gdb: fix shellcheck warnings SC2154 (referenced but not assigned) in gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61
62 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
63 are already DWARF-specific. */
64
65 /* * Offset relative to the start of its containing CU (compilation
66 unit). */
67 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
68
69 /* * Offset relative to the start of its .debug_info or .debug_types
70 section. */
71 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
72
73 static inline char *
74 sect_offset_str (sect_offset offset)
75 {
76 return hex_string (to_underlying (offset));
77 }
78
79 /* Some macros for char-based bitfields. */
80
81 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
82 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
83 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
84 #define B_TYPE unsigned char
85 #define B_BYTES(x) ( 1 + ((x)>>3) )
86 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
87
88 /* * Different kinds of data types are distinguished by the `code'
89 field. */
90
91 enum type_code
92 {
93 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
94 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
95 TYPE_CODE_PTR, /**< Pointer type */
96
97 /* * Array type with lower & upper bounds.
98
99 Regardless of the language, GDB represents multidimensional
100 array types the way C does: as arrays of arrays. So an
101 instance of a GDB array type T can always be seen as a series
102 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
103 memory.
104
105 Row-major languages like C lay out multi-dimensional arrays so
106 that incrementing the rightmost index in a subscripting
107 expression results in the smallest change in the address of the
108 element referred to. Column-major languages like Fortran lay
109 them out so that incrementing the leftmost index results in the
110 smallest change.
111
112 This means that, in column-major languages, working our way
113 from type to target type corresponds to working through indices
114 from right to left, not left to right. */
115 TYPE_CODE_ARRAY,
116
117 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
118 TYPE_CODE_UNION, /**< C union or Pascal variant part */
119 TYPE_CODE_ENUM, /**< Enumeration type */
120 TYPE_CODE_FLAGS, /**< Bit flags type */
121 TYPE_CODE_FUNC, /**< Function type */
122 TYPE_CODE_INT, /**< Integer type */
123
124 /* * Floating type. This is *NOT* a complex type. */
125 TYPE_CODE_FLT,
126
127 /* * Void type. The length field specifies the length (probably
128 always one) which is used in pointer arithmetic involving
129 pointers to this type, but actually dereferencing such a
130 pointer is invalid; a void type has no length and no actual
131 representation in memory or registers. A pointer to a void
132 type is a generic pointer. */
133 TYPE_CODE_VOID,
134
135 TYPE_CODE_SET, /**< Pascal sets */
136 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
137
138 /* * A string type which is like an array of character but prints
139 differently. It does not contain a length field as Pascal
140 strings (for many Pascals, anyway) do; if we want to deal with
141 such strings, we should use a new type code. */
142 TYPE_CODE_STRING,
143
144 /* * Unknown type. The length field is valid if we were able to
145 deduce that much about the type, or 0 if we don't even know
146 that. */
147 TYPE_CODE_ERROR,
148
149 /* C++ */
150 TYPE_CODE_METHOD, /**< Method type */
151
152 /* * Pointer-to-member-function type. This describes how to access a
153 particular member function of a class (possibly a virtual
154 member function). The representation may vary between different
155 C++ ABIs. */
156 TYPE_CODE_METHODPTR,
157
158 /* * Pointer-to-member type. This is the offset within a class to
159 some particular data member. The only currently supported
160 representation uses an unbiased offset, with -1 representing
161 NULL; this is used by the Itanium C++ ABI (used by GCC on all
162 platforms). */
163 TYPE_CODE_MEMBERPTR,
164
165 TYPE_CODE_REF, /**< C++ Reference types */
166
167 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
168
169 TYPE_CODE_CHAR, /**< *real* character type */
170
171 /* * Boolean type. 0 is false, 1 is true, and other values are
172 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
173 TYPE_CODE_BOOL,
174
175 /* Fortran */
176 TYPE_CODE_COMPLEX, /**< Complex float */
177
178 TYPE_CODE_TYPEDEF,
179
180 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
181
182 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
183
184 TYPE_CODE_MODULE, /**< Fortran module. */
185
186 /* * Internal function type. */
187 TYPE_CODE_INTERNAL_FUNCTION,
188
189 /* * Methods implemented in extension languages. */
190 TYPE_CODE_XMETHOD
191 };
192
193 /* * Some bits for the type's instance_flags word. See the macros
194 below for documentation on each bit. */
195
196 enum type_instance_flag_value : unsigned
197 {
198 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
199 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
200 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
201 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
202 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
203 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
204 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
205 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
206 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
207 };
208
209 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
210
211 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
212 the type is signed (unless TYPE_NOSIGN (below) is set). */
213
214 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
215
216 /* * No sign for this type. In C++, "char", "signed char", and
217 "unsigned char" are distinct types; so we need an extra flag to
218 indicate the absence of a sign! */
219
220 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
221
222 /* * A compiler may supply dwarf instrumentation
223 that indicates the desired endian interpretation of the variable
224 differs from the native endian representation. */
225
226 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
227
228 /* * This appears in a type's flags word if it is a stub type (e.g.,
229 if someone referenced a type that wasn't defined in a source file
230 via (struct sir_not_appearing_in_this_film *)). */
231
232 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
233
234 /* * The target type of this type is a stub type, and this type needs
235 to be updated if it gets un-stubbed in check_typedef. Used for
236 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
237 based on the TYPE_LENGTH of the target type. Also, set for
238 TYPE_CODE_TYPEDEF. */
239
240 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
241
242 /* * This is a function type which appears to have a prototype. We
243 need this for function calls in order to tell us if it's necessary
244 to coerce the args, or to just do the standard conversions. This
245 is used with a short field. */
246
247 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
248
249 /* * This flag is used to indicate that processing for this type
250 is incomplete.
251
252 (Mostly intended for HP platforms, where class methods, for
253 instance, can be encountered before their classes in the debug
254 info; the incomplete type has to be marked so that the class and
255 the method can be assigned correct types.) */
256
257 #define TYPE_INCOMPLETE(t) (TYPE_MAIN_TYPE (t)->flag_incomplete)
258
259 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
260 to functions. */
261
262 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
263
264 /* * Identify a vector type. Gcc is handling this by adding an extra
265 attribute to the array type. We slurp that in as a new flag of a
266 type. This is used only in dwarf2read.c. */
267 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
268
269 /* * The debugging formats (especially STABS) do not contain enough
270 information to represent all Ada types---especially those whose
271 size depends on dynamic quantities. Therefore, the GNAT Ada
272 compiler includes extra information in the form of additional type
273 definitions connected by naming conventions. This flag indicates
274 that the type is an ordinary (unencoded) GDB type that has been
275 created from the necessary run-time information, and does not need
276 further interpretation. Optionally marks ordinary, fixed-size GDB
277 type. */
278
279 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
280
281 /* * This debug target supports TYPE_STUB(t). In the unsupported case
282 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
283 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
284 guessed the TYPE_STUB(t) value (see dwarfread.c). */
285
286 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
287
288 /* * Not textual. By default, GDB treats all single byte integers as
289 characters (or elements of strings) unless this flag is set. */
290
291 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
292
293 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
294 address is returned by this function call. TYPE_TARGET_TYPE
295 determines the final returned function type to be presented to
296 user. */
297
298 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
299
300 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
301 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
302 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
303
304 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
305 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
306 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
307
308 /* * True if this type was declared using the "class" keyword. This is
309 only valid for C++ structure and enum types. If false, a structure
310 was declared as a "struct"; if true it was declared "class". For
311 enum types, this is true when "enum class" or "enum struct" was
312 used to declare the type.. */
313
314 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
315
316 /* * True if this type is a "flag" enum. A flag enum is one where all
317 the values are pairwise disjoint when "and"ed together. This
318 affects how enum values are printed. */
319
320 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
321
322 /* * Constant type. If this is set, the corresponding type has a
323 const modifier. */
324
325 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
326
327 /* * Volatile type. If this is set, the corresponding type has a
328 volatile modifier. */
329
330 #define TYPE_VOLATILE(t) \
331 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
332
333 /* * Restrict type. If this is set, the corresponding type has a
334 restrict modifier. */
335
336 #define TYPE_RESTRICT(t) \
337 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
338
339 /* * Atomic type. If this is set, the corresponding type has an
340 _Atomic modifier. */
341
342 #define TYPE_ATOMIC(t) \
343 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
344
345 /* * True if this type represents either an lvalue or lvalue reference type. */
346
347 #define TYPE_IS_REFERENCE(t) \
348 (TYPE_CODE (t) == TYPE_CODE_REF || TYPE_CODE (t) == TYPE_CODE_RVALUE_REF)
349
350 /* * True if this type is allocatable. */
351 #define TYPE_IS_ALLOCATABLE(t) \
352 (get_dyn_prop (DYN_PROP_ALLOCATED, t) != NULL)
353
354 /* * True if this type has variant parts. */
355 #define TYPE_HAS_VARIANT_PARTS(t) \
356 (get_dyn_prop (DYN_PROP_VARIANT_PARTS, t) != nullptr)
357
358 /* * True if this type has a dynamic length. */
359 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
360 (get_dyn_prop (DYN_PROP_BYTE_SIZE, t) != nullptr)
361
362 /* * Instruction-space delimited type. This is for Harvard architectures
363 which have separate instruction and data address spaces (and perhaps
364 others).
365
366 GDB usually defines a flat address space that is a superset of the
367 architecture's two (or more) address spaces, but this is an extension
368 of the architecture's model.
369
370 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
371 resides in instruction memory, even if its address (in the extended
372 flat address space) does not reflect this.
373
374 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
375 corresponding type resides in the data memory space, even if
376 this is not indicated by its (flat address space) address.
377
378 If neither flag is set, the default space for functions / methods
379 is instruction space, and for data objects is data memory. */
380
381 #define TYPE_CODE_SPACE(t) \
382 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
383
384 #define TYPE_DATA_SPACE(t) \
385 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
386
387 /* * Address class flags. Some environments provide for pointers
388 whose size is different from that of a normal pointer or address
389 types where the bits are interpreted differently than normal
390 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
391 target specific ways to represent these different types of address
392 classes. */
393
394 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
395 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
396 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
397 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
398 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
399 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
400 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
401 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
402
403 /* * Information about a single discriminant. */
404
405 struct discriminant_range
406 {
407 /* * The range of values for the variant. This is an inclusive
408 range. */
409 ULONGEST low, high;
410
411 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
412 is true if this should be an unsigned comparison; false for
413 signed. */
414 bool contains (ULONGEST value, bool is_unsigned) const
415 {
416 if (is_unsigned)
417 return value >= low && value <= high;
418 LONGEST valuel = (LONGEST) value;
419 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
420 }
421 };
422
423 struct variant_part;
424
425 /* * A single variant. A variant has a list of discriminant values.
426 When the discriminator matches one of these, the variant is
427 enabled. Each variant controls zero or more fields; and may also
428 control other variant parts as well. This struct corresponds to
429 DW_TAG_variant in DWARF. */
430
431 struct variant : allocate_on_obstack
432 {
433 /* * The discriminant ranges for this variant. */
434 gdb::array_view<discriminant_range> discriminants;
435
436 /* * The fields controlled by this variant. This is inclusive on
437 the low end and exclusive on the high end. A variant may not
438 control any fields, in which case the two values will be equal.
439 These are indexes into the type's array of fields. */
440 int first_field;
441 int last_field;
442
443 /* * Variant parts controlled by this variant. */
444 gdb::array_view<variant_part> parts;
445
446 /* * Return true if this is the default variant. The default
447 variant can be recognized because it has no associated
448 discriminants. */
449 bool is_default () const
450 {
451 return discriminants.empty ();
452 }
453
454 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
455 if this should be an unsigned comparison; false for signed. */
456 bool matches (ULONGEST value, bool is_unsigned) const;
457 };
458
459 /* * A variant part. Each variant part has an optional discriminant
460 and holds an array of variants. This struct corresponds to
461 DW_TAG_variant_part in DWARF. */
462
463 struct variant_part : allocate_on_obstack
464 {
465 /* * The index of the discriminant field in the outer type. This is
466 an index into the type's array of fields. If this is -1, there
467 is no discriminant, and only the default variant can be
468 considered to be selected. */
469 int discriminant_index;
470
471 /* * True if this discriminant is unsigned; false if signed. This
472 comes from the type of the discriminant. */
473 bool is_unsigned;
474
475 /* * The variants that are controlled by this variant part. Note
476 that these will always be sorted by field number. */
477 gdb::array_view<variant> variants;
478 };
479
480
481 enum dynamic_prop_kind
482 {
483 PROP_UNDEFINED, /* Not defined. */
484 PROP_CONST, /* Constant. */
485 PROP_ADDR_OFFSET, /* Address offset. */
486 PROP_LOCEXPR, /* Location expression. */
487 PROP_LOCLIST, /* Location list. */
488 PROP_VARIANT_PARTS, /* Variant parts. */
489 PROP_TYPE, /* Type. */
490 };
491
492 union dynamic_prop_data
493 {
494 /* Storage for constant property. */
495
496 LONGEST const_val;
497
498 /* Storage for dynamic property. */
499
500 void *baton;
501
502 /* Storage of variant parts for a type. A type with variant parts
503 has all its fields "linearized" -- stored in a single field
504 array, just as if they had all been declared that way. The
505 variant parts are attached via a dynamic property, and then are
506 used to control which fields end up in the final type during
507 dynamic type resolution. */
508
509 const gdb::array_view<variant_part> *variant_parts;
510
511 /* Once a variant type is resolved, we may want to be able to go
512 from the resolved type to the original type. In this case we
513 rewrite the property's kind and set this field. */
514
515 struct type *original_type;
516 };
517
518 /* * Used to store a dynamic property. */
519
520 struct dynamic_prop
521 {
522 /* Determine which field of the union dynamic_prop.data is used. */
523 enum dynamic_prop_kind kind;
524
525 /* Storage for dynamic or static value. */
526 union dynamic_prop_data data;
527 };
528
529 /* Compare two dynamic_prop objects for equality. dynamic_prop
530 instances are equal iff they have the same type and storage. */
531 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
532
533 /* Compare two dynamic_prop objects for inequality. */
534 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
535 {
536 return !(l == r);
537 }
538
539 /* * Define a type's dynamic property node kind. */
540 enum dynamic_prop_node_kind
541 {
542 /* A property providing a type's data location.
543 Evaluating this field yields to the location of an object's data. */
544 DYN_PROP_DATA_LOCATION,
545
546 /* A property representing DW_AT_allocated. The presence of this attribute
547 indicates that the object of the type can be allocated/deallocated. */
548 DYN_PROP_ALLOCATED,
549
550 /* A property representing DW_AT_allocated. The presence of this attribute
551 indicated that the object of the type can be associated. */
552 DYN_PROP_ASSOCIATED,
553
554 /* A property providing an array's byte stride. */
555 DYN_PROP_BYTE_STRIDE,
556
557 /* A property holding variant parts. */
558 DYN_PROP_VARIANT_PARTS,
559
560 /* A property holding the size of the type. */
561 DYN_PROP_BYTE_SIZE,
562 };
563
564 /* * List for dynamic type attributes. */
565 struct dynamic_prop_list
566 {
567 /* The kind of dynamic prop in this node. */
568 enum dynamic_prop_node_kind prop_kind;
569
570 /* The dynamic property itself. */
571 struct dynamic_prop prop;
572
573 /* A pointer to the next dynamic property. */
574 struct dynamic_prop_list *next;
575 };
576
577 /* * Determine which field of the union main_type.fields[x].loc is
578 used. */
579
580 enum field_loc_kind
581 {
582 FIELD_LOC_KIND_BITPOS, /**< bitpos */
583 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
584 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
585 FIELD_LOC_KIND_PHYSNAME, /**< physname */
586 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
587 };
588
589 /* * A discriminant to determine which field in the
590 main_type.type_specific union is being used, if any.
591
592 For types such as TYPE_CODE_FLT, the use of this
593 discriminant is really redundant, as we know from the type code
594 which field is going to be used. As such, it would be possible to
595 reduce the size of this enum in order to save a bit or two for
596 other fields of struct main_type. But, since we still have extra
597 room , and for the sake of clarity and consistency, we treat all fields
598 of the union the same way. */
599
600 enum type_specific_kind
601 {
602 TYPE_SPECIFIC_NONE,
603 TYPE_SPECIFIC_CPLUS_STUFF,
604 TYPE_SPECIFIC_GNAT_STUFF,
605 TYPE_SPECIFIC_FLOATFORMAT,
606 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
607 TYPE_SPECIFIC_FUNC,
608 TYPE_SPECIFIC_SELF_TYPE
609 };
610
611 union type_owner
612 {
613 struct objfile *objfile;
614 struct gdbarch *gdbarch;
615 };
616
617 union field_location
618 {
619 /* * Position of this field, counting in bits from start of
620 containing structure. For big-endian targets, it is the bit
621 offset to the MSB. For little-endian targets, it is the bit
622 offset to the LSB. */
623
624 LONGEST bitpos;
625
626 /* * Enum value. */
627 LONGEST enumval;
628
629 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
630 physaddr is the location (in the target) of the static
631 field. Otherwise, physname is the mangled label of the
632 static field. */
633
634 CORE_ADDR physaddr;
635 const char *physname;
636
637 /* * The field location can be computed by evaluating the
638 following DWARF block. Its DATA is allocated on
639 objfile_obstack - no CU load is needed to access it. */
640
641 struct dwarf2_locexpr_baton *dwarf_block;
642 };
643
644 struct field
645 {
646 union field_location loc;
647
648 /* * For a function or member type, this is 1 if the argument is
649 marked artificial. Artificial arguments should not be shown
650 to the user. For TYPE_CODE_RANGE it is set if the specific
651 bound is not defined. */
652
653 unsigned int artificial : 1;
654
655 /* * Discriminant for union field_location. */
656
657 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
658
659 /* * Size of this field, in bits, or zero if not packed.
660 If non-zero in an array type, indicates the element size in
661 bits (used only in Ada at the moment).
662 For an unpacked field, the field's type's length
663 says how many bytes the field occupies. */
664
665 unsigned int bitsize : 28;
666
667 /* * In a struct or union type, type of this field.
668 - In a function or member type, type of this argument.
669 - In an array type, the domain-type of the array. */
670
671 struct type *type;
672
673 /* * Name of field, value or argument.
674 NULL for range bounds, array domains, and member function
675 arguments. */
676
677 const char *name;
678 };
679
680 struct range_bounds
681 {
682 /* * Low bound of range. */
683
684 struct dynamic_prop low;
685
686 /* * High bound of range. */
687
688 struct dynamic_prop high;
689
690 /* The stride value for this range. This can be stored in bits or bytes
691 based on the value of BYTE_STRIDE_P. It is optional to have a stride
692 value, if this range has no stride value defined then this will be set
693 to the constant zero. */
694
695 struct dynamic_prop stride;
696
697 /* * The bias. Sometimes a range value is biased before storage.
698 The bias is added to the stored bits to form the true value. */
699
700 LONGEST bias;
701
702 /* True if HIGH range bound contains the number of elements in the
703 subrange. This affects how the final high bound is computed. */
704
705 unsigned int flag_upper_bound_is_count : 1;
706
707 /* True if LOW or/and HIGH are resolved into a static bound from
708 a dynamic one. */
709
710 unsigned int flag_bound_evaluated : 1;
711
712 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
713
714 unsigned int flag_is_byte_stride : 1;
715 };
716
717 /* Compare two range_bounds objects for equality. Simply does
718 memberwise comparison. */
719 extern bool operator== (const range_bounds &l, const range_bounds &r);
720
721 /* Compare two range_bounds objects for inequality. */
722 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
723 {
724 return !(l == r);
725 }
726
727 union type_specific
728 {
729 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
730 point to cplus_struct_default, a default static instance of a
731 struct cplus_struct_type. */
732
733 struct cplus_struct_type *cplus_stuff;
734
735 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
736 provides additional information. */
737
738 struct gnat_aux_type *gnat_stuff;
739
740 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
741 floatformat object that describes the floating-point value
742 that resides within the type. */
743
744 const struct floatformat *floatformat;
745
746 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
747
748 struct func_type *func_stuff;
749
750 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
751 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
752 is a member of. */
753
754 struct type *self_type;
755 };
756
757 /* * Main structure representing a type in GDB.
758
759 This structure is space-critical. Its layout has been tweaked to
760 reduce the space used. */
761
762 struct main_type
763 {
764 /* * Code for kind of type. */
765
766 ENUM_BITFIELD(type_code) code : 8;
767
768 /* * Flags about this type. These fields appear at this location
769 because they packs nicely here. See the TYPE_* macros for
770 documentation about these fields. */
771
772 unsigned int flag_unsigned : 1;
773 unsigned int flag_nosign : 1;
774 unsigned int flag_stub : 1;
775 unsigned int flag_target_stub : 1;
776 unsigned int flag_static : 1;
777 unsigned int flag_prototyped : 1;
778 unsigned int flag_incomplete : 1;
779 unsigned int flag_varargs : 1;
780 unsigned int flag_vector : 1;
781 unsigned int flag_stub_supported : 1;
782 unsigned int flag_gnu_ifunc : 1;
783 unsigned int flag_fixed_instance : 1;
784 unsigned int flag_objfile_owned : 1;
785 unsigned int flag_endianity_not_default : 1;
786
787 /* * True if this type was declared with "class" rather than
788 "struct". */
789
790 unsigned int flag_declared_class : 1;
791
792 /* * True if this is an enum type with disjoint values. This
793 affects how the enum is printed. */
794
795 unsigned int flag_flag_enum : 1;
796
797 /* * A discriminant telling us which field of the type_specific
798 union is being used for this type, if any. */
799
800 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
801
802 /* * Number of fields described for this type. This field appears
803 at this location because it packs nicely here. */
804
805 short nfields;
806
807 /* * Name of this type, or NULL if none.
808
809 This is used for printing only. For looking up a name, look for
810 a symbol in the VAR_DOMAIN. This is generally allocated in the
811 objfile's obstack. However coffread.c uses malloc. */
812
813 const char *name;
814
815 /* * Every type is now associated with a particular objfile, and the
816 type is allocated on the objfile_obstack for that objfile. One
817 problem however, is that there are times when gdb allocates new
818 types while it is not in the process of reading symbols from a
819 particular objfile. Fortunately, these happen when the type
820 being created is a derived type of an existing type, such as in
821 lookup_pointer_type(). So we can just allocate the new type
822 using the same objfile as the existing type, but to do this we
823 need a backpointer to the objfile from the existing type. Yes
824 this is somewhat ugly, but without major overhaul of the internal
825 type system, it can't be avoided for now. */
826
827 union type_owner owner;
828
829 /* * For a pointer type, describes the type of object pointed to.
830 - For an array type, describes the type of the elements.
831 - For a function or method type, describes the type of the return value.
832 - For a range type, describes the type of the full range.
833 - For a complex type, describes the type of each coordinate.
834 - For a special record or union type encoding a dynamic-sized type
835 in GNAT, a memoized pointer to a corresponding static version of
836 the type.
837 - Unused otherwise. */
838
839 struct type *target_type;
840
841 /* * For structure and union types, a description of each field.
842 For set and pascal array types, there is one "field",
843 whose type is the domain type of the set or array.
844 For range types, there are two "fields",
845 the minimum and maximum values (both inclusive).
846 For enum types, each possible value is described by one "field".
847 For a function or method type, a "field" for each parameter.
848 For C++ classes, there is one field for each base class (if it is
849 a derived class) plus one field for each class data member. Member
850 functions are recorded elsewhere.
851
852 Using a pointer to a separate array of fields
853 allows all types to have the same size, which is useful
854 because we can allocate the space for a type before
855 we know what to put in it. */
856
857 union
858 {
859 struct field *fields;
860
861 /* * Union member used for range types. */
862
863 struct range_bounds *bounds;
864
865 /* If this is a scalar type, then this is its corresponding
866 complex type. */
867 struct type *complex_type;
868
869 } flds_bnds;
870
871 /* * Slot to point to additional language-specific fields of this
872 type. */
873
874 union type_specific type_specific;
875
876 /* * Contains all dynamic type properties. */
877 struct dynamic_prop_list *dyn_prop_list;
878 };
879
880 /* * Number of bits allocated for alignment. */
881
882 #define TYPE_ALIGN_BITS 8
883
884 /* * A ``struct type'' describes a particular instance of a type, with
885 some particular qualification. */
886
887 struct type
888 {
889 /* * Type that is a pointer to this type.
890 NULL if no such pointer-to type is known yet.
891 The debugger may add the address of such a type
892 if it has to construct one later. */
893
894 struct type *pointer_type;
895
896 /* * C++: also need a reference type. */
897
898 struct type *reference_type;
899
900 /* * A C++ rvalue reference type added in C++11. */
901
902 struct type *rvalue_reference_type;
903
904 /* * Variant chain. This points to a type that differs from this
905 one only in qualifiers and length. Currently, the possible
906 qualifiers are const, volatile, code-space, data-space, and
907 address class. The length may differ only when one of the
908 address class flags are set. The variants are linked in a
909 circular ring and share MAIN_TYPE. */
910
911 struct type *chain;
912
913 /* * The alignment for this type. Zero means that the alignment was
914 not specified in the debug info. Note that this is stored in a
915 funny way: as the log base 2 (plus 1) of the alignment; so a
916 value of 1 means the alignment is 1, and a value of 9 means the
917 alignment is 256. */
918
919 unsigned align_log2 : TYPE_ALIGN_BITS;
920
921 /* * Flags specific to this instance of the type, indicating where
922 on the ring we are.
923
924 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
925 binary or-ed with the target type, with a special case for
926 address class and space class. For example if this typedef does
927 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
928 instance flags are completely inherited from the target type. No
929 qualifiers can be cleared by the typedef. See also
930 check_typedef. */
931 unsigned instance_flags : 9;
932
933 /* * Length of storage for a value of this type. The value is the
934 expression in host bytes of what sizeof(type) would return. This
935 size includes padding. For example, an i386 extended-precision
936 floating point value really only occupies ten bytes, but most
937 ABI's declare its size to be 12 bytes, to preserve alignment.
938 A `struct type' representing such a floating-point type would
939 have a `length' value of 12, even though the last two bytes are
940 unused.
941
942 Since this field is expressed in host bytes, its value is appropriate
943 to pass to memcpy and such (it is assumed that GDB itself always runs
944 on an 8-bits addressable architecture). However, when using it for
945 target address arithmetic (e.g. adding it to a target address), the
946 type_length_units function should be used in order to get the length
947 expressed in target addressable memory units. */
948
949 ULONGEST length;
950
951 /* * Core type, shared by a group of qualified types. */
952
953 struct main_type *main_type;
954 };
955
956 #define NULL_TYPE ((struct type *) 0)
957
958 struct fn_fieldlist
959 {
960
961 /* * The overloaded name.
962 This is generally allocated in the objfile's obstack.
963 However stabsread.c sometimes uses malloc. */
964
965 const char *name;
966
967 /* * The number of methods with this name. */
968
969 int length;
970
971 /* * The list of methods. */
972
973 struct fn_field *fn_fields;
974 };
975
976
977
978 struct fn_field
979 {
980 /* * If is_stub is clear, this is the mangled name which we can look
981 up to find the address of the method (FIXME: it would be cleaner
982 to have a pointer to the struct symbol here instead).
983
984 If is_stub is set, this is the portion of the mangled name which
985 specifies the arguments. For example, "ii", if there are two int
986 arguments, or "" if there are no arguments. See gdb_mangle_name
987 for the conversion from this format to the one used if is_stub is
988 clear. */
989
990 const char *physname;
991
992 /* * The function type for the method.
993
994 (This comment used to say "The return value of the method", but
995 that's wrong. The function type is expected here, i.e. something
996 with TYPE_CODE_METHOD, and *not* the return-value type). */
997
998 struct type *type;
999
1000 /* * For virtual functions. First baseclass that defines this
1001 virtual function. */
1002
1003 struct type *fcontext;
1004
1005 /* Attributes. */
1006
1007 unsigned int is_const:1;
1008 unsigned int is_volatile:1;
1009 unsigned int is_private:1;
1010 unsigned int is_protected:1;
1011 unsigned int is_artificial:1;
1012
1013 /* * A stub method only has some fields valid (but they are enough
1014 to reconstruct the rest of the fields). */
1015
1016 unsigned int is_stub:1;
1017
1018 /* * True if this function is a constructor, false otherwise. */
1019
1020 unsigned int is_constructor : 1;
1021
1022 /* * True if this function is deleted, false otherwise. */
1023
1024 unsigned int is_deleted : 1;
1025
1026 /* * DW_AT_defaulted attribute for this function. The value is one
1027 of the DW_DEFAULTED constants. */
1028
1029 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1030
1031 /* * Unused. */
1032
1033 unsigned int dummy:6;
1034
1035 /* * Index into that baseclass's virtual function table, minus 2;
1036 else if static: VOFFSET_STATIC; else: 0. */
1037
1038 unsigned int voffset:16;
1039
1040 #define VOFFSET_STATIC 1
1041
1042 };
1043
1044 struct decl_field
1045 {
1046 /* * Unqualified name to be prefixed by owning class qualified
1047 name. */
1048
1049 const char *name;
1050
1051 /* * Type this typedef named NAME represents. */
1052
1053 struct type *type;
1054
1055 /* * True if this field was declared protected, false otherwise. */
1056 unsigned int is_protected : 1;
1057
1058 /* * True if this field was declared private, false otherwise. */
1059 unsigned int is_private : 1;
1060 };
1061
1062 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1063 TYPE_CODE_UNION nodes. */
1064
1065 struct cplus_struct_type
1066 {
1067 /* * Number of base classes this type derives from. The
1068 baseclasses are stored in the first N_BASECLASSES fields
1069 (i.e. the `fields' field of the struct type). The only fields
1070 of struct field that are used are: type, name, loc.bitpos. */
1071
1072 short n_baseclasses;
1073
1074 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1075 All access to this field must be through TYPE_VPTR_FIELDNO as one
1076 thing it does is check whether the field has been initialized.
1077 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1078 which for portability reasons doesn't initialize this field.
1079 TYPE_VPTR_FIELDNO returns -1 for this case.
1080
1081 If -1, we were unable to find the virtual function table pointer in
1082 initial symbol reading, and get_vptr_fieldno should be called to find
1083 it if possible. get_vptr_fieldno will update this field if possible.
1084 Otherwise the value is left at -1.
1085
1086 Unused if this type does not have virtual functions. */
1087
1088 short vptr_fieldno;
1089
1090 /* * Number of methods with unique names. All overloaded methods
1091 with the same name count only once. */
1092
1093 short nfn_fields;
1094
1095 /* * Number of template arguments. */
1096
1097 unsigned short n_template_arguments;
1098
1099 /* * One if this struct is a dynamic class, as defined by the
1100 Itanium C++ ABI: if it requires a virtual table pointer,
1101 because it or any of its base classes have one or more virtual
1102 member functions or virtual base classes. Minus one if not
1103 dynamic. Zero if not yet computed. */
1104
1105 int is_dynamic : 2;
1106
1107 /* * The calling convention for this type, fetched from the
1108 DW_AT_calling_convention attribute. The value is one of the
1109 DW_CC constants. */
1110
1111 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1112
1113 /* * The base class which defined the virtual function table pointer. */
1114
1115 struct type *vptr_basetype;
1116
1117 /* * For derived classes, the number of base classes is given by
1118 n_baseclasses and virtual_field_bits is a bit vector containing
1119 one bit per base class. If the base class is virtual, the
1120 corresponding bit will be set.
1121 I.E, given:
1122
1123 class A{};
1124 class B{};
1125 class C : public B, public virtual A {};
1126
1127 B is a baseclass of C; A is a virtual baseclass for C.
1128 This is a C++ 2.0 language feature. */
1129
1130 B_TYPE *virtual_field_bits;
1131
1132 /* * For classes with private fields, the number of fields is
1133 given by nfields and private_field_bits is a bit vector
1134 containing one bit per field.
1135
1136 If the field is private, the corresponding bit will be set. */
1137
1138 B_TYPE *private_field_bits;
1139
1140 /* * For classes with protected fields, the number of fields is
1141 given by nfields and protected_field_bits is a bit vector
1142 containing one bit per field.
1143
1144 If the field is private, the corresponding bit will be set. */
1145
1146 B_TYPE *protected_field_bits;
1147
1148 /* * For classes with fields to be ignored, either this is
1149 optimized out or this field has length 0. */
1150
1151 B_TYPE *ignore_field_bits;
1152
1153 /* * For classes, structures, and unions, a description of each
1154 field, which consists of an overloaded name, followed by the
1155 types of arguments that the method expects, and then the name
1156 after it has been renamed to make it distinct.
1157
1158 fn_fieldlists points to an array of nfn_fields of these. */
1159
1160 struct fn_fieldlist *fn_fieldlists;
1161
1162 /* * typedefs defined inside this class. typedef_field points to
1163 an array of typedef_field_count elements. */
1164
1165 struct decl_field *typedef_field;
1166
1167 unsigned typedef_field_count;
1168
1169 /* * The nested types defined by this type. nested_types points to
1170 an array of nested_types_count elements. */
1171
1172 struct decl_field *nested_types;
1173
1174 unsigned nested_types_count;
1175
1176 /* * The template arguments. This is an array with
1177 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1178 classes. */
1179
1180 struct symbol **template_arguments;
1181 };
1182
1183 /* * Struct used to store conversion rankings. */
1184
1185 struct rank
1186 {
1187 short rank;
1188
1189 /* * When two conversions are of the same type and therefore have
1190 the same rank, subrank is used to differentiate the two.
1191
1192 Eg: Two derived-class-pointer to base-class-pointer conversions
1193 would both have base pointer conversion rank, but the
1194 conversion with the shorter distance to the ancestor is
1195 preferable. 'subrank' would be used to reflect that. */
1196
1197 short subrank;
1198 };
1199
1200 /* * Used for ranking a function for overload resolution. */
1201
1202 typedef std::vector<rank> badness_vector;
1203
1204 /* * GNAT Ada-specific information for various Ada types. */
1205
1206 struct gnat_aux_type
1207 {
1208 /* * Parallel type used to encode information about dynamic types
1209 used in Ada (such as variant records, variable-size array,
1210 etc). */
1211 struct type* descriptive_type;
1212 };
1213
1214 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1215
1216 struct func_type
1217 {
1218 /* * The calling convention for targets supporting multiple ABIs.
1219 Right now this is only fetched from the Dwarf-2
1220 DW_AT_calling_convention attribute. The value is one of the
1221 DW_CC constants. */
1222
1223 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1224
1225 /* * Whether this function normally returns to its caller. It is
1226 set from the DW_AT_noreturn attribute if set on the
1227 DW_TAG_subprogram. */
1228
1229 unsigned int is_noreturn : 1;
1230
1231 /* * Only those DW_TAG_call_site's in this function that have
1232 DW_AT_call_tail_call set are linked in this list. Function
1233 without its tail call list complete
1234 (DW_AT_call_all_tail_calls or its superset
1235 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1236 DW_TAG_call_site's exist in such function. */
1237
1238 struct call_site *tail_call_list;
1239
1240 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1241 contains the method. */
1242
1243 struct type *self_type;
1244 };
1245
1246 /* struct call_site_parameter can be referenced in callees by several ways. */
1247
1248 enum call_site_parameter_kind
1249 {
1250 /* * Use field call_site_parameter.u.dwarf_reg. */
1251 CALL_SITE_PARAMETER_DWARF_REG,
1252
1253 /* * Use field call_site_parameter.u.fb_offset. */
1254 CALL_SITE_PARAMETER_FB_OFFSET,
1255
1256 /* * Use field call_site_parameter.u.param_offset. */
1257 CALL_SITE_PARAMETER_PARAM_OFFSET
1258 };
1259
1260 struct call_site_target
1261 {
1262 union field_location loc;
1263
1264 /* * Discriminant for union field_location. */
1265
1266 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1267 };
1268
1269 union call_site_parameter_u
1270 {
1271 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1272 as DWARF register number, for register passed
1273 parameters. */
1274
1275 int dwarf_reg;
1276
1277 /* * Offset from the callee's frame base, for stack passed
1278 parameters. This equals offset from the caller's stack
1279 pointer. */
1280
1281 CORE_ADDR fb_offset;
1282
1283 /* * Offset relative to the start of this PER_CU to
1284 DW_TAG_formal_parameter which is referenced by both
1285 caller and the callee. */
1286
1287 cu_offset param_cu_off;
1288 };
1289
1290 struct call_site_parameter
1291 {
1292 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1293
1294 union call_site_parameter_u u;
1295
1296 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1297
1298 const gdb_byte *value;
1299 size_t value_size;
1300
1301 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1302 It may be NULL if not provided by DWARF. */
1303
1304 const gdb_byte *data_value;
1305 size_t data_value_size;
1306 };
1307
1308 /* * A place where a function gets called from, represented by
1309 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1310
1311 struct call_site
1312 {
1313 /* * Address of the first instruction after this call. It must be
1314 the first field as we overload core_addr_hash and core_addr_eq
1315 for it. */
1316
1317 CORE_ADDR pc;
1318
1319 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1320
1321 struct call_site *tail_call_next;
1322
1323 /* * Describe DW_AT_call_target. Missing attribute uses
1324 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1325
1326 struct call_site_target target;
1327
1328 /* * Size of the PARAMETER array. */
1329
1330 unsigned parameter_count;
1331
1332 /* * CU of the function where the call is located. It gets used
1333 for DWARF blocks execution in the parameter array below. */
1334
1335 struct dwarf2_per_cu_data *per_cu;
1336
1337 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1338
1339 struct call_site_parameter parameter[1];
1340 };
1341
1342 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1343 static structure. */
1344
1345 extern const struct cplus_struct_type cplus_struct_default;
1346
1347 extern void allocate_cplus_struct_type (struct type *);
1348
1349 #define INIT_CPLUS_SPECIFIC(type) \
1350 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1351 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1352 &cplus_struct_default)
1353
1354 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1355
1356 #define HAVE_CPLUS_STRUCT(type) \
1357 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1358 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1359
1360 #define INIT_NONE_SPECIFIC(type) \
1361 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1362 TYPE_MAIN_TYPE (type)->type_specific = {})
1363
1364 extern const struct gnat_aux_type gnat_aux_default;
1365
1366 extern void allocate_gnat_aux_type (struct type *);
1367
1368 #define INIT_GNAT_SPECIFIC(type) \
1369 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1370 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1371 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1372 /* * A macro that returns non-zero if the type-specific data should be
1373 read as "gnat-stuff". */
1374 #define HAVE_GNAT_AUX_INFO(type) \
1375 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1376
1377 /* * True if TYPE is known to be an Ada type of some kind. */
1378 #define ADA_TYPE_P(type) \
1379 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1380 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1381 && TYPE_FIXED_INSTANCE (type)))
1382
1383 #define INIT_FUNC_SPECIFIC(type) \
1384 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1385 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1386 TYPE_ZALLOC (type, \
1387 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1388
1389 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1390 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1391 #define TYPE_NAME(thistype) TYPE_MAIN_TYPE(thistype)->name
1392 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1393 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1394 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1395 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1396 #define TYPE_CHAIN(thistype) (thistype)->chain
1397 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1398 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1399 so you only have to call check_typedef once. Since allocate_value
1400 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1401 #define TYPE_LENGTH(thistype) (thistype)->length
1402
1403 /* * Return the alignment of the type in target addressable memory
1404 units, or 0 if no alignment was specified. */
1405 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1406
1407 /* * Return the alignment of the type in target addressable memory
1408 units, or 0 if no alignment was specified. */
1409 extern unsigned type_raw_align (struct type *);
1410
1411 /* * Return the alignment of the type in target addressable memory
1412 units. Return 0 if the alignment cannot be determined; but note
1413 that this makes an effort to compute the alignment even it it was
1414 not specified in the debug info. */
1415 extern unsigned type_align (struct type *);
1416
1417 /* * Set the alignment of the type. The alignment must be a power of
1418 2. Returns false if the given value does not fit in the available
1419 space in struct type. */
1420 extern bool set_type_align (struct type *, ULONGEST);
1421
1422 /* * Note that TYPE_CODE can be TYPE_CODE_TYPEDEF, so if you want the real
1423 type, you need to do TYPE_CODE (check_type (this_type)). */
1424 #define TYPE_CODE(thistype) TYPE_MAIN_TYPE(thistype)->code
1425 #define TYPE_NFIELDS(thistype) TYPE_MAIN_TYPE(thistype)->nfields
1426 #define TYPE_FIELDS(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields
1427
1428 #define TYPE_INDEX_TYPE(type) TYPE_FIELD_TYPE (type, 0)
1429 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1430 #define TYPE_LOW_BOUND(range_type) \
1431 TYPE_RANGE_DATA(range_type)->low.data.const_val
1432 #define TYPE_HIGH_BOUND(range_type) \
1433 TYPE_RANGE_DATA(range_type)->high.data.const_val
1434 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1435 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1436 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1437 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1438 #define TYPE_HIGH_BOUND_KIND(range_type) \
1439 TYPE_RANGE_DATA(range_type)->high.kind
1440 #define TYPE_LOW_BOUND_KIND(range_type) \
1441 TYPE_RANGE_DATA(range_type)->low.kind
1442 #define TYPE_BIT_STRIDE(range_type) \
1443 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1444 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1445
1446 /* Property accessors for the type data location. */
1447 #define TYPE_DATA_LOCATION(thistype) \
1448 get_dyn_prop (DYN_PROP_DATA_LOCATION, thistype)
1449 #define TYPE_DATA_LOCATION_BATON(thistype) \
1450 TYPE_DATA_LOCATION (thistype)->data.baton
1451 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1452 TYPE_DATA_LOCATION (thistype)->data.const_val
1453 #define TYPE_DATA_LOCATION_KIND(thistype) \
1454 TYPE_DATA_LOCATION (thistype)->kind
1455 #define TYPE_DYNAMIC_LENGTH(thistype) \
1456 get_dyn_prop (DYN_PROP_BYTE_SIZE, thistype)
1457
1458 /* Property accessors for the type allocated/associated. */
1459 #define TYPE_ALLOCATED_PROP(thistype) \
1460 get_dyn_prop (DYN_PROP_ALLOCATED, thistype)
1461 #define TYPE_ASSOCIATED_PROP(thistype) \
1462 get_dyn_prop (DYN_PROP_ASSOCIATED, thistype)
1463
1464 /* Attribute accessors for dynamic properties. */
1465 #define TYPE_DYN_PROP_LIST(thistype) \
1466 TYPE_MAIN_TYPE(thistype)->dyn_prop_list
1467 #define TYPE_DYN_PROP_BATON(dynprop) \
1468 dynprop->data.baton
1469 #define TYPE_DYN_PROP_ADDR(dynprop) \
1470 dynprop->data.const_val
1471 #define TYPE_DYN_PROP_KIND(dynprop) \
1472 dynprop->kind
1473
1474
1475 /* Accessors for struct range_bounds data attached to an array type's
1476 index type. */
1477
1478 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1479 TYPE_HIGH_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1480 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1481 TYPE_LOW_BOUND_UNDEFINED(TYPE_INDEX_TYPE(arraytype))
1482
1483 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1484 (TYPE_HIGH_BOUND(TYPE_INDEX_TYPE((arraytype))))
1485
1486 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1487 (TYPE_LOW_BOUND(TYPE_INDEX_TYPE((arraytype))))
1488
1489 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1490 (TYPE_BIT_STRIDE(TYPE_INDEX_TYPE((arraytype))))
1491
1492 /* C++ */
1493
1494 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1495 /* Do not call this, use TYPE_SELF_TYPE. */
1496 extern struct type *internal_type_self_type (struct type *);
1497 extern void set_type_self_type (struct type *, struct type *);
1498
1499 extern int internal_type_vptr_fieldno (struct type *);
1500 extern void set_type_vptr_fieldno (struct type *, int);
1501 extern struct type *internal_type_vptr_basetype (struct type *);
1502 extern void set_type_vptr_basetype (struct type *, struct type *);
1503 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1504 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1505
1506 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1507 #define TYPE_SPECIFIC_FIELD(thistype) \
1508 TYPE_MAIN_TYPE(thistype)->type_specific_field
1509 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1510 where we're trying to print an Ada array using the C language.
1511 In that case, there is no "cplus_stuff", but the C language assumes
1512 that there is. What we do, in that case, is pretend that there is
1513 an implicit one which is the default cplus stuff. */
1514 #define TYPE_CPLUS_SPECIFIC(thistype) \
1515 (!HAVE_CPLUS_STRUCT(thistype) \
1516 ? (struct cplus_struct_type*)&cplus_struct_default \
1517 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1518 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1519 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1520 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1521 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1522 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1523 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1524 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1525 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1526 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1527 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1528 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1529 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1530 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1531 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1532 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1533 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1534
1535 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1536 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1537 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1538
1539 #define FIELD_TYPE(thisfld) ((thisfld).type)
1540 #define FIELD_NAME(thisfld) ((thisfld).name)
1541 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1542 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1543 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1544 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1545 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1546 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1547 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1548 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1549 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1550 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1551 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1552 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1553 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1554 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1555 #define SET_FIELD_PHYSNAME(thisfld, name) \
1556 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1557 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1558 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1559 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1560 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1561 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1562 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1563 FIELD_DWARF_BLOCK (thisfld) = (addr))
1564 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1565 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1566
1567 #define TYPE_FIELD(thistype, n) TYPE_MAIN_TYPE(thistype)->flds_bnds.fields[n]
1568 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE(TYPE_FIELD(thistype, n))
1569 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME(TYPE_FIELD(thistype, n))
1570 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND (TYPE_FIELD (thistype, n))
1571 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS (TYPE_FIELD (thistype, n))
1572 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL (TYPE_FIELD (thistype, n))
1573 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME (TYPE_FIELD (thistype, n))
1574 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR (TYPE_FIELD (thistype, n))
1575 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK (TYPE_FIELD (thistype, n))
1576 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL(TYPE_FIELD(thistype,n))
1577 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE(TYPE_FIELD(thistype,n))
1578 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE(TYPE_FIELD(thistype,n))!=0)
1579
1580 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1581 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1582 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1583 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1584 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1585 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1586 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1587 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1588 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1589 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1590 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1591 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1592 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1593 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1594 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1595 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1596 #define TYPE_FIELD_PRIVATE(thistype, n) \
1597 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1598 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1599 #define TYPE_FIELD_PROTECTED(thistype, n) \
1600 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1601 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1602 #define TYPE_FIELD_IGNORE(thistype, n) \
1603 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1604 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1605 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1606 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1607 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1608
1609 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1610 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1611 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1612 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1613 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1614
1615 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1616 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1617 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1618 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1619 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1620 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1621
1622 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1623 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1624 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1625 #define TYPE_FN_FIELD_ARGS(thisfn, n) TYPE_FIELDS ((thisfn)[n].type)
1626 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1627 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1628 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1629 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1630 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1631 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1632 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1633 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1634 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1635 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1636 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1637 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1638 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1639
1640 /* Accessors for typedefs defined by a class. */
1641 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1642 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1643 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1644 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1645 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1646 TYPE_TYPEDEF_FIELD (thistype, n).name
1647 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1648 TYPE_TYPEDEF_FIELD (thistype, n).type
1649 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1650 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1651 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1652 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1653 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1654 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1655
1656 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1657 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1658 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1659 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1660 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1661 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1662 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1663 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1664 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1665 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1666 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1667 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1668 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1669 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1670
1671 #define TYPE_IS_OPAQUE(thistype) \
1672 (((TYPE_CODE (thistype) == TYPE_CODE_STRUCT) \
1673 || (TYPE_CODE (thistype) == TYPE_CODE_UNION)) \
1674 && (TYPE_NFIELDS (thistype) == 0) \
1675 && (!HAVE_CPLUS_STRUCT (thistype) \
1676 || TYPE_NFN_FIELDS (thistype) == 0) \
1677 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1678
1679 /* * A helper macro that returns the name of a type or "unnamed type"
1680 if the type has no name. */
1681
1682 #define TYPE_SAFE_NAME(type) \
1683 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<unnamed type>"))
1684
1685 /* * A helper macro that returns the name of an error type. If the
1686 type has a name, it is used; otherwise, a default is used. */
1687
1688 #define TYPE_ERROR_NAME(type) \
1689 (TYPE_NAME (type) ? TYPE_NAME (type) : _("<error type>"))
1690
1691 /* Given TYPE, return its floatformat. */
1692 const struct floatformat *floatformat_from_type (const struct type *type);
1693
1694 struct builtin_type
1695 {
1696 /* Integral types. */
1697
1698 /* Implicit size/sign (based on the architecture's ABI). */
1699 struct type *builtin_void;
1700 struct type *builtin_char;
1701 struct type *builtin_short;
1702 struct type *builtin_int;
1703 struct type *builtin_long;
1704 struct type *builtin_signed_char;
1705 struct type *builtin_unsigned_char;
1706 struct type *builtin_unsigned_short;
1707 struct type *builtin_unsigned_int;
1708 struct type *builtin_unsigned_long;
1709 struct type *builtin_half;
1710 struct type *builtin_float;
1711 struct type *builtin_double;
1712 struct type *builtin_long_double;
1713 struct type *builtin_complex;
1714 struct type *builtin_double_complex;
1715 struct type *builtin_string;
1716 struct type *builtin_bool;
1717 struct type *builtin_long_long;
1718 struct type *builtin_unsigned_long_long;
1719 struct type *builtin_decfloat;
1720 struct type *builtin_decdouble;
1721 struct type *builtin_declong;
1722
1723 /* "True" character types.
1724 We use these for the '/c' print format, because c_char is just a
1725 one-byte integral type, which languages less laid back than C
1726 will print as ... well, a one-byte integral type. */
1727 struct type *builtin_true_char;
1728 struct type *builtin_true_unsigned_char;
1729
1730 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1731 is for when an architecture needs to describe a register that has
1732 no size. */
1733 struct type *builtin_int0;
1734 struct type *builtin_int8;
1735 struct type *builtin_uint8;
1736 struct type *builtin_int16;
1737 struct type *builtin_uint16;
1738 struct type *builtin_int24;
1739 struct type *builtin_uint24;
1740 struct type *builtin_int32;
1741 struct type *builtin_uint32;
1742 struct type *builtin_int64;
1743 struct type *builtin_uint64;
1744 struct type *builtin_int128;
1745 struct type *builtin_uint128;
1746
1747 /* Wide character types. */
1748 struct type *builtin_char16;
1749 struct type *builtin_char32;
1750 struct type *builtin_wchar;
1751
1752 /* Pointer types. */
1753
1754 /* * `pointer to data' type. Some target platforms use an implicitly
1755 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1756 struct type *builtin_data_ptr;
1757
1758 /* * `pointer to function (returning void)' type. Harvard
1759 architectures mean that ABI function and code pointers are not
1760 interconvertible. Similarly, since ANSI, C standards have
1761 explicitly said that pointers to functions and pointers to data
1762 are not interconvertible --- that is, you can't cast a function
1763 pointer to void * and back, and expect to get the same value.
1764 However, all function pointer types are interconvertible, so void
1765 (*) () can server as a generic function pointer. */
1766
1767 struct type *builtin_func_ptr;
1768
1769 /* * `function returning pointer to function (returning void)' type.
1770 The final void return type is not significant for it. */
1771
1772 struct type *builtin_func_func;
1773
1774 /* Special-purpose types. */
1775
1776 /* * This type is used to represent a GDB internal function. */
1777
1778 struct type *internal_fn;
1779
1780 /* * This type is used to represent an xmethod. */
1781 struct type *xmethod;
1782 };
1783
1784 /* * Return the type table for the specified architecture. */
1785
1786 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1787
1788 /* * Per-objfile types used by symbol readers. */
1789
1790 struct objfile_type
1791 {
1792 /* Basic types based on the objfile architecture. */
1793 struct type *builtin_void;
1794 struct type *builtin_char;
1795 struct type *builtin_short;
1796 struct type *builtin_int;
1797 struct type *builtin_long;
1798 struct type *builtin_long_long;
1799 struct type *builtin_signed_char;
1800 struct type *builtin_unsigned_char;
1801 struct type *builtin_unsigned_short;
1802 struct type *builtin_unsigned_int;
1803 struct type *builtin_unsigned_long;
1804 struct type *builtin_unsigned_long_long;
1805 struct type *builtin_half;
1806 struct type *builtin_float;
1807 struct type *builtin_double;
1808 struct type *builtin_long_double;
1809
1810 /* * This type is used to represent symbol addresses. */
1811 struct type *builtin_core_addr;
1812
1813 /* * This type represents a type that was unrecognized in symbol
1814 read-in. */
1815 struct type *builtin_error;
1816
1817 /* * Types used for symbols with no debug information. */
1818 struct type *nodebug_text_symbol;
1819 struct type *nodebug_text_gnu_ifunc_symbol;
1820 struct type *nodebug_got_plt_symbol;
1821 struct type *nodebug_data_symbol;
1822 struct type *nodebug_unknown_symbol;
1823 struct type *nodebug_tls_symbol;
1824 };
1825
1826 /* * Return the type table for the specified objfile. */
1827
1828 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1829
1830 /* Explicit floating-point formats. See "floatformat.h". */
1831 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1832 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1833 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1834 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1835 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1836 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1837 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1838 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1839 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1840 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1841 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1842 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1843
1844
1845 /* Allocate space for storing data associated with a particular
1846 type. We ensure that the space is allocated using the same
1847 mechanism that was used to allocate the space for the type
1848 structure itself. I.e. if the type is on an objfile's
1849 objfile_obstack, then the space for data associated with that type
1850 will also be allocated on the objfile_obstack. If the type is
1851 associated with a gdbarch, then the space for data associated with that
1852 type will also be allocated on the gdbarch_obstack.
1853
1854 If a type is not associated with neither an objfile or a gdbarch then
1855 you should not use this macro to allocate space for data, instead you
1856 should call xmalloc directly, and ensure the memory is correctly freed
1857 when it is no longer needed. */
1858
1859 #define TYPE_ALLOC(t,size) \
1860 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1861 ? &TYPE_OBJFILE (t)->objfile_obstack \
1862 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1863 size))
1864
1865
1866 /* See comment on TYPE_ALLOC. */
1867
1868 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1869
1870 /* Use alloc_type to allocate a type owned by an objfile. Use
1871 alloc_type_arch to allocate a type owned by an architecture. Use
1872 alloc_type_copy to allocate a type with the same owner as a
1873 pre-existing template type, no matter whether objfile or
1874 gdbarch. */
1875 extern struct type *alloc_type (struct objfile *);
1876 extern struct type *alloc_type_arch (struct gdbarch *);
1877 extern struct type *alloc_type_copy (const struct type *);
1878
1879 /* * Return the type's architecture. For types owned by an
1880 architecture, that architecture is returned. For types owned by an
1881 objfile, that objfile's architecture is returned. */
1882
1883 extern struct gdbarch *get_type_arch (const struct type *);
1884
1885 /* * This returns the target type (or NULL) of TYPE, also skipping
1886 past typedefs. */
1887
1888 extern struct type *get_target_type (struct type *type);
1889
1890 /* Return the equivalent of TYPE_LENGTH, but in number of target
1891 addressable memory units of the associated gdbarch instead of bytes. */
1892
1893 extern unsigned int type_length_units (struct type *type);
1894
1895 /* * Helper function to construct objfile-owned types. */
1896
1897 extern struct type *init_type (struct objfile *, enum type_code, int,
1898 const char *);
1899 extern struct type *init_integer_type (struct objfile *, int, int,
1900 const char *);
1901 extern struct type *init_character_type (struct objfile *, int, int,
1902 const char *);
1903 extern struct type *init_boolean_type (struct objfile *, int, int,
1904 const char *);
1905 extern struct type *init_float_type (struct objfile *, int, const char *,
1906 const struct floatformat **,
1907 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1908 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1909 extern struct type *init_complex_type (const char *, struct type *);
1910 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1911 struct type *);
1912
1913 /* Helper functions to construct architecture-owned types. */
1914 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1915 const char *);
1916 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1917 const char *);
1918 extern struct type *arch_character_type (struct gdbarch *, int, int,
1919 const char *);
1920 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1921 const char *);
1922 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1923 const struct floatformat **);
1924 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1925 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1926 struct type *);
1927
1928 /* Helper functions to construct a struct or record type. An
1929 initially empty type is created using arch_composite_type().
1930 Fields are then added using append_composite_type_field*(). A union
1931 type has its size set to the largest field. A struct type has each
1932 field packed against the previous. */
1933
1934 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1935 const char *name, enum type_code code);
1936 extern void append_composite_type_field (struct type *t, const char *name,
1937 struct type *field);
1938 extern void append_composite_type_field_aligned (struct type *t,
1939 const char *name,
1940 struct type *field,
1941 int alignment);
1942 struct field *append_composite_type_field_raw (struct type *t, const char *name,
1943 struct type *field);
1944
1945 /* Helper functions to construct a bit flags type. An initially empty
1946 type is created using arch_flag_type(). Flags are then added using
1947 append_flag_type_field() and append_flag_type_flag(). */
1948 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
1949 const char *name, int bit);
1950 extern void append_flags_type_field (struct type *type,
1951 int start_bitpos, int nr_bits,
1952 struct type *field_type, const char *name);
1953 extern void append_flags_type_flag (struct type *type, int bitpos,
1954 const char *name);
1955
1956 extern void make_vector_type (struct type *array_type);
1957 extern struct type *init_vector_type (struct type *elt_type, int n);
1958
1959 extern struct type *lookup_reference_type (struct type *, enum type_code);
1960 extern struct type *lookup_lvalue_reference_type (struct type *);
1961 extern struct type *lookup_rvalue_reference_type (struct type *);
1962
1963
1964 extern struct type *make_reference_type (struct type *, struct type **,
1965 enum type_code);
1966
1967 extern struct type *make_cv_type (int, int, struct type *, struct type **);
1968
1969 extern struct type *make_restrict_type (struct type *);
1970
1971 extern struct type *make_unqualified_type (struct type *);
1972
1973 extern struct type *make_atomic_type (struct type *);
1974
1975 extern void replace_type (struct type *, struct type *);
1976
1977 extern int address_space_name_to_int (struct gdbarch *, const char *);
1978
1979 extern const char *address_space_int_to_name (struct gdbarch *, int);
1980
1981 extern struct type *make_type_with_address_space (struct type *type,
1982 int space_identifier);
1983
1984 extern struct type *lookup_memberptr_type (struct type *, struct type *);
1985
1986 extern struct type *lookup_methodptr_type (struct type *);
1987
1988 extern void smash_to_method_type (struct type *type, struct type *self_type,
1989 struct type *to_type, struct field *args,
1990 int nargs, int varargs);
1991
1992 extern void smash_to_memberptr_type (struct type *, struct type *,
1993 struct type *);
1994
1995 extern void smash_to_methodptr_type (struct type *, struct type *);
1996
1997 extern struct type *allocate_stub_method (struct type *);
1998
1999 extern const char *type_name_or_error (struct type *type);
2000
2001 struct struct_elt
2002 {
2003 /* The field of the element, or NULL if no element was found. */
2004 struct field *field;
2005
2006 /* The bit offset of the element in the parent structure. */
2007 LONGEST offset;
2008 };
2009
2010 /* Given a type TYPE, lookup the field and offset of the component named
2011 NAME.
2012
2013 TYPE can be either a struct or union, or a pointer or reference to
2014 a struct or union. If it is a pointer or reference, its target
2015 type is automatically used. Thus '.' and '->' are interchangable,
2016 as specified for the definitions of the expression element types
2017 STRUCTOP_STRUCT and STRUCTOP_PTR.
2018
2019 If NOERR is nonzero, the returned structure will have field set to
2020 NULL if there is no component named NAME.
2021
2022 If the component NAME is a field in an anonymous substructure of
2023 TYPE, the returned offset is a "global" offset relative to TYPE
2024 rather than an offset within the substructure. */
2025
2026 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2027
2028 /* Given a type TYPE, lookup the type of the component named NAME.
2029
2030 TYPE can be either a struct or union, or a pointer or reference to
2031 a struct or union. If it is a pointer or reference, its target
2032 type is automatically used. Thus '.' and '->' are interchangable,
2033 as specified for the definitions of the expression element types
2034 STRUCTOP_STRUCT and STRUCTOP_PTR.
2035
2036 If NOERR is nonzero, return NULL if there is no component named
2037 NAME. */
2038
2039 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2040
2041 extern struct type *make_pointer_type (struct type *, struct type **);
2042
2043 extern struct type *lookup_pointer_type (struct type *);
2044
2045 extern struct type *make_function_type (struct type *, struct type **);
2046
2047 extern struct type *lookup_function_type (struct type *);
2048
2049 extern struct type *lookup_function_type_with_arguments (struct type *,
2050 int,
2051 struct type **);
2052
2053 extern struct type *create_static_range_type (struct type *, struct type *,
2054 LONGEST, LONGEST);
2055
2056
2057 extern struct type *create_array_type_with_stride
2058 (struct type *, struct type *, struct type *,
2059 struct dynamic_prop *, unsigned int);
2060
2061 extern struct type *create_range_type (struct type *, struct type *,
2062 const struct dynamic_prop *,
2063 const struct dynamic_prop *,
2064 LONGEST);
2065
2066 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2067 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2068 stride. */
2069
2070 extern struct type * create_range_type_with_stride
2071 (struct type *result_type, struct type *index_type,
2072 const struct dynamic_prop *low_bound,
2073 const struct dynamic_prop *high_bound, LONGEST bias,
2074 const struct dynamic_prop *stride, bool byte_stride_p);
2075
2076 extern struct type *create_array_type (struct type *, struct type *,
2077 struct type *);
2078
2079 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2080
2081 extern struct type *create_string_type (struct type *, struct type *,
2082 struct type *);
2083 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2084
2085 extern struct type *create_set_type (struct type *, struct type *);
2086
2087 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2088 const char *);
2089
2090 extern struct type *lookup_signed_typename (const struct language_defn *,
2091 const char *);
2092
2093 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2094
2095 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2096
2097 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2098 ADDR specifies the location of the variable the type is bound to.
2099 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2100 static properties is returned. */
2101 extern struct type *resolve_dynamic_type
2102 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2103 CORE_ADDR addr);
2104
2105 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2106 extern int is_dynamic_type (struct type *type);
2107
2108 /* * Return the dynamic property of the requested KIND from TYPE's
2109 list of dynamic properties. */
2110 extern struct dynamic_prop *get_dyn_prop
2111 (enum dynamic_prop_node_kind kind, const struct type *type);
2112
2113 /* * Given a dynamic property PROP of a given KIND, add this dynamic
2114 property to the given TYPE.
2115
2116 This function assumes that TYPE is objfile-owned. */
2117 extern void add_dyn_prop
2118 (enum dynamic_prop_node_kind kind, struct dynamic_prop prop,
2119 struct type *type);
2120
2121 extern void remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2122 struct type *type);
2123
2124 extern struct type *check_typedef (struct type *);
2125
2126 extern void check_stub_method_group (struct type *, int);
2127
2128 extern char *gdb_mangle_name (struct type *, int, int);
2129
2130 extern struct type *lookup_typename (const struct language_defn *,
2131 const char *, const struct block *, int);
2132
2133 extern struct type *lookup_template_type (const char *, struct type *,
2134 const struct block *);
2135
2136 extern int get_vptr_fieldno (struct type *, struct type **);
2137
2138 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2139
2140 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2141 LONGEST *high_bound);
2142
2143 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2144
2145 extern int class_types_same_p (const struct type *, const struct type *);
2146
2147 extern int is_ancestor (struct type *, struct type *);
2148
2149 extern int is_public_ancestor (struct type *, struct type *);
2150
2151 extern int is_unique_ancestor (struct type *, struct value *);
2152
2153 /* Overload resolution */
2154
2155 /* * Badness if parameter list length doesn't match arg list length. */
2156 extern const struct rank LENGTH_MISMATCH_BADNESS;
2157
2158 /* * Dummy badness value for nonexistent parameter positions. */
2159 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2160 /* * Badness if no conversion among types. */
2161 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2162
2163 /* * Badness of an exact match. */
2164 extern const struct rank EXACT_MATCH_BADNESS;
2165
2166 /* * Badness of integral promotion. */
2167 extern const struct rank INTEGER_PROMOTION_BADNESS;
2168 /* * Badness of floating promotion. */
2169 extern const struct rank FLOAT_PROMOTION_BADNESS;
2170 /* * Badness of converting a derived class pointer
2171 to a base class pointer. */
2172 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2173 /* * Badness of integral conversion. */
2174 extern const struct rank INTEGER_CONVERSION_BADNESS;
2175 /* * Badness of floating conversion. */
2176 extern const struct rank FLOAT_CONVERSION_BADNESS;
2177 /* * Badness of integer<->floating conversions. */
2178 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2179 /* * Badness of conversion of pointer to void pointer. */
2180 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2181 /* * Badness of conversion to boolean. */
2182 extern const struct rank BOOL_CONVERSION_BADNESS;
2183 /* * Badness of converting derived to base class. */
2184 extern const struct rank BASE_CONVERSION_BADNESS;
2185 /* * Badness of converting from non-reference to reference. Subrank
2186 is the type of reference conversion being done. */
2187 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2188 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2189 /* * Conversion to rvalue reference. */
2190 #define REFERENCE_CONVERSION_RVALUE 1
2191 /* * Conversion to const lvalue reference. */
2192 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2193
2194 /* * Badness of converting integer 0 to NULL pointer. */
2195 extern const struct rank NULL_POINTER_CONVERSION;
2196 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2197 being done. */
2198 extern const struct rank CV_CONVERSION_BADNESS;
2199 #define CV_CONVERSION_CONST 1
2200 #define CV_CONVERSION_VOLATILE 2
2201
2202 /* Non-standard conversions allowed by the debugger */
2203
2204 /* * Converting a pointer to an int is usually OK. */
2205 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2206
2207 /* * Badness of converting a (non-zero) integer constant
2208 to a pointer. */
2209 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2210
2211 extern struct rank sum_ranks (struct rank a, struct rank b);
2212 extern int compare_ranks (struct rank a, struct rank b);
2213
2214 extern int compare_badness (const badness_vector &,
2215 const badness_vector &);
2216
2217 extern badness_vector rank_function (gdb::array_view<type *> parms,
2218 gdb::array_view<value *> args);
2219
2220 extern struct rank rank_one_type (struct type *, struct type *,
2221 struct value *);
2222
2223 extern void recursive_dump_type (struct type *, int);
2224
2225 extern int field_is_static (struct field *);
2226
2227 /* printcmd.c */
2228
2229 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2230 const struct value_print_options *,
2231 int, struct ui_file *);
2232
2233 extern int can_dereference (struct type *);
2234
2235 extern int is_integral_type (struct type *);
2236
2237 extern int is_floating_type (struct type *);
2238
2239 extern int is_scalar_type (struct type *type);
2240
2241 extern int is_scalar_type_recursive (struct type *);
2242
2243 extern int class_or_union_p (const struct type *);
2244
2245 extern void maintenance_print_type (const char *, int);
2246
2247 extern htab_t create_copied_types_hash (struct objfile *objfile);
2248
2249 extern struct type *copy_type_recursive (struct objfile *objfile,
2250 struct type *type,
2251 htab_t copied_types);
2252
2253 extern struct type *copy_type (const struct type *type);
2254
2255 extern bool types_equal (struct type *, struct type *);
2256
2257 extern bool types_deeply_equal (struct type *, struct type *);
2258
2259 extern int type_not_allocated (const struct type *type);
2260
2261 extern int type_not_associated (const struct type *type);
2262
2263 /* * When the type includes explicit byte ordering, return that.
2264 Otherwise, the byte ordering from gdbarch_byte_order for
2265 get_type_arch is returned. */
2266
2267 extern enum bfd_endian type_byte_order (const struct type *type);
2268
2269 /* A flag to enable printing of debugging information of C++
2270 overloading. */
2271
2272 extern unsigned int overload_debug;
2273
2274 #endif /* GDBTYPES_H */
This page took 0.133333 seconds and 4 git commands to generate.