Add new variant part code
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 TYPE_CODE (ntype) = refcode;
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 TYPE_NFIELDS (fn) = nparams;
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* Create an array type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type, inheriting the objfile from
1182 RANGE_TYPE.
1183
1184 Elements will be of type ELEMENT_TYPE, the indices will be of type
1185 RANGE_TYPE.
1186
1187 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1188 This byte stride property is added to the resulting array type
1189 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1190 argument can only be used to create types that are objfile-owned
1191 (see add_dyn_prop), meaning that either this function must be called
1192 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1193
1194 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1195 If BIT_STRIDE is not zero, build a packed array type whose element
1196 size is BIT_STRIDE. Otherwise, ignore this parameter.
1197
1198 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1199 sure it is TYPE_CODE_UNDEF before we bash it into an array
1200 type? */
1201
1202 struct type *
1203 create_array_type_with_stride (struct type *result_type,
1204 struct type *element_type,
1205 struct type *range_type,
1206 struct dynamic_prop *byte_stride_prop,
1207 unsigned int bit_stride)
1208 {
1209 if (byte_stride_prop != NULL
1210 && byte_stride_prop->kind == PROP_CONST)
1211 {
1212 /* The byte stride is actually not dynamic. Pretend we were
1213 called with bit_stride set instead of byte_stride_prop.
1214 This will give us the same result type, while avoiding
1215 the need to handle this as a special case. */
1216 bit_stride = byte_stride_prop->data.const_val * 8;
1217 byte_stride_prop = NULL;
1218 }
1219
1220 if (result_type == NULL)
1221 result_type = alloc_type_copy (range_type);
1222
1223 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1224 TYPE_TARGET_TYPE (result_type) = element_type;
1225 if (byte_stride_prop == NULL
1226 && has_static_range (TYPE_RANGE_DATA (range_type))
1227 && (!type_not_associated (result_type)
1228 && !type_not_allocated (result_type)))
1229 {
1230 LONGEST low_bound, high_bound;
1231 int stride;
1232
1233 /* If the array itself doesn't provide a stride value then take
1234 whatever stride the range provides. Don't update BIT_STRIDE as
1235 we don't want to place the stride value from the range into this
1236 arrays bit size field. */
1237 stride = bit_stride;
1238 if (stride == 0)
1239 stride = TYPE_BIT_STRIDE (range_type);
1240
1241 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1242 low_bound = high_bound = 0;
1243 element_type = check_typedef (element_type);
1244 /* Be careful when setting the array length. Ada arrays can be
1245 empty arrays with the high_bound being smaller than the low_bound.
1246 In such cases, the array length should be zero. */
1247 if (high_bound < low_bound)
1248 TYPE_LENGTH (result_type) = 0;
1249 else if (stride != 0)
1250 {
1251 /* Ensure that the type length is always positive, even in the
1252 case where (for example in Fortran) we have a negative
1253 stride. It is possible to have a single element array with a
1254 negative stride in Fortran (this doesn't mean anything
1255 special, it's still just a single element array) so do
1256 consider that case when touching this code. */
1257 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1258 TYPE_LENGTH (result_type)
1259 = ((std::abs (stride) * element_count) + 7) / 8;
1260 }
1261 else
1262 TYPE_LENGTH (result_type) =
1263 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1264 }
1265 else
1266 {
1267 /* This type is dynamic and its length needs to be computed
1268 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1269 undefined by setting it to zero. Although we are not expected
1270 to trust TYPE_LENGTH in this case, setting the size to zero
1271 allows us to avoid allocating objects of random sizes in case
1272 we accidently do. */
1273 TYPE_LENGTH (result_type) = 0;
1274 }
1275
1276 TYPE_NFIELDS (result_type) = 1;
1277 TYPE_FIELDS (result_type) =
1278 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1279 TYPE_INDEX_TYPE (result_type) = range_type;
1280 if (byte_stride_prop != NULL)
1281 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1282 else if (bit_stride > 0)
1283 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1284
1285 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1286 if (TYPE_LENGTH (result_type) == 0)
1287 TYPE_TARGET_STUB (result_type) = 1;
1288
1289 return result_type;
1290 }
1291
1292 /* Same as create_array_type_with_stride but with no bit_stride
1293 (BIT_STRIDE = 0), thus building an unpacked array. */
1294
1295 struct type *
1296 create_array_type (struct type *result_type,
1297 struct type *element_type,
1298 struct type *range_type)
1299 {
1300 return create_array_type_with_stride (result_type, element_type,
1301 range_type, NULL, 0);
1302 }
1303
1304 struct type *
1305 lookup_array_range_type (struct type *element_type,
1306 LONGEST low_bound, LONGEST high_bound)
1307 {
1308 struct type *index_type;
1309 struct type *range_type;
1310
1311 if (TYPE_OBJFILE_OWNED (element_type))
1312 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1313 else
1314 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1315 range_type = create_static_range_type (NULL, index_type,
1316 low_bound, high_bound);
1317
1318 return create_array_type (NULL, element_type, range_type);
1319 }
1320
1321 /* Create a string type using either a blank type supplied in
1322 RESULT_TYPE, or creating a new type. String types are similar
1323 enough to array of char types that we can use create_array_type to
1324 build the basic type and then bash it into a string type.
1325
1326 For fixed length strings, the range type contains 0 as the lower
1327 bound and the length of the string minus one as the upper bound.
1328
1329 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1330 sure it is TYPE_CODE_UNDEF before we bash it into a string
1331 type? */
1332
1333 struct type *
1334 create_string_type (struct type *result_type,
1335 struct type *string_char_type,
1336 struct type *range_type)
1337 {
1338 result_type = create_array_type (result_type,
1339 string_char_type,
1340 range_type);
1341 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1342 return result_type;
1343 }
1344
1345 struct type *
1346 lookup_string_range_type (struct type *string_char_type,
1347 LONGEST low_bound, LONGEST high_bound)
1348 {
1349 struct type *result_type;
1350
1351 result_type = lookup_array_range_type (string_char_type,
1352 low_bound, high_bound);
1353 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1354 return result_type;
1355 }
1356
1357 struct type *
1358 create_set_type (struct type *result_type, struct type *domain_type)
1359 {
1360 if (result_type == NULL)
1361 result_type = alloc_type_copy (domain_type);
1362
1363 TYPE_CODE (result_type) = TYPE_CODE_SET;
1364 TYPE_NFIELDS (result_type) = 1;
1365 TYPE_FIELDS (result_type)
1366 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1367
1368 if (!TYPE_STUB (domain_type))
1369 {
1370 LONGEST low_bound, high_bound, bit_length;
1371
1372 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1373 low_bound = high_bound = 0;
1374 bit_length = high_bound - low_bound + 1;
1375 TYPE_LENGTH (result_type)
1376 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1377 if (low_bound >= 0)
1378 TYPE_UNSIGNED (result_type) = 1;
1379 }
1380 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1381
1382 return result_type;
1383 }
1384
1385 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1386 and any array types nested inside it. */
1387
1388 void
1389 make_vector_type (struct type *array_type)
1390 {
1391 struct type *inner_array, *elt_type;
1392 int flags;
1393
1394 /* Find the innermost array type, in case the array is
1395 multi-dimensional. */
1396 inner_array = array_type;
1397 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1398 inner_array = TYPE_TARGET_TYPE (inner_array);
1399
1400 elt_type = TYPE_TARGET_TYPE (inner_array);
1401 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1402 {
1403 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1404 elt_type = make_qualified_type (elt_type, flags, NULL);
1405 TYPE_TARGET_TYPE (inner_array) = elt_type;
1406 }
1407
1408 TYPE_VECTOR (array_type) = 1;
1409 }
1410
1411 struct type *
1412 init_vector_type (struct type *elt_type, int n)
1413 {
1414 struct type *array_type;
1415
1416 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1417 make_vector_type (array_type);
1418 return array_type;
1419 }
1420
1421 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1422 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1423 confusing. "self" is a common enough replacement for "this".
1424 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1425 TYPE_CODE_METHOD. */
1426
1427 struct type *
1428 internal_type_self_type (struct type *type)
1429 {
1430 switch (TYPE_CODE (type))
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 case TYPE_CODE_MEMBERPTR:
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1437 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1438 case TYPE_CODE_METHOD:
1439 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1440 return NULL;
1441 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1442 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1443 default:
1444 gdb_assert_not_reached ("bad type");
1445 }
1446 }
1447
1448 /* Set the type of the class that TYPE belongs to.
1449 In c++ this is the class of "this".
1450 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1451 TYPE_CODE_METHOD. */
1452
1453 void
1454 set_type_self_type (struct type *type, struct type *self_type)
1455 {
1456 switch (TYPE_CODE (type))
1457 {
1458 case TYPE_CODE_METHODPTR:
1459 case TYPE_CODE_MEMBERPTR:
1460 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1462 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1463 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1464 break;
1465 case TYPE_CODE_METHOD:
1466 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1467 INIT_FUNC_SPECIFIC (type);
1468 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1469 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1470 break;
1471 default:
1472 gdb_assert_not_reached ("bad type");
1473 }
1474 }
1475
1476 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1477 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1478 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1479 TYPE doesn't include the offset (that's the value of the MEMBER
1480 itself), but does include the structure type into which it points
1481 (for some reason).
1482
1483 When "smashing" the type, we preserve the objfile that the old type
1484 pointed to, since we aren't changing where the type is actually
1485 allocated. */
1486
1487 void
1488 smash_to_memberptr_type (struct type *type, struct type *self_type,
1489 struct type *to_type)
1490 {
1491 smash_type (type);
1492 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1493 TYPE_TARGET_TYPE (type) = to_type;
1494 set_type_self_type (type, self_type);
1495 /* Assume that a data member pointer is the same size as a normal
1496 pointer. */
1497 TYPE_LENGTH (type)
1498 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1499 }
1500
1501 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1502
1503 When "smashing" the type, we preserve the objfile that the old type
1504 pointed to, since we aren't changing where the type is actually
1505 allocated. */
1506
1507 void
1508 smash_to_methodptr_type (struct type *type, struct type *to_type)
1509 {
1510 smash_type (type);
1511 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1514 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1515 }
1516
1517 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1518 METHOD just means `function that gets an extra "this" argument'.
1519
1520 When "smashing" the type, we preserve the objfile that the old type
1521 pointed to, since we aren't changing where the type is actually
1522 allocated. */
1523
1524 void
1525 smash_to_method_type (struct type *type, struct type *self_type,
1526 struct type *to_type, struct field *args,
1527 int nargs, int varargs)
1528 {
1529 smash_type (type);
1530 TYPE_CODE (type) = TYPE_CODE_METHOD;
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, self_type);
1533 TYPE_FIELDS (type) = args;
1534 TYPE_NFIELDS (type) = nargs;
1535 if (varargs)
1536 TYPE_VARARGS (type) = 1;
1537 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1538 }
1539
1540 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1541 Since GCC PR debug/47510 DWARF provides associated information to detect the
1542 anonymous class linkage name from its typedef.
1543
1544 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1545 apply it itself. */
1546
1547 const char *
1548 type_name_or_error (struct type *type)
1549 {
1550 struct type *saved_type = type;
1551 const char *name;
1552 struct objfile *objfile;
1553
1554 type = check_typedef (type);
1555
1556 name = TYPE_NAME (type);
1557 if (name != NULL)
1558 return name;
1559
1560 name = TYPE_NAME (saved_type);
1561 objfile = TYPE_OBJFILE (saved_type);
1562 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1563 name ? name : "<anonymous>",
1564 objfile ? objfile_name (objfile) : "<arch>");
1565 }
1566
1567 /* Lookup a typedef or primitive type named NAME, visible in lexical
1568 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1569 suitably defined. */
1570
1571 struct type *
1572 lookup_typename (const struct language_defn *language,
1573 const char *name,
1574 const struct block *block, int noerr)
1575 {
1576 struct symbol *sym;
1577
1578 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1579 language->la_language, NULL).symbol;
1580 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1581 return SYMBOL_TYPE (sym);
1582
1583 if (noerr)
1584 return NULL;
1585 error (_("No type named %s."), name);
1586 }
1587
1588 struct type *
1589 lookup_unsigned_typename (const struct language_defn *language,
1590 const char *name)
1591 {
1592 char *uns = (char *) alloca (strlen (name) + 10);
1593
1594 strcpy (uns, "unsigned ");
1595 strcpy (uns + 9, name);
1596 return lookup_typename (language, uns, NULL, 0);
1597 }
1598
1599 struct type *
1600 lookup_signed_typename (const struct language_defn *language, const char *name)
1601 {
1602 struct type *t;
1603 char *uns = (char *) alloca (strlen (name) + 8);
1604
1605 strcpy (uns, "signed ");
1606 strcpy (uns + 7, name);
1607 t = lookup_typename (language, uns, NULL, 1);
1608 /* If we don't find "signed FOO" just try again with plain "FOO". */
1609 if (t != NULL)
1610 return t;
1611 return lookup_typename (language, name, NULL, 0);
1612 }
1613
1614 /* Lookup a structure type named "struct NAME",
1615 visible in lexical block BLOCK. */
1616
1617 struct type *
1618 lookup_struct (const char *name, const struct block *block)
1619 {
1620 struct symbol *sym;
1621
1622 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1623
1624 if (sym == NULL)
1625 {
1626 error (_("No struct type named %s."), name);
1627 }
1628 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1629 {
1630 error (_("This context has class, union or enum %s, not a struct."),
1631 name);
1632 }
1633 return (SYMBOL_TYPE (sym));
1634 }
1635
1636 /* Lookup a union type named "union NAME",
1637 visible in lexical block BLOCK. */
1638
1639 struct type *
1640 lookup_union (const char *name, const struct block *block)
1641 {
1642 struct symbol *sym;
1643 struct type *t;
1644
1645 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1646
1647 if (sym == NULL)
1648 error (_("No union type named %s."), name);
1649
1650 t = SYMBOL_TYPE (sym);
1651
1652 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1653 return t;
1654
1655 /* If we get here, it's not a union. */
1656 error (_("This context has class, struct or enum %s, not a union."),
1657 name);
1658 }
1659
1660 /* Lookup an enum type named "enum NAME",
1661 visible in lexical block BLOCK. */
1662
1663 struct type *
1664 lookup_enum (const char *name, const struct block *block)
1665 {
1666 struct symbol *sym;
1667
1668 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1669 if (sym == NULL)
1670 {
1671 error (_("No enum type named %s."), name);
1672 }
1673 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1674 {
1675 error (_("This context has class, struct or union %s, not an enum."),
1676 name);
1677 }
1678 return (SYMBOL_TYPE (sym));
1679 }
1680
1681 /* Lookup a template type named "template NAME<TYPE>",
1682 visible in lexical block BLOCK. */
1683
1684 struct type *
1685 lookup_template_type (const char *name, struct type *type,
1686 const struct block *block)
1687 {
1688 struct symbol *sym;
1689 char *nam = (char *)
1690 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1691
1692 strcpy (nam, name);
1693 strcat (nam, "<");
1694 strcat (nam, TYPE_NAME (type));
1695 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1696
1697 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1698
1699 if (sym == NULL)
1700 {
1701 error (_("No template type named %s."), name);
1702 }
1703 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1704 {
1705 error (_("This context has class, union or enum %s, not a struct."),
1706 name);
1707 }
1708 return (SYMBOL_TYPE (sym));
1709 }
1710
1711 /* See gdbtypes.h. */
1712
1713 struct_elt
1714 lookup_struct_elt (struct type *type, const char *name, int noerr)
1715 {
1716 int i;
1717
1718 for (;;)
1719 {
1720 type = check_typedef (type);
1721 if (TYPE_CODE (type) != TYPE_CODE_PTR
1722 && TYPE_CODE (type) != TYPE_CODE_REF)
1723 break;
1724 type = TYPE_TARGET_TYPE (type);
1725 }
1726
1727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1728 && TYPE_CODE (type) != TYPE_CODE_UNION)
1729 {
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s is not a structure or union type."),
1732 type_name.c_str ());
1733 }
1734
1735 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1736 {
1737 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1738
1739 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1740 {
1741 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1742 }
1743 else if (!t_field_name || *t_field_name == '\0')
1744 {
1745 struct_elt elt
1746 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1747 if (elt.field != NULL)
1748 {
1749 elt.offset += TYPE_FIELD_BITPOS (type, i);
1750 return elt;
1751 }
1752 }
1753 }
1754
1755 /* OK, it's not in this class. Recursively check the baseclasses. */
1756 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1757 {
1758 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1759 if (elt.field != NULL)
1760 return elt;
1761 }
1762
1763 if (noerr)
1764 return {nullptr, 0};
1765
1766 std::string type_name = type_to_string (type);
1767 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1768 }
1769
1770 /* See gdbtypes.h. */
1771
1772 struct type *
1773 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1774 {
1775 struct_elt elt = lookup_struct_elt (type, name, noerr);
1776 if (elt.field != NULL)
1777 return FIELD_TYPE (*elt.field);
1778 else
1779 return NULL;
1780 }
1781
1782 /* Store in *MAX the largest number representable by unsigned integer type
1783 TYPE. */
1784
1785 void
1786 get_unsigned_type_max (struct type *type, ULONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1793
1794 /* Written this way to avoid overflow. */
1795 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1796 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1797 }
1798
1799 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1800 signed integer type TYPE. */
1801
1802 void
1803 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1804 {
1805 unsigned int n;
1806
1807 type = check_typedef (type);
1808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1809 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1810
1811 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1812 *min = -((ULONGEST) 1 << (n - 1));
1813 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1814 }
1815
1816 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1817 cplus_stuff.vptr_fieldno.
1818
1819 cplus_stuff is initialized to cplus_struct_default which does not
1820 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1821 designated initializers). We cope with that here. */
1822
1823 int
1824 internal_type_vptr_fieldno (struct type *type)
1825 {
1826 type = check_typedef (type);
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1828 || TYPE_CODE (type) == TYPE_CODE_UNION);
1829 if (!HAVE_CPLUS_STRUCT (type))
1830 return -1;
1831 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1832 }
1833
1834 /* Set the value of cplus_stuff.vptr_fieldno. */
1835
1836 void
1837 set_type_vptr_fieldno (struct type *type, int fieldno)
1838 {
1839 type = check_typedef (type);
1840 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION);
1842 if (!HAVE_CPLUS_STRUCT (type))
1843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1844 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1845 }
1846
1847 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1848 cplus_stuff.vptr_basetype. */
1849
1850 struct type *
1851 internal_type_vptr_basetype (struct type *type)
1852 {
1853 type = check_typedef (type);
1854 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION);
1856 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1857 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1858 }
1859
1860 /* Set the value of cplus_stuff.vptr_basetype. */
1861
1862 void
1863 set_type_vptr_basetype (struct type *type, struct type *basetype)
1864 {
1865 type = check_typedef (type);
1866 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1867 || TYPE_CODE (type) == TYPE_CODE_UNION);
1868 if (!HAVE_CPLUS_STRUCT (type))
1869 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1870 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1871 }
1872
1873 /* Lookup the vptr basetype/fieldno values for TYPE.
1874 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1875 vptr_fieldno. Also, if found and basetype is from the same objfile,
1876 cache the results.
1877 If not found, return -1 and ignore BASETYPEP.
1878 Callers should be aware that in some cases (for example,
1879 the type or one of its baseclasses is a stub type and we are
1880 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1881 this function will not be able to find the
1882 virtual function table pointer, and vptr_fieldno will remain -1 and
1883 vptr_basetype will remain NULL or incomplete. */
1884
1885 int
1886 get_vptr_fieldno (struct type *type, struct type **basetypep)
1887 {
1888 type = check_typedef (type);
1889
1890 if (TYPE_VPTR_FIELDNO (type) < 0)
1891 {
1892 int i;
1893
1894 /* We must start at zero in case the first (and only) baseclass
1895 is virtual (and hence we cannot share the table pointer). */
1896 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1897 {
1898 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1899 int fieldno;
1900 struct type *basetype;
1901
1902 fieldno = get_vptr_fieldno (baseclass, &basetype);
1903 if (fieldno >= 0)
1904 {
1905 /* If the type comes from a different objfile we can't cache
1906 it, it may have a different lifetime. PR 2384 */
1907 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1908 {
1909 set_type_vptr_fieldno (type, fieldno);
1910 set_type_vptr_basetype (type, basetype);
1911 }
1912 if (basetypep)
1913 *basetypep = basetype;
1914 return fieldno;
1915 }
1916 }
1917
1918 /* Not found. */
1919 return -1;
1920 }
1921 else
1922 {
1923 if (basetypep)
1924 *basetypep = TYPE_VPTR_BASETYPE (type);
1925 return TYPE_VPTR_FIELDNO (type);
1926 }
1927 }
1928
1929 static void
1930 stub_noname_complaint (void)
1931 {
1932 complaint (_("stub type has NULL name"));
1933 }
1934
1935 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1936 attached to it, and that property has a non-constant value. */
1937
1938 static int
1939 array_type_has_dynamic_stride (struct type *type)
1940 {
1941 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1942
1943 return (prop != NULL && prop->kind != PROP_CONST);
1944 }
1945
1946 /* Worker for is_dynamic_type. */
1947
1948 static int
1949 is_dynamic_type_internal (struct type *type, int top_level)
1950 {
1951 type = check_typedef (type);
1952
1953 /* We only want to recognize references at the outermost level. */
1954 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1955 type = check_typedef (TYPE_TARGET_TYPE (type));
1956
1957 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1958 dynamic, even if the type itself is statically defined.
1959 From a user's point of view, this may appear counter-intuitive;
1960 but it makes sense in this context, because the point is to determine
1961 whether any part of the type needs to be resolved before it can
1962 be exploited. */
1963 if (TYPE_DATA_LOCATION (type) != NULL
1964 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1965 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1966 return 1;
1967
1968 if (TYPE_ASSOCIATED_PROP (type))
1969 return 1;
1970
1971 if (TYPE_ALLOCATED_PROP (type))
1972 return 1;
1973
1974 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS, type);
1975 if (prop != nullptr && prop->kind != PROP_TYPE)
1976 return 1;
1977
1978 switch (TYPE_CODE (type))
1979 {
1980 case TYPE_CODE_RANGE:
1981 {
1982 /* A range type is obviously dynamic if it has at least one
1983 dynamic bound. But also consider the range type to be
1984 dynamic when its subtype is dynamic, even if the bounds
1985 of the range type are static. It allows us to assume that
1986 the subtype of a static range type is also static. */
1987 return (!has_static_range (TYPE_RANGE_DATA (type))
1988 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1989 }
1990
1991 case TYPE_CODE_STRING:
1992 /* Strings are very much like an array of characters, and can be
1993 treated as one here. */
1994 case TYPE_CODE_ARRAY:
1995 {
1996 gdb_assert (TYPE_NFIELDS (type) == 1);
1997
1998 /* The array is dynamic if either the bounds are dynamic... */
1999 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2000 return 1;
2001 /* ... or the elements it contains have a dynamic contents... */
2002 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2003 return 1;
2004 /* ... or if it has a dynamic stride... */
2005 if (array_type_has_dynamic_stride (type))
2006 return 1;
2007 return 0;
2008 }
2009
2010 case TYPE_CODE_STRUCT:
2011 case TYPE_CODE_UNION:
2012 {
2013 int i;
2014
2015 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2016 if (!field_is_static (&TYPE_FIELD (type, i))
2017 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2018 return 1;
2019 }
2020 break;
2021 }
2022
2023 return 0;
2024 }
2025
2026 /* See gdbtypes.h. */
2027
2028 int
2029 is_dynamic_type (struct type *type)
2030 {
2031 return is_dynamic_type_internal (type, 1);
2032 }
2033
2034 static struct type *resolve_dynamic_type_internal
2035 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2036
2037 /* Given a dynamic range type (dyn_range_type) and a stack of
2038 struct property_addr_info elements, return a static version
2039 of that type. */
2040
2041 static struct type *
2042 resolve_dynamic_range (struct type *dyn_range_type,
2043 struct property_addr_info *addr_stack)
2044 {
2045 CORE_ADDR value;
2046 struct type *static_range_type, *static_target_type;
2047 const struct dynamic_prop *prop;
2048 struct dynamic_prop low_bound, high_bound, stride;
2049
2050 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2051
2052 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2053 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2054 {
2055 low_bound.kind = PROP_CONST;
2056 low_bound.data.const_val = value;
2057 }
2058 else
2059 {
2060 low_bound.kind = PROP_UNDEFINED;
2061 low_bound.data.const_val = 0;
2062 }
2063
2064 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2065 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2066 {
2067 high_bound.kind = PROP_CONST;
2068 high_bound.data.const_val = value;
2069
2070 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2071 high_bound.data.const_val
2072 = low_bound.data.const_val + high_bound.data.const_val - 1;
2073 }
2074 else
2075 {
2076 high_bound.kind = PROP_UNDEFINED;
2077 high_bound.data.const_val = 0;
2078 }
2079
2080 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2081 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2082 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2083 {
2084 stride.kind = PROP_CONST;
2085 stride.data.const_val = value;
2086
2087 /* If we have a bit stride that is not an exact number of bytes then
2088 I really don't think this is going to work with current GDB, the
2089 array indexing code in GDB seems to be pretty heavily tied to byte
2090 offsets right now. Assuming 8 bits in a byte. */
2091 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2092 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2093 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2094 error (_("bit strides that are not a multiple of the byte size "
2095 "are currently not supported"));
2096 }
2097 else
2098 {
2099 stride.kind = PROP_UNDEFINED;
2100 stride.data.const_val = 0;
2101 byte_stride_p = true;
2102 }
2103
2104 static_target_type
2105 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2106 addr_stack, 0);
2107 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2108 static_range_type = create_range_type_with_stride
2109 (copy_type (dyn_range_type), static_target_type,
2110 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2111 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2112 return static_range_type;
2113 }
2114
2115 /* Resolves dynamic bound values of an array or string type TYPE to static
2116 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2117 needed during the dynamic resolution. */
2118
2119 static struct type *
2120 resolve_dynamic_array_or_string (struct type *type,
2121 struct property_addr_info *addr_stack)
2122 {
2123 CORE_ADDR value;
2124 struct type *elt_type;
2125 struct type *range_type;
2126 struct type *ary_dim;
2127 struct dynamic_prop *prop;
2128 unsigned int bit_stride = 0;
2129
2130 /* For dynamic type resolution strings can be treated like arrays of
2131 characters. */
2132 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2133 || TYPE_CODE (type) == TYPE_CODE_STRING);
2134
2135 type = copy_type (type);
2136
2137 elt_type = type;
2138 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2139 range_type = resolve_dynamic_range (range_type, addr_stack);
2140
2141 /* Resolve allocated/associated here before creating a new array type, which
2142 will update the length of the array accordingly. */
2143 prop = TYPE_ALLOCATED_PROP (type);
2144 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2145 {
2146 TYPE_DYN_PROP_ADDR (prop) = value;
2147 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2148 }
2149 prop = TYPE_ASSOCIATED_PROP (type);
2150 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2151 {
2152 TYPE_DYN_PROP_ADDR (prop) = value;
2153 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2154 }
2155
2156 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2157
2158 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2159 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2160 else
2161 elt_type = TYPE_TARGET_TYPE (type);
2162
2163 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2164 if (prop != NULL)
2165 {
2166 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2167 {
2168 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2169 bit_stride = (unsigned int) (value * 8);
2170 }
2171 else
2172 {
2173 /* Could be a bug in our code, but it could also happen
2174 if the DWARF info is not correct. Issue a warning,
2175 and assume no byte/bit stride (leave bit_stride = 0). */
2176 warning (_("cannot determine array stride for type %s"),
2177 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2178 }
2179 }
2180 else
2181 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2182
2183 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2184 bit_stride);
2185 }
2186
2187 /* Resolve dynamic bounds of members of the union TYPE to static
2188 bounds. ADDR_STACK is a stack of struct property_addr_info
2189 to be used if needed during the dynamic resolution. */
2190
2191 static struct type *
2192 resolve_dynamic_union (struct type *type,
2193 struct property_addr_info *addr_stack)
2194 {
2195 struct type *resolved_type;
2196 int i;
2197 unsigned int max_len = 0;
2198
2199 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2200
2201 resolved_type = copy_type (type);
2202 TYPE_FIELDS (resolved_type)
2203 = (struct field *) TYPE_ALLOC (resolved_type,
2204 TYPE_NFIELDS (resolved_type)
2205 * sizeof (struct field));
2206 memcpy (TYPE_FIELDS (resolved_type),
2207 TYPE_FIELDS (type),
2208 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2209 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2210 {
2211 struct type *t;
2212
2213 if (field_is_static (&TYPE_FIELD (type, i)))
2214 continue;
2215
2216 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2217 addr_stack, 0);
2218 TYPE_FIELD_TYPE (resolved_type, i) = t;
2219 if (TYPE_LENGTH (t) > max_len)
2220 max_len = TYPE_LENGTH (t);
2221 }
2222
2223 TYPE_LENGTH (resolved_type) = max_len;
2224 return resolved_type;
2225 }
2226
2227 /* See gdbtypes.h. */
2228
2229 bool
2230 variant::matches (ULONGEST value, bool is_unsigned) const
2231 {
2232 for (const discriminant_range &range : discriminants)
2233 if (range.contains (value, is_unsigned))
2234 return true;
2235 return false;
2236 }
2237
2238 static void
2239 compute_variant_fields_inner (struct type *type,
2240 struct property_addr_info *addr_stack,
2241 const variant_part &part,
2242 std::vector<bool> &flags);
2243
2244 /* A helper function to determine which variant fields will be active.
2245 This handles both the variant's direct fields, and any variant
2246 parts embedded in this variant. TYPE is the type we're examining.
2247 ADDR_STACK holds information about the concrete object. VARIANT is
2248 the current variant to be handled. FLAGS is where the results are
2249 stored -- this function sets the Nth element in FLAGS if the
2250 corresponding field is enabled. ENABLED is whether this variant is
2251 enabled or not. */
2252
2253 static void
2254 compute_variant_fields_recurse (struct type *type,
2255 struct property_addr_info *addr_stack,
2256 const variant &variant,
2257 std::vector<bool> &flags,
2258 bool enabled)
2259 {
2260 for (int field = variant.first_field; field < variant.last_field; ++field)
2261 flags[field] = enabled;
2262
2263 for (const variant_part &new_part : variant.parts)
2264 {
2265 if (enabled)
2266 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2267 else
2268 {
2269 for (const auto &sub_variant : new_part.variants)
2270 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2271 flags, enabled);
2272 }
2273 }
2274 }
2275
2276 /* A helper function to determine which variant fields will be active.
2277 This evaluates the discriminant, decides which variant (if any) is
2278 active, and then updates FLAGS to reflect which fields should be
2279 available. TYPE is the type we're examining. ADDR_STACK holds
2280 information about the concrete object. VARIANT is the current
2281 variant to be handled. FLAGS is where the results are stored --
2282 this function sets the Nth element in FLAGS if the corresponding
2283 field is enabled. */
2284
2285 static void
2286 compute_variant_fields_inner (struct type *type,
2287 struct property_addr_info *addr_stack,
2288 const variant_part &part,
2289 std::vector<bool> &flags)
2290 {
2291 /* Evaluate the discriminant. */
2292 gdb::optional<ULONGEST> discr_value;
2293 if (part.discriminant_index != -1)
2294 {
2295 int idx = part.discriminant_index;
2296
2297 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2298 error (_("Cannot determine struct field location"
2299 " (invalid location kind)"));
2300
2301 if (addr_stack->valaddr != NULL)
2302 discr_value = unpack_field_as_long (type, addr_stack->valaddr, idx);
2303 else
2304 {
2305 CORE_ADDR addr = (addr_stack->addr
2306 + (TYPE_FIELD_BITPOS (type, idx)
2307 / TARGET_CHAR_BIT));
2308
2309 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2310 LONGEST size = bitsize / 8;
2311 if (size == 0)
2312 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2313
2314 gdb_byte bits[sizeof (ULONGEST)];
2315 read_memory (addr, bits, size);
2316
2317 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2318 % TARGET_CHAR_BIT);
2319
2320 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2321 bits, bitpos, bitsize);
2322 }
2323 }
2324
2325 /* Go through each variant and see which applies. */
2326 const variant *default_variant = nullptr;
2327 const variant *applied_variant = nullptr;
2328 for (const auto &variant : part.variants)
2329 {
2330 if (variant.is_default ())
2331 default_variant = &variant;
2332 else if (discr_value.has_value ()
2333 && variant.matches (*discr_value, part.is_unsigned))
2334 {
2335 applied_variant = &variant;
2336 break;
2337 }
2338 }
2339 if (applied_variant == nullptr)
2340 applied_variant = default_variant;
2341
2342 for (const auto &variant : part.variants)
2343 compute_variant_fields_recurse (type, addr_stack, variant,
2344 flags, applied_variant == &variant);
2345 }
2346
2347 /* Determine which variant fields are available in TYPE. The enabled
2348 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2349 about the concrete object. PARTS describes the top-level variant
2350 parts for this type. */
2351
2352 static void
2353 compute_variant_fields (struct type *type,
2354 struct type *resolved_type,
2355 struct property_addr_info *addr_stack,
2356 const gdb::array_view<variant_part> &parts)
2357 {
2358 /* Assume all fields are included by default. */
2359 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2360
2361 /* Now disable fields based on the variants that control them. */
2362 for (const auto &part : parts)
2363 compute_variant_fields_inner (type, addr_stack, part, flags);
2364
2365 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2366 true);
2367 TYPE_FIELDS (resolved_type)
2368 = (struct field *) TYPE_ALLOC (resolved_type,
2369 TYPE_NFIELDS (resolved_type)
2370 * sizeof (struct field));
2371 int out = 0;
2372 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2373 {
2374 if (!flags[i])
2375 continue;
2376
2377 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2378 ++out;
2379 }
2380 }
2381
2382 /* Resolve dynamic bounds of members of the struct TYPE to static
2383 bounds. ADDR_STACK is a stack of struct property_addr_info to
2384 be used if needed during the dynamic resolution. */
2385
2386 static struct type *
2387 resolve_dynamic_struct (struct type *type,
2388 struct property_addr_info *addr_stack)
2389 {
2390 struct type *resolved_type;
2391 int i;
2392 unsigned resolved_type_bit_length = 0;
2393
2394 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2395 gdb_assert (TYPE_NFIELDS (type) > 0);
2396
2397 resolved_type = copy_type (type);
2398
2399 struct dynamic_prop *variant_prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS,
2400 resolved_type);
2401 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2402 {
2403 compute_variant_fields (type, resolved_type, addr_stack,
2404 *variant_prop->data.variant_parts);
2405 /* We want to leave the property attached, so that the Rust code
2406 can tell whether the type was originally an enum. */
2407 variant_prop->kind = PROP_TYPE;
2408 variant_prop->data.original_type = type;
2409 }
2410 else
2411 {
2412 TYPE_FIELDS (resolved_type)
2413 = (struct field *) TYPE_ALLOC (resolved_type,
2414 TYPE_NFIELDS (resolved_type)
2415 * sizeof (struct field));
2416 memcpy (TYPE_FIELDS (resolved_type),
2417 TYPE_FIELDS (type),
2418 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2419 }
2420
2421 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2422 {
2423 unsigned new_bit_length;
2424 struct property_addr_info pinfo;
2425
2426 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
2427 continue;
2428
2429 /* As we know this field is not a static field, the field's
2430 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2431 this is the case, but only trigger a simple error rather
2432 than an internal error if that fails. While failing
2433 that verification indicates a bug in our code, the error
2434 is not severe enough to suggest to the user he stops
2435 his debugging session because of it. */
2436 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2437 error (_("Cannot determine struct field location"
2438 " (invalid location kind)"));
2439
2440 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2441 pinfo.valaddr = addr_stack->valaddr;
2442 pinfo.addr
2443 = (addr_stack->addr
2444 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2445 pinfo.next = addr_stack;
2446
2447 TYPE_FIELD_TYPE (resolved_type, i)
2448 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2449 &pinfo, 0);
2450 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2451 == FIELD_LOC_KIND_BITPOS);
2452
2453 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2454 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2455 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2456 else
2457 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2458 * TARGET_CHAR_BIT);
2459
2460 /* Normally, we would use the position and size of the last field
2461 to determine the size of the enclosing structure. But GCC seems
2462 to be encoding the position of some fields incorrectly when
2463 the struct contains a dynamic field that is not placed last.
2464 So we compute the struct size based on the field that has
2465 the highest position + size - probably the best we can do. */
2466 if (new_bit_length > resolved_type_bit_length)
2467 resolved_type_bit_length = new_bit_length;
2468 }
2469
2470 /* The length of a type won't change for fortran, but it does for C and Ada.
2471 For fortran the size of dynamic fields might change over time but not the
2472 type length of the structure. If we adapt it, we run into problems
2473 when calculating the element offset for arrays of structs. */
2474 if (current_language->la_language != language_fortran)
2475 TYPE_LENGTH (resolved_type)
2476 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2477
2478 /* The Ada language uses this field as a cache for static fixed types: reset
2479 it as RESOLVED_TYPE must have its own static fixed type. */
2480 TYPE_TARGET_TYPE (resolved_type) = NULL;
2481
2482 return resolved_type;
2483 }
2484
2485 /* Worker for resolved_dynamic_type. */
2486
2487 static struct type *
2488 resolve_dynamic_type_internal (struct type *type,
2489 struct property_addr_info *addr_stack,
2490 int top_level)
2491 {
2492 struct type *real_type = check_typedef (type);
2493 struct type *resolved_type = type;
2494 struct dynamic_prop *prop;
2495 CORE_ADDR value;
2496
2497 if (!is_dynamic_type_internal (real_type, top_level))
2498 return type;
2499
2500 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2501 {
2502 resolved_type = copy_type (type);
2503 TYPE_TARGET_TYPE (resolved_type)
2504 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2505 top_level);
2506 }
2507 else
2508 {
2509 /* Before trying to resolve TYPE, make sure it is not a stub. */
2510 type = real_type;
2511
2512 switch (TYPE_CODE (type))
2513 {
2514 case TYPE_CODE_REF:
2515 {
2516 struct property_addr_info pinfo;
2517
2518 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2519 pinfo.valaddr = NULL;
2520 if (addr_stack->valaddr != NULL)
2521 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2522 else
2523 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2524 pinfo.next = addr_stack;
2525
2526 resolved_type = copy_type (type);
2527 TYPE_TARGET_TYPE (resolved_type)
2528 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2529 &pinfo, top_level);
2530 break;
2531 }
2532
2533 case TYPE_CODE_STRING:
2534 /* Strings are very much like an array of characters, and can be
2535 treated as one here. */
2536 case TYPE_CODE_ARRAY:
2537 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2538 break;
2539
2540 case TYPE_CODE_RANGE:
2541 resolved_type = resolve_dynamic_range (type, addr_stack);
2542 break;
2543
2544 case TYPE_CODE_UNION:
2545 resolved_type = resolve_dynamic_union (type, addr_stack);
2546 break;
2547
2548 case TYPE_CODE_STRUCT:
2549 resolved_type = resolve_dynamic_struct (type, addr_stack);
2550 break;
2551 }
2552 }
2553
2554 /* Resolve data_location attribute. */
2555 prop = TYPE_DATA_LOCATION (resolved_type);
2556 if (prop != NULL
2557 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2558 {
2559 TYPE_DYN_PROP_ADDR (prop) = value;
2560 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2561 }
2562
2563 return resolved_type;
2564 }
2565
2566 /* See gdbtypes.h */
2567
2568 struct type *
2569 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2570 CORE_ADDR addr)
2571 {
2572 struct property_addr_info pinfo
2573 = {check_typedef (type), valaddr, addr, NULL};
2574
2575 return resolve_dynamic_type_internal (type, &pinfo, 1);
2576 }
2577
2578 /* See gdbtypes.h */
2579
2580 struct dynamic_prop *
2581 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2582 {
2583 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2584
2585 while (node != NULL)
2586 {
2587 if (node->prop_kind == prop_kind)
2588 return &node->prop;
2589 node = node->next;
2590 }
2591 return NULL;
2592 }
2593
2594 /* See gdbtypes.h */
2595
2596 void
2597 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2598 struct type *type)
2599 {
2600 struct dynamic_prop_list *temp;
2601
2602 gdb_assert (TYPE_OBJFILE_OWNED (type));
2603
2604 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2605 struct dynamic_prop_list);
2606 temp->prop_kind = prop_kind;
2607 temp->prop = prop;
2608 temp->next = TYPE_DYN_PROP_LIST (type);
2609
2610 TYPE_DYN_PROP_LIST (type) = temp;
2611 }
2612
2613 /* Remove dynamic property from TYPE in case it exists. */
2614
2615 void
2616 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2617 struct type *type)
2618 {
2619 struct dynamic_prop_list *prev_node, *curr_node;
2620
2621 curr_node = TYPE_DYN_PROP_LIST (type);
2622 prev_node = NULL;
2623
2624 while (NULL != curr_node)
2625 {
2626 if (curr_node->prop_kind == prop_kind)
2627 {
2628 /* Update the linked list but don't free anything.
2629 The property was allocated on objstack and it is not known
2630 if we are on top of it. Nevertheless, everything is released
2631 when the complete objstack is freed. */
2632 if (NULL == prev_node)
2633 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2634 else
2635 prev_node->next = curr_node->next;
2636
2637 return;
2638 }
2639
2640 prev_node = curr_node;
2641 curr_node = curr_node->next;
2642 }
2643 }
2644
2645 /* Find the real type of TYPE. This function returns the real type,
2646 after removing all layers of typedefs, and completing opaque or stub
2647 types. Completion changes the TYPE argument, but stripping of
2648 typedefs does not.
2649
2650 Instance flags (e.g. const/volatile) are preserved as typedefs are
2651 stripped. If necessary a new qualified form of the underlying type
2652 is created.
2653
2654 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2655 not been computed and we're either in the middle of reading symbols, or
2656 there was no name for the typedef in the debug info.
2657
2658 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2659 QUITs in the symbol reading code can also throw.
2660 Thus this function can throw an exception.
2661
2662 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2663 the target type.
2664
2665 If this is a stubbed struct (i.e. declared as struct foo *), see if
2666 we can find a full definition in some other file. If so, copy this
2667 definition, so we can use it in future. There used to be a comment
2668 (but not any code) that if we don't find a full definition, we'd
2669 set a flag so we don't spend time in the future checking the same
2670 type. That would be a mistake, though--we might load in more
2671 symbols which contain a full definition for the type. */
2672
2673 struct type *
2674 check_typedef (struct type *type)
2675 {
2676 struct type *orig_type = type;
2677 /* While we're removing typedefs, we don't want to lose qualifiers.
2678 E.g., const/volatile. */
2679 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2680
2681 gdb_assert (type);
2682
2683 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2684 {
2685 if (!TYPE_TARGET_TYPE (type))
2686 {
2687 const char *name;
2688 struct symbol *sym;
2689
2690 /* It is dangerous to call lookup_symbol if we are currently
2691 reading a symtab. Infinite recursion is one danger. */
2692 if (currently_reading_symtab)
2693 return make_qualified_type (type, instance_flags, NULL);
2694
2695 name = TYPE_NAME (type);
2696 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2697 VAR_DOMAIN as appropriate? */
2698 if (name == NULL)
2699 {
2700 stub_noname_complaint ();
2701 return make_qualified_type (type, instance_flags, NULL);
2702 }
2703 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2704 if (sym)
2705 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2706 else /* TYPE_CODE_UNDEF */
2707 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2708 }
2709 type = TYPE_TARGET_TYPE (type);
2710
2711 /* Preserve the instance flags as we traverse down the typedef chain.
2712
2713 Handling address spaces/classes is nasty, what do we do if there's a
2714 conflict?
2715 E.g., what if an outer typedef marks the type as class_1 and an inner
2716 typedef marks the type as class_2?
2717 This is the wrong place to do such error checking. We leave it to
2718 the code that created the typedef in the first place to flag the
2719 error. We just pick the outer address space (akin to letting the
2720 outer cast in a chain of casting win), instead of assuming
2721 "it can't happen". */
2722 {
2723 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2724 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2725 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2726 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2727
2728 /* Treat code vs data spaces and address classes separately. */
2729 if ((instance_flags & ALL_SPACES) != 0)
2730 new_instance_flags &= ~ALL_SPACES;
2731 if ((instance_flags & ALL_CLASSES) != 0)
2732 new_instance_flags &= ~ALL_CLASSES;
2733
2734 instance_flags |= new_instance_flags;
2735 }
2736 }
2737
2738 /* If this is a struct/class/union with no fields, then check
2739 whether a full definition exists somewhere else. This is for
2740 systems where a type definition with no fields is issued for such
2741 types, instead of identifying them as stub types in the first
2742 place. */
2743
2744 if (TYPE_IS_OPAQUE (type)
2745 && opaque_type_resolution
2746 && !currently_reading_symtab)
2747 {
2748 const char *name = TYPE_NAME (type);
2749 struct type *newtype;
2750
2751 if (name == NULL)
2752 {
2753 stub_noname_complaint ();
2754 return make_qualified_type (type, instance_flags, NULL);
2755 }
2756 newtype = lookup_transparent_type (name);
2757
2758 if (newtype)
2759 {
2760 /* If the resolved type and the stub are in the same
2761 objfile, then replace the stub type with the real deal.
2762 But if they're in separate objfiles, leave the stub
2763 alone; we'll just look up the transparent type every time
2764 we call check_typedef. We can't create pointers between
2765 types allocated to different objfiles, since they may
2766 have different lifetimes. Trying to copy NEWTYPE over to
2767 TYPE's objfile is pointless, too, since you'll have to
2768 move over any other types NEWTYPE refers to, which could
2769 be an unbounded amount of stuff. */
2770 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2771 type = make_qualified_type (newtype,
2772 TYPE_INSTANCE_FLAGS (type),
2773 type);
2774 else
2775 type = newtype;
2776 }
2777 }
2778 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2779 types. */
2780 else if (TYPE_STUB (type) && !currently_reading_symtab)
2781 {
2782 const char *name = TYPE_NAME (type);
2783 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2784 as appropriate? */
2785 struct symbol *sym;
2786
2787 if (name == NULL)
2788 {
2789 stub_noname_complaint ();
2790 return make_qualified_type (type, instance_flags, NULL);
2791 }
2792 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2793 if (sym)
2794 {
2795 /* Same as above for opaque types, we can replace the stub
2796 with the complete type only if they are in the same
2797 objfile. */
2798 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2799 type = make_qualified_type (SYMBOL_TYPE (sym),
2800 TYPE_INSTANCE_FLAGS (type),
2801 type);
2802 else
2803 type = SYMBOL_TYPE (sym);
2804 }
2805 }
2806
2807 if (TYPE_TARGET_STUB (type))
2808 {
2809 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2810
2811 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2812 {
2813 /* Nothing we can do. */
2814 }
2815 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2816 {
2817 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2818 TYPE_TARGET_STUB (type) = 0;
2819 }
2820 }
2821
2822 type = make_qualified_type (type, instance_flags, NULL);
2823
2824 /* Cache TYPE_LENGTH for future use. */
2825 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2826
2827 return type;
2828 }
2829
2830 /* Parse a type expression in the string [P..P+LENGTH). If an error
2831 occurs, silently return a void type. */
2832
2833 static struct type *
2834 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2835 {
2836 struct ui_file *saved_gdb_stderr;
2837 struct type *type = NULL; /* Initialize to keep gcc happy. */
2838
2839 /* Suppress error messages. */
2840 saved_gdb_stderr = gdb_stderr;
2841 gdb_stderr = &null_stream;
2842
2843 /* Call parse_and_eval_type() without fear of longjmp()s. */
2844 try
2845 {
2846 type = parse_and_eval_type (p, length);
2847 }
2848 catch (const gdb_exception_error &except)
2849 {
2850 type = builtin_type (gdbarch)->builtin_void;
2851 }
2852
2853 /* Stop suppressing error messages. */
2854 gdb_stderr = saved_gdb_stderr;
2855
2856 return type;
2857 }
2858
2859 /* Ugly hack to convert method stubs into method types.
2860
2861 He ain't kiddin'. This demangles the name of the method into a
2862 string including argument types, parses out each argument type,
2863 generates a string casting a zero to that type, evaluates the
2864 string, and stuffs the resulting type into an argtype vector!!!
2865 Then it knows the type of the whole function (including argument
2866 types for overloading), which info used to be in the stab's but was
2867 removed to hack back the space required for them. */
2868
2869 static void
2870 check_stub_method (struct type *type, int method_id, int signature_id)
2871 {
2872 struct gdbarch *gdbarch = get_type_arch (type);
2873 struct fn_field *f;
2874 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2875 char *demangled_name = gdb_demangle (mangled_name,
2876 DMGL_PARAMS | DMGL_ANSI);
2877 char *argtypetext, *p;
2878 int depth = 0, argcount = 1;
2879 struct field *argtypes;
2880 struct type *mtype;
2881
2882 /* Make sure we got back a function string that we can use. */
2883 if (demangled_name)
2884 p = strchr (demangled_name, '(');
2885 else
2886 p = NULL;
2887
2888 if (demangled_name == NULL || p == NULL)
2889 error (_("Internal: Cannot demangle mangled name `%s'."),
2890 mangled_name);
2891
2892 /* Now, read in the parameters that define this type. */
2893 p += 1;
2894 argtypetext = p;
2895 while (*p)
2896 {
2897 if (*p == '(' || *p == '<')
2898 {
2899 depth += 1;
2900 }
2901 else if (*p == ')' || *p == '>')
2902 {
2903 depth -= 1;
2904 }
2905 else if (*p == ',' && depth == 0)
2906 {
2907 argcount += 1;
2908 }
2909
2910 p += 1;
2911 }
2912
2913 /* If we read one argument and it was ``void'', don't count it. */
2914 if (startswith (argtypetext, "(void)"))
2915 argcount -= 1;
2916
2917 /* We need one extra slot, for the THIS pointer. */
2918
2919 argtypes = (struct field *)
2920 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2921 p = argtypetext;
2922
2923 /* Add THIS pointer for non-static methods. */
2924 f = TYPE_FN_FIELDLIST1 (type, method_id);
2925 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2926 argcount = 0;
2927 else
2928 {
2929 argtypes[0].type = lookup_pointer_type (type);
2930 argcount = 1;
2931 }
2932
2933 if (*p != ')') /* () means no args, skip while. */
2934 {
2935 depth = 0;
2936 while (*p)
2937 {
2938 if (depth <= 0 && (*p == ',' || *p == ')'))
2939 {
2940 /* Avoid parsing of ellipsis, they will be handled below.
2941 Also avoid ``void'' as above. */
2942 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2943 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2944 {
2945 argtypes[argcount].type =
2946 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2947 argcount += 1;
2948 }
2949 argtypetext = p + 1;
2950 }
2951
2952 if (*p == '(' || *p == '<')
2953 {
2954 depth += 1;
2955 }
2956 else if (*p == ')' || *p == '>')
2957 {
2958 depth -= 1;
2959 }
2960
2961 p += 1;
2962 }
2963 }
2964
2965 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2966
2967 /* Now update the old "stub" type into a real type. */
2968 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2969 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2970 We want a method (TYPE_CODE_METHOD). */
2971 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2972 argtypes, argcount, p[-2] == '.');
2973 TYPE_STUB (mtype) = 0;
2974 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2975
2976 xfree (demangled_name);
2977 }
2978
2979 /* This is the external interface to check_stub_method, above. This
2980 function unstubs all of the signatures for TYPE's METHOD_ID method
2981 name. After calling this function TYPE_FN_FIELD_STUB will be
2982 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2983 correct.
2984
2985 This function unfortunately can not die until stabs do. */
2986
2987 void
2988 check_stub_method_group (struct type *type, int method_id)
2989 {
2990 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2991 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2992
2993 for (int j = 0; j < len; j++)
2994 {
2995 if (TYPE_FN_FIELD_STUB (f, j))
2996 check_stub_method (type, method_id, j);
2997 }
2998 }
2999
3000 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3001 const struct cplus_struct_type cplus_struct_default = { };
3002
3003 void
3004 allocate_cplus_struct_type (struct type *type)
3005 {
3006 if (HAVE_CPLUS_STRUCT (type))
3007 /* Structure was already allocated. Nothing more to do. */
3008 return;
3009
3010 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3011 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3012 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3013 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3014 set_type_vptr_fieldno (type, -1);
3015 }
3016
3017 const struct gnat_aux_type gnat_aux_default =
3018 { NULL };
3019
3020 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3021 and allocate the associated gnat-specific data. The gnat-specific
3022 data is also initialized to gnat_aux_default. */
3023
3024 void
3025 allocate_gnat_aux_type (struct type *type)
3026 {
3027 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3028 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3029 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3030 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3031 }
3032
3033 /* Helper function to initialize a newly allocated type. Set type code
3034 to CODE and initialize the type-specific fields accordingly. */
3035
3036 static void
3037 set_type_code (struct type *type, enum type_code code)
3038 {
3039 TYPE_CODE (type) = code;
3040
3041 switch (code)
3042 {
3043 case TYPE_CODE_STRUCT:
3044 case TYPE_CODE_UNION:
3045 case TYPE_CODE_NAMESPACE:
3046 INIT_CPLUS_SPECIFIC (type);
3047 break;
3048 case TYPE_CODE_FLT:
3049 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3050 break;
3051 case TYPE_CODE_FUNC:
3052 INIT_FUNC_SPECIFIC (type);
3053 break;
3054 }
3055 }
3056
3057 /* Helper function to verify floating-point format and size.
3058 BIT is the type size in bits; if BIT equals -1, the size is
3059 determined by the floatformat. Returns size to be used. */
3060
3061 static int
3062 verify_floatformat (int bit, const struct floatformat *floatformat)
3063 {
3064 gdb_assert (floatformat != NULL);
3065
3066 if (bit == -1)
3067 bit = floatformat->totalsize;
3068
3069 gdb_assert (bit >= 0);
3070 gdb_assert (bit >= floatformat->totalsize);
3071
3072 return bit;
3073 }
3074
3075 /* Return the floating-point format for a floating-point variable of
3076 type TYPE. */
3077
3078 const struct floatformat *
3079 floatformat_from_type (const struct type *type)
3080 {
3081 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3082 gdb_assert (TYPE_FLOATFORMAT (type));
3083 return TYPE_FLOATFORMAT (type);
3084 }
3085
3086 /* Helper function to initialize the standard scalar types.
3087
3088 If NAME is non-NULL, then it is used to initialize the type name.
3089 Note that NAME is not copied; it is required to have a lifetime at
3090 least as long as OBJFILE. */
3091
3092 struct type *
3093 init_type (struct objfile *objfile, enum type_code code, int bit,
3094 const char *name)
3095 {
3096 struct type *type;
3097
3098 type = alloc_type (objfile);
3099 set_type_code (type, code);
3100 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3101 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3102 TYPE_NAME (type) = name;
3103
3104 return type;
3105 }
3106
3107 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3108 to use with variables that have no debug info. NAME is the type
3109 name. */
3110
3111 static struct type *
3112 init_nodebug_var_type (struct objfile *objfile, const char *name)
3113 {
3114 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3115 }
3116
3117 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3118 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3119 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3120
3121 struct type *
3122 init_integer_type (struct objfile *objfile,
3123 int bit, int unsigned_p, const char *name)
3124 {
3125 struct type *t;
3126
3127 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3128 if (unsigned_p)
3129 TYPE_UNSIGNED (t) = 1;
3130
3131 return t;
3132 }
3133
3134 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3135 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3136 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3137
3138 struct type *
3139 init_character_type (struct objfile *objfile,
3140 int bit, int unsigned_p, const char *name)
3141 {
3142 struct type *t;
3143
3144 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3145 if (unsigned_p)
3146 TYPE_UNSIGNED (t) = 1;
3147
3148 return t;
3149 }
3150
3151 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3152 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3153 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3154
3155 struct type *
3156 init_boolean_type (struct objfile *objfile,
3157 int bit, int unsigned_p, const char *name)
3158 {
3159 struct type *t;
3160
3161 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3162 if (unsigned_p)
3163 TYPE_UNSIGNED (t) = 1;
3164
3165 return t;
3166 }
3167
3168 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3169 BIT is the type size in bits; if BIT equals -1, the size is
3170 determined by the floatformat. NAME is the type name. Set the
3171 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3172 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3173 order of the objfile's architecture is used. */
3174
3175 struct type *
3176 init_float_type (struct objfile *objfile,
3177 int bit, const char *name,
3178 const struct floatformat **floatformats,
3179 enum bfd_endian byte_order)
3180 {
3181 if (byte_order == BFD_ENDIAN_UNKNOWN)
3182 {
3183 struct gdbarch *gdbarch = objfile->arch ();
3184 byte_order = gdbarch_byte_order (gdbarch);
3185 }
3186 const struct floatformat *fmt = floatformats[byte_order];
3187 struct type *t;
3188
3189 bit = verify_floatformat (bit, fmt);
3190 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3191 TYPE_FLOATFORMAT (t) = fmt;
3192
3193 return t;
3194 }
3195
3196 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3197 BIT is the type size in bits. NAME is the type name. */
3198
3199 struct type *
3200 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3201 {
3202 struct type *t;
3203
3204 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3205 return t;
3206 }
3207
3208 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3209 name. TARGET_TYPE is the component type. */
3210
3211 struct type *
3212 init_complex_type (const char *name, struct type *target_type)
3213 {
3214 struct type *t;
3215
3216 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3217 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3218
3219 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3220 {
3221 if (name == nullptr)
3222 {
3223 char *new_name
3224 = (char *) TYPE_ALLOC (target_type,
3225 strlen (TYPE_NAME (target_type))
3226 + strlen ("_Complex ") + 1);
3227 strcpy (new_name, "_Complex ");
3228 strcat (new_name, TYPE_NAME (target_type));
3229 name = new_name;
3230 }
3231
3232 t = alloc_type_copy (target_type);
3233 set_type_code (t, TYPE_CODE_COMPLEX);
3234 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3235 TYPE_NAME (t) = name;
3236
3237 TYPE_TARGET_TYPE (t) = target_type;
3238 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3239 }
3240
3241 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3242 }
3243
3244 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3245 BIT is the pointer type size in bits. NAME is the type name.
3246 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3247 TYPE_UNSIGNED flag. */
3248
3249 struct type *
3250 init_pointer_type (struct objfile *objfile,
3251 int bit, const char *name, struct type *target_type)
3252 {
3253 struct type *t;
3254
3255 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3256 TYPE_TARGET_TYPE (t) = target_type;
3257 TYPE_UNSIGNED (t) = 1;
3258 return t;
3259 }
3260
3261 /* See gdbtypes.h. */
3262
3263 unsigned
3264 type_raw_align (struct type *type)
3265 {
3266 if (type->align_log2 != 0)
3267 return 1 << (type->align_log2 - 1);
3268 return 0;
3269 }
3270
3271 /* See gdbtypes.h. */
3272
3273 unsigned
3274 type_align (struct type *type)
3275 {
3276 /* Check alignment provided in the debug information. */
3277 unsigned raw_align = type_raw_align (type);
3278 if (raw_align != 0)
3279 return raw_align;
3280
3281 /* Allow the architecture to provide an alignment. */
3282 struct gdbarch *arch = get_type_arch (type);
3283 ULONGEST align = gdbarch_type_align (arch, type);
3284 if (align != 0)
3285 return align;
3286
3287 switch (TYPE_CODE (type))
3288 {
3289 case TYPE_CODE_PTR:
3290 case TYPE_CODE_FUNC:
3291 case TYPE_CODE_FLAGS:
3292 case TYPE_CODE_INT:
3293 case TYPE_CODE_RANGE:
3294 case TYPE_CODE_FLT:
3295 case TYPE_CODE_ENUM:
3296 case TYPE_CODE_REF:
3297 case TYPE_CODE_RVALUE_REF:
3298 case TYPE_CODE_CHAR:
3299 case TYPE_CODE_BOOL:
3300 case TYPE_CODE_DECFLOAT:
3301 case TYPE_CODE_METHODPTR:
3302 case TYPE_CODE_MEMBERPTR:
3303 align = type_length_units (check_typedef (type));
3304 break;
3305
3306 case TYPE_CODE_ARRAY:
3307 case TYPE_CODE_COMPLEX:
3308 case TYPE_CODE_TYPEDEF:
3309 align = type_align (TYPE_TARGET_TYPE (type));
3310 break;
3311
3312 case TYPE_CODE_STRUCT:
3313 case TYPE_CODE_UNION:
3314 {
3315 int number_of_non_static_fields = 0;
3316 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3317 {
3318 if (!field_is_static (&TYPE_FIELD (type, i)))
3319 {
3320 number_of_non_static_fields++;
3321 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3322 if (f_align == 0)
3323 {
3324 /* Don't pretend we know something we don't. */
3325 align = 0;
3326 break;
3327 }
3328 if (f_align > align)
3329 align = f_align;
3330 }
3331 }
3332 /* A struct with no fields, or with only static fields has an
3333 alignment of 1. */
3334 if (number_of_non_static_fields == 0)
3335 align = 1;
3336 }
3337 break;
3338
3339 case TYPE_CODE_SET:
3340 case TYPE_CODE_STRING:
3341 /* Not sure what to do here, and these can't appear in C or C++
3342 anyway. */
3343 break;
3344
3345 case TYPE_CODE_VOID:
3346 align = 1;
3347 break;
3348
3349 case TYPE_CODE_ERROR:
3350 case TYPE_CODE_METHOD:
3351 default:
3352 break;
3353 }
3354
3355 if ((align & (align - 1)) != 0)
3356 {
3357 /* Not a power of 2, so pass. */
3358 align = 0;
3359 }
3360
3361 return align;
3362 }
3363
3364 /* See gdbtypes.h. */
3365
3366 bool
3367 set_type_align (struct type *type, ULONGEST align)
3368 {
3369 /* Must be a power of 2. Zero is ok. */
3370 gdb_assert ((align & (align - 1)) == 0);
3371
3372 unsigned result = 0;
3373 while (align != 0)
3374 {
3375 ++result;
3376 align >>= 1;
3377 }
3378
3379 if (result >= (1 << TYPE_ALIGN_BITS))
3380 return false;
3381
3382 type->align_log2 = result;
3383 return true;
3384 }
3385
3386 \f
3387 /* Queries on types. */
3388
3389 int
3390 can_dereference (struct type *t)
3391 {
3392 /* FIXME: Should we return true for references as well as
3393 pointers? */
3394 t = check_typedef (t);
3395 return
3396 (t != NULL
3397 && TYPE_CODE (t) == TYPE_CODE_PTR
3398 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3399 }
3400
3401 int
3402 is_integral_type (struct type *t)
3403 {
3404 t = check_typedef (t);
3405 return
3406 ((t != NULL)
3407 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3408 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3409 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3410 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3411 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3412 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3413 }
3414
3415 int
3416 is_floating_type (struct type *t)
3417 {
3418 t = check_typedef (t);
3419 return
3420 ((t != NULL)
3421 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3422 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3423 }
3424
3425 /* Return true if TYPE is scalar. */
3426
3427 int
3428 is_scalar_type (struct type *type)
3429 {
3430 type = check_typedef (type);
3431
3432 switch (TYPE_CODE (type))
3433 {
3434 case TYPE_CODE_ARRAY:
3435 case TYPE_CODE_STRUCT:
3436 case TYPE_CODE_UNION:
3437 case TYPE_CODE_SET:
3438 case TYPE_CODE_STRING:
3439 return 0;
3440 default:
3441 return 1;
3442 }
3443 }
3444
3445 /* Return true if T is scalar, or a composite type which in practice has
3446 the memory layout of a scalar type. E.g., an array or struct with only
3447 one scalar element inside it, or a union with only scalar elements. */
3448
3449 int
3450 is_scalar_type_recursive (struct type *t)
3451 {
3452 t = check_typedef (t);
3453
3454 if (is_scalar_type (t))
3455 return 1;
3456 /* Are we dealing with an array or string of known dimensions? */
3457 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3458 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3459 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3460 {
3461 LONGEST low_bound, high_bound;
3462 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3463
3464 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3465
3466 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3467 }
3468 /* Are we dealing with a struct with one element? */
3469 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3470 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3471 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3472 {
3473 int i, n = TYPE_NFIELDS (t);
3474
3475 /* If all elements of the union are scalar, then the union is scalar. */
3476 for (i = 0; i < n; i++)
3477 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3478 return 0;
3479
3480 return 1;
3481 }
3482
3483 return 0;
3484 }
3485
3486 /* Return true is T is a class or a union. False otherwise. */
3487
3488 int
3489 class_or_union_p (const struct type *t)
3490 {
3491 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3492 || TYPE_CODE (t) == TYPE_CODE_UNION);
3493 }
3494
3495 /* A helper function which returns true if types A and B represent the
3496 "same" class type. This is true if the types have the same main
3497 type, or the same name. */
3498
3499 int
3500 class_types_same_p (const struct type *a, const struct type *b)
3501 {
3502 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3503 || (TYPE_NAME (a) && TYPE_NAME (b)
3504 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3505 }
3506
3507 /* If BASE is an ancestor of DCLASS return the distance between them.
3508 otherwise return -1;
3509 eg:
3510
3511 class A {};
3512 class B: public A {};
3513 class C: public B {};
3514 class D: C {};
3515
3516 distance_to_ancestor (A, A, 0) = 0
3517 distance_to_ancestor (A, B, 0) = 1
3518 distance_to_ancestor (A, C, 0) = 2
3519 distance_to_ancestor (A, D, 0) = 3
3520
3521 If PUBLIC is 1 then only public ancestors are considered,
3522 and the function returns the distance only if BASE is a public ancestor
3523 of DCLASS.
3524 Eg:
3525
3526 distance_to_ancestor (A, D, 1) = -1. */
3527
3528 static int
3529 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3530 {
3531 int i;
3532 int d;
3533
3534 base = check_typedef (base);
3535 dclass = check_typedef (dclass);
3536
3537 if (class_types_same_p (base, dclass))
3538 return 0;
3539
3540 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3541 {
3542 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3543 continue;
3544
3545 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3546 if (d >= 0)
3547 return 1 + d;
3548 }
3549
3550 return -1;
3551 }
3552
3553 /* Check whether BASE is an ancestor or base class or DCLASS
3554 Return 1 if so, and 0 if not.
3555 Note: If BASE and DCLASS are of the same type, this function
3556 will return 1. So for some class A, is_ancestor (A, A) will
3557 return 1. */
3558
3559 int
3560 is_ancestor (struct type *base, struct type *dclass)
3561 {
3562 return distance_to_ancestor (base, dclass, 0) >= 0;
3563 }
3564
3565 /* Like is_ancestor, but only returns true when BASE is a public
3566 ancestor of DCLASS. */
3567
3568 int
3569 is_public_ancestor (struct type *base, struct type *dclass)
3570 {
3571 return distance_to_ancestor (base, dclass, 1) >= 0;
3572 }
3573
3574 /* A helper function for is_unique_ancestor. */
3575
3576 static int
3577 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3578 int *offset,
3579 const gdb_byte *valaddr, int embedded_offset,
3580 CORE_ADDR address, struct value *val)
3581 {
3582 int i, count = 0;
3583
3584 base = check_typedef (base);
3585 dclass = check_typedef (dclass);
3586
3587 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3588 {
3589 struct type *iter;
3590 int this_offset;
3591
3592 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3593
3594 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3595 address, val);
3596
3597 if (class_types_same_p (base, iter))
3598 {
3599 /* If this is the first subclass, set *OFFSET and set count
3600 to 1. Otherwise, if this is at the same offset as
3601 previous instances, do nothing. Otherwise, increment
3602 count. */
3603 if (*offset == -1)
3604 {
3605 *offset = this_offset;
3606 count = 1;
3607 }
3608 else if (this_offset == *offset)
3609 {
3610 /* Nothing. */
3611 }
3612 else
3613 ++count;
3614 }
3615 else
3616 count += is_unique_ancestor_worker (base, iter, offset,
3617 valaddr,
3618 embedded_offset + this_offset,
3619 address, val);
3620 }
3621
3622 return count;
3623 }
3624
3625 /* Like is_ancestor, but only returns true if BASE is a unique base
3626 class of the type of VAL. */
3627
3628 int
3629 is_unique_ancestor (struct type *base, struct value *val)
3630 {
3631 int offset = -1;
3632
3633 return is_unique_ancestor_worker (base, value_type (val), &offset,
3634 value_contents_for_printing (val),
3635 value_embedded_offset (val),
3636 value_address (val), val) == 1;
3637 }
3638
3639 /* See gdbtypes.h. */
3640
3641 enum bfd_endian
3642 type_byte_order (const struct type *type)
3643 {
3644 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3645 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3646 {
3647 if (byteorder == BFD_ENDIAN_BIG)
3648 return BFD_ENDIAN_LITTLE;
3649 else
3650 {
3651 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3652 return BFD_ENDIAN_BIG;
3653 }
3654 }
3655
3656 return byteorder;
3657 }
3658
3659 \f
3660 /* Overload resolution. */
3661
3662 /* Return the sum of the rank of A with the rank of B. */
3663
3664 struct rank
3665 sum_ranks (struct rank a, struct rank b)
3666 {
3667 struct rank c;
3668 c.rank = a.rank + b.rank;
3669 c.subrank = a.subrank + b.subrank;
3670 return c;
3671 }
3672
3673 /* Compare rank A and B and return:
3674 0 if a = b
3675 1 if a is better than b
3676 -1 if b is better than a. */
3677
3678 int
3679 compare_ranks (struct rank a, struct rank b)
3680 {
3681 if (a.rank == b.rank)
3682 {
3683 if (a.subrank == b.subrank)
3684 return 0;
3685 if (a.subrank < b.subrank)
3686 return 1;
3687 if (a.subrank > b.subrank)
3688 return -1;
3689 }
3690
3691 if (a.rank < b.rank)
3692 return 1;
3693
3694 /* a.rank > b.rank */
3695 return -1;
3696 }
3697
3698 /* Functions for overload resolution begin here. */
3699
3700 /* Compare two badness vectors A and B and return the result.
3701 0 => A and B are identical
3702 1 => A and B are incomparable
3703 2 => A is better than B
3704 3 => A is worse than B */
3705
3706 int
3707 compare_badness (const badness_vector &a, const badness_vector &b)
3708 {
3709 int i;
3710 int tmp;
3711 short found_pos = 0; /* any positives in c? */
3712 short found_neg = 0; /* any negatives in c? */
3713
3714 /* differing sizes => incomparable */
3715 if (a.size () != b.size ())
3716 return 1;
3717
3718 /* Subtract b from a */
3719 for (i = 0; i < a.size (); i++)
3720 {
3721 tmp = compare_ranks (b[i], a[i]);
3722 if (tmp > 0)
3723 found_pos = 1;
3724 else if (tmp < 0)
3725 found_neg = 1;
3726 }
3727
3728 if (found_pos)
3729 {
3730 if (found_neg)
3731 return 1; /* incomparable */
3732 else
3733 return 3; /* A > B */
3734 }
3735 else
3736 /* no positives */
3737 {
3738 if (found_neg)
3739 return 2; /* A < B */
3740 else
3741 return 0; /* A == B */
3742 }
3743 }
3744
3745 /* Rank a function by comparing its parameter types (PARMS), to the
3746 types of an argument list (ARGS). Return the badness vector. This
3747 has ARGS.size() + 1 entries. */
3748
3749 badness_vector
3750 rank_function (gdb::array_view<type *> parms,
3751 gdb::array_view<value *> args)
3752 {
3753 /* add 1 for the length-match rank. */
3754 badness_vector bv;
3755 bv.reserve (1 + args.size ());
3756
3757 /* First compare the lengths of the supplied lists.
3758 If there is a mismatch, set it to a high value. */
3759
3760 /* pai/1997-06-03 FIXME: when we have debug info about default
3761 arguments and ellipsis parameter lists, we should consider those
3762 and rank the length-match more finely. */
3763
3764 bv.push_back ((args.size () != parms.size ())
3765 ? LENGTH_MISMATCH_BADNESS
3766 : EXACT_MATCH_BADNESS);
3767
3768 /* Now rank all the parameters of the candidate function. */
3769 size_t min_len = std::min (parms.size (), args.size ());
3770
3771 for (size_t i = 0; i < min_len; i++)
3772 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3773 args[i]));
3774
3775 /* If more arguments than parameters, add dummy entries. */
3776 for (size_t i = min_len; i < args.size (); i++)
3777 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3778
3779 return bv;
3780 }
3781
3782 /* Compare the names of two integer types, assuming that any sign
3783 qualifiers have been checked already. We do it this way because
3784 there may be an "int" in the name of one of the types. */
3785
3786 static int
3787 integer_types_same_name_p (const char *first, const char *second)
3788 {
3789 int first_p, second_p;
3790
3791 /* If both are shorts, return 1; if neither is a short, keep
3792 checking. */
3793 first_p = (strstr (first, "short") != NULL);
3794 second_p = (strstr (second, "short") != NULL);
3795 if (first_p && second_p)
3796 return 1;
3797 if (first_p || second_p)
3798 return 0;
3799
3800 /* Likewise for long. */
3801 first_p = (strstr (first, "long") != NULL);
3802 second_p = (strstr (second, "long") != NULL);
3803 if (first_p && second_p)
3804 return 1;
3805 if (first_p || second_p)
3806 return 0;
3807
3808 /* Likewise for char. */
3809 first_p = (strstr (first, "char") != NULL);
3810 second_p = (strstr (second, "char") != NULL);
3811 if (first_p && second_p)
3812 return 1;
3813 if (first_p || second_p)
3814 return 0;
3815
3816 /* They must both be ints. */
3817 return 1;
3818 }
3819
3820 /* Compares type A to type B. Returns true if they represent the same
3821 type, false otherwise. */
3822
3823 bool
3824 types_equal (struct type *a, struct type *b)
3825 {
3826 /* Identical type pointers. */
3827 /* However, this still doesn't catch all cases of same type for b
3828 and a. The reason is that builtin types are different from
3829 the same ones constructed from the object. */
3830 if (a == b)
3831 return true;
3832
3833 /* Resolve typedefs */
3834 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3835 a = check_typedef (a);
3836 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3837 b = check_typedef (b);
3838
3839 /* If after resolving typedefs a and b are not of the same type
3840 code then they are not equal. */
3841 if (TYPE_CODE (a) != TYPE_CODE (b))
3842 return false;
3843
3844 /* If a and b are both pointers types or both reference types then
3845 they are equal of the same type iff the objects they refer to are
3846 of the same type. */
3847 if (TYPE_CODE (a) == TYPE_CODE_PTR
3848 || TYPE_CODE (a) == TYPE_CODE_REF)
3849 return types_equal (TYPE_TARGET_TYPE (a),
3850 TYPE_TARGET_TYPE (b));
3851
3852 /* Well, damnit, if the names are exactly the same, I'll say they
3853 are exactly the same. This happens when we generate method
3854 stubs. The types won't point to the same address, but they
3855 really are the same. */
3856
3857 if (TYPE_NAME (a) && TYPE_NAME (b)
3858 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3859 return true;
3860
3861 /* Check if identical after resolving typedefs. */
3862 if (a == b)
3863 return true;
3864
3865 /* Two function types are equal if their argument and return types
3866 are equal. */
3867 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3868 {
3869 int i;
3870
3871 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3872 return false;
3873
3874 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3875 return false;
3876
3877 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3878 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3879 return false;
3880
3881 return true;
3882 }
3883
3884 return false;
3885 }
3886 \f
3887 /* Deep comparison of types. */
3888
3889 /* An entry in the type-equality bcache. */
3890
3891 struct type_equality_entry
3892 {
3893 type_equality_entry (struct type *t1, struct type *t2)
3894 : type1 (t1),
3895 type2 (t2)
3896 {
3897 }
3898
3899 struct type *type1, *type2;
3900 };
3901
3902 /* A helper function to compare two strings. Returns true if they are
3903 the same, false otherwise. Handles NULLs properly. */
3904
3905 static bool
3906 compare_maybe_null_strings (const char *s, const char *t)
3907 {
3908 if (s == NULL || t == NULL)
3909 return s == t;
3910 return strcmp (s, t) == 0;
3911 }
3912
3913 /* A helper function for check_types_worklist that checks two types for
3914 "deep" equality. Returns true if the types are considered the
3915 same, false otherwise. */
3916
3917 static bool
3918 check_types_equal (struct type *type1, struct type *type2,
3919 std::vector<type_equality_entry> *worklist)
3920 {
3921 type1 = check_typedef (type1);
3922 type2 = check_typedef (type2);
3923
3924 if (type1 == type2)
3925 return true;
3926
3927 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3928 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3929 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3930 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3931 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3932 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3933 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3934 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3935 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3936 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3937 return false;
3938
3939 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3940 return false;
3941 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3942 return false;
3943
3944 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3945 {
3946 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3947 return false;
3948 }
3949 else
3950 {
3951 int i;
3952
3953 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3954 {
3955 const struct field *field1 = &TYPE_FIELD (type1, i);
3956 const struct field *field2 = &TYPE_FIELD (type2, i);
3957
3958 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3959 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3960 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3961 return false;
3962 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3963 FIELD_NAME (*field2)))
3964 return false;
3965 switch (FIELD_LOC_KIND (*field1))
3966 {
3967 case FIELD_LOC_KIND_BITPOS:
3968 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3969 return false;
3970 break;
3971 case FIELD_LOC_KIND_ENUMVAL:
3972 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3973 return false;
3974 break;
3975 case FIELD_LOC_KIND_PHYSADDR:
3976 if (FIELD_STATIC_PHYSADDR (*field1)
3977 != FIELD_STATIC_PHYSADDR (*field2))
3978 return false;
3979 break;
3980 case FIELD_LOC_KIND_PHYSNAME:
3981 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3982 FIELD_STATIC_PHYSNAME (*field2)))
3983 return false;
3984 break;
3985 case FIELD_LOC_KIND_DWARF_BLOCK:
3986 {
3987 struct dwarf2_locexpr_baton *block1, *block2;
3988
3989 block1 = FIELD_DWARF_BLOCK (*field1);
3990 block2 = FIELD_DWARF_BLOCK (*field2);
3991 if (block1->per_cu != block2->per_cu
3992 || block1->size != block2->size
3993 || memcmp (block1->data, block2->data, block1->size) != 0)
3994 return false;
3995 }
3996 break;
3997 default:
3998 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3999 "%d by check_types_equal"),
4000 FIELD_LOC_KIND (*field1));
4001 }
4002
4003 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4004 }
4005 }
4006
4007 if (TYPE_TARGET_TYPE (type1) != NULL)
4008 {
4009 if (TYPE_TARGET_TYPE (type2) == NULL)
4010 return false;
4011
4012 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4013 TYPE_TARGET_TYPE (type2));
4014 }
4015 else if (TYPE_TARGET_TYPE (type2) != NULL)
4016 return false;
4017
4018 return true;
4019 }
4020
4021 /* Check types on a worklist for equality. Returns false if any pair
4022 is not equal, true if they are all considered equal. */
4023
4024 static bool
4025 check_types_worklist (std::vector<type_equality_entry> *worklist,
4026 gdb::bcache *cache)
4027 {
4028 while (!worklist->empty ())
4029 {
4030 int added;
4031
4032 struct type_equality_entry entry = std::move (worklist->back ());
4033 worklist->pop_back ();
4034
4035 /* If the type pair has already been visited, we know it is
4036 ok. */
4037 cache->insert (&entry, sizeof (entry), &added);
4038 if (!added)
4039 continue;
4040
4041 if (!check_types_equal (entry.type1, entry.type2, worklist))
4042 return false;
4043 }
4044
4045 return true;
4046 }
4047
4048 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4049 "deep comparison". Otherwise return false. */
4050
4051 bool
4052 types_deeply_equal (struct type *type1, struct type *type2)
4053 {
4054 std::vector<type_equality_entry> worklist;
4055
4056 gdb_assert (type1 != NULL && type2 != NULL);
4057
4058 /* Early exit for the simple case. */
4059 if (type1 == type2)
4060 return true;
4061
4062 gdb::bcache cache (nullptr, nullptr);
4063 worklist.emplace_back (type1, type2);
4064 return check_types_worklist (&worklist, &cache);
4065 }
4066
4067 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4068 Otherwise return one. */
4069
4070 int
4071 type_not_allocated (const struct type *type)
4072 {
4073 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4074
4075 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4076 && !TYPE_DYN_PROP_ADDR (prop));
4077 }
4078
4079 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4080 Otherwise return one. */
4081
4082 int
4083 type_not_associated (const struct type *type)
4084 {
4085 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4086
4087 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4088 && !TYPE_DYN_PROP_ADDR (prop));
4089 }
4090
4091 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4092
4093 static struct rank
4094 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4095 {
4096 struct rank rank = {0,0};
4097
4098 switch (TYPE_CODE (arg))
4099 {
4100 case TYPE_CODE_PTR:
4101
4102 /* Allowed pointer conversions are:
4103 (a) pointer to void-pointer conversion. */
4104 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4105 return VOID_PTR_CONVERSION_BADNESS;
4106
4107 /* (b) pointer to ancestor-pointer conversion. */
4108 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4109 TYPE_TARGET_TYPE (arg),
4110 0);
4111 if (rank.subrank >= 0)
4112 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4113
4114 return INCOMPATIBLE_TYPE_BADNESS;
4115 case TYPE_CODE_ARRAY:
4116 {
4117 struct type *t1 = TYPE_TARGET_TYPE (parm);
4118 struct type *t2 = TYPE_TARGET_TYPE (arg);
4119
4120 if (types_equal (t1, t2))
4121 {
4122 /* Make sure they are CV equal. */
4123 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4124 rank.subrank |= CV_CONVERSION_CONST;
4125 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4126 rank.subrank |= CV_CONVERSION_VOLATILE;
4127 if (rank.subrank != 0)
4128 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4129 return EXACT_MATCH_BADNESS;
4130 }
4131 return INCOMPATIBLE_TYPE_BADNESS;
4132 }
4133 case TYPE_CODE_FUNC:
4134 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4135 case TYPE_CODE_INT:
4136 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4137 {
4138 if (value_as_long (value) == 0)
4139 {
4140 /* Null pointer conversion: allow it to be cast to a pointer.
4141 [4.10.1 of C++ standard draft n3290] */
4142 return NULL_POINTER_CONVERSION_BADNESS;
4143 }
4144 else
4145 {
4146 /* If type checking is disabled, allow the conversion. */
4147 if (!strict_type_checking)
4148 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4149 }
4150 }
4151 /* fall through */
4152 case TYPE_CODE_ENUM:
4153 case TYPE_CODE_FLAGS:
4154 case TYPE_CODE_CHAR:
4155 case TYPE_CODE_RANGE:
4156 case TYPE_CODE_BOOL:
4157 default:
4158 return INCOMPATIBLE_TYPE_BADNESS;
4159 }
4160 }
4161
4162 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4163
4164 static struct rank
4165 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4166 {
4167 switch (TYPE_CODE (arg))
4168 {
4169 case TYPE_CODE_PTR:
4170 case TYPE_CODE_ARRAY:
4171 return rank_one_type (TYPE_TARGET_TYPE (parm),
4172 TYPE_TARGET_TYPE (arg), NULL);
4173 default:
4174 return INCOMPATIBLE_TYPE_BADNESS;
4175 }
4176 }
4177
4178 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4179
4180 static struct rank
4181 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4182 {
4183 switch (TYPE_CODE (arg))
4184 {
4185 case TYPE_CODE_PTR: /* funcptr -> func */
4186 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4187 default:
4188 return INCOMPATIBLE_TYPE_BADNESS;
4189 }
4190 }
4191
4192 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4193
4194 static struct rank
4195 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4196 {
4197 switch (TYPE_CODE (arg))
4198 {
4199 case TYPE_CODE_INT:
4200 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4201 {
4202 /* Deal with signed, unsigned, and plain chars and
4203 signed and unsigned ints. */
4204 if (TYPE_NOSIGN (parm))
4205 {
4206 /* This case only for character types. */
4207 if (TYPE_NOSIGN (arg))
4208 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4209 else /* signed/unsigned char -> plain char */
4210 return INTEGER_CONVERSION_BADNESS;
4211 }
4212 else if (TYPE_UNSIGNED (parm))
4213 {
4214 if (TYPE_UNSIGNED (arg))
4215 {
4216 /* unsigned int -> unsigned int, or
4217 unsigned long -> unsigned long */
4218 if (integer_types_same_name_p (TYPE_NAME (parm),
4219 TYPE_NAME (arg)))
4220 return EXACT_MATCH_BADNESS;
4221 else if (integer_types_same_name_p (TYPE_NAME (arg),
4222 "int")
4223 && integer_types_same_name_p (TYPE_NAME (parm),
4224 "long"))
4225 /* unsigned int -> unsigned long */
4226 return INTEGER_PROMOTION_BADNESS;
4227 else
4228 /* unsigned long -> unsigned int */
4229 return INTEGER_CONVERSION_BADNESS;
4230 }
4231 else
4232 {
4233 if (integer_types_same_name_p (TYPE_NAME (arg),
4234 "long")
4235 && integer_types_same_name_p (TYPE_NAME (parm),
4236 "int"))
4237 /* signed long -> unsigned int */
4238 return INTEGER_CONVERSION_BADNESS;
4239 else
4240 /* signed int/long -> unsigned int/long */
4241 return INTEGER_CONVERSION_BADNESS;
4242 }
4243 }
4244 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4245 {
4246 if (integer_types_same_name_p (TYPE_NAME (parm),
4247 TYPE_NAME (arg)))
4248 return EXACT_MATCH_BADNESS;
4249 else if (integer_types_same_name_p (TYPE_NAME (arg),
4250 "int")
4251 && integer_types_same_name_p (TYPE_NAME (parm),
4252 "long"))
4253 return INTEGER_PROMOTION_BADNESS;
4254 else
4255 return INTEGER_CONVERSION_BADNESS;
4256 }
4257 else
4258 return INTEGER_CONVERSION_BADNESS;
4259 }
4260 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4261 return INTEGER_PROMOTION_BADNESS;
4262 else
4263 return INTEGER_CONVERSION_BADNESS;
4264 case TYPE_CODE_ENUM:
4265 case TYPE_CODE_FLAGS:
4266 case TYPE_CODE_CHAR:
4267 case TYPE_CODE_RANGE:
4268 case TYPE_CODE_BOOL:
4269 if (TYPE_DECLARED_CLASS (arg))
4270 return INCOMPATIBLE_TYPE_BADNESS;
4271 return INTEGER_PROMOTION_BADNESS;
4272 case TYPE_CODE_FLT:
4273 return INT_FLOAT_CONVERSION_BADNESS;
4274 case TYPE_CODE_PTR:
4275 return NS_POINTER_CONVERSION_BADNESS;
4276 default:
4277 return INCOMPATIBLE_TYPE_BADNESS;
4278 }
4279 }
4280
4281 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4282
4283 static struct rank
4284 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4285 {
4286 switch (TYPE_CODE (arg))
4287 {
4288 case TYPE_CODE_INT:
4289 case TYPE_CODE_CHAR:
4290 case TYPE_CODE_RANGE:
4291 case TYPE_CODE_BOOL:
4292 case TYPE_CODE_ENUM:
4293 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4294 return INCOMPATIBLE_TYPE_BADNESS;
4295 return INTEGER_CONVERSION_BADNESS;
4296 case TYPE_CODE_FLT:
4297 return INT_FLOAT_CONVERSION_BADNESS;
4298 default:
4299 return INCOMPATIBLE_TYPE_BADNESS;
4300 }
4301 }
4302
4303 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4304
4305 static struct rank
4306 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4307 {
4308 switch (TYPE_CODE (arg))
4309 {
4310 case TYPE_CODE_RANGE:
4311 case TYPE_CODE_BOOL:
4312 case TYPE_CODE_ENUM:
4313 if (TYPE_DECLARED_CLASS (arg))
4314 return INCOMPATIBLE_TYPE_BADNESS;
4315 return INTEGER_CONVERSION_BADNESS;
4316 case TYPE_CODE_FLT:
4317 return INT_FLOAT_CONVERSION_BADNESS;
4318 case TYPE_CODE_INT:
4319 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4320 return INTEGER_CONVERSION_BADNESS;
4321 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4322 return INTEGER_PROMOTION_BADNESS;
4323 /* fall through */
4324 case TYPE_CODE_CHAR:
4325 /* Deal with signed, unsigned, and plain chars for C++ and
4326 with int cases falling through from previous case. */
4327 if (TYPE_NOSIGN (parm))
4328 {
4329 if (TYPE_NOSIGN (arg))
4330 return EXACT_MATCH_BADNESS;
4331 else
4332 return INTEGER_CONVERSION_BADNESS;
4333 }
4334 else if (TYPE_UNSIGNED (parm))
4335 {
4336 if (TYPE_UNSIGNED (arg))
4337 return EXACT_MATCH_BADNESS;
4338 else
4339 return INTEGER_PROMOTION_BADNESS;
4340 }
4341 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4342 return EXACT_MATCH_BADNESS;
4343 else
4344 return INTEGER_CONVERSION_BADNESS;
4345 default:
4346 return INCOMPATIBLE_TYPE_BADNESS;
4347 }
4348 }
4349
4350 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4351
4352 static struct rank
4353 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4354 {
4355 switch (TYPE_CODE (arg))
4356 {
4357 case TYPE_CODE_INT:
4358 case TYPE_CODE_CHAR:
4359 case TYPE_CODE_RANGE:
4360 case TYPE_CODE_BOOL:
4361 case TYPE_CODE_ENUM:
4362 return INTEGER_CONVERSION_BADNESS;
4363 case TYPE_CODE_FLT:
4364 return INT_FLOAT_CONVERSION_BADNESS;
4365 default:
4366 return INCOMPATIBLE_TYPE_BADNESS;
4367 }
4368 }
4369
4370 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4371
4372 static struct rank
4373 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4374 {
4375 switch (TYPE_CODE (arg))
4376 {
4377 /* n3290 draft, section 4.12.1 (conv.bool):
4378
4379 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4380 pointer to member type can be converted to a prvalue of type
4381 bool. A zero value, null pointer value, or null member pointer
4382 value is converted to false; any other value is converted to
4383 true. A prvalue of type std::nullptr_t can be converted to a
4384 prvalue of type bool; the resulting value is false." */
4385 case TYPE_CODE_INT:
4386 case TYPE_CODE_CHAR:
4387 case TYPE_CODE_ENUM:
4388 case TYPE_CODE_FLT:
4389 case TYPE_CODE_MEMBERPTR:
4390 case TYPE_CODE_PTR:
4391 return BOOL_CONVERSION_BADNESS;
4392 case TYPE_CODE_RANGE:
4393 return INCOMPATIBLE_TYPE_BADNESS;
4394 case TYPE_CODE_BOOL:
4395 return EXACT_MATCH_BADNESS;
4396 default:
4397 return INCOMPATIBLE_TYPE_BADNESS;
4398 }
4399 }
4400
4401 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4402
4403 static struct rank
4404 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4405 {
4406 switch (TYPE_CODE (arg))
4407 {
4408 case TYPE_CODE_FLT:
4409 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4410 return FLOAT_PROMOTION_BADNESS;
4411 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4412 return EXACT_MATCH_BADNESS;
4413 else
4414 return FLOAT_CONVERSION_BADNESS;
4415 case TYPE_CODE_INT:
4416 case TYPE_CODE_BOOL:
4417 case TYPE_CODE_ENUM:
4418 case TYPE_CODE_RANGE:
4419 case TYPE_CODE_CHAR:
4420 return INT_FLOAT_CONVERSION_BADNESS;
4421 default:
4422 return INCOMPATIBLE_TYPE_BADNESS;
4423 }
4424 }
4425
4426 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4427
4428 static struct rank
4429 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4430 {
4431 switch (TYPE_CODE (arg))
4432 { /* Strictly not needed for C++, but... */
4433 case TYPE_CODE_FLT:
4434 return FLOAT_PROMOTION_BADNESS;
4435 case TYPE_CODE_COMPLEX:
4436 return EXACT_MATCH_BADNESS;
4437 default:
4438 return INCOMPATIBLE_TYPE_BADNESS;
4439 }
4440 }
4441
4442 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4443
4444 static struct rank
4445 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4446 {
4447 struct rank rank = {0, 0};
4448
4449 switch (TYPE_CODE (arg))
4450 {
4451 case TYPE_CODE_STRUCT:
4452 /* Check for derivation */
4453 rank.subrank = distance_to_ancestor (parm, arg, 0);
4454 if (rank.subrank >= 0)
4455 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4456 /* fall through */
4457 default:
4458 return INCOMPATIBLE_TYPE_BADNESS;
4459 }
4460 }
4461
4462 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4463
4464 static struct rank
4465 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4466 {
4467 switch (TYPE_CODE (arg))
4468 {
4469 /* Not in C++ */
4470 case TYPE_CODE_SET:
4471 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4472 TYPE_FIELD_TYPE (arg, 0), NULL);
4473 default:
4474 return INCOMPATIBLE_TYPE_BADNESS;
4475 }
4476 }
4477
4478 /* Compare one type (PARM) for compatibility with another (ARG).
4479 * PARM is intended to be the parameter type of a function; and
4480 * ARG is the supplied argument's type. This function tests if
4481 * the latter can be converted to the former.
4482 * VALUE is the argument's value or NULL if none (or called recursively)
4483 *
4484 * Return 0 if they are identical types;
4485 * Otherwise, return an integer which corresponds to how compatible
4486 * PARM is to ARG. The higher the return value, the worse the match.
4487 * Generally the "bad" conversions are all uniformly assigned a 100. */
4488
4489 struct rank
4490 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4491 {
4492 struct rank rank = {0,0};
4493
4494 /* Resolve typedefs */
4495 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4496 parm = check_typedef (parm);
4497 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4498 arg = check_typedef (arg);
4499
4500 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4501 {
4502 if (VALUE_LVAL (value) == not_lval)
4503 {
4504 /* Rvalues should preferably bind to rvalue references or const
4505 lvalue references. */
4506 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4507 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4508 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4509 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4510 else
4511 return INCOMPATIBLE_TYPE_BADNESS;
4512 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4513 }
4514 else
4515 {
4516 /* It's illegal to pass an lvalue as an rvalue. */
4517 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4518 return INCOMPATIBLE_TYPE_BADNESS;
4519 }
4520 }
4521
4522 if (types_equal (parm, arg))
4523 {
4524 struct type *t1 = parm;
4525 struct type *t2 = arg;
4526
4527 /* For pointers and references, compare target type. */
4528 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4529 {
4530 t1 = TYPE_TARGET_TYPE (parm);
4531 t2 = TYPE_TARGET_TYPE (arg);
4532 }
4533
4534 /* Make sure they are CV equal, too. */
4535 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4536 rank.subrank |= CV_CONVERSION_CONST;
4537 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4538 rank.subrank |= CV_CONVERSION_VOLATILE;
4539 if (rank.subrank != 0)
4540 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4541 return EXACT_MATCH_BADNESS;
4542 }
4543
4544 /* See through references, since we can almost make non-references
4545 references. */
4546
4547 if (TYPE_IS_REFERENCE (arg))
4548 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4549 REFERENCE_SEE_THROUGH_BADNESS));
4550 if (TYPE_IS_REFERENCE (parm))
4551 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4552 REFERENCE_SEE_THROUGH_BADNESS));
4553 if (overload_debug)
4554 /* Debugging only. */
4555 fprintf_filtered (gdb_stderr,
4556 "------ Arg is %s [%d], parm is %s [%d]\n",
4557 TYPE_NAME (arg), TYPE_CODE (arg),
4558 TYPE_NAME (parm), TYPE_CODE (parm));
4559
4560 /* x -> y means arg of type x being supplied for parameter of type y. */
4561
4562 switch (TYPE_CODE (parm))
4563 {
4564 case TYPE_CODE_PTR:
4565 return rank_one_type_parm_ptr (parm, arg, value);
4566 case TYPE_CODE_ARRAY:
4567 return rank_one_type_parm_array (parm, arg, value);
4568 case TYPE_CODE_FUNC:
4569 return rank_one_type_parm_func (parm, arg, value);
4570 case TYPE_CODE_INT:
4571 return rank_one_type_parm_int (parm, arg, value);
4572 case TYPE_CODE_ENUM:
4573 return rank_one_type_parm_enum (parm, arg, value);
4574 case TYPE_CODE_CHAR:
4575 return rank_one_type_parm_char (parm, arg, value);
4576 case TYPE_CODE_RANGE:
4577 return rank_one_type_parm_range (parm, arg, value);
4578 case TYPE_CODE_BOOL:
4579 return rank_one_type_parm_bool (parm, arg, value);
4580 case TYPE_CODE_FLT:
4581 return rank_one_type_parm_float (parm, arg, value);
4582 case TYPE_CODE_COMPLEX:
4583 return rank_one_type_parm_complex (parm, arg, value);
4584 case TYPE_CODE_STRUCT:
4585 return rank_one_type_parm_struct (parm, arg, value);
4586 case TYPE_CODE_SET:
4587 return rank_one_type_parm_set (parm, arg, value);
4588 default:
4589 return INCOMPATIBLE_TYPE_BADNESS;
4590 } /* switch (TYPE_CODE (arg)) */
4591 }
4592
4593 /* End of functions for overload resolution. */
4594 \f
4595 /* Routines to pretty-print types. */
4596
4597 static void
4598 print_bit_vector (B_TYPE *bits, int nbits)
4599 {
4600 int bitno;
4601
4602 for (bitno = 0; bitno < nbits; bitno++)
4603 {
4604 if ((bitno % 8) == 0)
4605 {
4606 puts_filtered (" ");
4607 }
4608 if (B_TST (bits, bitno))
4609 printf_filtered (("1"));
4610 else
4611 printf_filtered (("0"));
4612 }
4613 }
4614
4615 /* Note the first arg should be the "this" pointer, we may not want to
4616 include it since we may get into a infinitely recursive
4617 situation. */
4618
4619 static void
4620 print_args (struct field *args, int nargs, int spaces)
4621 {
4622 if (args != NULL)
4623 {
4624 int i;
4625
4626 for (i = 0; i < nargs; i++)
4627 {
4628 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4629 args[i].name != NULL ? args[i].name : "<NULL>");
4630 recursive_dump_type (args[i].type, spaces + 2);
4631 }
4632 }
4633 }
4634
4635 int
4636 field_is_static (struct field *f)
4637 {
4638 /* "static" fields are the fields whose location is not relative
4639 to the address of the enclosing struct. It would be nice to
4640 have a dedicated flag that would be set for static fields when
4641 the type is being created. But in practice, checking the field
4642 loc_kind should give us an accurate answer. */
4643 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4644 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4645 }
4646
4647 static void
4648 dump_fn_fieldlists (struct type *type, int spaces)
4649 {
4650 int method_idx;
4651 int overload_idx;
4652 struct fn_field *f;
4653
4654 printfi_filtered (spaces, "fn_fieldlists ");
4655 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4656 printf_filtered ("\n");
4657 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4658 {
4659 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4660 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4661 method_idx,
4662 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4663 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4664 gdb_stdout);
4665 printf_filtered (_(") length %d\n"),
4666 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4667 for (overload_idx = 0;
4668 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4669 overload_idx++)
4670 {
4671 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4672 overload_idx,
4673 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4674 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4675 gdb_stdout);
4676 printf_filtered (")\n");
4677 printfi_filtered (spaces + 8, "type ");
4678 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4679 gdb_stdout);
4680 printf_filtered ("\n");
4681
4682 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4683 spaces + 8 + 2);
4684
4685 printfi_filtered (spaces + 8, "args ");
4686 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4687 gdb_stdout);
4688 printf_filtered ("\n");
4689 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4690 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4691 spaces + 8 + 2);
4692 printfi_filtered (spaces + 8, "fcontext ");
4693 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4694 gdb_stdout);
4695 printf_filtered ("\n");
4696
4697 printfi_filtered (spaces + 8, "is_const %d\n",
4698 TYPE_FN_FIELD_CONST (f, overload_idx));
4699 printfi_filtered (spaces + 8, "is_volatile %d\n",
4700 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4701 printfi_filtered (spaces + 8, "is_private %d\n",
4702 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4703 printfi_filtered (spaces + 8, "is_protected %d\n",
4704 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4705 printfi_filtered (spaces + 8, "is_stub %d\n",
4706 TYPE_FN_FIELD_STUB (f, overload_idx));
4707 printfi_filtered (spaces + 8, "defaulted %d\n",
4708 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4709 printfi_filtered (spaces + 8, "is_deleted %d\n",
4710 TYPE_FN_FIELD_DELETED (f, overload_idx));
4711 printfi_filtered (spaces + 8, "voffset %u\n",
4712 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4713 }
4714 }
4715 }
4716
4717 static void
4718 print_cplus_stuff (struct type *type, int spaces)
4719 {
4720 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4721 printfi_filtered (spaces, "vptr_basetype ");
4722 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4723 puts_filtered ("\n");
4724 if (TYPE_VPTR_BASETYPE (type) != NULL)
4725 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4726
4727 printfi_filtered (spaces, "n_baseclasses %d\n",
4728 TYPE_N_BASECLASSES (type));
4729 printfi_filtered (spaces, "nfn_fields %d\n",
4730 TYPE_NFN_FIELDS (type));
4731 if (TYPE_N_BASECLASSES (type) > 0)
4732 {
4733 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4734 TYPE_N_BASECLASSES (type));
4735 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4736 gdb_stdout);
4737 printf_filtered (")");
4738
4739 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4740 TYPE_N_BASECLASSES (type));
4741 puts_filtered ("\n");
4742 }
4743 if (TYPE_NFIELDS (type) > 0)
4744 {
4745 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4746 {
4747 printfi_filtered (spaces,
4748 "private_field_bits (%d bits at *",
4749 TYPE_NFIELDS (type));
4750 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4751 gdb_stdout);
4752 printf_filtered (")");
4753 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4754 TYPE_NFIELDS (type));
4755 puts_filtered ("\n");
4756 }
4757 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4758 {
4759 printfi_filtered (spaces,
4760 "protected_field_bits (%d bits at *",
4761 TYPE_NFIELDS (type));
4762 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4763 gdb_stdout);
4764 printf_filtered (")");
4765 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4766 TYPE_NFIELDS (type));
4767 puts_filtered ("\n");
4768 }
4769 }
4770 if (TYPE_NFN_FIELDS (type) > 0)
4771 {
4772 dump_fn_fieldlists (type, spaces);
4773 }
4774
4775 printfi_filtered (spaces, "calling_convention %d\n",
4776 TYPE_CPLUS_CALLING_CONVENTION (type));
4777 }
4778
4779 /* Print the contents of the TYPE's type_specific union, assuming that
4780 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4781
4782 static void
4783 print_gnat_stuff (struct type *type, int spaces)
4784 {
4785 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4786
4787 if (descriptive_type == NULL)
4788 printfi_filtered (spaces + 2, "no descriptive type\n");
4789 else
4790 {
4791 printfi_filtered (spaces + 2, "descriptive type\n");
4792 recursive_dump_type (descriptive_type, spaces + 4);
4793 }
4794 }
4795
4796 static struct obstack dont_print_type_obstack;
4797
4798 void
4799 recursive_dump_type (struct type *type, int spaces)
4800 {
4801 int idx;
4802
4803 if (spaces == 0)
4804 obstack_begin (&dont_print_type_obstack, 0);
4805
4806 if (TYPE_NFIELDS (type) > 0
4807 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4808 {
4809 struct type **first_dont_print
4810 = (struct type **) obstack_base (&dont_print_type_obstack);
4811
4812 int i = (struct type **)
4813 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4814
4815 while (--i >= 0)
4816 {
4817 if (type == first_dont_print[i])
4818 {
4819 printfi_filtered (spaces, "type node ");
4820 gdb_print_host_address (type, gdb_stdout);
4821 printf_filtered (_(" <same as already seen type>\n"));
4822 return;
4823 }
4824 }
4825
4826 obstack_ptr_grow (&dont_print_type_obstack, type);
4827 }
4828
4829 printfi_filtered (spaces, "type node ");
4830 gdb_print_host_address (type, gdb_stdout);
4831 printf_filtered ("\n");
4832 printfi_filtered (spaces, "name '%s' (",
4833 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4834 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4835 printf_filtered (")\n");
4836 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4837 switch (TYPE_CODE (type))
4838 {
4839 case TYPE_CODE_UNDEF:
4840 printf_filtered ("(TYPE_CODE_UNDEF)");
4841 break;
4842 case TYPE_CODE_PTR:
4843 printf_filtered ("(TYPE_CODE_PTR)");
4844 break;
4845 case TYPE_CODE_ARRAY:
4846 printf_filtered ("(TYPE_CODE_ARRAY)");
4847 break;
4848 case TYPE_CODE_STRUCT:
4849 printf_filtered ("(TYPE_CODE_STRUCT)");
4850 break;
4851 case TYPE_CODE_UNION:
4852 printf_filtered ("(TYPE_CODE_UNION)");
4853 break;
4854 case TYPE_CODE_ENUM:
4855 printf_filtered ("(TYPE_CODE_ENUM)");
4856 break;
4857 case TYPE_CODE_FLAGS:
4858 printf_filtered ("(TYPE_CODE_FLAGS)");
4859 break;
4860 case TYPE_CODE_FUNC:
4861 printf_filtered ("(TYPE_CODE_FUNC)");
4862 break;
4863 case TYPE_CODE_INT:
4864 printf_filtered ("(TYPE_CODE_INT)");
4865 break;
4866 case TYPE_CODE_FLT:
4867 printf_filtered ("(TYPE_CODE_FLT)");
4868 break;
4869 case TYPE_CODE_VOID:
4870 printf_filtered ("(TYPE_CODE_VOID)");
4871 break;
4872 case TYPE_CODE_SET:
4873 printf_filtered ("(TYPE_CODE_SET)");
4874 break;
4875 case TYPE_CODE_RANGE:
4876 printf_filtered ("(TYPE_CODE_RANGE)");
4877 break;
4878 case TYPE_CODE_STRING:
4879 printf_filtered ("(TYPE_CODE_STRING)");
4880 break;
4881 case TYPE_CODE_ERROR:
4882 printf_filtered ("(TYPE_CODE_ERROR)");
4883 break;
4884 case TYPE_CODE_MEMBERPTR:
4885 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4886 break;
4887 case TYPE_CODE_METHODPTR:
4888 printf_filtered ("(TYPE_CODE_METHODPTR)");
4889 break;
4890 case TYPE_CODE_METHOD:
4891 printf_filtered ("(TYPE_CODE_METHOD)");
4892 break;
4893 case TYPE_CODE_REF:
4894 printf_filtered ("(TYPE_CODE_REF)");
4895 break;
4896 case TYPE_CODE_CHAR:
4897 printf_filtered ("(TYPE_CODE_CHAR)");
4898 break;
4899 case TYPE_CODE_BOOL:
4900 printf_filtered ("(TYPE_CODE_BOOL)");
4901 break;
4902 case TYPE_CODE_COMPLEX:
4903 printf_filtered ("(TYPE_CODE_COMPLEX)");
4904 break;
4905 case TYPE_CODE_TYPEDEF:
4906 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4907 break;
4908 case TYPE_CODE_NAMESPACE:
4909 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4910 break;
4911 default:
4912 printf_filtered ("(UNKNOWN TYPE CODE)");
4913 break;
4914 }
4915 puts_filtered ("\n");
4916 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4917 if (TYPE_OBJFILE_OWNED (type))
4918 {
4919 printfi_filtered (spaces, "objfile ");
4920 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4921 }
4922 else
4923 {
4924 printfi_filtered (spaces, "gdbarch ");
4925 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4926 }
4927 printf_filtered ("\n");
4928 printfi_filtered (spaces, "target_type ");
4929 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4930 printf_filtered ("\n");
4931 if (TYPE_TARGET_TYPE (type) != NULL)
4932 {
4933 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4934 }
4935 printfi_filtered (spaces, "pointer_type ");
4936 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4937 printf_filtered ("\n");
4938 printfi_filtered (spaces, "reference_type ");
4939 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4940 printf_filtered ("\n");
4941 printfi_filtered (spaces, "type_chain ");
4942 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4943 printf_filtered ("\n");
4944 printfi_filtered (spaces, "instance_flags 0x%x",
4945 TYPE_INSTANCE_FLAGS (type));
4946 if (TYPE_CONST (type))
4947 {
4948 puts_filtered (" TYPE_CONST");
4949 }
4950 if (TYPE_VOLATILE (type))
4951 {
4952 puts_filtered (" TYPE_VOLATILE");
4953 }
4954 if (TYPE_CODE_SPACE (type))
4955 {
4956 puts_filtered (" TYPE_CODE_SPACE");
4957 }
4958 if (TYPE_DATA_SPACE (type))
4959 {
4960 puts_filtered (" TYPE_DATA_SPACE");
4961 }
4962 if (TYPE_ADDRESS_CLASS_1 (type))
4963 {
4964 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4965 }
4966 if (TYPE_ADDRESS_CLASS_2 (type))
4967 {
4968 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4969 }
4970 if (TYPE_RESTRICT (type))
4971 {
4972 puts_filtered (" TYPE_RESTRICT");
4973 }
4974 if (TYPE_ATOMIC (type))
4975 {
4976 puts_filtered (" TYPE_ATOMIC");
4977 }
4978 puts_filtered ("\n");
4979
4980 printfi_filtered (spaces, "flags");
4981 if (TYPE_UNSIGNED (type))
4982 {
4983 puts_filtered (" TYPE_UNSIGNED");
4984 }
4985 if (TYPE_NOSIGN (type))
4986 {
4987 puts_filtered (" TYPE_NOSIGN");
4988 }
4989 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4990 {
4991 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4992 }
4993 if (TYPE_STUB (type))
4994 {
4995 puts_filtered (" TYPE_STUB");
4996 }
4997 if (TYPE_TARGET_STUB (type))
4998 {
4999 puts_filtered (" TYPE_TARGET_STUB");
5000 }
5001 if (TYPE_PROTOTYPED (type))
5002 {
5003 puts_filtered (" TYPE_PROTOTYPED");
5004 }
5005 if (TYPE_INCOMPLETE (type))
5006 {
5007 puts_filtered (" TYPE_INCOMPLETE");
5008 }
5009 if (TYPE_VARARGS (type))
5010 {
5011 puts_filtered (" TYPE_VARARGS");
5012 }
5013 /* This is used for things like AltiVec registers on ppc. Gcc emits
5014 an attribute for the array type, which tells whether or not we
5015 have a vector, instead of a regular array. */
5016 if (TYPE_VECTOR (type))
5017 {
5018 puts_filtered (" TYPE_VECTOR");
5019 }
5020 if (TYPE_FIXED_INSTANCE (type))
5021 {
5022 puts_filtered (" TYPE_FIXED_INSTANCE");
5023 }
5024 if (TYPE_STUB_SUPPORTED (type))
5025 {
5026 puts_filtered (" TYPE_STUB_SUPPORTED");
5027 }
5028 if (TYPE_NOTTEXT (type))
5029 {
5030 puts_filtered (" TYPE_NOTTEXT");
5031 }
5032 puts_filtered ("\n");
5033 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
5034 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
5035 puts_filtered ("\n");
5036 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5037 {
5038 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5039 printfi_filtered (spaces + 2,
5040 "[%d] enumval %s type ",
5041 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5042 else
5043 printfi_filtered (spaces + 2,
5044 "[%d] bitpos %s bitsize %d type ",
5045 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5046 TYPE_FIELD_BITSIZE (type, idx));
5047 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5048 printf_filtered (" name '%s' (",
5049 TYPE_FIELD_NAME (type, idx) != NULL
5050 ? TYPE_FIELD_NAME (type, idx)
5051 : "<NULL>");
5052 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5053 printf_filtered (")\n");
5054 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5055 {
5056 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5057 }
5058 }
5059 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5060 {
5061 printfi_filtered (spaces, "low %s%s high %s%s\n",
5062 plongest (TYPE_LOW_BOUND (type)),
5063 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5064 plongest (TYPE_HIGH_BOUND (type)),
5065 TYPE_HIGH_BOUND_UNDEFINED (type)
5066 ? " (undefined)" : "");
5067 }
5068
5069 switch (TYPE_SPECIFIC_FIELD (type))
5070 {
5071 case TYPE_SPECIFIC_CPLUS_STUFF:
5072 printfi_filtered (spaces, "cplus_stuff ");
5073 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5074 gdb_stdout);
5075 puts_filtered ("\n");
5076 print_cplus_stuff (type, spaces);
5077 break;
5078
5079 case TYPE_SPECIFIC_GNAT_STUFF:
5080 printfi_filtered (spaces, "gnat_stuff ");
5081 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5082 puts_filtered ("\n");
5083 print_gnat_stuff (type, spaces);
5084 break;
5085
5086 case TYPE_SPECIFIC_FLOATFORMAT:
5087 printfi_filtered (spaces, "floatformat ");
5088 if (TYPE_FLOATFORMAT (type) == NULL
5089 || TYPE_FLOATFORMAT (type)->name == NULL)
5090 puts_filtered ("(null)");
5091 else
5092 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5093 puts_filtered ("\n");
5094 break;
5095
5096 case TYPE_SPECIFIC_FUNC:
5097 printfi_filtered (spaces, "calling_convention %d\n",
5098 TYPE_CALLING_CONVENTION (type));
5099 /* tail_call_list is not printed. */
5100 break;
5101
5102 case TYPE_SPECIFIC_SELF_TYPE:
5103 printfi_filtered (spaces, "self_type ");
5104 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5105 puts_filtered ("\n");
5106 break;
5107 }
5108
5109 if (spaces == 0)
5110 obstack_free (&dont_print_type_obstack, NULL);
5111 }
5112 \f
5113 /* Trivial helpers for the libiberty hash table, for mapping one
5114 type to another. */
5115
5116 struct type_pair : public allocate_on_obstack
5117 {
5118 type_pair (struct type *old_, struct type *newobj_)
5119 : old (old_), newobj (newobj_)
5120 {}
5121
5122 struct type * const old, * const newobj;
5123 };
5124
5125 static hashval_t
5126 type_pair_hash (const void *item)
5127 {
5128 const struct type_pair *pair = (const struct type_pair *) item;
5129
5130 return htab_hash_pointer (pair->old);
5131 }
5132
5133 static int
5134 type_pair_eq (const void *item_lhs, const void *item_rhs)
5135 {
5136 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5137 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5138
5139 return lhs->old == rhs->old;
5140 }
5141
5142 /* Allocate the hash table used by copy_type_recursive to walk
5143 types without duplicates. We use OBJFILE's obstack, because
5144 OBJFILE is about to be deleted. */
5145
5146 htab_t
5147 create_copied_types_hash (struct objfile *objfile)
5148 {
5149 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5150 NULL, &objfile->objfile_obstack,
5151 hashtab_obstack_allocate,
5152 dummy_obstack_deallocate);
5153 }
5154
5155 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5156
5157 static struct dynamic_prop_list *
5158 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5159 struct dynamic_prop_list *list)
5160 {
5161 struct dynamic_prop_list *copy = list;
5162 struct dynamic_prop_list **node_ptr = &copy;
5163
5164 while (*node_ptr != NULL)
5165 {
5166 struct dynamic_prop_list *node_copy;
5167
5168 node_copy = ((struct dynamic_prop_list *)
5169 obstack_copy (objfile_obstack, *node_ptr,
5170 sizeof (struct dynamic_prop_list)));
5171 node_copy->prop = (*node_ptr)->prop;
5172 *node_ptr = node_copy;
5173
5174 node_ptr = &node_copy->next;
5175 }
5176
5177 return copy;
5178 }
5179
5180 /* Recursively copy (deep copy) TYPE, if it is associated with
5181 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5182 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5183 it is not associated with OBJFILE. */
5184
5185 struct type *
5186 copy_type_recursive (struct objfile *objfile,
5187 struct type *type,
5188 htab_t copied_types)
5189 {
5190 void **slot;
5191 struct type *new_type;
5192
5193 if (! TYPE_OBJFILE_OWNED (type))
5194 return type;
5195
5196 /* This type shouldn't be pointing to any types in other objfiles;
5197 if it did, the type might disappear unexpectedly. */
5198 gdb_assert (TYPE_OBJFILE (type) == objfile);
5199
5200 struct type_pair pair (type, nullptr);
5201
5202 slot = htab_find_slot (copied_types, &pair, INSERT);
5203 if (*slot != NULL)
5204 return ((struct type_pair *) *slot)->newobj;
5205
5206 new_type = alloc_type_arch (get_type_arch (type));
5207
5208 /* We must add the new type to the hash table immediately, in case
5209 we encounter this type again during a recursive call below. */
5210 struct type_pair *stored
5211 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5212
5213 *slot = stored;
5214
5215 /* Copy the common fields of types. For the main type, we simply
5216 copy the entire thing and then update specific fields as needed. */
5217 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5218 TYPE_OBJFILE_OWNED (new_type) = 0;
5219 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5220
5221 if (TYPE_NAME (type))
5222 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5223
5224 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5225 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5226
5227 /* Copy the fields. */
5228 if (TYPE_NFIELDS (type))
5229 {
5230 int i, nfields;
5231
5232 nfields = TYPE_NFIELDS (type);
5233 TYPE_FIELDS (new_type) = (struct field *)
5234 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5235 for (i = 0; i < nfields; i++)
5236 {
5237 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5238 TYPE_FIELD_ARTIFICIAL (type, i);
5239 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5240 if (TYPE_FIELD_TYPE (type, i))
5241 TYPE_FIELD_TYPE (new_type, i)
5242 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5243 copied_types);
5244 if (TYPE_FIELD_NAME (type, i))
5245 TYPE_FIELD_NAME (new_type, i) =
5246 xstrdup (TYPE_FIELD_NAME (type, i));
5247 switch (TYPE_FIELD_LOC_KIND (type, i))
5248 {
5249 case FIELD_LOC_KIND_BITPOS:
5250 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5251 TYPE_FIELD_BITPOS (type, i));
5252 break;
5253 case FIELD_LOC_KIND_ENUMVAL:
5254 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5255 TYPE_FIELD_ENUMVAL (type, i));
5256 break;
5257 case FIELD_LOC_KIND_PHYSADDR:
5258 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5259 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5260 break;
5261 case FIELD_LOC_KIND_PHYSNAME:
5262 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5263 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5264 i)));
5265 break;
5266 default:
5267 internal_error (__FILE__, __LINE__,
5268 _("Unexpected type field location kind: %d"),
5269 TYPE_FIELD_LOC_KIND (type, i));
5270 }
5271 }
5272 }
5273
5274 /* For range types, copy the bounds information. */
5275 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5276 {
5277 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5278 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5279 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5280 }
5281
5282 if (TYPE_DYN_PROP_LIST (type) != NULL)
5283 TYPE_DYN_PROP_LIST (new_type)
5284 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5285 TYPE_DYN_PROP_LIST (type));
5286
5287
5288 /* Copy pointers to other types. */
5289 if (TYPE_TARGET_TYPE (type))
5290 TYPE_TARGET_TYPE (new_type) =
5291 copy_type_recursive (objfile,
5292 TYPE_TARGET_TYPE (type),
5293 copied_types);
5294
5295 /* Maybe copy the type_specific bits.
5296
5297 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5298 base classes and methods. There's no fundamental reason why we
5299 can't, but at the moment it is not needed. */
5300
5301 switch (TYPE_SPECIFIC_FIELD (type))
5302 {
5303 case TYPE_SPECIFIC_NONE:
5304 break;
5305 case TYPE_SPECIFIC_FUNC:
5306 INIT_FUNC_SPECIFIC (new_type);
5307 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5308 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5309 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5310 break;
5311 case TYPE_SPECIFIC_FLOATFORMAT:
5312 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5313 break;
5314 case TYPE_SPECIFIC_CPLUS_STUFF:
5315 INIT_CPLUS_SPECIFIC (new_type);
5316 break;
5317 case TYPE_SPECIFIC_GNAT_STUFF:
5318 INIT_GNAT_SPECIFIC (new_type);
5319 break;
5320 case TYPE_SPECIFIC_SELF_TYPE:
5321 set_type_self_type (new_type,
5322 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5323 copied_types));
5324 break;
5325 default:
5326 gdb_assert_not_reached ("bad type_specific_kind");
5327 }
5328
5329 return new_type;
5330 }
5331
5332 /* Make a copy of the given TYPE, except that the pointer & reference
5333 types are not preserved.
5334
5335 This function assumes that the given type has an associated objfile.
5336 This objfile is used to allocate the new type. */
5337
5338 struct type *
5339 copy_type (const struct type *type)
5340 {
5341 struct type *new_type;
5342
5343 gdb_assert (TYPE_OBJFILE_OWNED (type));
5344
5345 new_type = alloc_type_copy (type);
5346 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5347 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5348 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5349 sizeof (struct main_type));
5350 if (TYPE_DYN_PROP_LIST (type) != NULL)
5351 TYPE_DYN_PROP_LIST (new_type)
5352 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5353 TYPE_DYN_PROP_LIST (type));
5354
5355 return new_type;
5356 }
5357 \f
5358 /* Helper functions to initialize architecture-specific types. */
5359
5360 /* Allocate a type structure associated with GDBARCH and set its
5361 CODE, LENGTH, and NAME fields. */
5362
5363 struct type *
5364 arch_type (struct gdbarch *gdbarch,
5365 enum type_code code, int bit, const char *name)
5366 {
5367 struct type *type;
5368
5369 type = alloc_type_arch (gdbarch);
5370 set_type_code (type, code);
5371 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5372 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5373
5374 if (name)
5375 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5376
5377 return type;
5378 }
5379
5380 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5381 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5382 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5383
5384 struct type *
5385 arch_integer_type (struct gdbarch *gdbarch,
5386 int bit, int unsigned_p, const char *name)
5387 {
5388 struct type *t;
5389
5390 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5391 if (unsigned_p)
5392 TYPE_UNSIGNED (t) = 1;
5393
5394 return t;
5395 }
5396
5397 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5398 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5399 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5400
5401 struct type *
5402 arch_character_type (struct gdbarch *gdbarch,
5403 int bit, int unsigned_p, const char *name)
5404 {
5405 struct type *t;
5406
5407 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5408 if (unsigned_p)
5409 TYPE_UNSIGNED (t) = 1;
5410
5411 return t;
5412 }
5413
5414 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5415 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5416 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5417
5418 struct type *
5419 arch_boolean_type (struct gdbarch *gdbarch,
5420 int bit, int unsigned_p, const char *name)
5421 {
5422 struct type *t;
5423
5424 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5425 if (unsigned_p)
5426 TYPE_UNSIGNED (t) = 1;
5427
5428 return t;
5429 }
5430
5431 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5432 BIT is the type size in bits; if BIT equals -1, the size is
5433 determined by the floatformat. NAME is the type name. Set the
5434 TYPE_FLOATFORMAT from FLOATFORMATS. */
5435
5436 struct type *
5437 arch_float_type (struct gdbarch *gdbarch,
5438 int bit, const char *name,
5439 const struct floatformat **floatformats)
5440 {
5441 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5442 struct type *t;
5443
5444 bit = verify_floatformat (bit, fmt);
5445 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5446 TYPE_FLOATFORMAT (t) = fmt;
5447
5448 return t;
5449 }
5450
5451 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5452 BIT is the type size in bits. NAME is the type name. */
5453
5454 struct type *
5455 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5456 {
5457 struct type *t;
5458
5459 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5460 return t;
5461 }
5462
5463 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5464 BIT is the pointer type size in bits. NAME is the type name.
5465 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5466 TYPE_UNSIGNED flag. */
5467
5468 struct type *
5469 arch_pointer_type (struct gdbarch *gdbarch,
5470 int bit, const char *name, struct type *target_type)
5471 {
5472 struct type *t;
5473
5474 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5475 TYPE_TARGET_TYPE (t) = target_type;
5476 TYPE_UNSIGNED (t) = 1;
5477 return t;
5478 }
5479
5480 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5481 NAME is the type name. BIT is the size of the flag word in bits. */
5482
5483 struct type *
5484 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5485 {
5486 struct type *type;
5487
5488 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5489 TYPE_UNSIGNED (type) = 1;
5490 TYPE_NFIELDS (type) = 0;
5491 /* Pre-allocate enough space assuming every field is one bit. */
5492 TYPE_FIELDS (type)
5493 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5494
5495 return type;
5496 }
5497
5498 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5499 position BITPOS is called NAME. Pass NAME as "" for fields that
5500 should not be printed. */
5501
5502 void
5503 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5504 struct type *field_type, const char *name)
5505 {
5506 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5507 int field_nr = TYPE_NFIELDS (type);
5508
5509 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5510 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5511 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5512 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5513 gdb_assert (name != NULL);
5514
5515 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5516 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5517 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5518 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5519 ++TYPE_NFIELDS (type);
5520 }
5521
5522 /* Special version of append_flags_type_field to add a flag field.
5523 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5524 position BITPOS is called NAME. */
5525
5526 void
5527 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5528 {
5529 struct gdbarch *gdbarch = get_type_arch (type);
5530
5531 append_flags_type_field (type, bitpos, 1,
5532 builtin_type (gdbarch)->builtin_bool,
5533 name);
5534 }
5535
5536 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5537 specified by CODE) associated with GDBARCH. NAME is the type name. */
5538
5539 struct type *
5540 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5541 enum type_code code)
5542 {
5543 struct type *t;
5544
5545 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5546 t = arch_type (gdbarch, code, 0, NULL);
5547 TYPE_NAME (t) = name;
5548 INIT_CPLUS_SPECIFIC (t);
5549 return t;
5550 }
5551
5552 /* Add new field with name NAME and type FIELD to composite type T.
5553 Do not set the field's position or adjust the type's length;
5554 the caller should do so. Return the new field. */
5555
5556 struct field *
5557 append_composite_type_field_raw (struct type *t, const char *name,
5558 struct type *field)
5559 {
5560 struct field *f;
5561
5562 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5563 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5564 TYPE_NFIELDS (t));
5565 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5566 memset (f, 0, sizeof f[0]);
5567 FIELD_TYPE (f[0]) = field;
5568 FIELD_NAME (f[0]) = name;
5569 return f;
5570 }
5571
5572 /* Add new field with name NAME and type FIELD to composite type T.
5573 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5574
5575 void
5576 append_composite_type_field_aligned (struct type *t, const char *name,
5577 struct type *field, int alignment)
5578 {
5579 struct field *f = append_composite_type_field_raw (t, name, field);
5580
5581 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5582 {
5583 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5584 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5585 }
5586 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5587 {
5588 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5589 if (TYPE_NFIELDS (t) > 1)
5590 {
5591 SET_FIELD_BITPOS (f[0],
5592 (FIELD_BITPOS (f[-1])
5593 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5594 * TARGET_CHAR_BIT)));
5595
5596 if (alignment)
5597 {
5598 int left;
5599
5600 alignment *= TARGET_CHAR_BIT;
5601 left = FIELD_BITPOS (f[0]) % alignment;
5602
5603 if (left)
5604 {
5605 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5606 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5607 }
5608 }
5609 }
5610 }
5611 }
5612
5613 /* Add new field with name NAME and type FIELD to composite type T. */
5614
5615 void
5616 append_composite_type_field (struct type *t, const char *name,
5617 struct type *field)
5618 {
5619 append_composite_type_field_aligned (t, name, field, 0);
5620 }
5621
5622 static struct gdbarch_data *gdbtypes_data;
5623
5624 const struct builtin_type *
5625 builtin_type (struct gdbarch *gdbarch)
5626 {
5627 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5628 }
5629
5630 static void *
5631 gdbtypes_post_init (struct gdbarch *gdbarch)
5632 {
5633 struct builtin_type *builtin_type
5634 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5635
5636 /* Basic types. */
5637 builtin_type->builtin_void
5638 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5639 builtin_type->builtin_char
5640 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5641 !gdbarch_char_signed (gdbarch), "char");
5642 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5643 builtin_type->builtin_signed_char
5644 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5645 0, "signed char");
5646 builtin_type->builtin_unsigned_char
5647 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5648 1, "unsigned char");
5649 builtin_type->builtin_short
5650 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5651 0, "short");
5652 builtin_type->builtin_unsigned_short
5653 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5654 1, "unsigned short");
5655 builtin_type->builtin_int
5656 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5657 0, "int");
5658 builtin_type->builtin_unsigned_int
5659 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5660 1, "unsigned int");
5661 builtin_type->builtin_long
5662 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5663 0, "long");
5664 builtin_type->builtin_unsigned_long
5665 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5666 1, "unsigned long");
5667 builtin_type->builtin_long_long
5668 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5669 0, "long long");
5670 builtin_type->builtin_unsigned_long_long
5671 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5672 1, "unsigned long long");
5673 builtin_type->builtin_half
5674 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5675 "half", gdbarch_half_format (gdbarch));
5676 builtin_type->builtin_float
5677 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5678 "float", gdbarch_float_format (gdbarch));
5679 builtin_type->builtin_double
5680 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5681 "double", gdbarch_double_format (gdbarch));
5682 builtin_type->builtin_long_double
5683 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5684 "long double", gdbarch_long_double_format (gdbarch));
5685 builtin_type->builtin_complex
5686 = init_complex_type ("complex", builtin_type->builtin_float);
5687 builtin_type->builtin_double_complex
5688 = init_complex_type ("double complex", builtin_type->builtin_double);
5689 builtin_type->builtin_string
5690 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5691 builtin_type->builtin_bool
5692 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5693
5694 /* The following three are about decimal floating point types, which
5695 are 32-bits, 64-bits and 128-bits respectively. */
5696 builtin_type->builtin_decfloat
5697 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5698 builtin_type->builtin_decdouble
5699 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5700 builtin_type->builtin_declong
5701 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5702
5703 /* "True" character types. */
5704 builtin_type->builtin_true_char
5705 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5706 builtin_type->builtin_true_unsigned_char
5707 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5708
5709 /* Fixed-size integer types. */
5710 builtin_type->builtin_int0
5711 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5712 builtin_type->builtin_int8
5713 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5714 builtin_type->builtin_uint8
5715 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5716 builtin_type->builtin_int16
5717 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5718 builtin_type->builtin_uint16
5719 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5720 builtin_type->builtin_int24
5721 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5722 builtin_type->builtin_uint24
5723 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5724 builtin_type->builtin_int32
5725 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5726 builtin_type->builtin_uint32
5727 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5728 builtin_type->builtin_int64
5729 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5730 builtin_type->builtin_uint64
5731 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5732 builtin_type->builtin_int128
5733 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5734 builtin_type->builtin_uint128
5735 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5736 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5737 TYPE_INSTANCE_FLAG_NOTTEXT;
5738 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5739 TYPE_INSTANCE_FLAG_NOTTEXT;
5740
5741 /* Wide character types. */
5742 builtin_type->builtin_char16
5743 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5744 builtin_type->builtin_char32
5745 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5746 builtin_type->builtin_wchar
5747 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5748 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5749
5750 /* Default data/code pointer types. */
5751 builtin_type->builtin_data_ptr
5752 = lookup_pointer_type (builtin_type->builtin_void);
5753 builtin_type->builtin_func_ptr
5754 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5755 builtin_type->builtin_func_func
5756 = lookup_function_type (builtin_type->builtin_func_ptr);
5757
5758 /* This type represents a GDB internal function. */
5759 builtin_type->internal_fn
5760 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5761 "<internal function>");
5762
5763 /* This type represents an xmethod. */
5764 builtin_type->xmethod
5765 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5766
5767 return builtin_type;
5768 }
5769
5770 /* This set of objfile-based types is intended to be used by symbol
5771 readers as basic types. */
5772
5773 static const struct objfile_key<struct objfile_type,
5774 gdb::noop_deleter<struct objfile_type>>
5775 objfile_type_data;
5776
5777 const struct objfile_type *
5778 objfile_type (struct objfile *objfile)
5779 {
5780 struct gdbarch *gdbarch;
5781 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5782
5783 if (objfile_type)
5784 return objfile_type;
5785
5786 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5787 1, struct objfile_type);
5788
5789 /* Use the objfile architecture to determine basic type properties. */
5790 gdbarch = objfile->arch ();
5791
5792 /* Basic types. */
5793 objfile_type->builtin_void
5794 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5795 objfile_type->builtin_char
5796 = init_integer_type (objfile, TARGET_CHAR_BIT,
5797 !gdbarch_char_signed (gdbarch), "char");
5798 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5799 objfile_type->builtin_signed_char
5800 = init_integer_type (objfile, TARGET_CHAR_BIT,
5801 0, "signed char");
5802 objfile_type->builtin_unsigned_char
5803 = init_integer_type (objfile, TARGET_CHAR_BIT,
5804 1, "unsigned char");
5805 objfile_type->builtin_short
5806 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5807 0, "short");
5808 objfile_type->builtin_unsigned_short
5809 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5810 1, "unsigned short");
5811 objfile_type->builtin_int
5812 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5813 0, "int");
5814 objfile_type->builtin_unsigned_int
5815 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5816 1, "unsigned int");
5817 objfile_type->builtin_long
5818 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5819 0, "long");
5820 objfile_type->builtin_unsigned_long
5821 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5822 1, "unsigned long");
5823 objfile_type->builtin_long_long
5824 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5825 0, "long long");
5826 objfile_type->builtin_unsigned_long_long
5827 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5828 1, "unsigned long long");
5829 objfile_type->builtin_float
5830 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5831 "float", gdbarch_float_format (gdbarch));
5832 objfile_type->builtin_double
5833 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5834 "double", gdbarch_double_format (gdbarch));
5835 objfile_type->builtin_long_double
5836 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5837 "long double", gdbarch_long_double_format (gdbarch));
5838
5839 /* This type represents a type that was unrecognized in symbol read-in. */
5840 objfile_type->builtin_error
5841 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5842
5843 /* The following set of types is used for symbols with no
5844 debug information. */
5845 objfile_type->nodebug_text_symbol
5846 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5847 "<text variable, no debug info>");
5848 objfile_type->nodebug_text_gnu_ifunc_symbol
5849 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5850 "<text gnu-indirect-function variable, no debug info>");
5851 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5852 objfile_type->nodebug_got_plt_symbol
5853 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5854 "<text from jump slot in .got.plt, no debug info>",
5855 objfile_type->nodebug_text_symbol);
5856 objfile_type->nodebug_data_symbol
5857 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5858 objfile_type->nodebug_unknown_symbol
5859 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5860 objfile_type->nodebug_tls_symbol
5861 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5862
5863 /* NOTE: on some targets, addresses and pointers are not necessarily
5864 the same.
5865
5866 The upshot is:
5867 - gdb's `struct type' always describes the target's
5868 representation.
5869 - gdb's `struct value' objects should always hold values in
5870 target form.
5871 - gdb's CORE_ADDR values are addresses in the unified virtual
5872 address space that the assembler and linker work with. Thus,
5873 since target_read_memory takes a CORE_ADDR as an argument, it
5874 can access any memory on the target, even if the processor has
5875 separate code and data address spaces.
5876
5877 In this context, objfile_type->builtin_core_addr is a bit odd:
5878 it's a target type for a value the target will never see. It's
5879 only used to hold the values of (typeless) linker symbols, which
5880 are indeed in the unified virtual address space. */
5881
5882 objfile_type->builtin_core_addr
5883 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5884 "__CORE_ADDR");
5885
5886 objfile_type_data.set (objfile, objfile_type);
5887 return objfile_type;
5888 }
5889
5890 void _initialize_gdbtypes ();
5891 void
5892 _initialize_gdbtypes ()
5893 {
5894 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5895
5896 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5897 _("Set debugging of C++ overloading."),
5898 _("Show debugging of C++ overloading."),
5899 _("When enabled, ranking of the "
5900 "functions is displayed."),
5901 NULL,
5902 show_overload_debug,
5903 &setdebuglist, &showdebuglist);
5904
5905 /* Add user knob for controlling resolution of opaque types. */
5906 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5907 &opaque_type_resolution,
5908 _("Set resolution of opaque struct/class/union"
5909 " types (if set before loading symbols)."),
5910 _("Show resolution of opaque struct/class/union"
5911 " types (if set before loading symbols)."),
5912 NULL, NULL,
5913 show_opaque_type_resolution,
5914 &setlist, &showlist);
5915
5916 /* Add an option to permit non-strict type checking. */
5917 add_setshow_boolean_cmd ("type", class_support,
5918 &strict_type_checking,
5919 _("Set strict type checking."),
5920 _("Show strict type checking."),
5921 NULL, NULL,
5922 show_strict_type_checking,
5923 &setchecklist, &showchecklist);
5924 }
This page took 0.140337 seconds and 5 git commands to generate.