Avoid crash in compile_to_object
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
224 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
225 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
226
227 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
228 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
229 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
230
231 /* * True if this type was declared using the "class" keyword. This is
232 only valid for C++ structure and enum types. If false, a structure
233 was declared as a "struct"; if true it was declared "class". For
234 enum types, this is true when "enum class" or "enum struct" was
235 used to declare the type.. */
236
237 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
238
239 /* * True if this type is a "flag" enum. A flag enum is one where all
240 the values are pairwise disjoint when "and"ed together. This
241 affects how enum values are printed. */
242
243 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
244
245 /* * Constant type. If this is set, the corresponding type has a
246 const modifier. */
247
248 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
249
250 /* * Volatile type. If this is set, the corresponding type has a
251 volatile modifier. */
252
253 #define TYPE_VOLATILE(t) \
254 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
255
256 /* * Restrict type. If this is set, the corresponding type has a
257 restrict modifier. */
258
259 #define TYPE_RESTRICT(t) \
260 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
261
262 /* * Atomic type. If this is set, the corresponding type has an
263 _Atomic modifier. */
264
265 #define TYPE_ATOMIC(t) \
266 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
267
268 /* * True if this type represents either an lvalue or lvalue reference type. */
269
270 #define TYPE_IS_REFERENCE(t) \
271 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
272
273 /* * True if this type is allocatable. */
274 #define TYPE_IS_ALLOCATABLE(t) \
275 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
276
277 /* * True if this type has variant parts. */
278 #define TYPE_HAS_VARIANT_PARTS(t) \
279 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
280
281 /* * True if this type has a dynamic length. */
282 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
283 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
284
285 /* * Instruction-space delimited type. This is for Harvard architectures
286 which have separate instruction and data address spaces (and perhaps
287 others).
288
289 GDB usually defines a flat address space that is a superset of the
290 architecture's two (or more) address spaces, but this is an extension
291 of the architecture's model.
292
293 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
294 resides in instruction memory, even if its address (in the extended
295 flat address space) does not reflect this.
296
297 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
298 corresponding type resides in the data memory space, even if
299 this is not indicated by its (flat address space) address.
300
301 If neither flag is set, the default space for functions / methods
302 is instruction space, and for data objects is data memory. */
303
304 #define TYPE_CODE_SPACE(t) \
305 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
306
307 #define TYPE_DATA_SPACE(t) \
308 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
309
310 /* * Address class flags. Some environments provide for pointers
311 whose size is different from that of a normal pointer or address
312 types where the bits are interpreted differently than normal
313 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
314 target specific ways to represent these different types of address
315 classes. */
316
317 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
318 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
319 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
320 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
321 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
322 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
323 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
324 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
325
326 /* * Information about a single discriminant. */
327
328 struct discriminant_range
329 {
330 /* * The range of values for the variant. This is an inclusive
331 range. */
332 ULONGEST low, high;
333
334 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
335 is true if this should be an unsigned comparison; false for
336 signed. */
337 bool contains (ULONGEST value, bool is_unsigned) const
338 {
339 if (is_unsigned)
340 return value >= low && value <= high;
341 LONGEST valuel = (LONGEST) value;
342 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
343 }
344 };
345
346 struct variant_part;
347
348 /* * A single variant. A variant has a list of discriminant values.
349 When the discriminator matches one of these, the variant is
350 enabled. Each variant controls zero or more fields; and may also
351 control other variant parts as well. This struct corresponds to
352 DW_TAG_variant in DWARF. */
353
354 struct variant : allocate_on_obstack
355 {
356 /* * The discriminant ranges for this variant. */
357 gdb::array_view<discriminant_range> discriminants;
358
359 /* * The fields controlled by this variant. This is inclusive on
360 the low end and exclusive on the high end. A variant may not
361 control any fields, in which case the two values will be equal.
362 These are indexes into the type's array of fields. */
363 int first_field;
364 int last_field;
365
366 /* * Variant parts controlled by this variant. */
367 gdb::array_view<variant_part> parts;
368
369 /* * Return true if this is the default variant. The default
370 variant can be recognized because it has no associated
371 discriminants. */
372 bool is_default () const
373 {
374 return discriminants.empty ();
375 }
376
377 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
378 if this should be an unsigned comparison; false for signed. */
379 bool matches (ULONGEST value, bool is_unsigned) const;
380 };
381
382 /* * A variant part. Each variant part has an optional discriminant
383 and holds an array of variants. This struct corresponds to
384 DW_TAG_variant_part in DWARF. */
385
386 struct variant_part : allocate_on_obstack
387 {
388 /* * The index of the discriminant field in the outer type. This is
389 an index into the type's array of fields. If this is -1, there
390 is no discriminant, and only the default variant can be
391 considered to be selected. */
392 int discriminant_index;
393
394 /* * True if this discriminant is unsigned; false if signed. This
395 comes from the type of the discriminant. */
396 bool is_unsigned;
397
398 /* * The variants that are controlled by this variant part. Note
399 that these will always be sorted by field number. */
400 gdb::array_view<variant> variants;
401 };
402
403
404 enum dynamic_prop_kind
405 {
406 PROP_UNDEFINED, /* Not defined. */
407 PROP_CONST, /* Constant. */
408 PROP_ADDR_OFFSET, /* Address offset. */
409 PROP_LOCEXPR, /* Location expression. */
410 PROP_LOCLIST, /* Location list. */
411 PROP_VARIANT_PARTS, /* Variant parts. */
412 PROP_TYPE, /* Type. */
413 };
414
415 union dynamic_prop_data
416 {
417 /* Storage for constant property. */
418
419 LONGEST const_val;
420
421 /* Storage for dynamic property. */
422
423 void *baton;
424
425 /* Storage of variant parts for a type. A type with variant parts
426 has all its fields "linearized" -- stored in a single field
427 array, just as if they had all been declared that way. The
428 variant parts are attached via a dynamic property, and then are
429 used to control which fields end up in the final type during
430 dynamic type resolution. */
431
432 const gdb::array_view<variant_part> *variant_parts;
433
434 /* Once a variant type is resolved, we may want to be able to go
435 from the resolved type to the original type. In this case we
436 rewrite the property's kind and set this field. */
437
438 struct type *original_type;
439 };
440
441 /* * Used to store a dynamic property. */
442
443 struct dynamic_prop
444 {
445 dynamic_prop_kind kind () const
446 {
447 return m_kind;
448 }
449
450 void set_undefined ()
451 {
452 m_kind = PROP_UNDEFINED;
453 }
454
455 LONGEST const_val () const
456 {
457 gdb_assert (m_kind == PROP_CONST);
458
459 return m_data.const_val;
460 }
461
462 void set_const_val (LONGEST const_val)
463 {
464 m_kind = PROP_CONST;
465 m_data.const_val = const_val;
466 }
467
468 void *baton () const
469 {
470 gdb_assert (m_kind == PROP_LOCEXPR
471 || m_kind == PROP_LOCLIST
472 || m_kind == PROP_ADDR_OFFSET);
473
474 return m_data.baton;
475 }
476
477 void set_locexpr (void *baton)
478 {
479 m_kind = PROP_LOCEXPR;
480 m_data.baton = baton;
481 }
482
483 void set_loclist (void *baton)
484 {
485 m_kind = PROP_LOCLIST;
486 m_data.baton = baton;
487 }
488
489 void set_addr_offset (void *baton)
490 {
491 m_kind = PROP_ADDR_OFFSET;
492 m_data.baton = baton;
493 }
494
495 const gdb::array_view<variant_part> *variant_parts () const
496 {
497 gdb_assert (m_kind == PROP_VARIANT_PARTS);
498
499 return m_data.variant_parts;
500 }
501
502 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
503 {
504 m_kind = PROP_VARIANT_PARTS;
505 m_data.variant_parts = variant_parts;
506 }
507
508 struct type *original_type () const
509 {
510 gdb_assert (m_kind == PROP_TYPE);
511
512 return m_data.original_type;
513 }
514
515 void set_original_type (struct type *original_type)
516 {
517 m_kind = PROP_TYPE;
518 m_data.original_type = original_type;
519 }
520
521 /* Determine which field of the union dynamic_prop.data is used. */
522 enum dynamic_prop_kind m_kind;
523
524 /* Storage for dynamic or static value. */
525 union dynamic_prop_data m_data;
526 };
527
528 /* Compare two dynamic_prop objects for equality. dynamic_prop
529 instances are equal iff they have the same type and storage. */
530 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
531
532 /* Compare two dynamic_prop objects for inequality. */
533 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
534 {
535 return !(l == r);
536 }
537
538 /* * Define a type's dynamic property node kind. */
539 enum dynamic_prop_node_kind
540 {
541 /* A property providing a type's data location.
542 Evaluating this field yields to the location of an object's data. */
543 DYN_PROP_DATA_LOCATION,
544
545 /* A property representing DW_AT_allocated. The presence of this attribute
546 indicates that the object of the type can be allocated/deallocated. */
547 DYN_PROP_ALLOCATED,
548
549 /* A property representing DW_AT_associated. The presence of this attribute
550 indicated that the object of the type can be associated. */
551 DYN_PROP_ASSOCIATED,
552
553 /* A property providing an array's byte stride. */
554 DYN_PROP_BYTE_STRIDE,
555
556 /* A property holding variant parts. */
557 DYN_PROP_VARIANT_PARTS,
558
559 /* A property holding the size of the type. */
560 DYN_PROP_BYTE_SIZE,
561 };
562
563 /* * List for dynamic type attributes. */
564 struct dynamic_prop_list
565 {
566 /* The kind of dynamic prop in this node. */
567 enum dynamic_prop_node_kind prop_kind;
568
569 /* The dynamic property itself. */
570 struct dynamic_prop prop;
571
572 /* A pointer to the next dynamic property. */
573 struct dynamic_prop_list *next;
574 };
575
576 /* * Determine which field of the union main_type.fields[x].loc is
577 used. */
578
579 enum field_loc_kind
580 {
581 FIELD_LOC_KIND_BITPOS, /**< bitpos */
582 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
583 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
584 FIELD_LOC_KIND_PHYSNAME, /**< physname */
585 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
586 };
587
588 /* * A discriminant to determine which field in the
589 main_type.type_specific union is being used, if any.
590
591 For types such as TYPE_CODE_FLT, the use of this
592 discriminant is really redundant, as we know from the type code
593 which field is going to be used. As such, it would be possible to
594 reduce the size of this enum in order to save a bit or two for
595 other fields of struct main_type. But, since we still have extra
596 room , and for the sake of clarity and consistency, we treat all fields
597 of the union the same way. */
598
599 enum type_specific_kind
600 {
601 TYPE_SPECIFIC_NONE,
602 TYPE_SPECIFIC_CPLUS_STUFF,
603 TYPE_SPECIFIC_GNAT_STUFF,
604 TYPE_SPECIFIC_FLOATFORMAT,
605 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
606 TYPE_SPECIFIC_FUNC,
607 TYPE_SPECIFIC_SELF_TYPE,
608 TYPE_SPECIFIC_INT,
609 TYPE_SPECIFIC_FIXED_POINT,
610 };
611
612 union type_owner
613 {
614 struct objfile *objfile;
615 struct gdbarch *gdbarch;
616 };
617
618 union field_location
619 {
620 /* * Position of this field, counting in bits from start of
621 containing structure. For big-endian targets, it is the bit
622 offset to the MSB. For little-endian targets, it is the bit
623 offset to the LSB. */
624
625 LONGEST bitpos;
626
627 /* * Enum value. */
628 LONGEST enumval;
629
630 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
631 physaddr is the location (in the target) of the static
632 field. Otherwise, physname is the mangled label of the
633 static field. */
634
635 CORE_ADDR physaddr;
636 const char *physname;
637
638 /* * The field location can be computed by evaluating the
639 following DWARF block. Its DATA is allocated on
640 objfile_obstack - no CU load is needed to access it. */
641
642 struct dwarf2_locexpr_baton *dwarf_block;
643 };
644
645 struct field
646 {
647 struct type *type () const
648 {
649 return this->m_type;
650 }
651
652 void set_type (struct type *type)
653 {
654 this->m_type = type;
655 }
656
657 union field_location loc;
658
659 /* * For a function or member type, this is 1 if the argument is
660 marked artificial. Artificial arguments should not be shown
661 to the user. For TYPE_CODE_RANGE it is set if the specific
662 bound is not defined. */
663
664 unsigned int artificial : 1;
665
666 /* * Discriminant for union field_location. */
667
668 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
669
670 /* * Size of this field, in bits, or zero if not packed.
671 If non-zero in an array type, indicates the element size in
672 bits (used only in Ada at the moment).
673 For an unpacked field, the field's type's length
674 says how many bytes the field occupies. */
675
676 unsigned int bitsize : 28;
677
678 /* * In a struct or union type, type of this field.
679 - In a function or member type, type of this argument.
680 - In an array type, the domain-type of the array. */
681
682 struct type *m_type;
683
684 /* * Name of field, value or argument.
685 NULL for range bounds, array domains, and member function
686 arguments. */
687
688 const char *name;
689 };
690
691 struct range_bounds
692 {
693 ULONGEST bit_stride () const
694 {
695 if (this->flag_is_byte_stride)
696 return this->stride.const_val () * 8;
697 else
698 return this->stride.const_val ();
699 }
700
701 /* * Low bound of range. */
702
703 struct dynamic_prop low;
704
705 /* * High bound of range. */
706
707 struct dynamic_prop high;
708
709 /* The stride value for this range. This can be stored in bits or bytes
710 based on the value of BYTE_STRIDE_P. It is optional to have a stride
711 value, if this range has no stride value defined then this will be set
712 to the constant zero. */
713
714 struct dynamic_prop stride;
715
716 /* * The bias. Sometimes a range value is biased before storage.
717 The bias is added to the stored bits to form the true value. */
718
719 LONGEST bias;
720
721 /* True if HIGH range bound contains the number of elements in the
722 subrange. This affects how the final high bound is computed. */
723
724 unsigned int flag_upper_bound_is_count : 1;
725
726 /* True if LOW or/and HIGH are resolved into a static bound from
727 a dynamic one. */
728
729 unsigned int flag_bound_evaluated : 1;
730
731 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
732
733 unsigned int flag_is_byte_stride : 1;
734 };
735
736 /* Compare two range_bounds objects for equality. Simply does
737 memberwise comparison. */
738 extern bool operator== (const range_bounds &l, const range_bounds &r);
739
740 /* Compare two range_bounds objects for inequality. */
741 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
742 {
743 return !(l == r);
744 }
745
746 union type_specific
747 {
748 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
749 point to cplus_struct_default, a default static instance of a
750 struct cplus_struct_type. */
751
752 struct cplus_struct_type *cplus_stuff;
753
754 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
755 provides additional information. */
756
757 struct gnat_aux_type *gnat_stuff;
758
759 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
760 floatformat object that describes the floating-point value
761 that resides within the type. */
762
763 const struct floatformat *floatformat;
764
765 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
766
767 struct func_type *func_stuff;
768
769 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
770 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
771 is a member of. */
772
773 struct type *self_type;
774
775 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
776 values of that type. */
777 struct fixed_point_type_info *fixed_point_info;
778
779 /* * An integer-like scalar type may be stored in just part of its
780 enclosing storage bytes. This structure describes this
781 situation. */
782 struct
783 {
784 /* * The bit size of the integer. This can be 0. For integers
785 that fill their storage (the ordinary case), this field holds
786 the byte size times 8. */
787 unsigned short bit_size;
788 /* * The bit offset of the integer. This is ordinarily 0, and can
789 only be non-zero if the bit size is less than the storage
790 size. */
791 unsigned short bit_offset;
792 } int_stuff;
793 };
794
795 /* * Main structure representing a type in GDB.
796
797 This structure is space-critical. Its layout has been tweaked to
798 reduce the space used. */
799
800 struct main_type
801 {
802 /* * Code for kind of type. */
803
804 ENUM_BITFIELD(type_code) code : 8;
805
806 /* * Flags about this type. These fields appear at this location
807 because they packs nicely here. See the TYPE_* macros for
808 documentation about these fields. */
809
810 unsigned int m_flag_unsigned : 1;
811 unsigned int m_flag_nosign : 1;
812 unsigned int m_flag_stub : 1;
813 unsigned int m_flag_target_stub : 1;
814 unsigned int m_flag_prototyped : 1;
815 unsigned int m_flag_varargs : 1;
816 unsigned int m_flag_vector : 1;
817 unsigned int m_flag_stub_supported : 1;
818 unsigned int m_flag_gnu_ifunc : 1;
819 unsigned int m_flag_fixed_instance : 1;
820 unsigned int flag_objfile_owned : 1;
821 unsigned int m_flag_endianity_not_default : 1;
822
823 /* * True if this type was declared with "class" rather than
824 "struct". */
825
826 unsigned int flag_declared_class : 1;
827
828 /* * True if this is an enum type with disjoint values. This
829 affects how the enum is printed. */
830
831 unsigned int flag_flag_enum : 1;
832
833 /* * A discriminant telling us which field of the type_specific
834 union is being used for this type, if any. */
835
836 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
837
838 /* * Number of fields described for this type. This field appears
839 at this location because it packs nicely here. */
840
841 short nfields;
842
843 /* * Name of this type, or NULL if none.
844
845 This is used for printing only. For looking up a name, look for
846 a symbol in the VAR_DOMAIN. This is generally allocated in the
847 objfile's obstack. However coffread.c uses malloc. */
848
849 const char *name;
850
851 /* * Every type is now associated with a particular objfile, and the
852 type is allocated on the objfile_obstack for that objfile. One
853 problem however, is that there are times when gdb allocates new
854 types while it is not in the process of reading symbols from a
855 particular objfile. Fortunately, these happen when the type
856 being created is a derived type of an existing type, such as in
857 lookup_pointer_type(). So we can just allocate the new type
858 using the same objfile as the existing type, but to do this we
859 need a backpointer to the objfile from the existing type. Yes
860 this is somewhat ugly, but without major overhaul of the internal
861 type system, it can't be avoided for now. */
862
863 union type_owner owner;
864
865 /* * For a pointer type, describes the type of object pointed to.
866 - For an array type, describes the type of the elements.
867 - For a function or method type, describes the type of the return value.
868 - For a range type, describes the type of the full range.
869 - For a complex type, describes the type of each coordinate.
870 - For a special record or union type encoding a dynamic-sized type
871 in GNAT, a memoized pointer to a corresponding static version of
872 the type.
873 - Unused otherwise. */
874
875 struct type *target_type;
876
877 /* * For structure and union types, a description of each field.
878 For set and pascal array types, there is one "field",
879 whose type is the domain type of the set or array.
880 For range types, there are two "fields",
881 the minimum and maximum values (both inclusive).
882 For enum types, each possible value is described by one "field".
883 For a function or method type, a "field" for each parameter.
884 For C++ classes, there is one field for each base class (if it is
885 a derived class) plus one field for each class data member. Member
886 functions are recorded elsewhere.
887
888 Using a pointer to a separate array of fields
889 allows all types to have the same size, which is useful
890 because we can allocate the space for a type before
891 we know what to put in it. */
892
893 union
894 {
895 struct field *fields;
896
897 /* * Union member used for range types. */
898
899 struct range_bounds *bounds;
900
901 /* If this is a scalar type, then this is its corresponding
902 complex type. */
903 struct type *complex_type;
904
905 } flds_bnds;
906
907 /* * Slot to point to additional language-specific fields of this
908 type. */
909
910 union type_specific type_specific;
911
912 /* * Contains all dynamic type properties. */
913 struct dynamic_prop_list *dyn_prop_list;
914 };
915
916 /* * Number of bits allocated for alignment. */
917
918 #define TYPE_ALIGN_BITS 8
919
920 /* * A ``struct type'' describes a particular instance of a type, with
921 some particular qualification. */
922
923 struct type
924 {
925 /* Get the type code of this type.
926
927 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
928 type, you need to do `check_typedef (type)->code ()`. */
929 type_code code () const
930 {
931 return this->main_type->code;
932 }
933
934 /* Set the type code of this type. */
935 void set_code (type_code code)
936 {
937 this->main_type->code = code;
938 }
939
940 /* Get the name of this type. */
941 const char *name () const
942 {
943 return this->main_type->name;
944 }
945
946 /* Set the name of this type. */
947 void set_name (const char *name)
948 {
949 this->main_type->name = name;
950 }
951
952 /* Get the number of fields of this type. */
953 int num_fields () const
954 {
955 return this->main_type->nfields;
956 }
957
958 /* Set the number of fields of this type. */
959 void set_num_fields (int num_fields)
960 {
961 this->main_type->nfields = num_fields;
962 }
963
964 /* Get the fields array of this type. */
965 struct field *fields () const
966 {
967 return this->main_type->flds_bnds.fields;
968 }
969
970 /* Get the field at index IDX. */
971 struct field &field (int idx) const
972 {
973 return this->fields ()[idx];
974 }
975
976 /* Set the fields array of this type. */
977 void set_fields (struct field *fields)
978 {
979 this->main_type->flds_bnds.fields = fields;
980 }
981
982 type *index_type () const
983 {
984 return this->field (0).type ();
985 }
986
987 void set_index_type (type *index_type)
988 {
989 this->field (0).set_type (index_type);
990 }
991
992 /* Return the instance flags converted to the correct type. */
993 const type_instance_flags instance_flags () const
994 {
995 return (enum type_instance_flag_value) this->m_instance_flags;
996 }
997
998 /* Set the instance flags. */
999 void set_instance_flags (type_instance_flags flags)
1000 {
1001 this->m_instance_flags = flags;
1002 }
1003
1004 /* Get the bounds bounds of this type. The type must be a range type. */
1005 range_bounds *bounds () const
1006 {
1007 switch (this->code ())
1008 {
1009 case TYPE_CODE_RANGE:
1010 return this->main_type->flds_bnds.bounds;
1011
1012 case TYPE_CODE_ARRAY:
1013 case TYPE_CODE_STRING:
1014 return this->index_type ()->bounds ();
1015
1016 default:
1017 gdb_assert_not_reached
1018 ("type::bounds called on type with invalid code");
1019 }
1020 }
1021
1022 /* Set the bounds of this type. The type must be a range type. */
1023 void set_bounds (range_bounds *bounds)
1024 {
1025 gdb_assert (this->code () == TYPE_CODE_RANGE);
1026
1027 this->main_type->flds_bnds.bounds = bounds;
1028 }
1029
1030 ULONGEST bit_stride () const
1031 {
1032 return this->bounds ()->bit_stride ();
1033 }
1034
1035 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1036 the type is signed (unless TYPE_NOSIGN is set). */
1037
1038 bool is_unsigned () const
1039 {
1040 return this->main_type->m_flag_unsigned;
1041 }
1042
1043 void set_is_unsigned (bool is_unsigned)
1044 {
1045 this->main_type->m_flag_unsigned = is_unsigned;
1046 }
1047
1048 /* No sign for this type. In C++, "char", "signed char", and
1049 "unsigned char" are distinct types; so we need an extra flag to
1050 indicate the absence of a sign! */
1051
1052 bool has_no_signedness () const
1053 {
1054 return this->main_type->m_flag_nosign;
1055 }
1056
1057 void set_has_no_signedness (bool has_no_signedness)
1058 {
1059 this->main_type->m_flag_nosign = has_no_signedness;
1060 }
1061
1062 /* This appears in a type's flags word if it is a stub type (e.g.,
1063 if someone referenced a type that wasn't defined in a source file
1064 via (struct sir_not_appearing_in_this_film *)). */
1065
1066 bool is_stub () const
1067 {
1068 return this->main_type->m_flag_stub;
1069 }
1070
1071 void set_is_stub (bool is_stub)
1072 {
1073 this->main_type->m_flag_stub = is_stub;
1074 }
1075
1076 /* The target type of this type is a stub type, and this type needs
1077 to be updated if it gets un-stubbed in check_typedef. Used for
1078 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1079 based on the TYPE_LENGTH of the target type. Also, set for
1080 TYPE_CODE_TYPEDEF. */
1081
1082 bool target_is_stub () const
1083 {
1084 return this->main_type->m_flag_target_stub;
1085 }
1086
1087 void set_target_is_stub (bool target_is_stub)
1088 {
1089 this->main_type->m_flag_target_stub = target_is_stub;
1090 }
1091
1092 /* This is a function type which appears to have a prototype. We
1093 need this for function calls in order to tell us if it's necessary
1094 to coerce the args, or to just do the standard conversions. This
1095 is used with a short field. */
1096
1097 bool is_prototyped () const
1098 {
1099 return this->main_type->m_flag_prototyped;
1100 }
1101
1102 void set_is_prototyped (bool is_prototyped)
1103 {
1104 this->main_type->m_flag_prototyped = is_prototyped;
1105 }
1106
1107 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1108 to functions. */
1109
1110 bool has_varargs () const
1111 {
1112 return this->main_type->m_flag_varargs;
1113 }
1114
1115 void set_has_varargs (bool has_varargs)
1116 {
1117 this->main_type->m_flag_varargs = has_varargs;
1118 }
1119
1120 /* Identify a vector type. Gcc is handling this by adding an extra
1121 attribute to the array type. We slurp that in as a new flag of a
1122 type. This is used only in dwarf2read.c. */
1123
1124 bool is_vector () const
1125 {
1126 return this->main_type->m_flag_vector;
1127 }
1128
1129 void set_is_vector (bool is_vector)
1130 {
1131 this->main_type->m_flag_vector = is_vector;
1132 }
1133
1134 /* This debug target supports TYPE_STUB(t). In the unsupported case
1135 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1136 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1137 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1138
1139 bool stub_is_supported () const
1140 {
1141 return this->main_type->m_flag_stub_supported;
1142 }
1143
1144 void set_stub_is_supported (bool stub_is_supported)
1145 {
1146 this->main_type->m_flag_stub_supported = stub_is_supported;
1147 }
1148
1149 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1150 address is returned by this function call. TYPE_TARGET_TYPE
1151 determines the final returned function type to be presented to
1152 user. */
1153
1154 bool is_gnu_ifunc () const
1155 {
1156 return this->main_type->m_flag_gnu_ifunc;
1157 }
1158
1159 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1160 {
1161 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1162 }
1163
1164 /* The debugging formats (especially STABS) do not contain enough
1165 information to represent all Ada types---especially those whose
1166 size depends on dynamic quantities. Therefore, the GNAT Ada
1167 compiler includes extra information in the form of additional type
1168 definitions connected by naming conventions. This flag indicates
1169 that the type is an ordinary (unencoded) GDB type that has been
1170 created from the necessary run-time information, and does not need
1171 further interpretation. Optionally marks ordinary, fixed-size GDB
1172 type. */
1173
1174 bool is_fixed_instance () const
1175 {
1176 return this->main_type->m_flag_fixed_instance;
1177 }
1178
1179 void set_is_fixed_instance (bool is_fixed_instance)
1180 {
1181 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1182 }
1183
1184 /* A compiler may supply dwarf instrumentation that indicates the desired
1185 endian interpretation of the variable differs from the native endian
1186 representation. */
1187
1188 bool endianity_is_not_default () const
1189 {
1190 return this->main_type->m_flag_endianity_not_default;
1191 }
1192
1193 void set_endianity_is_not_default (bool endianity_is_not_default)
1194 {
1195 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1196 }
1197
1198 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1199 to this type's fixed_point_info. */
1200
1201 struct fixed_point_type_info &fixed_point_info () const
1202 {
1203 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1204 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1205
1206 return *this->main_type->type_specific.fixed_point_info;
1207 }
1208
1209 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1210 fixed_point_info to INFO. */
1211
1212 void set_fixed_point_info (struct fixed_point_type_info *info) const
1213 {
1214 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1215
1216 this->main_type->type_specific.fixed_point_info = info;
1217 }
1218
1219 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1220
1221 In other words, this returns the type after having peeled all
1222 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1223 The TYPE_CODE of the type returned is guaranteed to be
1224 a TYPE_CODE_FIXED_POINT. */
1225
1226 struct type *fixed_point_type_base_type ();
1227
1228 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1229 factor. */
1230
1231 const gdb_mpq &fixed_point_scaling_factor ();
1232
1233 /* * Return the dynamic property of the requested KIND from this type's
1234 list of dynamic properties. */
1235 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1236
1237 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1238 property to this type.
1239
1240 This function assumes that this type is objfile-owned. */
1241 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1242
1243 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1244 void remove_dyn_prop (dynamic_prop_node_kind kind);
1245
1246 /* * Return true if this is an integer type whose logical (bit) size
1247 differs from its storage size; false otherwise. Always return
1248 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1249 bool bit_size_differs_p () const
1250 {
1251 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1252 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1253 }
1254
1255 /* * Return the logical (bit) size for this integer type. Only
1256 valid for integer (TYPE_SPECIFIC_INT) types. */
1257 unsigned short bit_size () const
1258 {
1259 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1260 return main_type->type_specific.int_stuff.bit_size;
1261 }
1262
1263 /* * Return the bit offset for this integer type. Only valid for
1264 integer (TYPE_SPECIFIC_INT) types. */
1265 unsigned short bit_offset () const
1266 {
1267 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1268 return main_type->type_specific.int_stuff.bit_offset;
1269 }
1270
1271 /* * Type that is a pointer to this type.
1272 NULL if no such pointer-to type is known yet.
1273 The debugger may add the address of such a type
1274 if it has to construct one later. */
1275
1276 struct type *pointer_type;
1277
1278 /* * C++: also need a reference type. */
1279
1280 struct type *reference_type;
1281
1282 /* * A C++ rvalue reference type added in C++11. */
1283
1284 struct type *rvalue_reference_type;
1285
1286 /* * Variant chain. This points to a type that differs from this
1287 one only in qualifiers and length. Currently, the possible
1288 qualifiers are const, volatile, code-space, data-space, and
1289 address class. The length may differ only when one of the
1290 address class flags are set. The variants are linked in a
1291 circular ring and share MAIN_TYPE. */
1292
1293 struct type *chain;
1294
1295 /* * The alignment for this type. Zero means that the alignment was
1296 not specified in the debug info. Note that this is stored in a
1297 funny way: as the log base 2 (plus 1) of the alignment; so a
1298 value of 1 means the alignment is 1, and a value of 9 means the
1299 alignment is 256. */
1300
1301 unsigned align_log2 : TYPE_ALIGN_BITS;
1302
1303 /* * Flags specific to this instance of the type, indicating where
1304 on the ring we are.
1305
1306 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1307 binary or-ed with the target type, with a special case for
1308 address class and space class. For example if this typedef does
1309 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1310 instance flags are completely inherited from the target type. No
1311 qualifiers can be cleared by the typedef. See also
1312 check_typedef. */
1313 unsigned m_instance_flags : 9;
1314
1315 /* * Length of storage for a value of this type. The value is the
1316 expression in host bytes of what sizeof(type) would return. This
1317 size includes padding. For example, an i386 extended-precision
1318 floating point value really only occupies ten bytes, but most
1319 ABI's declare its size to be 12 bytes, to preserve alignment.
1320 A `struct type' representing such a floating-point type would
1321 have a `length' value of 12, even though the last two bytes are
1322 unused.
1323
1324 Since this field is expressed in host bytes, its value is appropriate
1325 to pass to memcpy and such (it is assumed that GDB itself always runs
1326 on an 8-bits addressable architecture). However, when using it for
1327 target address arithmetic (e.g. adding it to a target address), the
1328 type_length_units function should be used in order to get the length
1329 expressed in target addressable memory units. */
1330
1331 ULONGEST length;
1332
1333 /* * Core type, shared by a group of qualified types. */
1334
1335 struct main_type *main_type;
1336 };
1337
1338 struct fn_fieldlist
1339 {
1340
1341 /* * The overloaded name.
1342 This is generally allocated in the objfile's obstack.
1343 However stabsread.c sometimes uses malloc. */
1344
1345 const char *name;
1346
1347 /* * The number of methods with this name. */
1348
1349 int length;
1350
1351 /* * The list of methods. */
1352
1353 struct fn_field *fn_fields;
1354 };
1355
1356
1357
1358 struct fn_field
1359 {
1360 /* * If is_stub is clear, this is the mangled name which we can look
1361 up to find the address of the method (FIXME: it would be cleaner
1362 to have a pointer to the struct symbol here instead).
1363
1364 If is_stub is set, this is the portion of the mangled name which
1365 specifies the arguments. For example, "ii", if there are two int
1366 arguments, or "" if there are no arguments. See gdb_mangle_name
1367 for the conversion from this format to the one used if is_stub is
1368 clear. */
1369
1370 const char *physname;
1371
1372 /* * The function type for the method.
1373
1374 (This comment used to say "The return value of the method", but
1375 that's wrong. The function type is expected here, i.e. something
1376 with TYPE_CODE_METHOD, and *not* the return-value type). */
1377
1378 struct type *type;
1379
1380 /* * For virtual functions. First baseclass that defines this
1381 virtual function. */
1382
1383 struct type *fcontext;
1384
1385 /* Attributes. */
1386
1387 unsigned int is_const:1;
1388 unsigned int is_volatile:1;
1389 unsigned int is_private:1;
1390 unsigned int is_protected:1;
1391 unsigned int is_artificial:1;
1392
1393 /* * A stub method only has some fields valid (but they are enough
1394 to reconstruct the rest of the fields). */
1395
1396 unsigned int is_stub:1;
1397
1398 /* * True if this function is a constructor, false otherwise. */
1399
1400 unsigned int is_constructor : 1;
1401
1402 /* * True if this function is deleted, false otherwise. */
1403
1404 unsigned int is_deleted : 1;
1405
1406 /* * DW_AT_defaulted attribute for this function. The value is one
1407 of the DW_DEFAULTED constants. */
1408
1409 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1410
1411 /* * Unused. */
1412
1413 unsigned int dummy:6;
1414
1415 /* * Index into that baseclass's virtual function table, minus 2;
1416 else if static: VOFFSET_STATIC; else: 0. */
1417
1418 unsigned int voffset:16;
1419
1420 #define VOFFSET_STATIC 1
1421
1422 };
1423
1424 struct decl_field
1425 {
1426 /* * Unqualified name to be prefixed by owning class qualified
1427 name. */
1428
1429 const char *name;
1430
1431 /* * Type this typedef named NAME represents. */
1432
1433 struct type *type;
1434
1435 /* * True if this field was declared protected, false otherwise. */
1436 unsigned int is_protected : 1;
1437
1438 /* * True if this field was declared private, false otherwise. */
1439 unsigned int is_private : 1;
1440 };
1441
1442 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1443 TYPE_CODE_UNION nodes. */
1444
1445 struct cplus_struct_type
1446 {
1447 /* * Number of base classes this type derives from. The
1448 baseclasses are stored in the first N_BASECLASSES fields
1449 (i.e. the `fields' field of the struct type). The only fields
1450 of struct field that are used are: type, name, loc.bitpos. */
1451
1452 short n_baseclasses;
1453
1454 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1455 All access to this field must be through TYPE_VPTR_FIELDNO as one
1456 thing it does is check whether the field has been initialized.
1457 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1458 which for portability reasons doesn't initialize this field.
1459 TYPE_VPTR_FIELDNO returns -1 for this case.
1460
1461 If -1, we were unable to find the virtual function table pointer in
1462 initial symbol reading, and get_vptr_fieldno should be called to find
1463 it if possible. get_vptr_fieldno will update this field if possible.
1464 Otherwise the value is left at -1.
1465
1466 Unused if this type does not have virtual functions. */
1467
1468 short vptr_fieldno;
1469
1470 /* * Number of methods with unique names. All overloaded methods
1471 with the same name count only once. */
1472
1473 short nfn_fields;
1474
1475 /* * Number of template arguments. */
1476
1477 unsigned short n_template_arguments;
1478
1479 /* * One if this struct is a dynamic class, as defined by the
1480 Itanium C++ ABI: if it requires a virtual table pointer,
1481 because it or any of its base classes have one or more virtual
1482 member functions or virtual base classes. Minus one if not
1483 dynamic. Zero if not yet computed. */
1484
1485 int is_dynamic : 2;
1486
1487 /* * The calling convention for this type, fetched from the
1488 DW_AT_calling_convention attribute. The value is one of the
1489 DW_CC constants. */
1490
1491 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1492
1493 /* * The base class which defined the virtual function table pointer. */
1494
1495 struct type *vptr_basetype;
1496
1497 /* * For derived classes, the number of base classes is given by
1498 n_baseclasses and virtual_field_bits is a bit vector containing
1499 one bit per base class. If the base class is virtual, the
1500 corresponding bit will be set.
1501 I.E, given:
1502
1503 class A{};
1504 class B{};
1505 class C : public B, public virtual A {};
1506
1507 B is a baseclass of C; A is a virtual baseclass for C.
1508 This is a C++ 2.0 language feature. */
1509
1510 B_TYPE *virtual_field_bits;
1511
1512 /* * For classes with private fields, the number of fields is
1513 given by nfields and private_field_bits is a bit vector
1514 containing one bit per field.
1515
1516 If the field is private, the corresponding bit will be set. */
1517
1518 B_TYPE *private_field_bits;
1519
1520 /* * For classes with protected fields, the number of fields is
1521 given by nfields and protected_field_bits is a bit vector
1522 containing one bit per field.
1523
1524 If the field is private, the corresponding bit will be set. */
1525
1526 B_TYPE *protected_field_bits;
1527
1528 /* * For classes with fields to be ignored, either this is
1529 optimized out or this field has length 0. */
1530
1531 B_TYPE *ignore_field_bits;
1532
1533 /* * For classes, structures, and unions, a description of each
1534 field, which consists of an overloaded name, followed by the
1535 types of arguments that the method expects, and then the name
1536 after it has been renamed to make it distinct.
1537
1538 fn_fieldlists points to an array of nfn_fields of these. */
1539
1540 struct fn_fieldlist *fn_fieldlists;
1541
1542 /* * typedefs defined inside this class. typedef_field points to
1543 an array of typedef_field_count elements. */
1544
1545 struct decl_field *typedef_field;
1546
1547 unsigned typedef_field_count;
1548
1549 /* * The nested types defined by this type. nested_types points to
1550 an array of nested_types_count elements. */
1551
1552 struct decl_field *nested_types;
1553
1554 unsigned nested_types_count;
1555
1556 /* * The template arguments. This is an array with
1557 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1558 classes. */
1559
1560 struct symbol **template_arguments;
1561 };
1562
1563 /* * Struct used to store conversion rankings. */
1564
1565 struct rank
1566 {
1567 short rank;
1568
1569 /* * When two conversions are of the same type and therefore have
1570 the same rank, subrank is used to differentiate the two.
1571
1572 Eg: Two derived-class-pointer to base-class-pointer conversions
1573 would both have base pointer conversion rank, but the
1574 conversion with the shorter distance to the ancestor is
1575 preferable. 'subrank' would be used to reflect that. */
1576
1577 short subrank;
1578 };
1579
1580 /* * Used for ranking a function for overload resolution. */
1581
1582 typedef std::vector<rank> badness_vector;
1583
1584 /* * GNAT Ada-specific information for various Ada types. */
1585
1586 struct gnat_aux_type
1587 {
1588 /* * Parallel type used to encode information about dynamic types
1589 used in Ada (such as variant records, variable-size array,
1590 etc). */
1591 struct type* descriptive_type;
1592 };
1593
1594 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1595
1596 struct func_type
1597 {
1598 /* * The calling convention for targets supporting multiple ABIs.
1599 Right now this is only fetched from the Dwarf-2
1600 DW_AT_calling_convention attribute. The value is one of the
1601 DW_CC constants. */
1602
1603 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1604
1605 /* * Whether this function normally returns to its caller. It is
1606 set from the DW_AT_noreturn attribute if set on the
1607 DW_TAG_subprogram. */
1608
1609 unsigned int is_noreturn : 1;
1610
1611 /* * Only those DW_TAG_call_site's in this function that have
1612 DW_AT_call_tail_call set are linked in this list. Function
1613 without its tail call list complete
1614 (DW_AT_call_all_tail_calls or its superset
1615 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1616 DW_TAG_call_site's exist in such function. */
1617
1618 struct call_site *tail_call_list;
1619
1620 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1621 contains the method. */
1622
1623 struct type *self_type;
1624 };
1625
1626 /* struct call_site_parameter can be referenced in callees by several ways. */
1627
1628 enum call_site_parameter_kind
1629 {
1630 /* * Use field call_site_parameter.u.dwarf_reg. */
1631 CALL_SITE_PARAMETER_DWARF_REG,
1632
1633 /* * Use field call_site_parameter.u.fb_offset. */
1634 CALL_SITE_PARAMETER_FB_OFFSET,
1635
1636 /* * Use field call_site_parameter.u.param_offset. */
1637 CALL_SITE_PARAMETER_PARAM_OFFSET
1638 };
1639
1640 struct call_site_target
1641 {
1642 union field_location loc;
1643
1644 /* * Discriminant for union field_location. */
1645
1646 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1647 };
1648
1649 union call_site_parameter_u
1650 {
1651 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1652 as DWARF register number, for register passed
1653 parameters. */
1654
1655 int dwarf_reg;
1656
1657 /* * Offset from the callee's frame base, for stack passed
1658 parameters. This equals offset from the caller's stack
1659 pointer. */
1660
1661 CORE_ADDR fb_offset;
1662
1663 /* * Offset relative to the start of this PER_CU to
1664 DW_TAG_formal_parameter which is referenced by both
1665 caller and the callee. */
1666
1667 cu_offset param_cu_off;
1668 };
1669
1670 struct call_site_parameter
1671 {
1672 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1673
1674 union call_site_parameter_u u;
1675
1676 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1677
1678 const gdb_byte *value;
1679 size_t value_size;
1680
1681 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1682 It may be NULL if not provided by DWARF. */
1683
1684 const gdb_byte *data_value;
1685 size_t data_value_size;
1686 };
1687
1688 /* * A place where a function gets called from, represented by
1689 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1690
1691 struct call_site
1692 {
1693 /* * Address of the first instruction after this call. It must be
1694 the first field as we overload core_addr_hash and core_addr_eq
1695 for it. */
1696
1697 CORE_ADDR pc;
1698
1699 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1700
1701 struct call_site *tail_call_next;
1702
1703 /* * Describe DW_AT_call_target. Missing attribute uses
1704 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1705
1706 struct call_site_target target;
1707
1708 /* * Size of the PARAMETER array. */
1709
1710 unsigned parameter_count;
1711
1712 /* * CU of the function where the call is located. It gets used
1713 for DWARF blocks execution in the parameter array below. */
1714
1715 dwarf2_per_cu_data *per_cu;
1716
1717 /* objfile of the function where the call is located. */
1718
1719 dwarf2_per_objfile *per_objfile;
1720
1721 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1722
1723 struct call_site_parameter parameter[1];
1724 };
1725
1726 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1727
1728 struct fixed_point_type_info
1729 {
1730 /* The fixed point type's scaling factor. */
1731 gdb_mpq scaling_factor;
1732 };
1733
1734 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1735 static structure. */
1736
1737 extern const struct cplus_struct_type cplus_struct_default;
1738
1739 extern void allocate_cplus_struct_type (struct type *);
1740
1741 #define INIT_CPLUS_SPECIFIC(type) \
1742 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1743 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1744 &cplus_struct_default)
1745
1746 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1747
1748 #define HAVE_CPLUS_STRUCT(type) \
1749 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1750 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1751
1752 #define INIT_NONE_SPECIFIC(type) \
1753 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1754 TYPE_MAIN_TYPE (type)->type_specific = {})
1755
1756 extern const struct gnat_aux_type gnat_aux_default;
1757
1758 extern void allocate_gnat_aux_type (struct type *);
1759
1760 #define INIT_GNAT_SPECIFIC(type) \
1761 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1762 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1763 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1764 /* * A macro that returns non-zero if the type-specific data should be
1765 read as "gnat-stuff". */
1766 #define HAVE_GNAT_AUX_INFO(type) \
1767 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1768
1769 /* * True if TYPE is known to be an Ada type of some kind. */
1770 #define ADA_TYPE_P(type) \
1771 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1772 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1773 && (type)->is_fixed_instance ()))
1774
1775 #define INIT_FUNC_SPECIFIC(type) \
1776 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1777 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1778 TYPE_ZALLOC (type, \
1779 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1780
1781 /* "struct fixed_point_type_info" has a field that has a destructor.
1782 See allocate_fixed_point_type_info to understand how this is
1783 handled. */
1784 #define INIT_FIXED_POINT_SPECIFIC(type) \
1785 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1786 allocate_fixed_point_type_info (type))
1787
1788 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1789 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1790 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1791 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1792 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1793 #define TYPE_CHAIN(thistype) (thistype)->chain
1794 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1795 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1796 so you only have to call check_typedef once. Since allocate_value
1797 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1798 #define TYPE_LENGTH(thistype) (thistype)->length
1799
1800 /* * Return the alignment of the type in target addressable memory
1801 units, or 0 if no alignment was specified. */
1802 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1803
1804 /* * Return the alignment of the type in target addressable memory
1805 units, or 0 if no alignment was specified. */
1806 extern unsigned type_raw_align (struct type *);
1807
1808 /* * Return the alignment of the type in target addressable memory
1809 units. Return 0 if the alignment cannot be determined; but note
1810 that this makes an effort to compute the alignment even it it was
1811 not specified in the debug info. */
1812 extern unsigned type_align (struct type *);
1813
1814 /* * Set the alignment of the type. The alignment must be a power of
1815 2. Returns false if the given value does not fit in the available
1816 space in struct type. */
1817 extern bool set_type_align (struct type *, ULONGEST);
1818
1819 /* Property accessors for the type data location. */
1820 #define TYPE_DATA_LOCATION(thistype) \
1821 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1822 #define TYPE_DATA_LOCATION_BATON(thistype) \
1823 TYPE_DATA_LOCATION (thistype)->data.baton
1824 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1825 (TYPE_DATA_LOCATION (thistype)->const_val ())
1826 #define TYPE_DATA_LOCATION_KIND(thistype) \
1827 (TYPE_DATA_LOCATION (thistype)->kind ())
1828 #define TYPE_DYNAMIC_LENGTH(thistype) \
1829 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1830
1831 /* Property accessors for the type allocated/associated. */
1832 #define TYPE_ALLOCATED_PROP(thistype) \
1833 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1834 #define TYPE_ASSOCIATED_PROP(thistype) \
1835 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1836
1837 /* C++ */
1838
1839 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1840 /* Do not call this, use TYPE_SELF_TYPE. */
1841 extern struct type *internal_type_self_type (struct type *);
1842 extern void set_type_self_type (struct type *, struct type *);
1843
1844 extern int internal_type_vptr_fieldno (struct type *);
1845 extern void set_type_vptr_fieldno (struct type *, int);
1846 extern struct type *internal_type_vptr_basetype (struct type *);
1847 extern void set_type_vptr_basetype (struct type *, struct type *);
1848 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1849 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1850
1851 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1852 #define TYPE_SPECIFIC_FIELD(thistype) \
1853 TYPE_MAIN_TYPE(thistype)->type_specific_field
1854 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1855 where we're trying to print an Ada array using the C language.
1856 In that case, there is no "cplus_stuff", but the C language assumes
1857 that there is. What we do, in that case, is pretend that there is
1858 an implicit one which is the default cplus stuff. */
1859 #define TYPE_CPLUS_SPECIFIC(thistype) \
1860 (!HAVE_CPLUS_STRUCT(thistype) \
1861 ? (struct cplus_struct_type*)&cplus_struct_default \
1862 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1863 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1864 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1865 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1866 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1867 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1868 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1869 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1870 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1871 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1872 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1873 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1874 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1875 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1876 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1877 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1878 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1879
1880 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1881 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1882 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1883
1884 #define FIELD_NAME(thisfld) ((thisfld).name)
1885 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1886 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1887 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1888 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1889 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1890 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1891 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1892 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1893 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1894 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1895 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1896 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1897 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1898 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1899 #define SET_FIELD_PHYSNAME(thisfld, name) \
1900 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1901 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1902 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1903 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1904 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1905 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1906 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1907 FIELD_DWARF_BLOCK (thisfld) = (addr))
1908 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1909 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1910
1911 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1912 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1913 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1914 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1915 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1916 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1917 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1918 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1919 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1920 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1921
1922 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1923 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1924 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1925 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1926 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1927 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1928 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1929 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1930 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1931 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1932 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1933 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1934 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1935 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1936 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1937 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1938 #define TYPE_FIELD_PRIVATE(thistype, n) \
1939 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1940 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1941 #define TYPE_FIELD_PROTECTED(thistype, n) \
1942 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1943 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1944 #define TYPE_FIELD_IGNORE(thistype, n) \
1945 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1946 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1947 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1948 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1949 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1950
1951 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1952 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1953 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1954 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1955 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1956
1957 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1958 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1959 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1960 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1961 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1962 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1963
1964 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1965 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1966 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1967 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1968 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1969 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1970 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1971 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1972 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1973 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1974 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1975 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1976 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1977 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1978 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1979 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1980 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1981
1982 /* Accessors for typedefs defined by a class. */
1983 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1984 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1985 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1986 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1987 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1988 TYPE_TYPEDEF_FIELD (thistype, n).name
1989 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1990 TYPE_TYPEDEF_FIELD (thistype, n).type
1991 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1992 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1993 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1994 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1995 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1996 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1997
1998 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1999 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2000 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2001 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2002 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2003 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2004 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2005 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2006 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2007 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2008 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2009 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2010 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2011 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2012
2013 #define TYPE_IS_OPAQUE(thistype) \
2014 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2015 || ((thistype)->code () == TYPE_CODE_UNION)) \
2016 && ((thistype)->num_fields () == 0) \
2017 && (!HAVE_CPLUS_STRUCT (thistype) \
2018 || TYPE_NFN_FIELDS (thistype) == 0) \
2019 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2020
2021 /* * A helper macro that returns the name of a type or "unnamed type"
2022 if the type has no name. */
2023
2024 #define TYPE_SAFE_NAME(type) \
2025 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2026
2027 /* * A helper macro that returns the name of an error type. If the
2028 type has a name, it is used; otherwise, a default is used. */
2029
2030 #define TYPE_ERROR_NAME(type) \
2031 (type->name () ? type->name () : _("<error type>"))
2032
2033 /* Given TYPE, return its floatformat. */
2034 const struct floatformat *floatformat_from_type (const struct type *type);
2035
2036 struct builtin_type
2037 {
2038 /* Integral types. */
2039
2040 /* Implicit size/sign (based on the architecture's ABI). */
2041 struct type *builtin_void;
2042 struct type *builtin_char;
2043 struct type *builtin_short;
2044 struct type *builtin_int;
2045 struct type *builtin_long;
2046 struct type *builtin_signed_char;
2047 struct type *builtin_unsigned_char;
2048 struct type *builtin_unsigned_short;
2049 struct type *builtin_unsigned_int;
2050 struct type *builtin_unsigned_long;
2051 struct type *builtin_bfloat16;
2052 struct type *builtin_half;
2053 struct type *builtin_float;
2054 struct type *builtin_double;
2055 struct type *builtin_long_double;
2056 struct type *builtin_complex;
2057 struct type *builtin_double_complex;
2058 struct type *builtin_string;
2059 struct type *builtin_bool;
2060 struct type *builtin_long_long;
2061 struct type *builtin_unsigned_long_long;
2062 struct type *builtin_decfloat;
2063 struct type *builtin_decdouble;
2064 struct type *builtin_declong;
2065
2066 /* "True" character types.
2067 We use these for the '/c' print format, because c_char is just a
2068 one-byte integral type, which languages less laid back than C
2069 will print as ... well, a one-byte integral type. */
2070 struct type *builtin_true_char;
2071 struct type *builtin_true_unsigned_char;
2072
2073 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2074 is for when an architecture needs to describe a register that has
2075 no size. */
2076 struct type *builtin_int0;
2077 struct type *builtin_int8;
2078 struct type *builtin_uint8;
2079 struct type *builtin_int16;
2080 struct type *builtin_uint16;
2081 struct type *builtin_int24;
2082 struct type *builtin_uint24;
2083 struct type *builtin_int32;
2084 struct type *builtin_uint32;
2085 struct type *builtin_int64;
2086 struct type *builtin_uint64;
2087 struct type *builtin_int128;
2088 struct type *builtin_uint128;
2089
2090 /* Wide character types. */
2091 struct type *builtin_char16;
2092 struct type *builtin_char32;
2093 struct type *builtin_wchar;
2094
2095 /* Pointer types. */
2096
2097 /* * `pointer to data' type. Some target platforms use an implicitly
2098 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2099 struct type *builtin_data_ptr;
2100
2101 /* * `pointer to function (returning void)' type. Harvard
2102 architectures mean that ABI function and code pointers are not
2103 interconvertible. Similarly, since ANSI, C standards have
2104 explicitly said that pointers to functions and pointers to data
2105 are not interconvertible --- that is, you can't cast a function
2106 pointer to void * and back, and expect to get the same value.
2107 However, all function pointer types are interconvertible, so void
2108 (*) () can server as a generic function pointer. */
2109
2110 struct type *builtin_func_ptr;
2111
2112 /* * `function returning pointer to function (returning void)' type.
2113 The final void return type is not significant for it. */
2114
2115 struct type *builtin_func_func;
2116
2117 /* Special-purpose types. */
2118
2119 /* * This type is used to represent a GDB internal function. */
2120
2121 struct type *internal_fn;
2122
2123 /* * This type is used to represent an xmethod. */
2124 struct type *xmethod;
2125 };
2126
2127 /* * Return the type table for the specified architecture. */
2128
2129 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2130
2131 /* * Per-objfile types used by symbol readers. */
2132
2133 struct objfile_type
2134 {
2135 /* Basic types based on the objfile architecture. */
2136 struct type *builtin_void;
2137 struct type *builtin_char;
2138 struct type *builtin_short;
2139 struct type *builtin_int;
2140 struct type *builtin_long;
2141 struct type *builtin_long_long;
2142 struct type *builtin_signed_char;
2143 struct type *builtin_unsigned_char;
2144 struct type *builtin_unsigned_short;
2145 struct type *builtin_unsigned_int;
2146 struct type *builtin_unsigned_long;
2147 struct type *builtin_unsigned_long_long;
2148 struct type *builtin_half;
2149 struct type *builtin_float;
2150 struct type *builtin_double;
2151 struct type *builtin_long_double;
2152
2153 /* * This type is used to represent symbol addresses. */
2154 struct type *builtin_core_addr;
2155
2156 /* * This type represents a type that was unrecognized in symbol
2157 read-in. */
2158 struct type *builtin_error;
2159
2160 /* * Types used for symbols with no debug information. */
2161 struct type *nodebug_text_symbol;
2162 struct type *nodebug_text_gnu_ifunc_symbol;
2163 struct type *nodebug_got_plt_symbol;
2164 struct type *nodebug_data_symbol;
2165 struct type *nodebug_unknown_symbol;
2166 struct type *nodebug_tls_symbol;
2167 };
2168
2169 /* * Return the type table for the specified objfile. */
2170
2171 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2172
2173 /* Explicit floating-point formats. See "floatformat.h". */
2174 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2175 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2176 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2177 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2178 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2179 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2180 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2181 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2182 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2183 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2184 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2185 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2186 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2187
2188 /* Allocate space for storing data associated with a particular
2189 type. We ensure that the space is allocated using the same
2190 mechanism that was used to allocate the space for the type
2191 structure itself. I.e. if the type is on an objfile's
2192 objfile_obstack, then the space for data associated with that type
2193 will also be allocated on the objfile_obstack. If the type is
2194 associated with a gdbarch, then the space for data associated with that
2195 type will also be allocated on the gdbarch_obstack.
2196
2197 If a type is not associated with neither an objfile or a gdbarch then
2198 you should not use this macro to allocate space for data, instead you
2199 should call xmalloc directly, and ensure the memory is correctly freed
2200 when it is no longer needed. */
2201
2202 #define TYPE_ALLOC(t,size) \
2203 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2204 ? &TYPE_OBJFILE (t)->objfile_obstack \
2205 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2206 size))
2207
2208
2209 /* See comment on TYPE_ALLOC. */
2210
2211 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2212
2213 /* Use alloc_type to allocate a type owned by an objfile. Use
2214 alloc_type_arch to allocate a type owned by an architecture. Use
2215 alloc_type_copy to allocate a type with the same owner as a
2216 pre-existing template type, no matter whether objfile or
2217 gdbarch. */
2218 extern struct type *alloc_type (struct objfile *);
2219 extern struct type *alloc_type_arch (struct gdbarch *);
2220 extern struct type *alloc_type_copy (const struct type *);
2221
2222 /* * Return the type's architecture. For types owned by an
2223 architecture, that architecture is returned. For types owned by an
2224 objfile, that objfile's architecture is returned. */
2225
2226 extern struct gdbarch *get_type_arch (const struct type *);
2227
2228 /* * This returns the target type (or NULL) of TYPE, also skipping
2229 past typedefs. */
2230
2231 extern struct type *get_target_type (struct type *type);
2232
2233 /* Return the equivalent of TYPE_LENGTH, but in number of target
2234 addressable memory units of the associated gdbarch instead of bytes. */
2235
2236 extern unsigned int type_length_units (struct type *type);
2237
2238 /* * Helper function to construct objfile-owned types. */
2239
2240 extern struct type *init_type (struct objfile *, enum type_code, int,
2241 const char *);
2242 extern struct type *init_integer_type (struct objfile *, int, int,
2243 const char *);
2244 extern struct type *init_character_type (struct objfile *, int, int,
2245 const char *);
2246 extern struct type *init_boolean_type (struct objfile *, int, int,
2247 const char *);
2248 extern struct type *init_float_type (struct objfile *, int, const char *,
2249 const struct floatformat **,
2250 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2251 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2252 extern struct type *init_complex_type (const char *, struct type *);
2253 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2254 struct type *);
2255 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2256 const char *);
2257
2258 /* Helper functions to construct architecture-owned types. */
2259 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2260 const char *);
2261 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2262 const char *);
2263 extern struct type *arch_character_type (struct gdbarch *, int, int,
2264 const char *);
2265 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2266 const char *);
2267 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2268 const struct floatformat **);
2269 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2270 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2271 struct type *);
2272
2273 /* Helper functions to construct a struct or record type. An
2274 initially empty type is created using arch_composite_type().
2275 Fields are then added using append_composite_type_field*(). A union
2276 type has its size set to the largest field. A struct type has each
2277 field packed against the previous. */
2278
2279 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2280 const char *name, enum type_code code);
2281 extern void append_composite_type_field (struct type *t, const char *name,
2282 struct type *field);
2283 extern void append_composite_type_field_aligned (struct type *t,
2284 const char *name,
2285 struct type *field,
2286 int alignment);
2287 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2288 struct type *field);
2289
2290 /* Helper functions to construct a bit flags type. An initially empty
2291 type is created using arch_flag_type(). Flags are then added using
2292 append_flag_type_field() and append_flag_type_flag(). */
2293 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2294 const char *name, int bit);
2295 extern void append_flags_type_field (struct type *type,
2296 int start_bitpos, int nr_bits,
2297 struct type *field_type, const char *name);
2298 extern void append_flags_type_flag (struct type *type, int bitpos,
2299 const char *name);
2300
2301 extern void make_vector_type (struct type *array_type);
2302 extern struct type *init_vector_type (struct type *elt_type, int n);
2303
2304 extern struct type *lookup_reference_type (struct type *, enum type_code);
2305 extern struct type *lookup_lvalue_reference_type (struct type *);
2306 extern struct type *lookup_rvalue_reference_type (struct type *);
2307
2308
2309 extern struct type *make_reference_type (struct type *, struct type **,
2310 enum type_code);
2311
2312 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2313
2314 extern struct type *make_restrict_type (struct type *);
2315
2316 extern struct type *make_unqualified_type (struct type *);
2317
2318 extern struct type *make_atomic_type (struct type *);
2319
2320 extern void replace_type (struct type *, struct type *);
2321
2322 extern type_instance_flags address_space_name_to_type_instance_flags
2323 (struct gdbarch *, const char *);
2324
2325 extern const char *address_space_type_instance_flags_to_name
2326 (struct gdbarch *, type_instance_flags);
2327
2328 extern struct type *make_type_with_address_space
2329 (struct type *type, type_instance_flags space_identifier);
2330
2331 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2332
2333 extern struct type *lookup_methodptr_type (struct type *);
2334
2335 extern void smash_to_method_type (struct type *type, struct type *self_type,
2336 struct type *to_type, struct field *args,
2337 int nargs, int varargs);
2338
2339 extern void smash_to_memberptr_type (struct type *, struct type *,
2340 struct type *);
2341
2342 extern void smash_to_methodptr_type (struct type *, struct type *);
2343
2344 extern struct type *allocate_stub_method (struct type *);
2345
2346 extern const char *type_name_or_error (struct type *type);
2347
2348 struct struct_elt
2349 {
2350 /* The field of the element, or NULL if no element was found. */
2351 struct field *field;
2352
2353 /* The bit offset of the element in the parent structure. */
2354 LONGEST offset;
2355 };
2356
2357 /* Given a type TYPE, lookup the field and offset of the component named
2358 NAME.
2359
2360 TYPE can be either a struct or union, or a pointer or reference to
2361 a struct or union. If it is a pointer or reference, its target
2362 type is automatically used. Thus '.' and '->' are interchangable,
2363 as specified for the definitions of the expression element types
2364 STRUCTOP_STRUCT and STRUCTOP_PTR.
2365
2366 If NOERR is nonzero, the returned structure will have field set to
2367 NULL if there is no component named NAME.
2368
2369 If the component NAME is a field in an anonymous substructure of
2370 TYPE, the returned offset is a "global" offset relative to TYPE
2371 rather than an offset within the substructure. */
2372
2373 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2374
2375 /* Given a type TYPE, lookup the type of the component named NAME.
2376
2377 TYPE can be either a struct or union, or a pointer or reference to
2378 a struct or union. If it is a pointer or reference, its target
2379 type is automatically used. Thus '.' and '->' are interchangable,
2380 as specified for the definitions of the expression element types
2381 STRUCTOP_STRUCT and STRUCTOP_PTR.
2382
2383 If NOERR is nonzero, return NULL if there is no component named
2384 NAME. */
2385
2386 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2387
2388 extern struct type *make_pointer_type (struct type *, struct type **);
2389
2390 extern struct type *lookup_pointer_type (struct type *);
2391
2392 extern struct type *make_function_type (struct type *, struct type **);
2393
2394 extern struct type *lookup_function_type (struct type *);
2395
2396 extern struct type *lookup_function_type_with_arguments (struct type *,
2397 int,
2398 struct type **);
2399
2400 extern struct type *create_static_range_type (struct type *, struct type *,
2401 LONGEST, LONGEST);
2402
2403
2404 extern struct type *create_array_type_with_stride
2405 (struct type *, struct type *, struct type *,
2406 struct dynamic_prop *, unsigned int);
2407
2408 extern struct type *create_range_type (struct type *, struct type *,
2409 const struct dynamic_prop *,
2410 const struct dynamic_prop *,
2411 LONGEST);
2412
2413 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2414 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2415 stride. */
2416
2417 extern struct type * create_range_type_with_stride
2418 (struct type *result_type, struct type *index_type,
2419 const struct dynamic_prop *low_bound,
2420 const struct dynamic_prop *high_bound, LONGEST bias,
2421 const struct dynamic_prop *stride, bool byte_stride_p);
2422
2423 extern struct type *create_array_type (struct type *, struct type *,
2424 struct type *);
2425
2426 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2427
2428 extern struct type *create_string_type (struct type *, struct type *,
2429 struct type *);
2430 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2431
2432 extern struct type *create_set_type (struct type *, struct type *);
2433
2434 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2435 const char *);
2436
2437 extern struct type *lookup_signed_typename (const struct language_defn *,
2438 const char *);
2439
2440 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2441
2442 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2443
2444 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2445 ADDR specifies the location of the variable the type is bound to.
2446 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2447 static properties is returned. */
2448 extern struct type *resolve_dynamic_type
2449 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2450 CORE_ADDR addr);
2451
2452 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2453 extern int is_dynamic_type (struct type *type);
2454
2455 extern struct type *check_typedef (struct type *);
2456
2457 extern void check_stub_method_group (struct type *, int);
2458
2459 extern char *gdb_mangle_name (struct type *, int, int);
2460
2461 extern struct type *lookup_typename (const struct language_defn *,
2462 const char *, const struct block *, int);
2463
2464 extern struct type *lookup_template_type (const char *, struct type *,
2465 const struct block *);
2466
2467 extern int get_vptr_fieldno (struct type *, struct type **);
2468
2469 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2470 TYPE.
2471
2472 Return true if the two bounds are available, false otherwise. */
2473
2474 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2475 LONGEST *highp);
2476
2477 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2478
2479 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2480
2481 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2482
2483 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2484
2485 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2486 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2487 Save the high bound into HIGH_BOUND if not NULL.
2488
2489 Return true if the operation was successful. Return false otherwise,
2490 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2491
2492 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2493 LONGEST *high_bound);
2494
2495 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2496 LONGEST val);
2497
2498 extern int class_types_same_p (const struct type *, const struct type *);
2499
2500 extern int is_ancestor (struct type *, struct type *);
2501
2502 extern int is_public_ancestor (struct type *, struct type *);
2503
2504 extern int is_unique_ancestor (struct type *, struct value *);
2505
2506 /* Overload resolution */
2507
2508 /* * Badness if parameter list length doesn't match arg list length. */
2509 extern const struct rank LENGTH_MISMATCH_BADNESS;
2510
2511 /* * Dummy badness value for nonexistent parameter positions. */
2512 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2513 /* * Badness if no conversion among types. */
2514 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2515
2516 /* * Badness of an exact match. */
2517 extern const struct rank EXACT_MATCH_BADNESS;
2518
2519 /* * Badness of integral promotion. */
2520 extern const struct rank INTEGER_PROMOTION_BADNESS;
2521 /* * Badness of floating promotion. */
2522 extern const struct rank FLOAT_PROMOTION_BADNESS;
2523 /* * Badness of converting a derived class pointer
2524 to a base class pointer. */
2525 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2526 /* * Badness of integral conversion. */
2527 extern const struct rank INTEGER_CONVERSION_BADNESS;
2528 /* * Badness of floating conversion. */
2529 extern const struct rank FLOAT_CONVERSION_BADNESS;
2530 /* * Badness of integer<->floating conversions. */
2531 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2532 /* * Badness of conversion of pointer to void pointer. */
2533 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2534 /* * Badness of conversion to boolean. */
2535 extern const struct rank BOOL_CONVERSION_BADNESS;
2536 /* * Badness of converting derived to base class. */
2537 extern const struct rank BASE_CONVERSION_BADNESS;
2538 /* * Badness of converting from non-reference to reference. Subrank
2539 is the type of reference conversion being done. */
2540 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2541 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2542 /* * Conversion to rvalue reference. */
2543 #define REFERENCE_CONVERSION_RVALUE 1
2544 /* * Conversion to const lvalue reference. */
2545 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2546
2547 /* * Badness of converting integer 0 to NULL pointer. */
2548 extern const struct rank NULL_POINTER_CONVERSION;
2549 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2550 being done. */
2551 extern const struct rank CV_CONVERSION_BADNESS;
2552 #define CV_CONVERSION_CONST 1
2553 #define CV_CONVERSION_VOLATILE 2
2554
2555 /* Non-standard conversions allowed by the debugger */
2556
2557 /* * Converting a pointer to an int is usually OK. */
2558 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2559
2560 /* * Badness of converting a (non-zero) integer constant
2561 to a pointer. */
2562 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2563
2564 extern struct rank sum_ranks (struct rank a, struct rank b);
2565 extern int compare_ranks (struct rank a, struct rank b);
2566
2567 extern int compare_badness (const badness_vector &,
2568 const badness_vector &);
2569
2570 extern badness_vector rank_function (gdb::array_view<type *> parms,
2571 gdb::array_view<value *> args);
2572
2573 extern struct rank rank_one_type (struct type *, struct type *,
2574 struct value *);
2575
2576 extern void recursive_dump_type (struct type *, int);
2577
2578 extern int field_is_static (struct field *);
2579
2580 /* printcmd.c */
2581
2582 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2583 const struct value_print_options *,
2584 int, struct ui_file *);
2585
2586 extern int can_dereference (struct type *);
2587
2588 extern int is_integral_type (struct type *);
2589
2590 extern int is_floating_type (struct type *);
2591
2592 extern int is_scalar_type (struct type *type);
2593
2594 extern int is_scalar_type_recursive (struct type *);
2595
2596 extern int class_or_union_p (const struct type *);
2597
2598 extern void maintenance_print_type (const char *, int);
2599
2600 extern htab_up create_copied_types_hash (struct objfile *objfile);
2601
2602 extern struct type *copy_type_recursive (struct objfile *objfile,
2603 struct type *type,
2604 htab_t copied_types);
2605
2606 extern struct type *copy_type (const struct type *type);
2607
2608 extern bool types_equal (struct type *, struct type *);
2609
2610 extern bool types_deeply_equal (struct type *, struct type *);
2611
2612 extern int type_not_allocated (const struct type *type);
2613
2614 extern int type_not_associated (const struct type *type);
2615
2616 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2617 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2618 extern bool is_fixed_point_type (struct type *type);
2619
2620 /* Allocate a fixed-point type info for TYPE. This should only be
2621 called by INIT_FIXED_POINT_SPECIFIC. */
2622 extern void allocate_fixed_point_type_info (struct type *type);
2623
2624 /* * When the type includes explicit byte ordering, return that.
2625 Otherwise, the byte ordering from gdbarch_byte_order for
2626 get_type_arch is returned. */
2627
2628 extern enum bfd_endian type_byte_order (const struct type *type);
2629
2630 /* A flag to enable printing of debugging information of C++
2631 overloading. */
2632
2633 extern unsigned int overload_debug;
2634
2635 #endif /* GDBTYPES_H */
This page took 0.082176 seconds and 4 git commands to generate.