
848 struct type *
849 lookup_methodptr_type (struct type *to_type)
850 {
851 struct type *mtype;
852
853 mtype = alloc_type_copy (to_type);
854 smash_to_methodptr_type (mtype, to_type);
855 return mtype;
856 }
857
858 /* Allocate a stub method whose return type is TYPE. This apparently
859 happens for speed of symbol reading, since parsing out the
860 arguments to the method is cpu-intensive, the way we are doing it.
861 So, we will fill in arguments later. This always returns a fresh
862 type. */
863
864 struct type *
865 allocate_stub_method (struct type *type)
866 {
867 struct type *mtype;
868
869 mtype = alloc_type_copy (type);
870 mtype->set_code (TYPE_CODE_METHOD);
871 TYPE_LENGTH (mtype) = 1;
872 mtype->set_is_stub (true);
873 TYPE_TARGET_TYPE (mtype) = type;
874 /* TYPE_SELF_TYPE (mtype) = unknown yet */
875 return mtype;
876 }
877
878 /* See gdbtypes.h. */
879
880 bool
881 operator== (const dynamic_prop &l, const dynamic_prop &r)
882 {
883 if (l.kind () != r.kind ())
884 return false;
885
886 switch (l.kind ())
887 {
888 case PROP_UNDEFINED:
889 return true;
890 case PROP_CONST:
891 return l.const_val () == r.const_val ();
892 case PROP_ADDR_OFFSET:
893 case PROP_LOCEXPR:
894 case PROP_LOCLIST:
895 return l.baton () == r.baton ();
896 case PROP_VARIANT_PARTS:
897 return l.variant_parts () == r.variant_parts ();
898 case PROP_TYPE:
899 return l.original_type () == r.original_type ();
900 }
901
902 gdb_assert_not_reached ("unhandled dynamic_prop kind");
903 }
904
905 /* See gdbtypes.h. */
906
907 bool
908 operator== (const range_bounds &l, const range_bounds &r)
909 {
910 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
911
912 return (FIELD_EQ (low)
913 && FIELD_EQ (high)
914 && FIELD_EQ (flag_upper_bound_is_count)
915 && FIELD_EQ (flag_bound_evaluated)
916 && FIELD_EQ (bias));
917
918 #undef FIELD_EQ
919 }
920
921 /* Create a range type with a dynamic range from LOW_BOUND to
922 HIGH_BOUND, inclusive. See create_range_type for further details. */
923
924 struct type *
925 create_range_type (struct type *result_type, struct type *index_type,
926 const struct dynamic_prop *low_bound,
927 const struct dynamic_prop *high_bound,
928 LONGEST bias)
929 {
930 /* The INDEX_TYPE should be a type capable of holding the upper and lower
931 bounds, as such a zero sized, or void type makes no sense. */
932 gdb_assert (index_type->code () != TYPE_CODE_VOID);
933 gdb_assert (TYPE_LENGTH (index_type) > 0);
934
935 if (result_type == NULL)
936 result_type = alloc_type_copy (index_type);
937 result_type->set_code (TYPE_CODE_RANGE);
938 TYPE_TARGET_TYPE (result_type) = index_type;
939 if (index_type->is_stub ())
940 result_type->set_target_is_stub (true);
941 else
942 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
943
944 range_bounds *bounds
945 = (struct range_bounds *) TYPE_ZALLOC (result_type, sizeof (range_bounds));
946 bounds->low = *low_bound;
947 bounds->high = *high_bound;
948 bounds->bias = bias;
949 bounds->stride.set_const_val (0);
950
951 result_type->set_bounds (bounds);
952
953 /* Note that the signed-ness of a range type can't simply be copied
954 from the underlying type. Consider a case where the underlying
955 type is 'int', but the range type can hold 0..65535, and where
956 the range is further specified to fit into 16 bits. In this
957 case, if we copy the underlying type's sign, then reading some
958 range values will cause an unwanted sign extension. So, we have
959 some heuristics here instead. */
960 if (low_bound->kind () == PROP_CONST && low_bound->const_val () >= 0)
961 result_type->set_is_unsigned (true);
962 /* Ada allows the declaration of range types whose upper bound is
963 less than the lower bound, so checking the lower bound is not
964 enough. Make sure we do not mark a range type whose upper bound
965 is negative as unsigned. */
966 if (high_bound->kind () == PROP_CONST && high_bound->const_val () < 0)
967 result_type->set_is_unsigned (false);
968
969 result_type->set_endianity_is_not_default
970 (index_type->endianity_is_not_default ());
971
972 return result_type;
973 }
974
975 /* See gdbtypes.h. */
976
977 struct type *
978 create_range_type_with_stride (struct type *result_type,
979 struct type *index_type,
980 const struct dynamic_prop *low_bound,
981 const struct dynamic_prop *high_bound,
982 LONGEST bias,
983 const struct dynamic_prop *stride,
984 bool byte_stride_p)
985 {
986 result_type = create_range_type (result_type, index_type, low_bound,
987 high_bound, bias);
988
989 gdb_assert (stride != nullptr);
990 result_type->bounds ()->stride = *stride;
991 result_type->bounds ()->flag_is_byte_stride = byte_stride_p;
992
993 return result_type;
994 }
995
996
997
998 /* Create a range type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 INDEX_TYPE.
1001
1002 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
1003 to HIGH_BOUND, inclusive.
1004
1005 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1006 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
1007
1008 struct type *
1009 create_static_range_type (struct type *result_type, struct type *index_type,
1010 LONGEST low_bound, LONGEST high_bound)
1011 {
1012 struct dynamic_prop low, high;
1013
1014 low.set_const_val (low_bound);
1015 high.set_const_val (high_bound);
1016
1017 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1018
1019 return result_type;
1020 }
1021
1022 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1023 are static, otherwise returns 0. */
1024
1025 static bool
1026 has_static_range (const struct range_bounds *bounds)
1027 {
1028 /* If the range doesn't have a defined stride then its stride field will
1029 be initialized to the constant 0. */
1030 return (bounds->low.kind () == PROP_CONST
1031 && bounds->high.kind () == PROP_CONST
1032 && bounds->stride.kind () == PROP_CONST);
1033 }
1034
1035
1036 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1037 TYPE.
1038
1039 Return 1 if type is a range type with two defined, constant bounds.
1040 Else, return 0 if it is discrete (and bounds will fit in LONGEST).
1041 Else, return -1. */
1042
1043 int
1044 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1045 {
1046 type = check_typedef (type);
1047 switch (type->code ())
1048 {
1049 case TYPE_CODE_RANGE:
1050 /* This function currently only works for ranges with two defined,
1051 constant bounds. */
1052 if (type->bounds ()->low.kind () != PROP_CONST
1053 || type->bounds ()->high.kind () != PROP_CONST)
1054 return -1;
1055
1056 *lowp = type->bounds ()->low.const_val ();
1057 *highp = type->bounds ()->high.const_val ();
1058
1059 if (TYPE_TARGET_TYPE (type)->code () == TYPE_CODE_ENUM)
1060 {
1061 if (!discrete_position (TYPE_TARGET_TYPE (type), *lowp, lowp)
1062 || ! discrete_position (TYPE_TARGET_TYPE (type), *highp, highp))
1063 return 0;
1064 }
1065 return 1;
1066 case TYPE_CODE_ENUM:
1067 if (type->num_fields () > 0)
1068 {
1069 /* The enums may not be sorted by value, so search all
1070 entries. */
1071 int i;
1072
1073 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1074 for (i = 0; i < type->num_fields (); i++)
1075 {
1076 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1077 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1078 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1079 *highp = TYPE_FIELD_ENUMVAL (type, i);
1080 }
1081
1082 /* Set unsigned indicator if warranted. */
1083 if (*lowp >= 0)
1084 type->set_is_unsigned (true);
1085 }
1086 else
1087 {
1088 *lowp = 0;
1089 *highp = -1;
1090 }
1091 return 0;
1092 case TYPE_CODE_BOOL:
1093 *lowp = 0;
1094 *highp = 1;
1095 return 0;
1096 case TYPE_CODE_INT:
1097 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1098 return -1;
1099 if (!type->is_unsigned ())
1100 {
1101 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1102 *highp = -*lowp - 1;
1103 return 0;
1104 }
1105 /* fall through */
1106 case TYPE_CODE_CHAR:
1107 *lowp = 0;
1108 /* This round-about calculation is to avoid shifting by
1109 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1110 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1111 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1112 *highp = (*highp - 1) | *highp;
1113 return 0;
1114 default:
1115 return -1;
1116 }
1117 }
1118
1119 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1120 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1121 Save the high bound into HIGH_BOUND if not NULL.
1122
1123 Return 1 if the operation was successful. Return zero otherwise,
1124 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
1125
1126 int
1127 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1128 {
1129 struct type *index = type->index_type ();
1130 LONGEST low = 0;
1131 LONGEST high = 0;
1132 int res;
1133
1134 if (index == NULL)
1135 return 0;
1136
1137 res = get_discrete_bounds (index, &low, &high);
1138 if (res == -1)
1139 return 0;
1140
1141 if (low_bound)
1142 *low_bound = low;
1143
1144 if (high_bound)
1145 *high_bound = high;
1146
1147 return 1;
1148 }
1149
1150 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1151 representation of a value of this type, save the corresponding
1152 position number in POS.
1153
1154 Its differs from VAL only in the case of enumeration types. In
1155 this case, the position number of the value of the first listed
1156 enumeration literal is zero; the position number of the value of
1157 each subsequent enumeration literal is one more than that of its
1158 predecessor in the list.
1159
1160 Return 1 if the operation was successful. Return zero otherwise,
1161 in which case the value of POS is unmodified.
1162 */
1163
1164 int
1165 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1166 {
1167 if (type->code () == TYPE_CODE_RANGE)
1168 type = TYPE_TARGET_TYPE (type);
1169
1170 if (type->code () == TYPE_CODE_ENUM)
1171 {
1172 int i;
1173
1174 for (i = 0; i < type->num_fields (); i += 1)
1175 {
1176 if (val == TYPE_FIELD_ENUMVAL (type, i))
1177 {
1178 *pos = i;
1179 return 1;
1180 }
1181 }
1182 /* Invalid enumeration value. */
1183 return 0;
1184 }
1185 else
1186 {
1187 *pos = val;
1188 return 1;
1189 }
1190 }
1191
1192 /* If the array TYPE has static bounds calculate and update its
1193 size, then return true. Otherwise return false and leave TYPE
1194 unchanged. */
1195
1196 static bool
1197 update_static_array_size (struct type *type)
1198 {
1199 gdb_assert (type->code () == TYPE_CODE_ARRAY);
1200
1201 struct type *range_type = type->index_type ();
1202
1203 if (type->dyn_prop (DYN_PROP_BYTE_STRIDE) == nullptr
1204 && has_static_range (range_type->bounds ())
1205 && (!type_not_associated (type)
1206 && !type_not_allocated (type)))
1207 {
1208 LONGEST low_bound, high_bound;
1209 int stride;
1210 struct type *element_type;
1211
1212 /* If the array itself doesn't provide a stride value then take
1213 whatever stride the range provides. Don't update BIT_STRIDE as
1214 we don't want to place the stride value from the range into this
1215 arrays bit size field. */
1216 stride = TYPE_FIELD_BITSIZE (type, 0);
1217 if (stride == 0)
1218 stride = range_type->bit_stride ();
1219
1220 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1221 low_bound = high_bound = 0;
1222 element_type = check_typedef (TYPE_TARGET_TYPE (type));
1223 /* Be careful when setting the array length. Ada arrays can be
1224 empty arrays with the high_bound being smaller than the low_bound.
1225 In such cases, the array length should be zero. */
1226 if (high_bound < low_bound)
1227 TYPE_LENGTH (type) = 0;
1228 else if (stride != 0)
1229 {
1230 /* Ensure that the type length is always positive, even in the
1231 case where (for example in Fortran) we have a negative
1232 stride. It is possible to have a single element array with a
1233 negative stride in Fortran (this doesn't mean anything
1234 special, it's still just a single element array) so do
1235 consider that case when touching this code. */
1236 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1237 TYPE_LENGTH (type)
1238 = ((std::abs (stride) * element_count) + 7) / 8;
1239 }
1240 else
1241 TYPE_LENGTH (type) =
1242 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1243
1244 return true;
1245 }
1246
1247 return false;
1248 }
1249
1250 /* Create an array type using either a blank type supplied in
1251 RESULT_TYPE, or creating a new type, inheriting the objfile from
1252 RANGE_TYPE.
1253
1254 Elements will be of type ELEMENT_TYPE, the indices will be of type
1255 RANGE_TYPE.
1256
1257 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1258 This byte stride property is added to the resulting array type
1259 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1260 argument can only be used to create types that are objfile-owned
1261 (see add_dyn_prop), meaning that either this function must be called
1262 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1263
1264 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1265 If BIT_STRIDE is not zero, build a packed array type whose element
1266 size is BIT_STRIDE. Otherwise, ignore this parameter.
1267
1268 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1269 sure it is TYPE_CODE_UNDEF before we bash it into an array
1270 type? */
1271
1272 struct type *
1273 create_array_type_with_stride (struct type *result_type,
1274 struct type *element_type,
1275 struct type *range_type,
1276 struct dynamic_prop *byte_stride_prop,
1277 unsigned int bit_stride)
1278 {
1279 if (byte_stride_prop != NULL
1280 && byte_stride_prop->kind () == PROP_CONST)
1281 {
1282 /* The byte stride is actually not dynamic. Pretend we were
1283 called with bit_stride set instead of byte_stride_prop.
1284 This will give us the same result type, while avoiding
1285 the need to handle this as a special case. */
1286 bit_stride = byte_stride_prop->const_val () * 8;
1287 byte_stride_prop = NULL;
1288 }
1289
1290 if (result_type == NULL)
1291 result_type = alloc_type_copy (range_type);
1292
1293 result_type->set_code (TYPE_CODE_ARRAY);
1294 TYPE_TARGET_TYPE (result_type) = element_type;
1295
1296 result_type->set_num_fields (1);
1297 result_type->set_fields
1298 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1299 result_type->set_index_type (range_type);
1300 if (byte_stride_prop != NULL)
1301 result_type->add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop);
1302 else if (bit_stride > 0)
1303 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1304
1305 if (!update_static_array_size (result_type))
1306 {
1307 /* This type is dynamic and its length needs to be computed
1308 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1309 undefined by setting it to zero. Although we are not expected
1310 to trust TYPE_LENGTH in this case, setting the size to zero
1311 allows us to avoid allocating objects of random sizes in case
1312 we accidently do. */
1313 TYPE_LENGTH (result_type) = 0;
1314 }
1315
1316 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1317 if (TYPE_LENGTH (result_type) == 0)
1318 result_type->set_target_is_stub (true);
1319
1320 return result_type;
1321 }
1322
1323 /* Same as create_array_type_with_stride but with no bit_stride
1324 (BIT_STRIDE = 0), thus building an unpacked array. */
1325
1326 struct type *
1327 create_array_type (struct type *result_type,
1328 struct type *element_type,
1329 struct type *range_type)
1330 {
1331 return create_array_type_with_stride (result_type, element_type,
1332 range_type, NULL, 0);
1333 }
1334
1335 struct type *
1336 lookup_array_range_type (struct type *element_type,
1337 LONGEST low_bound, LONGEST high_bound)
1338 {
1339 struct type *index_type;
1340 struct type *range_type;
1341
1342 if (TYPE_OBJFILE_OWNED (element_type))
1343 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1344 else
1345 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1346 range_type = create_static_range_type (NULL, index_type,
1347 low_bound, high_bound);
1348
1349 return create_array_type (NULL, element_type, range_type);
1350 }
1351
1352 /* Create a string type using either a blank type supplied in
1353 RESULT_TYPE, or creating a new type. String types are similar
1354 enough to array of char types that we can use create_array_type to
1355 build the basic type and then bash it into a string type.
1356
1357 For fixed length strings, the range type contains 0 as the lower
1358 bound and the length of the string minus one as the upper bound.
1359
1360 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1361 sure it is TYPE_CODE_UNDEF before we bash it into a string
1362 type? */
1363
1364 struct type *
1365 create_string_type (struct type *result_type,
1366 struct type *string_char_type,
1367 struct type *range_type)
1368 {
1369 result_type = create_array_type (result_type,
1370 string_char_type,
1371 range_type);
1372 result_type->set_code (TYPE_CODE_STRING);
1373 return result_type;
1374 }
1375
1376 struct type *
1377 lookup_string_range_type (struct type *string_char_type,
1378 LONGEST low_bound, LONGEST high_bound)
1379 {
1380 struct type *result_type;
1381
1382 result_type = lookup_array_range_type (string_char_type,
1383 low_bound, high_bound);
1384 result_type->set_code (TYPE_CODE_STRING);
1385 return result_type;
1386 }
1387
1388 struct type *
1389 create_set_type (struct type *result_type, struct type *domain_type)
1390 {
1391 if (result_type == NULL)
1392 result_type = alloc_type_copy (domain_type);
1393
1394 result_type->set_code (TYPE_CODE_SET);
1395 result_type->set_num_fields (1);
1396 result_type->set_fields
1397 ((struct field *) TYPE_ZALLOC (result_type, sizeof (struct field)));
1398
1399 if (!domain_type->is_stub ())
1400 {
1401 LONGEST low_bound, high_bound, bit_length;
1402
1403 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1404 low_bound = high_bound = 0;
1405 bit_length = high_bound - low_bound + 1;
1406 TYPE_LENGTH (result_type)
1407 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1408 if (low_bound >= 0)
1409 result_type->set_is_unsigned (true);
1410 }
1411 result_type->field (0).set_type (domain_type);
1412
1413 return result_type;
1414 }
1415
1416 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1417 and any array types nested inside it. */
1418
1419 void
1420 make_vector_type (struct type *array_type)
1421 {
1422 struct type *inner_array, *elt_type;
1423
1424 /* Find the innermost array type, in case the array is
1425 multi-dimensional. */
1426 inner_array = array_type;
1427 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
1428 inner_array = TYPE_TARGET_TYPE (inner_array);
1429
1430 elt_type = TYPE_TARGET_TYPE (inner_array);
1431 if (elt_type->code () == TYPE_CODE_INT)
1432 {
1433 type_instance_flags flags
1434 = elt_type->instance_flags () | TYPE_INSTANCE_FLAG_NOTTEXT;
1435 elt_type = make_qualified_type (elt_type, flags, NULL);
1436 TYPE_TARGET_TYPE (inner_array) = elt_type;
1437 }
1438
1439 array_type->set_is_vector (true);
1440 }
1441
1442 struct type *
1443 init_vector_type (struct type *elt_type, int n)
1444 {
1445 struct type *array_type;
1446
1447 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1448 make_vector_type (array_type);
1449 return array_type;
1450 }
1451
1452 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1453 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1454 confusing. "self" is a common enough replacement for "this".
1455 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1456 TYPE_CODE_METHOD. */
1457
1458 struct type *
1459 internal_type_self_type (struct type *type)
1460 {
1461 switch (type->code ())
1462 {
1463 case TYPE_CODE_METHODPTR:
1464 case TYPE_CODE_MEMBERPTR:
1465 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1466 return NULL;
1467 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1468 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1469 case TYPE_CODE_METHOD:
1470 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1471 return NULL;
1472 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1473 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1474 default:
1475 gdb_assert_not_reached ("bad type");
1476 }
1477 }
1478
1479 /* Set the type of the class that TYPE belongs to.
1480 In c++ this is the class of "this".
1481 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1482 TYPE_CODE_METHOD. */
1483
1484 void
1485 set_type_self_type (struct type *type, struct type *self_type)
1486 {
1487 switch (type->code ())
1488 {
1489 case TYPE_CODE_METHODPTR:
1490 case TYPE_CODE_MEMBERPTR:
1491 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1492 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1493 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1494 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1495 break;
1496 case TYPE_CODE_METHOD:
1497 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1498 INIT_FUNC_SPECIFIC (type);
1499 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1500 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1501 break;
1502 default:
1503 gdb_assert_not_reached ("bad type");
1504 }
1505 }
1506
1507 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1508 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1509 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1510 TYPE doesn't include the offset (that's the value of the MEMBER
1511 itself), but does include the structure type into which it points
1512 (for some reason).
1513
1514 When "smashing" the type, we preserve the objfile that the old type
1515 pointed to, since we aren't changing where the type is actually
1516 allocated. */
1517
1518 void
1519 smash_to_memberptr_type (struct type *type, struct type *self_type,
1520 struct type *to_type)
1521 {
1522 smash_type (type);
1523 type->set_code (TYPE_CODE_MEMBERPTR);
1524 TYPE_TARGET_TYPE (type) = to_type;
1525 set_type_self_type (type, self_type);
1526 /* Assume that a data member pointer is the same size as a normal
1527 pointer. */
1528 TYPE_LENGTH (type)
1529 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1530 }
1531
1532 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1533
1534 When "smashing" the type, we preserve the objfile that the old type
1535 pointed to, since we aren't changing where the type is actually
1536 allocated. */
1537
1538 void
1539 smash_to_methodptr_type (struct type *type, struct type *to_type)
1540 {
1541 smash_type (type);
1542 type->set_code (TYPE_CODE_METHODPTR);
1543 TYPE_TARGET_TYPE (type) = to_type;
1544 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1545 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1546 }
1547
1548 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1549 METHOD just means `function that gets an extra "this" argument'.
1550
1551 When "smashing" the type, we preserve the objfile that the old type
1552 pointed to, since we aren't changing where the type is actually
1553 allocated. */
1554
1555 void
1556 smash_to_method_type (struct type *type, struct type *self_type,
1557 struct type *to_type, struct field *args,
1558 int nargs, int varargs)
1559 {
1560 smash_type (type);
1561 type->set_code (TYPE_CODE_METHOD);
1562 TYPE_TARGET_TYPE (type) = to_type;
1563 set_type_self_type (type, self_type);
1564 type->set_fields (args);
1565 type->set_num_fields (nargs);
1566 if (varargs)
1567 type->set_has_varargs (true);
1568 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1569 }
1570
1571 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1572 Since GCC PR debug/47510 DWARF provides associated information to detect the
1573 anonymous class linkage name from its typedef.
1574
1575 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1576 apply it itself. */
1577
1578 const char *
1579 type_name_or_error (struct type *type)
1580 {
1581 struct type *saved_type = type;
1582 const char *name;
1583 struct objfile *objfile;
1584
1585 type = check_typedef (type);
1586
1587 name = type->name ();
1588 if (name != NULL)
1589 return name;
1590
1591 name = saved_type->name ();
1592 objfile = TYPE_OBJFILE (saved_type);
1593 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1594 name ? name : "<anonymous>",
1595 objfile ? objfile_name (objfile) : "<arch>");
1596 }
1597
1598 /* Lookup a typedef or primitive type named NAME, visible in lexical
1599 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1600 suitably defined. */
1601
1602 struct type *
1603 lookup_typename (const struct language_defn *language,
1604 const char *name,
1605 const struct block *block, int noerr)
1606 {
1607 struct symbol *sym;
1608
1609 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1610 language->la_language, NULL).symbol;
1611 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1612 return SYMBOL_TYPE (sym);
1613
1614 if (noerr)
1615 return NULL;
1616 error (_("No type named %s."), name);
1617 }
1618
1619 struct type *
1620 lookup_unsigned_typename (const struct language_defn *language,
1621 const char *name)
1622 {
1623 char *uns = (char *) alloca (strlen (name) + 10);
1624
1625 strcpy (uns, "unsigned ");
1626 strcpy (uns + 9, name);
1627 return lookup_typename (language, uns, NULL, 0);
1628 }
1629
1630 struct type *
1631 lookup_signed_typename (const struct language_defn *language, const char *name)
1632 {
1633 struct type *t;
1634 char *uns = (char *) alloca (strlen (name) + 8);
1635
1636 strcpy (uns, "signed ");
1637 strcpy (uns + 7, name);
1638 t = lookup_typename (language, uns, NULL, 1);
1639 /* If we don't find "signed FOO" just try again with plain "FOO". */
1640 if (t != NULL)
1641 return t;
1642 return lookup_typename (language, name, NULL, 0);
1643 }
1644
1645 /* Lookup a structure type named "struct NAME",
1646 visible in lexical block BLOCK. */
1647
1648 struct type *
1649 lookup_struct (const char *name, const struct block *block)
1650 {
1651 struct symbol *sym;
1652
1653 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1654
1655 if (sym == NULL)
1656 {
1657 error (_("No struct type named %s."), name);
1658 }
1659 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1660 {
1661 error (_("This context has class, union or enum %s, not a struct."),
1662 name);
1663 }
1664 return (SYMBOL_TYPE (sym));
1665 }
1666
1667 /* Lookup a union type named "union NAME",
1668 visible in lexical block BLOCK. */
1669
1670 struct type *
1671 lookup_union (const char *name, const struct block *block)
1672 {
1673 struct symbol *sym;
1674 struct type *t;
1675
1676 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1677
1678 if (sym == NULL)
1679 error (_("No union type named %s."), name);
1680
1681 t = SYMBOL_TYPE (sym);
1682
1683 if (t->code () == TYPE_CODE_UNION)
1684 return t;
1685
1686 /* If we get here, it's not a union. */
1687 error (_("This context has class, struct or enum %s, not a union."),
1688 name);
1689 }
1690
1691 /* Lookup an enum type named "enum NAME",
1692 visible in lexical block BLOCK. */
1693
1694 struct type *
1695 lookup_enum (const char *name, const struct block *block)
1696 {
1697 struct symbol *sym;
1698
1699 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1700 if (sym == NULL)
1701 {
1702 error (_("No enum type named %s."), name);
1703 }
1704 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_ENUM)
1705 {
1706 error (_("This context has class, struct or union %s, not an enum."),
1707 name);
1708 }
1709 return (SYMBOL_TYPE (sym));
1710 }
1711
1712 /* Lookup a template type named "template NAME<TYPE>",
1713 visible in lexical block BLOCK. */
1714
1715 struct type *
1716 lookup_template_type (const char *name, struct type *type,
1717 const struct block *block)
1718 {
1719 struct symbol *sym;
1720 char *nam = (char *)
1721 alloca (strlen (name) + strlen (type->name ()) + 4);
1722
1723 strcpy (nam, name);
1724 strcat (nam, "<");
1725 strcat (nam, type->name ());
1726 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1727
1728 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1729
1730 if (sym == NULL)
1731 {
1732 error (_("No template type named %s."), name);
1733 }
1734 if (SYMBOL_TYPE (sym)->code () != TYPE_CODE_STRUCT)
1735 {
1736 error (_("This context has class, union or enum %s, not a struct."),
1737 name);
1738 }
1739 return (SYMBOL_TYPE (sym));
1740 }
1741
1742 /* See gdbtypes.h. */
1743
1744 struct_elt
1745 lookup_struct_elt (struct type *type, const char *name, int noerr)
1746 {
1747 int i;
1748
1749 for (;;)
1750 {
1751 type = check_typedef (type);
1752 if (type->code () != TYPE_CODE_PTR
1753 && type->code () != TYPE_CODE_REF)
1754 break;
1755 type = TYPE_TARGET_TYPE (type);
1756 }
1757
1758 if (type->code () != TYPE_CODE_STRUCT
1759 && type->code () != TYPE_CODE_UNION)
1760 {
1761 std::string type_name = type_to_string (type);
1762 error (_("Type %s is not a structure or union type."),
1763 type_name.c_str ());
1764 }
1765
1766 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1767 {
1768 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1769
1770 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1771 {
1772 return {&type->field (i), TYPE_FIELD_BITPOS (type, i)};
1773 }
1774 else if (!t_field_name || *t_field_name == '\0')
1775 {
1776 struct_elt elt
1777 = lookup_struct_elt (type->field (i).type (), name, 1);
1778 if (elt.field != NULL)
1779 {
1780 elt.offset += TYPE_FIELD_BITPOS (type, i);
1781 return elt;
1782 }
1783 }
1784 }
1785
1786 /* OK, it's not in this class. Recursively check the baseclasses. */
1787 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1788 {
1789 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1790 if (elt.field != NULL)
1791 return elt;
1792 }
1793
1794 if (noerr)
1795 return {nullptr, 0};
1796
1797 std::string type_name = type_to_string (type);
1798 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1799 }
1800
1801 /* See gdbtypes.h. */
1802
1803 struct type *
1804 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1805 {
1806 struct_elt elt = lookup_struct_elt (type, name, noerr);
1807 if (elt.field != NULL)
1808 return elt.field->type ();
1809 else
1810 return NULL;
1811 }
1812
1813 /* Store in *MAX the largest number representable by unsigned integer type
1814 TYPE. */
1815
1816 void
1817 get_unsigned_type_max (struct type *type, ULONGEST *max)
1818 {
1819 unsigned int n;
1820
1821 type = check_typedef (type);
1822 gdb_assert (type->code () == TYPE_CODE_INT && type->is_unsigned ());
1823 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1824
1825 /* Written this way to avoid overflow. */
1826 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1827 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1828 }
1829
1830 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1831 signed integer type TYPE. */
1832
1833 void
1834 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1835 {
1836 unsigned int n;
1837
1838 type = check_typedef (type);
1839 gdb_assert (type->code () == TYPE_CODE_INT && !type->is_unsigned ());
1840 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1841
1842 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1843 *min = -((ULONGEST) 1 << (n - 1));
1844 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1845 }
1846
1847 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1848 cplus_stuff.vptr_fieldno.
1849
1850 cplus_stuff is initialized to cplus_struct_default which does not
1851 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1852 designated initializers). We cope with that here. */
1853
1854 int
1855 internal_type_vptr_fieldno (struct type *type)
1856 {
1857 type = check_typedef (type);
1858 gdb_assert (type->code () == TYPE_CODE_STRUCT
1859 || type->code () == TYPE_CODE_UNION);
1860 if (!HAVE_CPLUS_STRUCT (type))
1861 return -1;
1862 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1863 }
1864
1865 /* Set the value of cplus_stuff.vptr_fieldno. */
1866
1867 void
1868 set_type_vptr_fieldno (struct type *type, int fieldno)
1869 {
1870 type = check_typedef (type);
1871 gdb_assert (type->code () == TYPE_CODE_STRUCT
1872 || type->code () == TYPE_CODE_UNION);
1873 if (!HAVE_CPLUS_STRUCT (type))
1874 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1875 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1876 }
1877
1878 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1879 cplus_stuff.vptr_basetype. */
1880
1881 struct type *
1882 internal_type_vptr_basetype (struct type *type)
1883 {
1884 type = check_typedef (type);
1885 gdb_assert (type->code () == TYPE_CODE_STRUCT
1886 || type->code () == TYPE_CODE_UNION);
1887 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1888 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1889 }
1890
1891 /* Set the value of cplus_stuff.vptr_basetype. */
1892
1893 void
1894 set_type_vptr_basetype (struct type *type, struct type *basetype)
1895 {
1896 type = check_typedef (type);
1897 gdb_assert (type->code () == TYPE_CODE_STRUCT
1898 || type->code () == TYPE_CODE_UNION);
1899 if (!HAVE_CPLUS_STRUCT (type))
1900 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1901 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1902 }
1903
1904 /* Lookup the vptr basetype/fieldno values for TYPE.
1905 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1906 vptr_fieldno. Also, if found and basetype is from the same objfile,
1907 cache the results.
1908 If not found, return -1 and ignore BASETYPEP.
1909 Callers should be aware that in some cases (for example,
1910 the type or one of its baseclasses is a stub type and we are
1911 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1912 this function will not be able to find the
1913 virtual function table pointer, and vptr_fieldno will remain -1 and
1914 vptr_basetype will remain NULL or incomplete. */
1915
1916 int
1917 get_vptr_fieldno (struct type *type, struct type **basetypep)
1918 {
1919 type = check_typedef (type);
1920
1921 if (TYPE_VPTR_FIELDNO (type) < 0)
1922 {
1923 int i;
1924
1925 /* We must start at zero in case the first (and only) baseclass
1926 is virtual (and hence we cannot share the table pointer). */
1927 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1928 {
1929 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1930 int fieldno;
1931 struct type *basetype;
1932
1933 fieldno = get_vptr_fieldno (baseclass, &basetype);
1934 if (fieldno >= 0)
1935 {
1936 /* If the type comes from a different objfile we can't cache
1937 it, it may have a different lifetime. PR 2384 */
1938 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1939 {
1940 set_type_vptr_fieldno (type, fieldno);
1941 set_type_vptr_basetype (type, basetype);
1942 }
1943 if (basetypep)
1944 *basetypep = basetype;
1945 return fieldno;
1946 }
1947 }
1948
1949 /* Not found. */
1950 return -1;
1951 }
1952 else
1953 {
1954 if (basetypep)
1955 *basetypep = TYPE_VPTR_BASETYPE (type);
1956 return TYPE_VPTR_FIELDNO (type);
1957 }
1958 }
1959
1960 static void
1961 stub_noname_complaint (void)
1962 {
1963 complaint (_("stub type has NULL name"));
1964 }
1965
1966 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1967 attached to it, and that property has a non-constant value. */
1968
1969 static int
1970 array_type_has_dynamic_stride (struct type *type)
1971 {
1972 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
1973
1974 return (prop != NULL && prop->kind () != PROP_CONST);
1975 }
1976
1977 /* Worker for is_dynamic_type. */
1978
1979 static int
1980 is_dynamic_type_internal (struct type *type, int top_level)
1981 {
1982 type = check_typedef (type);
1983
1984 /* We only want to recognize references at the outermost level. */
1985 if (top_level && type->code () == TYPE_CODE_REF)
1986 type = check_typedef (TYPE_TARGET_TYPE (type));
1987
1988 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1989 dynamic, even if the type itself is statically defined.
1990 From a user's point of view, this may appear counter-intuitive;
1991 but it makes sense in this context, because the point is to determine
1992 whether any part of the type needs to be resolved before it can
1993 be exploited. */
1994 if (TYPE_DATA_LOCATION (type) != NULL
1995 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1996 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1997 return 1;
1998
1999 if (TYPE_ASSOCIATED_PROP (type))
2000 return 1;
2001
2002 if (TYPE_ALLOCATED_PROP (type))
2003 return 1;
2004
2005 struct dynamic_prop *prop = type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2006 if (prop != nullptr && prop->kind () != PROP_TYPE)
2007 return 1;
2008
2009 if (TYPE_HAS_DYNAMIC_LENGTH (type))
2010 return 1;
2011
2012 switch (type->code ())
2013 {
2014 case TYPE_CODE_RANGE:
2015 {
2016 /* A range type is obviously dynamic if it has at least one
2017 dynamic bound. But also consider the range type to be
2018 dynamic when its subtype is dynamic, even if the bounds
2019 of the range type are static. It allows us to assume that
2020 the subtype of a static range type is also static. */
2021 return (!has_static_range (type->bounds ())
2022 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
2023 }
2024
2025 case TYPE_CODE_STRING:
2026 /* Strings are very much like an array of characters, and can be
2027 treated as one here. */
2028 case TYPE_CODE_ARRAY:
2029 {
2030 gdb_assert (type->num_fields () == 1);
2031
2032 /* The array is dynamic if either the bounds are dynamic... */
2033 if (is_dynamic_type_internal (type->index_type (), 0))
2034 return 1;
2035 /* ... or the elements it contains have a dynamic contents... */
2036 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2037 return 1;
2038 /* ... or if it has a dynamic stride... */
2039 if (array_type_has_dynamic_stride (type))
2040 return 1;
2041 return 0;
2042 }
2043
2044 case TYPE_CODE_STRUCT:
2045 case TYPE_CODE_UNION:
2046 {
2047 int i;
2048
2049 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2050
2051 for (i = 0; i < type->num_fields (); ++i)
2052 {
2053 /* Static fields can be ignored here. */
2054 if (field_is_static (&type->field (i)))
2055 continue;
2056 /* If the field has dynamic type, then so does TYPE. */
2057 if (is_dynamic_type_internal (type->field (i).type (), 0))
2058 return 1;
2059 /* If the field is at a fixed offset, then it is not
2060 dynamic. */
2061 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2062 continue;
2063 /* Do not consider C++ virtual base types to be dynamic
2064 due to the field's offset being dynamic; these are
2065 handled via other means. */
2066 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2067 continue;
2068 return 1;
2069 }
2070 }
2071 break;
2072 }
2073
2074 return 0;
2075 }
2076
2077 /* See gdbtypes.h. */
2078
2079 int
2080 is_dynamic_type (struct type *type)
2081 {
2082 return is_dynamic_type_internal (type, 1);
2083 }
2084
2085 static struct type *resolve_dynamic_type_internal
2086 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2087
2088 /* Given a dynamic range type (dyn_range_type) and a stack of
2089 struct property_addr_info elements, return a static version
2090 of that type. */
2091
2092 static struct type *
2093 resolve_dynamic_range (struct type *dyn_range_type,
2094 struct property_addr_info *addr_stack)
2095 {
2096 CORE_ADDR value;
2097 struct type *static_range_type, *static_target_type;
2098 struct dynamic_prop low_bound, high_bound, stride;
2099
2100 gdb_assert (dyn_range_type->code () == TYPE_CODE_RANGE);
2101
2102 const struct dynamic_prop *prop = &dyn_range_type->bounds ()->low;
2103 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2104 low_bound.set_const_val (value);
2105 else
2106 low_bound.set_undefined ();
2107
2108 prop = &dyn_range_type->bounds ()->high;
2109 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2110 {
2111 high_bound.set_const_val (value);
2112
2113 if (dyn_range_type->bounds ()->flag_upper_bound_is_count)
2114 high_bound.set_const_val
2115 (low_bound.const_val () + high_bound.const_val () - 1);
2116 }
2117 else
2118 high_bound.set_undefined ();
2119
2120 bool byte_stride_p = dyn_range_type->bounds ()->flag_is_byte_stride;
2121 prop = &dyn_range_type->bounds ()->stride;
2122 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2123 {
2124 stride.set_const_val (value);
2125
2126 /* If we have a bit stride that is not an exact number of bytes then
2127 I really don't think this is going to work with current GDB, the
2128 array indexing code in GDB seems to be pretty heavily tied to byte
2129 offsets right now. Assuming 8 bits in a byte. */
2130 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2131 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2132 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2133 error (_("bit strides that are not a multiple of the byte size "
2134 "are currently not supported"));
2135 }
2136 else
2137 {
2138 stride.set_undefined ();
2139 byte_stride_p = true;
2140 }
2141
2142 static_target_type
2143 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2144 addr_stack, 0);
2145 LONGEST bias = dyn_range_type->bounds ()->bias;
2146 static_range_type = create_range_type_with_stride
2147 (copy_type (dyn_range_type), static_target_type,
2148 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2149 static_range_type->bounds ()->flag_bound_evaluated = 1;
2150 return static_range_type;
2151 }
2152
2153 /* Resolves dynamic bound values of an array or string type TYPE to static
2154 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2155 needed during the dynamic resolution. */
2156
2157 static struct type *
2158 resolve_dynamic_array_or_string (struct type *type,
2159 struct property_addr_info *addr_stack)
2160 {
2161 CORE_ADDR value;
2162 struct type *elt_type;
2163 struct type *range_type;
2164 struct type *ary_dim;
2165 struct dynamic_prop *prop;
2166 unsigned int bit_stride = 0;
2167
2168 /* For dynamic type resolution strings can be treated like arrays of
2169 characters. */
2170 gdb_assert (type->code () == TYPE_CODE_ARRAY
2171 || type->code () == TYPE_CODE_STRING);
2172
2173 type = copy_type (type);
2174
2175 elt_type = type;
2176 range_type = check_typedef (elt_type->index_type ());
2177 range_type = resolve_dynamic_range (range_type, addr_stack);
2178
2179 /* Resolve allocated/associated here before creating a new array type, which
2180 will update the length of the array accordingly. */
2181 prop = TYPE_ALLOCATED_PROP (type);
2182 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2183 prop->set_const_val (value);
2184
2185 prop = TYPE_ASSOCIATED_PROP (type);
2186 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2187 prop->set_const_val (value);
2188
2189 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2190
2191 if (ary_dim != NULL && ary_dim->code () == TYPE_CODE_ARRAY)
2192 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2193 else
2194 elt_type = TYPE_TARGET_TYPE (type);
2195
2196 prop = type->dyn_prop (DYN_PROP_BYTE_STRIDE);
2197 if (prop != NULL)
2198 {
2199 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2200 {
2201 type->remove_dyn_prop (DYN_PROP_BYTE_STRIDE);
2202 bit_stride = (unsigned int) (value * 8);
2203 }
2204 else
2205 {
2206 /* Could be a bug in our code, but it could also happen
2207 if the DWARF info is not correct. Issue a warning,
2208 and assume no byte/bit stride (leave bit_stride = 0). */
2209 warning (_("cannot determine array stride for type %s"),
2210 type->name () ? type->name () : "<no name>");
2211 }
2212 }
2213 else
2214 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2215
2216 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2217 bit_stride);
2218 }
2219
2220 /* Resolve dynamic bounds of members of the union TYPE to static
2221 bounds. ADDR_STACK is a stack of struct property_addr_info
2222 to be used if needed during the dynamic resolution. */
2223
2224 static struct type *
2225 resolve_dynamic_union (struct type *type,
2226 struct property_addr_info *addr_stack)
2227 {
2228 struct type *resolved_type;
2229 int i;
2230 unsigned int max_len = 0;
2231
2232 gdb_assert (type->code () == TYPE_CODE_UNION);
2233
2234 resolved_type = copy_type (type);
2235 resolved_type->set_fields
2236 ((struct field *)
2237 TYPE_ALLOC (resolved_type,
2238 resolved_type->num_fields () * sizeof (struct field)));
2239 memcpy (resolved_type->fields (),
2240 type->fields (),
2241 resolved_type->num_fields () * sizeof (struct field));
2242 for (i = 0; i < resolved_type->num_fields (); ++i)
2243 {
2244 struct type *t;
2245
2246 if (field_is_static (&type->field (i)))
2247 continue;
2248
2249 t = resolve_dynamic_type_internal (resolved_type->field (i).type (),
2250 addr_stack, 0);
2251 resolved_type->field (i).set_type (t);
2252
2253 struct type *real_type = check_typedef (t);
2254 if (TYPE_LENGTH (real_type) > max_len)
2255 max_len = TYPE_LENGTH (real_type);
2256 }
2257
2258 TYPE_LENGTH (resolved_type) = max_len;
2259 return resolved_type;
2260 }
2261
2262 /* See gdbtypes.h. */
2263
2264 bool
2265 variant::matches (ULONGEST value, bool is_unsigned) const
2266 {
2267 for (const discriminant_range &range : discriminants)
2268 if (range.contains (value, is_unsigned))
2269 return true;
2270 return false;
2271 }
2272
2273 static void
2274 compute_variant_fields_inner (struct type *type,
2275 struct property_addr_info *addr_stack,
2276 const variant_part &part,
2277 std::vector<bool> &flags);
2278
2279 /* A helper function to determine which variant fields will be active.
2280 This handles both the variant's direct fields, and any variant
2281 parts embedded in this variant. TYPE is the type we're examining.
2282 ADDR_STACK holds information about the concrete object. VARIANT is
2283 the current variant to be handled. FLAGS is where the results are
2284 stored -- this function sets the Nth element in FLAGS if the
2285 corresponding field is enabled. ENABLED is whether this variant is
2286 enabled or not. */
2287
2288 static void
2289 compute_variant_fields_recurse (struct type *type,
2290 struct property_addr_info *addr_stack,
2291 const variant &variant,
2292 std::vector<bool> &flags,
2293 bool enabled)
2294 {
2295 for (int field = variant.first_field; field < variant.last_field; ++field)
2296 flags[field] = enabled;
2297
2298 for (const variant_part &new_part : variant.parts)
2299 {
2300 if (enabled)
2301 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2302 else
2303 {
2304 for (const auto &sub_variant : new_part.variants)
2305 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2306 flags, enabled);
2307 }
2308 }
2309 }
2310
2311 /* A helper function to determine which variant fields will be active.
2312 This evaluates the discriminant, decides which variant (if any) is
2313 active, and then updates FLAGS to reflect which fields should be
2314 available. TYPE is the type we're examining. ADDR_STACK holds
2315 information about the concrete object. VARIANT is the current
2316 variant to be handled. FLAGS is where the results are stored --
2317 this function sets the Nth element in FLAGS if the corresponding
2318 field is enabled. */
2319
2320 static void
2321 compute_variant_fields_inner (struct type *type,
2322 struct property_addr_info *addr_stack,
2323 const variant_part &part,
2324 std::vector<bool> &flags)
2325 {
2326 /* Evaluate the discriminant. */
2327 gdb::optional<ULONGEST> discr_value;
2328 if (part.discriminant_index != -1)
2329 {
2330 int idx = part.discriminant_index;
2331
2332 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2333 error (_("Cannot determine struct field location"
2334 " (invalid location kind)"));
2335
2336 if (addr_stack->valaddr.data () != NULL)
2337 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2338 idx);
2339 else
2340 {
2341 CORE_ADDR addr = (addr_stack->addr
2342 + (TYPE_FIELD_BITPOS (type, idx)
2343 / TARGET_CHAR_BIT));
2344
2345 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2346 LONGEST size = bitsize / 8;
2347 if (size == 0)
2348 size = TYPE_LENGTH (type->field (idx).type ());
2349
2350 gdb_byte bits[sizeof (ULONGEST)];
2351 read_memory (addr, bits, size);
2352
2353 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2354 % TARGET_CHAR_BIT);
2355
2356 discr_value = unpack_bits_as_long (type->field (idx).type (),
2357 bits, bitpos, bitsize);
2358 }
2359 }
2360
2361 /* Go through each variant and see which applies. */
2362 const variant *default_variant = nullptr;
2363 const variant *applied_variant = nullptr;
2364 for (const auto &variant : part.variants)
2365 {
2366 if (variant.is_default ())
2367 default_variant = &variant;
2368 else if (discr_value.has_value ()
2369 && variant.matches (*discr_value, part.is_unsigned))
2370 {
2371 applied_variant = &variant;
2372 break;
2373 }
2374 }
2375 if (applied_variant == nullptr)
2376 applied_variant = default_variant;
2377
2378 for (const auto &variant : part.variants)
2379 compute_variant_fields_recurse (type, addr_stack, variant,
2380 flags, applied_variant == &variant);
2381 }
2382
2383 /* Determine which variant fields are available in TYPE. The enabled
2384 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2385 about the concrete object. PARTS describes the top-level variant
2386 parts for this type. */
2387
2388 static void
2389 compute_variant_fields (struct type *type,
2390 struct type *resolved_type,
2391 struct property_addr_info *addr_stack,
2392 const gdb::array_view<variant_part> &parts)
2393 {
2394 /* Assume all fields are included by default. */
2395 std::vector<bool> flags (resolved_type->num_fields (), true);
2396
2397 /* Now disable fields based on the variants that control them. */
2398 for (const auto &part : parts)
2399 compute_variant_fields_inner (type, addr_stack, part, flags);
2400
2401 resolved_type->set_num_fields
2402 (std::count (flags.begin (), flags.end (), true));
2403 resolved_type->set_fields
2404 ((struct field *)
2405 TYPE_ALLOC (resolved_type,
2406 resolved_type->num_fields () * sizeof (struct field)));
2407
2408 int out = 0;
2409 for (int i = 0; i < type->num_fields (); ++i)
2410 {
2411 if (!flags[i])
2412 continue;
2413
2414 resolved_type->field (out) = type->field (i);
2415 ++out;
2416 }
2417 }
2418
2419 /* Resolve dynamic bounds of members of the struct TYPE to static
2420 bounds. ADDR_STACK is a stack of struct property_addr_info to
2421 be used if needed during the dynamic resolution. */
2422
2423 static struct type *
2424 resolve_dynamic_struct (struct type *type,
2425 struct property_addr_info *addr_stack)
2426 {
2427 struct type *resolved_type;
2428 int i;
2429 unsigned resolved_type_bit_length = 0;
2430
2431 gdb_assert (type->code () == TYPE_CODE_STRUCT);
2432 gdb_assert (type->num_fields () > 0);
2433
2434 resolved_type = copy_type (type);
2435
2436 dynamic_prop *variant_prop = resolved_type->dyn_prop (DYN_PROP_VARIANT_PARTS);
2437 if (variant_prop != nullptr && variant_prop->kind () == PROP_VARIANT_PARTS)
2438 {
2439 compute_variant_fields (type, resolved_type, addr_stack,
2440 *variant_prop->variant_parts ());
2441 /* We want to leave the property attached, so that the Rust code
2442 can tell whether the type was originally an enum. */
2443 variant_prop->set_original_type (type);
2444 }
2445 else
2446 {
2447 resolved_type->set_fields
2448 ((struct field *)
2449 TYPE_ALLOC (resolved_type,
2450 resolved_type->num_fields () * sizeof (struct field)));
2451 memcpy (resolved_type->fields (),
2452 type->fields (),
2453 resolved_type->num_fields () * sizeof (struct field));
2454 }
2455
2456 for (i = 0; i < resolved_type->num_fields (); ++i)
2457 {
2458 unsigned new_bit_length;
2459 struct property_addr_info pinfo;
2460
2461 if (field_is_static (&resolved_type->field (i)))
2462 continue;
2463
2464 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2465 {
2466 struct dwarf2_property_baton baton;
2467 baton.property_type
2468 = lookup_pointer_type (resolved_type->field (i).type ());
2469 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2470
2471 struct dynamic_prop prop;
2472 prop.set_locexpr (&baton);
2473
2474 CORE_ADDR addr;
2475 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2476 true))
2477 SET_FIELD_BITPOS (resolved_type->field (i),
2478 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2479 }
2480
2481 /* As we know this field is not a static field, the field's
2482 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2483 this is the case, but only trigger a simple error rather
2484 than an internal error if that fails. While failing
2485 that verification indicates a bug in our code, the error
2486 is not severe enough to suggest to the user he stops
2487 his debugging session because of it. */
2488 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2489 error (_("Cannot determine struct field location"
2490 " (invalid location kind)"));
2491
2492 pinfo.type = check_typedef (resolved_type->field (i).type ());
2493 pinfo.valaddr = addr_stack->valaddr;
2494 pinfo.addr
2495 = (addr_stack->addr
2496 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2497 pinfo.next = addr_stack;
2498
2499 resolved_type->field (i).set_type
2500 (resolve_dynamic_type_internal (resolved_type->field (i).type (),
2501 &pinfo, 0));
2502 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2503 == FIELD_LOC_KIND_BITPOS);
2504
2505 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2506 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2507 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2508 else
2509 {
2510 struct type *real_type
2511 = check_typedef (resolved_type->field (i).type ());
2512
2513 new_bit_length += (TYPE_LENGTH (real_type) * TARGET_CHAR_BIT);
2514 }
2515
2516 /* Normally, we would use the position and size of the last field
2517 to determine the size of the enclosing structure. But GCC seems
2518 to be encoding the position of some fields incorrectly when
2519 the struct contains a dynamic field that is not placed last.
2520 So we compute the struct size based on the field that has
2521 the highest position + size - probably the best we can do. */
2522 if (new_bit_length > resolved_type_bit_length)
2523 resolved_type_bit_length = new_bit_length;
2524 }
2525
2526 /* The length of a type won't change for fortran, but it does for C and Ada.
2527 For fortran the size of dynamic fields might change over time but not the
2528 type length of the structure. If we adapt it, we run into problems
2529 when calculating the element offset for arrays of structs. */
2530 if (current_language->la_language != language_fortran)
2531 TYPE_LENGTH (resolved_type)
2532 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2533
2534 /* The Ada language uses this field as a cache for static fixed types: reset
2535 it as RESOLVED_TYPE must have its own static fixed type. */
2536 TYPE_TARGET_TYPE (resolved_type) = NULL;
2537
2538 return resolved_type;
2539 }
2540
2541 /* Worker for resolved_dynamic_type. */
2542
2543 static struct type *
2544 resolve_dynamic_type_internal (struct type *type,
2545 struct property_addr_info *addr_stack,
2546 int top_level)
2547 {
2548 struct type *real_type = check_typedef (type);
2549 struct type *resolved_type = nullptr;
2550 struct dynamic_prop *prop;
2551 CORE_ADDR value;
2552
2553 if (!is_dynamic_type_internal (real_type, top_level))
2554 return type;
2555
2556 gdb::optional<CORE_ADDR> type_length;
2557 prop = TYPE_DYNAMIC_LENGTH (type);
2558 if (prop != NULL
2559 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2560 type_length = value;
2561
2562 if (type->code () == TYPE_CODE_TYPEDEF)
2563 {
2564 resolved_type = copy_type (type);
2565 TYPE_TARGET_TYPE (resolved_type)
2566 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2567 top_level);
2568 }
2569 else
2570 {
2571 /* Before trying to resolve TYPE, make sure it is not a stub. */
2572 type = real_type;
2573
2574 switch (type->code ())
2575 {
2576 case TYPE_CODE_REF:
2577 {
2578 struct property_addr_info pinfo;
2579
2580 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2581 pinfo.valaddr = {};
2582 if (addr_stack->valaddr.data () != NULL)
2583 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2584 type);
2585 else
2586 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2587 pinfo.next = addr_stack;
2588
2589 resolved_type = copy_type (type);
2590 TYPE_TARGET_TYPE (resolved_type)
2591 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2592 &pinfo, top_level);
2593 break;
2594 }
2595
2596 case TYPE_CODE_STRING:
2597 /* Strings are very much like an array of characters, and can be
2598 treated as one here. */
2599 case TYPE_CODE_ARRAY:
2600 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2601 break;
2602
2603 case TYPE_CODE_RANGE:
2604 resolved_type = resolve_dynamic_range (type, addr_stack);
2605 break;
2606
2607 case TYPE_CODE_UNION:
2608 resolved_type = resolve_dynamic_union (type, addr_stack);
2609 break;
2610
2611 case TYPE_CODE_STRUCT:
2612 resolved_type = resolve_dynamic_struct (type, addr_stack);
2613 break;
2614 }
2615 }
2616
2617 if (resolved_type == nullptr)
2618 return type;
2619
2620 if (type_length.has_value ())
2621 {
2622 TYPE_LENGTH (resolved_type) = *type_length;
2623 resolved_type->remove_dyn_prop (DYN_PROP_BYTE_SIZE);
2624 }
2625
2626 /* Resolve data_location attribute. */
2627 prop = TYPE_DATA_LOCATION (resolved_type);
2628 if (prop != NULL
2629 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2630 prop->set_const_val (value);
2631
2632 return resolved_type;
2633 }
2634
2635 /* See gdbtypes.h */
2636
2637 struct type *
2638 resolve_dynamic_type (struct type *type,
2639 gdb::array_view<const gdb_byte> valaddr,
2640 CORE_ADDR addr)
2641 {
2642 struct property_addr_info pinfo
2643 = {check_typedef (type), valaddr, addr, NULL};
2644
2645 return resolve_dynamic_type_internal (type, &pinfo, 1);
2646 }
2647
2648 /* See gdbtypes.h */
2649
2650 dynamic_prop *
2651 type::dyn_prop (dynamic_prop_node_kind prop_kind) const
2652 {
2653 dynamic_prop_list *node = this->main_type->dyn_prop_list;
2654
2655 while (node != NULL)
2656 {
2657 if (node->prop_kind == prop_kind)
2658 return &node->prop;
2659 node = node->next;
2660 }
2661 return NULL;
2662 }
2663
2664 /* See gdbtypes.h */
2665
2666 void
2667 type::add_dyn_prop (dynamic_prop_node_kind prop_kind, dynamic_prop prop)
2668 {
2669 struct dynamic_prop_list *temp;
2670
2671 gdb_assert (TYPE_OBJFILE_OWNED (this));
2672
2673 temp = XOBNEW (&TYPE_OBJFILE (this)->objfile_obstack,
2674 struct dynamic_prop_list);
2675 temp->prop_kind = prop_kind;
2676 temp->prop = prop;
2677 temp->next = this->main_type->dyn_prop_list;
2678
2679 this->main_type->dyn_prop_list = temp;
2680 }
2681
2682 /* See gdbtypes.h. */
2683
2684 void
2685 type::remove_dyn_prop (dynamic_prop_node_kind kind)
2686 {
2687 struct dynamic_prop_list *prev_node, *curr_node;
2688
2689 curr_node = this->main_type->dyn_prop_list;
2690 prev_node = NULL;
2691
2692 while (NULL != curr_node)
2693 {
2694 if (curr_node->prop_kind == kind)
2695 {
2696 /* Update the linked list but don't free anything.
2697 The property was allocated on objstack and it is not known
2698 if we are on top of it. Nevertheless, everything is released
2699 when the complete objstack is freed. */
2700 if (NULL == prev_node)
2701 this->main_type->dyn_prop_list = curr_node->next;
2702 else
2703 prev_node->next = curr_node->next;
2704
2705 return;
2706 }
2707
2708 prev_node = curr_node;
2709 curr_node = curr_node->next;
2710 }
2711 }
2712
2713 /* Find the real type of TYPE. This function returns the real type,
2714 after removing all layers of typedefs, and completing opaque or stub
2715 types. Completion changes the TYPE argument, but stripping of
2716 typedefs does not.
2717
2718 Instance flags (e.g. const/volatile) are preserved as typedefs are
2719 stripped. If necessary a new qualified form of the underlying type
2720 is created.
2721
2722 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2723 not been computed and we're either in the middle of reading symbols, or
2724 there was no name for the typedef in the debug info.
2725
2726 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2727 QUITs in the symbol reading code can also throw.
2728 Thus this function can throw an exception.
2729
2730 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2731 the target type.
2732
2733 If this is a stubbed struct (i.e. declared as struct foo *), see if
2734 we can find a full definition in some other file. If so, copy this
2735 definition, so we can use it in future. There used to be a comment
2736 (but not any code) that if we don't find a full definition, we'd
2737 set a flag so we don't spend time in the future checking the same
2738 type. That would be a mistake, though--we might load in more
2739 symbols which contain a full definition for the type. */
2740
2741 struct type *
2742 check_typedef (struct type *type)
2743 {
2744 struct type *orig_type = type;
2745
2746 gdb_assert (type);
2747
2748 /* While we're removing typedefs, we don't want to lose qualifiers.
2749 E.g., const/volatile. */
2750 type_instance_flags instance_flags = type->instance_flags ();
2751
2752 while (type->code () == TYPE_CODE_TYPEDEF)
2753 {
2754 if (!TYPE_TARGET_TYPE (type))
2755 {
2756 const char *name;
2757 struct symbol *sym;
2758
2759 /* It is dangerous to call lookup_symbol if we are currently
2760 reading a symtab. Infinite recursion is one danger. */
2761 if (currently_reading_symtab)
2762 return make_qualified_type (type, instance_flags, NULL);
2763
2764 name = type->name ();
2765 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2766 VAR_DOMAIN as appropriate? */
2767 if (name == NULL)
2768 {
2769 stub_noname_complaint ();
2770 return make_qualified_type (type, instance_flags, NULL);
2771 }
2772 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2773 if (sym)
2774 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2775 else /* TYPE_CODE_UNDEF */
2776 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2777 }
2778 type = TYPE_TARGET_TYPE (type);
2779
2780 /* Preserve the instance flags as we traverse down the typedef chain.
2781
2782 Handling address spaces/classes is nasty, what do we do if there's a
2783 conflict?
2784 E.g., what if an outer typedef marks the type as class_1 and an inner
2785 typedef marks the type as class_2?
2786 This is the wrong place to do such error checking. We leave it to
2787 the code that created the typedef in the first place to flag the
2788 error. We just pick the outer address space (akin to letting the
2789 outer cast in a chain of casting win), instead of assuming
2790 "it can't happen". */
2791 {
2792 const type_instance_flags ALL_SPACES
2793 = (TYPE_INSTANCE_FLAG_CODE_SPACE
2794 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2795 const type_instance_flags ALL_CLASSES
2796 = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2797
2798 type_instance_flags new_instance_flags = type->instance_flags ();
2799
2800 /* Treat code vs data spaces and address classes separately. */
2801 if ((instance_flags & ALL_SPACES) != 0)
2802 new_instance_flags &= ~ALL_SPACES;
2803 if ((instance_flags & ALL_CLASSES) != 0)
2804 new_instance_flags &= ~ALL_CLASSES;
2805
2806 instance_flags |= new_instance_flags;
2807 }
2808 }
2809
2810 /* If this is a struct/class/union with no fields, then check
2811 whether a full definition exists somewhere else. This is for
2812 systems where a type definition with no fields is issued for such
2813 types, instead of identifying them as stub types in the first
2814 place. */
2815
2816 if (TYPE_IS_OPAQUE (type)
2817 && opaque_type_resolution
2818 && !currently_reading_symtab)
2819 {
2820 const char *name = type->name ();
2821 struct type *newtype;
2822
2823 if (name == NULL)
2824 {
2825 stub_noname_complaint ();
2826 return make_qualified_type (type, instance_flags, NULL);
2827 }
2828 newtype = lookup_transparent_type (name);
2829
2830 if (newtype)
2831 {
2832 /* If the resolved type and the stub are in the same
2833 objfile, then replace the stub type with the real deal.
2834 But if they're in separate objfiles, leave the stub
2835 alone; we'll just look up the transparent type every time
2836 we call check_typedef. We can't create pointers between
2837 types allocated to different objfiles, since they may
2838 have different lifetimes. Trying to copy NEWTYPE over to
2839 TYPE's objfile is pointless, too, since you'll have to
2840 move over any other types NEWTYPE refers to, which could
2841 be an unbounded amount of stuff. */
2842 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2843 type = make_qualified_type (newtype, type->instance_flags (), type);
2844 else
2845 type = newtype;
2846 }
2847 }
2848 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2849 types. */
2850 else if (type->is_stub () && !currently_reading_symtab)
2851 {
2852 const char *name = type->name ();
2853 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2854 as appropriate? */
2855 struct symbol *sym;
2856
2857 if (name == NULL)
2858 {
2859 stub_noname_complaint ();
2860 return make_qualified_type (type, instance_flags, NULL);
2861 }
2862 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2863 if (sym)
2864 {
2865 /* Same as above for opaque types, we can replace the stub
2866 with the complete type only if they are in the same
2867 objfile. */
2868 if (TYPE_OBJFILE (SYMBOL_TYPE (sym)) == TYPE_OBJFILE (type))
2869 type = make_qualified_type (SYMBOL_TYPE (sym),
2870 type->instance_flags (), type);
2871 else
2872 type = SYMBOL_TYPE (sym);
2873 }
2874 }
2875
2876 if (type->target_is_stub ())
2877 {
2878 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2879
2880 if (target_type->is_stub () || target_type->target_is_stub ())
2881 {
2882 /* Nothing we can do. */
2883 }
2884 else if (type->code () == TYPE_CODE_RANGE)
2885 {
2886 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2887 type->set_target_is_stub (false);
2888 }
2889 else if (type->code () == TYPE_CODE_ARRAY
2890 && update_static_array_size (type))
2891 type->set_target_is_stub (false);
2892 }
2893
2894 type = make_qualified_type (type, instance_flags, NULL);
2895
2896 /* Cache TYPE_LENGTH for future use. */
2897 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2898
2899 return type;
2900 }
2901
2902 /* Parse a type expression in the string [P..P+LENGTH). If an error
2903 occurs, silently return a void type. */
2904
2905 static struct type *
2906 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2907 {
2908 struct ui_file *saved_gdb_stderr;
2909 struct type *type = NULL; /* Initialize to keep gcc happy. */
2910
2911 /* Suppress error messages. */
2912 saved_gdb_stderr = gdb_stderr;
2913 gdb_stderr = &null_stream;
2914
2915 /* Call parse_and_eval_type() without fear of longjmp()s. */
2916 try
2917 {
2918 type = parse_and_eval_type (p, length);
2919 }
2920 catch (const gdb_exception_error &except)
2921 {
2922 type = builtin_type (gdbarch)->builtin_void;
2923 }
2924
2925 /* Stop suppressing error messages. */
2926 gdb_stderr = saved_gdb_stderr;
2927
2928 return type;
2929 }
2930
2931 /* Ugly hack to convert method stubs into method types.
2932
2933 He ain't kiddin'. This demangles the name of the method into a
2934 string including argument types, parses out each argument type,
2935 generates a string casting a zero to that type, evaluates the
2936 string, and stuffs the resulting type into an argtype vector!!!
2937 Then it knows the type of the whole function (including argument
2938 types for overloading), which info used to be in the stab's but was
2939 removed to hack back the space required for them. */
2940
2941 static void
2942 check_stub_method (struct type *type, int method_id, int signature_id)
2943 {
2944 struct gdbarch *gdbarch = get_type_arch (type);
2945 struct fn_field *f;
2946 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2947 char *demangled_name = gdb_demangle (mangled_name,
2948 DMGL_PARAMS | DMGL_ANSI);
2949 char *argtypetext, *p;
2950 int depth = 0, argcount = 1;
2951 struct field *argtypes;
2952 struct type *mtype;
2953
2954 /* Make sure we got back a function string that we can use. */
2955 if (demangled_name)
2956 p = strchr (demangled_name, '(');
2957 else
2958 p = NULL;
2959
2960 if (demangled_name == NULL || p == NULL)
2961 error (_("Internal: Cannot demangle mangled name `%s'."),
2962 mangled_name);
2963
2964 /* Now, read in the parameters that define this type. */
2965 p += 1;
2966 argtypetext = p;
2967 while (*p)
2968 {
2969 if (*p == '(' || *p == '<')
2970 {
2971 depth += 1;
2972 }
2973 else if (*p == ')' || *p == '>')
2974 {
2975 depth -= 1;
2976 }
2977 else if (*p == ',' && depth == 0)
2978 {
2979 argcount += 1;
2980 }
2981
2982 p += 1;
2983 }
2984
2985 /* If we read one argument and it was ``void'', don't count it. */
2986 if (startswith (argtypetext, "(void)"))
2987 argcount -= 1;
2988
2989 /* We need one extra slot, for the THIS pointer. */
2990
2991 argtypes = (struct field *)
2992 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2993 p = argtypetext;
2994
2995 /* Add THIS pointer for non-static methods. */
2996 f = TYPE_FN_FIELDLIST1 (type, method_id);
2997 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2998 argcount = 0;
2999 else
3000 {
3001 argtypes[0].set_type (lookup_pointer_type (type));
3002 argcount = 1;
3003 }
3004
3005 if (*p != ')') /* () means no args, skip while. */
3006 {
3007 depth = 0;
3008 while (*p)
3009 {
3010 if (depth <= 0 && (*p == ',' || *p == ')'))
3011 {
3012 /* Avoid parsing of ellipsis, they will be handled below.
3013 Also avoid ``void'' as above. */
3014 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3015 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3016 {
3017 argtypes[argcount].set_type
3018 (safe_parse_type (gdbarch, argtypetext, p - argtypetext));
3019 argcount += 1;
3020 }
3021 argtypetext = p + 1;
3022 }
3023
3024 if (*p == '(' || *p == '<')
3025 {
3026 depth += 1;
3027 }
3028 else if (*p == ')' || *p == '>')
3029 {
3030 depth -= 1;
3031 }
3032
3033 p += 1;
3034 }
3035 }
3036
3037 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3038
3039 /* Now update the old "stub" type into a real type. */
3040 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3041 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3042 We want a method (TYPE_CODE_METHOD). */
3043 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3044 argtypes, argcount, p[-2] == '.');
3045 mtype->set_is_stub (false);
3046 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3047
3048 xfree (demangled_name);
3049 }
3050
3051 /* This is the external interface to check_stub_method, above. This
3052 function unstubs all of the signatures for TYPE's METHOD_ID method
3053 name. After calling this function TYPE_FN_FIELD_STUB will be
3054 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3055 correct.
3056
3057 This function unfortunately can not die until stabs do. */
3058
3059 void
3060 check_stub_method_group (struct type *type, int method_id)
3061 {
3062 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3063 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3064
3065 for (int j = 0; j < len; j++)
3066 {
3067 if (TYPE_FN_FIELD_STUB (f, j))
3068 check_stub_method (type, method_id, j);
3069 }
3070 }
3071
3072 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3073 const struct cplus_struct_type cplus_struct_default = { };
3074
3075 void
3076 allocate_cplus_struct_type (struct type *type)
3077 {
3078 if (HAVE_CPLUS_STRUCT (type))
3079 /* Structure was already allocated. Nothing more to do. */
3080 return;
3081
3082 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3083 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3084 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3085 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3086 set_type_vptr_fieldno (type, -1);
3087 }
3088
3089 const struct gnat_aux_type gnat_aux_default =
3090 { NULL };
3091
3092 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3093 and allocate the associated gnat-specific data. The gnat-specific
3094 data is also initialized to gnat_aux_default. */
3095
3096 void
3097 allocate_gnat_aux_type (struct type *type)
3098 {
3099 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3100 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3101 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3102 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3103 }
3104
3105 /* Helper function to initialize a newly allocated type. Set type code
3106 to CODE and initialize the type-specific fields accordingly. */
3107
3108 static void
3109 set_type_code (struct type *type, enum type_code code)
3110 {
3111 type->set_code (code);
3112
3113 switch (code)
3114 {
3115 case TYPE_CODE_STRUCT:
3116 case TYPE_CODE_UNION:
3117 case TYPE_CODE_NAMESPACE:
3118 INIT_CPLUS_SPECIFIC (type);
3119 break;
3120 case TYPE_CODE_FLT:
3121 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3122 break;
3123 case TYPE_CODE_FUNC:
3124 INIT_FUNC_SPECIFIC (type);
3125 break;
3126 }
3127 }
3128
3129 /* Helper function to verify floating-point format and size.
3130 BIT is the type size in bits; if BIT equals -1, the size is
3131 determined by the floatformat. Returns size to be used. */
3132
3133 static int
3134 verify_floatformat (int bit, const struct floatformat *floatformat)
3135 {
3136 gdb_assert (floatformat != NULL);
3137
3138 if (bit == -1)
3139 bit = floatformat->totalsize;
3140
3141 gdb_assert (bit >= 0);
3142 gdb_assert (bit >= floatformat->totalsize);
3143
3144 return bit;
3145 }
3146
3147 /* Return the floating-point format for a floating-point variable of
3148 type TYPE. */
3149
3150 const struct floatformat *
3151 floatformat_from_type (const struct type *type)
3152 {
3153 gdb_assert (type->code () == TYPE_CODE_FLT);
3154 gdb_assert (TYPE_FLOATFORMAT (type));
3155 return TYPE_FLOATFORMAT (type);
3156 }
3157
3158 /* Helper function to initialize the standard scalar types.
3159
3160 If NAME is non-NULL, then it is used to initialize the type name.
3161 Note that NAME is not copied; it is required to have a lifetime at
3162 least as long as OBJFILE. */
3163
3164 struct type *
3165 init_type (struct objfile *objfile, enum type_code code, int bit,
3166 const char *name)
3167 {
3168 struct type *type;
3169
3170 type = alloc_type (objfile);
3171 set_type_code (type, code);
3172 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3173 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3174 type->set_name (name);
3175
3176 return type;
3177 }
3178
3179 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3180 to use with variables that have no debug info. NAME is the type
3181 name. */
3182
3183 static struct type *
3184 init_nodebug_var_type (struct objfile *objfile, const char *name)
3185 {
3186 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3187 }
3188
3189 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3190 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3191 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3192
3193 struct type *
3194 init_integer_type (struct objfile *objfile,
3195 int bit, int unsigned_p, const char *name)
3196 {
3197 struct type *t;
3198
3199 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3200 if (unsigned_p)
3201 t->set_is_unsigned (true);
3202
3203 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3204 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3205 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3206
3207 return t;
3208 }
3209
3210 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3211 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3212 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3213
3214 struct type *
3215 init_character_type (struct objfile *objfile,
3216 int bit, int unsigned_p, const char *name)
3217 {
3218 struct type *t;
3219
3220 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3221 if (unsigned_p)
3222 t->set_is_unsigned (true);
3223
3224 return t;
3225 }
3226
3227 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3228 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3229 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3230
3231 struct type *
3232 init_boolean_type (struct objfile *objfile,
3233 int bit, int unsigned_p, const char *name)
3234 {
3235 struct type *t;
3236
3237 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3238 if (unsigned_p)
3239 t->set_is_unsigned (true);
3240
3241 TYPE_SPECIFIC_FIELD (t) = TYPE_SPECIFIC_INT;
3242 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_size = bit;
3243 TYPE_MAIN_TYPE (t)->type_specific.int_stuff.bit_offset = 0;
3244
3245 return t;
3246 }
3247
3248 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3249 BIT is the type size in bits; if BIT equals -1, the size is
3250 determined by the floatformat. NAME is the type name. Set the
3251 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3252 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3253 order of the objfile's architecture is used. */
3254
3255 struct type *
3256 init_float_type (struct objfile *objfile,
3257 int bit, const char *name,
3258 const struct floatformat **floatformats,
3259 enum bfd_endian byte_order)
3260 {
3261 if (byte_order == BFD_ENDIAN_UNKNOWN)
3262 {
3263 struct gdbarch *gdbarch = objfile->arch ();
3264 byte_order = gdbarch_byte_order (gdbarch);
3265 }
3266 const struct floatformat *fmt = floatformats[byte_order];
3267 struct type *t;
3268
3269 bit = verify_floatformat (bit, fmt);
3270 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3271 TYPE_FLOATFORMAT (t) = fmt;
3272
3273 return t;
3274 }
3275
3276 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3277 BIT is the type size in bits. NAME is the type name. */
3278
3279 struct type *
3280 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3281 {
3282 struct type *t;
3283
3284 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3285 return t;
3286 }
3287
3288 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3289 name. TARGET_TYPE is the component type. */
3290
3291 struct type *
3292 init_complex_type (const char *name, struct type *target_type)
3293 {
3294 struct type *t;
3295
3296 gdb_assert (target_type->code () == TYPE_CODE_INT
3297 || target_type->code () == TYPE_CODE_FLT);
3298
3299 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3300 {
3301 if (name == nullptr && target_type->name () != nullptr)
3302 {
3303 char *new_name
3304 = (char *) TYPE_ALLOC (target_type,
3305 strlen (target_type->name ())
3306 + strlen ("_Complex ") + 1);
3307 strcpy (new_name, "_Complex ");
3308 strcat (new_name, target_type->name ());
3309 name = new_name;
3310 }
3311
3312 t = alloc_type_copy (target_type);
3313 set_type_code (t, TYPE_CODE_COMPLEX);
3314 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3315 t->set_name (name);
3316
3317 TYPE_TARGET_TYPE (t) = target_type;
3318 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3319 }
3320
3321 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3322 }
3323
3324 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3325 BIT is the pointer type size in bits. NAME is the type name.
3326 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3327 TYPE_UNSIGNED flag. */
3328
3329 struct type *
3330 init_pointer_type (struct objfile *objfile,
3331 int bit, const char *name, struct type *target_type)
3332 {
3333 struct type *t;
3334
3335 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3336 TYPE_TARGET_TYPE (t) = target_type;
3337 t->set_is_unsigned (true);
3338 return t;
3339 }
3340
3341 /* See gdbtypes.h. */
3342
3343 unsigned
3344 type_raw_align (struct type *type)
3345 {
3346 if (type->align_log2 != 0)
3347 return 1 << (type->align_log2 - 1);
3348 return 0;
3349 }
3350
3351 /* See gdbtypes.h. */
3352
3353 unsigned
3354 type_align (struct type *type)
3355 {
3356 /* Check alignment provided in the debug information. */
3357 unsigned raw_align = type_raw_align (type);
3358 if (raw_align != 0)
3359 return raw_align;
3360
3361 /* Allow the architecture to provide an alignment. */
3362 struct gdbarch *arch = get_type_arch (type);
3363 ULONGEST align = gdbarch_type_align (arch, type);
3364 if (align != 0)
3365 return align;
3366
3367 switch (type->code ())
3368 {
3369 case TYPE_CODE_PTR:
3370 case TYPE_CODE_FUNC:
3371 case TYPE_CODE_FLAGS:
3372 case TYPE_CODE_INT:
3373 case TYPE_CODE_RANGE:
3374 case TYPE_CODE_FLT:
3375 case TYPE_CODE_ENUM:
3376 case TYPE_CODE_REF:
3377 case TYPE_CODE_RVALUE_REF:
3378 case TYPE_CODE_CHAR:
3379 case TYPE_CODE_BOOL:
3380 case TYPE_CODE_DECFLOAT:
3381 case TYPE_CODE_METHODPTR:
3382 case TYPE_CODE_MEMBERPTR:
3383 align = type_length_units (check_typedef (type));
3384 break;
3385
3386 case TYPE_CODE_ARRAY:
3387 case TYPE_CODE_COMPLEX:
3388 case TYPE_CODE_TYPEDEF:
3389 align = type_align (TYPE_TARGET_TYPE (type));
3390 break;
3391
3392 case TYPE_CODE_STRUCT:
3393 case TYPE_CODE_UNION:
3394 {
3395 int number_of_non_static_fields = 0;
3396 for (unsigned i = 0; i < type->num_fields (); ++i)
3397 {
3398 if (!field_is_static (&type->field (i)))
3399 {
3400 number_of_non_static_fields++;
3401 ULONGEST f_align = type_align (type->field (i).type ());
3402 if (f_align == 0)
3403 {
3404 /* Don't pretend we know something we don't. */
3405 align = 0;
3406 break;
3407 }
3408 if (f_align > align)
3409 align = f_align;
3410 }
3411 }
3412 /* A struct with no fields, or with only static fields has an
3413 alignment of 1. */
3414 if (number_of_non_static_fields == 0)
3415 align = 1;
3416 }
3417 break;
3418
3419 case TYPE_CODE_SET:
3420 case TYPE_CODE_STRING:
3421 /* Not sure what to do here, and these can't appear in C or C++
3422 anyway. */
3423 break;
3424
3425 case TYPE_CODE_VOID:
3426 align = 1;
3427 break;
3428
3429 case TYPE_CODE_ERROR:
3430 case TYPE_CODE_METHOD:
3431 default:
3432 break;
3433 }
3434
3435 if ((align & (align - 1)) != 0)
3436 {
3437 /* Not a power of 2, so pass. */
3438 align = 0;
3439 }
3440
3441 return align;
3442 }
3443
3444 /* See gdbtypes.h. */
3445
3446 bool
3447 set_type_align (struct type *type, ULONGEST align)
3448 {
3449 /* Must be a power of 2. Zero is ok. */
3450 gdb_assert ((align & (align - 1)) == 0);
3451
3452 unsigned result = 0;
3453 while (align != 0)
3454 {
3455 ++result;
3456 align >>= 1;
3457 }
3458
3459 if (result >= (1 << TYPE_ALIGN_BITS))
3460 return false;
3461
3462 type->align_log2 = result;
3463 return true;
3464 }
3465
3466 \f
3467 /* Queries on types. */
3468
3469 int
3470 can_dereference (struct type *t)
3471 {
3472 /* FIXME: Should we return true for references as well as
3473 pointers? */
3474 t = check_typedef (t);
3475 return
3476 (t != NULL
3477 && t->code () == TYPE_CODE_PTR
3478 && TYPE_TARGET_TYPE (t)->code () != TYPE_CODE_VOID);
3479 }
3480
3481 int
3482 is_integral_type (struct type *t)
3483 {
3484 t = check_typedef (t);
3485 return
3486 ((t != NULL)
3487 && ((t->code () == TYPE_CODE_INT)
3488 || (t->code () == TYPE_CODE_ENUM)
3489 || (t->code () == TYPE_CODE_FLAGS)
3490 || (t->code () == TYPE_CODE_CHAR)
3491 || (t->code () == TYPE_CODE_RANGE)
3492 || (t->code () == TYPE_CODE_BOOL)));
3493 }
3494
3495 int
3496 is_floating_type (struct type *t)
3497 {
3498 t = check_typedef (t);
3499 return
3500 ((t != NULL)
3501 && ((t->code () == TYPE_CODE_FLT)
3502 || (t->code () == TYPE_CODE_DECFLOAT)));
3503 }
3504
3505 /* Return true if TYPE is scalar. */
3506
3507 int
3508 is_scalar_type (struct type *type)
3509 {
3510 type = check_typedef (type);
3511
3512 switch (type->code ())
3513 {
3514 case TYPE_CODE_ARRAY:
3515 case TYPE_CODE_STRUCT:
3516 case TYPE_CODE_UNION:
3517 case TYPE_CODE_SET:
3518 case TYPE_CODE_STRING:
3519 return 0;
3520 default:
3521 return 1;
3522 }
3523 }
3524
3525 /* Return true if T is scalar, or a composite type which in practice has
3526 the memory layout of a scalar type. E.g., an array or struct with only
3527 one scalar element inside it, or a union with only scalar elements. */
3528
3529 int
3530 is_scalar_type_recursive (struct type *t)
3531 {
3532 t = check_typedef (t);
3533
3534 if (is_scalar_type (t))
3535 return 1;
3536 /* Are we dealing with an array or string of known dimensions? */
3537 else if ((t->code () == TYPE_CODE_ARRAY
3538 || t->code () == TYPE_CODE_STRING) && t->num_fields () == 1
3539 && t->index_type ()->code () == TYPE_CODE_RANGE)
3540 {
3541 LONGEST low_bound, high_bound;
3542 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3543
3544 get_discrete_bounds (t->index_type (), &low_bound, &high_bound);
3545
3546 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3547 }
3548 /* Are we dealing with a struct with one element? */
3549 else if (t->code () == TYPE_CODE_STRUCT && t->num_fields () == 1)
3550 return is_scalar_type_recursive (t->field (0).type ());
3551 else if (t->code () == TYPE_CODE_UNION)
3552 {
3553 int i, n = t->num_fields ();
3554
3555 /* If all elements of the union are scalar, then the union is scalar. */
3556 for (i = 0; i < n; i++)
3557 if (!is_scalar_type_recursive (t->field (i).type ()))
3558 return 0;
3559
3560 return 1;
3561 }
3562
3563 return 0;
3564 }
3565
3566 /* Return true is T is a class or a union. False otherwise. */
3567
3568 int
3569 class_or_union_p (const struct type *t)
3570 {
3571 return (t->code () == TYPE_CODE_STRUCT
3572 || t->code () == TYPE_CODE_UNION);
3573 }
3574
3575 /* A helper function which returns true if types A and B represent the
3576 "same" class type. This is true if the types have the same main
3577 type, or the same name. */
3578
3579 int
3580 class_types_same_p (const struct type *a, const struct type *b)
3581 {
3582 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3583 || (a->name () && b->name ()
3584 && !strcmp (a->name (), b->name ())));
3585 }
3586
3587 /* If BASE is an ancestor of DCLASS return the distance between them.
3588 otherwise return -1;
3589 eg:
3590
3591 class A {};
3592 class B: public A {};
3593 class C: public B {};
3594 class D: C {};
3595
3596 distance_to_ancestor (A, A, 0) = 0
3597 distance_to_ancestor (A, B, 0) = 1
3598 distance_to_ancestor (A, C, 0) = 2
3599 distance_to_ancestor (A, D, 0) = 3
3600
3601 If PUBLIC is 1 then only public ancestors are considered,
3602 and the function returns the distance only if BASE is a public ancestor
3603 of DCLASS.
3604 Eg:
3605
3606 distance_to_ancestor (A, D, 1) = -1. */
3607
3608 static int
3609 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3610 {
3611 int i;
3612 int d;
3613
3614 base = check_typedef (base);
3615 dclass = check_typedef (dclass);
3616
3617 if (class_types_same_p (base, dclass))
3618 return 0;
3619
3620 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3621 {
3622 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3623 continue;
3624
3625 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3626 if (d >= 0)
3627 return 1 + d;
3628 }
3629
3630 return -1;
3631 }
3632
3633 /* Check whether BASE is an ancestor or base class or DCLASS
3634 Return 1 if so, and 0 if not.
3635 Note: If BASE and DCLASS are of the same type, this function
3636 will return 1. So for some class A, is_ancestor (A, A) will
3637 return 1. */
3638
3639 int
3640 is_ancestor (struct type *base, struct type *dclass)
3641 {
3642 return distance_to_ancestor (base, dclass, 0) >= 0;
3643 }
3644
3645 /* Like is_ancestor, but only returns true when BASE is a public
3646 ancestor of DCLASS. */
3647
3648 int
3649 is_public_ancestor (struct type *base, struct type *dclass)
3650 {
3651 return distance_to_ancestor (base, dclass, 1) >= 0;
3652 }
3653
3654 /* A helper function for is_unique_ancestor. */
3655
3656 static int
3657 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3658 int *offset,
3659 const gdb_byte *valaddr, int embedded_offset,
3660 CORE_ADDR address, struct value *val)
3661 {
3662 int i, count = 0;
3663
3664 base = check_typedef (base);
3665 dclass = check_typedef (dclass);
3666
3667 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3668 {
3669 struct type *iter;
3670 int this_offset;
3671
3672 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3673
3674 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3675 address, val);
3676
3677 if (class_types_same_p (base, iter))
3678 {
3679 /* If this is the first subclass, set *OFFSET and set count
3680 to 1. Otherwise, if this is at the same offset as
3681 previous instances, do nothing. Otherwise, increment
3682 count. */
3683 if (*offset == -1)
3684 {
3685 *offset = this_offset;
3686 count = 1;
3687 }
3688 else if (this_offset == *offset)
3689 {
3690 /* Nothing. */
3691 }
3692 else
3693 ++count;
3694 }
3695 else
3696 count += is_unique_ancestor_worker (base, iter, offset,
3697 valaddr,
3698 embedded_offset + this_offset,
3699 address, val);
3700 }
3701
3702 return count;
3703 }
3704
3705 /* Like is_ancestor, but only returns true if BASE is a unique base
3706 class of the type of VAL. */
3707
3708 int
3709 is_unique_ancestor (struct type *base, struct value *val)
3710 {
3711 int offset = -1;
3712
3713 return is_unique_ancestor_worker (base, value_type (val), &offset,
3714 value_contents_for_printing (val),
3715 value_embedded_offset (val),
3716 value_address (val), val) == 1;
3717 }
3718
3719 /* See gdbtypes.h. */
3720
3721 enum bfd_endian
3722 type_byte_order (const struct type *type)
3723 {
3724 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3725 if (type->endianity_is_not_default ())
3726 {
3727 if (byteorder == BFD_ENDIAN_BIG)
3728 return BFD_ENDIAN_LITTLE;
3729 else
3730 {
3731 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3732 return BFD_ENDIAN_BIG;
3733 }
3734 }
3735
3736 return byteorder;
3737 }
3738
3739 \f
3740 /* Overload resolution. */
3741
3742 /* Return the sum of the rank of A with the rank of B. */
3743
3744 struct rank
3745 sum_ranks (struct rank a, struct rank b)
3746 {
3747 struct rank c;
3748 c.rank = a.rank + b.rank;
3749 c.subrank = a.subrank + b.subrank;
3750 return c;
3751 }
3752
3753 /* Compare rank A and B and return:
3754 0 if a = b
3755 1 if a is better than b
3756 -1 if b is better than a. */
3757
3758 int
3759 compare_ranks (struct rank a, struct rank b)
3760 {
3761 if (a.rank == b.rank)
3762 {
3763 if (a.subrank == b.subrank)
3764 return 0;
3765 if (a.subrank < b.subrank)
3766 return 1;
3767 if (a.subrank > b.subrank)
3768 return -1;
3769 }
3770
3771 if (a.rank < b.rank)
3772 return 1;
3773
3774 /* a.rank > b.rank */
3775 return -1;
3776 }
3777
3778 /* Functions for overload resolution begin here. */
3779
3780 /* Compare two badness vectors A and B and return the result.
3781 0 => A and B are identical
3782 1 => A and B are incomparable
3783 2 => A is better than B
3784 3 => A is worse than B */
3785
3786 int
3787 compare_badness (const badness_vector &a, const badness_vector &b)
3788 {
3789 int i;
3790 int tmp;
3791 short found_pos = 0; /* any positives in c? */
3792 short found_neg = 0; /* any negatives in c? */
3793
3794 /* differing sizes => incomparable */
3795 if (a.size () != b.size ())
3796 return 1;
3797
3798 /* Subtract b from a */
3799 for (i = 0; i < a.size (); i++)
3800 {
3801 tmp = compare_ranks (b[i], a[i]);
3802 if (tmp > 0)
3803 found_pos = 1;
3804 else if (tmp < 0)
3805 found_neg = 1;
3806 }
3807
3808 if (found_pos)
3809 {
3810 if (found_neg)
3811 return 1; /* incomparable */
3812 else
3813 return 3; /* A > B */
3814 }
3815 else
3816 /* no positives */
3817 {
3818 if (found_neg)
3819 return 2; /* A < B */
3820 else
3821 return 0; /* A == B */
3822 }
3823 }
3824
3825 /* Rank a function by comparing its parameter types (PARMS), to the
3826 types of an argument list (ARGS). Return the badness vector. This
3827 has ARGS.size() + 1 entries. */
3828
3829 badness_vector
3830 rank_function (gdb::array_view<type *> parms,
3831 gdb::array_view<value *> args)
3832 {
3833 /* add 1 for the length-match rank. */
3834 badness_vector bv;
3835 bv.reserve (1 + args.size ());
3836
3837 /* First compare the lengths of the supplied lists.
3838 If there is a mismatch, set it to a high value. */
3839
3840 /* pai/1997-06-03 FIXME: when we have debug info about default
3841 arguments and ellipsis parameter lists, we should consider those
3842 and rank the length-match more finely. */
3843
3844 bv.push_back ((args.size () != parms.size ())
3845 ? LENGTH_MISMATCH_BADNESS
3846 : EXACT_MATCH_BADNESS);
3847
3848 /* Now rank all the parameters of the candidate function. */
3849 size_t min_len = std::min (parms.size (), args.size ());
3850
3851 for (size_t i = 0; i < min_len; i++)
3852 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3853 args[i]));
3854
3855 /* If more arguments than parameters, add dummy entries. */
3856 for (size_t i = min_len; i < args.size (); i++)
3857 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3858
3859 return bv;
3860 }
3861
3862 /* Compare the names of two integer types, assuming that any sign
3863 qualifiers have been checked already. We do it this way because
3864 there may be an "int" in the name of one of the types. */
3865
3866 static int
3867 integer_types_same_name_p (const char *first, const char *second)
3868 {
3869 int first_p, second_p;
3870
3871 /* If both are shorts, return 1; if neither is a short, keep
3872 checking. */
3873 first_p = (strstr (first, "short") != NULL);
3874 second_p = (strstr (second, "short") != NULL);
3875 if (first_p && second_p)
3876 return 1;
3877 if (first_p || second_p)
3878 return 0;
3879
3880 /* Likewise for long. */
3881 first_p = (strstr (first, "long") != NULL);
3882 second_p = (strstr (second, "long") != NULL);
3883 if (first_p && second_p)
3884 return 1;
3885 if (first_p || second_p)
3886 return 0;
3887
3888 /* Likewise for char. */
3889 first_p = (strstr (first, "char") != NULL);
3890 second_p = (strstr (second, "char") != NULL);
3891 if (first_p && second_p)
3892 return 1;
3893 if (first_p || second_p)
3894 return 0;
3895
3896 /* They must both be ints. */
3897 return 1;
3898 }
3899
3900 /* Compares type A to type B. Returns true if they represent the same
3901 type, false otherwise. */
3902
3903 bool
3904 types_equal (struct type *a, struct type *b)
3905 {
3906 /* Identical type pointers. */
3907 /* However, this still doesn't catch all cases of same type for b
3908 and a. The reason is that builtin types are different from
3909 the same ones constructed from the object. */
3910 if (a == b)
3911 return true;
3912
3913 /* Resolve typedefs */
3914 if (a->code () == TYPE_CODE_TYPEDEF)
3915 a = check_typedef (a);
3916 if (b->code () == TYPE_CODE_TYPEDEF)
3917 b = check_typedef (b);
3918
3919 /* If after resolving typedefs a and b are not of the same type
3920 code then they are not equal. */
3921 if (a->code () != b->code ())
3922 return false;
3923
3924 /* If a and b are both pointers types or both reference types then
3925 they are equal of the same type iff the objects they refer to are
3926 of the same type. */
3927 if (a->code () == TYPE_CODE_PTR
3928 || a->code () == TYPE_CODE_REF)
3929 return types_equal (TYPE_TARGET_TYPE (a),
3930 TYPE_TARGET_TYPE (b));
3931
3932 /* Well, damnit, if the names are exactly the same, I'll say they
3933 are exactly the same. This happens when we generate method
3934 stubs. The types won't point to the same address, but they
3935 really are the same. */
3936
3937 if (a->name () && b->name ()
3938 && strcmp (a->name (), b->name ()) == 0)
3939 return true;
3940
3941 /* Check if identical after resolving typedefs. */
3942 if (a == b)
3943 return true;
3944
3945 /* Two function types are equal if their argument and return types
3946 are equal. */
3947 if (a->code () == TYPE_CODE_FUNC)
3948 {
3949 int i;
3950
3951 if (a->num_fields () != b->num_fields ())
3952 return false;
3953
3954 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3955 return false;
3956
3957 for (i = 0; i < a->num_fields (); ++i)
3958 if (!types_equal (a->field (i).type (), b->field (i).type ()))
3959 return false;
3960
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966 \f
3967 /* Deep comparison of types. */
3968
3969 /* An entry in the type-equality bcache. */
3970
3971 struct type_equality_entry
3972 {
3973 type_equality_entry (struct type *t1, struct type *t2)
3974 : type1 (t1),
3975 type2 (t2)
3976 {
3977 }
3978
3979 struct type *type1, *type2;
3980 };
3981
3982 /* A helper function to compare two strings. Returns true if they are
3983 the same, false otherwise. Handles NULLs properly. */
3984
3985 static bool
3986 compare_maybe_null_strings (const char *s, const char *t)
3987 {
3988 if (s == NULL || t == NULL)
3989 return s == t;
3990 return strcmp (s, t) == 0;
3991 }
3992
3993 /* A helper function for check_types_worklist that checks two types for
3994 "deep" equality. Returns true if the types are considered the
3995 same, false otherwise. */
3996
3997 static bool
3998 check_types_equal (struct type *type1, struct type *type2,
3999 std::vector<type_equality_entry> *worklist)
4000 {
4001 type1 = check_typedef (type1);
4002 type2 = check_typedef (type2);
4003
4004 if (type1 == type2)
4005 return true;
4006
4007 if (type1->code () != type2->code ()
4008 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
4009 || type1->is_unsigned () != type2->is_unsigned ()
4010 || type1->has_no_signedness () != type2->has_no_signedness ()
4011 || type1->endianity_is_not_default () != type2->endianity_is_not_default ()
4012 || type1->has_varargs () != type2->has_varargs ()
4013 || type1->is_vector () != type2->is_vector ()
4014 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4015 || type1->instance_flags () != type2->instance_flags ()
4016 || type1->num_fields () != type2->num_fields ())
4017 return false;
4018
4019 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4020 return false;
4021 if (!compare_maybe_null_strings (type1->name (), type2->name ()))
4022 return false;
4023
4024 if (type1->code () == TYPE_CODE_RANGE)
4025 {
4026 if (*type1->bounds () != *type2->bounds ())
4027 return false;
4028 }
4029 else
4030 {
4031 int i;
4032
4033 for (i = 0; i < type1->num_fields (); ++i)
4034 {
4035 const struct field *field1 = &type1->field (i);
4036 const struct field *field2 = &type2->field (i);
4037
4038 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4039 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4040 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4041 return false;
4042 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4043 FIELD_NAME (*field2)))
4044 return false;
4045 switch (FIELD_LOC_KIND (*field1))
4046 {
4047 case FIELD_LOC_KIND_BITPOS:
4048 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4049 return false;
4050 break;
4051 case FIELD_LOC_KIND_ENUMVAL:
4052 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4053 return false;
4054 break;
4055 case FIELD_LOC_KIND_PHYSADDR:
4056 if (FIELD_STATIC_PHYSADDR (*field1)
4057 != FIELD_STATIC_PHYSADDR (*field2))
4058 return false;
4059 break;
4060 case FIELD_LOC_KIND_PHYSNAME:
4061 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4062 FIELD_STATIC_PHYSNAME (*field2)))
4063 return false;
4064 break;
4065 case FIELD_LOC_KIND_DWARF_BLOCK:
4066 {
4067 struct dwarf2_locexpr_baton *block1, *block2;
4068
4069 block1 = FIELD_DWARF_BLOCK (*field1);
4070 block2 = FIELD_DWARF_BLOCK (*field2);
4071 if (block1->per_cu != block2->per_cu
4072 || block1->size != block2->size
4073 || memcmp (block1->data, block2->data, block1->size) != 0)
4074 return false;
4075 }
4076 break;
4077 default:
4078 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4079 "%d by check_types_equal"),
4080 FIELD_LOC_KIND (*field1));
4081 }
4082
4083 worklist->emplace_back (field1->type (), field2->type ());
4084 }
4085 }
4086
4087 if (TYPE_TARGET_TYPE (type1) != NULL)
4088 {
4089 if (TYPE_TARGET_TYPE (type2) == NULL)
4090 return false;
4091
4092 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4093 TYPE_TARGET_TYPE (type2));
4094 }
4095 else if (TYPE_TARGET_TYPE (type2) != NULL)
4096 return false;
4097
4098 return true;
4099 }
4100
4101 /* Check types on a worklist for equality. Returns false if any pair
4102 is not equal, true if they are all considered equal. */
4103
4104 static bool
4105 check_types_worklist (std::vector<type_equality_entry> *worklist,
4106 gdb::bcache *cache)
4107 {
4108 while (!worklist->empty ())
4109 {
4110 bool added;
4111
4112 struct type_equality_entry entry = std::move (worklist->back ());
4113 worklist->pop_back ();
4114
4115 /* If the type pair has already been visited, we know it is
4116 ok. */
4117 cache->insert (&entry, sizeof (entry), &added);
4118 if (!added)
4119 continue;
4120
4121 if (!check_types_equal (entry.type1, entry.type2, worklist))
4122 return false;
4123 }
4124
4125 return true;
4126 }
4127
4128 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4129 "deep comparison". Otherwise return false. */
4130
4131 bool
4132 types_deeply_equal (struct type *type1, struct type *type2)
4133 {
4134 std::vector<type_equality_entry> worklist;
4135
4136 gdb_assert (type1 != NULL && type2 != NULL);
4137
4138 /* Early exit for the simple case. */
4139 if (type1 == type2)
4140 return true;
4141
4142 gdb::bcache cache;
4143 worklist.emplace_back (type1, type2);
4144 return check_types_worklist (&worklist, &cache);
4145 }
4146
4147 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4148 Otherwise return one. */
4149
4150 int
4151 type_not_allocated (const struct type *type)
4152 {
4153 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4154
4155 return (prop != nullptr && prop->kind () == PROP_CONST
4156 && prop->const_val () == 0);
4157 }
4158
4159 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4160 Otherwise return one. */
4161
4162 int
4163 type_not_associated (const struct type *type)
4164 {
4165 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4166
4167 return (prop != nullptr && prop->kind () == PROP_CONST
4168 && prop->const_val () == 0);
4169 }
4170
4171 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4172
4173 static struct rank
4174 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4175 {
4176 struct rank rank = {0,0};
4177
4178 switch (arg->code ())
4179 {
4180 case TYPE_CODE_PTR:
4181
4182 /* Allowed pointer conversions are:
4183 (a) pointer to void-pointer conversion. */
4184 if (TYPE_TARGET_TYPE (parm)->code () == TYPE_CODE_VOID)
4185 return VOID_PTR_CONVERSION_BADNESS;
4186
4187 /* (b) pointer to ancestor-pointer conversion. */
4188 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4189 TYPE_TARGET_TYPE (arg),
4190 0);
4191 if (rank.subrank >= 0)
4192 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4193
4194 return INCOMPATIBLE_TYPE_BADNESS;
4195 case TYPE_CODE_ARRAY:
4196 {
4197 struct type *t1 = TYPE_TARGET_TYPE (parm);
4198 struct type *t2 = TYPE_TARGET_TYPE (arg);
4199
4200 if (types_equal (t1, t2))
4201 {
4202 /* Make sure they are CV equal. */
4203 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4204 rank.subrank |= CV_CONVERSION_CONST;
4205 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4206 rank.subrank |= CV_CONVERSION_VOLATILE;
4207 if (rank.subrank != 0)
4208 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4209 return EXACT_MATCH_BADNESS;
4210 }
4211 return INCOMPATIBLE_TYPE_BADNESS;
4212 }
4213 case TYPE_CODE_FUNC:
4214 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4215 case TYPE_CODE_INT:
4216 if (value != NULL && value_type (value)->code () == TYPE_CODE_INT)
4217 {
4218 if (value_as_long (value) == 0)
4219 {
4220 /* Null pointer conversion: allow it to be cast to a pointer.
4221 [4.10.1 of C++ standard draft n3290] */
4222 return NULL_POINTER_CONVERSION_BADNESS;
4223 }
4224 else
4225 {
4226 /* If type checking is disabled, allow the conversion. */
4227 if (!strict_type_checking)
4228 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4229 }
4230 }
4231 /* fall through */
4232 case TYPE_CODE_ENUM:
4233 case TYPE_CODE_FLAGS:
4234 case TYPE_CODE_CHAR:
4235 case TYPE_CODE_RANGE:
4236 case TYPE_CODE_BOOL:
4237 default:
4238 return INCOMPATIBLE_TYPE_BADNESS;
4239 }
4240 }
4241
4242 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4243
4244 static struct rank
4245 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4246 {
4247 switch (arg->code ())
4248 {
4249 case TYPE_CODE_PTR:
4250 case TYPE_CODE_ARRAY:
4251 return rank_one_type (TYPE_TARGET_TYPE (parm),
4252 TYPE_TARGET_TYPE (arg), NULL);
4253 default:
4254 return INCOMPATIBLE_TYPE_BADNESS;
4255 }
4256 }
4257
4258 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4259
4260 static struct rank
4261 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4262 {
4263 switch (arg->code ())
4264 {
4265 case TYPE_CODE_PTR: /* funcptr -> func */
4266 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4267 default:
4268 return INCOMPATIBLE_TYPE_BADNESS;
4269 }
4270 }
4271
4272 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4273
4274 static struct rank
4275 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4276 {
4277 switch (arg->code ())
4278 {
4279 case TYPE_CODE_INT:
4280 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4281 {
4282 /* Deal with signed, unsigned, and plain chars and
4283 signed and unsigned ints. */
4284 if (parm->has_no_signedness ())
4285 {
4286 /* This case only for character types. */
4287 if (arg->has_no_signedness ())
4288 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4289 else /* signed/unsigned char -> plain char */
4290 return INTEGER_CONVERSION_BADNESS;
4291 }
4292 else if (parm->is_unsigned ())
4293 {
4294 if (arg->is_unsigned ())
4295 {
4296 /* unsigned int -> unsigned int, or
4297 unsigned long -> unsigned long */
4298 if (integer_types_same_name_p (parm->name (),
4299 arg->name ()))
4300 return EXACT_MATCH_BADNESS;
4301 else if (integer_types_same_name_p (arg->name (),
4302 "int")
4303 && integer_types_same_name_p (parm->name (),
4304 "long"))
4305 /* unsigned int -> unsigned long */
4306 return INTEGER_PROMOTION_BADNESS;
4307 else
4308 /* unsigned long -> unsigned int */
4309 return INTEGER_CONVERSION_BADNESS;
4310 }
4311 else
4312 {
4313 if (integer_types_same_name_p (arg->name (),
4314 "long")
4315 && integer_types_same_name_p (parm->name (),
4316 "int"))
4317 /* signed long -> unsigned int */
4318 return INTEGER_CONVERSION_BADNESS;
4319 else
4320 /* signed int/long -> unsigned int/long */
4321 return INTEGER_CONVERSION_BADNESS;
4322 }
4323 }
4324 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4325 {
4326 if (integer_types_same_name_p (parm->name (),
4327 arg->name ()))
4328 return EXACT_MATCH_BADNESS;
4329 else if (integer_types_same_name_p (arg->name (),
4330 "int")
4331 && integer_types_same_name_p (parm->name (),
4332 "long"))
4333 return INTEGER_PROMOTION_BADNESS;
4334 else
4335 return INTEGER_CONVERSION_BADNESS;
4336 }
4337 else
4338 return INTEGER_CONVERSION_BADNESS;
4339 }
4340 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4341 return INTEGER_PROMOTION_BADNESS;
4342 else
4343 return INTEGER_CONVERSION_BADNESS;
4344 case TYPE_CODE_ENUM:
4345 case TYPE_CODE_FLAGS:
4346 case TYPE_CODE_CHAR:
4347 case TYPE_CODE_RANGE:
4348 case TYPE_CODE_BOOL:
4349 if (TYPE_DECLARED_CLASS (arg))
4350 return INCOMPATIBLE_TYPE_BADNESS;
4351 return INTEGER_PROMOTION_BADNESS;
4352 case TYPE_CODE_FLT:
4353 return INT_FLOAT_CONVERSION_BADNESS;
4354 case TYPE_CODE_PTR:
4355 return NS_POINTER_CONVERSION_BADNESS;
4356 default:
4357 return INCOMPATIBLE_TYPE_BADNESS;
4358 }
4359 }
4360
4361 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4362
4363 static struct rank
4364 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4365 {
4366 switch (arg->code ())
4367 {
4368 case TYPE_CODE_INT:
4369 case TYPE_CODE_CHAR:
4370 case TYPE_CODE_RANGE:
4371 case TYPE_CODE_BOOL:
4372 case TYPE_CODE_ENUM:
4373 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4374 return INCOMPATIBLE_TYPE_BADNESS;
4375 return INTEGER_CONVERSION_BADNESS;
4376 case TYPE_CODE_FLT:
4377 return INT_FLOAT_CONVERSION_BADNESS;
4378 default:
4379 return INCOMPATIBLE_TYPE_BADNESS;
4380 }
4381 }
4382
4383 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4384
4385 static struct rank
4386 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4387 {
4388 switch (arg->code ())
4389 {
4390 case TYPE_CODE_RANGE:
4391 case TYPE_CODE_BOOL:
4392 case TYPE_CODE_ENUM:
4393 if (TYPE_DECLARED_CLASS (arg))
4394 return INCOMPATIBLE_TYPE_BADNESS;
4395 return INTEGER_CONVERSION_BADNESS;
4396 case TYPE_CODE_FLT:
4397 return INT_FLOAT_CONVERSION_BADNESS;
4398 case TYPE_CODE_INT:
4399 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4400 return INTEGER_CONVERSION_BADNESS;
4401 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4402 return INTEGER_PROMOTION_BADNESS;
4403 /* fall through */
4404 case TYPE_CODE_CHAR:
4405 /* Deal with signed, unsigned, and plain chars for C++ and
4406 with int cases falling through from previous case. */
4407 if (parm->has_no_signedness ())
4408 {
4409 if (arg->has_no_signedness ())
4410 return EXACT_MATCH_BADNESS;
4411 else
4412 return INTEGER_CONVERSION_BADNESS;
4413 }
4414 else if (parm->is_unsigned ())
4415 {
4416 if (arg->is_unsigned ())
4417 return EXACT_MATCH_BADNESS;
4418 else
4419 return INTEGER_PROMOTION_BADNESS;
4420 }
4421 else if (!arg->has_no_signedness () && !arg->is_unsigned ())
4422 return EXACT_MATCH_BADNESS;
4423 else
4424 return INTEGER_CONVERSION_BADNESS;
4425 default:
4426 return INCOMPATIBLE_TYPE_BADNESS;
4427 }
4428 }
4429
4430 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4431
4432 static struct rank
4433 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4434 {
4435 switch (arg->code ())
4436 {
4437 case TYPE_CODE_INT:
4438 case TYPE_CODE_CHAR:
4439 case TYPE_CODE_RANGE:
4440 case TYPE_CODE_BOOL:
4441 case TYPE_CODE_ENUM:
4442 return INTEGER_CONVERSION_BADNESS;
4443 case TYPE_CODE_FLT:
4444 return INT_FLOAT_CONVERSION_BADNESS;
4445 default:
4446 return INCOMPATIBLE_TYPE_BADNESS;
4447 }
4448 }
4449
4450 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4451
4452 static struct rank
4453 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4454 {
4455 switch (arg->code ())
4456 {
4457 /* n3290 draft, section 4.12.1 (conv.bool):
4458
4459 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4460 pointer to member type can be converted to a prvalue of type
4461 bool. A zero value, null pointer value, or null member pointer
4462 value is converted to false; any other value is converted to
4463 true. A prvalue of type std::nullptr_t can be converted to a
4464 prvalue of type bool; the resulting value is false." */
4465 case TYPE_CODE_INT:
4466 case TYPE_CODE_CHAR:
4467 case TYPE_CODE_ENUM:
4468 case TYPE_CODE_FLT:
4469 case TYPE_CODE_MEMBERPTR:
4470 case TYPE_CODE_PTR:
4471 return BOOL_CONVERSION_BADNESS;
4472 case TYPE_CODE_RANGE:
4473 return INCOMPATIBLE_TYPE_BADNESS;
4474 case TYPE_CODE_BOOL:
4475 return EXACT_MATCH_BADNESS;
4476 default:
4477 return INCOMPATIBLE_TYPE_BADNESS;
4478 }
4479 }
4480
4481 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4482
4483 static struct rank
4484 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4485 {
4486 switch (arg->code ())
4487 {
4488 case TYPE_CODE_FLT:
4489 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4490 return FLOAT_PROMOTION_BADNESS;
4491 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4492 return EXACT_MATCH_BADNESS;
4493 else
4494 return FLOAT_CONVERSION_BADNESS;
4495 case TYPE_CODE_INT:
4496 case TYPE_CODE_BOOL:
4497 case TYPE_CODE_ENUM:
4498 case TYPE_CODE_RANGE:
4499 case TYPE_CODE_CHAR:
4500 return INT_FLOAT_CONVERSION_BADNESS;
4501 default:
4502 return INCOMPATIBLE_TYPE_BADNESS;
4503 }
4504 }
4505
4506 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4507
4508 static struct rank
4509 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4510 {
4511 switch (arg->code ())
4512 { /* Strictly not needed for C++, but... */
4513 case TYPE_CODE_FLT:
4514 return FLOAT_PROMOTION_BADNESS;
4515 case TYPE_CODE_COMPLEX:
4516 return EXACT_MATCH_BADNESS;
4517 default:
4518 return INCOMPATIBLE_TYPE_BADNESS;
4519 }
4520 }
4521
4522 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4523
4524 static struct rank
4525 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4526 {
4527 struct rank rank = {0, 0};
4528
4529 switch (arg->code ())
4530 {
4531 case TYPE_CODE_STRUCT:
4532 /* Check for derivation */
4533 rank.subrank = distance_to_ancestor (parm, arg, 0);
4534 if (rank.subrank >= 0)
4535 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4536 /* fall through */
4537 default:
4538 return INCOMPATIBLE_TYPE_BADNESS;
4539 }
4540 }
4541
4542 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4543
4544 static struct rank
4545 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4546 {
4547 switch (arg->code ())
4548 {
4549 /* Not in C++ */
4550 case TYPE_CODE_SET:
4551 return rank_one_type (parm->field (0).type (),
4552 arg->field (0).type (), NULL);
4553 default:
4554 return INCOMPATIBLE_TYPE_BADNESS;
4555 }
4556 }
4557
4558 /* Compare one type (PARM) for compatibility with another (ARG).
4559 * PARM is intended to be the parameter type of a function; and
4560 * ARG is the supplied argument's type. This function tests if
4561 * the latter can be converted to the former.
4562 * VALUE is the argument's value or NULL if none (or called recursively)
4563 *
4564 * Return 0 if they are identical types;
4565 * Otherwise, return an integer which corresponds to how compatible
4566 * PARM is to ARG. The higher the return value, the worse the match.
4567 * Generally the "bad" conversions are all uniformly assigned a 100. */
4568
4569 struct rank
4570 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4571 {
4572 struct rank rank = {0,0};
4573
4574 /* Resolve typedefs */
4575 if (parm->code () == TYPE_CODE_TYPEDEF)
4576 parm = check_typedef (parm);
4577 if (arg->code () == TYPE_CODE_TYPEDEF)
4578 arg = check_typedef (arg);
4579
4580 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4581 {
4582 if (VALUE_LVAL (value) == not_lval)
4583 {
4584 /* Rvalues should preferably bind to rvalue references or const
4585 lvalue references. */
4586 if (parm->code () == TYPE_CODE_RVALUE_REF)
4587 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4588 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4589 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4590 else
4591 return INCOMPATIBLE_TYPE_BADNESS;
4592 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4593 }
4594 else
4595 {
4596 /* It's illegal to pass an lvalue as an rvalue. */
4597 if (parm->code () == TYPE_CODE_RVALUE_REF)
4598 return INCOMPATIBLE_TYPE_BADNESS;
4599 }
4600 }
4601
4602 if (types_equal (parm, arg))
4603 {
4604 struct type *t1 = parm;
4605 struct type *t2 = arg;
4606
4607 /* For pointers and references, compare target type. */
4608 if (parm->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4609 {
4610 t1 = TYPE_TARGET_TYPE (parm);
4611 t2 = TYPE_TARGET_TYPE (arg);
4612 }
4613
4614 /* Make sure they are CV equal, too. */
4615 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4616 rank.subrank |= CV_CONVERSION_CONST;
4617 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4618 rank.subrank |= CV_CONVERSION_VOLATILE;
4619 if (rank.subrank != 0)
4620 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4621 return EXACT_MATCH_BADNESS;
4622 }
4623
4624 /* See through references, since we can almost make non-references
4625 references. */
4626
4627 if (TYPE_IS_REFERENCE (arg))
4628 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4629 REFERENCE_SEE_THROUGH_BADNESS));
4630 if (TYPE_IS_REFERENCE (parm))
4631 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4632 REFERENCE_SEE_THROUGH_BADNESS));
4633 if (overload_debug)
4634 /* Debugging only. */
4635 fprintf_filtered (gdb_stderr,
4636 "------ Arg is %s [%d], parm is %s [%d]\n",
4637 arg->name (), arg->code (),
4638 parm->name (), parm->code ());
4639
4640 /* x -> y means arg of type x being supplied for parameter of type y. */
4641
4642 switch (parm->code ())
4643 {
4644 case TYPE_CODE_PTR:
4645 return rank_one_type_parm_ptr (parm, arg, value);
4646 case TYPE_CODE_ARRAY:
4647 return rank_one_type_parm_array (parm, arg, value);
4648 case TYPE_CODE_FUNC:
4649 return rank_one_type_parm_func (parm, arg, value);
4650 case TYPE_CODE_INT:
4651 return rank_one_type_parm_int (parm, arg, value);
4652 case TYPE_CODE_ENUM:
4653 return rank_one_type_parm_enum (parm, arg, value);
4654 case TYPE_CODE_CHAR:
4655 return rank_one_type_parm_char (parm, arg, value);
4656 case TYPE_CODE_RANGE:
4657 return rank_one_type_parm_range (parm, arg, value);
4658 case TYPE_CODE_BOOL:
4659 return rank_one_type_parm_bool (parm, arg, value);
4660 case TYPE_CODE_FLT:
4661 return rank_one_type_parm_float (parm, arg, value);
4662 case TYPE_CODE_COMPLEX:
4663 return rank_one_type_parm_complex (parm, arg, value);
4664 case TYPE_CODE_STRUCT:
4665 return rank_one_type_parm_struct (parm, arg, value);
4666 case TYPE_CODE_SET:
4667 return rank_one_type_parm_set (parm, arg, value);
4668 default:
4669 return INCOMPATIBLE_TYPE_BADNESS;
4670 } /* switch (arg->code ()) */
4671 }
4672
4673 /* End of functions for overload resolution. */
4674 \f
4675 /* Routines to pretty-print types. */
4676
4677 static void
4678 print_bit_vector (B_TYPE *bits, int nbits)
4679 {
4680 int bitno;
4681
4682 for (bitno = 0; bitno < nbits; bitno++)
4683 {
4684 if ((bitno % 8) == 0)
4685 {
4686 puts_filtered (" ");
4687 }
4688 if (B_TST (bits, bitno))
4689 printf_filtered (("1"));
4690 else
4691 printf_filtered (("0"));
4692 }
4693 }
4694
4695 /* Note the first arg should be the "this" pointer, we may not want to
4696 include it since we may get into a infinitely recursive
4697 situation. */
4698
4699 static void
4700 print_args (struct field *args, int nargs, int spaces)
4701 {
4702 if (args != NULL)
4703 {
4704 int i;
4705
4706 for (i = 0; i < nargs; i++)
4707 {
4708 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4709 args[i].name != NULL ? args[i].name : "<NULL>");
4710 recursive_dump_type (args[i].type (), spaces + 2);
4711 }
4712 }
4713 }
4714
4715 int
4716 field_is_static (struct field *f)
4717 {
4718 /* "static" fields are the fields whose location is not relative
4719 to the address of the enclosing struct. It would be nice to
4720 have a dedicated flag that would be set for static fields when
4721 the type is being created. But in practice, checking the field
4722 loc_kind should give us an accurate answer. */
4723 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4724 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4725 }
4726
4727 static void
4728 dump_fn_fieldlists (struct type *type, int spaces)
4729 {
4730 int method_idx;
4731 int overload_idx;
4732 struct fn_field *f;
4733
4734 printfi_filtered (spaces, "fn_fieldlists ");
4735 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4736 printf_filtered ("\n");
4737 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4738 {
4739 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4740 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4741 method_idx,
4742 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4743 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4744 gdb_stdout);
4745 printf_filtered (_(") length %d\n"),
4746 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4747 for (overload_idx = 0;
4748 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4749 overload_idx++)
4750 {
4751 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4752 overload_idx,
4753 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4754 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4755 gdb_stdout);
4756 printf_filtered (")\n");
4757 printfi_filtered (spaces + 8, "type ");
4758 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4759 gdb_stdout);
4760 printf_filtered ("\n");
4761
4762 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4763 spaces + 8 + 2);
4764
4765 printfi_filtered (spaces + 8, "args ");
4766 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4767 gdb_stdout);
4768 printf_filtered ("\n");
4769 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4770 TYPE_FN_FIELD_TYPE (f, overload_idx)->num_fields (),
4771 spaces + 8 + 2);
4772 printfi_filtered (spaces + 8, "fcontext ");
4773 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4774 gdb_stdout);
4775 printf_filtered ("\n");
4776
4777 printfi_filtered (spaces + 8, "is_const %d\n",
4778 TYPE_FN_FIELD_CONST (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_volatile %d\n",
4780 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4781 printfi_filtered (spaces + 8, "is_private %d\n",
4782 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4783 printfi_filtered (spaces + 8, "is_protected %d\n",
4784 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4785 printfi_filtered (spaces + 8, "is_stub %d\n",
4786 TYPE_FN_FIELD_STUB (f, overload_idx));
4787 printfi_filtered (spaces + 8, "defaulted %d\n",
4788 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4789 printfi_filtered (spaces + 8, "is_deleted %d\n",
4790 TYPE_FN_FIELD_DELETED (f, overload_idx));
4791 printfi_filtered (spaces + 8, "voffset %u\n",
4792 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4793 }
4794 }
4795 }
4796
4797 static void
4798 print_cplus_stuff (struct type *type, int spaces)
4799 {
4800 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4801 printfi_filtered (spaces, "vptr_basetype ");
4802 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4803 puts_filtered ("\n");
4804 if (TYPE_VPTR_BASETYPE (type) != NULL)
4805 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4806
4807 printfi_filtered (spaces, "n_baseclasses %d\n",
4808 TYPE_N_BASECLASSES (type));
4809 printfi_filtered (spaces, "nfn_fields %d\n",
4810 TYPE_NFN_FIELDS (type));
4811 if (TYPE_N_BASECLASSES (type) > 0)
4812 {
4813 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4814 TYPE_N_BASECLASSES (type));
4815 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4816 gdb_stdout);
4817 printf_filtered (")");
4818
4819 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4820 TYPE_N_BASECLASSES (type));
4821 puts_filtered ("\n");
4822 }
4823 if (type->num_fields () > 0)
4824 {
4825 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4826 {
4827 printfi_filtered (spaces,
4828 "private_field_bits (%d bits at *",
4829 type->num_fields ());
4830 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4831 gdb_stdout);
4832 printf_filtered (")");
4833 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4834 type->num_fields ());
4835 puts_filtered ("\n");
4836 }
4837 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4838 {
4839 printfi_filtered (spaces,
4840 "protected_field_bits (%d bits at *",
4841 type->num_fields ());
4842 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4843 gdb_stdout);
4844 printf_filtered (")");
4845 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4846 type->num_fields ());
4847 puts_filtered ("\n");
4848 }
4849 }
4850 if (TYPE_NFN_FIELDS (type) > 0)
4851 {
4852 dump_fn_fieldlists (type, spaces);
4853 }
4854
4855 printfi_filtered (spaces, "calling_convention %d\n",
4856 TYPE_CPLUS_CALLING_CONVENTION (type));
4857 }
4858
4859 /* Print the contents of the TYPE's type_specific union, assuming that
4860 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4861
4862 static void
4863 print_gnat_stuff (struct type *type, int spaces)
4864 {
4865 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4866
4867 if (descriptive_type == NULL)
4868 printfi_filtered (spaces + 2, "no descriptive type\n");
4869 else
4870 {
4871 printfi_filtered (spaces + 2, "descriptive type\n");
4872 recursive_dump_type (descriptive_type, spaces + 4);
4873 }
4874 }
4875
4876 static struct obstack dont_print_type_obstack;
4877
4878 /* Print the dynamic_prop PROP. */
4879
4880 static void
4881 dump_dynamic_prop (dynamic_prop const& prop)
4882 {
4883 switch (prop.kind ())
4884 {
4885 case PROP_CONST:
4886 printf_filtered ("%s", plongest (prop.const_val ()));
4887 break;
4888 case PROP_UNDEFINED:
4889 printf_filtered ("(undefined)");
4890 break;
4891 case PROP_LOCEXPR:
4892 case PROP_LOCLIST:
4893 printf_filtered ("(dynamic)");
4894 break;
4895 default:
4896 gdb_assert_not_reached ("unhandled prop kind");
4897 break;
4898 }
4899 }
4900
4901 void
4902 recursive_dump_type (struct type *type, int spaces)
4903 {
4904 int idx;
4905
4906 if (spaces == 0)
4907 obstack_begin (&dont_print_type_obstack, 0);
4908
4909 if (type->num_fields () > 0
4910 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4911 {
4912 struct type **first_dont_print
4913 = (struct type **) obstack_base (&dont_print_type_obstack);
4914
4915 int i = (struct type **)
4916 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4917
4918 while (--i >= 0)
4919 {
4920 if (type == first_dont_print[i])
4921 {
4922 printfi_filtered (spaces, "type node ");
4923 gdb_print_host_address (type, gdb_stdout);
4924 printf_filtered (_(" <same as already seen type>\n"));
4925 return;
4926 }
4927 }
4928
4929 obstack_ptr_grow (&dont_print_type_obstack, type);
4930 }
4931
4932 printfi_filtered (spaces, "type node ");
4933 gdb_print_host_address (type, gdb_stdout);
4934 printf_filtered ("\n");
4935 printfi_filtered (spaces, "name '%s' (",
4936 type->name () ? type->name () : "<NULL>");
4937 gdb_print_host_address (type->name (), gdb_stdout);
4938 printf_filtered (")\n");
4939 printfi_filtered (spaces, "code 0x%x ", type->code ());
4940 switch (type->code ())
4941 {
4942 case TYPE_CODE_UNDEF:
4943 printf_filtered ("(TYPE_CODE_UNDEF)");
4944 break;
4945 case TYPE_CODE_PTR:
4946 printf_filtered ("(TYPE_CODE_PTR)");
4947 break;
4948 case TYPE_CODE_ARRAY:
4949 printf_filtered ("(TYPE_CODE_ARRAY)");
4950 break;
4951 case TYPE_CODE_STRUCT:
4952 printf_filtered ("(TYPE_CODE_STRUCT)");
4953 break;
4954 case TYPE_CODE_UNION:
4955 printf_filtered ("(TYPE_CODE_UNION)");
4956 break;
4957 case TYPE_CODE_ENUM:
4958 printf_filtered ("(TYPE_CODE_ENUM)");
4959 break;
4960 case TYPE_CODE_FLAGS:
4961 printf_filtered ("(TYPE_CODE_FLAGS)");
4962 break;
4963 case TYPE_CODE_FUNC:
4964 printf_filtered ("(TYPE_CODE_FUNC)");
4965 break;
4966 case TYPE_CODE_INT:
4967 printf_filtered ("(TYPE_CODE_INT)");
4968 break;
4969 case TYPE_CODE_FLT:
4970 printf_filtered ("(TYPE_CODE_FLT)");
4971 break;
4972 case TYPE_CODE_VOID:
4973 printf_filtered ("(TYPE_CODE_VOID)");
4974 break;
4975 case TYPE_CODE_SET:
4976 printf_filtered ("(TYPE_CODE_SET)");
4977 break;
4978 case TYPE_CODE_RANGE:
4979 printf_filtered ("(TYPE_CODE_RANGE)");
4980 break;
4981 case TYPE_CODE_STRING:
4982 printf_filtered ("(TYPE_CODE_STRING)");
4983 break;
4984 case TYPE_CODE_ERROR:
4985 printf_filtered ("(TYPE_CODE_ERROR)");
4986 break;
4987 case TYPE_CODE_MEMBERPTR:
4988 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4989 break;
4990 case TYPE_CODE_METHODPTR:
4991 printf_filtered ("(TYPE_CODE_METHODPTR)");
4992 break;
4993 case TYPE_CODE_METHOD:
4994 printf_filtered ("(TYPE_CODE_METHOD)");
4995 break;
4996 case TYPE_CODE_REF:
4997 printf_filtered ("(TYPE_CODE_REF)");
4998 break;
4999 case TYPE_CODE_CHAR:
5000 printf_filtered ("(TYPE_CODE_CHAR)");
5001 break;
5002 case TYPE_CODE_BOOL:
5003 printf_filtered ("(TYPE_CODE_BOOL)");
5004 break;
5005 case TYPE_CODE_COMPLEX:
5006 printf_filtered ("(TYPE_CODE_COMPLEX)");
5007 break;
5008 case TYPE_CODE_TYPEDEF:
5009 printf_filtered ("(TYPE_CODE_TYPEDEF)");
5010 break;
5011 case TYPE_CODE_NAMESPACE:
5012 printf_filtered ("(TYPE_CODE_NAMESPACE)");
5013 break;
5014 default:
5015 printf_filtered ("(UNKNOWN TYPE CODE)");
5016 break;
5017 }
5018 puts_filtered ("\n");
5019 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
5020 if (TYPE_OBJFILE_OWNED (type))
5021 {
5022 printfi_filtered (spaces, "objfile ");
5023 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
5024 }
5025 else
5026 {
5027 printfi_filtered (spaces, "gdbarch ");
5028 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
5029 }
5030 printf_filtered ("\n");
5031 printfi_filtered (spaces, "target_type ");
5032 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5033 printf_filtered ("\n");
5034 if (TYPE_TARGET_TYPE (type) != NULL)
5035 {
5036 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5037 }
5038 printfi_filtered (spaces, "pointer_type ");
5039 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5040 printf_filtered ("\n");
5041 printfi_filtered (spaces, "reference_type ");
5042 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5043 printf_filtered ("\n");
5044 printfi_filtered (spaces, "type_chain ");
5045 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5046 printf_filtered ("\n");
5047 printfi_filtered (spaces, "instance_flags 0x%x",
5048 (unsigned) type->instance_flags ());
5049 if (TYPE_CONST (type))
5050 {
5051 puts_filtered (" TYPE_CONST");
5052 }
5053 if (TYPE_VOLATILE (type))
5054 {
5055 puts_filtered (" TYPE_VOLATILE");
5056 }
5057 if (TYPE_CODE_SPACE (type))
5058 {
5059 puts_filtered (" TYPE_CODE_SPACE");
5060 }
5061 if (TYPE_DATA_SPACE (type))
5062 {
5063 puts_filtered (" TYPE_DATA_SPACE");
5064 }
5065 if (TYPE_ADDRESS_CLASS_1 (type))
5066 {
5067 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5068 }
5069 if (TYPE_ADDRESS_CLASS_2 (type))
5070 {
5071 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5072 }
5073 if (TYPE_RESTRICT (type))
5074 {
5075 puts_filtered (" TYPE_RESTRICT");
5076 }
5077 if (TYPE_ATOMIC (type))
5078 {
5079 puts_filtered (" TYPE_ATOMIC");
5080 }
5081 puts_filtered ("\n");
5082
5083 printfi_filtered (spaces, "flags");
5084 if (type->is_unsigned ())
5085 {
5086 puts_filtered (" TYPE_UNSIGNED");
5087 }
5088 if (type->has_no_signedness ())
5089 {
5090 puts_filtered (" TYPE_NOSIGN");
5091 }
5092 if (type->endianity_is_not_default ())
5093 {
5094 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5095 }
5096 if (type->is_stub ())
5097 {
5098 puts_filtered (" TYPE_STUB");
5099 }
5100 if (type->target_is_stub ())
5101 {
5102 puts_filtered (" TYPE_TARGET_STUB");
5103 }
5104 if (type->is_prototyped ())
5105 {
5106 puts_filtered (" TYPE_PROTOTYPED");
5107 }
5108 if (type->has_varargs ())
5109 {
5110 puts_filtered (" TYPE_VARARGS");
5111 }
5112 /* This is used for things like AltiVec registers on ppc. Gcc emits
5113 an attribute for the array type, which tells whether or not we
5114 have a vector, instead of a regular array. */
5115 if (type->is_vector ())
5116 {
5117 puts_filtered (" TYPE_VECTOR");
5118 }
5119 if (type->is_fixed_instance ())
5120 {
5121 puts_filtered (" TYPE_FIXED_INSTANCE");
5122 }
5123 if (type->stub_is_supported ())
5124 {
5125 puts_filtered (" TYPE_STUB_SUPPORTED");
5126 }
5127 if (TYPE_NOTTEXT (type))
5128 {
5129 puts_filtered (" TYPE_NOTTEXT");
5130 }
5131 puts_filtered ("\n");
5132 printfi_filtered (spaces, "nfields %d ", type->num_fields ());
5133 gdb_print_host_address (type->fields (), gdb_stdout);
5134 puts_filtered ("\n");
5135 for (idx = 0; idx < type->num_fields (); idx++)
5136 {
5137 if (type->code () == TYPE_CODE_ENUM)
5138 printfi_filtered (spaces + 2,
5139 "[%d] enumval %s type ",
5140 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5141 else
5142 printfi_filtered (spaces + 2,
5143 "[%d] bitpos %s bitsize %d type ",
5144 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5145 TYPE_FIELD_BITSIZE (type, idx));
5146 gdb_print_host_address (type->field (idx).type (), gdb_stdout);
5147 printf_filtered (" name '%s' (",
5148 TYPE_FIELD_NAME (type, idx) != NULL
5149 ? TYPE_FIELD_NAME (type, idx)
5150 : "<NULL>");
5151 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5152 printf_filtered (")\n");
5153 if (type->field (idx).type () != NULL)
5154 {
5155 recursive_dump_type (type->field (idx).type (), spaces + 4);
5156 }
5157 }
5158 if (type->code () == TYPE_CODE_RANGE)
5159 {
5160 printfi_filtered (spaces, "low ");
5161 dump_dynamic_prop (type->bounds ()->low);
5162 printf_filtered (" high ");
5163 dump_dynamic_prop (type->bounds ()->high);
5164 printf_filtered ("\n");
5165 }
5166
5167 switch (TYPE_SPECIFIC_FIELD (type))
5168 {
5169 case TYPE_SPECIFIC_CPLUS_STUFF:
5170 printfi_filtered (spaces, "cplus_stuff ");
5171 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5172 gdb_stdout);
5173 puts_filtered ("\n");
5174 print_cplus_stuff (type, spaces);
5175 break;
5176
5177 case TYPE_SPECIFIC_GNAT_STUFF:
5178 printfi_filtered (spaces, "gnat_stuff ");
5179 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5180 puts_filtered ("\n");
5181 print_gnat_stuff (type, spaces);
5182 break;
5183
5184 case TYPE_SPECIFIC_FLOATFORMAT:
5185 printfi_filtered (spaces, "floatformat ");
5186 if (TYPE_FLOATFORMAT (type) == NULL
5187 || TYPE_FLOATFORMAT (type)->name == NULL)
5188 puts_filtered ("(null)");
5189 else
5190 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5191 puts_filtered ("\n");
5192 break;
5193
5194 case TYPE_SPECIFIC_FUNC:
5195 printfi_filtered (spaces, "calling_convention %d\n",
5196 TYPE_CALLING_CONVENTION (type));
5197 /* tail_call_list is not printed. */
5198 break;
5199
5200 case TYPE_SPECIFIC_SELF_TYPE:
5201 printfi_filtered (spaces, "self_type ");
5202 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5203 puts_filtered ("\n");
5204 break;
5205
5206 case TYPE_SPECIFIC_INT:
5207 if (type->bit_size_differs_p ())
5208 {
5209 unsigned bit_size = type->bit_size ();
5210 unsigned bit_off = type->bit_offset ();
5211 printfi_filtered (spaces, " bit size = %u, bit offset = %u\n",
5212 bit_size, bit_off);
5213 }
5214 break;
5215 }
5216
5217 if (spaces == 0)
5218 obstack_free (&dont_print_type_obstack, NULL);
5219 }
5220 \f
5221 /* Trivial helpers for the libiberty hash table, for mapping one
5222 type to another. */
5223
5224 struct type_pair : public allocate_on_obstack
5225 {
5226 type_pair (struct type *old_, struct type *newobj_)
5227 : old (old_), newobj (newobj_)
5228 {}
5229
5230 struct type * const old, * const newobj;
5231 };
5232
5233 static hashval_t
5234 type_pair_hash (const void *item)
5235 {
5236 const struct type_pair *pair = (const struct type_pair *) item;
5237
5238 return htab_hash_pointer (pair->old);
5239 }
5240
5241 static int
5242 type_pair_eq (const void *item_lhs, const void *item_rhs)
5243 {
5244 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5245 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5246
5247 return lhs->old == rhs->old;
5248 }
5249
5250 /* Allocate the hash table used by copy_type_recursive to walk
5251 types without duplicates. We use OBJFILE's obstack, because
5252 OBJFILE is about to be deleted. */
5253
5254 htab_up
5255 create_copied_types_hash (struct objfile *objfile)
5256 {
5257 return htab_up (htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5258 NULL, &objfile->objfile_obstack,
5259 hashtab_obstack_allocate,
5260 dummy_obstack_deallocate));
5261 }
5262
5263 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5264
5265 static struct dynamic_prop_list *
5266 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5267 struct dynamic_prop_list *list)
5268 {
5269 struct dynamic_prop_list *copy = list;
5270 struct dynamic_prop_list **node_ptr = &copy;
5271
5272 while (*node_ptr != NULL)
5273 {
5274 struct dynamic_prop_list *node_copy;
5275
5276 node_copy = ((struct dynamic_prop_list *)
5277 obstack_copy (objfile_obstack, *node_ptr,
5278 sizeof (struct dynamic_prop_list)));
5279 node_copy->prop = (*node_ptr)->prop;
5280 *node_ptr = node_copy;
5281
5282 node_ptr = &node_copy->next;
5283 }
5284
5285 return copy;
5286 }
5287
5288 /* Recursively copy (deep copy) TYPE, if it is associated with
5289 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5290 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5291 it is not associated with OBJFILE. */
5292
5293 struct type *
5294 copy_type_recursive (struct objfile *objfile,
5295 struct type *type,
5296 htab_t copied_types)
5297 {
5298 void **slot;
5299 struct type *new_type;
5300
5301 if (! TYPE_OBJFILE_OWNED (type))
5302 return type;
5303
5304 /* This type shouldn't be pointing to any types in other objfiles;
5305 if it did, the type might disappear unexpectedly. */
5306 gdb_assert (TYPE_OBJFILE (type) == objfile);
5307
5308 struct type_pair pair (type, nullptr);
5309
5310 slot = htab_find_slot (copied_types, &pair, INSERT);
5311 if (*slot != NULL)
5312 return ((struct type_pair *) *slot)->newobj;
5313
5314 new_type = alloc_type_arch (get_type_arch (type));
5315
5316 /* We must add the new type to the hash table immediately, in case
5317 we encounter this type again during a recursive call below. */
5318 struct type_pair *stored
5319 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5320
5321 *slot = stored;
5322
5323 /* Copy the common fields of types. For the main type, we simply
5324 copy the entire thing and then update specific fields as needed. */
5325 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5326 TYPE_OBJFILE_OWNED (new_type) = 0;
5327 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5328
5329 if (type->name ())
5330 new_type->set_name (xstrdup (type->name ()));
5331
5332 new_type->set_instance_flags (type->instance_flags ());
5333 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5334
5335 /* Copy the fields. */
5336 if (type->num_fields ())
5337 {
5338 int i, nfields;
5339
5340 nfields = type->num_fields ();
5341 new_type->set_fields
5342 ((struct field *)
5343 TYPE_ZALLOC (new_type, nfields * sizeof (struct field)));
5344
5345 for (i = 0; i < nfields; i++)
5346 {
5347 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5348 TYPE_FIELD_ARTIFICIAL (type, i);
5349 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5350 if (type->field (i).type ())
5351 new_type->field (i).set_type
5352 (copy_type_recursive (objfile, type->field (i).type (),
5353 copied_types));
5354 if (TYPE_FIELD_NAME (type, i))
5355 TYPE_FIELD_NAME (new_type, i) =
5356 xstrdup (TYPE_FIELD_NAME (type, i));
5357 switch (TYPE_FIELD_LOC_KIND (type, i))
5358 {
5359 case FIELD_LOC_KIND_BITPOS:
5360 SET_FIELD_BITPOS (new_type->field (i),
5361 TYPE_FIELD_BITPOS (type, i));
5362 break;
5363 case FIELD_LOC_KIND_ENUMVAL:
5364 SET_FIELD_ENUMVAL (new_type->field (i),
5365 TYPE_FIELD_ENUMVAL (type, i));
5366 break;
5367 case FIELD_LOC_KIND_PHYSADDR:
5368 SET_FIELD_PHYSADDR (new_type->field (i),
5369 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5370 break;
5371 case FIELD_LOC_KIND_PHYSNAME:
5372 SET_FIELD_PHYSNAME (new_type->field (i),
5373 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5374 i)));
5375 break;
5376 default:
5377 internal_error (__FILE__, __LINE__,
5378 _("Unexpected type field location kind: %d"),
5379 TYPE_FIELD_LOC_KIND (type, i));
5380 }
5381 }
5382 }
5383
5384 /* For range types, copy the bounds information. */
5385 if (type->code () == TYPE_CODE_RANGE)
5386 {
5387 range_bounds *bounds
5388 = ((struct range_bounds *) TYPE_ALLOC
5389 (new_type, sizeof (struct range_bounds)));
5390
5391 *bounds = *type->bounds ();
5392 new_type->set_bounds (bounds);
5393 }
5394
5395 if (type->main_type->dyn_prop_list != NULL)
5396 new_type->main_type->dyn_prop_list
5397 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5398 type->main_type->dyn_prop_list);
5399
5400
5401 /* Copy pointers to other types. */
5402 if (TYPE_TARGET_TYPE (type))
5403 TYPE_TARGET_TYPE (new_type) =
5404 copy_type_recursive (objfile,
5405 TYPE_TARGET_TYPE (type),
5406 copied_types);
5407
5408 /* Maybe copy the type_specific bits.
5409
5410 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5411 base classes and methods. There's no fundamental reason why we
5412 can't, but at the moment it is not needed. */
5413
5414 switch (TYPE_SPECIFIC_FIELD (type))
5415 {
5416 case TYPE_SPECIFIC_NONE:
5417 break;
5418 case TYPE_SPECIFIC_FUNC:
5419 INIT_FUNC_SPECIFIC (new_type);
5420 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5421 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5422 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5423 break;
5424 case TYPE_SPECIFIC_FLOATFORMAT:
5425 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5426 break;
5427 case TYPE_SPECIFIC_CPLUS_STUFF:
5428 INIT_CPLUS_SPECIFIC (new_type);
5429 break;
5430 case TYPE_SPECIFIC_GNAT_STUFF:
5431 INIT_GNAT_SPECIFIC (new_type);
5432 break;
5433 case TYPE_SPECIFIC_SELF_TYPE:
5434 set_type_self_type (new_type,
5435 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5436 copied_types));
5437 break;
5438 case TYPE_SPECIFIC_INT:
5439 TYPE_SPECIFIC_FIELD (new_type) = TYPE_SPECIFIC_INT;
5440 TYPE_MAIN_TYPE (new_type)->type_specific.int_stuff
5441 = TYPE_MAIN_TYPE (type)->type_specific.int_stuff;
5442 break;
5443
5444 default:
5445 gdb_assert_not_reached ("bad type_specific_kind");
5446 }
5447
5448 return new_type;
5449 }
5450
5451 /* Make a copy of the given TYPE, except that the pointer & reference
5452 types are not preserved.
5453
5454 This function assumes that the given type has an associated objfile.
5455 This objfile is used to allocate the new type. */
5456
5457 struct type *
5458 copy_type (const struct type *type)
5459 {
5460 struct type *new_type;
5461
5462 gdb_assert (TYPE_OBJFILE_OWNED (type));
5463
5464 new_type = alloc_type_copy (type);
5465 new_type->set_instance_flags (type->instance_flags ());
5466 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5467 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5468 sizeof (struct main_type));
5469 if (type->main_type->dyn_prop_list != NULL)
5470 new_type->main_type->dyn_prop_list
5471 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5472 type->main_type->dyn_prop_list);
5473
5474 return new_type;
5475 }
5476 \f
5477 /* Helper functions to initialize architecture-specific types. */
5478
5479 /* Allocate a type structure associated with GDBARCH and set its
5480 CODE, LENGTH, and NAME fields. */
5481
5482 struct type *
5483 arch_type (struct gdbarch *gdbarch,
5484 enum type_code code, int bit, const char *name)
5485 {
5486 struct type *type;
5487
5488 type = alloc_type_arch (gdbarch);
5489 set_type_code (type, code);
5490 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5491 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5492
5493 if (name)
5494 type->set_name (gdbarch_obstack_strdup (gdbarch, name));
5495
5496 return type;
5497 }
5498
5499 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5500 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5501 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5502
5503 struct type *
5504 arch_integer_type (struct gdbarch *gdbarch,
5505 int bit, int unsigned_p, const char *name)
5506 {
5507 struct type *t;
5508
5509 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5510 if (unsigned_p)
5511 t->set_is_unsigned (true);
5512
5513 return t;
5514 }
5515
5516 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5517 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5518 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5519
5520 struct type *
5521 arch_character_type (struct gdbarch *gdbarch,
5522 int bit, int unsigned_p, const char *name)
5523 {
5524 struct type *t;
5525
5526 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5527 if (unsigned_p)
5528 t->set_is_unsigned (true);
5529
5530 return t;
5531 }
5532
5533 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5534 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5535 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5536
5537 struct type *
5538 arch_boolean_type (struct gdbarch *gdbarch,
5539 int bit, int unsigned_p, const char *name)
5540 {
5541 struct type *t;
5542
5543 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5544 if (unsigned_p)
5545 t->set_is_unsigned (true);
5546
5547 return t;
5548 }
5549
5550 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5551 BIT is the type size in bits; if BIT equals -1, the size is
5552 determined by the floatformat. NAME is the type name. Set the
5553 TYPE_FLOATFORMAT from FLOATFORMATS. */
5554
5555 struct type *
5556 arch_float_type (struct gdbarch *gdbarch,
5557 int bit, const char *name,
5558 const struct floatformat **floatformats)
5559 {
5560 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5561 struct type *t;
5562
5563 bit = verify_floatformat (bit, fmt);
5564 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5565 TYPE_FLOATFORMAT (t) = fmt;
5566
5567 return t;
5568 }
5569
5570 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5571 BIT is the type size in bits. NAME is the type name. */
5572
5573 struct type *
5574 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5575 {
5576 struct type *t;
5577
5578 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5579 return t;
5580 }
5581
5582 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5583 BIT is the pointer type size in bits. NAME is the type name.
5584 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5585 TYPE_UNSIGNED flag. */
5586
5587 struct type *
5588 arch_pointer_type (struct gdbarch *gdbarch,
5589 int bit, const char *name, struct type *target_type)
5590 {
5591 struct type *t;
5592
5593 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5594 TYPE_TARGET_TYPE (t) = target_type;
5595 t->set_is_unsigned (true);
5596 return t;
5597 }
5598
5599 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5600 NAME is the type name. BIT is the size of the flag word in bits. */
5601
5602 struct type *
5603 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5604 {
5605 struct type *type;
5606
5607 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5608 type->set_is_unsigned (true);
5609 type->set_num_fields (0);
5610 /* Pre-allocate enough space assuming every field is one bit. */
5611 type->set_fields
5612 ((struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field)));
5613
5614 return type;
5615 }
5616
5617 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5618 position BITPOS is called NAME. Pass NAME as "" for fields that
5619 should not be printed. */
5620
5621 void
5622 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5623 struct type *field_type, const char *name)
5624 {
5625 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5626 int field_nr = type->num_fields ();
5627
5628 gdb_assert (type->code () == TYPE_CODE_FLAGS);
5629 gdb_assert (type->num_fields () + 1 <= type_bitsize);
5630 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5631 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5632 gdb_assert (name != NULL);
5633
5634 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5635 type->field (field_nr).set_type (field_type);
5636 SET_FIELD_BITPOS (type->field (field_nr), start_bitpos);
5637 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5638 type->set_num_fields (type->num_fields () + 1);
5639 }
5640
5641 /* Special version of append_flags_type_field to add a flag field.
5642 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5643 position BITPOS is called NAME. */
5644
5645 void
5646 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5647 {
5648 struct gdbarch *gdbarch = get_type_arch (type);
5649
5650 append_flags_type_field (type, bitpos, 1,
5651 builtin_type (gdbarch)->builtin_bool,
5652 name);
5653 }
5654
5655 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5656 specified by CODE) associated with GDBARCH. NAME is the type name. */
5657
5658 struct type *
5659 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5660 enum type_code code)
5661 {
5662 struct type *t;
5663
5664 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5665 t = arch_type (gdbarch, code, 0, NULL);
5666 t->set_name (name);
5667 INIT_CPLUS_SPECIFIC (t);
5668 return t;
5669 }
5670
5671 /* Add new field with name NAME and type FIELD to composite type T.
5672 Do not set the field's position or adjust the type's length;
5673 the caller should do so. Return the new field. */
5674
5675 struct field *
5676 append_composite_type_field_raw (struct type *t, const char *name,
5677 struct type *field)
5678 {
5679 struct field *f;
5680
5681 t->set_num_fields (t->num_fields () + 1);
5682 t->set_fields (XRESIZEVEC (struct field, t->fields (),
5683 t->num_fields ()));
5684 f = &t->field (t->num_fields () - 1);
5685 memset (f, 0, sizeof f[0]);
5686 f[0].set_type (field);
5687 FIELD_NAME (f[0]) = name;
5688 return f;
5689 }
5690
5691 /* Add new field with name NAME and type FIELD to composite type T.
5692 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5693
5694 void
5695 append_composite_type_field_aligned (struct type *t, const char *name,
5696 struct type *field, int alignment)
5697 {
5698 struct field *f = append_composite_type_field_raw (t, name, field);
5699
5700 if (t->code () == TYPE_CODE_UNION)
5701 {
5702 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5703 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5704 }
5705 else if (t->code () == TYPE_CODE_STRUCT)
5706 {
5707 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5708 if (t->num_fields () > 1)
5709 {
5710 SET_FIELD_BITPOS (f[0],
5711 (FIELD_BITPOS (f[-1])
5712 + (TYPE_LENGTH (f[-1].type ())
5713 * TARGET_CHAR_BIT)));
5714
5715 if (alignment)
5716 {
5717 int left;
5718
5719 alignment *= TARGET_CHAR_BIT;
5720 left = FIELD_BITPOS (f[0]) % alignment;
5721
5722 if (left)
5723 {
5724 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5725 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5726 }
5727 }
5728 }
5729 }
5730 }
5731
5732 /* Add new field with name NAME and type FIELD to composite type T. */
5733
5734 void
5735 append_composite_type_field (struct type *t, const char *name,
5736 struct type *field)
5737 {
5738 append_composite_type_field_aligned (t, name, field, 0);
5739 }
5740
5741 static struct gdbarch_data *gdbtypes_data;
5742
5743 const struct builtin_type *
5744 builtin_type (struct gdbarch *gdbarch)
5745 {
5746 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5747 }
5748
5749 static void *
5750 gdbtypes_post_init (struct gdbarch *gdbarch)
5751 {
5752 struct builtin_type *builtin_type
5753 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5754
5755 /* Basic types. */
5756 builtin_type->builtin_void
5757 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5758 builtin_type->builtin_char
5759 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5760 !gdbarch_char_signed (gdbarch), "char");
5761 builtin_type->builtin_char->set_has_no_signedness (true);
5762 builtin_type->builtin_signed_char
5763 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5764 0, "signed char");
5765 builtin_type->builtin_unsigned_char
5766 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5767 1, "unsigned char");
5768 builtin_type->builtin_short
5769 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5770 0, "short");
5771 builtin_type->builtin_unsigned_short
5772 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5773 1, "unsigned short");
5774 builtin_type->builtin_int
5775 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5776 0, "int");
5777 builtin_type->builtin_unsigned_int
5778 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5779 1, "unsigned int");
5780 builtin_type->builtin_long
5781 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5782 0, "long");
5783 builtin_type->builtin_unsigned_long
5784 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5785 1, "unsigned long");
5786 builtin_type->builtin_long_long
5787 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5788 0, "long long");
5789 builtin_type->builtin_unsigned_long_long
5790 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5791 1, "unsigned long long");
5792 builtin_type->builtin_half
5793 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5794 "half", gdbarch_half_format (gdbarch));
5795 builtin_type->builtin_float
5796 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5797 "float", gdbarch_float_format (gdbarch));
5798 builtin_type->builtin_bfloat16
5799 = arch_float_type (gdbarch, gdbarch_bfloat16_bit (gdbarch),
5800 "bfloat16", gdbarch_bfloat16_format (gdbarch));
5801 builtin_type->builtin_double
5802 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5803 "double", gdbarch_double_format (gdbarch));
5804 builtin_type->builtin_long_double
5805 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5806 "long double", gdbarch_long_double_format (gdbarch));
5807 builtin_type->builtin_complex
5808 = init_complex_type ("complex", builtin_type->builtin_float);
5809 builtin_type->builtin_double_complex
5810 = init_complex_type ("double complex", builtin_type->builtin_double);
5811 builtin_type->builtin_string
5812 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5813 builtin_type->builtin_bool
5814 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5815
5816 /* The following three are about decimal floating point types, which
5817 are 32-bits, 64-bits and 128-bits respectively. */
5818 builtin_type->builtin_decfloat
5819 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5820 builtin_type->builtin_decdouble
5821 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5822 builtin_type->builtin_declong
5823 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5824
5825 /* "True" character types. */
5826 builtin_type->builtin_true_char
5827 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5828 builtin_type->builtin_true_unsigned_char
5829 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5830
5831 /* Fixed-size integer types. */
5832 builtin_type->builtin_int0
5833 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5834 builtin_type->builtin_int8
5835 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5836 builtin_type->builtin_uint8
5837 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5838 builtin_type->builtin_int16
5839 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5840 builtin_type->builtin_uint16
5841 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5842 builtin_type->builtin_int24
5843 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5844 builtin_type->builtin_uint24
5845 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5846 builtin_type->builtin_int32
5847 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5848 builtin_type->builtin_uint32
5849 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5850 builtin_type->builtin_int64
5851 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5852 builtin_type->builtin_uint64
5853 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5854 builtin_type->builtin_int128
5855 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5856 builtin_type->builtin_uint128
5857 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5858
5859 builtin_type->builtin_int8->set_instance_flags
5860 (builtin_type->builtin_int8->instance_flags ()
5861 | TYPE_INSTANCE_FLAG_NOTTEXT);
5862
5863 builtin_type->builtin_uint8->set_instance_flags
5864 (builtin_type->builtin_uint8->instance_flags ()
5865 | TYPE_INSTANCE_FLAG_NOTTEXT);
5866
5867 /* Wide character types. */
5868 builtin_type->builtin_char16
5869 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5870 builtin_type->builtin_char32
5871 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5872 builtin_type->builtin_wchar
5873 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5874 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5875
5876 /* Default data/code pointer types. */
5877 builtin_type->builtin_data_ptr
5878 = lookup_pointer_type (builtin_type->builtin_void);
5879 builtin_type->builtin_func_ptr
5880 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5881 builtin_type->builtin_func_func
5882 = lookup_function_type (builtin_type->builtin_func_ptr);
5883
5884 /* This type represents a GDB internal function. */
5885 builtin_type->internal_fn
5886 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5887 "<internal function>");
5888
5889 /* This type represents an xmethod. */
5890 builtin_type->xmethod
5891 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5892
5893 return builtin_type;
5894 }
5895
5896 /* This set of objfile-based types is intended to be used by symbol
5897 readers as basic types. */
5898
5899 static const struct objfile_key<struct objfile_type,
5900 gdb::noop_deleter<struct objfile_type>>
5901 objfile_type_data;
5902
5903 const struct objfile_type *
5904 objfile_type (struct objfile *objfile)
5905 {
5906 struct gdbarch *gdbarch;
5907 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5908
5909 if (objfile_type)
5910 return objfile_type;
5911
5912 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5913 1, struct objfile_type);
5914
5915 /* Use the objfile architecture to determine basic type properties. */
5916 gdbarch = objfile->arch ();
5917
5918 /* Basic types. */
5919 objfile_type->builtin_void
5920 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5921 objfile_type->builtin_char
5922 = init_integer_type (objfile, TARGET_CHAR_BIT,
5923 !gdbarch_char_signed (gdbarch), "char");
5924 objfile_type->builtin_char->set_has_no_signedness (true);
5925 objfile_type->builtin_signed_char
5926 = init_integer_type (objfile, TARGET_CHAR_BIT,
5927 0, "signed char");
5928 objfile_type->builtin_unsigned_char
5929 = init_integer_type (objfile, TARGET_CHAR_BIT,
5930 1, "unsigned char");
5931 objfile_type->builtin_short
5932 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5933 0, "short");
5934 objfile_type->builtin_unsigned_short
5935 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5936 1, "unsigned short");
5937 objfile_type->builtin_int
5938 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5939 0, "int");
5940 objfile_type->builtin_unsigned_int
5941 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5942 1, "unsigned int");
5943 objfile_type->builtin_long
5944 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5945 0, "long");
5946 objfile_type->builtin_unsigned_long
5947 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5948 1, "unsigned long");
5949 objfile_type->builtin_long_long
5950 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5951 0, "long long");
5952 objfile_type->builtin_unsigned_long_long
5953 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5954 1, "unsigned long long");
5955 objfile_type->builtin_float
5956 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5957 "float", gdbarch_float_format (gdbarch));
5958 objfile_type->builtin_double
5959 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5960 "double", gdbarch_double_format (gdbarch));
5961 objfile_type->builtin_long_double
5962 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5963 "long double", gdbarch_long_double_format (gdbarch));
5964
5965 /* This type represents a type that was unrecognized in symbol read-in. */
5966 objfile_type->builtin_error
5967 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5968
5969 /* The following set of types is used for symbols with no
5970 debug information. */
5971 objfile_type->nodebug_text_symbol
5972 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5973 "<text variable, no debug info>");
5974
5975 objfile_type->nodebug_text_gnu_ifunc_symbol
5976 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5977 "<text gnu-indirect-function variable, no debug info>");
5978 objfile_type->nodebug_text_gnu_ifunc_symbol->set_is_gnu_ifunc (true);
5979
5980 objfile_type->nodebug_got_plt_symbol
5981 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5982 "<text from jump slot in .got.plt, no debug info>",
5983 objfile_type->nodebug_text_symbol);
5984 objfile_type->nodebug_data_symbol
5985 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5986 objfile_type->nodebug_unknown_symbol
5987 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5988 objfile_type->nodebug_tls_symbol
5989 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5990
5991 /* NOTE: on some targets, addresses and pointers are not necessarily
5992 the same.
5993
5994 The upshot is:
5995 - gdb's `struct type' always describes the target's
5996 representation.
5997 - gdb's `struct value' objects should always hold values in
5998 target form.
5999 - gdb's CORE_ADDR values are addresses in the unified virtual
6000 address space that the assembler and linker work with. Thus,
6001 since target_read_memory takes a CORE_ADDR as an argument, it
6002 can access any memory on the target, even if the processor has
6003 separate code and data address spaces.
6004
6005 In this context, objfile_type->builtin_core_addr is a bit odd:
6006 it's a target type for a value the target will never see. It's
6007 only used to hold the values of (typeless) linker symbols, which
6008 are indeed in the unified virtual address space. */
6009
6010 objfile_type->builtin_core_addr
6011 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
6012 "__CORE_ADDR");
6013
6014 objfile_type_data.set (objfile, objfile_type);
6015 return objfile_type;
6016 }
6017
6018 void _initialize_gdbtypes ();
6019 void
6020 _initialize_gdbtypes ()
6021 {
6022 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
6023
6024 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
6025 _("Set debugging of C++ overloading."),
6026 _("Show debugging of C++ overloading."),
6027 _("When enabled, ranking of the "
6028 "functions is displayed."),
6029 NULL,
6030 show_overload_debug,
6031 &setdebuglist, &showdebuglist);
6032
6033 /* Add user knob for controlling resolution of opaque types. */
6034 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
6035 &opaque_type_resolution,
6036 _("Set resolution of opaque struct/class/union"
6037 " types (if set before loading symbols)."),
6038 _("Show resolution of opaque struct/class/union"
6039 " types (if set before loading symbols)."),
6040 NULL, NULL,
6041 show_opaque_type_resolution,
6042 &setlist, &showlist);
6043
6044 /* Add an option to permit non-strict type checking. */
6045 add_setshow_boolean_cmd ("type", class_support,
6046 &strict_type_checking,
6047 _("Set strict type checking."),
6048 _("Show strict type checking."),
6049 NULL, NULL,
6050 show_strict_type_checking,
6051 &setchecklist, &showchecklist);
6052 }
This page took 0.280179 seconds and 5 git commands to generate.