d28622d46cead7b03bf165dbdb02589591f9c08f
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Not textual. By default, GDB treats all single byte integers as
214 characters (or elements of strings) unless this flag is set. */
215
216 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
217
218 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
219 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
220 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
221
222 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
223 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
224 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
225
226 /* * True if this type was declared using the "class" keyword. This is
227 only valid for C++ structure and enum types. If false, a structure
228 was declared as a "struct"; if true it was declared "class". For
229 enum types, this is true when "enum class" or "enum struct" was
230 used to declare the type.. */
231
232 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
233
234 /* * True if this type is a "flag" enum. A flag enum is one where all
235 the values are pairwise disjoint when "and"ed together. This
236 affects how enum values are printed. */
237
238 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
239
240 /* * Constant type. If this is set, the corresponding type has a
241 const modifier. */
242
243 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
244
245 /* * Volatile type. If this is set, the corresponding type has a
246 volatile modifier. */
247
248 #define TYPE_VOLATILE(t) \
249 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
250
251 /* * Restrict type. If this is set, the corresponding type has a
252 restrict modifier. */
253
254 #define TYPE_RESTRICT(t) \
255 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
256
257 /* * Atomic type. If this is set, the corresponding type has an
258 _Atomic modifier. */
259
260 #define TYPE_ATOMIC(t) \
261 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
262
263 /* * True if this type represents either an lvalue or lvalue reference type. */
264
265 #define TYPE_IS_REFERENCE(t) \
266 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
267
268 /* * True if this type is allocatable. */
269 #define TYPE_IS_ALLOCATABLE(t) \
270 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
271
272 /* * True if this type has variant parts. */
273 #define TYPE_HAS_VARIANT_PARTS(t) \
274 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
275
276 /* * True if this type has a dynamic length. */
277 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
278 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
279
280 /* * Instruction-space delimited type. This is for Harvard architectures
281 which have separate instruction and data address spaces (and perhaps
282 others).
283
284 GDB usually defines a flat address space that is a superset of the
285 architecture's two (or more) address spaces, but this is an extension
286 of the architecture's model.
287
288 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
289 resides in instruction memory, even if its address (in the extended
290 flat address space) does not reflect this.
291
292 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
293 corresponding type resides in the data memory space, even if
294 this is not indicated by its (flat address space) address.
295
296 If neither flag is set, the default space for functions / methods
297 is instruction space, and for data objects is data memory. */
298
299 #define TYPE_CODE_SPACE(t) \
300 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
301
302 #define TYPE_DATA_SPACE(t) \
303 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
304
305 /* * Address class flags. Some environments provide for pointers
306 whose size is different from that of a normal pointer or address
307 types where the bits are interpreted differently than normal
308 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
309 target specific ways to represent these different types of address
310 classes. */
311
312 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
313 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
314 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
315 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
316 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
317 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
318 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
319 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
320
321 /* * Information about a single discriminant. */
322
323 struct discriminant_range
324 {
325 /* * The range of values for the variant. This is an inclusive
326 range. */
327 ULONGEST low, high;
328
329 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
330 is true if this should be an unsigned comparison; false for
331 signed. */
332 bool contains (ULONGEST value, bool is_unsigned) const
333 {
334 if (is_unsigned)
335 return value >= low && value <= high;
336 LONGEST valuel = (LONGEST) value;
337 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
338 }
339 };
340
341 struct variant_part;
342
343 /* * A single variant. A variant has a list of discriminant values.
344 When the discriminator matches one of these, the variant is
345 enabled. Each variant controls zero or more fields; and may also
346 control other variant parts as well. This struct corresponds to
347 DW_TAG_variant in DWARF. */
348
349 struct variant : allocate_on_obstack
350 {
351 /* * The discriminant ranges for this variant. */
352 gdb::array_view<discriminant_range> discriminants;
353
354 /* * The fields controlled by this variant. This is inclusive on
355 the low end and exclusive on the high end. A variant may not
356 control any fields, in which case the two values will be equal.
357 These are indexes into the type's array of fields. */
358 int first_field;
359 int last_field;
360
361 /* * Variant parts controlled by this variant. */
362 gdb::array_view<variant_part> parts;
363
364 /* * Return true if this is the default variant. The default
365 variant can be recognized because it has no associated
366 discriminants. */
367 bool is_default () const
368 {
369 return discriminants.empty ();
370 }
371
372 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
373 if this should be an unsigned comparison; false for signed. */
374 bool matches (ULONGEST value, bool is_unsigned) const;
375 };
376
377 /* * A variant part. Each variant part has an optional discriminant
378 and holds an array of variants. This struct corresponds to
379 DW_TAG_variant_part in DWARF. */
380
381 struct variant_part : allocate_on_obstack
382 {
383 /* * The index of the discriminant field in the outer type. This is
384 an index into the type's array of fields. If this is -1, there
385 is no discriminant, and only the default variant can be
386 considered to be selected. */
387 int discriminant_index;
388
389 /* * True if this discriminant is unsigned; false if signed. This
390 comes from the type of the discriminant. */
391 bool is_unsigned;
392
393 /* * The variants that are controlled by this variant part. Note
394 that these will always be sorted by field number. */
395 gdb::array_view<variant> variants;
396 };
397
398
399 enum dynamic_prop_kind
400 {
401 PROP_UNDEFINED, /* Not defined. */
402 PROP_CONST, /* Constant. */
403 PROP_ADDR_OFFSET, /* Address offset. */
404 PROP_LOCEXPR, /* Location expression. */
405 PROP_LOCLIST, /* Location list. */
406 PROP_VARIANT_PARTS, /* Variant parts. */
407 PROP_TYPE, /* Type. */
408 };
409
410 union dynamic_prop_data
411 {
412 /* Storage for constant property. */
413
414 LONGEST const_val;
415
416 /* Storage for dynamic property. */
417
418 void *baton;
419
420 /* Storage of variant parts for a type. A type with variant parts
421 has all its fields "linearized" -- stored in a single field
422 array, just as if they had all been declared that way. The
423 variant parts are attached via a dynamic property, and then are
424 used to control which fields end up in the final type during
425 dynamic type resolution. */
426
427 const gdb::array_view<variant_part> *variant_parts;
428
429 /* Once a variant type is resolved, we may want to be able to go
430 from the resolved type to the original type. In this case we
431 rewrite the property's kind and set this field. */
432
433 struct type *original_type;
434 };
435
436 /* * Used to store a dynamic property. */
437
438 struct dynamic_prop
439 {
440 dynamic_prop_kind kind () const
441 {
442 return m_kind;
443 }
444
445 void set_undefined ()
446 {
447 m_kind = PROP_UNDEFINED;
448 }
449
450 LONGEST const_val () const
451 {
452 gdb_assert (m_kind == PROP_CONST);
453
454 return m_data.const_val;
455 }
456
457 void set_const_val (LONGEST const_val)
458 {
459 m_kind = PROP_CONST;
460 m_data.const_val = const_val;
461 }
462
463 void *baton () const
464 {
465 gdb_assert (m_kind == PROP_LOCEXPR
466 || m_kind == PROP_LOCLIST
467 || m_kind == PROP_ADDR_OFFSET);
468
469 return m_data.baton;
470 }
471
472 void set_locexpr (void *baton)
473 {
474 m_kind = PROP_LOCEXPR;
475 m_data.baton = baton;
476 }
477
478 void set_loclist (void *baton)
479 {
480 m_kind = PROP_LOCLIST;
481 m_data.baton = baton;
482 }
483
484 void set_addr_offset (void *baton)
485 {
486 m_kind = PROP_ADDR_OFFSET;
487 m_data.baton = baton;
488 }
489
490 const gdb::array_view<variant_part> *variant_parts () const
491 {
492 gdb_assert (m_kind == PROP_VARIANT_PARTS);
493
494 return m_data.variant_parts;
495 }
496
497 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
498 {
499 m_kind = PROP_VARIANT_PARTS;
500 m_data.variant_parts = variant_parts;
501 }
502
503 struct type *original_type () const
504 {
505 gdb_assert (m_kind == PROP_TYPE);
506
507 return m_data.original_type;
508 }
509
510 void set_original_type (struct type *original_type)
511 {
512 m_kind = PROP_TYPE;
513 m_data.original_type = original_type;
514 }
515
516 /* Determine which field of the union dynamic_prop.data is used. */
517 enum dynamic_prop_kind m_kind;
518
519 /* Storage for dynamic or static value. */
520 union dynamic_prop_data m_data;
521 };
522
523 /* Compare two dynamic_prop objects for equality. dynamic_prop
524 instances are equal iff they have the same type and storage. */
525 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
526
527 /* Compare two dynamic_prop objects for inequality. */
528 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
529 {
530 return !(l == r);
531 }
532
533 /* * Define a type's dynamic property node kind. */
534 enum dynamic_prop_node_kind
535 {
536 /* A property providing a type's data location.
537 Evaluating this field yields to the location of an object's data. */
538 DYN_PROP_DATA_LOCATION,
539
540 /* A property representing DW_AT_allocated. The presence of this attribute
541 indicates that the object of the type can be allocated/deallocated. */
542 DYN_PROP_ALLOCATED,
543
544 /* A property representing DW_AT_associated. The presence of this attribute
545 indicated that the object of the type can be associated. */
546 DYN_PROP_ASSOCIATED,
547
548 /* A property providing an array's byte stride. */
549 DYN_PROP_BYTE_STRIDE,
550
551 /* A property holding variant parts. */
552 DYN_PROP_VARIANT_PARTS,
553
554 /* A property holding the size of the type. */
555 DYN_PROP_BYTE_SIZE,
556 };
557
558 /* * List for dynamic type attributes. */
559 struct dynamic_prop_list
560 {
561 /* The kind of dynamic prop in this node. */
562 enum dynamic_prop_node_kind prop_kind;
563
564 /* The dynamic property itself. */
565 struct dynamic_prop prop;
566
567 /* A pointer to the next dynamic property. */
568 struct dynamic_prop_list *next;
569 };
570
571 /* * Determine which field of the union main_type.fields[x].loc is
572 used. */
573
574 enum field_loc_kind
575 {
576 FIELD_LOC_KIND_BITPOS, /**< bitpos */
577 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
578 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
579 FIELD_LOC_KIND_PHYSNAME, /**< physname */
580 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
581 };
582
583 /* * A discriminant to determine which field in the
584 main_type.type_specific union is being used, if any.
585
586 For types such as TYPE_CODE_FLT, the use of this
587 discriminant is really redundant, as we know from the type code
588 which field is going to be used. As such, it would be possible to
589 reduce the size of this enum in order to save a bit or two for
590 other fields of struct main_type. But, since we still have extra
591 room , and for the sake of clarity and consistency, we treat all fields
592 of the union the same way. */
593
594 enum type_specific_kind
595 {
596 TYPE_SPECIFIC_NONE,
597 TYPE_SPECIFIC_CPLUS_STUFF,
598 TYPE_SPECIFIC_GNAT_STUFF,
599 TYPE_SPECIFIC_FLOATFORMAT,
600 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
601 TYPE_SPECIFIC_FUNC,
602 TYPE_SPECIFIC_SELF_TYPE
603 };
604
605 union type_owner
606 {
607 struct objfile *objfile;
608 struct gdbarch *gdbarch;
609 };
610
611 union field_location
612 {
613 /* * Position of this field, counting in bits from start of
614 containing structure. For big-endian targets, it is the bit
615 offset to the MSB. For little-endian targets, it is the bit
616 offset to the LSB. */
617
618 LONGEST bitpos;
619
620 /* * Enum value. */
621 LONGEST enumval;
622
623 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
624 physaddr is the location (in the target) of the static
625 field. Otherwise, physname is the mangled label of the
626 static field. */
627
628 CORE_ADDR physaddr;
629 const char *physname;
630
631 /* * The field location can be computed by evaluating the
632 following DWARF block. Its DATA is allocated on
633 objfile_obstack - no CU load is needed to access it. */
634
635 struct dwarf2_locexpr_baton *dwarf_block;
636 };
637
638 struct field
639 {
640 struct type *type () const
641 {
642 return this->m_type;
643 }
644
645 void set_type (struct type *type)
646 {
647 this->m_type = type;
648 }
649
650 union field_location loc;
651
652 /* * For a function or member type, this is 1 if the argument is
653 marked artificial. Artificial arguments should not be shown
654 to the user. For TYPE_CODE_RANGE it is set if the specific
655 bound is not defined. */
656
657 unsigned int artificial : 1;
658
659 /* * Discriminant for union field_location. */
660
661 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
662
663 /* * Size of this field, in bits, or zero if not packed.
664 If non-zero in an array type, indicates the element size in
665 bits (used only in Ada at the moment).
666 For an unpacked field, the field's type's length
667 says how many bytes the field occupies. */
668
669 unsigned int bitsize : 28;
670
671 /* * In a struct or union type, type of this field.
672 - In a function or member type, type of this argument.
673 - In an array type, the domain-type of the array. */
674
675 struct type *m_type;
676
677 /* * Name of field, value or argument.
678 NULL for range bounds, array domains, and member function
679 arguments. */
680
681 const char *name;
682 };
683
684 struct range_bounds
685 {
686 ULONGEST bit_stride () const
687 {
688 if (this->flag_is_byte_stride)
689 return this->stride.const_val () * 8;
690 else
691 return this->stride.const_val ();
692 }
693
694 /* * Low bound of range. */
695
696 struct dynamic_prop low;
697
698 /* * High bound of range. */
699
700 struct dynamic_prop high;
701
702 /* The stride value for this range. This can be stored in bits or bytes
703 based on the value of BYTE_STRIDE_P. It is optional to have a stride
704 value, if this range has no stride value defined then this will be set
705 to the constant zero. */
706
707 struct dynamic_prop stride;
708
709 /* * The bias. Sometimes a range value is biased before storage.
710 The bias is added to the stored bits to form the true value. */
711
712 LONGEST bias;
713
714 /* True if HIGH range bound contains the number of elements in the
715 subrange. This affects how the final high bound is computed. */
716
717 unsigned int flag_upper_bound_is_count : 1;
718
719 /* True if LOW or/and HIGH are resolved into a static bound from
720 a dynamic one. */
721
722 unsigned int flag_bound_evaluated : 1;
723
724 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
725
726 unsigned int flag_is_byte_stride : 1;
727 };
728
729 /* Compare two range_bounds objects for equality. Simply does
730 memberwise comparison. */
731 extern bool operator== (const range_bounds &l, const range_bounds &r);
732
733 /* Compare two range_bounds objects for inequality. */
734 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
735 {
736 return !(l == r);
737 }
738
739 union type_specific
740 {
741 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
742 point to cplus_struct_default, a default static instance of a
743 struct cplus_struct_type. */
744
745 struct cplus_struct_type *cplus_stuff;
746
747 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
748 provides additional information. */
749
750 struct gnat_aux_type *gnat_stuff;
751
752 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
753 floatformat object that describes the floating-point value
754 that resides within the type. */
755
756 const struct floatformat *floatformat;
757
758 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
759
760 struct func_type *func_stuff;
761
762 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
763 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
764 is a member of. */
765
766 struct type *self_type;
767 };
768
769 /* * Main structure representing a type in GDB.
770
771 This structure is space-critical. Its layout has been tweaked to
772 reduce the space used. */
773
774 struct main_type
775 {
776 /* * Code for kind of type. */
777
778 ENUM_BITFIELD(type_code) code : 8;
779
780 /* * Flags about this type. These fields appear at this location
781 because they packs nicely here. See the TYPE_* macros for
782 documentation about these fields. */
783
784 unsigned int m_flag_unsigned : 1;
785 unsigned int m_flag_nosign : 1;
786 unsigned int m_flag_stub : 1;
787 unsigned int m_flag_target_stub : 1;
788 unsigned int m_flag_prototyped : 1;
789 unsigned int m_flag_varargs : 1;
790 unsigned int m_flag_vector : 1;
791 unsigned int m_flag_stub_supported : 1;
792 unsigned int m_flag_gnu_ifunc : 1;
793 unsigned int m_flag_fixed_instance : 1;
794 unsigned int flag_objfile_owned : 1;
795 unsigned int m_flag_endianity_not_default : 1;
796
797 /* * True if this type was declared with "class" rather than
798 "struct". */
799
800 unsigned int flag_declared_class : 1;
801
802 /* * True if this is an enum type with disjoint values. This
803 affects how the enum is printed. */
804
805 unsigned int flag_flag_enum : 1;
806
807 /* * A discriminant telling us which field of the type_specific
808 union is being used for this type, if any. */
809
810 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
811
812 /* * Number of fields described for this type. This field appears
813 at this location because it packs nicely here. */
814
815 short nfields;
816
817 /* * Name of this type, or NULL if none.
818
819 This is used for printing only. For looking up a name, look for
820 a symbol in the VAR_DOMAIN. This is generally allocated in the
821 objfile's obstack. However coffread.c uses malloc. */
822
823 const char *name;
824
825 /* * Every type is now associated with a particular objfile, and the
826 type is allocated on the objfile_obstack for that objfile. One
827 problem however, is that there are times when gdb allocates new
828 types while it is not in the process of reading symbols from a
829 particular objfile. Fortunately, these happen when the type
830 being created is a derived type of an existing type, such as in
831 lookup_pointer_type(). So we can just allocate the new type
832 using the same objfile as the existing type, but to do this we
833 need a backpointer to the objfile from the existing type. Yes
834 this is somewhat ugly, but without major overhaul of the internal
835 type system, it can't be avoided for now. */
836
837 union type_owner owner;
838
839 /* * For a pointer type, describes the type of object pointed to.
840 - For an array type, describes the type of the elements.
841 - For a function or method type, describes the type of the return value.
842 - For a range type, describes the type of the full range.
843 - For a complex type, describes the type of each coordinate.
844 - For a special record or union type encoding a dynamic-sized type
845 in GNAT, a memoized pointer to a corresponding static version of
846 the type.
847 - Unused otherwise. */
848
849 struct type *target_type;
850
851 /* * For structure and union types, a description of each field.
852 For set and pascal array types, there is one "field",
853 whose type is the domain type of the set or array.
854 For range types, there are two "fields",
855 the minimum and maximum values (both inclusive).
856 For enum types, each possible value is described by one "field".
857 For a function or method type, a "field" for each parameter.
858 For C++ classes, there is one field for each base class (if it is
859 a derived class) plus one field for each class data member. Member
860 functions are recorded elsewhere.
861
862 Using a pointer to a separate array of fields
863 allows all types to have the same size, which is useful
864 because we can allocate the space for a type before
865 we know what to put in it. */
866
867 union
868 {
869 struct field *fields;
870
871 /* * Union member used for range types. */
872
873 struct range_bounds *bounds;
874
875 /* If this is a scalar type, then this is its corresponding
876 complex type. */
877 struct type *complex_type;
878
879 } flds_bnds;
880
881 /* * Slot to point to additional language-specific fields of this
882 type. */
883
884 union type_specific type_specific;
885
886 /* * Contains all dynamic type properties. */
887 struct dynamic_prop_list *dyn_prop_list;
888 };
889
890 /* * Number of bits allocated for alignment. */
891
892 #define TYPE_ALIGN_BITS 8
893
894 /* * A ``struct type'' describes a particular instance of a type, with
895 some particular qualification. */
896
897 struct type
898 {
899 /* Get the type code of this type.
900
901 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
902 type, you need to do `check_typedef (type)->code ()`. */
903 type_code code () const
904 {
905 return this->main_type->code;
906 }
907
908 /* Set the type code of this type. */
909 void set_code (type_code code)
910 {
911 this->main_type->code = code;
912 }
913
914 /* Get the name of this type. */
915 const char *name () const
916 {
917 return this->main_type->name;
918 }
919
920 /* Set the name of this type. */
921 void set_name (const char *name)
922 {
923 this->main_type->name = name;
924 }
925
926 /* Get the number of fields of this type. */
927 int num_fields () const
928 {
929 return this->main_type->nfields;
930 }
931
932 /* Set the number of fields of this type. */
933 void set_num_fields (int num_fields)
934 {
935 this->main_type->nfields = num_fields;
936 }
937
938 /* Get the fields array of this type. */
939 struct field *fields () const
940 {
941 return this->main_type->flds_bnds.fields;
942 }
943
944 /* Get the field at index IDX. */
945 struct field &field (int idx) const
946 {
947 return this->fields ()[idx];
948 }
949
950 /* Set the fields array of this type. */
951 void set_fields (struct field *fields)
952 {
953 this->main_type->flds_bnds.fields = fields;
954 }
955
956 type *index_type () const
957 {
958 return this->field (0).type ();
959 }
960
961 void set_index_type (type *index_type)
962 {
963 this->field (0).set_type (index_type);
964 }
965
966 /* Return the instance flags converted to the correct type. */
967 const type_instance_flags instance_flags () const
968 {
969 return (enum type_instance_flag_value) this->m_instance_flags;
970 }
971
972 /* Set the instance flags. */
973 void set_instance_flags (type_instance_flags flags)
974 {
975 this->m_instance_flags = flags;
976 }
977
978 /* Get the bounds bounds of this type. The type must be a range type. */
979 range_bounds *bounds () const
980 {
981 switch (this->code ())
982 {
983 case TYPE_CODE_RANGE:
984 return this->main_type->flds_bnds.bounds;
985
986 case TYPE_CODE_ARRAY:
987 case TYPE_CODE_STRING:
988 return this->index_type ()->bounds ();
989
990 default:
991 gdb_assert_not_reached
992 ("type::bounds called on type with invalid code");
993 }
994 }
995
996 /* Set the bounds of this type. The type must be a range type. */
997 void set_bounds (range_bounds *bounds)
998 {
999 gdb_assert (this->code () == TYPE_CODE_RANGE);
1000
1001 this->main_type->flds_bnds.bounds = bounds;
1002 }
1003
1004 ULONGEST bit_stride () const
1005 {
1006 return this->bounds ()->bit_stride ();
1007 }
1008
1009 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1010 the type is signed (unless TYPE_NOSIGN is set). */
1011
1012 bool is_unsigned () const
1013 {
1014 return this->main_type->m_flag_unsigned;
1015 }
1016
1017 void set_is_unsigned (bool is_unsigned)
1018 {
1019 this->main_type->m_flag_unsigned = is_unsigned;
1020 }
1021
1022 /* No sign for this type. In C++, "char", "signed char", and
1023 "unsigned char" are distinct types; so we need an extra flag to
1024 indicate the absence of a sign! */
1025
1026 bool has_no_signedness () const
1027 {
1028 return this->main_type->m_flag_nosign;
1029 }
1030
1031 void set_has_no_signedness (bool has_no_signedness)
1032 {
1033 this->main_type->m_flag_nosign = has_no_signedness;
1034 }
1035
1036 /* This appears in a type's flags word if it is a stub type (e.g.,
1037 if someone referenced a type that wasn't defined in a source file
1038 via (struct sir_not_appearing_in_this_film *)). */
1039
1040 bool is_stub () const
1041 {
1042 return this->main_type->m_flag_stub;
1043 }
1044
1045 void set_is_stub (bool is_stub)
1046 {
1047 this->main_type->m_flag_stub = is_stub;
1048 }
1049
1050 /* The target type of this type is a stub type, and this type needs
1051 to be updated if it gets un-stubbed in check_typedef. Used for
1052 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1053 based on the TYPE_LENGTH of the target type. Also, set for
1054 TYPE_CODE_TYPEDEF. */
1055
1056 bool target_is_stub () const
1057 {
1058 return this->main_type->m_flag_target_stub;
1059 }
1060
1061 void set_target_is_stub (bool target_is_stub)
1062 {
1063 this->main_type->m_flag_target_stub = target_is_stub;
1064 }
1065
1066 /* This is a function type which appears to have a prototype. We
1067 need this for function calls in order to tell us if it's necessary
1068 to coerce the args, or to just do the standard conversions. This
1069 is used with a short field. */
1070
1071 bool is_prototyped () const
1072 {
1073 return this->main_type->m_flag_prototyped;
1074 }
1075
1076 void set_is_prototyped (bool is_prototyped)
1077 {
1078 this->main_type->m_flag_prototyped = is_prototyped;
1079 }
1080
1081 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1082 to functions. */
1083
1084 bool has_varargs () const
1085 {
1086 return this->main_type->m_flag_varargs;
1087 }
1088
1089 void set_has_varargs (bool has_varargs)
1090 {
1091 this->main_type->m_flag_varargs = has_varargs;
1092 }
1093
1094 /* Identify a vector type. Gcc is handling this by adding an extra
1095 attribute to the array type. We slurp that in as a new flag of a
1096 type. This is used only in dwarf2read.c. */
1097
1098 bool is_vector () const
1099 {
1100 return this->main_type->m_flag_vector;
1101 }
1102
1103 void set_is_vector (bool is_vector)
1104 {
1105 this->main_type->m_flag_vector = is_vector;
1106 }
1107
1108 /* This debug target supports TYPE_STUB(t). In the unsupported case
1109 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1110 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1111 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1112
1113 bool stub_is_supported () const
1114 {
1115 return this->main_type->m_flag_stub_supported;
1116 }
1117
1118 void set_stub_is_supported (bool stub_is_supported)
1119 {
1120 this->main_type->m_flag_stub_supported = stub_is_supported;
1121 }
1122
1123 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1124 address is returned by this function call. TYPE_TARGET_TYPE
1125 determines the final returned function type to be presented to
1126 user. */
1127
1128 bool is_gnu_ifunc () const
1129 {
1130 return this->main_type->m_flag_gnu_ifunc;
1131 }
1132
1133 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1134 {
1135 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1136 }
1137
1138 /* The debugging formats (especially STABS) do not contain enough
1139 information to represent all Ada types---especially those whose
1140 size depends on dynamic quantities. Therefore, the GNAT Ada
1141 compiler includes extra information in the form of additional type
1142 definitions connected by naming conventions. This flag indicates
1143 that the type is an ordinary (unencoded) GDB type that has been
1144 created from the necessary run-time information, and does not need
1145 further interpretation. Optionally marks ordinary, fixed-size GDB
1146 type. */
1147
1148 bool is_fixed_instance () const
1149 {
1150 return this->main_type->m_flag_fixed_instance;
1151 }
1152
1153 void set_is_fixed_instance (bool is_fixed_instance)
1154 {
1155 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1156 }
1157
1158 /* A compiler may supply dwarf instrumentation that indicates the desired
1159 endian interpretation of the variable differs from the native endian
1160 representation. */
1161
1162 bool endianity_is_not_default () const
1163 {
1164 return this->main_type->m_flag_endianity_not_default;
1165 }
1166
1167 void set_endianity_is_not_default (bool endianity_is_not_default)
1168 {
1169 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1170 }
1171
1172 /* * Return the dynamic property of the requested KIND from this type's
1173 list of dynamic properties. */
1174 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1175
1176 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1177 property to this type.
1178
1179 This function assumes that this type is objfile-owned. */
1180 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1181
1182 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1183 void remove_dyn_prop (dynamic_prop_node_kind kind);
1184
1185 /* * Type that is a pointer to this type.
1186 NULL if no such pointer-to type is known yet.
1187 The debugger may add the address of such a type
1188 if it has to construct one later. */
1189
1190 struct type *pointer_type;
1191
1192 /* * C++: also need a reference type. */
1193
1194 struct type *reference_type;
1195
1196 /* * A C++ rvalue reference type added in C++11. */
1197
1198 struct type *rvalue_reference_type;
1199
1200 /* * Variant chain. This points to a type that differs from this
1201 one only in qualifiers and length. Currently, the possible
1202 qualifiers are const, volatile, code-space, data-space, and
1203 address class. The length may differ only when one of the
1204 address class flags are set. The variants are linked in a
1205 circular ring and share MAIN_TYPE. */
1206
1207 struct type *chain;
1208
1209 /* * The alignment for this type. Zero means that the alignment was
1210 not specified in the debug info. Note that this is stored in a
1211 funny way: as the log base 2 (plus 1) of the alignment; so a
1212 value of 1 means the alignment is 1, and a value of 9 means the
1213 alignment is 256. */
1214
1215 unsigned align_log2 : TYPE_ALIGN_BITS;
1216
1217 /* * Flags specific to this instance of the type, indicating where
1218 on the ring we are.
1219
1220 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1221 binary or-ed with the target type, with a special case for
1222 address class and space class. For example if this typedef does
1223 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1224 instance flags are completely inherited from the target type. No
1225 qualifiers can be cleared by the typedef. See also
1226 check_typedef. */
1227 unsigned m_instance_flags : 9;
1228
1229 /* * Length of storage for a value of this type. The value is the
1230 expression in host bytes of what sizeof(type) would return. This
1231 size includes padding. For example, an i386 extended-precision
1232 floating point value really only occupies ten bytes, but most
1233 ABI's declare its size to be 12 bytes, to preserve alignment.
1234 A `struct type' representing such a floating-point type would
1235 have a `length' value of 12, even though the last two bytes are
1236 unused.
1237
1238 Since this field is expressed in host bytes, its value is appropriate
1239 to pass to memcpy and such (it is assumed that GDB itself always runs
1240 on an 8-bits addressable architecture). However, when using it for
1241 target address arithmetic (e.g. adding it to a target address), the
1242 type_length_units function should be used in order to get the length
1243 expressed in target addressable memory units. */
1244
1245 ULONGEST length;
1246
1247 /* * Core type, shared by a group of qualified types. */
1248
1249 struct main_type *main_type;
1250 };
1251
1252 struct fn_fieldlist
1253 {
1254
1255 /* * The overloaded name.
1256 This is generally allocated in the objfile's obstack.
1257 However stabsread.c sometimes uses malloc. */
1258
1259 const char *name;
1260
1261 /* * The number of methods with this name. */
1262
1263 int length;
1264
1265 /* * The list of methods. */
1266
1267 struct fn_field *fn_fields;
1268 };
1269
1270
1271
1272 struct fn_field
1273 {
1274 /* * If is_stub is clear, this is the mangled name which we can look
1275 up to find the address of the method (FIXME: it would be cleaner
1276 to have a pointer to the struct symbol here instead).
1277
1278 If is_stub is set, this is the portion of the mangled name which
1279 specifies the arguments. For example, "ii", if there are two int
1280 arguments, or "" if there are no arguments. See gdb_mangle_name
1281 for the conversion from this format to the one used if is_stub is
1282 clear. */
1283
1284 const char *physname;
1285
1286 /* * The function type for the method.
1287
1288 (This comment used to say "The return value of the method", but
1289 that's wrong. The function type is expected here, i.e. something
1290 with TYPE_CODE_METHOD, and *not* the return-value type). */
1291
1292 struct type *type;
1293
1294 /* * For virtual functions. First baseclass that defines this
1295 virtual function. */
1296
1297 struct type *fcontext;
1298
1299 /* Attributes. */
1300
1301 unsigned int is_const:1;
1302 unsigned int is_volatile:1;
1303 unsigned int is_private:1;
1304 unsigned int is_protected:1;
1305 unsigned int is_artificial:1;
1306
1307 /* * A stub method only has some fields valid (but they are enough
1308 to reconstruct the rest of the fields). */
1309
1310 unsigned int is_stub:1;
1311
1312 /* * True if this function is a constructor, false otherwise. */
1313
1314 unsigned int is_constructor : 1;
1315
1316 /* * True if this function is deleted, false otherwise. */
1317
1318 unsigned int is_deleted : 1;
1319
1320 /* * DW_AT_defaulted attribute for this function. The value is one
1321 of the DW_DEFAULTED constants. */
1322
1323 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1324
1325 /* * Unused. */
1326
1327 unsigned int dummy:6;
1328
1329 /* * Index into that baseclass's virtual function table, minus 2;
1330 else if static: VOFFSET_STATIC; else: 0. */
1331
1332 unsigned int voffset:16;
1333
1334 #define VOFFSET_STATIC 1
1335
1336 };
1337
1338 struct decl_field
1339 {
1340 /* * Unqualified name to be prefixed by owning class qualified
1341 name. */
1342
1343 const char *name;
1344
1345 /* * Type this typedef named NAME represents. */
1346
1347 struct type *type;
1348
1349 /* * True if this field was declared protected, false otherwise. */
1350 unsigned int is_protected : 1;
1351
1352 /* * True if this field was declared private, false otherwise. */
1353 unsigned int is_private : 1;
1354 };
1355
1356 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1357 TYPE_CODE_UNION nodes. */
1358
1359 struct cplus_struct_type
1360 {
1361 /* * Number of base classes this type derives from. The
1362 baseclasses are stored in the first N_BASECLASSES fields
1363 (i.e. the `fields' field of the struct type). The only fields
1364 of struct field that are used are: type, name, loc.bitpos. */
1365
1366 short n_baseclasses;
1367
1368 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1369 All access to this field must be through TYPE_VPTR_FIELDNO as one
1370 thing it does is check whether the field has been initialized.
1371 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1372 which for portability reasons doesn't initialize this field.
1373 TYPE_VPTR_FIELDNO returns -1 for this case.
1374
1375 If -1, we were unable to find the virtual function table pointer in
1376 initial symbol reading, and get_vptr_fieldno should be called to find
1377 it if possible. get_vptr_fieldno will update this field if possible.
1378 Otherwise the value is left at -1.
1379
1380 Unused if this type does not have virtual functions. */
1381
1382 short vptr_fieldno;
1383
1384 /* * Number of methods with unique names. All overloaded methods
1385 with the same name count only once. */
1386
1387 short nfn_fields;
1388
1389 /* * Number of template arguments. */
1390
1391 unsigned short n_template_arguments;
1392
1393 /* * One if this struct is a dynamic class, as defined by the
1394 Itanium C++ ABI: if it requires a virtual table pointer,
1395 because it or any of its base classes have one or more virtual
1396 member functions or virtual base classes. Minus one if not
1397 dynamic. Zero if not yet computed. */
1398
1399 int is_dynamic : 2;
1400
1401 /* * The calling convention for this type, fetched from the
1402 DW_AT_calling_convention attribute. The value is one of the
1403 DW_CC constants. */
1404
1405 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1406
1407 /* * The base class which defined the virtual function table pointer. */
1408
1409 struct type *vptr_basetype;
1410
1411 /* * For derived classes, the number of base classes is given by
1412 n_baseclasses and virtual_field_bits is a bit vector containing
1413 one bit per base class. If the base class is virtual, the
1414 corresponding bit will be set.
1415 I.E, given:
1416
1417 class A{};
1418 class B{};
1419 class C : public B, public virtual A {};
1420
1421 B is a baseclass of C; A is a virtual baseclass for C.
1422 This is a C++ 2.0 language feature. */
1423
1424 B_TYPE *virtual_field_bits;
1425
1426 /* * For classes with private fields, the number of fields is
1427 given by nfields and private_field_bits is a bit vector
1428 containing one bit per field.
1429
1430 If the field is private, the corresponding bit will be set. */
1431
1432 B_TYPE *private_field_bits;
1433
1434 /* * For classes with protected fields, the number of fields is
1435 given by nfields and protected_field_bits is a bit vector
1436 containing one bit per field.
1437
1438 If the field is private, the corresponding bit will be set. */
1439
1440 B_TYPE *protected_field_bits;
1441
1442 /* * For classes with fields to be ignored, either this is
1443 optimized out or this field has length 0. */
1444
1445 B_TYPE *ignore_field_bits;
1446
1447 /* * For classes, structures, and unions, a description of each
1448 field, which consists of an overloaded name, followed by the
1449 types of arguments that the method expects, and then the name
1450 after it has been renamed to make it distinct.
1451
1452 fn_fieldlists points to an array of nfn_fields of these. */
1453
1454 struct fn_fieldlist *fn_fieldlists;
1455
1456 /* * typedefs defined inside this class. typedef_field points to
1457 an array of typedef_field_count elements. */
1458
1459 struct decl_field *typedef_field;
1460
1461 unsigned typedef_field_count;
1462
1463 /* * The nested types defined by this type. nested_types points to
1464 an array of nested_types_count elements. */
1465
1466 struct decl_field *nested_types;
1467
1468 unsigned nested_types_count;
1469
1470 /* * The template arguments. This is an array with
1471 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1472 classes. */
1473
1474 struct symbol **template_arguments;
1475 };
1476
1477 /* * Struct used to store conversion rankings. */
1478
1479 struct rank
1480 {
1481 short rank;
1482
1483 /* * When two conversions are of the same type and therefore have
1484 the same rank, subrank is used to differentiate the two.
1485
1486 Eg: Two derived-class-pointer to base-class-pointer conversions
1487 would both have base pointer conversion rank, but the
1488 conversion with the shorter distance to the ancestor is
1489 preferable. 'subrank' would be used to reflect that. */
1490
1491 short subrank;
1492 };
1493
1494 /* * Used for ranking a function for overload resolution. */
1495
1496 typedef std::vector<rank> badness_vector;
1497
1498 /* * GNAT Ada-specific information for various Ada types. */
1499
1500 struct gnat_aux_type
1501 {
1502 /* * Parallel type used to encode information about dynamic types
1503 used in Ada (such as variant records, variable-size array,
1504 etc). */
1505 struct type* descriptive_type;
1506 };
1507
1508 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1509
1510 struct func_type
1511 {
1512 /* * The calling convention for targets supporting multiple ABIs.
1513 Right now this is only fetched from the Dwarf-2
1514 DW_AT_calling_convention attribute. The value is one of the
1515 DW_CC constants. */
1516
1517 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1518
1519 /* * Whether this function normally returns to its caller. It is
1520 set from the DW_AT_noreturn attribute if set on the
1521 DW_TAG_subprogram. */
1522
1523 unsigned int is_noreturn : 1;
1524
1525 /* * Only those DW_TAG_call_site's in this function that have
1526 DW_AT_call_tail_call set are linked in this list. Function
1527 without its tail call list complete
1528 (DW_AT_call_all_tail_calls or its superset
1529 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1530 DW_TAG_call_site's exist in such function. */
1531
1532 struct call_site *tail_call_list;
1533
1534 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1535 contains the method. */
1536
1537 struct type *self_type;
1538 };
1539
1540 /* struct call_site_parameter can be referenced in callees by several ways. */
1541
1542 enum call_site_parameter_kind
1543 {
1544 /* * Use field call_site_parameter.u.dwarf_reg. */
1545 CALL_SITE_PARAMETER_DWARF_REG,
1546
1547 /* * Use field call_site_parameter.u.fb_offset. */
1548 CALL_SITE_PARAMETER_FB_OFFSET,
1549
1550 /* * Use field call_site_parameter.u.param_offset. */
1551 CALL_SITE_PARAMETER_PARAM_OFFSET
1552 };
1553
1554 struct call_site_target
1555 {
1556 union field_location loc;
1557
1558 /* * Discriminant for union field_location. */
1559
1560 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1561 };
1562
1563 union call_site_parameter_u
1564 {
1565 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1566 as DWARF register number, for register passed
1567 parameters. */
1568
1569 int dwarf_reg;
1570
1571 /* * Offset from the callee's frame base, for stack passed
1572 parameters. This equals offset from the caller's stack
1573 pointer. */
1574
1575 CORE_ADDR fb_offset;
1576
1577 /* * Offset relative to the start of this PER_CU to
1578 DW_TAG_formal_parameter which is referenced by both
1579 caller and the callee. */
1580
1581 cu_offset param_cu_off;
1582 };
1583
1584 struct call_site_parameter
1585 {
1586 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1587
1588 union call_site_parameter_u u;
1589
1590 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1591
1592 const gdb_byte *value;
1593 size_t value_size;
1594
1595 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1596 It may be NULL if not provided by DWARF. */
1597
1598 const gdb_byte *data_value;
1599 size_t data_value_size;
1600 };
1601
1602 /* * A place where a function gets called from, represented by
1603 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1604
1605 struct call_site
1606 {
1607 /* * Address of the first instruction after this call. It must be
1608 the first field as we overload core_addr_hash and core_addr_eq
1609 for it. */
1610
1611 CORE_ADDR pc;
1612
1613 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1614
1615 struct call_site *tail_call_next;
1616
1617 /* * Describe DW_AT_call_target. Missing attribute uses
1618 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1619
1620 struct call_site_target target;
1621
1622 /* * Size of the PARAMETER array. */
1623
1624 unsigned parameter_count;
1625
1626 /* * CU of the function where the call is located. It gets used
1627 for DWARF blocks execution in the parameter array below. */
1628
1629 dwarf2_per_cu_data *per_cu;
1630
1631 /* objfile of the function where the call is located. */
1632
1633 dwarf2_per_objfile *per_objfile;
1634
1635 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1636
1637 struct call_site_parameter parameter[1];
1638 };
1639
1640 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1641 static structure. */
1642
1643 extern const struct cplus_struct_type cplus_struct_default;
1644
1645 extern void allocate_cplus_struct_type (struct type *);
1646
1647 #define INIT_CPLUS_SPECIFIC(type) \
1648 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1649 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1650 &cplus_struct_default)
1651
1652 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1653
1654 #define HAVE_CPLUS_STRUCT(type) \
1655 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1656 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1657
1658 #define INIT_NONE_SPECIFIC(type) \
1659 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1660 TYPE_MAIN_TYPE (type)->type_specific = {})
1661
1662 extern const struct gnat_aux_type gnat_aux_default;
1663
1664 extern void allocate_gnat_aux_type (struct type *);
1665
1666 #define INIT_GNAT_SPECIFIC(type) \
1667 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1668 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1669 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1670 /* * A macro that returns non-zero if the type-specific data should be
1671 read as "gnat-stuff". */
1672 #define HAVE_GNAT_AUX_INFO(type) \
1673 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1674
1675 /* * True if TYPE is known to be an Ada type of some kind. */
1676 #define ADA_TYPE_P(type) \
1677 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1678 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1679 && (type)->is_fixed_instance ()))
1680
1681 #define INIT_FUNC_SPECIFIC(type) \
1682 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1683 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1684 TYPE_ZALLOC (type, \
1685 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1686
1687 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1688 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1689 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1690 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1691 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1692 #define TYPE_CHAIN(thistype) (thistype)->chain
1693 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1694 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1695 so you only have to call check_typedef once. Since allocate_value
1696 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1697 #define TYPE_LENGTH(thistype) (thistype)->length
1698
1699 /* * Return the alignment of the type in target addressable memory
1700 units, or 0 if no alignment was specified. */
1701 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1702
1703 /* * Return the alignment of the type in target addressable memory
1704 units, or 0 if no alignment was specified. */
1705 extern unsigned type_raw_align (struct type *);
1706
1707 /* * Return the alignment of the type in target addressable memory
1708 units. Return 0 if the alignment cannot be determined; but note
1709 that this makes an effort to compute the alignment even it it was
1710 not specified in the debug info. */
1711 extern unsigned type_align (struct type *);
1712
1713 /* * Set the alignment of the type. The alignment must be a power of
1714 2. Returns false if the given value does not fit in the available
1715 space in struct type. */
1716 extern bool set_type_align (struct type *, ULONGEST);
1717
1718 /* Property accessors for the type data location. */
1719 #define TYPE_DATA_LOCATION(thistype) \
1720 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1721 #define TYPE_DATA_LOCATION_BATON(thistype) \
1722 TYPE_DATA_LOCATION (thistype)->data.baton
1723 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1724 (TYPE_DATA_LOCATION (thistype)->const_val ())
1725 #define TYPE_DATA_LOCATION_KIND(thistype) \
1726 (TYPE_DATA_LOCATION (thistype)->kind ())
1727 #define TYPE_DYNAMIC_LENGTH(thistype) \
1728 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1729
1730 /* Property accessors for the type allocated/associated. */
1731 #define TYPE_ALLOCATED_PROP(thistype) \
1732 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1733 #define TYPE_ASSOCIATED_PROP(thistype) \
1734 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1735
1736 /* C++ */
1737
1738 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1739 /* Do not call this, use TYPE_SELF_TYPE. */
1740 extern struct type *internal_type_self_type (struct type *);
1741 extern void set_type_self_type (struct type *, struct type *);
1742
1743 extern int internal_type_vptr_fieldno (struct type *);
1744 extern void set_type_vptr_fieldno (struct type *, int);
1745 extern struct type *internal_type_vptr_basetype (struct type *);
1746 extern void set_type_vptr_basetype (struct type *, struct type *);
1747 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1748 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1749
1750 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1751 #define TYPE_SPECIFIC_FIELD(thistype) \
1752 TYPE_MAIN_TYPE(thistype)->type_specific_field
1753 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1754 where we're trying to print an Ada array using the C language.
1755 In that case, there is no "cplus_stuff", but the C language assumes
1756 that there is. What we do, in that case, is pretend that there is
1757 an implicit one which is the default cplus stuff. */
1758 #define TYPE_CPLUS_SPECIFIC(thistype) \
1759 (!HAVE_CPLUS_STRUCT(thistype) \
1760 ? (struct cplus_struct_type*)&cplus_struct_default \
1761 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1762 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1763 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1764 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1765 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1766 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1767 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1768 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1769 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1770 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1771 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1772 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1773 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1774 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1775 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1776 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1777 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1778
1779 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1780 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1781 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1782
1783 #define FIELD_NAME(thisfld) ((thisfld).name)
1784 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1785 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1786 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1787 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1788 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1789 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1790 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1791 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1792 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1793 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1794 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1795 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1796 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1797 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1798 #define SET_FIELD_PHYSNAME(thisfld, name) \
1799 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1800 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1801 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1802 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1803 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1804 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1805 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1806 FIELD_DWARF_BLOCK (thisfld) = (addr))
1807 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1808 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1809
1810 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1811 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1812 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1813 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1814 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1815 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1816 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1817 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1818 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1819 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1820
1821 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1822 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1823 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1824 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1825 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1826 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1827 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1828 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1829 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1830 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1831 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1832 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1833 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1834 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1835 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1836 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1837 #define TYPE_FIELD_PRIVATE(thistype, n) \
1838 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1839 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1840 #define TYPE_FIELD_PROTECTED(thistype, n) \
1841 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1842 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1843 #define TYPE_FIELD_IGNORE(thistype, n) \
1844 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1845 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1846 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1847 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1848 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1849
1850 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1851 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1852 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1853 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1854 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1855
1856 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1857 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1858 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1859 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1860 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1861 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1862
1863 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1864 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1865 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1866 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1867 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1868 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1869 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1870 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1871 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1872 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1873 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1874 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1875 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1876 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1877 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1878 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1879 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1880
1881 /* Accessors for typedefs defined by a class. */
1882 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1883 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1884 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1885 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1886 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1887 TYPE_TYPEDEF_FIELD (thistype, n).name
1888 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1889 TYPE_TYPEDEF_FIELD (thistype, n).type
1890 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1891 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1892 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1893 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1894 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1895 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1896
1897 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1898 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1899 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1900 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1901 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1902 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1903 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1904 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1905 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1906 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1907 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1908 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1909 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1910 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1911
1912 #define TYPE_IS_OPAQUE(thistype) \
1913 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1914 || ((thistype)->code () == TYPE_CODE_UNION)) \
1915 && ((thistype)->num_fields () == 0) \
1916 && (!HAVE_CPLUS_STRUCT (thistype) \
1917 || TYPE_NFN_FIELDS (thistype) == 0) \
1918 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1919
1920 /* * A helper macro that returns the name of a type or "unnamed type"
1921 if the type has no name. */
1922
1923 #define TYPE_SAFE_NAME(type) \
1924 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1925
1926 /* * A helper macro that returns the name of an error type. If the
1927 type has a name, it is used; otherwise, a default is used. */
1928
1929 #define TYPE_ERROR_NAME(type) \
1930 (type->name () ? type->name () : _("<error type>"))
1931
1932 /* Given TYPE, return its floatformat. */
1933 const struct floatformat *floatformat_from_type (const struct type *type);
1934
1935 struct builtin_type
1936 {
1937 /* Integral types. */
1938
1939 /* Implicit size/sign (based on the architecture's ABI). */
1940 struct type *builtin_void;
1941 struct type *builtin_char;
1942 struct type *builtin_short;
1943 struct type *builtin_int;
1944 struct type *builtin_long;
1945 struct type *builtin_signed_char;
1946 struct type *builtin_unsigned_char;
1947 struct type *builtin_unsigned_short;
1948 struct type *builtin_unsigned_int;
1949 struct type *builtin_unsigned_long;
1950 struct type *builtin_bfloat16;
1951 struct type *builtin_half;
1952 struct type *builtin_float;
1953 struct type *builtin_double;
1954 struct type *builtin_long_double;
1955 struct type *builtin_complex;
1956 struct type *builtin_double_complex;
1957 struct type *builtin_string;
1958 struct type *builtin_bool;
1959 struct type *builtin_long_long;
1960 struct type *builtin_unsigned_long_long;
1961 struct type *builtin_decfloat;
1962 struct type *builtin_decdouble;
1963 struct type *builtin_declong;
1964
1965 /* "True" character types.
1966 We use these for the '/c' print format, because c_char is just a
1967 one-byte integral type, which languages less laid back than C
1968 will print as ... well, a one-byte integral type. */
1969 struct type *builtin_true_char;
1970 struct type *builtin_true_unsigned_char;
1971
1972 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1973 is for when an architecture needs to describe a register that has
1974 no size. */
1975 struct type *builtin_int0;
1976 struct type *builtin_int8;
1977 struct type *builtin_uint8;
1978 struct type *builtin_int16;
1979 struct type *builtin_uint16;
1980 struct type *builtin_int24;
1981 struct type *builtin_uint24;
1982 struct type *builtin_int32;
1983 struct type *builtin_uint32;
1984 struct type *builtin_int64;
1985 struct type *builtin_uint64;
1986 struct type *builtin_int128;
1987 struct type *builtin_uint128;
1988
1989 /* Wide character types. */
1990 struct type *builtin_char16;
1991 struct type *builtin_char32;
1992 struct type *builtin_wchar;
1993
1994 /* Pointer types. */
1995
1996 /* * `pointer to data' type. Some target platforms use an implicitly
1997 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1998 struct type *builtin_data_ptr;
1999
2000 /* * `pointer to function (returning void)' type. Harvard
2001 architectures mean that ABI function and code pointers are not
2002 interconvertible. Similarly, since ANSI, C standards have
2003 explicitly said that pointers to functions and pointers to data
2004 are not interconvertible --- that is, you can't cast a function
2005 pointer to void * and back, and expect to get the same value.
2006 However, all function pointer types are interconvertible, so void
2007 (*) () can server as a generic function pointer. */
2008
2009 struct type *builtin_func_ptr;
2010
2011 /* * `function returning pointer to function (returning void)' type.
2012 The final void return type is not significant for it. */
2013
2014 struct type *builtin_func_func;
2015
2016 /* Special-purpose types. */
2017
2018 /* * This type is used to represent a GDB internal function. */
2019
2020 struct type *internal_fn;
2021
2022 /* * This type is used to represent an xmethod. */
2023 struct type *xmethod;
2024 };
2025
2026 /* * Return the type table for the specified architecture. */
2027
2028 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2029
2030 /* * Per-objfile types used by symbol readers. */
2031
2032 struct objfile_type
2033 {
2034 /* Basic types based on the objfile architecture. */
2035 struct type *builtin_void;
2036 struct type *builtin_char;
2037 struct type *builtin_short;
2038 struct type *builtin_int;
2039 struct type *builtin_long;
2040 struct type *builtin_long_long;
2041 struct type *builtin_signed_char;
2042 struct type *builtin_unsigned_char;
2043 struct type *builtin_unsigned_short;
2044 struct type *builtin_unsigned_int;
2045 struct type *builtin_unsigned_long;
2046 struct type *builtin_unsigned_long_long;
2047 struct type *builtin_half;
2048 struct type *builtin_float;
2049 struct type *builtin_double;
2050 struct type *builtin_long_double;
2051
2052 /* * This type is used to represent symbol addresses. */
2053 struct type *builtin_core_addr;
2054
2055 /* * This type represents a type that was unrecognized in symbol
2056 read-in. */
2057 struct type *builtin_error;
2058
2059 /* * Types used for symbols with no debug information. */
2060 struct type *nodebug_text_symbol;
2061 struct type *nodebug_text_gnu_ifunc_symbol;
2062 struct type *nodebug_got_plt_symbol;
2063 struct type *nodebug_data_symbol;
2064 struct type *nodebug_unknown_symbol;
2065 struct type *nodebug_tls_symbol;
2066 };
2067
2068 /* * Return the type table for the specified objfile. */
2069
2070 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2071
2072 /* Explicit floating-point formats. See "floatformat.h". */
2073 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2074 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2075 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2076 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2077 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2078 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2079 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2080 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2081 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2082 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2083 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2084 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2085 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2086
2087 /* Allocate space for storing data associated with a particular
2088 type. We ensure that the space is allocated using the same
2089 mechanism that was used to allocate the space for the type
2090 structure itself. I.e. if the type is on an objfile's
2091 objfile_obstack, then the space for data associated with that type
2092 will also be allocated on the objfile_obstack. If the type is
2093 associated with a gdbarch, then the space for data associated with that
2094 type will also be allocated on the gdbarch_obstack.
2095
2096 If a type is not associated with neither an objfile or a gdbarch then
2097 you should not use this macro to allocate space for data, instead you
2098 should call xmalloc directly, and ensure the memory is correctly freed
2099 when it is no longer needed. */
2100
2101 #define TYPE_ALLOC(t,size) \
2102 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2103 ? &TYPE_OBJFILE (t)->objfile_obstack \
2104 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2105 size))
2106
2107
2108 /* See comment on TYPE_ALLOC. */
2109
2110 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2111
2112 /* Use alloc_type to allocate a type owned by an objfile. Use
2113 alloc_type_arch to allocate a type owned by an architecture. Use
2114 alloc_type_copy to allocate a type with the same owner as a
2115 pre-existing template type, no matter whether objfile or
2116 gdbarch. */
2117 extern struct type *alloc_type (struct objfile *);
2118 extern struct type *alloc_type_arch (struct gdbarch *);
2119 extern struct type *alloc_type_copy (const struct type *);
2120
2121 /* * Return the type's architecture. For types owned by an
2122 architecture, that architecture is returned. For types owned by an
2123 objfile, that objfile's architecture is returned. */
2124
2125 extern struct gdbarch *get_type_arch (const struct type *);
2126
2127 /* * This returns the target type (or NULL) of TYPE, also skipping
2128 past typedefs. */
2129
2130 extern struct type *get_target_type (struct type *type);
2131
2132 /* Return the equivalent of TYPE_LENGTH, but in number of target
2133 addressable memory units of the associated gdbarch instead of bytes. */
2134
2135 extern unsigned int type_length_units (struct type *type);
2136
2137 /* * Helper function to construct objfile-owned types. */
2138
2139 extern struct type *init_type (struct objfile *, enum type_code, int,
2140 const char *);
2141 extern struct type *init_integer_type (struct objfile *, int, int,
2142 const char *);
2143 extern struct type *init_character_type (struct objfile *, int, int,
2144 const char *);
2145 extern struct type *init_boolean_type (struct objfile *, int, int,
2146 const char *);
2147 extern struct type *init_float_type (struct objfile *, int, const char *,
2148 const struct floatformat **,
2149 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2150 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2151 extern struct type *init_complex_type (const char *, struct type *);
2152 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2153 struct type *);
2154
2155 /* Helper functions to construct architecture-owned types. */
2156 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2157 const char *);
2158 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2159 const char *);
2160 extern struct type *arch_character_type (struct gdbarch *, int, int,
2161 const char *);
2162 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2163 const char *);
2164 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2165 const struct floatformat **);
2166 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2167 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2168 struct type *);
2169
2170 /* Helper functions to construct a struct or record type. An
2171 initially empty type is created using arch_composite_type().
2172 Fields are then added using append_composite_type_field*(). A union
2173 type has its size set to the largest field. A struct type has each
2174 field packed against the previous. */
2175
2176 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2177 const char *name, enum type_code code);
2178 extern void append_composite_type_field (struct type *t, const char *name,
2179 struct type *field);
2180 extern void append_composite_type_field_aligned (struct type *t,
2181 const char *name,
2182 struct type *field,
2183 int alignment);
2184 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2185 struct type *field);
2186
2187 /* Helper functions to construct a bit flags type. An initially empty
2188 type is created using arch_flag_type(). Flags are then added using
2189 append_flag_type_field() and append_flag_type_flag(). */
2190 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2191 const char *name, int bit);
2192 extern void append_flags_type_field (struct type *type,
2193 int start_bitpos, int nr_bits,
2194 struct type *field_type, const char *name);
2195 extern void append_flags_type_flag (struct type *type, int bitpos,
2196 const char *name);
2197
2198 extern void make_vector_type (struct type *array_type);
2199 extern struct type *init_vector_type (struct type *elt_type, int n);
2200
2201 extern struct type *lookup_reference_type (struct type *, enum type_code);
2202 extern struct type *lookup_lvalue_reference_type (struct type *);
2203 extern struct type *lookup_rvalue_reference_type (struct type *);
2204
2205
2206 extern struct type *make_reference_type (struct type *, struct type **,
2207 enum type_code);
2208
2209 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2210
2211 extern struct type *make_restrict_type (struct type *);
2212
2213 extern struct type *make_unqualified_type (struct type *);
2214
2215 extern struct type *make_atomic_type (struct type *);
2216
2217 extern void replace_type (struct type *, struct type *);
2218
2219 extern type_instance_flags address_space_name_to_type_instance_flags
2220 (struct gdbarch *, const char *);
2221
2222 extern const char *address_space_type_instance_flags_to_name
2223 (struct gdbarch *, type_instance_flags);
2224
2225 extern struct type *make_type_with_address_space
2226 (struct type *type, type_instance_flags space_identifier);
2227
2228 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2229
2230 extern struct type *lookup_methodptr_type (struct type *);
2231
2232 extern void smash_to_method_type (struct type *type, struct type *self_type,
2233 struct type *to_type, struct field *args,
2234 int nargs, int varargs);
2235
2236 extern void smash_to_memberptr_type (struct type *, struct type *,
2237 struct type *);
2238
2239 extern void smash_to_methodptr_type (struct type *, struct type *);
2240
2241 extern struct type *allocate_stub_method (struct type *);
2242
2243 extern const char *type_name_or_error (struct type *type);
2244
2245 struct struct_elt
2246 {
2247 /* The field of the element, or NULL if no element was found. */
2248 struct field *field;
2249
2250 /* The bit offset of the element in the parent structure. */
2251 LONGEST offset;
2252 };
2253
2254 /* Given a type TYPE, lookup the field and offset of the component named
2255 NAME.
2256
2257 TYPE can be either a struct or union, or a pointer or reference to
2258 a struct or union. If it is a pointer or reference, its target
2259 type is automatically used. Thus '.' and '->' are interchangable,
2260 as specified for the definitions of the expression element types
2261 STRUCTOP_STRUCT and STRUCTOP_PTR.
2262
2263 If NOERR is nonzero, the returned structure will have field set to
2264 NULL if there is no component named NAME.
2265
2266 If the component NAME is a field in an anonymous substructure of
2267 TYPE, the returned offset is a "global" offset relative to TYPE
2268 rather than an offset within the substructure. */
2269
2270 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2271
2272 /* Given a type TYPE, lookup the type of the component named NAME.
2273
2274 TYPE can be either a struct or union, or a pointer or reference to
2275 a struct or union. If it is a pointer or reference, its target
2276 type is automatically used. Thus '.' and '->' are interchangable,
2277 as specified for the definitions of the expression element types
2278 STRUCTOP_STRUCT and STRUCTOP_PTR.
2279
2280 If NOERR is nonzero, return NULL if there is no component named
2281 NAME. */
2282
2283 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2284
2285 extern struct type *make_pointer_type (struct type *, struct type **);
2286
2287 extern struct type *lookup_pointer_type (struct type *);
2288
2289 extern struct type *make_function_type (struct type *, struct type **);
2290
2291 extern struct type *lookup_function_type (struct type *);
2292
2293 extern struct type *lookup_function_type_with_arguments (struct type *,
2294 int,
2295 struct type **);
2296
2297 extern struct type *create_static_range_type (struct type *, struct type *,
2298 LONGEST, LONGEST);
2299
2300
2301 extern struct type *create_array_type_with_stride
2302 (struct type *, struct type *, struct type *,
2303 struct dynamic_prop *, unsigned int);
2304
2305 extern struct type *create_range_type (struct type *, struct type *,
2306 const struct dynamic_prop *,
2307 const struct dynamic_prop *,
2308 LONGEST);
2309
2310 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2311 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2312 stride. */
2313
2314 extern struct type * create_range_type_with_stride
2315 (struct type *result_type, struct type *index_type,
2316 const struct dynamic_prop *low_bound,
2317 const struct dynamic_prop *high_bound, LONGEST bias,
2318 const struct dynamic_prop *stride, bool byte_stride_p);
2319
2320 extern struct type *create_array_type (struct type *, struct type *,
2321 struct type *);
2322
2323 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2324
2325 extern struct type *create_string_type (struct type *, struct type *,
2326 struct type *);
2327 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2328
2329 extern struct type *create_set_type (struct type *, struct type *);
2330
2331 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2332 const char *);
2333
2334 extern struct type *lookup_signed_typename (const struct language_defn *,
2335 const char *);
2336
2337 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2338
2339 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2340
2341 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2342 ADDR specifies the location of the variable the type is bound to.
2343 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2344 static properties is returned. */
2345 extern struct type *resolve_dynamic_type
2346 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2347 CORE_ADDR addr);
2348
2349 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2350 extern int is_dynamic_type (struct type *type);
2351
2352 extern struct type *check_typedef (struct type *);
2353
2354 extern void check_stub_method_group (struct type *, int);
2355
2356 extern char *gdb_mangle_name (struct type *, int, int);
2357
2358 extern struct type *lookup_typename (const struct language_defn *,
2359 const char *, const struct block *, int);
2360
2361 extern struct type *lookup_template_type (const char *, struct type *,
2362 const struct block *);
2363
2364 extern int get_vptr_fieldno (struct type *, struct type **);
2365
2366 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2367
2368 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2369 LONGEST *high_bound);
2370
2371 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2372
2373 extern int class_types_same_p (const struct type *, const struct type *);
2374
2375 extern int is_ancestor (struct type *, struct type *);
2376
2377 extern int is_public_ancestor (struct type *, struct type *);
2378
2379 extern int is_unique_ancestor (struct type *, struct value *);
2380
2381 /* Overload resolution */
2382
2383 /* * Badness if parameter list length doesn't match arg list length. */
2384 extern const struct rank LENGTH_MISMATCH_BADNESS;
2385
2386 /* * Dummy badness value for nonexistent parameter positions. */
2387 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2388 /* * Badness if no conversion among types. */
2389 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2390
2391 /* * Badness of an exact match. */
2392 extern const struct rank EXACT_MATCH_BADNESS;
2393
2394 /* * Badness of integral promotion. */
2395 extern const struct rank INTEGER_PROMOTION_BADNESS;
2396 /* * Badness of floating promotion. */
2397 extern const struct rank FLOAT_PROMOTION_BADNESS;
2398 /* * Badness of converting a derived class pointer
2399 to a base class pointer. */
2400 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2401 /* * Badness of integral conversion. */
2402 extern const struct rank INTEGER_CONVERSION_BADNESS;
2403 /* * Badness of floating conversion. */
2404 extern const struct rank FLOAT_CONVERSION_BADNESS;
2405 /* * Badness of integer<->floating conversions. */
2406 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2407 /* * Badness of conversion of pointer to void pointer. */
2408 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2409 /* * Badness of conversion to boolean. */
2410 extern const struct rank BOOL_CONVERSION_BADNESS;
2411 /* * Badness of converting derived to base class. */
2412 extern const struct rank BASE_CONVERSION_BADNESS;
2413 /* * Badness of converting from non-reference to reference. Subrank
2414 is the type of reference conversion being done. */
2415 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2416 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2417 /* * Conversion to rvalue reference. */
2418 #define REFERENCE_CONVERSION_RVALUE 1
2419 /* * Conversion to const lvalue reference. */
2420 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2421
2422 /* * Badness of converting integer 0 to NULL pointer. */
2423 extern const struct rank NULL_POINTER_CONVERSION;
2424 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2425 being done. */
2426 extern const struct rank CV_CONVERSION_BADNESS;
2427 #define CV_CONVERSION_CONST 1
2428 #define CV_CONVERSION_VOLATILE 2
2429
2430 /* Non-standard conversions allowed by the debugger */
2431
2432 /* * Converting a pointer to an int is usually OK. */
2433 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2434
2435 /* * Badness of converting a (non-zero) integer constant
2436 to a pointer. */
2437 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2438
2439 extern struct rank sum_ranks (struct rank a, struct rank b);
2440 extern int compare_ranks (struct rank a, struct rank b);
2441
2442 extern int compare_badness (const badness_vector &,
2443 const badness_vector &);
2444
2445 extern badness_vector rank_function (gdb::array_view<type *> parms,
2446 gdb::array_view<value *> args);
2447
2448 extern struct rank rank_one_type (struct type *, struct type *,
2449 struct value *);
2450
2451 extern void recursive_dump_type (struct type *, int);
2452
2453 extern int field_is_static (struct field *);
2454
2455 /* printcmd.c */
2456
2457 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2458 const struct value_print_options *,
2459 int, struct ui_file *);
2460
2461 extern int can_dereference (struct type *);
2462
2463 extern int is_integral_type (struct type *);
2464
2465 extern int is_floating_type (struct type *);
2466
2467 extern int is_scalar_type (struct type *type);
2468
2469 extern int is_scalar_type_recursive (struct type *);
2470
2471 extern int class_or_union_p (const struct type *);
2472
2473 extern void maintenance_print_type (const char *, int);
2474
2475 extern htab_t create_copied_types_hash (struct objfile *objfile);
2476
2477 extern struct type *copy_type_recursive (struct objfile *objfile,
2478 struct type *type,
2479 htab_t copied_types);
2480
2481 extern struct type *copy_type (const struct type *type);
2482
2483 extern bool types_equal (struct type *, struct type *);
2484
2485 extern bool types_deeply_equal (struct type *, struct type *);
2486
2487 extern int type_not_allocated (const struct type *type);
2488
2489 extern int type_not_associated (const struct type *type);
2490
2491 /* * When the type includes explicit byte ordering, return that.
2492 Otherwise, the byte ordering from gdbarch_byte_order for
2493 get_type_arch is returned. */
2494
2495 extern enum bfd_endian type_byte_order (const struct type *type);
2496
2497 /* A flag to enable printing of debugging information of C++
2498 overloading. */
2499
2500 extern unsigned int overload_debug;
2501
2502 #endif /* GDBTYPES_H */
This page took 0.09577 seconds and 3 git commands to generate.