Make function fixed_point_scaling_factor a method of struct type
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55 #include "gmp-utils.h"
56
57 /* Forward declarations for prototypes. */
58 struct field;
59 struct block;
60 struct value_print_options;
61 struct language_defn;
62 struct dwarf2_per_cu_data;
63 struct dwarf2_per_objfile;
64
65 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
66 are already DWARF-specific. */
67
68 /* * Offset relative to the start of its containing CU (compilation
69 unit). */
70 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
71
72 /* * Offset relative to the start of its .debug_info or .debug_types
73 section. */
74 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
75
76 static inline char *
77 sect_offset_str (sect_offset offset)
78 {
79 return hex_string (to_underlying (offset));
80 }
81
82 /* Some macros for char-based bitfields. */
83
84 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
85 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
86 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
87 #define B_TYPE unsigned char
88 #define B_BYTES(x) ( 1 + ((x)>>3) )
89 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
90
91 /* * Different kinds of data types are distinguished by the `code'
92 field. */
93
94 enum type_code
95 {
96 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
97 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
98 TYPE_CODE_PTR, /**< Pointer type */
99
100 /* * Array type with lower & upper bounds.
101
102 Regardless of the language, GDB represents multidimensional
103 array types the way C does: as arrays of arrays. So an
104 instance of a GDB array type T can always be seen as a series
105 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
106 memory.
107
108 Row-major languages like C lay out multi-dimensional arrays so
109 that incrementing the rightmost index in a subscripting
110 expression results in the smallest change in the address of the
111 element referred to. Column-major languages like Fortran lay
112 them out so that incrementing the leftmost index results in the
113 smallest change.
114
115 This means that, in column-major languages, working our way
116 from type to target type corresponds to working through indices
117 from right to left, not left to right. */
118 TYPE_CODE_ARRAY,
119
120 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
121 TYPE_CODE_UNION, /**< C union or Pascal variant part */
122 TYPE_CODE_ENUM, /**< Enumeration type */
123 TYPE_CODE_FLAGS, /**< Bit flags type */
124 TYPE_CODE_FUNC, /**< Function type */
125 TYPE_CODE_INT, /**< Integer type */
126
127 /* * Floating type. This is *NOT* a complex type. */
128 TYPE_CODE_FLT,
129
130 /* * Void type. The length field specifies the length (probably
131 always one) which is used in pointer arithmetic involving
132 pointers to this type, but actually dereferencing such a
133 pointer is invalid; a void type has no length and no actual
134 representation in memory or registers. A pointer to a void
135 type is a generic pointer. */
136 TYPE_CODE_VOID,
137
138 TYPE_CODE_SET, /**< Pascal sets */
139 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
140
141 /* * A string type which is like an array of character but prints
142 differently. It does not contain a length field as Pascal
143 strings (for many Pascals, anyway) do; if we want to deal with
144 such strings, we should use a new type code. */
145 TYPE_CODE_STRING,
146
147 /* * Unknown type. The length field is valid if we were able to
148 deduce that much about the type, or 0 if we don't even know
149 that. */
150 TYPE_CODE_ERROR,
151
152 /* C++ */
153 TYPE_CODE_METHOD, /**< Method type */
154
155 /* * Pointer-to-member-function type. This describes how to access a
156 particular member function of a class (possibly a virtual
157 member function). The representation may vary between different
158 C++ ABIs. */
159 TYPE_CODE_METHODPTR,
160
161 /* * Pointer-to-member type. This is the offset within a class to
162 some particular data member. The only currently supported
163 representation uses an unbiased offset, with -1 representing
164 NULL; this is used by the Itanium C++ ABI (used by GCC on all
165 platforms). */
166 TYPE_CODE_MEMBERPTR,
167
168 TYPE_CODE_REF, /**< C++ Reference types */
169
170 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
171
172 TYPE_CODE_CHAR, /**< *real* character type */
173
174 /* * Boolean type. 0 is false, 1 is true, and other values are
175 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
176 TYPE_CODE_BOOL,
177
178 /* Fortran */
179 TYPE_CODE_COMPLEX, /**< Complex float */
180
181 TYPE_CODE_TYPEDEF,
182
183 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
184
185 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
186
187 TYPE_CODE_MODULE, /**< Fortran module. */
188
189 /* * Internal function type. */
190 TYPE_CODE_INTERNAL_FUNCTION,
191
192 /* * Methods implemented in extension languages. */
193 TYPE_CODE_XMETHOD,
194
195 /* * Fixed Point type. */
196 TYPE_CODE_FIXED_POINT,
197 };
198
199 /* * Some bits for the type's instance_flags word. See the macros
200 below for documentation on each bit. */
201
202 enum type_instance_flag_value : unsigned
203 {
204 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
205 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
206 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
207 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
208 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
210 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
211 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
212 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
213 };
214
215 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
216
217 /* * Not textual. By default, GDB treats all single byte integers as
218 characters (or elements of strings) unless this flag is set. */
219
220 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
221
222 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
223 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
224 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
225
226 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
227 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
228 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
229
230 /* * True if this type was declared using the "class" keyword. This is
231 only valid for C++ structure and enum types. If false, a structure
232 was declared as a "struct"; if true it was declared "class". For
233 enum types, this is true when "enum class" or "enum struct" was
234 used to declare the type.. */
235
236 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
237
238 /* * True if this type is a "flag" enum. A flag enum is one where all
239 the values are pairwise disjoint when "and"ed together. This
240 affects how enum values are printed. */
241
242 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
243
244 /* * Constant type. If this is set, the corresponding type has a
245 const modifier. */
246
247 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
248
249 /* * Volatile type. If this is set, the corresponding type has a
250 volatile modifier. */
251
252 #define TYPE_VOLATILE(t) \
253 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
254
255 /* * Restrict type. If this is set, the corresponding type has a
256 restrict modifier. */
257
258 #define TYPE_RESTRICT(t) \
259 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
260
261 /* * Atomic type. If this is set, the corresponding type has an
262 _Atomic modifier. */
263
264 #define TYPE_ATOMIC(t) \
265 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
266
267 /* * True if this type represents either an lvalue or lvalue reference type. */
268
269 #define TYPE_IS_REFERENCE(t) \
270 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
271
272 /* * True if this type is allocatable. */
273 #define TYPE_IS_ALLOCATABLE(t) \
274 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
275
276 /* * True if this type has variant parts. */
277 #define TYPE_HAS_VARIANT_PARTS(t) \
278 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
279
280 /* * True if this type has a dynamic length. */
281 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
282 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
283
284 /* * Instruction-space delimited type. This is for Harvard architectures
285 which have separate instruction and data address spaces (and perhaps
286 others).
287
288 GDB usually defines a flat address space that is a superset of the
289 architecture's two (or more) address spaces, but this is an extension
290 of the architecture's model.
291
292 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
293 resides in instruction memory, even if its address (in the extended
294 flat address space) does not reflect this.
295
296 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
297 corresponding type resides in the data memory space, even if
298 this is not indicated by its (flat address space) address.
299
300 If neither flag is set, the default space for functions / methods
301 is instruction space, and for data objects is data memory. */
302
303 #define TYPE_CODE_SPACE(t) \
304 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
305
306 #define TYPE_DATA_SPACE(t) \
307 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
308
309 /* * Address class flags. Some environments provide for pointers
310 whose size is different from that of a normal pointer or address
311 types where the bits are interpreted differently than normal
312 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
313 target specific ways to represent these different types of address
314 classes. */
315
316 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
317 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
318 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
319 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
320 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
321 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
322 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
323 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
324
325 /* * Information about a single discriminant. */
326
327 struct discriminant_range
328 {
329 /* * The range of values for the variant. This is an inclusive
330 range. */
331 ULONGEST low, high;
332
333 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
334 is true if this should be an unsigned comparison; false for
335 signed. */
336 bool contains (ULONGEST value, bool is_unsigned) const
337 {
338 if (is_unsigned)
339 return value >= low && value <= high;
340 LONGEST valuel = (LONGEST) value;
341 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
342 }
343 };
344
345 struct variant_part;
346
347 /* * A single variant. A variant has a list of discriminant values.
348 When the discriminator matches one of these, the variant is
349 enabled. Each variant controls zero or more fields; and may also
350 control other variant parts as well. This struct corresponds to
351 DW_TAG_variant in DWARF. */
352
353 struct variant : allocate_on_obstack
354 {
355 /* * The discriminant ranges for this variant. */
356 gdb::array_view<discriminant_range> discriminants;
357
358 /* * The fields controlled by this variant. This is inclusive on
359 the low end and exclusive on the high end. A variant may not
360 control any fields, in which case the two values will be equal.
361 These are indexes into the type's array of fields. */
362 int first_field;
363 int last_field;
364
365 /* * Variant parts controlled by this variant. */
366 gdb::array_view<variant_part> parts;
367
368 /* * Return true if this is the default variant. The default
369 variant can be recognized because it has no associated
370 discriminants. */
371 bool is_default () const
372 {
373 return discriminants.empty ();
374 }
375
376 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
377 if this should be an unsigned comparison; false for signed. */
378 bool matches (ULONGEST value, bool is_unsigned) const;
379 };
380
381 /* * A variant part. Each variant part has an optional discriminant
382 and holds an array of variants. This struct corresponds to
383 DW_TAG_variant_part in DWARF. */
384
385 struct variant_part : allocate_on_obstack
386 {
387 /* * The index of the discriminant field in the outer type. This is
388 an index into the type's array of fields. If this is -1, there
389 is no discriminant, and only the default variant can be
390 considered to be selected. */
391 int discriminant_index;
392
393 /* * True if this discriminant is unsigned; false if signed. This
394 comes from the type of the discriminant. */
395 bool is_unsigned;
396
397 /* * The variants that are controlled by this variant part. Note
398 that these will always be sorted by field number. */
399 gdb::array_view<variant> variants;
400 };
401
402
403 enum dynamic_prop_kind
404 {
405 PROP_UNDEFINED, /* Not defined. */
406 PROP_CONST, /* Constant. */
407 PROP_ADDR_OFFSET, /* Address offset. */
408 PROP_LOCEXPR, /* Location expression. */
409 PROP_LOCLIST, /* Location list. */
410 PROP_VARIANT_PARTS, /* Variant parts. */
411 PROP_TYPE, /* Type. */
412 };
413
414 union dynamic_prop_data
415 {
416 /* Storage for constant property. */
417
418 LONGEST const_val;
419
420 /* Storage for dynamic property. */
421
422 void *baton;
423
424 /* Storage of variant parts for a type. A type with variant parts
425 has all its fields "linearized" -- stored in a single field
426 array, just as if they had all been declared that way. The
427 variant parts are attached via a dynamic property, and then are
428 used to control which fields end up in the final type during
429 dynamic type resolution. */
430
431 const gdb::array_view<variant_part> *variant_parts;
432
433 /* Once a variant type is resolved, we may want to be able to go
434 from the resolved type to the original type. In this case we
435 rewrite the property's kind and set this field. */
436
437 struct type *original_type;
438 };
439
440 /* * Used to store a dynamic property. */
441
442 struct dynamic_prop
443 {
444 dynamic_prop_kind kind () const
445 {
446 return m_kind;
447 }
448
449 void set_undefined ()
450 {
451 m_kind = PROP_UNDEFINED;
452 }
453
454 LONGEST const_val () const
455 {
456 gdb_assert (m_kind == PROP_CONST);
457
458 return m_data.const_val;
459 }
460
461 void set_const_val (LONGEST const_val)
462 {
463 m_kind = PROP_CONST;
464 m_data.const_val = const_val;
465 }
466
467 void *baton () const
468 {
469 gdb_assert (m_kind == PROP_LOCEXPR
470 || m_kind == PROP_LOCLIST
471 || m_kind == PROP_ADDR_OFFSET);
472
473 return m_data.baton;
474 }
475
476 void set_locexpr (void *baton)
477 {
478 m_kind = PROP_LOCEXPR;
479 m_data.baton = baton;
480 }
481
482 void set_loclist (void *baton)
483 {
484 m_kind = PROP_LOCLIST;
485 m_data.baton = baton;
486 }
487
488 void set_addr_offset (void *baton)
489 {
490 m_kind = PROP_ADDR_OFFSET;
491 m_data.baton = baton;
492 }
493
494 const gdb::array_view<variant_part> *variant_parts () const
495 {
496 gdb_assert (m_kind == PROP_VARIANT_PARTS);
497
498 return m_data.variant_parts;
499 }
500
501 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
502 {
503 m_kind = PROP_VARIANT_PARTS;
504 m_data.variant_parts = variant_parts;
505 }
506
507 struct type *original_type () const
508 {
509 gdb_assert (m_kind == PROP_TYPE);
510
511 return m_data.original_type;
512 }
513
514 void set_original_type (struct type *original_type)
515 {
516 m_kind = PROP_TYPE;
517 m_data.original_type = original_type;
518 }
519
520 /* Determine which field of the union dynamic_prop.data is used. */
521 enum dynamic_prop_kind m_kind;
522
523 /* Storage for dynamic or static value. */
524 union dynamic_prop_data m_data;
525 };
526
527 /* Compare two dynamic_prop objects for equality. dynamic_prop
528 instances are equal iff they have the same type and storage. */
529 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
530
531 /* Compare two dynamic_prop objects for inequality. */
532 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
533 {
534 return !(l == r);
535 }
536
537 /* * Define a type's dynamic property node kind. */
538 enum dynamic_prop_node_kind
539 {
540 /* A property providing a type's data location.
541 Evaluating this field yields to the location of an object's data. */
542 DYN_PROP_DATA_LOCATION,
543
544 /* A property representing DW_AT_allocated. The presence of this attribute
545 indicates that the object of the type can be allocated/deallocated. */
546 DYN_PROP_ALLOCATED,
547
548 /* A property representing DW_AT_associated. The presence of this attribute
549 indicated that the object of the type can be associated. */
550 DYN_PROP_ASSOCIATED,
551
552 /* A property providing an array's byte stride. */
553 DYN_PROP_BYTE_STRIDE,
554
555 /* A property holding variant parts. */
556 DYN_PROP_VARIANT_PARTS,
557
558 /* A property holding the size of the type. */
559 DYN_PROP_BYTE_SIZE,
560 };
561
562 /* * List for dynamic type attributes. */
563 struct dynamic_prop_list
564 {
565 /* The kind of dynamic prop in this node. */
566 enum dynamic_prop_node_kind prop_kind;
567
568 /* The dynamic property itself. */
569 struct dynamic_prop prop;
570
571 /* A pointer to the next dynamic property. */
572 struct dynamic_prop_list *next;
573 };
574
575 /* * Determine which field of the union main_type.fields[x].loc is
576 used. */
577
578 enum field_loc_kind
579 {
580 FIELD_LOC_KIND_BITPOS, /**< bitpos */
581 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
582 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
583 FIELD_LOC_KIND_PHYSNAME, /**< physname */
584 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
585 };
586
587 /* * A discriminant to determine which field in the
588 main_type.type_specific union is being used, if any.
589
590 For types such as TYPE_CODE_FLT, the use of this
591 discriminant is really redundant, as we know from the type code
592 which field is going to be used. As such, it would be possible to
593 reduce the size of this enum in order to save a bit or two for
594 other fields of struct main_type. But, since we still have extra
595 room , and for the sake of clarity and consistency, we treat all fields
596 of the union the same way. */
597
598 enum type_specific_kind
599 {
600 TYPE_SPECIFIC_NONE,
601 TYPE_SPECIFIC_CPLUS_STUFF,
602 TYPE_SPECIFIC_GNAT_STUFF,
603 TYPE_SPECIFIC_FLOATFORMAT,
604 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
605 TYPE_SPECIFIC_FUNC,
606 TYPE_SPECIFIC_SELF_TYPE,
607 TYPE_SPECIFIC_INT,
608 TYPE_SPECIFIC_FIXED_POINT,
609 };
610
611 union type_owner
612 {
613 struct objfile *objfile;
614 struct gdbarch *gdbarch;
615 };
616
617 union field_location
618 {
619 /* * Position of this field, counting in bits from start of
620 containing structure. For big-endian targets, it is the bit
621 offset to the MSB. For little-endian targets, it is the bit
622 offset to the LSB. */
623
624 LONGEST bitpos;
625
626 /* * Enum value. */
627 LONGEST enumval;
628
629 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
630 physaddr is the location (in the target) of the static
631 field. Otherwise, physname is the mangled label of the
632 static field. */
633
634 CORE_ADDR physaddr;
635 const char *physname;
636
637 /* * The field location can be computed by evaluating the
638 following DWARF block. Its DATA is allocated on
639 objfile_obstack - no CU load is needed to access it. */
640
641 struct dwarf2_locexpr_baton *dwarf_block;
642 };
643
644 struct field
645 {
646 struct type *type () const
647 {
648 return this->m_type;
649 }
650
651 void set_type (struct type *type)
652 {
653 this->m_type = type;
654 }
655
656 union field_location loc;
657
658 /* * For a function or member type, this is 1 if the argument is
659 marked artificial. Artificial arguments should not be shown
660 to the user. For TYPE_CODE_RANGE it is set if the specific
661 bound is not defined. */
662
663 unsigned int artificial : 1;
664
665 /* * Discriminant for union field_location. */
666
667 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
668
669 /* * Size of this field, in bits, or zero if not packed.
670 If non-zero in an array type, indicates the element size in
671 bits (used only in Ada at the moment).
672 For an unpacked field, the field's type's length
673 says how many bytes the field occupies. */
674
675 unsigned int bitsize : 28;
676
677 /* * In a struct or union type, type of this field.
678 - In a function or member type, type of this argument.
679 - In an array type, the domain-type of the array. */
680
681 struct type *m_type;
682
683 /* * Name of field, value or argument.
684 NULL for range bounds, array domains, and member function
685 arguments. */
686
687 const char *name;
688 };
689
690 struct range_bounds
691 {
692 ULONGEST bit_stride () const
693 {
694 if (this->flag_is_byte_stride)
695 return this->stride.const_val () * 8;
696 else
697 return this->stride.const_val ();
698 }
699
700 /* * Low bound of range. */
701
702 struct dynamic_prop low;
703
704 /* * High bound of range. */
705
706 struct dynamic_prop high;
707
708 /* The stride value for this range. This can be stored in bits or bytes
709 based on the value of BYTE_STRIDE_P. It is optional to have a stride
710 value, if this range has no stride value defined then this will be set
711 to the constant zero. */
712
713 struct dynamic_prop stride;
714
715 /* * The bias. Sometimes a range value is biased before storage.
716 The bias is added to the stored bits to form the true value. */
717
718 LONGEST bias;
719
720 /* True if HIGH range bound contains the number of elements in the
721 subrange. This affects how the final high bound is computed. */
722
723 unsigned int flag_upper_bound_is_count : 1;
724
725 /* True if LOW or/and HIGH are resolved into a static bound from
726 a dynamic one. */
727
728 unsigned int flag_bound_evaluated : 1;
729
730 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
731
732 unsigned int flag_is_byte_stride : 1;
733 };
734
735 /* Compare two range_bounds objects for equality. Simply does
736 memberwise comparison. */
737 extern bool operator== (const range_bounds &l, const range_bounds &r);
738
739 /* Compare two range_bounds objects for inequality. */
740 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
741 {
742 return !(l == r);
743 }
744
745 union type_specific
746 {
747 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
748 point to cplus_struct_default, a default static instance of a
749 struct cplus_struct_type. */
750
751 struct cplus_struct_type *cplus_stuff;
752
753 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
754 provides additional information. */
755
756 struct gnat_aux_type *gnat_stuff;
757
758 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
759 floatformat object that describes the floating-point value
760 that resides within the type. */
761
762 const struct floatformat *floatformat;
763
764 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
765
766 struct func_type *func_stuff;
767
768 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
769 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
770 is a member of. */
771
772 struct type *self_type;
773
774 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
775 values of that type. */
776 struct fixed_point_type_info *fixed_point_info;
777
778 /* * An integer-like scalar type may be stored in just part of its
779 enclosing storage bytes. This structure describes this
780 situation. */
781 struct
782 {
783 /* * The bit size of the integer. This can be 0. For integers
784 that fill their storage (the ordinary case), this field holds
785 the byte size times 8. */
786 unsigned short bit_size;
787 /* * The bit offset of the integer. This is ordinarily 0, and can
788 only be non-zero if the bit size is less than the storage
789 size. */
790 unsigned short bit_offset;
791 } int_stuff;
792 };
793
794 /* * Main structure representing a type in GDB.
795
796 This structure is space-critical. Its layout has been tweaked to
797 reduce the space used. */
798
799 struct main_type
800 {
801 /* * Code for kind of type. */
802
803 ENUM_BITFIELD(type_code) code : 8;
804
805 /* * Flags about this type. These fields appear at this location
806 because they packs nicely here. See the TYPE_* macros for
807 documentation about these fields. */
808
809 unsigned int m_flag_unsigned : 1;
810 unsigned int m_flag_nosign : 1;
811 unsigned int m_flag_stub : 1;
812 unsigned int m_flag_target_stub : 1;
813 unsigned int m_flag_prototyped : 1;
814 unsigned int m_flag_varargs : 1;
815 unsigned int m_flag_vector : 1;
816 unsigned int m_flag_stub_supported : 1;
817 unsigned int m_flag_gnu_ifunc : 1;
818 unsigned int m_flag_fixed_instance : 1;
819 unsigned int flag_objfile_owned : 1;
820 unsigned int m_flag_endianity_not_default : 1;
821
822 /* * True if this type was declared with "class" rather than
823 "struct". */
824
825 unsigned int flag_declared_class : 1;
826
827 /* * True if this is an enum type with disjoint values. This
828 affects how the enum is printed. */
829
830 unsigned int flag_flag_enum : 1;
831
832 /* * A discriminant telling us which field of the type_specific
833 union is being used for this type, if any. */
834
835 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
836
837 /* * Number of fields described for this type. This field appears
838 at this location because it packs nicely here. */
839
840 short nfields;
841
842 /* * Name of this type, or NULL if none.
843
844 This is used for printing only. For looking up a name, look for
845 a symbol in the VAR_DOMAIN. This is generally allocated in the
846 objfile's obstack. However coffread.c uses malloc. */
847
848 const char *name;
849
850 /* * Every type is now associated with a particular objfile, and the
851 type is allocated on the objfile_obstack for that objfile. One
852 problem however, is that there are times when gdb allocates new
853 types while it is not in the process of reading symbols from a
854 particular objfile. Fortunately, these happen when the type
855 being created is a derived type of an existing type, such as in
856 lookup_pointer_type(). So we can just allocate the new type
857 using the same objfile as the existing type, but to do this we
858 need a backpointer to the objfile from the existing type. Yes
859 this is somewhat ugly, but without major overhaul of the internal
860 type system, it can't be avoided for now. */
861
862 union type_owner owner;
863
864 /* * For a pointer type, describes the type of object pointed to.
865 - For an array type, describes the type of the elements.
866 - For a function or method type, describes the type of the return value.
867 - For a range type, describes the type of the full range.
868 - For a complex type, describes the type of each coordinate.
869 - For a special record or union type encoding a dynamic-sized type
870 in GNAT, a memoized pointer to a corresponding static version of
871 the type.
872 - Unused otherwise. */
873
874 struct type *target_type;
875
876 /* * For structure and union types, a description of each field.
877 For set and pascal array types, there is one "field",
878 whose type is the domain type of the set or array.
879 For range types, there are two "fields",
880 the minimum and maximum values (both inclusive).
881 For enum types, each possible value is described by one "field".
882 For a function or method type, a "field" for each parameter.
883 For C++ classes, there is one field for each base class (if it is
884 a derived class) plus one field for each class data member. Member
885 functions are recorded elsewhere.
886
887 Using a pointer to a separate array of fields
888 allows all types to have the same size, which is useful
889 because we can allocate the space for a type before
890 we know what to put in it. */
891
892 union
893 {
894 struct field *fields;
895
896 /* * Union member used for range types. */
897
898 struct range_bounds *bounds;
899
900 /* If this is a scalar type, then this is its corresponding
901 complex type. */
902 struct type *complex_type;
903
904 } flds_bnds;
905
906 /* * Slot to point to additional language-specific fields of this
907 type. */
908
909 union type_specific type_specific;
910
911 /* * Contains all dynamic type properties. */
912 struct dynamic_prop_list *dyn_prop_list;
913 };
914
915 /* * Number of bits allocated for alignment. */
916
917 #define TYPE_ALIGN_BITS 8
918
919 /* * A ``struct type'' describes a particular instance of a type, with
920 some particular qualification. */
921
922 struct type
923 {
924 /* Get the type code of this type.
925
926 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
927 type, you need to do `check_typedef (type)->code ()`. */
928 type_code code () const
929 {
930 return this->main_type->code;
931 }
932
933 /* Set the type code of this type. */
934 void set_code (type_code code)
935 {
936 this->main_type->code = code;
937 }
938
939 /* Get the name of this type. */
940 const char *name () const
941 {
942 return this->main_type->name;
943 }
944
945 /* Set the name of this type. */
946 void set_name (const char *name)
947 {
948 this->main_type->name = name;
949 }
950
951 /* Get the number of fields of this type. */
952 int num_fields () const
953 {
954 return this->main_type->nfields;
955 }
956
957 /* Set the number of fields of this type. */
958 void set_num_fields (int num_fields)
959 {
960 this->main_type->nfields = num_fields;
961 }
962
963 /* Get the fields array of this type. */
964 struct field *fields () const
965 {
966 return this->main_type->flds_bnds.fields;
967 }
968
969 /* Get the field at index IDX. */
970 struct field &field (int idx) const
971 {
972 return this->fields ()[idx];
973 }
974
975 /* Set the fields array of this type. */
976 void set_fields (struct field *fields)
977 {
978 this->main_type->flds_bnds.fields = fields;
979 }
980
981 type *index_type () const
982 {
983 return this->field (0).type ();
984 }
985
986 void set_index_type (type *index_type)
987 {
988 this->field (0).set_type (index_type);
989 }
990
991 /* Return the instance flags converted to the correct type. */
992 const type_instance_flags instance_flags () const
993 {
994 return (enum type_instance_flag_value) this->m_instance_flags;
995 }
996
997 /* Set the instance flags. */
998 void set_instance_flags (type_instance_flags flags)
999 {
1000 this->m_instance_flags = flags;
1001 }
1002
1003 /* Get the bounds bounds of this type. The type must be a range type. */
1004 range_bounds *bounds () const
1005 {
1006 switch (this->code ())
1007 {
1008 case TYPE_CODE_RANGE:
1009 return this->main_type->flds_bnds.bounds;
1010
1011 case TYPE_CODE_ARRAY:
1012 case TYPE_CODE_STRING:
1013 return this->index_type ()->bounds ();
1014
1015 default:
1016 gdb_assert_not_reached
1017 ("type::bounds called on type with invalid code");
1018 }
1019 }
1020
1021 /* Set the bounds of this type. The type must be a range type. */
1022 void set_bounds (range_bounds *bounds)
1023 {
1024 gdb_assert (this->code () == TYPE_CODE_RANGE);
1025
1026 this->main_type->flds_bnds.bounds = bounds;
1027 }
1028
1029 ULONGEST bit_stride () const
1030 {
1031 return this->bounds ()->bit_stride ();
1032 }
1033
1034 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1035 the type is signed (unless TYPE_NOSIGN is set). */
1036
1037 bool is_unsigned () const
1038 {
1039 return this->main_type->m_flag_unsigned;
1040 }
1041
1042 void set_is_unsigned (bool is_unsigned)
1043 {
1044 this->main_type->m_flag_unsigned = is_unsigned;
1045 }
1046
1047 /* No sign for this type. In C++, "char", "signed char", and
1048 "unsigned char" are distinct types; so we need an extra flag to
1049 indicate the absence of a sign! */
1050
1051 bool has_no_signedness () const
1052 {
1053 return this->main_type->m_flag_nosign;
1054 }
1055
1056 void set_has_no_signedness (bool has_no_signedness)
1057 {
1058 this->main_type->m_flag_nosign = has_no_signedness;
1059 }
1060
1061 /* This appears in a type's flags word if it is a stub type (e.g.,
1062 if someone referenced a type that wasn't defined in a source file
1063 via (struct sir_not_appearing_in_this_film *)). */
1064
1065 bool is_stub () const
1066 {
1067 return this->main_type->m_flag_stub;
1068 }
1069
1070 void set_is_stub (bool is_stub)
1071 {
1072 this->main_type->m_flag_stub = is_stub;
1073 }
1074
1075 /* The target type of this type is a stub type, and this type needs
1076 to be updated if it gets un-stubbed in check_typedef. Used for
1077 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1078 based on the TYPE_LENGTH of the target type. Also, set for
1079 TYPE_CODE_TYPEDEF. */
1080
1081 bool target_is_stub () const
1082 {
1083 return this->main_type->m_flag_target_stub;
1084 }
1085
1086 void set_target_is_stub (bool target_is_stub)
1087 {
1088 this->main_type->m_flag_target_stub = target_is_stub;
1089 }
1090
1091 /* This is a function type which appears to have a prototype. We
1092 need this for function calls in order to tell us if it's necessary
1093 to coerce the args, or to just do the standard conversions. This
1094 is used with a short field. */
1095
1096 bool is_prototyped () const
1097 {
1098 return this->main_type->m_flag_prototyped;
1099 }
1100
1101 void set_is_prototyped (bool is_prototyped)
1102 {
1103 this->main_type->m_flag_prototyped = is_prototyped;
1104 }
1105
1106 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1107 to functions. */
1108
1109 bool has_varargs () const
1110 {
1111 return this->main_type->m_flag_varargs;
1112 }
1113
1114 void set_has_varargs (bool has_varargs)
1115 {
1116 this->main_type->m_flag_varargs = has_varargs;
1117 }
1118
1119 /* Identify a vector type. Gcc is handling this by adding an extra
1120 attribute to the array type. We slurp that in as a new flag of a
1121 type. This is used only in dwarf2read.c. */
1122
1123 bool is_vector () const
1124 {
1125 return this->main_type->m_flag_vector;
1126 }
1127
1128 void set_is_vector (bool is_vector)
1129 {
1130 this->main_type->m_flag_vector = is_vector;
1131 }
1132
1133 /* This debug target supports TYPE_STUB(t). In the unsupported case
1134 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1135 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1136 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1137
1138 bool stub_is_supported () const
1139 {
1140 return this->main_type->m_flag_stub_supported;
1141 }
1142
1143 void set_stub_is_supported (bool stub_is_supported)
1144 {
1145 this->main_type->m_flag_stub_supported = stub_is_supported;
1146 }
1147
1148 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1149 address is returned by this function call. TYPE_TARGET_TYPE
1150 determines the final returned function type to be presented to
1151 user. */
1152
1153 bool is_gnu_ifunc () const
1154 {
1155 return this->main_type->m_flag_gnu_ifunc;
1156 }
1157
1158 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1159 {
1160 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1161 }
1162
1163 /* The debugging formats (especially STABS) do not contain enough
1164 information to represent all Ada types---especially those whose
1165 size depends on dynamic quantities. Therefore, the GNAT Ada
1166 compiler includes extra information in the form of additional type
1167 definitions connected by naming conventions. This flag indicates
1168 that the type is an ordinary (unencoded) GDB type that has been
1169 created from the necessary run-time information, and does not need
1170 further interpretation. Optionally marks ordinary, fixed-size GDB
1171 type. */
1172
1173 bool is_fixed_instance () const
1174 {
1175 return this->main_type->m_flag_fixed_instance;
1176 }
1177
1178 void set_is_fixed_instance (bool is_fixed_instance)
1179 {
1180 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1181 }
1182
1183 /* A compiler may supply dwarf instrumentation that indicates the desired
1184 endian interpretation of the variable differs from the native endian
1185 representation. */
1186
1187 bool endianity_is_not_default () const
1188 {
1189 return this->main_type->m_flag_endianity_not_default;
1190 }
1191
1192 void set_endianity_is_not_default (bool endianity_is_not_default)
1193 {
1194 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1195 }
1196
1197 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1198 to this type's fixed_point_info. */
1199
1200 struct fixed_point_type_info &fixed_point_info () const
1201 {
1202 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1203 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1204
1205 return *this->main_type->type_specific.fixed_point_info;
1206 }
1207
1208 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1209 fixed_point_info to INFO. */
1210
1211 void set_fixed_point_info (struct fixed_point_type_info *info) const
1212 {
1213 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1214
1215 this->main_type->type_specific.fixed_point_info = info;
1216 }
1217
1218 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1219
1220 In other words, this returns the type after having peeled all
1221 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1222 The TYPE_CODE of the type returned is guaranteed to be
1223 a TYPE_CODE_FIXED_POINT. */
1224
1225 struct type *fixed_point_type_base_type ();
1226
1227 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1228 factor. */
1229
1230 const gdb_mpq &fixed_point_scaling_factor ();
1231
1232 /* * Return the dynamic property of the requested KIND from this type's
1233 list of dynamic properties. */
1234 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1235
1236 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1237 property to this type.
1238
1239 This function assumes that this type is objfile-owned. */
1240 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1241
1242 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1243 void remove_dyn_prop (dynamic_prop_node_kind kind);
1244
1245 /* * Return true if this is an integer type whose logical (bit) size
1246 differs from its storage size; false otherwise. Always return
1247 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1248 bool bit_size_differs_p () const
1249 {
1250 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1251 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1252 }
1253
1254 /* * Return the logical (bit) size for this integer type. Only
1255 valid for integer (TYPE_SPECIFIC_INT) types. */
1256 unsigned short bit_size () const
1257 {
1258 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1259 return main_type->type_specific.int_stuff.bit_size;
1260 }
1261
1262 /* * Return the bit offset for this integer type. Only valid for
1263 integer (TYPE_SPECIFIC_INT) types. */
1264 unsigned short bit_offset () const
1265 {
1266 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1267 return main_type->type_specific.int_stuff.bit_offset;
1268 }
1269
1270 /* * Type that is a pointer to this type.
1271 NULL if no such pointer-to type is known yet.
1272 The debugger may add the address of such a type
1273 if it has to construct one later. */
1274
1275 struct type *pointer_type;
1276
1277 /* * C++: also need a reference type. */
1278
1279 struct type *reference_type;
1280
1281 /* * A C++ rvalue reference type added in C++11. */
1282
1283 struct type *rvalue_reference_type;
1284
1285 /* * Variant chain. This points to a type that differs from this
1286 one only in qualifiers and length. Currently, the possible
1287 qualifiers are const, volatile, code-space, data-space, and
1288 address class. The length may differ only when one of the
1289 address class flags are set. The variants are linked in a
1290 circular ring and share MAIN_TYPE. */
1291
1292 struct type *chain;
1293
1294 /* * The alignment for this type. Zero means that the alignment was
1295 not specified in the debug info. Note that this is stored in a
1296 funny way: as the log base 2 (plus 1) of the alignment; so a
1297 value of 1 means the alignment is 1, and a value of 9 means the
1298 alignment is 256. */
1299
1300 unsigned align_log2 : TYPE_ALIGN_BITS;
1301
1302 /* * Flags specific to this instance of the type, indicating where
1303 on the ring we are.
1304
1305 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1306 binary or-ed with the target type, with a special case for
1307 address class and space class. For example if this typedef does
1308 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1309 instance flags are completely inherited from the target type. No
1310 qualifiers can be cleared by the typedef. See also
1311 check_typedef. */
1312 unsigned m_instance_flags : 9;
1313
1314 /* * Length of storage for a value of this type. The value is the
1315 expression in host bytes of what sizeof(type) would return. This
1316 size includes padding. For example, an i386 extended-precision
1317 floating point value really only occupies ten bytes, but most
1318 ABI's declare its size to be 12 bytes, to preserve alignment.
1319 A `struct type' representing such a floating-point type would
1320 have a `length' value of 12, even though the last two bytes are
1321 unused.
1322
1323 Since this field is expressed in host bytes, its value is appropriate
1324 to pass to memcpy and such (it is assumed that GDB itself always runs
1325 on an 8-bits addressable architecture). However, when using it for
1326 target address arithmetic (e.g. adding it to a target address), the
1327 type_length_units function should be used in order to get the length
1328 expressed in target addressable memory units. */
1329
1330 ULONGEST length;
1331
1332 /* * Core type, shared by a group of qualified types. */
1333
1334 struct main_type *main_type;
1335 };
1336
1337 struct fn_fieldlist
1338 {
1339
1340 /* * The overloaded name.
1341 This is generally allocated in the objfile's obstack.
1342 However stabsread.c sometimes uses malloc. */
1343
1344 const char *name;
1345
1346 /* * The number of methods with this name. */
1347
1348 int length;
1349
1350 /* * The list of methods. */
1351
1352 struct fn_field *fn_fields;
1353 };
1354
1355
1356
1357 struct fn_field
1358 {
1359 /* * If is_stub is clear, this is the mangled name which we can look
1360 up to find the address of the method (FIXME: it would be cleaner
1361 to have a pointer to the struct symbol here instead).
1362
1363 If is_stub is set, this is the portion of the mangled name which
1364 specifies the arguments. For example, "ii", if there are two int
1365 arguments, or "" if there are no arguments. See gdb_mangle_name
1366 for the conversion from this format to the one used if is_stub is
1367 clear. */
1368
1369 const char *physname;
1370
1371 /* * The function type for the method.
1372
1373 (This comment used to say "The return value of the method", but
1374 that's wrong. The function type is expected here, i.e. something
1375 with TYPE_CODE_METHOD, and *not* the return-value type). */
1376
1377 struct type *type;
1378
1379 /* * For virtual functions. First baseclass that defines this
1380 virtual function. */
1381
1382 struct type *fcontext;
1383
1384 /* Attributes. */
1385
1386 unsigned int is_const:1;
1387 unsigned int is_volatile:1;
1388 unsigned int is_private:1;
1389 unsigned int is_protected:1;
1390 unsigned int is_artificial:1;
1391
1392 /* * A stub method only has some fields valid (but they are enough
1393 to reconstruct the rest of the fields). */
1394
1395 unsigned int is_stub:1;
1396
1397 /* * True if this function is a constructor, false otherwise. */
1398
1399 unsigned int is_constructor : 1;
1400
1401 /* * True if this function is deleted, false otherwise. */
1402
1403 unsigned int is_deleted : 1;
1404
1405 /* * DW_AT_defaulted attribute for this function. The value is one
1406 of the DW_DEFAULTED constants. */
1407
1408 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1409
1410 /* * Unused. */
1411
1412 unsigned int dummy:6;
1413
1414 /* * Index into that baseclass's virtual function table, minus 2;
1415 else if static: VOFFSET_STATIC; else: 0. */
1416
1417 unsigned int voffset:16;
1418
1419 #define VOFFSET_STATIC 1
1420
1421 };
1422
1423 struct decl_field
1424 {
1425 /* * Unqualified name to be prefixed by owning class qualified
1426 name. */
1427
1428 const char *name;
1429
1430 /* * Type this typedef named NAME represents. */
1431
1432 struct type *type;
1433
1434 /* * True if this field was declared protected, false otherwise. */
1435 unsigned int is_protected : 1;
1436
1437 /* * True if this field was declared private, false otherwise. */
1438 unsigned int is_private : 1;
1439 };
1440
1441 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1442 TYPE_CODE_UNION nodes. */
1443
1444 struct cplus_struct_type
1445 {
1446 /* * Number of base classes this type derives from. The
1447 baseclasses are stored in the first N_BASECLASSES fields
1448 (i.e. the `fields' field of the struct type). The only fields
1449 of struct field that are used are: type, name, loc.bitpos. */
1450
1451 short n_baseclasses;
1452
1453 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1454 All access to this field must be through TYPE_VPTR_FIELDNO as one
1455 thing it does is check whether the field has been initialized.
1456 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1457 which for portability reasons doesn't initialize this field.
1458 TYPE_VPTR_FIELDNO returns -1 for this case.
1459
1460 If -1, we were unable to find the virtual function table pointer in
1461 initial symbol reading, and get_vptr_fieldno should be called to find
1462 it if possible. get_vptr_fieldno will update this field if possible.
1463 Otherwise the value is left at -1.
1464
1465 Unused if this type does not have virtual functions. */
1466
1467 short vptr_fieldno;
1468
1469 /* * Number of methods with unique names. All overloaded methods
1470 with the same name count only once. */
1471
1472 short nfn_fields;
1473
1474 /* * Number of template arguments. */
1475
1476 unsigned short n_template_arguments;
1477
1478 /* * One if this struct is a dynamic class, as defined by the
1479 Itanium C++ ABI: if it requires a virtual table pointer,
1480 because it or any of its base classes have one or more virtual
1481 member functions or virtual base classes. Minus one if not
1482 dynamic. Zero if not yet computed. */
1483
1484 int is_dynamic : 2;
1485
1486 /* * The calling convention for this type, fetched from the
1487 DW_AT_calling_convention attribute. The value is one of the
1488 DW_CC constants. */
1489
1490 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1491
1492 /* * The base class which defined the virtual function table pointer. */
1493
1494 struct type *vptr_basetype;
1495
1496 /* * For derived classes, the number of base classes is given by
1497 n_baseclasses and virtual_field_bits is a bit vector containing
1498 one bit per base class. If the base class is virtual, the
1499 corresponding bit will be set.
1500 I.E, given:
1501
1502 class A{};
1503 class B{};
1504 class C : public B, public virtual A {};
1505
1506 B is a baseclass of C; A is a virtual baseclass for C.
1507 This is a C++ 2.0 language feature. */
1508
1509 B_TYPE *virtual_field_bits;
1510
1511 /* * For classes with private fields, the number of fields is
1512 given by nfields and private_field_bits is a bit vector
1513 containing one bit per field.
1514
1515 If the field is private, the corresponding bit will be set. */
1516
1517 B_TYPE *private_field_bits;
1518
1519 /* * For classes with protected fields, the number of fields is
1520 given by nfields and protected_field_bits is a bit vector
1521 containing one bit per field.
1522
1523 If the field is private, the corresponding bit will be set. */
1524
1525 B_TYPE *protected_field_bits;
1526
1527 /* * For classes with fields to be ignored, either this is
1528 optimized out or this field has length 0. */
1529
1530 B_TYPE *ignore_field_bits;
1531
1532 /* * For classes, structures, and unions, a description of each
1533 field, which consists of an overloaded name, followed by the
1534 types of arguments that the method expects, and then the name
1535 after it has been renamed to make it distinct.
1536
1537 fn_fieldlists points to an array of nfn_fields of these. */
1538
1539 struct fn_fieldlist *fn_fieldlists;
1540
1541 /* * typedefs defined inside this class. typedef_field points to
1542 an array of typedef_field_count elements. */
1543
1544 struct decl_field *typedef_field;
1545
1546 unsigned typedef_field_count;
1547
1548 /* * The nested types defined by this type. nested_types points to
1549 an array of nested_types_count elements. */
1550
1551 struct decl_field *nested_types;
1552
1553 unsigned nested_types_count;
1554
1555 /* * The template arguments. This is an array with
1556 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1557 classes. */
1558
1559 struct symbol **template_arguments;
1560 };
1561
1562 /* * Struct used to store conversion rankings. */
1563
1564 struct rank
1565 {
1566 short rank;
1567
1568 /* * When two conversions are of the same type and therefore have
1569 the same rank, subrank is used to differentiate the two.
1570
1571 Eg: Two derived-class-pointer to base-class-pointer conversions
1572 would both have base pointer conversion rank, but the
1573 conversion with the shorter distance to the ancestor is
1574 preferable. 'subrank' would be used to reflect that. */
1575
1576 short subrank;
1577 };
1578
1579 /* * Used for ranking a function for overload resolution. */
1580
1581 typedef std::vector<rank> badness_vector;
1582
1583 /* * GNAT Ada-specific information for various Ada types. */
1584
1585 struct gnat_aux_type
1586 {
1587 /* * Parallel type used to encode information about dynamic types
1588 used in Ada (such as variant records, variable-size array,
1589 etc). */
1590 struct type* descriptive_type;
1591 };
1592
1593 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1594
1595 struct func_type
1596 {
1597 /* * The calling convention for targets supporting multiple ABIs.
1598 Right now this is only fetched from the Dwarf-2
1599 DW_AT_calling_convention attribute. The value is one of the
1600 DW_CC constants. */
1601
1602 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1603
1604 /* * Whether this function normally returns to its caller. It is
1605 set from the DW_AT_noreturn attribute if set on the
1606 DW_TAG_subprogram. */
1607
1608 unsigned int is_noreturn : 1;
1609
1610 /* * Only those DW_TAG_call_site's in this function that have
1611 DW_AT_call_tail_call set are linked in this list. Function
1612 without its tail call list complete
1613 (DW_AT_call_all_tail_calls or its superset
1614 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1615 DW_TAG_call_site's exist in such function. */
1616
1617 struct call_site *tail_call_list;
1618
1619 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1620 contains the method. */
1621
1622 struct type *self_type;
1623 };
1624
1625 /* struct call_site_parameter can be referenced in callees by several ways. */
1626
1627 enum call_site_parameter_kind
1628 {
1629 /* * Use field call_site_parameter.u.dwarf_reg. */
1630 CALL_SITE_PARAMETER_DWARF_REG,
1631
1632 /* * Use field call_site_parameter.u.fb_offset. */
1633 CALL_SITE_PARAMETER_FB_OFFSET,
1634
1635 /* * Use field call_site_parameter.u.param_offset. */
1636 CALL_SITE_PARAMETER_PARAM_OFFSET
1637 };
1638
1639 struct call_site_target
1640 {
1641 union field_location loc;
1642
1643 /* * Discriminant for union field_location. */
1644
1645 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1646 };
1647
1648 union call_site_parameter_u
1649 {
1650 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1651 as DWARF register number, for register passed
1652 parameters. */
1653
1654 int dwarf_reg;
1655
1656 /* * Offset from the callee's frame base, for stack passed
1657 parameters. This equals offset from the caller's stack
1658 pointer. */
1659
1660 CORE_ADDR fb_offset;
1661
1662 /* * Offset relative to the start of this PER_CU to
1663 DW_TAG_formal_parameter which is referenced by both
1664 caller and the callee. */
1665
1666 cu_offset param_cu_off;
1667 };
1668
1669 struct call_site_parameter
1670 {
1671 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1672
1673 union call_site_parameter_u u;
1674
1675 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1676
1677 const gdb_byte *value;
1678 size_t value_size;
1679
1680 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1681 It may be NULL if not provided by DWARF. */
1682
1683 const gdb_byte *data_value;
1684 size_t data_value_size;
1685 };
1686
1687 /* * A place where a function gets called from, represented by
1688 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1689
1690 struct call_site
1691 {
1692 /* * Address of the first instruction after this call. It must be
1693 the first field as we overload core_addr_hash and core_addr_eq
1694 for it. */
1695
1696 CORE_ADDR pc;
1697
1698 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1699
1700 struct call_site *tail_call_next;
1701
1702 /* * Describe DW_AT_call_target. Missing attribute uses
1703 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1704
1705 struct call_site_target target;
1706
1707 /* * Size of the PARAMETER array. */
1708
1709 unsigned parameter_count;
1710
1711 /* * CU of the function where the call is located. It gets used
1712 for DWARF blocks execution in the parameter array below. */
1713
1714 dwarf2_per_cu_data *per_cu;
1715
1716 /* objfile of the function where the call is located. */
1717
1718 dwarf2_per_objfile *per_objfile;
1719
1720 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1721
1722 struct call_site_parameter parameter[1];
1723 };
1724
1725 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1726
1727 struct fixed_point_type_info
1728 {
1729 /* The fixed point type's scaling factor. */
1730 gdb_mpq scaling_factor;
1731 };
1732
1733 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1734 static structure. */
1735
1736 extern const struct cplus_struct_type cplus_struct_default;
1737
1738 extern void allocate_cplus_struct_type (struct type *);
1739
1740 #define INIT_CPLUS_SPECIFIC(type) \
1741 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1742 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1743 &cplus_struct_default)
1744
1745 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1746
1747 #define HAVE_CPLUS_STRUCT(type) \
1748 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1749 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1750
1751 #define INIT_NONE_SPECIFIC(type) \
1752 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1753 TYPE_MAIN_TYPE (type)->type_specific = {})
1754
1755 extern const struct gnat_aux_type gnat_aux_default;
1756
1757 extern void allocate_gnat_aux_type (struct type *);
1758
1759 #define INIT_GNAT_SPECIFIC(type) \
1760 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1761 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1762 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1763 /* * A macro that returns non-zero if the type-specific data should be
1764 read as "gnat-stuff". */
1765 #define HAVE_GNAT_AUX_INFO(type) \
1766 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1767
1768 /* * True if TYPE is known to be an Ada type of some kind. */
1769 #define ADA_TYPE_P(type) \
1770 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1771 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1772 && (type)->is_fixed_instance ()))
1773
1774 #define INIT_FUNC_SPECIFIC(type) \
1775 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1776 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1777 TYPE_ZALLOC (type, \
1778 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1779
1780 /* "struct fixed_point_type_info" has a field that has a destructor.
1781 See allocate_fixed_point_type_info to understand how this is
1782 handled. */
1783 #define INIT_FIXED_POINT_SPECIFIC(type) \
1784 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1785 allocate_fixed_point_type_info (type))
1786
1787 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1788 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1789 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1790 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1791 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1792 #define TYPE_CHAIN(thistype) (thistype)->chain
1793 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1794 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1795 so you only have to call check_typedef once. Since allocate_value
1796 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1797 #define TYPE_LENGTH(thistype) (thistype)->length
1798
1799 /* * Return the alignment of the type in target addressable memory
1800 units, or 0 if no alignment was specified. */
1801 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1802
1803 /* * Return the alignment of the type in target addressable memory
1804 units, or 0 if no alignment was specified. */
1805 extern unsigned type_raw_align (struct type *);
1806
1807 /* * Return the alignment of the type in target addressable memory
1808 units. Return 0 if the alignment cannot be determined; but note
1809 that this makes an effort to compute the alignment even it it was
1810 not specified in the debug info. */
1811 extern unsigned type_align (struct type *);
1812
1813 /* * Set the alignment of the type. The alignment must be a power of
1814 2. Returns false if the given value does not fit in the available
1815 space in struct type. */
1816 extern bool set_type_align (struct type *, ULONGEST);
1817
1818 /* Property accessors for the type data location. */
1819 #define TYPE_DATA_LOCATION(thistype) \
1820 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1821 #define TYPE_DATA_LOCATION_BATON(thistype) \
1822 TYPE_DATA_LOCATION (thistype)->data.baton
1823 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1824 (TYPE_DATA_LOCATION (thistype)->const_val ())
1825 #define TYPE_DATA_LOCATION_KIND(thistype) \
1826 (TYPE_DATA_LOCATION (thistype)->kind ())
1827 #define TYPE_DYNAMIC_LENGTH(thistype) \
1828 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1829
1830 /* Property accessors for the type allocated/associated. */
1831 #define TYPE_ALLOCATED_PROP(thistype) \
1832 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1833 #define TYPE_ASSOCIATED_PROP(thistype) \
1834 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1835
1836 /* C++ */
1837
1838 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1839 /* Do not call this, use TYPE_SELF_TYPE. */
1840 extern struct type *internal_type_self_type (struct type *);
1841 extern void set_type_self_type (struct type *, struct type *);
1842
1843 extern int internal_type_vptr_fieldno (struct type *);
1844 extern void set_type_vptr_fieldno (struct type *, int);
1845 extern struct type *internal_type_vptr_basetype (struct type *);
1846 extern void set_type_vptr_basetype (struct type *, struct type *);
1847 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1848 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1849
1850 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1851 #define TYPE_SPECIFIC_FIELD(thistype) \
1852 TYPE_MAIN_TYPE(thistype)->type_specific_field
1853 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1854 where we're trying to print an Ada array using the C language.
1855 In that case, there is no "cplus_stuff", but the C language assumes
1856 that there is. What we do, in that case, is pretend that there is
1857 an implicit one which is the default cplus stuff. */
1858 #define TYPE_CPLUS_SPECIFIC(thistype) \
1859 (!HAVE_CPLUS_STRUCT(thistype) \
1860 ? (struct cplus_struct_type*)&cplus_struct_default \
1861 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1862 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1863 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1864 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1865 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1866 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1867 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1868 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1869 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1870 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1871 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1872 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1873 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1874 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1875 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1876 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1877 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1878
1879 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1880 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1881 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1882
1883 #define FIELD_NAME(thisfld) ((thisfld).name)
1884 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1885 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1886 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1887 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1888 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1889 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1890 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1891 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1892 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1893 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1894 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1895 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1896 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1897 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1898 #define SET_FIELD_PHYSNAME(thisfld, name) \
1899 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1900 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1901 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1902 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1903 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1904 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1905 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1906 FIELD_DWARF_BLOCK (thisfld) = (addr))
1907 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1908 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1909
1910 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1911 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1912 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1913 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1914 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1915 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1916 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1917 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1918 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1919 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1920
1921 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1922 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1923 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1924 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1925 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1926 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1927 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1928 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1929 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1930 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1931 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1932 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1933 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1934 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1935 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1936 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1937 #define TYPE_FIELD_PRIVATE(thistype, n) \
1938 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1939 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1940 #define TYPE_FIELD_PROTECTED(thistype, n) \
1941 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1942 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1943 #define TYPE_FIELD_IGNORE(thistype, n) \
1944 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1945 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1946 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1947 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1948 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1949
1950 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1951 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1952 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1953 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1954 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1955
1956 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1957 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1958 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1959 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1960 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1961 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1962
1963 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1964 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1965 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1966 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1967 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1968 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1969 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1970 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1971 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1972 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1973 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1974 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1975 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1976 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1977 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1978 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1979 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1980
1981 /* Accessors for typedefs defined by a class. */
1982 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1983 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1984 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1985 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1986 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1987 TYPE_TYPEDEF_FIELD (thistype, n).name
1988 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1989 TYPE_TYPEDEF_FIELD (thistype, n).type
1990 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1991 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1992 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1993 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1994 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1995 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1996
1997 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1998 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1999 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2000 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2001 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2002 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2003 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2004 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2005 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2006 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2007 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2008 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2009 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2010 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2011
2012 #define TYPE_IS_OPAQUE(thistype) \
2013 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2014 || ((thistype)->code () == TYPE_CODE_UNION)) \
2015 && ((thistype)->num_fields () == 0) \
2016 && (!HAVE_CPLUS_STRUCT (thistype) \
2017 || TYPE_NFN_FIELDS (thistype) == 0) \
2018 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2019
2020 /* * A helper macro that returns the name of a type or "unnamed type"
2021 if the type has no name. */
2022
2023 #define TYPE_SAFE_NAME(type) \
2024 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2025
2026 /* * A helper macro that returns the name of an error type. If the
2027 type has a name, it is used; otherwise, a default is used. */
2028
2029 #define TYPE_ERROR_NAME(type) \
2030 (type->name () ? type->name () : _("<error type>"))
2031
2032 /* Given TYPE, return its floatformat. */
2033 const struct floatformat *floatformat_from_type (const struct type *type);
2034
2035 struct builtin_type
2036 {
2037 /* Integral types. */
2038
2039 /* Implicit size/sign (based on the architecture's ABI). */
2040 struct type *builtin_void;
2041 struct type *builtin_char;
2042 struct type *builtin_short;
2043 struct type *builtin_int;
2044 struct type *builtin_long;
2045 struct type *builtin_signed_char;
2046 struct type *builtin_unsigned_char;
2047 struct type *builtin_unsigned_short;
2048 struct type *builtin_unsigned_int;
2049 struct type *builtin_unsigned_long;
2050 struct type *builtin_bfloat16;
2051 struct type *builtin_half;
2052 struct type *builtin_float;
2053 struct type *builtin_double;
2054 struct type *builtin_long_double;
2055 struct type *builtin_complex;
2056 struct type *builtin_double_complex;
2057 struct type *builtin_string;
2058 struct type *builtin_bool;
2059 struct type *builtin_long_long;
2060 struct type *builtin_unsigned_long_long;
2061 struct type *builtin_decfloat;
2062 struct type *builtin_decdouble;
2063 struct type *builtin_declong;
2064
2065 /* "True" character types.
2066 We use these for the '/c' print format, because c_char is just a
2067 one-byte integral type, which languages less laid back than C
2068 will print as ... well, a one-byte integral type. */
2069 struct type *builtin_true_char;
2070 struct type *builtin_true_unsigned_char;
2071
2072 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2073 is for when an architecture needs to describe a register that has
2074 no size. */
2075 struct type *builtin_int0;
2076 struct type *builtin_int8;
2077 struct type *builtin_uint8;
2078 struct type *builtin_int16;
2079 struct type *builtin_uint16;
2080 struct type *builtin_int24;
2081 struct type *builtin_uint24;
2082 struct type *builtin_int32;
2083 struct type *builtin_uint32;
2084 struct type *builtin_int64;
2085 struct type *builtin_uint64;
2086 struct type *builtin_int128;
2087 struct type *builtin_uint128;
2088
2089 /* Wide character types. */
2090 struct type *builtin_char16;
2091 struct type *builtin_char32;
2092 struct type *builtin_wchar;
2093
2094 /* Pointer types. */
2095
2096 /* * `pointer to data' type. Some target platforms use an implicitly
2097 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2098 struct type *builtin_data_ptr;
2099
2100 /* * `pointer to function (returning void)' type. Harvard
2101 architectures mean that ABI function and code pointers are not
2102 interconvertible. Similarly, since ANSI, C standards have
2103 explicitly said that pointers to functions and pointers to data
2104 are not interconvertible --- that is, you can't cast a function
2105 pointer to void * and back, and expect to get the same value.
2106 However, all function pointer types are interconvertible, so void
2107 (*) () can server as a generic function pointer. */
2108
2109 struct type *builtin_func_ptr;
2110
2111 /* * `function returning pointer to function (returning void)' type.
2112 The final void return type is not significant for it. */
2113
2114 struct type *builtin_func_func;
2115
2116 /* Special-purpose types. */
2117
2118 /* * This type is used to represent a GDB internal function. */
2119
2120 struct type *internal_fn;
2121
2122 /* * This type is used to represent an xmethod. */
2123 struct type *xmethod;
2124 };
2125
2126 /* * Return the type table for the specified architecture. */
2127
2128 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2129
2130 /* * Per-objfile types used by symbol readers. */
2131
2132 struct objfile_type
2133 {
2134 /* Basic types based on the objfile architecture. */
2135 struct type *builtin_void;
2136 struct type *builtin_char;
2137 struct type *builtin_short;
2138 struct type *builtin_int;
2139 struct type *builtin_long;
2140 struct type *builtin_long_long;
2141 struct type *builtin_signed_char;
2142 struct type *builtin_unsigned_char;
2143 struct type *builtin_unsigned_short;
2144 struct type *builtin_unsigned_int;
2145 struct type *builtin_unsigned_long;
2146 struct type *builtin_unsigned_long_long;
2147 struct type *builtin_half;
2148 struct type *builtin_float;
2149 struct type *builtin_double;
2150 struct type *builtin_long_double;
2151
2152 /* * This type is used to represent symbol addresses. */
2153 struct type *builtin_core_addr;
2154
2155 /* * This type represents a type that was unrecognized in symbol
2156 read-in. */
2157 struct type *builtin_error;
2158
2159 /* * Types used for symbols with no debug information. */
2160 struct type *nodebug_text_symbol;
2161 struct type *nodebug_text_gnu_ifunc_symbol;
2162 struct type *nodebug_got_plt_symbol;
2163 struct type *nodebug_data_symbol;
2164 struct type *nodebug_unknown_symbol;
2165 struct type *nodebug_tls_symbol;
2166 };
2167
2168 /* * Return the type table for the specified objfile. */
2169
2170 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2171
2172 /* Explicit floating-point formats. See "floatformat.h". */
2173 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2174 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2175 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2176 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2177 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2178 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2179 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2180 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2181 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2182 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2183 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2184 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2185 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2186
2187 /* Allocate space for storing data associated with a particular
2188 type. We ensure that the space is allocated using the same
2189 mechanism that was used to allocate the space for the type
2190 structure itself. I.e. if the type is on an objfile's
2191 objfile_obstack, then the space for data associated with that type
2192 will also be allocated on the objfile_obstack. If the type is
2193 associated with a gdbarch, then the space for data associated with that
2194 type will also be allocated on the gdbarch_obstack.
2195
2196 If a type is not associated with neither an objfile or a gdbarch then
2197 you should not use this macro to allocate space for data, instead you
2198 should call xmalloc directly, and ensure the memory is correctly freed
2199 when it is no longer needed. */
2200
2201 #define TYPE_ALLOC(t,size) \
2202 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2203 ? &TYPE_OBJFILE (t)->objfile_obstack \
2204 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2205 size))
2206
2207
2208 /* See comment on TYPE_ALLOC. */
2209
2210 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2211
2212 /* Use alloc_type to allocate a type owned by an objfile. Use
2213 alloc_type_arch to allocate a type owned by an architecture. Use
2214 alloc_type_copy to allocate a type with the same owner as a
2215 pre-existing template type, no matter whether objfile or
2216 gdbarch. */
2217 extern struct type *alloc_type (struct objfile *);
2218 extern struct type *alloc_type_arch (struct gdbarch *);
2219 extern struct type *alloc_type_copy (const struct type *);
2220
2221 /* * Return the type's architecture. For types owned by an
2222 architecture, that architecture is returned. For types owned by an
2223 objfile, that objfile's architecture is returned. */
2224
2225 extern struct gdbarch *get_type_arch (const struct type *);
2226
2227 /* * This returns the target type (or NULL) of TYPE, also skipping
2228 past typedefs. */
2229
2230 extern struct type *get_target_type (struct type *type);
2231
2232 /* Return the equivalent of TYPE_LENGTH, but in number of target
2233 addressable memory units of the associated gdbarch instead of bytes. */
2234
2235 extern unsigned int type_length_units (struct type *type);
2236
2237 /* * Helper function to construct objfile-owned types. */
2238
2239 extern struct type *init_type (struct objfile *, enum type_code, int,
2240 const char *);
2241 extern struct type *init_integer_type (struct objfile *, int, int,
2242 const char *);
2243 extern struct type *init_character_type (struct objfile *, int, int,
2244 const char *);
2245 extern struct type *init_boolean_type (struct objfile *, int, int,
2246 const char *);
2247 extern struct type *init_float_type (struct objfile *, int, const char *,
2248 const struct floatformat **,
2249 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2250 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2251 extern struct type *init_complex_type (const char *, struct type *);
2252 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2253 struct type *);
2254 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2255 const char *);
2256
2257 /* Helper functions to construct architecture-owned types. */
2258 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2259 const char *);
2260 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2261 const char *);
2262 extern struct type *arch_character_type (struct gdbarch *, int, int,
2263 const char *);
2264 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2265 const char *);
2266 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2267 const struct floatformat **);
2268 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2269 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2270 struct type *);
2271
2272 /* Helper functions to construct a struct or record type. An
2273 initially empty type is created using arch_composite_type().
2274 Fields are then added using append_composite_type_field*(). A union
2275 type has its size set to the largest field. A struct type has each
2276 field packed against the previous. */
2277
2278 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2279 const char *name, enum type_code code);
2280 extern void append_composite_type_field (struct type *t, const char *name,
2281 struct type *field);
2282 extern void append_composite_type_field_aligned (struct type *t,
2283 const char *name,
2284 struct type *field,
2285 int alignment);
2286 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2287 struct type *field);
2288
2289 /* Helper functions to construct a bit flags type. An initially empty
2290 type is created using arch_flag_type(). Flags are then added using
2291 append_flag_type_field() and append_flag_type_flag(). */
2292 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2293 const char *name, int bit);
2294 extern void append_flags_type_field (struct type *type,
2295 int start_bitpos, int nr_bits,
2296 struct type *field_type, const char *name);
2297 extern void append_flags_type_flag (struct type *type, int bitpos,
2298 const char *name);
2299
2300 extern void make_vector_type (struct type *array_type);
2301 extern struct type *init_vector_type (struct type *elt_type, int n);
2302
2303 extern struct type *lookup_reference_type (struct type *, enum type_code);
2304 extern struct type *lookup_lvalue_reference_type (struct type *);
2305 extern struct type *lookup_rvalue_reference_type (struct type *);
2306
2307
2308 extern struct type *make_reference_type (struct type *, struct type **,
2309 enum type_code);
2310
2311 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2312
2313 extern struct type *make_restrict_type (struct type *);
2314
2315 extern struct type *make_unqualified_type (struct type *);
2316
2317 extern struct type *make_atomic_type (struct type *);
2318
2319 extern void replace_type (struct type *, struct type *);
2320
2321 extern type_instance_flags address_space_name_to_type_instance_flags
2322 (struct gdbarch *, const char *);
2323
2324 extern const char *address_space_type_instance_flags_to_name
2325 (struct gdbarch *, type_instance_flags);
2326
2327 extern struct type *make_type_with_address_space
2328 (struct type *type, type_instance_flags space_identifier);
2329
2330 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2331
2332 extern struct type *lookup_methodptr_type (struct type *);
2333
2334 extern void smash_to_method_type (struct type *type, struct type *self_type,
2335 struct type *to_type, struct field *args,
2336 int nargs, int varargs);
2337
2338 extern void smash_to_memberptr_type (struct type *, struct type *,
2339 struct type *);
2340
2341 extern void smash_to_methodptr_type (struct type *, struct type *);
2342
2343 extern struct type *allocate_stub_method (struct type *);
2344
2345 extern const char *type_name_or_error (struct type *type);
2346
2347 struct struct_elt
2348 {
2349 /* The field of the element, or NULL if no element was found. */
2350 struct field *field;
2351
2352 /* The bit offset of the element in the parent structure. */
2353 LONGEST offset;
2354 };
2355
2356 /* Given a type TYPE, lookup the field and offset of the component named
2357 NAME.
2358
2359 TYPE can be either a struct or union, or a pointer or reference to
2360 a struct or union. If it is a pointer or reference, its target
2361 type is automatically used. Thus '.' and '->' are interchangable,
2362 as specified for the definitions of the expression element types
2363 STRUCTOP_STRUCT and STRUCTOP_PTR.
2364
2365 If NOERR is nonzero, the returned structure will have field set to
2366 NULL if there is no component named NAME.
2367
2368 If the component NAME is a field in an anonymous substructure of
2369 TYPE, the returned offset is a "global" offset relative to TYPE
2370 rather than an offset within the substructure. */
2371
2372 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2373
2374 /* Given a type TYPE, lookup the type of the component named NAME.
2375
2376 TYPE can be either a struct or union, or a pointer or reference to
2377 a struct or union. If it is a pointer or reference, its target
2378 type is automatically used. Thus '.' and '->' are interchangable,
2379 as specified for the definitions of the expression element types
2380 STRUCTOP_STRUCT and STRUCTOP_PTR.
2381
2382 If NOERR is nonzero, return NULL if there is no component named
2383 NAME. */
2384
2385 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2386
2387 extern struct type *make_pointer_type (struct type *, struct type **);
2388
2389 extern struct type *lookup_pointer_type (struct type *);
2390
2391 extern struct type *make_function_type (struct type *, struct type **);
2392
2393 extern struct type *lookup_function_type (struct type *);
2394
2395 extern struct type *lookup_function_type_with_arguments (struct type *,
2396 int,
2397 struct type **);
2398
2399 extern struct type *create_static_range_type (struct type *, struct type *,
2400 LONGEST, LONGEST);
2401
2402
2403 extern struct type *create_array_type_with_stride
2404 (struct type *, struct type *, struct type *,
2405 struct dynamic_prop *, unsigned int);
2406
2407 extern struct type *create_range_type (struct type *, struct type *,
2408 const struct dynamic_prop *,
2409 const struct dynamic_prop *,
2410 LONGEST);
2411
2412 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2413 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2414 stride. */
2415
2416 extern struct type * create_range_type_with_stride
2417 (struct type *result_type, struct type *index_type,
2418 const struct dynamic_prop *low_bound,
2419 const struct dynamic_prop *high_bound, LONGEST bias,
2420 const struct dynamic_prop *stride, bool byte_stride_p);
2421
2422 extern struct type *create_array_type (struct type *, struct type *,
2423 struct type *);
2424
2425 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2426
2427 extern struct type *create_string_type (struct type *, struct type *,
2428 struct type *);
2429 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2430
2431 extern struct type *create_set_type (struct type *, struct type *);
2432
2433 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2434 const char *);
2435
2436 extern struct type *lookup_signed_typename (const struct language_defn *,
2437 const char *);
2438
2439 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2440
2441 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2442
2443 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2444 ADDR specifies the location of the variable the type is bound to.
2445 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2446 static properties is returned. */
2447 extern struct type *resolve_dynamic_type
2448 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2449 CORE_ADDR addr);
2450
2451 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2452 extern int is_dynamic_type (struct type *type);
2453
2454 extern struct type *check_typedef (struct type *);
2455
2456 extern void check_stub_method_group (struct type *, int);
2457
2458 extern char *gdb_mangle_name (struct type *, int, int);
2459
2460 extern struct type *lookup_typename (const struct language_defn *,
2461 const char *, const struct block *, int);
2462
2463 extern struct type *lookup_template_type (const char *, struct type *,
2464 const struct block *);
2465
2466 extern int get_vptr_fieldno (struct type *, struct type **);
2467
2468 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2469
2470 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2471 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2472 Save the high bound into HIGH_BOUND if not NULL.
2473
2474 Return true if the operation was successful. Return false otherwise,
2475 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2476
2477 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2478 LONGEST *high_bound);
2479
2480 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2481
2482 extern int class_types_same_p (const struct type *, const struct type *);
2483
2484 extern int is_ancestor (struct type *, struct type *);
2485
2486 extern int is_public_ancestor (struct type *, struct type *);
2487
2488 extern int is_unique_ancestor (struct type *, struct value *);
2489
2490 /* Overload resolution */
2491
2492 /* * Badness if parameter list length doesn't match arg list length. */
2493 extern const struct rank LENGTH_MISMATCH_BADNESS;
2494
2495 /* * Dummy badness value for nonexistent parameter positions. */
2496 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2497 /* * Badness if no conversion among types. */
2498 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2499
2500 /* * Badness of an exact match. */
2501 extern const struct rank EXACT_MATCH_BADNESS;
2502
2503 /* * Badness of integral promotion. */
2504 extern const struct rank INTEGER_PROMOTION_BADNESS;
2505 /* * Badness of floating promotion. */
2506 extern const struct rank FLOAT_PROMOTION_BADNESS;
2507 /* * Badness of converting a derived class pointer
2508 to a base class pointer. */
2509 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2510 /* * Badness of integral conversion. */
2511 extern const struct rank INTEGER_CONVERSION_BADNESS;
2512 /* * Badness of floating conversion. */
2513 extern const struct rank FLOAT_CONVERSION_BADNESS;
2514 /* * Badness of integer<->floating conversions. */
2515 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2516 /* * Badness of conversion of pointer to void pointer. */
2517 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2518 /* * Badness of conversion to boolean. */
2519 extern const struct rank BOOL_CONVERSION_BADNESS;
2520 /* * Badness of converting derived to base class. */
2521 extern const struct rank BASE_CONVERSION_BADNESS;
2522 /* * Badness of converting from non-reference to reference. Subrank
2523 is the type of reference conversion being done. */
2524 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2525 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2526 /* * Conversion to rvalue reference. */
2527 #define REFERENCE_CONVERSION_RVALUE 1
2528 /* * Conversion to const lvalue reference. */
2529 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2530
2531 /* * Badness of converting integer 0 to NULL pointer. */
2532 extern const struct rank NULL_POINTER_CONVERSION;
2533 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2534 being done. */
2535 extern const struct rank CV_CONVERSION_BADNESS;
2536 #define CV_CONVERSION_CONST 1
2537 #define CV_CONVERSION_VOLATILE 2
2538
2539 /* Non-standard conversions allowed by the debugger */
2540
2541 /* * Converting a pointer to an int is usually OK. */
2542 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2543
2544 /* * Badness of converting a (non-zero) integer constant
2545 to a pointer. */
2546 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2547
2548 extern struct rank sum_ranks (struct rank a, struct rank b);
2549 extern int compare_ranks (struct rank a, struct rank b);
2550
2551 extern int compare_badness (const badness_vector &,
2552 const badness_vector &);
2553
2554 extern badness_vector rank_function (gdb::array_view<type *> parms,
2555 gdb::array_view<value *> args);
2556
2557 extern struct rank rank_one_type (struct type *, struct type *,
2558 struct value *);
2559
2560 extern void recursive_dump_type (struct type *, int);
2561
2562 extern int field_is_static (struct field *);
2563
2564 /* printcmd.c */
2565
2566 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2567 const struct value_print_options *,
2568 int, struct ui_file *);
2569
2570 extern int can_dereference (struct type *);
2571
2572 extern int is_integral_type (struct type *);
2573
2574 extern int is_floating_type (struct type *);
2575
2576 extern int is_scalar_type (struct type *type);
2577
2578 extern int is_scalar_type_recursive (struct type *);
2579
2580 extern int class_or_union_p (const struct type *);
2581
2582 extern void maintenance_print_type (const char *, int);
2583
2584 extern htab_up create_copied_types_hash (struct objfile *objfile);
2585
2586 extern struct type *copy_type_recursive (struct objfile *objfile,
2587 struct type *type,
2588 htab_t copied_types);
2589
2590 extern struct type *copy_type (const struct type *type);
2591
2592 extern bool types_equal (struct type *, struct type *);
2593
2594 extern bool types_deeply_equal (struct type *, struct type *);
2595
2596 extern int type_not_allocated (const struct type *type);
2597
2598 extern int type_not_associated (const struct type *type);
2599
2600 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2601 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2602 extern bool is_fixed_point_type (struct type *type);
2603
2604 /* Allocate a fixed-point type info for TYPE. This should only be
2605 called by INIT_FIXED_POINT_SPECIFIC. */
2606 extern void allocate_fixed_point_type_info (struct type *type);
2607
2608 /* * When the type includes explicit byte ordering, return that.
2609 Otherwise, the byte ordering from gdbarch_byte_order for
2610 get_type_arch is returned. */
2611
2612 extern enum bfd_endian type_byte_order (const struct type *type);
2613
2614 /* A flag to enable printing of debugging information of C++
2615 overloading. */
2616
2617 extern unsigned int overload_debug;
2618
2619 #endif /* GDBTYPES_H */
This page took 0.08448 seconds and 4 git commands to generate.