gdb: remove TYPE_INDEX_TYPE macro
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * Unsigned integer type. If this is not set for a TYPE_CODE_INT,
214 the type is signed (unless TYPE_NOSIGN (below) is set). */
215
216 #define TYPE_UNSIGNED(t) (TYPE_MAIN_TYPE (t)->flag_unsigned)
217
218 /* * No sign for this type. In C++, "char", "signed char", and
219 "unsigned char" are distinct types; so we need an extra flag to
220 indicate the absence of a sign! */
221
222 #define TYPE_NOSIGN(t) (TYPE_MAIN_TYPE (t)->flag_nosign)
223
224 /* * A compiler may supply dwarf instrumentation
225 that indicates the desired endian interpretation of the variable
226 differs from the native endian representation. */
227
228 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
229
230 /* * This appears in a type's flags word if it is a stub type (e.g.,
231 if someone referenced a type that wasn't defined in a source file
232 via (struct sir_not_appearing_in_this_film *)). */
233
234 #define TYPE_STUB(t) (TYPE_MAIN_TYPE (t)->flag_stub)
235
236 /* * The target type of this type is a stub type, and this type needs
237 to be updated if it gets un-stubbed in check_typedef. Used for
238 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
239 based on the TYPE_LENGTH of the target type. Also, set for
240 TYPE_CODE_TYPEDEF. */
241
242 #define TYPE_TARGET_STUB(t) (TYPE_MAIN_TYPE (t)->flag_target_stub)
243
244 /* * This is a function type which appears to have a prototype. We
245 need this for function calls in order to tell us if it's necessary
246 to coerce the args, or to just do the standard conversions. This
247 is used with a short field. */
248
249 #define TYPE_PROTOTYPED(t) (TYPE_MAIN_TYPE (t)->flag_prototyped)
250
251 /* * FIXME drow/2002-06-03: Only used for methods, but applies as well
252 to functions. */
253
254 #define TYPE_VARARGS(t) (TYPE_MAIN_TYPE (t)->flag_varargs)
255
256 /* * Identify a vector type. Gcc is handling this by adding an extra
257 attribute to the array type. We slurp that in as a new flag of a
258 type. This is used only in dwarf2read.c. */
259 #define TYPE_VECTOR(t) (TYPE_MAIN_TYPE (t)->flag_vector)
260
261 /* * The debugging formats (especially STABS) do not contain enough
262 information to represent all Ada types---especially those whose
263 size depends on dynamic quantities. Therefore, the GNAT Ada
264 compiler includes extra information in the form of additional type
265 definitions connected by naming conventions. This flag indicates
266 that the type is an ordinary (unencoded) GDB type that has been
267 created from the necessary run-time information, and does not need
268 further interpretation. Optionally marks ordinary, fixed-size GDB
269 type. */
270
271 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
272
273 /* * This debug target supports TYPE_STUB(t). In the unsupported case
274 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
275 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
276 guessed the TYPE_STUB(t) value (see dwarfread.c). */
277
278 #define TYPE_STUB_SUPPORTED(t) (TYPE_MAIN_TYPE (t)->flag_stub_supported)
279
280 /* * Not textual. By default, GDB treats all single byte integers as
281 characters (or elements of strings) unless this flag is set. */
282
283 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
284
285 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
286 address is returned by this function call. TYPE_TARGET_TYPE
287 determines the final returned function type to be presented to
288 user. */
289
290 #define TYPE_GNU_IFUNC(t) (TYPE_MAIN_TYPE (t)->flag_gnu_ifunc)
291
292 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
293 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
294 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
295
296 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
297 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
298 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
299
300 /* * True if this type was declared using the "class" keyword. This is
301 only valid for C++ structure and enum types. If false, a structure
302 was declared as a "struct"; if true it was declared "class". For
303 enum types, this is true when "enum class" or "enum struct" was
304 used to declare the type.. */
305
306 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
307
308 /* * True if this type is a "flag" enum. A flag enum is one where all
309 the values are pairwise disjoint when "and"ed together. This
310 affects how enum values are printed. */
311
312 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
313
314 /* * Constant type. If this is set, the corresponding type has a
315 const modifier. */
316
317 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
318
319 /* * Volatile type. If this is set, the corresponding type has a
320 volatile modifier. */
321
322 #define TYPE_VOLATILE(t) \
323 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
324
325 /* * Restrict type. If this is set, the corresponding type has a
326 restrict modifier. */
327
328 #define TYPE_RESTRICT(t) \
329 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
330
331 /* * Atomic type. If this is set, the corresponding type has an
332 _Atomic modifier. */
333
334 #define TYPE_ATOMIC(t) \
335 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
336
337 /* * True if this type represents either an lvalue or lvalue reference type. */
338
339 #define TYPE_IS_REFERENCE(t) \
340 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
341
342 /* * True if this type is allocatable. */
343 #define TYPE_IS_ALLOCATABLE(t) \
344 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
345
346 /* * True if this type has variant parts. */
347 #define TYPE_HAS_VARIANT_PARTS(t) \
348 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
349
350 /* * True if this type has a dynamic length. */
351 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
352 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
353
354 /* * Instruction-space delimited type. This is for Harvard architectures
355 which have separate instruction and data address spaces (and perhaps
356 others).
357
358 GDB usually defines a flat address space that is a superset of the
359 architecture's two (or more) address spaces, but this is an extension
360 of the architecture's model.
361
362 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
363 resides in instruction memory, even if its address (in the extended
364 flat address space) does not reflect this.
365
366 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
367 corresponding type resides in the data memory space, even if
368 this is not indicated by its (flat address space) address.
369
370 If neither flag is set, the default space for functions / methods
371 is instruction space, and for data objects is data memory. */
372
373 #define TYPE_CODE_SPACE(t) \
374 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
375
376 #define TYPE_DATA_SPACE(t) \
377 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
378
379 /* * Address class flags. Some environments provide for pointers
380 whose size is different from that of a normal pointer or address
381 types where the bits are interpreted differently than normal
382 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
383 target specific ways to represent these different types of address
384 classes. */
385
386 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
387 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
388 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
389 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
390 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
391 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
392 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
393 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
394
395 /* * Information about a single discriminant. */
396
397 struct discriminant_range
398 {
399 /* * The range of values for the variant. This is an inclusive
400 range. */
401 ULONGEST low, high;
402
403 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
404 is true if this should be an unsigned comparison; false for
405 signed. */
406 bool contains (ULONGEST value, bool is_unsigned) const
407 {
408 if (is_unsigned)
409 return value >= low && value <= high;
410 LONGEST valuel = (LONGEST) value;
411 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
412 }
413 };
414
415 struct variant_part;
416
417 /* * A single variant. A variant has a list of discriminant values.
418 When the discriminator matches one of these, the variant is
419 enabled. Each variant controls zero or more fields; and may also
420 control other variant parts as well. This struct corresponds to
421 DW_TAG_variant in DWARF. */
422
423 struct variant : allocate_on_obstack
424 {
425 /* * The discriminant ranges for this variant. */
426 gdb::array_view<discriminant_range> discriminants;
427
428 /* * The fields controlled by this variant. This is inclusive on
429 the low end and exclusive on the high end. A variant may not
430 control any fields, in which case the two values will be equal.
431 These are indexes into the type's array of fields. */
432 int first_field;
433 int last_field;
434
435 /* * Variant parts controlled by this variant. */
436 gdb::array_view<variant_part> parts;
437
438 /* * Return true if this is the default variant. The default
439 variant can be recognized because it has no associated
440 discriminants. */
441 bool is_default () const
442 {
443 return discriminants.empty ();
444 }
445
446 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
447 if this should be an unsigned comparison; false for signed. */
448 bool matches (ULONGEST value, bool is_unsigned) const;
449 };
450
451 /* * A variant part. Each variant part has an optional discriminant
452 and holds an array of variants. This struct corresponds to
453 DW_TAG_variant_part in DWARF. */
454
455 struct variant_part : allocate_on_obstack
456 {
457 /* * The index of the discriminant field in the outer type. This is
458 an index into the type's array of fields. If this is -1, there
459 is no discriminant, and only the default variant can be
460 considered to be selected. */
461 int discriminant_index;
462
463 /* * True if this discriminant is unsigned; false if signed. This
464 comes from the type of the discriminant. */
465 bool is_unsigned;
466
467 /* * The variants that are controlled by this variant part. Note
468 that these will always be sorted by field number. */
469 gdb::array_view<variant> variants;
470 };
471
472
473 enum dynamic_prop_kind
474 {
475 PROP_UNDEFINED, /* Not defined. */
476 PROP_CONST, /* Constant. */
477 PROP_ADDR_OFFSET, /* Address offset. */
478 PROP_LOCEXPR, /* Location expression. */
479 PROP_LOCLIST, /* Location list. */
480 PROP_VARIANT_PARTS, /* Variant parts. */
481 PROP_TYPE, /* Type. */
482 };
483
484 union dynamic_prop_data
485 {
486 /* Storage for constant property. */
487
488 LONGEST const_val;
489
490 /* Storage for dynamic property. */
491
492 void *baton;
493
494 /* Storage of variant parts for a type. A type with variant parts
495 has all its fields "linearized" -- stored in a single field
496 array, just as if they had all been declared that way. The
497 variant parts are attached via a dynamic property, and then are
498 used to control which fields end up in the final type during
499 dynamic type resolution. */
500
501 const gdb::array_view<variant_part> *variant_parts;
502
503 /* Once a variant type is resolved, we may want to be able to go
504 from the resolved type to the original type. In this case we
505 rewrite the property's kind and set this field. */
506
507 struct type *original_type;
508 };
509
510 /* * Used to store a dynamic property. */
511
512 struct dynamic_prop
513 {
514 /* Determine which field of the union dynamic_prop.data is used. */
515 enum dynamic_prop_kind kind;
516
517 /* Storage for dynamic or static value. */
518 union dynamic_prop_data data;
519 };
520
521 /* Compare two dynamic_prop objects for equality. dynamic_prop
522 instances are equal iff they have the same type and storage. */
523 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
524
525 /* Compare two dynamic_prop objects for inequality. */
526 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
527 {
528 return !(l == r);
529 }
530
531 /* * Define a type's dynamic property node kind. */
532 enum dynamic_prop_node_kind
533 {
534 /* A property providing a type's data location.
535 Evaluating this field yields to the location of an object's data. */
536 DYN_PROP_DATA_LOCATION,
537
538 /* A property representing DW_AT_allocated. The presence of this attribute
539 indicates that the object of the type can be allocated/deallocated. */
540 DYN_PROP_ALLOCATED,
541
542 /* A property representing DW_AT_associated. The presence of this attribute
543 indicated that the object of the type can be associated. */
544 DYN_PROP_ASSOCIATED,
545
546 /* A property providing an array's byte stride. */
547 DYN_PROP_BYTE_STRIDE,
548
549 /* A property holding variant parts. */
550 DYN_PROP_VARIANT_PARTS,
551
552 /* A property holding the size of the type. */
553 DYN_PROP_BYTE_SIZE,
554 };
555
556 /* * List for dynamic type attributes. */
557 struct dynamic_prop_list
558 {
559 /* The kind of dynamic prop in this node. */
560 enum dynamic_prop_node_kind prop_kind;
561
562 /* The dynamic property itself. */
563 struct dynamic_prop prop;
564
565 /* A pointer to the next dynamic property. */
566 struct dynamic_prop_list *next;
567 };
568
569 /* * Determine which field of the union main_type.fields[x].loc is
570 used. */
571
572 enum field_loc_kind
573 {
574 FIELD_LOC_KIND_BITPOS, /**< bitpos */
575 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
576 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
577 FIELD_LOC_KIND_PHYSNAME, /**< physname */
578 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
579 };
580
581 /* * A discriminant to determine which field in the
582 main_type.type_specific union is being used, if any.
583
584 For types such as TYPE_CODE_FLT, the use of this
585 discriminant is really redundant, as we know from the type code
586 which field is going to be used. As such, it would be possible to
587 reduce the size of this enum in order to save a bit or two for
588 other fields of struct main_type. But, since we still have extra
589 room , and for the sake of clarity and consistency, we treat all fields
590 of the union the same way. */
591
592 enum type_specific_kind
593 {
594 TYPE_SPECIFIC_NONE,
595 TYPE_SPECIFIC_CPLUS_STUFF,
596 TYPE_SPECIFIC_GNAT_STUFF,
597 TYPE_SPECIFIC_FLOATFORMAT,
598 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
599 TYPE_SPECIFIC_FUNC,
600 TYPE_SPECIFIC_SELF_TYPE
601 };
602
603 union type_owner
604 {
605 struct objfile *objfile;
606 struct gdbarch *gdbarch;
607 };
608
609 union field_location
610 {
611 /* * Position of this field, counting in bits from start of
612 containing structure. For big-endian targets, it is the bit
613 offset to the MSB. For little-endian targets, it is the bit
614 offset to the LSB. */
615
616 LONGEST bitpos;
617
618 /* * Enum value. */
619 LONGEST enumval;
620
621 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
622 physaddr is the location (in the target) of the static
623 field. Otherwise, physname is the mangled label of the
624 static field. */
625
626 CORE_ADDR physaddr;
627 const char *physname;
628
629 /* * The field location can be computed by evaluating the
630 following DWARF block. Its DATA is allocated on
631 objfile_obstack - no CU load is needed to access it. */
632
633 struct dwarf2_locexpr_baton *dwarf_block;
634 };
635
636 struct field
637 {
638 union field_location loc;
639
640 /* * For a function or member type, this is 1 if the argument is
641 marked artificial. Artificial arguments should not be shown
642 to the user. For TYPE_CODE_RANGE it is set if the specific
643 bound is not defined. */
644
645 unsigned int artificial : 1;
646
647 /* * Discriminant for union field_location. */
648
649 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
650
651 /* * Size of this field, in bits, or zero if not packed.
652 If non-zero in an array type, indicates the element size in
653 bits (used only in Ada at the moment).
654 For an unpacked field, the field's type's length
655 says how many bytes the field occupies. */
656
657 unsigned int bitsize : 28;
658
659 /* * In a struct or union type, type of this field.
660 - In a function or member type, type of this argument.
661 - In an array type, the domain-type of the array. */
662
663 struct type *type;
664
665 /* * Name of field, value or argument.
666 NULL for range bounds, array domains, and member function
667 arguments. */
668
669 const char *name;
670 };
671
672 struct range_bounds
673 {
674 /* * Low bound of range. */
675
676 struct dynamic_prop low;
677
678 /* * High bound of range. */
679
680 struct dynamic_prop high;
681
682 /* The stride value for this range. This can be stored in bits or bytes
683 based on the value of BYTE_STRIDE_P. It is optional to have a stride
684 value, if this range has no stride value defined then this will be set
685 to the constant zero. */
686
687 struct dynamic_prop stride;
688
689 /* * The bias. Sometimes a range value is biased before storage.
690 The bias is added to the stored bits to form the true value. */
691
692 LONGEST bias;
693
694 /* True if HIGH range bound contains the number of elements in the
695 subrange. This affects how the final high bound is computed. */
696
697 unsigned int flag_upper_bound_is_count : 1;
698
699 /* True if LOW or/and HIGH are resolved into a static bound from
700 a dynamic one. */
701
702 unsigned int flag_bound_evaluated : 1;
703
704 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
705
706 unsigned int flag_is_byte_stride : 1;
707 };
708
709 /* Compare two range_bounds objects for equality. Simply does
710 memberwise comparison. */
711 extern bool operator== (const range_bounds &l, const range_bounds &r);
712
713 /* Compare two range_bounds objects for inequality. */
714 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
715 {
716 return !(l == r);
717 }
718
719 union type_specific
720 {
721 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
722 point to cplus_struct_default, a default static instance of a
723 struct cplus_struct_type. */
724
725 struct cplus_struct_type *cplus_stuff;
726
727 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
728 provides additional information. */
729
730 struct gnat_aux_type *gnat_stuff;
731
732 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
733 floatformat object that describes the floating-point value
734 that resides within the type. */
735
736 const struct floatformat *floatformat;
737
738 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
739
740 struct func_type *func_stuff;
741
742 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
743 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
744 is a member of. */
745
746 struct type *self_type;
747 };
748
749 /* * Main structure representing a type in GDB.
750
751 This structure is space-critical. Its layout has been tweaked to
752 reduce the space used. */
753
754 struct main_type
755 {
756 /* * Code for kind of type. */
757
758 ENUM_BITFIELD(type_code) code : 8;
759
760 /* * Flags about this type. These fields appear at this location
761 because they packs nicely here. See the TYPE_* macros for
762 documentation about these fields. */
763
764 unsigned int flag_unsigned : 1;
765 unsigned int flag_nosign : 1;
766 unsigned int flag_stub : 1;
767 unsigned int flag_target_stub : 1;
768 unsigned int flag_prototyped : 1;
769 unsigned int flag_varargs : 1;
770 unsigned int flag_vector : 1;
771 unsigned int flag_stub_supported : 1;
772 unsigned int flag_gnu_ifunc : 1;
773 unsigned int flag_fixed_instance : 1;
774 unsigned int flag_objfile_owned : 1;
775 unsigned int flag_endianity_not_default : 1;
776
777 /* * True if this type was declared with "class" rather than
778 "struct". */
779
780 unsigned int flag_declared_class : 1;
781
782 /* * True if this is an enum type with disjoint values. This
783 affects how the enum is printed. */
784
785 unsigned int flag_flag_enum : 1;
786
787 /* * A discriminant telling us which field of the type_specific
788 union is being used for this type, if any. */
789
790 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
791
792 /* * Number of fields described for this type. This field appears
793 at this location because it packs nicely here. */
794
795 short nfields;
796
797 /* * Name of this type, or NULL if none.
798
799 This is used for printing only. For looking up a name, look for
800 a symbol in the VAR_DOMAIN. This is generally allocated in the
801 objfile's obstack. However coffread.c uses malloc. */
802
803 const char *name;
804
805 /* * Every type is now associated with a particular objfile, and the
806 type is allocated on the objfile_obstack for that objfile. One
807 problem however, is that there are times when gdb allocates new
808 types while it is not in the process of reading symbols from a
809 particular objfile. Fortunately, these happen when the type
810 being created is a derived type of an existing type, such as in
811 lookup_pointer_type(). So we can just allocate the new type
812 using the same objfile as the existing type, but to do this we
813 need a backpointer to the objfile from the existing type. Yes
814 this is somewhat ugly, but without major overhaul of the internal
815 type system, it can't be avoided for now. */
816
817 union type_owner owner;
818
819 /* * For a pointer type, describes the type of object pointed to.
820 - For an array type, describes the type of the elements.
821 - For a function or method type, describes the type of the return value.
822 - For a range type, describes the type of the full range.
823 - For a complex type, describes the type of each coordinate.
824 - For a special record or union type encoding a dynamic-sized type
825 in GNAT, a memoized pointer to a corresponding static version of
826 the type.
827 - Unused otherwise. */
828
829 struct type *target_type;
830
831 /* * For structure and union types, a description of each field.
832 For set and pascal array types, there is one "field",
833 whose type is the domain type of the set or array.
834 For range types, there are two "fields",
835 the minimum and maximum values (both inclusive).
836 For enum types, each possible value is described by one "field".
837 For a function or method type, a "field" for each parameter.
838 For C++ classes, there is one field for each base class (if it is
839 a derived class) plus one field for each class data member. Member
840 functions are recorded elsewhere.
841
842 Using a pointer to a separate array of fields
843 allows all types to have the same size, which is useful
844 because we can allocate the space for a type before
845 we know what to put in it. */
846
847 union
848 {
849 struct field *fields;
850
851 /* * Union member used for range types. */
852
853 struct range_bounds *bounds;
854
855 /* If this is a scalar type, then this is its corresponding
856 complex type. */
857 struct type *complex_type;
858
859 } flds_bnds;
860
861 /* * Slot to point to additional language-specific fields of this
862 type. */
863
864 union type_specific type_specific;
865
866 /* * Contains all dynamic type properties. */
867 struct dynamic_prop_list *dyn_prop_list;
868 };
869
870 /* * Number of bits allocated for alignment. */
871
872 #define TYPE_ALIGN_BITS 8
873
874 /* * A ``struct type'' describes a particular instance of a type, with
875 some particular qualification. */
876
877 struct type
878 {
879 /* Get the type code of this type.
880
881 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
882 type, you need to do `check_typedef (type)->code ()`. */
883 type_code code () const
884 {
885 return this->main_type->code;
886 }
887
888 /* Set the type code of this type. */
889 void set_code (type_code code)
890 {
891 this->main_type->code = code;
892 }
893
894 /* Get the name of this type. */
895 const char *name () const
896 {
897 return this->main_type->name;
898 }
899
900 /* Set the name of this type. */
901 void set_name (const char *name)
902 {
903 this->main_type->name = name;
904 }
905
906 /* Get the number of fields of this type. */
907 int num_fields () const
908 {
909 return this->main_type->nfields;
910 }
911
912 /* Set the number of fields of this type. */
913 void set_num_fields (int num_fields)
914 {
915 this->main_type->nfields = num_fields;
916 }
917
918 /* Get the fields array of this type. */
919 struct field *fields () const
920 {
921 return this->main_type->flds_bnds.fields;
922 }
923
924 /* Get the field at index IDX. */
925 struct field &field (int idx) const
926 {
927 return this->fields ()[idx];
928 }
929
930 /* Set the fields array of this type. */
931 void set_fields (struct field *fields)
932 {
933 this->main_type->flds_bnds.fields = fields;
934 }
935
936 type *index_type () const
937 {
938 return this->field (0).type;
939 }
940
941 void set_index_type (type *index_type)
942 {
943 this->field (0).type = index_type;
944 }
945
946 /* * Return the dynamic property of the requested KIND from this type's
947 list of dynamic properties. */
948 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
949
950 /* * Given a dynamic property PROP of a given KIND, add this dynamic
951 property to this type.
952
953 This function assumes that this type is objfile-owned. */
954 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
955
956 /* * Remove dynamic property of kind KIND from this type, if it exists. */
957 void remove_dyn_prop (dynamic_prop_node_kind kind);
958
959 /* * Type that is a pointer to this type.
960 NULL if no such pointer-to type is known yet.
961 The debugger may add the address of such a type
962 if it has to construct one later. */
963
964 struct type *pointer_type;
965
966 /* * C++: also need a reference type. */
967
968 struct type *reference_type;
969
970 /* * A C++ rvalue reference type added in C++11. */
971
972 struct type *rvalue_reference_type;
973
974 /* * Variant chain. This points to a type that differs from this
975 one only in qualifiers and length. Currently, the possible
976 qualifiers are const, volatile, code-space, data-space, and
977 address class. The length may differ only when one of the
978 address class flags are set. The variants are linked in a
979 circular ring and share MAIN_TYPE. */
980
981 struct type *chain;
982
983 /* * The alignment for this type. Zero means that the alignment was
984 not specified in the debug info. Note that this is stored in a
985 funny way: as the log base 2 (plus 1) of the alignment; so a
986 value of 1 means the alignment is 1, and a value of 9 means the
987 alignment is 256. */
988
989 unsigned align_log2 : TYPE_ALIGN_BITS;
990
991 /* * Flags specific to this instance of the type, indicating where
992 on the ring we are.
993
994 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
995 binary or-ed with the target type, with a special case for
996 address class and space class. For example if this typedef does
997 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
998 instance flags are completely inherited from the target type. No
999 qualifiers can be cleared by the typedef. See also
1000 check_typedef. */
1001 unsigned instance_flags : 9;
1002
1003 /* * Length of storage for a value of this type. The value is the
1004 expression in host bytes of what sizeof(type) would return. This
1005 size includes padding. For example, an i386 extended-precision
1006 floating point value really only occupies ten bytes, but most
1007 ABI's declare its size to be 12 bytes, to preserve alignment.
1008 A `struct type' representing such a floating-point type would
1009 have a `length' value of 12, even though the last two bytes are
1010 unused.
1011
1012 Since this field is expressed in host bytes, its value is appropriate
1013 to pass to memcpy and such (it is assumed that GDB itself always runs
1014 on an 8-bits addressable architecture). However, when using it for
1015 target address arithmetic (e.g. adding it to a target address), the
1016 type_length_units function should be used in order to get the length
1017 expressed in target addressable memory units. */
1018
1019 ULONGEST length;
1020
1021 /* * Core type, shared by a group of qualified types. */
1022
1023 struct main_type *main_type;
1024 };
1025
1026 #define NULL_TYPE ((struct type *) 0)
1027
1028 struct fn_fieldlist
1029 {
1030
1031 /* * The overloaded name.
1032 This is generally allocated in the objfile's obstack.
1033 However stabsread.c sometimes uses malloc. */
1034
1035 const char *name;
1036
1037 /* * The number of methods with this name. */
1038
1039 int length;
1040
1041 /* * The list of methods. */
1042
1043 struct fn_field *fn_fields;
1044 };
1045
1046
1047
1048 struct fn_field
1049 {
1050 /* * If is_stub is clear, this is the mangled name which we can look
1051 up to find the address of the method (FIXME: it would be cleaner
1052 to have a pointer to the struct symbol here instead).
1053
1054 If is_stub is set, this is the portion of the mangled name which
1055 specifies the arguments. For example, "ii", if there are two int
1056 arguments, or "" if there are no arguments. See gdb_mangle_name
1057 for the conversion from this format to the one used if is_stub is
1058 clear. */
1059
1060 const char *physname;
1061
1062 /* * The function type for the method.
1063
1064 (This comment used to say "The return value of the method", but
1065 that's wrong. The function type is expected here, i.e. something
1066 with TYPE_CODE_METHOD, and *not* the return-value type). */
1067
1068 struct type *type;
1069
1070 /* * For virtual functions. First baseclass that defines this
1071 virtual function. */
1072
1073 struct type *fcontext;
1074
1075 /* Attributes. */
1076
1077 unsigned int is_const:1;
1078 unsigned int is_volatile:1;
1079 unsigned int is_private:1;
1080 unsigned int is_protected:1;
1081 unsigned int is_artificial:1;
1082
1083 /* * A stub method only has some fields valid (but they are enough
1084 to reconstruct the rest of the fields). */
1085
1086 unsigned int is_stub:1;
1087
1088 /* * True if this function is a constructor, false otherwise. */
1089
1090 unsigned int is_constructor : 1;
1091
1092 /* * True if this function is deleted, false otherwise. */
1093
1094 unsigned int is_deleted : 1;
1095
1096 /* * DW_AT_defaulted attribute for this function. The value is one
1097 of the DW_DEFAULTED constants. */
1098
1099 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1100
1101 /* * Unused. */
1102
1103 unsigned int dummy:6;
1104
1105 /* * Index into that baseclass's virtual function table, minus 2;
1106 else if static: VOFFSET_STATIC; else: 0. */
1107
1108 unsigned int voffset:16;
1109
1110 #define VOFFSET_STATIC 1
1111
1112 };
1113
1114 struct decl_field
1115 {
1116 /* * Unqualified name to be prefixed by owning class qualified
1117 name. */
1118
1119 const char *name;
1120
1121 /* * Type this typedef named NAME represents. */
1122
1123 struct type *type;
1124
1125 /* * True if this field was declared protected, false otherwise. */
1126 unsigned int is_protected : 1;
1127
1128 /* * True if this field was declared private, false otherwise. */
1129 unsigned int is_private : 1;
1130 };
1131
1132 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1133 TYPE_CODE_UNION nodes. */
1134
1135 struct cplus_struct_type
1136 {
1137 /* * Number of base classes this type derives from. The
1138 baseclasses are stored in the first N_BASECLASSES fields
1139 (i.e. the `fields' field of the struct type). The only fields
1140 of struct field that are used are: type, name, loc.bitpos. */
1141
1142 short n_baseclasses;
1143
1144 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1145 All access to this field must be through TYPE_VPTR_FIELDNO as one
1146 thing it does is check whether the field has been initialized.
1147 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1148 which for portability reasons doesn't initialize this field.
1149 TYPE_VPTR_FIELDNO returns -1 for this case.
1150
1151 If -1, we were unable to find the virtual function table pointer in
1152 initial symbol reading, and get_vptr_fieldno should be called to find
1153 it if possible. get_vptr_fieldno will update this field if possible.
1154 Otherwise the value is left at -1.
1155
1156 Unused if this type does not have virtual functions. */
1157
1158 short vptr_fieldno;
1159
1160 /* * Number of methods with unique names. All overloaded methods
1161 with the same name count only once. */
1162
1163 short nfn_fields;
1164
1165 /* * Number of template arguments. */
1166
1167 unsigned short n_template_arguments;
1168
1169 /* * One if this struct is a dynamic class, as defined by the
1170 Itanium C++ ABI: if it requires a virtual table pointer,
1171 because it or any of its base classes have one or more virtual
1172 member functions or virtual base classes. Minus one if not
1173 dynamic. Zero if not yet computed. */
1174
1175 int is_dynamic : 2;
1176
1177 /* * The calling convention for this type, fetched from the
1178 DW_AT_calling_convention attribute. The value is one of the
1179 DW_CC constants. */
1180
1181 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1182
1183 /* * The base class which defined the virtual function table pointer. */
1184
1185 struct type *vptr_basetype;
1186
1187 /* * For derived classes, the number of base classes is given by
1188 n_baseclasses and virtual_field_bits is a bit vector containing
1189 one bit per base class. If the base class is virtual, the
1190 corresponding bit will be set.
1191 I.E, given:
1192
1193 class A{};
1194 class B{};
1195 class C : public B, public virtual A {};
1196
1197 B is a baseclass of C; A is a virtual baseclass for C.
1198 This is a C++ 2.0 language feature. */
1199
1200 B_TYPE *virtual_field_bits;
1201
1202 /* * For classes with private fields, the number of fields is
1203 given by nfields and private_field_bits is a bit vector
1204 containing one bit per field.
1205
1206 If the field is private, the corresponding bit will be set. */
1207
1208 B_TYPE *private_field_bits;
1209
1210 /* * For classes with protected fields, the number of fields is
1211 given by nfields and protected_field_bits is a bit vector
1212 containing one bit per field.
1213
1214 If the field is private, the corresponding bit will be set. */
1215
1216 B_TYPE *protected_field_bits;
1217
1218 /* * For classes with fields to be ignored, either this is
1219 optimized out or this field has length 0. */
1220
1221 B_TYPE *ignore_field_bits;
1222
1223 /* * For classes, structures, and unions, a description of each
1224 field, which consists of an overloaded name, followed by the
1225 types of arguments that the method expects, and then the name
1226 after it has been renamed to make it distinct.
1227
1228 fn_fieldlists points to an array of nfn_fields of these. */
1229
1230 struct fn_fieldlist *fn_fieldlists;
1231
1232 /* * typedefs defined inside this class. typedef_field points to
1233 an array of typedef_field_count elements. */
1234
1235 struct decl_field *typedef_field;
1236
1237 unsigned typedef_field_count;
1238
1239 /* * The nested types defined by this type. nested_types points to
1240 an array of nested_types_count elements. */
1241
1242 struct decl_field *nested_types;
1243
1244 unsigned nested_types_count;
1245
1246 /* * The template arguments. This is an array with
1247 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1248 classes. */
1249
1250 struct symbol **template_arguments;
1251 };
1252
1253 /* * Struct used to store conversion rankings. */
1254
1255 struct rank
1256 {
1257 short rank;
1258
1259 /* * When two conversions are of the same type and therefore have
1260 the same rank, subrank is used to differentiate the two.
1261
1262 Eg: Two derived-class-pointer to base-class-pointer conversions
1263 would both have base pointer conversion rank, but the
1264 conversion with the shorter distance to the ancestor is
1265 preferable. 'subrank' would be used to reflect that. */
1266
1267 short subrank;
1268 };
1269
1270 /* * Used for ranking a function for overload resolution. */
1271
1272 typedef std::vector<rank> badness_vector;
1273
1274 /* * GNAT Ada-specific information for various Ada types. */
1275
1276 struct gnat_aux_type
1277 {
1278 /* * Parallel type used to encode information about dynamic types
1279 used in Ada (such as variant records, variable-size array,
1280 etc). */
1281 struct type* descriptive_type;
1282 };
1283
1284 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1285
1286 struct func_type
1287 {
1288 /* * The calling convention for targets supporting multiple ABIs.
1289 Right now this is only fetched from the Dwarf-2
1290 DW_AT_calling_convention attribute. The value is one of the
1291 DW_CC constants. */
1292
1293 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1294
1295 /* * Whether this function normally returns to its caller. It is
1296 set from the DW_AT_noreturn attribute if set on the
1297 DW_TAG_subprogram. */
1298
1299 unsigned int is_noreturn : 1;
1300
1301 /* * Only those DW_TAG_call_site's in this function that have
1302 DW_AT_call_tail_call set are linked in this list. Function
1303 without its tail call list complete
1304 (DW_AT_call_all_tail_calls or its superset
1305 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1306 DW_TAG_call_site's exist in such function. */
1307
1308 struct call_site *tail_call_list;
1309
1310 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1311 contains the method. */
1312
1313 struct type *self_type;
1314 };
1315
1316 /* struct call_site_parameter can be referenced in callees by several ways. */
1317
1318 enum call_site_parameter_kind
1319 {
1320 /* * Use field call_site_parameter.u.dwarf_reg. */
1321 CALL_SITE_PARAMETER_DWARF_REG,
1322
1323 /* * Use field call_site_parameter.u.fb_offset. */
1324 CALL_SITE_PARAMETER_FB_OFFSET,
1325
1326 /* * Use field call_site_parameter.u.param_offset. */
1327 CALL_SITE_PARAMETER_PARAM_OFFSET
1328 };
1329
1330 struct call_site_target
1331 {
1332 union field_location loc;
1333
1334 /* * Discriminant for union field_location. */
1335
1336 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1337 };
1338
1339 union call_site_parameter_u
1340 {
1341 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1342 as DWARF register number, for register passed
1343 parameters. */
1344
1345 int dwarf_reg;
1346
1347 /* * Offset from the callee's frame base, for stack passed
1348 parameters. This equals offset from the caller's stack
1349 pointer. */
1350
1351 CORE_ADDR fb_offset;
1352
1353 /* * Offset relative to the start of this PER_CU to
1354 DW_TAG_formal_parameter which is referenced by both
1355 caller and the callee. */
1356
1357 cu_offset param_cu_off;
1358 };
1359
1360 struct call_site_parameter
1361 {
1362 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1363
1364 union call_site_parameter_u u;
1365
1366 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1367
1368 const gdb_byte *value;
1369 size_t value_size;
1370
1371 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1372 It may be NULL if not provided by DWARF. */
1373
1374 const gdb_byte *data_value;
1375 size_t data_value_size;
1376 };
1377
1378 /* * A place where a function gets called from, represented by
1379 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1380
1381 struct call_site
1382 {
1383 /* * Address of the first instruction after this call. It must be
1384 the first field as we overload core_addr_hash and core_addr_eq
1385 for it. */
1386
1387 CORE_ADDR pc;
1388
1389 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1390
1391 struct call_site *tail_call_next;
1392
1393 /* * Describe DW_AT_call_target. Missing attribute uses
1394 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1395
1396 struct call_site_target target;
1397
1398 /* * Size of the PARAMETER array. */
1399
1400 unsigned parameter_count;
1401
1402 /* * CU of the function where the call is located. It gets used
1403 for DWARF blocks execution in the parameter array below. */
1404
1405 dwarf2_per_cu_data *per_cu;
1406
1407 /* objfile of the function where the call is located. */
1408
1409 dwarf2_per_objfile *per_objfile;
1410
1411 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1412
1413 struct call_site_parameter parameter[1];
1414 };
1415
1416 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1417 static structure. */
1418
1419 extern const struct cplus_struct_type cplus_struct_default;
1420
1421 extern void allocate_cplus_struct_type (struct type *);
1422
1423 #define INIT_CPLUS_SPECIFIC(type) \
1424 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1425 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1426 &cplus_struct_default)
1427
1428 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1429
1430 #define HAVE_CPLUS_STRUCT(type) \
1431 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1432 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1433
1434 #define INIT_NONE_SPECIFIC(type) \
1435 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1436 TYPE_MAIN_TYPE (type)->type_specific = {})
1437
1438 extern const struct gnat_aux_type gnat_aux_default;
1439
1440 extern void allocate_gnat_aux_type (struct type *);
1441
1442 #define INIT_GNAT_SPECIFIC(type) \
1443 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1444 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1445 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1446 /* * A macro that returns non-zero if the type-specific data should be
1447 read as "gnat-stuff". */
1448 #define HAVE_GNAT_AUX_INFO(type) \
1449 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1450
1451 /* * True if TYPE is known to be an Ada type of some kind. */
1452 #define ADA_TYPE_P(type) \
1453 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1454 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1455 && TYPE_FIXED_INSTANCE (type)))
1456
1457 #define INIT_FUNC_SPECIFIC(type) \
1458 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1459 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1460 TYPE_ZALLOC (type, \
1461 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1462
1463 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1464 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1465 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1466 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1467 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1468 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1469 #define TYPE_CHAIN(thistype) (thistype)->chain
1470 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1471 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1472 so you only have to call check_typedef once. Since allocate_value
1473 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1474 #define TYPE_LENGTH(thistype) (thistype)->length
1475
1476 /* * Return the alignment of the type in target addressable memory
1477 units, or 0 if no alignment was specified. */
1478 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1479
1480 /* * Return the alignment of the type in target addressable memory
1481 units, or 0 if no alignment was specified. */
1482 extern unsigned type_raw_align (struct type *);
1483
1484 /* * Return the alignment of the type in target addressable memory
1485 units. Return 0 if the alignment cannot be determined; but note
1486 that this makes an effort to compute the alignment even it it was
1487 not specified in the debug info. */
1488 extern unsigned type_align (struct type *);
1489
1490 /* * Set the alignment of the type. The alignment must be a power of
1491 2. Returns false if the given value does not fit in the available
1492 space in struct type. */
1493 extern bool set_type_align (struct type *, ULONGEST);
1494
1495 #define TYPE_RANGE_DATA(thistype) TYPE_MAIN_TYPE(thistype)->flds_bnds.bounds
1496 #define TYPE_LOW_BOUND(range_type) \
1497 TYPE_RANGE_DATA(range_type)->low.data.const_val
1498 #define TYPE_HIGH_BOUND(range_type) \
1499 TYPE_RANGE_DATA(range_type)->high.data.const_val
1500 #define TYPE_LOW_BOUND_UNDEFINED(range_type) \
1501 (TYPE_RANGE_DATA(range_type)->low.kind == PROP_UNDEFINED)
1502 #define TYPE_HIGH_BOUND_UNDEFINED(range_type) \
1503 (TYPE_RANGE_DATA(range_type)->high.kind == PROP_UNDEFINED)
1504 #define TYPE_HIGH_BOUND_KIND(range_type) \
1505 TYPE_RANGE_DATA(range_type)->high.kind
1506 #define TYPE_LOW_BOUND_KIND(range_type) \
1507 TYPE_RANGE_DATA(range_type)->low.kind
1508 #define TYPE_BIT_STRIDE(range_type) \
1509 (TYPE_RANGE_DATA(range_type)->stride.data.const_val \
1510 * (TYPE_RANGE_DATA(range_type)->flag_is_byte_stride ? 8 : 1))
1511
1512 /* Property accessors for the type data location. */
1513 #define TYPE_DATA_LOCATION(thistype) \
1514 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1515 #define TYPE_DATA_LOCATION_BATON(thistype) \
1516 TYPE_DATA_LOCATION (thistype)->data.baton
1517 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1518 TYPE_DATA_LOCATION (thistype)->data.const_val
1519 #define TYPE_DATA_LOCATION_KIND(thistype) \
1520 TYPE_DATA_LOCATION (thistype)->kind
1521 #define TYPE_DYNAMIC_LENGTH(thistype) \
1522 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1523
1524 /* Property accessors for the type allocated/associated. */
1525 #define TYPE_ALLOCATED_PROP(thistype) \
1526 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1527 #define TYPE_ASSOCIATED_PROP(thistype) \
1528 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1529
1530 /* Attribute accessors for dynamic properties. */
1531 #define TYPE_DYN_PROP_BATON(dynprop) \
1532 dynprop->data.baton
1533 #define TYPE_DYN_PROP_ADDR(dynprop) \
1534 dynprop->data.const_val
1535 #define TYPE_DYN_PROP_KIND(dynprop) \
1536 dynprop->kind
1537
1538
1539 /* Accessors for struct range_bounds data attached to an array type's
1540 index type. */
1541
1542 #define TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED(arraytype) \
1543 TYPE_HIGH_BOUND_UNDEFINED((arraytype)->index_type ())
1544 #define TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED(arraytype) \
1545 TYPE_LOW_BOUND_UNDEFINED((arraytype)->index_type ())
1546
1547 #define TYPE_ARRAY_UPPER_BOUND_VALUE(arraytype) \
1548 (TYPE_HIGH_BOUND((arraytype)->index_type ()))
1549
1550 #define TYPE_ARRAY_LOWER_BOUND_VALUE(arraytype) \
1551 (TYPE_LOW_BOUND((arraytype)->index_type ()))
1552
1553 #define TYPE_ARRAY_BIT_STRIDE(arraytype) \
1554 (TYPE_BIT_STRIDE(((arraytype)->index_type ())))
1555
1556 /* C++ */
1557
1558 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1559 /* Do not call this, use TYPE_SELF_TYPE. */
1560 extern struct type *internal_type_self_type (struct type *);
1561 extern void set_type_self_type (struct type *, struct type *);
1562
1563 extern int internal_type_vptr_fieldno (struct type *);
1564 extern void set_type_vptr_fieldno (struct type *, int);
1565 extern struct type *internal_type_vptr_basetype (struct type *);
1566 extern void set_type_vptr_basetype (struct type *, struct type *);
1567 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1568 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1569
1570 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1571 #define TYPE_SPECIFIC_FIELD(thistype) \
1572 TYPE_MAIN_TYPE(thistype)->type_specific_field
1573 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1574 where we're trying to print an Ada array using the C language.
1575 In that case, there is no "cplus_stuff", but the C language assumes
1576 that there is. What we do, in that case, is pretend that there is
1577 an implicit one which is the default cplus stuff. */
1578 #define TYPE_CPLUS_SPECIFIC(thistype) \
1579 (!HAVE_CPLUS_STRUCT(thistype) \
1580 ? (struct cplus_struct_type*)&cplus_struct_default \
1581 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1582 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1583 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1584 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1585 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1586 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1587 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1588 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1589 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1590 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1591 #define TYPE_BASECLASS(thistype,index) TYPE_FIELD_TYPE(thistype, index)
1592 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1593 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1594 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1595 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1596 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1597 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1598
1599 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1600 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1601 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1602
1603 #define FIELD_TYPE(thisfld) ((thisfld).type)
1604 #define FIELD_NAME(thisfld) ((thisfld).name)
1605 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1606 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1607 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1608 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1609 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1610 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1611 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1612 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1613 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1614 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1615 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1616 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1617 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1618 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1619 #define SET_FIELD_PHYSNAME(thisfld, name) \
1620 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1621 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1622 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1623 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1624 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1625 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1626 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1627 FIELD_DWARF_BLOCK (thisfld) = (addr))
1628 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1629 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1630
1631 #define TYPE_FIELD_TYPE(thistype, n) FIELD_TYPE((thistype)->field (n))
1632 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1633 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1634 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1635 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1636 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1637 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1638 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1639 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1640 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1641 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1642
1643 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1644 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1645 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1646 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1647 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1648 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1649 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1650 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1651 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1652 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1653 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1654 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1655 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1656 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1657 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1658 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1659 #define TYPE_FIELD_PRIVATE(thistype, n) \
1660 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1661 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1662 #define TYPE_FIELD_PROTECTED(thistype, n) \
1663 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1664 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1665 #define TYPE_FIELD_IGNORE(thistype, n) \
1666 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1667 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1668 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1669 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1670 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1671
1672 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1673 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1674 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1675 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1676 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1677
1678 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1679 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1680 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1681 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1682 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1683 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1684
1685 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1686 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1687 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1688 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1689 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1690 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1691 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1692 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1693 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1694 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1695 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1696 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1697 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1698 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1699 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1700 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1701 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1702
1703 /* Accessors for typedefs defined by a class. */
1704 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1705 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1706 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1707 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1708 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1709 TYPE_TYPEDEF_FIELD (thistype, n).name
1710 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1711 TYPE_TYPEDEF_FIELD (thistype, n).type
1712 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1713 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1714 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1715 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1716 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1717 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1718
1719 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1720 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1721 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1722 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1723 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1724 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1725 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1726 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1727 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1728 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1729 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1730 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1731 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1732 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1733
1734 #define TYPE_IS_OPAQUE(thistype) \
1735 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1736 || ((thistype)->code () == TYPE_CODE_UNION)) \
1737 && ((thistype)->num_fields () == 0) \
1738 && (!HAVE_CPLUS_STRUCT (thistype) \
1739 || TYPE_NFN_FIELDS (thistype) == 0) \
1740 && (TYPE_STUB (thistype) || !TYPE_STUB_SUPPORTED (thistype)))
1741
1742 /* * A helper macro that returns the name of a type or "unnamed type"
1743 if the type has no name. */
1744
1745 #define TYPE_SAFE_NAME(type) \
1746 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1747
1748 /* * A helper macro that returns the name of an error type. If the
1749 type has a name, it is used; otherwise, a default is used. */
1750
1751 #define TYPE_ERROR_NAME(type) \
1752 (type->name () ? type->name () : _("<error type>"))
1753
1754 /* Given TYPE, return its floatformat. */
1755 const struct floatformat *floatformat_from_type (const struct type *type);
1756
1757 struct builtin_type
1758 {
1759 /* Integral types. */
1760
1761 /* Implicit size/sign (based on the architecture's ABI). */
1762 struct type *builtin_void;
1763 struct type *builtin_char;
1764 struct type *builtin_short;
1765 struct type *builtin_int;
1766 struct type *builtin_long;
1767 struct type *builtin_signed_char;
1768 struct type *builtin_unsigned_char;
1769 struct type *builtin_unsigned_short;
1770 struct type *builtin_unsigned_int;
1771 struct type *builtin_unsigned_long;
1772 struct type *builtin_half;
1773 struct type *builtin_float;
1774 struct type *builtin_double;
1775 struct type *builtin_long_double;
1776 struct type *builtin_complex;
1777 struct type *builtin_double_complex;
1778 struct type *builtin_string;
1779 struct type *builtin_bool;
1780 struct type *builtin_long_long;
1781 struct type *builtin_unsigned_long_long;
1782 struct type *builtin_decfloat;
1783 struct type *builtin_decdouble;
1784 struct type *builtin_declong;
1785
1786 /* "True" character types.
1787 We use these for the '/c' print format, because c_char is just a
1788 one-byte integral type, which languages less laid back than C
1789 will print as ... well, a one-byte integral type. */
1790 struct type *builtin_true_char;
1791 struct type *builtin_true_unsigned_char;
1792
1793 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1794 is for when an architecture needs to describe a register that has
1795 no size. */
1796 struct type *builtin_int0;
1797 struct type *builtin_int8;
1798 struct type *builtin_uint8;
1799 struct type *builtin_int16;
1800 struct type *builtin_uint16;
1801 struct type *builtin_int24;
1802 struct type *builtin_uint24;
1803 struct type *builtin_int32;
1804 struct type *builtin_uint32;
1805 struct type *builtin_int64;
1806 struct type *builtin_uint64;
1807 struct type *builtin_int128;
1808 struct type *builtin_uint128;
1809
1810 /* Wide character types. */
1811 struct type *builtin_char16;
1812 struct type *builtin_char32;
1813 struct type *builtin_wchar;
1814
1815 /* Pointer types. */
1816
1817 /* * `pointer to data' type. Some target platforms use an implicitly
1818 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1819 struct type *builtin_data_ptr;
1820
1821 /* * `pointer to function (returning void)' type. Harvard
1822 architectures mean that ABI function and code pointers are not
1823 interconvertible. Similarly, since ANSI, C standards have
1824 explicitly said that pointers to functions and pointers to data
1825 are not interconvertible --- that is, you can't cast a function
1826 pointer to void * and back, and expect to get the same value.
1827 However, all function pointer types are interconvertible, so void
1828 (*) () can server as a generic function pointer. */
1829
1830 struct type *builtin_func_ptr;
1831
1832 /* * `function returning pointer to function (returning void)' type.
1833 The final void return type is not significant for it. */
1834
1835 struct type *builtin_func_func;
1836
1837 /* Special-purpose types. */
1838
1839 /* * This type is used to represent a GDB internal function. */
1840
1841 struct type *internal_fn;
1842
1843 /* * This type is used to represent an xmethod. */
1844 struct type *xmethod;
1845 };
1846
1847 /* * Return the type table for the specified architecture. */
1848
1849 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
1850
1851 /* * Per-objfile types used by symbol readers. */
1852
1853 struct objfile_type
1854 {
1855 /* Basic types based on the objfile architecture. */
1856 struct type *builtin_void;
1857 struct type *builtin_char;
1858 struct type *builtin_short;
1859 struct type *builtin_int;
1860 struct type *builtin_long;
1861 struct type *builtin_long_long;
1862 struct type *builtin_signed_char;
1863 struct type *builtin_unsigned_char;
1864 struct type *builtin_unsigned_short;
1865 struct type *builtin_unsigned_int;
1866 struct type *builtin_unsigned_long;
1867 struct type *builtin_unsigned_long_long;
1868 struct type *builtin_half;
1869 struct type *builtin_float;
1870 struct type *builtin_double;
1871 struct type *builtin_long_double;
1872
1873 /* * This type is used to represent symbol addresses. */
1874 struct type *builtin_core_addr;
1875
1876 /* * This type represents a type that was unrecognized in symbol
1877 read-in. */
1878 struct type *builtin_error;
1879
1880 /* * Types used for symbols with no debug information. */
1881 struct type *nodebug_text_symbol;
1882 struct type *nodebug_text_gnu_ifunc_symbol;
1883 struct type *nodebug_got_plt_symbol;
1884 struct type *nodebug_data_symbol;
1885 struct type *nodebug_unknown_symbol;
1886 struct type *nodebug_tls_symbol;
1887 };
1888
1889 /* * Return the type table for the specified objfile. */
1890
1891 extern const struct objfile_type *objfile_type (struct objfile *objfile);
1892
1893 /* Explicit floating-point formats. See "floatformat.h". */
1894 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
1895 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
1896 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
1897 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
1898 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
1899 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
1900 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
1901 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
1902 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
1903 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
1904 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
1905 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
1906
1907
1908 /* Allocate space for storing data associated with a particular
1909 type. We ensure that the space is allocated using the same
1910 mechanism that was used to allocate the space for the type
1911 structure itself. I.e. if the type is on an objfile's
1912 objfile_obstack, then the space for data associated with that type
1913 will also be allocated on the objfile_obstack. If the type is
1914 associated with a gdbarch, then the space for data associated with that
1915 type will also be allocated on the gdbarch_obstack.
1916
1917 If a type is not associated with neither an objfile or a gdbarch then
1918 you should not use this macro to allocate space for data, instead you
1919 should call xmalloc directly, and ensure the memory is correctly freed
1920 when it is no longer needed. */
1921
1922 #define TYPE_ALLOC(t,size) \
1923 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
1924 ? &TYPE_OBJFILE (t)->objfile_obstack \
1925 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
1926 size))
1927
1928
1929 /* See comment on TYPE_ALLOC. */
1930
1931 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
1932
1933 /* Use alloc_type to allocate a type owned by an objfile. Use
1934 alloc_type_arch to allocate a type owned by an architecture. Use
1935 alloc_type_copy to allocate a type with the same owner as a
1936 pre-existing template type, no matter whether objfile or
1937 gdbarch. */
1938 extern struct type *alloc_type (struct objfile *);
1939 extern struct type *alloc_type_arch (struct gdbarch *);
1940 extern struct type *alloc_type_copy (const struct type *);
1941
1942 /* * Return the type's architecture. For types owned by an
1943 architecture, that architecture is returned. For types owned by an
1944 objfile, that objfile's architecture is returned. */
1945
1946 extern struct gdbarch *get_type_arch (const struct type *);
1947
1948 /* * This returns the target type (or NULL) of TYPE, also skipping
1949 past typedefs. */
1950
1951 extern struct type *get_target_type (struct type *type);
1952
1953 /* Return the equivalent of TYPE_LENGTH, but in number of target
1954 addressable memory units of the associated gdbarch instead of bytes. */
1955
1956 extern unsigned int type_length_units (struct type *type);
1957
1958 /* * Helper function to construct objfile-owned types. */
1959
1960 extern struct type *init_type (struct objfile *, enum type_code, int,
1961 const char *);
1962 extern struct type *init_integer_type (struct objfile *, int, int,
1963 const char *);
1964 extern struct type *init_character_type (struct objfile *, int, int,
1965 const char *);
1966 extern struct type *init_boolean_type (struct objfile *, int, int,
1967 const char *);
1968 extern struct type *init_float_type (struct objfile *, int, const char *,
1969 const struct floatformat **,
1970 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
1971 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
1972 extern struct type *init_complex_type (const char *, struct type *);
1973 extern struct type *init_pointer_type (struct objfile *, int, const char *,
1974 struct type *);
1975
1976 /* Helper functions to construct architecture-owned types. */
1977 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
1978 const char *);
1979 extern struct type *arch_integer_type (struct gdbarch *, int, int,
1980 const char *);
1981 extern struct type *arch_character_type (struct gdbarch *, int, int,
1982 const char *);
1983 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
1984 const char *);
1985 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
1986 const struct floatformat **);
1987 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
1988 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
1989 struct type *);
1990
1991 /* Helper functions to construct a struct or record type. An
1992 initially empty type is created using arch_composite_type().
1993 Fields are then added using append_composite_type_field*(). A union
1994 type has its size set to the largest field. A struct type has each
1995 field packed against the previous. */
1996
1997 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
1998 const char *name, enum type_code code);
1999 extern void append_composite_type_field (struct type *t, const char *name,
2000 struct type *field);
2001 extern void append_composite_type_field_aligned (struct type *t,
2002 const char *name,
2003 struct type *field,
2004 int alignment);
2005 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2006 struct type *field);
2007
2008 /* Helper functions to construct a bit flags type. An initially empty
2009 type is created using arch_flag_type(). Flags are then added using
2010 append_flag_type_field() and append_flag_type_flag(). */
2011 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2012 const char *name, int bit);
2013 extern void append_flags_type_field (struct type *type,
2014 int start_bitpos, int nr_bits,
2015 struct type *field_type, const char *name);
2016 extern void append_flags_type_flag (struct type *type, int bitpos,
2017 const char *name);
2018
2019 extern void make_vector_type (struct type *array_type);
2020 extern struct type *init_vector_type (struct type *elt_type, int n);
2021
2022 extern struct type *lookup_reference_type (struct type *, enum type_code);
2023 extern struct type *lookup_lvalue_reference_type (struct type *);
2024 extern struct type *lookup_rvalue_reference_type (struct type *);
2025
2026
2027 extern struct type *make_reference_type (struct type *, struct type **,
2028 enum type_code);
2029
2030 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2031
2032 extern struct type *make_restrict_type (struct type *);
2033
2034 extern struct type *make_unqualified_type (struct type *);
2035
2036 extern struct type *make_atomic_type (struct type *);
2037
2038 extern void replace_type (struct type *, struct type *);
2039
2040 extern int address_space_name_to_int (struct gdbarch *, const char *);
2041
2042 extern const char *address_space_int_to_name (struct gdbarch *, int);
2043
2044 extern struct type *make_type_with_address_space (struct type *type,
2045 int space_identifier);
2046
2047 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2048
2049 extern struct type *lookup_methodptr_type (struct type *);
2050
2051 extern void smash_to_method_type (struct type *type, struct type *self_type,
2052 struct type *to_type, struct field *args,
2053 int nargs, int varargs);
2054
2055 extern void smash_to_memberptr_type (struct type *, struct type *,
2056 struct type *);
2057
2058 extern void smash_to_methodptr_type (struct type *, struct type *);
2059
2060 extern struct type *allocate_stub_method (struct type *);
2061
2062 extern const char *type_name_or_error (struct type *type);
2063
2064 struct struct_elt
2065 {
2066 /* The field of the element, or NULL if no element was found. */
2067 struct field *field;
2068
2069 /* The bit offset of the element in the parent structure. */
2070 LONGEST offset;
2071 };
2072
2073 /* Given a type TYPE, lookup the field and offset of the component named
2074 NAME.
2075
2076 TYPE can be either a struct or union, or a pointer or reference to
2077 a struct or union. If it is a pointer or reference, its target
2078 type is automatically used. Thus '.' and '->' are interchangable,
2079 as specified for the definitions of the expression element types
2080 STRUCTOP_STRUCT and STRUCTOP_PTR.
2081
2082 If NOERR is nonzero, the returned structure will have field set to
2083 NULL if there is no component named NAME.
2084
2085 If the component NAME is a field in an anonymous substructure of
2086 TYPE, the returned offset is a "global" offset relative to TYPE
2087 rather than an offset within the substructure. */
2088
2089 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2090
2091 /* Given a type TYPE, lookup the type of the component named NAME.
2092
2093 TYPE can be either a struct or union, or a pointer or reference to
2094 a struct or union. If it is a pointer or reference, its target
2095 type is automatically used. Thus '.' and '->' are interchangable,
2096 as specified for the definitions of the expression element types
2097 STRUCTOP_STRUCT and STRUCTOP_PTR.
2098
2099 If NOERR is nonzero, return NULL if there is no component named
2100 NAME. */
2101
2102 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2103
2104 extern struct type *make_pointer_type (struct type *, struct type **);
2105
2106 extern struct type *lookup_pointer_type (struct type *);
2107
2108 extern struct type *make_function_type (struct type *, struct type **);
2109
2110 extern struct type *lookup_function_type (struct type *);
2111
2112 extern struct type *lookup_function_type_with_arguments (struct type *,
2113 int,
2114 struct type **);
2115
2116 extern struct type *create_static_range_type (struct type *, struct type *,
2117 LONGEST, LONGEST);
2118
2119
2120 extern struct type *create_array_type_with_stride
2121 (struct type *, struct type *, struct type *,
2122 struct dynamic_prop *, unsigned int);
2123
2124 extern struct type *create_range_type (struct type *, struct type *,
2125 const struct dynamic_prop *,
2126 const struct dynamic_prop *,
2127 LONGEST);
2128
2129 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2130 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2131 stride. */
2132
2133 extern struct type * create_range_type_with_stride
2134 (struct type *result_type, struct type *index_type,
2135 const struct dynamic_prop *low_bound,
2136 const struct dynamic_prop *high_bound, LONGEST bias,
2137 const struct dynamic_prop *stride, bool byte_stride_p);
2138
2139 extern struct type *create_array_type (struct type *, struct type *,
2140 struct type *);
2141
2142 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2143
2144 extern struct type *create_string_type (struct type *, struct type *,
2145 struct type *);
2146 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2147
2148 extern struct type *create_set_type (struct type *, struct type *);
2149
2150 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2151 const char *);
2152
2153 extern struct type *lookup_signed_typename (const struct language_defn *,
2154 const char *);
2155
2156 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2157
2158 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2159
2160 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2161 ADDR specifies the location of the variable the type is bound to.
2162 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2163 static properties is returned. */
2164 extern struct type *resolve_dynamic_type
2165 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2166 CORE_ADDR addr);
2167
2168 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2169 extern int is_dynamic_type (struct type *type);
2170
2171 extern struct type *check_typedef (struct type *);
2172
2173 extern void check_stub_method_group (struct type *, int);
2174
2175 extern char *gdb_mangle_name (struct type *, int, int);
2176
2177 extern struct type *lookup_typename (const struct language_defn *,
2178 const char *, const struct block *, int);
2179
2180 extern struct type *lookup_template_type (const char *, struct type *,
2181 const struct block *);
2182
2183 extern int get_vptr_fieldno (struct type *, struct type **);
2184
2185 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2186
2187 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2188 LONGEST *high_bound);
2189
2190 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2191
2192 extern int class_types_same_p (const struct type *, const struct type *);
2193
2194 extern int is_ancestor (struct type *, struct type *);
2195
2196 extern int is_public_ancestor (struct type *, struct type *);
2197
2198 extern int is_unique_ancestor (struct type *, struct value *);
2199
2200 /* Overload resolution */
2201
2202 /* * Badness if parameter list length doesn't match arg list length. */
2203 extern const struct rank LENGTH_MISMATCH_BADNESS;
2204
2205 /* * Dummy badness value for nonexistent parameter positions. */
2206 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2207 /* * Badness if no conversion among types. */
2208 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2209
2210 /* * Badness of an exact match. */
2211 extern const struct rank EXACT_MATCH_BADNESS;
2212
2213 /* * Badness of integral promotion. */
2214 extern const struct rank INTEGER_PROMOTION_BADNESS;
2215 /* * Badness of floating promotion. */
2216 extern const struct rank FLOAT_PROMOTION_BADNESS;
2217 /* * Badness of converting a derived class pointer
2218 to a base class pointer. */
2219 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2220 /* * Badness of integral conversion. */
2221 extern const struct rank INTEGER_CONVERSION_BADNESS;
2222 /* * Badness of floating conversion. */
2223 extern const struct rank FLOAT_CONVERSION_BADNESS;
2224 /* * Badness of integer<->floating conversions. */
2225 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2226 /* * Badness of conversion of pointer to void pointer. */
2227 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2228 /* * Badness of conversion to boolean. */
2229 extern const struct rank BOOL_CONVERSION_BADNESS;
2230 /* * Badness of converting derived to base class. */
2231 extern const struct rank BASE_CONVERSION_BADNESS;
2232 /* * Badness of converting from non-reference to reference. Subrank
2233 is the type of reference conversion being done. */
2234 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2235 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2236 /* * Conversion to rvalue reference. */
2237 #define REFERENCE_CONVERSION_RVALUE 1
2238 /* * Conversion to const lvalue reference. */
2239 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2240
2241 /* * Badness of converting integer 0 to NULL pointer. */
2242 extern const struct rank NULL_POINTER_CONVERSION;
2243 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2244 being done. */
2245 extern const struct rank CV_CONVERSION_BADNESS;
2246 #define CV_CONVERSION_CONST 1
2247 #define CV_CONVERSION_VOLATILE 2
2248
2249 /* Non-standard conversions allowed by the debugger */
2250
2251 /* * Converting a pointer to an int is usually OK. */
2252 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2253
2254 /* * Badness of converting a (non-zero) integer constant
2255 to a pointer. */
2256 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2257
2258 extern struct rank sum_ranks (struct rank a, struct rank b);
2259 extern int compare_ranks (struct rank a, struct rank b);
2260
2261 extern int compare_badness (const badness_vector &,
2262 const badness_vector &);
2263
2264 extern badness_vector rank_function (gdb::array_view<type *> parms,
2265 gdb::array_view<value *> args);
2266
2267 extern struct rank rank_one_type (struct type *, struct type *,
2268 struct value *);
2269
2270 extern void recursive_dump_type (struct type *, int);
2271
2272 extern int field_is_static (struct field *);
2273
2274 /* printcmd.c */
2275
2276 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2277 const struct value_print_options *,
2278 int, struct ui_file *);
2279
2280 extern int can_dereference (struct type *);
2281
2282 extern int is_integral_type (struct type *);
2283
2284 extern int is_floating_type (struct type *);
2285
2286 extern int is_scalar_type (struct type *type);
2287
2288 extern int is_scalar_type_recursive (struct type *);
2289
2290 extern int class_or_union_p (const struct type *);
2291
2292 extern void maintenance_print_type (const char *, int);
2293
2294 extern htab_t create_copied_types_hash (struct objfile *objfile);
2295
2296 extern struct type *copy_type_recursive (struct objfile *objfile,
2297 struct type *type,
2298 htab_t copied_types);
2299
2300 extern struct type *copy_type (const struct type *type);
2301
2302 extern bool types_equal (struct type *, struct type *);
2303
2304 extern bool types_deeply_equal (struct type *, struct type *);
2305
2306 extern int type_not_allocated (const struct type *type);
2307
2308 extern int type_not_associated (const struct type *type);
2309
2310 /* * When the type includes explicit byte ordering, return that.
2311 Otherwise, the byte ordering from gdbarch_byte_order for
2312 get_type_arch is returned. */
2313
2314 extern enum bfd_endian type_byte_order (const struct type *type);
2315
2316 /* A flag to enable printing of debugging information of C++
2317 overloading. */
2318
2319 extern unsigned int overload_debug;
2320
2321 #endif /* GDBTYPES_H */
This page took 0.080728 seconds and 4 git commands to generate.