4d574e229a953a51f105fddfa181798b08687f07
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Not textual. By default, GDB treats all single byte integers as
214 characters (or elements of strings) unless this flag is set. */
215
216 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
217
218 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
219 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
220 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
221
222 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
223 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
224 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
225
226 /* * True if this type was declared using the "class" keyword. This is
227 only valid for C++ structure and enum types. If false, a structure
228 was declared as a "struct"; if true it was declared "class". For
229 enum types, this is true when "enum class" or "enum struct" was
230 used to declare the type.. */
231
232 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
233
234 /* * True if this type is a "flag" enum. A flag enum is one where all
235 the values are pairwise disjoint when "and"ed together. This
236 affects how enum values are printed. */
237
238 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
239
240 /* * Constant type. If this is set, the corresponding type has a
241 const modifier. */
242
243 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
244
245 /* * Volatile type. If this is set, the corresponding type has a
246 volatile modifier. */
247
248 #define TYPE_VOLATILE(t) \
249 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
250
251 /* * Restrict type. If this is set, the corresponding type has a
252 restrict modifier. */
253
254 #define TYPE_RESTRICT(t) \
255 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
256
257 /* * Atomic type. If this is set, the corresponding type has an
258 _Atomic modifier. */
259
260 #define TYPE_ATOMIC(t) \
261 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
262
263 /* * True if this type represents either an lvalue or lvalue reference type. */
264
265 #define TYPE_IS_REFERENCE(t) \
266 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
267
268 /* * True if this type is allocatable. */
269 #define TYPE_IS_ALLOCATABLE(t) \
270 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
271
272 /* * True if this type has variant parts. */
273 #define TYPE_HAS_VARIANT_PARTS(t) \
274 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
275
276 /* * True if this type has a dynamic length. */
277 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
278 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
279
280 /* * Instruction-space delimited type. This is for Harvard architectures
281 which have separate instruction and data address spaces (and perhaps
282 others).
283
284 GDB usually defines a flat address space that is a superset of the
285 architecture's two (or more) address spaces, but this is an extension
286 of the architecture's model.
287
288 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
289 resides in instruction memory, even if its address (in the extended
290 flat address space) does not reflect this.
291
292 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
293 corresponding type resides in the data memory space, even if
294 this is not indicated by its (flat address space) address.
295
296 If neither flag is set, the default space for functions / methods
297 is instruction space, and for data objects is data memory. */
298
299 #define TYPE_CODE_SPACE(t) \
300 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
301
302 #define TYPE_DATA_SPACE(t) \
303 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
304
305 /* * Address class flags. Some environments provide for pointers
306 whose size is different from that of a normal pointer or address
307 types where the bits are interpreted differently than normal
308 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
309 target specific ways to represent these different types of address
310 classes. */
311
312 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
313 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
314 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
315 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
316 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
317 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
318 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
319 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
320
321 /* * Information about a single discriminant. */
322
323 struct discriminant_range
324 {
325 /* * The range of values for the variant. This is an inclusive
326 range. */
327 ULONGEST low, high;
328
329 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
330 is true if this should be an unsigned comparison; false for
331 signed. */
332 bool contains (ULONGEST value, bool is_unsigned) const
333 {
334 if (is_unsigned)
335 return value >= low && value <= high;
336 LONGEST valuel = (LONGEST) value;
337 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
338 }
339 };
340
341 struct variant_part;
342
343 /* * A single variant. A variant has a list of discriminant values.
344 When the discriminator matches one of these, the variant is
345 enabled. Each variant controls zero or more fields; and may also
346 control other variant parts as well. This struct corresponds to
347 DW_TAG_variant in DWARF. */
348
349 struct variant : allocate_on_obstack
350 {
351 /* * The discriminant ranges for this variant. */
352 gdb::array_view<discriminant_range> discriminants;
353
354 /* * The fields controlled by this variant. This is inclusive on
355 the low end and exclusive on the high end. A variant may not
356 control any fields, in which case the two values will be equal.
357 These are indexes into the type's array of fields. */
358 int first_field;
359 int last_field;
360
361 /* * Variant parts controlled by this variant. */
362 gdb::array_view<variant_part> parts;
363
364 /* * Return true if this is the default variant. The default
365 variant can be recognized because it has no associated
366 discriminants. */
367 bool is_default () const
368 {
369 return discriminants.empty ();
370 }
371
372 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
373 if this should be an unsigned comparison; false for signed. */
374 bool matches (ULONGEST value, bool is_unsigned) const;
375 };
376
377 /* * A variant part. Each variant part has an optional discriminant
378 and holds an array of variants. This struct corresponds to
379 DW_TAG_variant_part in DWARF. */
380
381 struct variant_part : allocate_on_obstack
382 {
383 /* * The index of the discriminant field in the outer type. This is
384 an index into the type's array of fields. If this is -1, there
385 is no discriminant, and only the default variant can be
386 considered to be selected. */
387 int discriminant_index;
388
389 /* * True if this discriminant is unsigned; false if signed. This
390 comes from the type of the discriminant. */
391 bool is_unsigned;
392
393 /* * The variants that are controlled by this variant part. Note
394 that these will always be sorted by field number. */
395 gdb::array_view<variant> variants;
396 };
397
398
399 enum dynamic_prop_kind
400 {
401 PROP_UNDEFINED, /* Not defined. */
402 PROP_CONST, /* Constant. */
403 PROP_ADDR_OFFSET, /* Address offset. */
404 PROP_LOCEXPR, /* Location expression. */
405 PROP_LOCLIST, /* Location list. */
406 PROP_VARIANT_PARTS, /* Variant parts. */
407 PROP_TYPE, /* Type. */
408 };
409
410 union dynamic_prop_data
411 {
412 /* Storage for constant property. */
413
414 LONGEST const_val;
415
416 /* Storage for dynamic property. */
417
418 void *baton;
419
420 /* Storage of variant parts for a type. A type with variant parts
421 has all its fields "linearized" -- stored in a single field
422 array, just as if they had all been declared that way. The
423 variant parts are attached via a dynamic property, and then are
424 used to control which fields end up in the final type during
425 dynamic type resolution. */
426
427 const gdb::array_view<variant_part> *variant_parts;
428
429 /* Once a variant type is resolved, we may want to be able to go
430 from the resolved type to the original type. In this case we
431 rewrite the property's kind and set this field. */
432
433 struct type *original_type;
434 };
435
436 /* * Used to store a dynamic property. */
437
438 struct dynamic_prop
439 {
440 dynamic_prop_kind kind () const
441 {
442 return m_kind;
443 }
444
445 void set_undefined ()
446 {
447 m_kind = PROP_UNDEFINED;
448 }
449
450 LONGEST const_val () const
451 {
452 gdb_assert (m_kind == PROP_CONST);
453
454 return m_data.const_val;
455 }
456
457 void set_const_val (LONGEST const_val)
458 {
459 m_kind = PROP_CONST;
460 m_data.const_val = const_val;
461 }
462
463 void *baton () const
464 {
465 gdb_assert (m_kind == PROP_LOCEXPR
466 || m_kind == PROP_LOCLIST
467 || m_kind == PROP_ADDR_OFFSET);
468
469 return m_data.baton;
470 }
471
472 void set_locexpr (void *baton)
473 {
474 m_kind = PROP_LOCEXPR;
475 m_data.baton = baton;
476 }
477
478 void set_loclist (void *baton)
479 {
480 m_kind = PROP_LOCLIST;
481 m_data.baton = baton;
482 }
483
484 void set_addr_offset (void *baton)
485 {
486 m_kind = PROP_ADDR_OFFSET;
487 m_data.baton = baton;
488 }
489
490 const gdb::array_view<variant_part> *variant_parts () const
491 {
492 gdb_assert (m_kind == PROP_VARIANT_PARTS);
493
494 return m_data.variant_parts;
495 }
496
497 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
498 {
499 m_kind = PROP_VARIANT_PARTS;
500 m_data.variant_parts = variant_parts;
501 }
502
503 struct type *original_type () const
504 {
505 gdb_assert (m_kind == PROP_TYPE);
506
507 return m_data.original_type;
508 }
509
510 void set_original_type (struct type *original_type)
511 {
512 m_kind = PROP_TYPE;
513 m_data.original_type = original_type;
514 }
515
516 /* Determine which field of the union dynamic_prop.data is used. */
517 enum dynamic_prop_kind m_kind;
518
519 /* Storage for dynamic or static value. */
520 union dynamic_prop_data m_data;
521 };
522
523 /* Compare two dynamic_prop objects for equality. dynamic_prop
524 instances are equal iff they have the same type and storage. */
525 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
526
527 /* Compare two dynamic_prop objects for inequality. */
528 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
529 {
530 return !(l == r);
531 }
532
533 /* * Define a type's dynamic property node kind. */
534 enum dynamic_prop_node_kind
535 {
536 /* A property providing a type's data location.
537 Evaluating this field yields to the location of an object's data. */
538 DYN_PROP_DATA_LOCATION,
539
540 /* A property representing DW_AT_allocated. The presence of this attribute
541 indicates that the object of the type can be allocated/deallocated. */
542 DYN_PROP_ALLOCATED,
543
544 /* A property representing DW_AT_associated. The presence of this attribute
545 indicated that the object of the type can be associated. */
546 DYN_PROP_ASSOCIATED,
547
548 /* A property providing an array's byte stride. */
549 DYN_PROP_BYTE_STRIDE,
550
551 /* A property holding variant parts. */
552 DYN_PROP_VARIANT_PARTS,
553
554 /* A property holding the size of the type. */
555 DYN_PROP_BYTE_SIZE,
556 };
557
558 /* * List for dynamic type attributes. */
559 struct dynamic_prop_list
560 {
561 /* The kind of dynamic prop in this node. */
562 enum dynamic_prop_node_kind prop_kind;
563
564 /* The dynamic property itself. */
565 struct dynamic_prop prop;
566
567 /* A pointer to the next dynamic property. */
568 struct dynamic_prop_list *next;
569 };
570
571 /* * Determine which field of the union main_type.fields[x].loc is
572 used. */
573
574 enum field_loc_kind
575 {
576 FIELD_LOC_KIND_BITPOS, /**< bitpos */
577 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
578 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
579 FIELD_LOC_KIND_PHYSNAME, /**< physname */
580 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
581 };
582
583 /* * A discriminant to determine which field in the
584 main_type.type_specific union is being used, if any.
585
586 For types such as TYPE_CODE_FLT, the use of this
587 discriminant is really redundant, as we know from the type code
588 which field is going to be used. As such, it would be possible to
589 reduce the size of this enum in order to save a bit or two for
590 other fields of struct main_type. But, since we still have extra
591 room , and for the sake of clarity and consistency, we treat all fields
592 of the union the same way. */
593
594 enum type_specific_kind
595 {
596 TYPE_SPECIFIC_NONE,
597 TYPE_SPECIFIC_CPLUS_STUFF,
598 TYPE_SPECIFIC_GNAT_STUFF,
599 TYPE_SPECIFIC_FLOATFORMAT,
600 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
601 TYPE_SPECIFIC_FUNC,
602 TYPE_SPECIFIC_SELF_TYPE,
603 TYPE_SPECIFIC_INT
604 };
605
606 union type_owner
607 {
608 struct objfile *objfile;
609 struct gdbarch *gdbarch;
610 };
611
612 union field_location
613 {
614 /* * Position of this field, counting in bits from start of
615 containing structure. For big-endian targets, it is the bit
616 offset to the MSB. For little-endian targets, it is the bit
617 offset to the LSB. */
618
619 LONGEST bitpos;
620
621 /* * Enum value. */
622 LONGEST enumval;
623
624 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
625 physaddr is the location (in the target) of the static
626 field. Otherwise, physname is the mangled label of the
627 static field. */
628
629 CORE_ADDR physaddr;
630 const char *physname;
631
632 /* * The field location can be computed by evaluating the
633 following DWARF block. Its DATA is allocated on
634 objfile_obstack - no CU load is needed to access it. */
635
636 struct dwarf2_locexpr_baton *dwarf_block;
637 };
638
639 struct field
640 {
641 struct type *type () const
642 {
643 return this->m_type;
644 }
645
646 void set_type (struct type *type)
647 {
648 this->m_type = type;
649 }
650
651 union field_location loc;
652
653 /* * For a function or member type, this is 1 if the argument is
654 marked artificial. Artificial arguments should not be shown
655 to the user. For TYPE_CODE_RANGE it is set if the specific
656 bound is not defined. */
657
658 unsigned int artificial : 1;
659
660 /* * Discriminant for union field_location. */
661
662 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
663
664 /* * Size of this field, in bits, or zero if not packed.
665 If non-zero in an array type, indicates the element size in
666 bits (used only in Ada at the moment).
667 For an unpacked field, the field's type's length
668 says how many bytes the field occupies. */
669
670 unsigned int bitsize : 28;
671
672 /* * In a struct or union type, type of this field.
673 - In a function or member type, type of this argument.
674 - In an array type, the domain-type of the array. */
675
676 struct type *m_type;
677
678 /* * Name of field, value or argument.
679 NULL for range bounds, array domains, and member function
680 arguments. */
681
682 const char *name;
683 };
684
685 struct range_bounds
686 {
687 ULONGEST bit_stride () const
688 {
689 if (this->flag_is_byte_stride)
690 return this->stride.const_val () * 8;
691 else
692 return this->stride.const_val ();
693 }
694
695 /* * Low bound of range. */
696
697 struct dynamic_prop low;
698
699 /* * High bound of range. */
700
701 struct dynamic_prop high;
702
703 /* The stride value for this range. This can be stored in bits or bytes
704 based on the value of BYTE_STRIDE_P. It is optional to have a stride
705 value, if this range has no stride value defined then this will be set
706 to the constant zero. */
707
708 struct dynamic_prop stride;
709
710 /* * The bias. Sometimes a range value is biased before storage.
711 The bias is added to the stored bits to form the true value. */
712
713 LONGEST bias;
714
715 /* True if HIGH range bound contains the number of elements in the
716 subrange. This affects how the final high bound is computed. */
717
718 unsigned int flag_upper_bound_is_count : 1;
719
720 /* True if LOW or/and HIGH are resolved into a static bound from
721 a dynamic one. */
722
723 unsigned int flag_bound_evaluated : 1;
724
725 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
726
727 unsigned int flag_is_byte_stride : 1;
728 };
729
730 /* Compare two range_bounds objects for equality. Simply does
731 memberwise comparison. */
732 extern bool operator== (const range_bounds &l, const range_bounds &r);
733
734 /* Compare two range_bounds objects for inequality. */
735 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
736 {
737 return !(l == r);
738 }
739
740 union type_specific
741 {
742 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
743 point to cplus_struct_default, a default static instance of a
744 struct cplus_struct_type. */
745
746 struct cplus_struct_type *cplus_stuff;
747
748 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
749 provides additional information. */
750
751 struct gnat_aux_type *gnat_stuff;
752
753 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
754 floatformat object that describes the floating-point value
755 that resides within the type. */
756
757 const struct floatformat *floatformat;
758
759 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
760
761 struct func_type *func_stuff;
762
763 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
764 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
765 is a member of. */
766
767 struct type *self_type;
768
769 /* * An integer-like scalar type may be stored in just part of its
770 enclosing storage bytes. This structure describes this
771 situation. */
772 struct
773 {
774 /* * The bit size of the integer. This can be 0. For integers
775 that fill their storage (the ordinary case), this field holds
776 the byte size times 8. */
777 unsigned short bit_size;
778 /* * The bit offset of the integer. This is ordinarily 0, and can
779 only be non-zero if the bit size is less than the storage
780 size. */
781 unsigned short bit_offset;
782 } int_stuff;
783 };
784
785 /* * Main structure representing a type in GDB.
786
787 This structure is space-critical. Its layout has been tweaked to
788 reduce the space used. */
789
790 struct main_type
791 {
792 /* * Code for kind of type. */
793
794 ENUM_BITFIELD(type_code) code : 8;
795
796 /* * Flags about this type. These fields appear at this location
797 because they packs nicely here. See the TYPE_* macros for
798 documentation about these fields. */
799
800 unsigned int m_flag_unsigned : 1;
801 unsigned int m_flag_nosign : 1;
802 unsigned int m_flag_stub : 1;
803 unsigned int m_flag_target_stub : 1;
804 unsigned int m_flag_prototyped : 1;
805 unsigned int m_flag_varargs : 1;
806 unsigned int m_flag_vector : 1;
807 unsigned int m_flag_stub_supported : 1;
808 unsigned int m_flag_gnu_ifunc : 1;
809 unsigned int m_flag_fixed_instance : 1;
810 unsigned int flag_objfile_owned : 1;
811 unsigned int m_flag_endianity_not_default : 1;
812
813 /* * True if this type was declared with "class" rather than
814 "struct". */
815
816 unsigned int flag_declared_class : 1;
817
818 /* * True if this is an enum type with disjoint values. This
819 affects how the enum is printed. */
820
821 unsigned int flag_flag_enum : 1;
822
823 /* * A discriminant telling us which field of the type_specific
824 union is being used for this type, if any. */
825
826 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
827
828 /* * Number of fields described for this type. This field appears
829 at this location because it packs nicely here. */
830
831 short nfields;
832
833 /* * Name of this type, or NULL if none.
834
835 This is used for printing only. For looking up a name, look for
836 a symbol in the VAR_DOMAIN. This is generally allocated in the
837 objfile's obstack. However coffread.c uses malloc. */
838
839 const char *name;
840
841 /* * Every type is now associated with a particular objfile, and the
842 type is allocated on the objfile_obstack for that objfile. One
843 problem however, is that there are times when gdb allocates new
844 types while it is not in the process of reading symbols from a
845 particular objfile. Fortunately, these happen when the type
846 being created is a derived type of an existing type, such as in
847 lookup_pointer_type(). So we can just allocate the new type
848 using the same objfile as the existing type, but to do this we
849 need a backpointer to the objfile from the existing type. Yes
850 this is somewhat ugly, but without major overhaul of the internal
851 type system, it can't be avoided for now. */
852
853 union type_owner owner;
854
855 /* * For a pointer type, describes the type of object pointed to.
856 - For an array type, describes the type of the elements.
857 - For a function or method type, describes the type of the return value.
858 - For a range type, describes the type of the full range.
859 - For a complex type, describes the type of each coordinate.
860 - For a special record or union type encoding a dynamic-sized type
861 in GNAT, a memoized pointer to a corresponding static version of
862 the type.
863 - Unused otherwise. */
864
865 struct type *target_type;
866
867 /* * For structure and union types, a description of each field.
868 For set and pascal array types, there is one "field",
869 whose type is the domain type of the set or array.
870 For range types, there are two "fields",
871 the minimum and maximum values (both inclusive).
872 For enum types, each possible value is described by one "field".
873 For a function or method type, a "field" for each parameter.
874 For C++ classes, there is one field for each base class (if it is
875 a derived class) plus one field for each class data member. Member
876 functions are recorded elsewhere.
877
878 Using a pointer to a separate array of fields
879 allows all types to have the same size, which is useful
880 because we can allocate the space for a type before
881 we know what to put in it. */
882
883 union
884 {
885 struct field *fields;
886
887 /* * Union member used for range types. */
888
889 struct range_bounds *bounds;
890
891 /* If this is a scalar type, then this is its corresponding
892 complex type. */
893 struct type *complex_type;
894
895 } flds_bnds;
896
897 /* * Slot to point to additional language-specific fields of this
898 type. */
899
900 union type_specific type_specific;
901
902 /* * Contains all dynamic type properties. */
903 struct dynamic_prop_list *dyn_prop_list;
904 };
905
906 /* * Number of bits allocated for alignment. */
907
908 #define TYPE_ALIGN_BITS 8
909
910 /* * A ``struct type'' describes a particular instance of a type, with
911 some particular qualification. */
912
913 struct type
914 {
915 /* Get the type code of this type.
916
917 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
918 type, you need to do `check_typedef (type)->code ()`. */
919 type_code code () const
920 {
921 return this->main_type->code;
922 }
923
924 /* Set the type code of this type. */
925 void set_code (type_code code)
926 {
927 this->main_type->code = code;
928 }
929
930 /* Get the name of this type. */
931 const char *name () const
932 {
933 return this->main_type->name;
934 }
935
936 /* Set the name of this type. */
937 void set_name (const char *name)
938 {
939 this->main_type->name = name;
940 }
941
942 /* Get the number of fields of this type. */
943 int num_fields () const
944 {
945 return this->main_type->nfields;
946 }
947
948 /* Set the number of fields of this type. */
949 void set_num_fields (int num_fields)
950 {
951 this->main_type->nfields = num_fields;
952 }
953
954 /* Get the fields array of this type. */
955 struct field *fields () const
956 {
957 return this->main_type->flds_bnds.fields;
958 }
959
960 /* Get the field at index IDX. */
961 struct field &field (int idx) const
962 {
963 return this->fields ()[idx];
964 }
965
966 /* Set the fields array of this type. */
967 void set_fields (struct field *fields)
968 {
969 this->main_type->flds_bnds.fields = fields;
970 }
971
972 type *index_type () const
973 {
974 return this->field (0).type ();
975 }
976
977 void set_index_type (type *index_type)
978 {
979 this->field (0).set_type (index_type);
980 }
981
982 /* Return the instance flags converted to the correct type. */
983 const type_instance_flags instance_flags () const
984 {
985 return (enum type_instance_flag_value) this->m_instance_flags;
986 }
987
988 /* Set the instance flags. */
989 void set_instance_flags (type_instance_flags flags)
990 {
991 this->m_instance_flags = flags;
992 }
993
994 /* Get the bounds bounds of this type. The type must be a range type. */
995 range_bounds *bounds () const
996 {
997 switch (this->code ())
998 {
999 case TYPE_CODE_RANGE:
1000 return this->main_type->flds_bnds.bounds;
1001
1002 case TYPE_CODE_ARRAY:
1003 case TYPE_CODE_STRING:
1004 return this->index_type ()->bounds ();
1005
1006 default:
1007 gdb_assert_not_reached
1008 ("type::bounds called on type with invalid code");
1009 }
1010 }
1011
1012 /* Set the bounds of this type. The type must be a range type. */
1013 void set_bounds (range_bounds *bounds)
1014 {
1015 gdb_assert (this->code () == TYPE_CODE_RANGE);
1016
1017 this->main_type->flds_bnds.bounds = bounds;
1018 }
1019
1020 ULONGEST bit_stride () const
1021 {
1022 return this->bounds ()->bit_stride ();
1023 }
1024
1025 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1026 the type is signed (unless TYPE_NOSIGN is set). */
1027
1028 bool is_unsigned () const
1029 {
1030 return this->main_type->m_flag_unsigned;
1031 }
1032
1033 void set_is_unsigned (bool is_unsigned)
1034 {
1035 this->main_type->m_flag_unsigned = is_unsigned;
1036 }
1037
1038 /* No sign for this type. In C++, "char", "signed char", and
1039 "unsigned char" are distinct types; so we need an extra flag to
1040 indicate the absence of a sign! */
1041
1042 bool has_no_signedness () const
1043 {
1044 return this->main_type->m_flag_nosign;
1045 }
1046
1047 void set_has_no_signedness (bool has_no_signedness)
1048 {
1049 this->main_type->m_flag_nosign = has_no_signedness;
1050 }
1051
1052 /* This appears in a type's flags word if it is a stub type (e.g.,
1053 if someone referenced a type that wasn't defined in a source file
1054 via (struct sir_not_appearing_in_this_film *)). */
1055
1056 bool is_stub () const
1057 {
1058 return this->main_type->m_flag_stub;
1059 }
1060
1061 void set_is_stub (bool is_stub)
1062 {
1063 this->main_type->m_flag_stub = is_stub;
1064 }
1065
1066 /* The target type of this type is a stub type, and this type needs
1067 to be updated if it gets un-stubbed in check_typedef. Used for
1068 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1069 based on the TYPE_LENGTH of the target type. Also, set for
1070 TYPE_CODE_TYPEDEF. */
1071
1072 bool target_is_stub () const
1073 {
1074 return this->main_type->m_flag_target_stub;
1075 }
1076
1077 void set_target_is_stub (bool target_is_stub)
1078 {
1079 this->main_type->m_flag_target_stub = target_is_stub;
1080 }
1081
1082 /* This is a function type which appears to have a prototype. We
1083 need this for function calls in order to tell us if it's necessary
1084 to coerce the args, or to just do the standard conversions. This
1085 is used with a short field. */
1086
1087 bool is_prototyped () const
1088 {
1089 return this->main_type->m_flag_prototyped;
1090 }
1091
1092 void set_is_prototyped (bool is_prototyped)
1093 {
1094 this->main_type->m_flag_prototyped = is_prototyped;
1095 }
1096
1097 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1098 to functions. */
1099
1100 bool has_varargs () const
1101 {
1102 return this->main_type->m_flag_varargs;
1103 }
1104
1105 void set_has_varargs (bool has_varargs)
1106 {
1107 this->main_type->m_flag_varargs = has_varargs;
1108 }
1109
1110 /* Identify a vector type. Gcc is handling this by adding an extra
1111 attribute to the array type. We slurp that in as a new flag of a
1112 type. This is used only in dwarf2read.c. */
1113
1114 bool is_vector () const
1115 {
1116 return this->main_type->m_flag_vector;
1117 }
1118
1119 void set_is_vector (bool is_vector)
1120 {
1121 this->main_type->m_flag_vector = is_vector;
1122 }
1123
1124 /* This debug target supports TYPE_STUB(t). In the unsupported case
1125 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1126 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1127 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1128
1129 bool stub_is_supported () const
1130 {
1131 return this->main_type->m_flag_stub_supported;
1132 }
1133
1134 void set_stub_is_supported (bool stub_is_supported)
1135 {
1136 this->main_type->m_flag_stub_supported = stub_is_supported;
1137 }
1138
1139 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1140 address is returned by this function call. TYPE_TARGET_TYPE
1141 determines the final returned function type to be presented to
1142 user. */
1143
1144 bool is_gnu_ifunc () const
1145 {
1146 return this->main_type->m_flag_gnu_ifunc;
1147 }
1148
1149 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1150 {
1151 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1152 }
1153
1154 /* The debugging formats (especially STABS) do not contain enough
1155 information to represent all Ada types---especially those whose
1156 size depends on dynamic quantities. Therefore, the GNAT Ada
1157 compiler includes extra information in the form of additional type
1158 definitions connected by naming conventions. This flag indicates
1159 that the type is an ordinary (unencoded) GDB type that has been
1160 created from the necessary run-time information, and does not need
1161 further interpretation. Optionally marks ordinary, fixed-size GDB
1162 type. */
1163
1164 bool is_fixed_instance () const
1165 {
1166 return this->main_type->m_flag_fixed_instance;
1167 }
1168
1169 void set_is_fixed_instance (bool is_fixed_instance)
1170 {
1171 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1172 }
1173
1174 /* A compiler may supply dwarf instrumentation that indicates the desired
1175 endian interpretation of the variable differs from the native endian
1176 representation. */
1177
1178 bool endianity_is_not_default () const
1179 {
1180 return this->main_type->m_flag_endianity_not_default;
1181 }
1182
1183 void set_endianity_is_not_default (bool endianity_is_not_default)
1184 {
1185 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1186 }
1187
1188 /* * Return the dynamic property of the requested KIND from this type's
1189 list of dynamic properties. */
1190 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1191
1192 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1193 property to this type.
1194
1195 This function assumes that this type is objfile-owned. */
1196 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1197
1198 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1199 void remove_dyn_prop (dynamic_prop_node_kind kind);
1200
1201 /* * Return true if this is an integer type whose logical (bit) size
1202 differs from its storage size; false otherwise. Always return
1203 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1204 bool bit_size_differs_p () const
1205 {
1206 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1207 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1208 }
1209
1210 /* * Return the logical (bit) size for this integer type. Only
1211 valid for integer (TYPE_SPECIFIC_INT) types. */
1212 unsigned short bit_size () const
1213 {
1214 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1215 return main_type->type_specific.int_stuff.bit_size;
1216 }
1217
1218 /* * Return the bit offset for this integer type. Only valid for
1219 integer (TYPE_SPECIFIC_INT) types. */
1220 unsigned short bit_offset () const
1221 {
1222 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1223 return main_type->type_specific.int_stuff.bit_offset;
1224 }
1225
1226 /* * Type that is a pointer to this type.
1227 NULL if no such pointer-to type is known yet.
1228 The debugger may add the address of such a type
1229 if it has to construct one later. */
1230
1231 struct type *pointer_type;
1232
1233 /* * C++: also need a reference type. */
1234
1235 struct type *reference_type;
1236
1237 /* * A C++ rvalue reference type added in C++11. */
1238
1239 struct type *rvalue_reference_type;
1240
1241 /* * Variant chain. This points to a type that differs from this
1242 one only in qualifiers and length. Currently, the possible
1243 qualifiers are const, volatile, code-space, data-space, and
1244 address class. The length may differ only when one of the
1245 address class flags are set. The variants are linked in a
1246 circular ring and share MAIN_TYPE. */
1247
1248 struct type *chain;
1249
1250 /* * The alignment for this type. Zero means that the alignment was
1251 not specified in the debug info. Note that this is stored in a
1252 funny way: as the log base 2 (plus 1) of the alignment; so a
1253 value of 1 means the alignment is 1, and a value of 9 means the
1254 alignment is 256. */
1255
1256 unsigned align_log2 : TYPE_ALIGN_BITS;
1257
1258 /* * Flags specific to this instance of the type, indicating where
1259 on the ring we are.
1260
1261 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1262 binary or-ed with the target type, with a special case for
1263 address class and space class. For example if this typedef does
1264 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1265 instance flags are completely inherited from the target type. No
1266 qualifiers can be cleared by the typedef. See also
1267 check_typedef. */
1268 unsigned m_instance_flags : 9;
1269
1270 /* * Length of storage for a value of this type. The value is the
1271 expression in host bytes of what sizeof(type) would return. This
1272 size includes padding. For example, an i386 extended-precision
1273 floating point value really only occupies ten bytes, but most
1274 ABI's declare its size to be 12 bytes, to preserve alignment.
1275 A `struct type' representing such a floating-point type would
1276 have a `length' value of 12, even though the last two bytes are
1277 unused.
1278
1279 Since this field is expressed in host bytes, its value is appropriate
1280 to pass to memcpy and such (it is assumed that GDB itself always runs
1281 on an 8-bits addressable architecture). However, when using it for
1282 target address arithmetic (e.g. adding it to a target address), the
1283 type_length_units function should be used in order to get the length
1284 expressed in target addressable memory units. */
1285
1286 ULONGEST length;
1287
1288 /* * Core type, shared by a group of qualified types. */
1289
1290 struct main_type *main_type;
1291 };
1292
1293 struct fn_fieldlist
1294 {
1295
1296 /* * The overloaded name.
1297 This is generally allocated in the objfile's obstack.
1298 However stabsread.c sometimes uses malloc. */
1299
1300 const char *name;
1301
1302 /* * The number of methods with this name. */
1303
1304 int length;
1305
1306 /* * The list of methods. */
1307
1308 struct fn_field *fn_fields;
1309 };
1310
1311
1312
1313 struct fn_field
1314 {
1315 /* * If is_stub is clear, this is the mangled name which we can look
1316 up to find the address of the method (FIXME: it would be cleaner
1317 to have a pointer to the struct symbol here instead).
1318
1319 If is_stub is set, this is the portion of the mangled name which
1320 specifies the arguments. For example, "ii", if there are two int
1321 arguments, or "" if there are no arguments. See gdb_mangle_name
1322 for the conversion from this format to the one used if is_stub is
1323 clear. */
1324
1325 const char *physname;
1326
1327 /* * The function type for the method.
1328
1329 (This comment used to say "The return value of the method", but
1330 that's wrong. The function type is expected here, i.e. something
1331 with TYPE_CODE_METHOD, and *not* the return-value type). */
1332
1333 struct type *type;
1334
1335 /* * For virtual functions. First baseclass that defines this
1336 virtual function. */
1337
1338 struct type *fcontext;
1339
1340 /* Attributes. */
1341
1342 unsigned int is_const:1;
1343 unsigned int is_volatile:1;
1344 unsigned int is_private:1;
1345 unsigned int is_protected:1;
1346 unsigned int is_artificial:1;
1347
1348 /* * A stub method only has some fields valid (but they are enough
1349 to reconstruct the rest of the fields). */
1350
1351 unsigned int is_stub:1;
1352
1353 /* * True if this function is a constructor, false otherwise. */
1354
1355 unsigned int is_constructor : 1;
1356
1357 /* * True if this function is deleted, false otherwise. */
1358
1359 unsigned int is_deleted : 1;
1360
1361 /* * DW_AT_defaulted attribute for this function. The value is one
1362 of the DW_DEFAULTED constants. */
1363
1364 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1365
1366 /* * Unused. */
1367
1368 unsigned int dummy:6;
1369
1370 /* * Index into that baseclass's virtual function table, minus 2;
1371 else if static: VOFFSET_STATIC; else: 0. */
1372
1373 unsigned int voffset:16;
1374
1375 #define VOFFSET_STATIC 1
1376
1377 };
1378
1379 struct decl_field
1380 {
1381 /* * Unqualified name to be prefixed by owning class qualified
1382 name. */
1383
1384 const char *name;
1385
1386 /* * Type this typedef named NAME represents. */
1387
1388 struct type *type;
1389
1390 /* * True if this field was declared protected, false otherwise. */
1391 unsigned int is_protected : 1;
1392
1393 /* * True if this field was declared private, false otherwise. */
1394 unsigned int is_private : 1;
1395 };
1396
1397 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1398 TYPE_CODE_UNION nodes. */
1399
1400 struct cplus_struct_type
1401 {
1402 /* * Number of base classes this type derives from. The
1403 baseclasses are stored in the first N_BASECLASSES fields
1404 (i.e. the `fields' field of the struct type). The only fields
1405 of struct field that are used are: type, name, loc.bitpos. */
1406
1407 short n_baseclasses;
1408
1409 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1410 All access to this field must be through TYPE_VPTR_FIELDNO as one
1411 thing it does is check whether the field has been initialized.
1412 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1413 which for portability reasons doesn't initialize this field.
1414 TYPE_VPTR_FIELDNO returns -1 for this case.
1415
1416 If -1, we were unable to find the virtual function table pointer in
1417 initial symbol reading, and get_vptr_fieldno should be called to find
1418 it if possible. get_vptr_fieldno will update this field if possible.
1419 Otherwise the value is left at -1.
1420
1421 Unused if this type does not have virtual functions. */
1422
1423 short vptr_fieldno;
1424
1425 /* * Number of methods with unique names. All overloaded methods
1426 with the same name count only once. */
1427
1428 short nfn_fields;
1429
1430 /* * Number of template arguments. */
1431
1432 unsigned short n_template_arguments;
1433
1434 /* * One if this struct is a dynamic class, as defined by the
1435 Itanium C++ ABI: if it requires a virtual table pointer,
1436 because it or any of its base classes have one or more virtual
1437 member functions or virtual base classes. Minus one if not
1438 dynamic. Zero if not yet computed. */
1439
1440 int is_dynamic : 2;
1441
1442 /* * The calling convention for this type, fetched from the
1443 DW_AT_calling_convention attribute. The value is one of the
1444 DW_CC constants. */
1445
1446 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1447
1448 /* * The base class which defined the virtual function table pointer. */
1449
1450 struct type *vptr_basetype;
1451
1452 /* * For derived classes, the number of base classes is given by
1453 n_baseclasses and virtual_field_bits is a bit vector containing
1454 one bit per base class. If the base class is virtual, the
1455 corresponding bit will be set.
1456 I.E, given:
1457
1458 class A{};
1459 class B{};
1460 class C : public B, public virtual A {};
1461
1462 B is a baseclass of C; A is a virtual baseclass for C.
1463 This is a C++ 2.0 language feature. */
1464
1465 B_TYPE *virtual_field_bits;
1466
1467 /* * For classes with private fields, the number of fields is
1468 given by nfields and private_field_bits is a bit vector
1469 containing one bit per field.
1470
1471 If the field is private, the corresponding bit will be set. */
1472
1473 B_TYPE *private_field_bits;
1474
1475 /* * For classes with protected fields, the number of fields is
1476 given by nfields and protected_field_bits is a bit vector
1477 containing one bit per field.
1478
1479 If the field is private, the corresponding bit will be set. */
1480
1481 B_TYPE *protected_field_bits;
1482
1483 /* * For classes with fields to be ignored, either this is
1484 optimized out or this field has length 0. */
1485
1486 B_TYPE *ignore_field_bits;
1487
1488 /* * For classes, structures, and unions, a description of each
1489 field, which consists of an overloaded name, followed by the
1490 types of arguments that the method expects, and then the name
1491 after it has been renamed to make it distinct.
1492
1493 fn_fieldlists points to an array of nfn_fields of these. */
1494
1495 struct fn_fieldlist *fn_fieldlists;
1496
1497 /* * typedefs defined inside this class. typedef_field points to
1498 an array of typedef_field_count elements. */
1499
1500 struct decl_field *typedef_field;
1501
1502 unsigned typedef_field_count;
1503
1504 /* * The nested types defined by this type. nested_types points to
1505 an array of nested_types_count elements. */
1506
1507 struct decl_field *nested_types;
1508
1509 unsigned nested_types_count;
1510
1511 /* * The template arguments. This is an array with
1512 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1513 classes. */
1514
1515 struct symbol **template_arguments;
1516 };
1517
1518 /* * Struct used to store conversion rankings. */
1519
1520 struct rank
1521 {
1522 short rank;
1523
1524 /* * When two conversions are of the same type and therefore have
1525 the same rank, subrank is used to differentiate the two.
1526
1527 Eg: Two derived-class-pointer to base-class-pointer conversions
1528 would both have base pointer conversion rank, but the
1529 conversion with the shorter distance to the ancestor is
1530 preferable. 'subrank' would be used to reflect that. */
1531
1532 short subrank;
1533 };
1534
1535 /* * Used for ranking a function for overload resolution. */
1536
1537 typedef std::vector<rank> badness_vector;
1538
1539 /* * GNAT Ada-specific information for various Ada types. */
1540
1541 struct gnat_aux_type
1542 {
1543 /* * Parallel type used to encode information about dynamic types
1544 used in Ada (such as variant records, variable-size array,
1545 etc). */
1546 struct type* descriptive_type;
1547 };
1548
1549 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1550
1551 struct func_type
1552 {
1553 /* * The calling convention for targets supporting multiple ABIs.
1554 Right now this is only fetched from the Dwarf-2
1555 DW_AT_calling_convention attribute. The value is one of the
1556 DW_CC constants. */
1557
1558 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1559
1560 /* * Whether this function normally returns to its caller. It is
1561 set from the DW_AT_noreturn attribute if set on the
1562 DW_TAG_subprogram. */
1563
1564 unsigned int is_noreturn : 1;
1565
1566 /* * Only those DW_TAG_call_site's in this function that have
1567 DW_AT_call_tail_call set are linked in this list. Function
1568 without its tail call list complete
1569 (DW_AT_call_all_tail_calls or its superset
1570 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1571 DW_TAG_call_site's exist in such function. */
1572
1573 struct call_site *tail_call_list;
1574
1575 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1576 contains the method. */
1577
1578 struct type *self_type;
1579 };
1580
1581 /* struct call_site_parameter can be referenced in callees by several ways. */
1582
1583 enum call_site_parameter_kind
1584 {
1585 /* * Use field call_site_parameter.u.dwarf_reg. */
1586 CALL_SITE_PARAMETER_DWARF_REG,
1587
1588 /* * Use field call_site_parameter.u.fb_offset. */
1589 CALL_SITE_PARAMETER_FB_OFFSET,
1590
1591 /* * Use field call_site_parameter.u.param_offset. */
1592 CALL_SITE_PARAMETER_PARAM_OFFSET
1593 };
1594
1595 struct call_site_target
1596 {
1597 union field_location loc;
1598
1599 /* * Discriminant for union field_location. */
1600
1601 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1602 };
1603
1604 union call_site_parameter_u
1605 {
1606 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1607 as DWARF register number, for register passed
1608 parameters. */
1609
1610 int dwarf_reg;
1611
1612 /* * Offset from the callee's frame base, for stack passed
1613 parameters. This equals offset from the caller's stack
1614 pointer. */
1615
1616 CORE_ADDR fb_offset;
1617
1618 /* * Offset relative to the start of this PER_CU to
1619 DW_TAG_formal_parameter which is referenced by both
1620 caller and the callee. */
1621
1622 cu_offset param_cu_off;
1623 };
1624
1625 struct call_site_parameter
1626 {
1627 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1628
1629 union call_site_parameter_u u;
1630
1631 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1632
1633 const gdb_byte *value;
1634 size_t value_size;
1635
1636 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1637 It may be NULL if not provided by DWARF. */
1638
1639 const gdb_byte *data_value;
1640 size_t data_value_size;
1641 };
1642
1643 /* * A place where a function gets called from, represented by
1644 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1645
1646 struct call_site
1647 {
1648 /* * Address of the first instruction after this call. It must be
1649 the first field as we overload core_addr_hash and core_addr_eq
1650 for it. */
1651
1652 CORE_ADDR pc;
1653
1654 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1655
1656 struct call_site *tail_call_next;
1657
1658 /* * Describe DW_AT_call_target. Missing attribute uses
1659 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1660
1661 struct call_site_target target;
1662
1663 /* * Size of the PARAMETER array. */
1664
1665 unsigned parameter_count;
1666
1667 /* * CU of the function where the call is located. It gets used
1668 for DWARF blocks execution in the parameter array below. */
1669
1670 dwarf2_per_cu_data *per_cu;
1671
1672 /* objfile of the function where the call is located. */
1673
1674 dwarf2_per_objfile *per_objfile;
1675
1676 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1677
1678 struct call_site_parameter parameter[1];
1679 };
1680
1681 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1682 static structure. */
1683
1684 extern const struct cplus_struct_type cplus_struct_default;
1685
1686 extern void allocate_cplus_struct_type (struct type *);
1687
1688 #define INIT_CPLUS_SPECIFIC(type) \
1689 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1690 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1691 &cplus_struct_default)
1692
1693 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1694
1695 #define HAVE_CPLUS_STRUCT(type) \
1696 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1697 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1698
1699 #define INIT_NONE_SPECIFIC(type) \
1700 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1701 TYPE_MAIN_TYPE (type)->type_specific = {})
1702
1703 extern const struct gnat_aux_type gnat_aux_default;
1704
1705 extern void allocate_gnat_aux_type (struct type *);
1706
1707 #define INIT_GNAT_SPECIFIC(type) \
1708 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1709 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1710 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1711 /* * A macro that returns non-zero if the type-specific data should be
1712 read as "gnat-stuff". */
1713 #define HAVE_GNAT_AUX_INFO(type) \
1714 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1715
1716 /* * True if TYPE is known to be an Ada type of some kind. */
1717 #define ADA_TYPE_P(type) \
1718 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1719 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1720 && (type)->is_fixed_instance ()))
1721
1722 #define INIT_FUNC_SPECIFIC(type) \
1723 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1724 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1725 TYPE_ZALLOC (type, \
1726 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1727
1728 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1729 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1730 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1731 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1732 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1733 #define TYPE_CHAIN(thistype) (thistype)->chain
1734 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1735 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1736 so you only have to call check_typedef once. Since allocate_value
1737 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1738 #define TYPE_LENGTH(thistype) (thistype)->length
1739
1740 /* * Return the alignment of the type in target addressable memory
1741 units, or 0 if no alignment was specified. */
1742 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1743
1744 /* * Return the alignment of the type in target addressable memory
1745 units, or 0 if no alignment was specified. */
1746 extern unsigned type_raw_align (struct type *);
1747
1748 /* * Return the alignment of the type in target addressable memory
1749 units. Return 0 if the alignment cannot be determined; but note
1750 that this makes an effort to compute the alignment even it it was
1751 not specified in the debug info. */
1752 extern unsigned type_align (struct type *);
1753
1754 /* * Set the alignment of the type. The alignment must be a power of
1755 2. Returns false if the given value does not fit in the available
1756 space in struct type. */
1757 extern bool set_type_align (struct type *, ULONGEST);
1758
1759 /* Property accessors for the type data location. */
1760 #define TYPE_DATA_LOCATION(thistype) \
1761 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1762 #define TYPE_DATA_LOCATION_BATON(thistype) \
1763 TYPE_DATA_LOCATION (thistype)->data.baton
1764 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1765 (TYPE_DATA_LOCATION (thistype)->const_val ())
1766 #define TYPE_DATA_LOCATION_KIND(thistype) \
1767 (TYPE_DATA_LOCATION (thistype)->kind ())
1768 #define TYPE_DYNAMIC_LENGTH(thistype) \
1769 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1770
1771 /* Property accessors for the type allocated/associated. */
1772 #define TYPE_ALLOCATED_PROP(thistype) \
1773 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1774 #define TYPE_ASSOCIATED_PROP(thistype) \
1775 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1776
1777 /* C++ */
1778
1779 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1780 /* Do not call this, use TYPE_SELF_TYPE. */
1781 extern struct type *internal_type_self_type (struct type *);
1782 extern void set_type_self_type (struct type *, struct type *);
1783
1784 extern int internal_type_vptr_fieldno (struct type *);
1785 extern void set_type_vptr_fieldno (struct type *, int);
1786 extern struct type *internal_type_vptr_basetype (struct type *);
1787 extern void set_type_vptr_basetype (struct type *, struct type *);
1788 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1789 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1790
1791 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1792 #define TYPE_SPECIFIC_FIELD(thistype) \
1793 TYPE_MAIN_TYPE(thistype)->type_specific_field
1794 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1795 where we're trying to print an Ada array using the C language.
1796 In that case, there is no "cplus_stuff", but the C language assumes
1797 that there is. What we do, in that case, is pretend that there is
1798 an implicit one which is the default cplus stuff. */
1799 #define TYPE_CPLUS_SPECIFIC(thistype) \
1800 (!HAVE_CPLUS_STRUCT(thistype) \
1801 ? (struct cplus_struct_type*)&cplus_struct_default \
1802 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1803 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1804 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1805 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1806 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1807 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1808 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1809 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1810 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1811 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1812 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1813 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1814 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1815 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1816 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1817 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1818 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1819
1820 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1821 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1822 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1823
1824 #define FIELD_NAME(thisfld) ((thisfld).name)
1825 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1826 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1827 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1828 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1829 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1830 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1831 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1832 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1833 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1834 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1835 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1836 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1837 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1838 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1839 #define SET_FIELD_PHYSNAME(thisfld, name) \
1840 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1841 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1842 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1843 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1844 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1845 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1846 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1847 FIELD_DWARF_BLOCK (thisfld) = (addr))
1848 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1849 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1850
1851 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1852 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1853 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1854 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1855 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1856 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1857 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1858 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1859 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1860 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1861
1862 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1863 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1864 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1865 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1866 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1867 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1868 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1869 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1870 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1871 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1872 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1873 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1874 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1875 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1876 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1877 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1878 #define TYPE_FIELD_PRIVATE(thistype, n) \
1879 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1880 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1881 #define TYPE_FIELD_PROTECTED(thistype, n) \
1882 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1883 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1884 #define TYPE_FIELD_IGNORE(thistype, n) \
1885 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1886 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1887 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1888 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1889 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1890
1891 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1892 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1893 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1894 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1895 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1896
1897 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1898 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1899 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1900 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1901 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1902 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1903
1904 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1905 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1906 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1907 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1908 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1909 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1910 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1911 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1912 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1913 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1914 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1915 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1916 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1917 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1918 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1919 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1920 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1921
1922 /* Accessors for typedefs defined by a class. */
1923 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1924 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1925 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1926 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1927 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1928 TYPE_TYPEDEF_FIELD (thistype, n).name
1929 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1930 TYPE_TYPEDEF_FIELD (thistype, n).type
1931 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1932 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1933 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1934 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1935 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1936 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1937
1938 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1939 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1940 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1941 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1942 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1943 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1944 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1945 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1946 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1947 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1948 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1949 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1950 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1951 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1952
1953 #define TYPE_IS_OPAQUE(thistype) \
1954 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1955 || ((thistype)->code () == TYPE_CODE_UNION)) \
1956 && ((thistype)->num_fields () == 0) \
1957 && (!HAVE_CPLUS_STRUCT (thistype) \
1958 || TYPE_NFN_FIELDS (thistype) == 0) \
1959 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1960
1961 /* * A helper macro that returns the name of a type or "unnamed type"
1962 if the type has no name. */
1963
1964 #define TYPE_SAFE_NAME(type) \
1965 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1966
1967 /* * A helper macro that returns the name of an error type. If the
1968 type has a name, it is used; otherwise, a default is used. */
1969
1970 #define TYPE_ERROR_NAME(type) \
1971 (type->name () ? type->name () : _("<error type>"))
1972
1973 /* Given TYPE, return its floatformat. */
1974 const struct floatformat *floatformat_from_type (const struct type *type);
1975
1976 struct builtin_type
1977 {
1978 /* Integral types. */
1979
1980 /* Implicit size/sign (based on the architecture's ABI). */
1981 struct type *builtin_void;
1982 struct type *builtin_char;
1983 struct type *builtin_short;
1984 struct type *builtin_int;
1985 struct type *builtin_long;
1986 struct type *builtin_signed_char;
1987 struct type *builtin_unsigned_char;
1988 struct type *builtin_unsigned_short;
1989 struct type *builtin_unsigned_int;
1990 struct type *builtin_unsigned_long;
1991 struct type *builtin_bfloat16;
1992 struct type *builtin_half;
1993 struct type *builtin_float;
1994 struct type *builtin_double;
1995 struct type *builtin_long_double;
1996 struct type *builtin_complex;
1997 struct type *builtin_double_complex;
1998 struct type *builtin_string;
1999 struct type *builtin_bool;
2000 struct type *builtin_long_long;
2001 struct type *builtin_unsigned_long_long;
2002 struct type *builtin_decfloat;
2003 struct type *builtin_decdouble;
2004 struct type *builtin_declong;
2005
2006 /* "True" character types.
2007 We use these for the '/c' print format, because c_char is just a
2008 one-byte integral type, which languages less laid back than C
2009 will print as ... well, a one-byte integral type. */
2010 struct type *builtin_true_char;
2011 struct type *builtin_true_unsigned_char;
2012
2013 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2014 is for when an architecture needs to describe a register that has
2015 no size. */
2016 struct type *builtin_int0;
2017 struct type *builtin_int8;
2018 struct type *builtin_uint8;
2019 struct type *builtin_int16;
2020 struct type *builtin_uint16;
2021 struct type *builtin_int24;
2022 struct type *builtin_uint24;
2023 struct type *builtin_int32;
2024 struct type *builtin_uint32;
2025 struct type *builtin_int64;
2026 struct type *builtin_uint64;
2027 struct type *builtin_int128;
2028 struct type *builtin_uint128;
2029
2030 /* Wide character types. */
2031 struct type *builtin_char16;
2032 struct type *builtin_char32;
2033 struct type *builtin_wchar;
2034
2035 /* Pointer types. */
2036
2037 /* * `pointer to data' type. Some target platforms use an implicitly
2038 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2039 struct type *builtin_data_ptr;
2040
2041 /* * `pointer to function (returning void)' type. Harvard
2042 architectures mean that ABI function and code pointers are not
2043 interconvertible. Similarly, since ANSI, C standards have
2044 explicitly said that pointers to functions and pointers to data
2045 are not interconvertible --- that is, you can't cast a function
2046 pointer to void * and back, and expect to get the same value.
2047 However, all function pointer types are interconvertible, so void
2048 (*) () can server as a generic function pointer. */
2049
2050 struct type *builtin_func_ptr;
2051
2052 /* * `function returning pointer to function (returning void)' type.
2053 The final void return type is not significant for it. */
2054
2055 struct type *builtin_func_func;
2056
2057 /* Special-purpose types. */
2058
2059 /* * This type is used to represent a GDB internal function. */
2060
2061 struct type *internal_fn;
2062
2063 /* * This type is used to represent an xmethod. */
2064 struct type *xmethod;
2065 };
2066
2067 /* * Return the type table for the specified architecture. */
2068
2069 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2070
2071 /* * Per-objfile types used by symbol readers. */
2072
2073 struct objfile_type
2074 {
2075 /* Basic types based on the objfile architecture. */
2076 struct type *builtin_void;
2077 struct type *builtin_char;
2078 struct type *builtin_short;
2079 struct type *builtin_int;
2080 struct type *builtin_long;
2081 struct type *builtin_long_long;
2082 struct type *builtin_signed_char;
2083 struct type *builtin_unsigned_char;
2084 struct type *builtin_unsigned_short;
2085 struct type *builtin_unsigned_int;
2086 struct type *builtin_unsigned_long;
2087 struct type *builtin_unsigned_long_long;
2088 struct type *builtin_half;
2089 struct type *builtin_float;
2090 struct type *builtin_double;
2091 struct type *builtin_long_double;
2092
2093 /* * This type is used to represent symbol addresses. */
2094 struct type *builtin_core_addr;
2095
2096 /* * This type represents a type that was unrecognized in symbol
2097 read-in. */
2098 struct type *builtin_error;
2099
2100 /* * Types used for symbols with no debug information. */
2101 struct type *nodebug_text_symbol;
2102 struct type *nodebug_text_gnu_ifunc_symbol;
2103 struct type *nodebug_got_plt_symbol;
2104 struct type *nodebug_data_symbol;
2105 struct type *nodebug_unknown_symbol;
2106 struct type *nodebug_tls_symbol;
2107 };
2108
2109 /* * Return the type table for the specified objfile. */
2110
2111 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2112
2113 /* Explicit floating-point formats. See "floatformat.h". */
2114 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2115 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2116 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2117 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2118 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2119 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2120 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2121 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2122 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2123 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2124 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2125 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2126 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2127
2128 /* Allocate space for storing data associated with a particular
2129 type. We ensure that the space is allocated using the same
2130 mechanism that was used to allocate the space for the type
2131 structure itself. I.e. if the type is on an objfile's
2132 objfile_obstack, then the space for data associated with that type
2133 will also be allocated on the objfile_obstack. If the type is
2134 associated with a gdbarch, then the space for data associated with that
2135 type will also be allocated on the gdbarch_obstack.
2136
2137 If a type is not associated with neither an objfile or a gdbarch then
2138 you should not use this macro to allocate space for data, instead you
2139 should call xmalloc directly, and ensure the memory is correctly freed
2140 when it is no longer needed. */
2141
2142 #define TYPE_ALLOC(t,size) \
2143 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2144 ? &TYPE_OBJFILE (t)->objfile_obstack \
2145 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2146 size))
2147
2148
2149 /* See comment on TYPE_ALLOC. */
2150
2151 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2152
2153 /* Use alloc_type to allocate a type owned by an objfile. Use
2154 alloc_type_arch to allocate a type owned by an architecture. Use
2155 alloc_type_copy to allocate a type with the same owner as a
2156 pre-existing template type, no matter whether objfile or
2157 gdbarch. */
2158 extern struct type *alloc_type (struct objfile *);
2159 extern struct type *alloc_type_arch (struct gdbarch *);
2160 extern struct type *alloc_type_copy (const struct type *);
2161
2162 /* * Return the type's architecture. For types owned by an
2163 architecture, that architecture is returned. For types owned by an
2164 objfile, that objfile's architecture is returned. */
2165
2166 extern struct gdbarch *get_type_arch (const struct type *);
2167
2168 /* * This returns the target type (or NULL) of TYPE, also skipping
2169 past typedefs. */
2170
2171 extern struct type *get_target_type (struct type *type);
2172
2173 /* Return the equivalent of TYPE_LENGTH, but in number of target
2174 addressable memory units of the associated gdbarch instead of bytes. */
2175
2176 extern unsigned int type_length_units (struct type *type);
2177
2178 /* * Helper function to construct objfile-owned types. */
2179
2180 extern struct type *init_type (struct objfile *, enum type_code, int,
2181 const char *);
2182 extern struct type *init_integer_type (struct objfile *, int, int,
2183 const char *);
2184 extern struct type *init_character_type (struct objfile *, int, int,
2185 const char *);
2186 extern struct type *init_boolean_type (struct objfile *, int, int,
2187 const char *);
2188 extern struct type *init_float_type (struct objfile *, int, const char *,
2189 const struct floatformat **,
2190 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2191 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2192 extern struct type *init_complex_type (const char *, struct type *);
2193 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2194 struct type *);
2195
2196 /* Helper functions to construct architecture-owned types. */
2197 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2198 const char *);
2199 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2200 const char *);
2201 extern struct type *arch_character_type (struct gdbarch *, int, int,
2202 const char *);
2203 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2204 const char *);
2205 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2206 const struct floatformat **);
2207 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2208 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2209 struct type *);
2210
2211 /* Helper functions to construct a struct or record type. An
2212 initially empty type is created using arch_composite_type().
2213 Fields are then added using append_composite_type_field*(). A union
2214 type has its size set to the largest field. A struct type has each
2215 field packed against the previous. */
2216
2217 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2218 const char *name, enum type_code code);
2219 extern void append_composite_type_field (struct type *t, const char *name,
2220 struct type *field);
2221 extern void append_composite_type_field_aligned (struct type *t,
2222 const char *name,
2223 struct type *field,
2224 int alignment);
2225 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2226 struct type *field);
2227
2228 /* Helper functions to construct a bit flags type. An initially empty
2229 type is created using arch_flag_type(). Flags are then added using
2230 append_flag_type_field() and append_flag_type_flag(). */
2231 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2232 const char *name, int bit);
2233 extern void append_flags_type_field (struct type *type,
2234 int start_bitpos, int nr_bits,
2235 struct type *field_type, const char *name);
2236 extern void append_flags_type_flag (struct type *type, int bitpos,
2237 const char *name);
2238
2239 extern void make_vector_type (struct type *array_type);
2240 extern struct type *init_vector_type (struct type *elt_type, int n);
2241
2242 extern struct type *lookup_reference_type (struct type *, enum type_code);
2243 extern struct type *lookup_lvalue_reference_type (struct type *);
2244 extern struct type *lookup_rvalue_reference_type (struct type *);
2245
2246
2247 extern struct type *make_reference_type (struct type *, struct type **,
2248 enum type_code);
2249
2250 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2251
2252 extern struct type *make_restrict_type (struct type *);
2253
2254 extern struct type *make_unqualified_type (struct type *);
2255
2256 extern struct type *make_atomic_type (struct type *);
2257
2258 extern void replace_type (struct type *, struct type *);
2259
2260 extern type_instance_flags address_space_name_to_type_instance_flags
2261 (struct gdbarch *, const char *);
2262
2263 extern const char *address_space_type_instance_flags_to_name
2264 (struct gdbarch *, type_instance_flags);
2265
2266 extern struct type *make_type_with_address_space
2267 (struct type *type, type_instance_flags space_identifier);
2268
2269 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2270
2271 extern struct type *lookup_methodptr_type (struct type *);
2272
2273 extern void smash_to_method_type (struct type *type, struct type *self_type,
2274 struct type *to_type, struct field *args,
2275 int nargs, int varargs);
2276
2277 extern void smash_to_memberptr_type (struct type *, struct type *,
2278 struct type *);
2279
2280 extern void smash_to_methodptr_type (struct type *, struct type *);
2281
2282 extern struct type *allocate_stub_method (struct type *);
2283
2284 extern const char *type_name_or_error (struct type *type);
2285
2286 struct struct_elt
2287 {
2288 /* The field of the element, or NULL if no element was found. */
2289 struct field *field;
2290
2291 /* The bit offset of the element in the parent structure. */
2292 LONGEST offset;
2293 };
2294
2295 /* Given a type TYPE, lookup the field and offset of the component named
2296 NAME.
2297
2298 TYPE can be either a struct or union, or a pointer or reference to
2299 a struct or union. If it is a pointer or reference, its target
2300 type is automatically used. Thus '.' and '->' are interchangable,
2301 as specified for the definitions of the expression element types
2302 STRUCTOP_STRUCT and STRUCTOP_PTR.
2303
2304 If NOERR is nonzero, the returned structure will have field set to
2305 NULL if there is no component named NAME.
2306
2307 If the component NAME is a field in an anonymous substructure of
2308 TYPE, the returned offset is a "global" offset relative to TYPE
2309 rather than an offset within the substructure. */
2310
2311 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2312
2313 /* Given a type TYPE, lookup the type of the component named NAME.
2314
2315 TYPE can be either a struct or union, or a pointer or reference to
2316 a struct or union. If it is a pointer or reference, its target
2317 type is automatically used. Thus '.' and '->' are interchangable,
2318 as specified for the definitions of the expression element types
2319 STRUCTOP_STRUCT and STRUCTOP_PTR.
2320
2321 If NOERR is nonzero, return NULL if there is no component named
2322 NAME. */
2323
2324 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2325
2326 extern struct type *make_pointer_type (struct type *, struct type **);
2327
2328 extern struct type *lookup_pointer_type (struct type *);
2329
2330 extern struct type *make_function_type (struct type *, struct type **);
2331
2332 extern struct type *lookup_function_type (struct type *);
2333
2334 extern struct type *lookup_function_type_with_arguments (struct type *,
2335 int,
2336 struct type **);
2337
2338 extern struct type *create_static_range_type (struct type *, struct type *,
2339 LONGEST, LONGEST);
2340
2341
2342 extern struct type *create_array_type_with_stride
2343 (struct type *, struct type *, struct type *,
2344 struct dynamic_prop *, unsigned int);
2345
2346 extern struct type *create_range_type (struct type *, struct type *,
2347 const struct dynamic_prop *,
2348 const struct dynamic_prop *,
2349 LONGEST);
2350
2351 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2352 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2353 stride. */
2354
2355 extern struct type * create_range_type_with_stride
2356 (struct type *result_type, struct type *index_type,
2357 const struct dynamic_prop *low_bound,
2358 const struct dynamic_prop *high_bound, LONGEST bias,
2359 const struct dynamic_prop *stride, bool byte_stride_p);
2360
2361 extern struct type *create_array_type (struct type *, struct type *,
2362 struct type *);
2363
2364 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2365
2366 extern struct type *create_string_type (struct type *, struct type *,
2367 struct type *);
2368 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2369
2370 extern struct type *create_set_type (struct type *, struct type *);
2371
2372 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2373 const char *);
2374
2375 extern struct type *lookup_signed_typename (const struct language_defn *,
2376 const char *);
2377
2378 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2379
2380 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2381
2382 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2383 ADDR specifies the location of the variable the type is bound to.
2384 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2385 static properties is returned. */
2386 extern struct type *resolve_dynamic_type
2387 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2388 CORE_ADDR addr);
2389
2390 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2391 extern int is_dynamic_type (struct type *type);
2392
2393 extern struct type *check_typedef (struct type *);
2394
2395 extern void check_stub_method_group (struct type *, int);
2396
2397 extern char *gdb_mangle_name (struct type *, int, int);
2398
2399 extern struct type *lookup_typename (const struct language_defn *,
2400 const char *, const struct block *, int);
2401
2402 extern struct type *lookup_template_type (const char *, struct type *,
2403 const struct block *);
2404
2405 extern int get_vptr_fieldno (struct type *, struct type **);
2406
2407 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2408
2409 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2410 LONGEST *high_bound);
2411
2412 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2413
2414 extern int class_types_same_p (const struct type *, const struct type *);
2415
2416 extern int is_ancestor (struct type *, struct type *);
2417
2418 extern int is_public_ancestor (struct type *, struct type *);
2419
2420 extern int is_unique_ancestor (struct type *, struct value *);
2421
2422 /* Overload resolution */
2423
2424 /* * Badness if parameter list length doesn't match arg list length. */
2425 extern const struct rank LENGTH_MISMATCH_BADNESS;
2426
2427 /* * Dummy badness value for nonexistent parameter positions. */
2428 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2429 /* * Badness if no conversion among types. */
2430 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2431
2432 /* * Badness of an exact match. */
2433 extern const struct rank EXACT_MATCH_BADNESS;
2434
2435 /* * Badness of integral promotion. */
2436 extern const struct rank INTEGER_PROMOTION_BADNESS;
2437 /* * Badness of floating promotion. */
2438 extern const struct rank FLOAT_PROMOTION_BADNESS;
2439 /* * Badness of converting a derived class pointer
2440 to a base class pointer. */
2441 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2442 /* * Badness of integral conversion. */
2443 extern const struct rank INTEGER_CONVERSION_BADNESS;
2444 /* * Badness of floating conversion. */
2445 extern const struct rank FLOAT_CONVERSION_BADNESS;
2446 /* * Badness of integer<->floating conversions. */
2447 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2448 /* * Badness of conversion of pointer to void pointer. */
2449 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2450 /* * Badness of conversion to boolean. */
2451 extern const struct rank BOOL_CONVERSION_BADNESS;
2452 /* * Badness of converting derived to base class. */
2453 extern const struct rank BASE_CONVERSION_BADNESS;
2454 /* * Badness of converting from non-reference to reference. Subrank
2455 is the type of reference conversion being done. */
2456 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2457 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2458 /* * Conversion to rvalue reference. */
2459 #define REFERENCE_CONVERSION_RVALUE 1
2460 /* * Conversion to const lvalue reference. */
2461 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2462
2463 /* * Badness of converting integer 0 to NULL pointer. */
2464 extern const struct rank NULL_POINTER_CONVERSION;
2465 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2466 being done. */
2467 extern const struct rank CV_CONVERSION_BADNESS;
2468 #define CV_CONVERSION_CONST 1
2469 #define CV_CONVERSION_VOLATILE 2
2470
2471 /* Non-standard conversions allowed by the debugger */
2472
2473 /* * Converting a pointer to an int is usually OK. */
2474 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2475
2476 /* * Badness of converting a (non-zero) integer constant
2477 to a pointer. */
2478 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2479
2480 extern struct rank sum_ranks (struct rank a, struct rank b);
2481 extern int compare_ranks (struct rank a, struct rank b);
2482
2483 extern int compare_badness (const badness_vector &,
2484 const badness_vector &);
2485
2486 extern badness_vector rank_function (gdb::array_view<type *> parms,
2487 gdb::array_view<value *> args);
2488
2489 extern struct rank rank_one_type (struct type *, struct type *,
2490 struct value *);
2491
2492 extern void recursive_dump_type (struct type *, int);
2493
2494 extern int field_is_static (struct field *);
2495
2496 /* printcmd.c */
2497
2498 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2499 const struct value_print_options *,
2500 int, struct ui_file *);
2501
2502 extern int can_dereference (struct type *);
2503
2504 extern int is_integral_type (struct type *);
2505
2506 extern int is_floating_type (struct type *);
2507
2508 extern int is_scalar_type (struct type *type);
2509
2510 extern int is_scalar_type_recursive (struct type *);
2511
2512 extern int class_or_union_p (const struct type *);
2513
2514 extern void maintenance_print_type (const char *, int);
2515
2516 extern htab_up create_copied_types_hash (struct objfile *objfile);
2517
2518 extern struct type *copy_type_recursive (struct objfile *objfile,
2519 struct type *type,
2520 htab_t copied_types);
2521
2522 extern struct type *copy_type (const struct type *type);
2523
2524 extern bool types_equal (struct type *, struct type *);
2525
2526 extern bool types_deeply_equal (struct type *, struct type *);
2527
2528 extern int type_not_allocated (const struct type *type);
2529
2530 extern int type_not_associated (const struct type *type);
2531
2532 /* * When the type includes explicit byte ordering, return that.
2533 Otherwise, the byte ordering from gdbarch_byte_order for
2534 get_type_arch is returned. */
2535
2536 extern enum bfd_endian type_byte_order (const struct type *type);
2537
2538 /* A flag to enable printing of debugging information of C++
2539 overloading. */
2540
2541 extern unsigned int overload_debug;
2542
2543 #endif /* GDBTYPES_H */
This page took 0.08198 seconds and 3 git commands to generate.