gdb: add type::is_gnu_ifunc / type::set_is_gnu_ifunc
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) (TYPE_MAIN_TYPE (t)->flag_endianity_not_default)
218
219 /* * The debugging formats (especially STABS) do not contain enough
220 information to represent all Ada types---especially those whose
221 size depends on dynamic quantities. Therefore, the GNAT Ada
222 compiler includes extra information in the form of additional type
223 definitions connected by naming conventions. This flag indicates
224 that the type is an ordinary (unencoded) GDB type that has been
225 created from the necessary run-time information, and does not need
226 further interpretation. Optionally marks ordinary, fixed-size GDB
227 type. */
228
229 #define TYPE_FIXED_INSTANCE(t) (TYPE_MAIN_TYPE (t)->flag_fixed_instance)
230
231 /* * Not textual. By default, GDB treats all single byte integers as
232 characters (or elements of strings) unless this flag is set. */
233
234 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
235
236 /* * Used only for TYPE_CODE_FUNC where it specifies the real function
237 address is returned by this function call. TYPE_TARGET_TYPE
238 determines the final returned function type to be presented to
239 user. */
240
241 #define TYPE_GNU_IFUNC(t) ((t)->is_gnu_ifunc ())
242
243 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
244 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
245 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
246
247 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
248 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
249 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
250
251 /* * True if this type was declared using the "class" keyword. This is
252 only valid for C++ structure and enum types. If false, a structure
253 was declared as a "struct"; if true it was declared "class". For
254 enum types, this is true when "enum class" or "enum struct" was
255 used to declare the type.. */
256
257 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
258
259 /* * True if this type is a "flag" enum. A flag enum is one where all
260 the values are pairwise disjoint when "and"ed together. This
261 affects how enum values are printed. */
262
263 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
264
265 /* * Constant type. If this is set, the corresponding type has a
266 const modifier. */
267
268 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
269
270 /* * Volatile type. If this is set, the corresponding type has a
271 volatile modifier. */
272
273 #define TYPE_VOLATILE(t) \
274 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
275
276 /* * Restrict type. If this is set, the corresponding type has a
277 restrict modifier. */
278
279 #define TYPE_RESTRICT(t) \
280 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
281
282 /* * Atomic type. If this is set, the corresponding type has an
283 _Atomic modifier. */
284
285 #define TYPE_ATOMIC(t) \
286 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
287
288 /* * True if this type represents either an lvalue or lvalue reference type. */
289
290 #define TYPE_IS_REFERENCE(t) \
291 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
292
293 /* * True if this type is allocatable. */
294 #define TYPE_IS_ALLOCATABLE(t) \
295 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
296
297 /* * True if this type has variant parts. */
298 #define TYPE_HAS_VARIANT_PARTS(t) \
299 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
300
301 /* * True if this type has a dynamic length. */
302 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
303 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
304
305 /* * Instruction-space delimited type. This is for Harvard architectures
306 which have separate instruction and data address spaces (and perhaps
307 others).
308
309 GDB usually defines a flat address space that is a superset of the
310 architecture's two (or more) address spaces, but this is an extension
311 of the architecture's model.
312
313 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
314 resides in instruction memory, even if its address (in the extended
315 flat address space) does not reflect this.
316
317 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
318 corresponding type resides in the data memory space, even if
319 this is not indicated by its (flat address space) address.
320
321 If neither flag is set, the default space for functions / methods
322 is instruction space, and for data objects is data memory. */
323
324 #define TYPE_CODE_SPACE(t) \
325 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
326
327 #define TYPE_DATA_SPACE(t) \
328 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
329
330 /* * Address class flags. Some environments provide for pointers
331 whose size is different from that of a normal pointer or address
332 types where the bits are interpreted differently than normal
333 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
334 target specific ways to represent these different types of address
335 classes. */
336
337 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
338 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
339 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
340 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
341 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
342 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
343 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
344 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
345
346 /* * Information about a single discriminant. */
347
348 struct discriminant_range
349 {
350 /* * The range of values for the variant. This is an inclusive
351 range. */
352 ULONGEST low, high;
353
354 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
355 is true if this should be an unsigned comparison; false for
356 signed. */
357 bool contains (ULONGEST value, bool is_unsigned) const
358 {
359 if (is_unsigned)
360 return value >= low && value <= high;
361 LONGEST valuel = (LONGEST) value;
362 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
363 }
364 };
365
366 struct variant_part;
367
368 /* * A single variant. A variant has a list of discriminant values.
369 When the discriminator matches one of these, the variant is
370 enabled. Each variant controls zero or more fields; and may also
371 control other variant parts as well. This struct corresponds to
372 DW_TAG_variant in DWARF. */
373
374 struct variant : allocate_on_obstack
375 {
376 /* * The discriminant ranges for this variant. */
377 gdb::array_view<discriminant_range> discriminants;
378
379 /* * The fields controlled by this variant. This is inclusive on
380 the low end and exclusive on the high end. A variant may not
381 control any fields, in which case the two values will be equal.
382 These are indexes into the type's array of fields. */
383 int first_field;
384 int last_field;
385
386 /* * Variant parts controlled by this variant. */
387 gdb::array_view<variant_part> parts;
388
389 /* * Return true if this is the default variant. The default
390 variant can be recognized because it has no associated
391 discriminants. */
392 bool is_default () const
393 {
394 return discriminants.empty ();
395 }
396
397 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
398 if this should be an unsigned comparison; false for signed. */
399 bool matches (ULONGEST value, bool is_unsigned) const;
400 };
401
402 /* * A variant part. Each variant part has an optional discriminant
403 and holds an array of variants. This struct corresponds to
404 DW_TAG_variant_part in DWARF. */
405
406 struct variant_part : allocate_on_obstack
407 {
408 /* * The index of the discriminant field in the outer type. This is
409 an index into the type's array of fields. If this is -1, there
410 is no discriminant, and only the default variant can be
411 considered to be selected. */
412 int discriminant_index;
413
414 /* * True if this discriminant is unsigned; false if signed. This
415 comes from the type of the discriminant. */
416 bool is_unsigned;
417
418 /* * The variants that are controlled by this variant part. Note
419 that these will always be sorted by field number. */
420 gdb::array_view<variant> variants;
421 };
422
423
424 enum dynamic_prop_kind
425 {
426 PROP_UNDEFINED, /* Not defined. */
427 PROP_CONST, /* Constant. */
428 PROP_ADDR_OFFSET, /* Address offset. */
429 PROP_LOCEXPR, /* Location expression. */
430 PROP_LOCLIST, /* Location list. */
431 PROP_VARIANT_PARTS, /* Variant parts. */
432 PROP_TYPE, /* Type. */
433 };
434
435 union dynamic_prop_data
436 {
437 /* Storage for constant property. */
438
439 LONGEST const_val;
440
441 /* Storage for dynamic property. */
442
443 void *baton;
444
445 /* Storage of variant parts for a type. A type with variant parts
446 has all its fields "linearized" -- stored in a single field
447 array, just as if they had all been declared that way. The
448 variant parts are attached via a dynamic property, and then are
449 used to control which fields end up in the final type during
450 dynamic type resolution. */
451
452 const gdb::array_view<variant_part> *variant_parts;
453
454 /* Once a variant type is resolved, we may want to be able to go
455 from the resolved type to the original type. In this case we
456 rewrite the property's kind and set this field. */
457
458 struct type *original_type;
459 };
460
461 /* * Used to store a dynamic property. */
462
463 struct dynamic_prop
464 {
465 dynamic_prop_kind kind () const
466 {
467 return m_kind;
468 }
469
470 void set_undefined ()
471 {
472 m_kind = PROP_UNDEFINED;
473 }
474
475 LONGEST const_val () const
476 {
477 gdb_assert (m_kind == PROP_CONST);
478
479 return m_data.const_val;
480 }
481
482 void set_const_val (LONGEST const_val)
483 {
484 m_kind = PROP_CONST;
485 m_data.const_val = const_val;
486 }
487
488 void *baton () const
489 {
490 gdb_assert (m_kind == PROP_LOCEXPR
491 || m_kind == PROP_LOCLIST
492 || m_kind == PROP_ADDR_OFFSET);
493
494 return m_data.baton;
495 }
496
497 void set_locexpr (void *baton)
498 {
499 m_kind = PROP_LOCEXPR;
500 m_data.baton = baton;
501 }
502
503 void set_loclist (void *baton)
504 {
505 m_kind = PROP_LOCLIST;
506 m_data.baton = baton;
507 }
508
509 void set_addr_offset (void *baton)
510 {
511 m_kind = PROP_ADDR_OFFSET;
512 m_data.baton = baton;
513 }
514
515 const gdb::array_view<variant_part> *variant_parts () const
516 {
517 gdb_assert (m_kind == PROP_VARIANT_PARTS);
518
519 return m_data.variant_parts;
520 }
521
522 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
523 {
524 m_kind = PROP_VARIANT_PARTS;
525 m_data.variant_parts = variant_parts;
526 }
527
528 struct type *original_type () const
529 {
530 gdb_assert (m_kind == PROP_TYPE);
531
532 return m_data.original_type;
533 }
534
535 void set_original_type (struct type *original_type)
536 {
537 m_kind = PROP_TYPE;
538 m_data.original_type = original_type;
539 }
540
541 /* Determine which field of the union dynamic_prop.data is used. */
542 enum dynamic_prop_kind m_kind;
543
544 /* Storage for dynamic or static value. */
545 union dynamic_prop_data m_data;
546 };
547
548 /* Compare two dynamic_prop objects for equality. dynamic_prop
549 instances are equal iff they have the same type and storage. */
550 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
551
552 /* Compare two dynamic_prop objects for inequality. */
553 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
554 {
555 return !(l == r);
556 }
557
558 /* * Define a type's dynamic property node kind. */
559 enum dynamic_prop_node_kind
560 {
561 /* A property providing a type's data location.
562 Evaluating this field yields to the location of an object's data. */
563 DYN_PROP_DATA_LOCATION,
564
565 /* A property representing DW_AT_allocated. The presence of this attribute
566 indicates that the object of the type can be allocated/deallocated. */
567 DYN_PROP_ALLOCATED,
568
569 /* A property representing DW_AT_associated. The presence of this attribute
570 indicated that the object of the type can be associated. */
571 DYN_PROP_ASSOCIATED,
572
573 /* A property providing an array's byte stride. */
574 DYN_PROP_BYTE_STRIDE,
575
576 /* A property holding variant parts. */
577 DYN_PROP_VARIANT_PARTS,
578
579 /* A property holding the size of the type. */
580 DYN_PROP_BYTE_SIZE,
581 };
582
583 /* * List for dynamic type attributes. */
584 struct dynamic_prop_list
585 {
586 /* The kind of dynamic prop in this node. */
587 enum dynamic_prop_node_kind prop_kind;
588
589 /* The dynamic property itself. */
590 struct dynamic_prop prop;
591
592 /* A pointer to the next dynamic property. */
593 struct dynamic_prop_list *next;
594 };
595
596 /* * Determine which field of the union main_type.fields[x].loc is
597 used. */
598
599 enum field_loc_kind
600 {
601 FIELD_LOC_KIND_BITPOS, /**< bitpos */
602 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
603 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
604 FIELD_LOC_KIND_PHYSNAME, /**< physname */
605 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
606 };
607
608 /* * A discriminant to determine which field in the
609 main_type.type_specific union is being used, if any.
610
611 For types such as TYPE_CODE_FLT, the use of this
612 discriminant is really redundant, as we know from the type code
613 which field is going to be used. As such, it would be possible to
614 reduce the size of this enum in order to save a bit or two for
615 other fields of struct main_type. But, since we still have extra
616 room , and for the sake of clarity and consistency, we treat all fields
617 of the union the same way. */
618
619 enum type_specific_kind
620 {
621 TYPE_SPECIFIC_NONE,
622 TYPE_SPECIFIC_CPLUS_STUFF,
623 TYPE_SPECIFIC_GNAT_STUFF,
624 TYPE_SPECIFIC_FLOATFORMAT,
625 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
626 TYPE_SPECIFIC_FUNC,
627 TYPE_SPECIFIC_SELF_TYPE
628 };
629
630 union type_owner
631 {
632 struct objfile *objfile;
633 struct gdbarch *gdbarch;
634 };
635
636 union field_location
637 {
638 /* * Position of this field, counting in bits from start of
639 containing structure. For big-endian targets, it is the bit
640 offset to the MSB. For little-endian targets, it is the bit
641 offset to the LSB. */
642
643 LONGEST bitpos;
644
645 /* * Enum value. */
646 LONGEST enumval;
647
648 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
649 physaddr is the location (in the target) of the static
650 field. Otherwise, physname is the mangled label of the
651 static field. */
652
653 CORE_ADDR physaddr;
654 const char *physname;
655
656 /* * The field location can be computed by evaluating the
657 following DWARF block. Its DATA is allocated on
658 objfile_obstack - no CU load is needed to access it. */
659
660 struct dwarf2_locexpr_baton *dwarf_block;
661 };
662
663 struct field
664 {
665 struct type *type () const
666 {
667 return this->m_type;
668 }
669
670 void set_type (struct type *type)
671 {
672 this->m_type = type;
673 }
674
675 union field_location loc;
676
677 /* * For a function or member type, this is 1 if the argument is
678 marked artificial. Artificial arguments should not be shown
679 to the user. For TYPE_CODE_RANGE it is set if the specific
680 bound is not defined. */
681
682 unsigned int artificial : 1;
683
684 /* * Discriminant for union field_location. */
685
686 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
687
688 /* * Size of this field, in bits, or zero if not packed.
689 If non-zero in an array type, indicates the element size in
690 bits (used only in Ada at the moment).
691 For an unpacked field, the field's type's length
692 says how many bytes the field occupies. */
693
694 unsigned int bitsize : 28;
695
696 /* * In a struct or union type, type of this field.
697 - In a function or member type, type of this argument.
698 - In an array type, the domain-type of the array. */
699
700 struct type *m_type;
701
702 /* * Name of field, value or argument.
703 NULL for range bounds, array domains, and member function
704 arguments. */
705
706 const char *name;
707 };
708
709 struct range_bounds
710 {
711 ULONGEST bit_stride () const
712 {
713 if (this->flag_is_byte_stride)
714 return this->stride.const_val () * 8;
715 else
716 return this->stride.const_val ();
717 }
718
719 /* * Low bound of range. */
720
721 struct dynamic_prop low;
722
723 /* * High bound of range. */
724
725 struct dynamic_prop high;
726
727 /* The stride value for this range. This can be stored in bits or bytes
728 based on the value of BYTE_STRIDE_P. It is optional to have a stride
729 value, if this range has no stride value defined then this will be set
730 to the constant zero. */
731
732 struct dynamic_prop stride;
733
734 /* * The bias. Sometimes a range value is biased before storage.
735 The bias is added to the stored bits to form the true value. */
736
737 LONGEST bias;
738
739 /* True if HIGH range bound contains the number of elements in the
740 subrange. This affects how the final high bound is computed. */
741
742 unsigned int flag_upper_bound_is_count : 1;
743
744 /* True if LOW or/and HIGH are resolved into a static bound from
745 a dynamic one. */
746
747 unsigned int flag_bound_evaluated : 1;
748
749 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
750
751 unsigned int flag_is_byte_stride : 1;
752 };
753
754 /* Compare two range_bounds objects for equality. Simply does
755 memberwise comparison. */
756 extern bool operator== (const range_bounds &l, const range_bounds &r);
757
758 /* Compare two range_bounds objects for inequality. */
759 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
760 {
761 return !(l == r);
762 }
763
764 union type_specific
765 {
766 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
767 point to cplus_struct_default, a default static instance of a
768 struct cplus_struct_type. */
769
770 struct cplus_struct_type *cplus_stuff;
771
772 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
773 provides additional information. */
774
775 struct gnat_aux_type *gnat_stuff;
776
777 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
778 floatformat object that describes the floating-point value
779 that resides within the type. */
780
781 const struct floatformat *floatformat;
782
783 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
784
785 struct func_type *func_stuff;
786
787 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
788 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
789 is a member of. */
790
791 struct type *self_type;
792 };
793
794 /* * Main structure representing a type in GDB.
795
796 This structure is space-critical. Its layout has been tweaked to
797 reduce the space used. */
798
799 struct main_type
800 {
801 /* * Code for kind of type. */
802
803 ENUM_BITFIELD(type_code) code : 8;
804
805 /* * Flags about this type. These fields appear at this location
806 because they packs nicely here. See the TYPE_* macros for
807 documentation about these fields. */
808
809 unsigned int m_flag_unsigned : 1;
810 unsigned int m_flag_nosign : 1;
811 unsigned int m_flag_stub : 1;
812 unsigned int m_flag_target_stub : 1;
813 unsigned int m_flag_prototyped : 1;
814 unsigned int m_flag_varargs : 1;
815 unsigned int m_flag_vector : 1;
816 unsigned int m_flag_stub_supported : 1;
817 unsigned int m_flag_gnu_ifunc : 1;
818 unsigned int flag_fixed_instance : 1;
819 unsigned int flag_objfile_owned : 1;
820 unsigned int flag_endianity_not_default : 1;
821
822 /* * True if this type was declared with "class" rather than
823 "struct". */
824
825 unsigned int flag_declared_class : 1;
826
827 /* * True if this is an enum type with disjoint values. This
828 affects how the enum is printed. */
829
830 unsigned int flag_flag_enum : 1;
831
832 /* * A discriminant telling us which field of the type_specific
833 union is being used for this type, if any. */
834
835 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
836
837 /* * Number of fields described for this type. This field appears
838 at this location because it packs nicely here. */
839
840 short nfields;
841
842 /* * Name of this type, or NULL if none.
843
844 This is used for printing only. For looking up a name, look for
845 a symbol in the VAR_DOMAIN. This is generally allocated in the
846 objfile's obstack. However coffread.c uses malloc. */
847
848 const char *name;
849
850 /* * Every type is now associated with a particular objfile, and the
851 type is allocated on the objfile_obstack for that objfile. One
852 problem however, is that there are times when gdb allocates new
853 types while it is not in the process of reading symbols from a
854 particular objfile. Fortunately, these happen when the type
855 being created is a derived type of an existing type, such as in
856 lookup_pointer_type(). So we can just allocate the new type
857 using the same objfile as the existing type, but to do this we
858 need a backpointer to the objfile from the existing type. Yes
859 this is somewhat ugly, but without major overhaul of the internal
860 type system, it can't be avoided for now. */
861
862 union type_owner owner;
863
864 /* * For a pointer type, describes the type of object pointed to.
865 - For an array type, describes the type of the elements.
866 - For a function or method type, describes the type of the return value.
867 - For a range type, describes the type of the full range.
868 - For a complex type, describes the type of each coordinate.
869 - For a special record or union type encoding a dynamic-sized type
870 in GNAT, a memoized pointer to a corresponding static version of
871 the type.
872 - Unused otherwise. */
873
874 struct type *target_type;
875
876 /* * For structure and union types, a description of each field.
877 For set and pascal array types, there is one "field",
878 whose type is the domain type of the set or array.
879 For range types, there are two "fields",
880 the minimum and maximum values (both inclusive).
881 For enum types, each possible value is described by one "field".
882 For a function or method type, a "field" for each parameter.
883 For C++ classes, there is one field for each base class (if it is
884 a derived class) plus one field for each class data member. Member
885 functions are recorded elsewhere.
886
887 Using a pointer to a separate array of fields
888 allows all types to have the same size, which is useful
889 because we can allocate the space for a type before
890 we know what to put in it. */
891
892 union
893 {
894 struct field *fields;
895
896 /* * Union member used for range types. */
897
898 struct range_bounds *bounds;
899
900 /* If this is a scalar type, then this is its corresponding
901 complex type. */
902 struct type *complex_type;
903
904 } flds_bnds;
905
906 /* * Slot to point to additional language-specific fields of this
907 type. */
908
909 union type_specific type_specific;
910
911 /* * Contains all dynamic type properties. */
912 struct dynamic_prop_list *dyn_prop_list;
913 };
914
915 /* * Number of bits allocated for alignment. */
916
917 #define TYPE_ALIGN_BITS 8
918
919 /* * A ``struct type'' describes a particular instance of a type, with
920 some particular qualification. */
921
922 struct type
923 {
924 /* Get the type code of this type.
925
926 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
927 type, you need to do `check_typedef (type)->code ()`. */
928 type_code code () const
929 {
930 return this->main_type->code;
931 }
932
933 /* Set the type code of this type. */
934 void set_code (type_code code)
935 {
936 this->main_type->code = code;
937 }
938
939 /* Get the name of this type. */
940 const char *name () const
941 {
942 return this->main_type->name;
943 }
944
945 /* Set the name of this type. */
946 void set_name (const char *name)
947 {
948 this->main_type->name = name;
949 }
950
951 /* Get the number of fields of this type. */
952 int num_fields () const
953 {
954 return this->main_type->nfields;
955 }
956
957 /* Set the number of fields of this type. */
958 void set_num_fields (int num_fields)
959 {
960 this->main_type->nfields = num_fields;
961 }
962
963 /* Get the fields array of this type. */
964 struct field *fields () const
965 {
966 return this->main_type->flds_bnds.fields;
967 }
968
969 /* Get the field at index IDX. */
970 struct field &field (int idx) const
971 {
972 return this->fields ()[idx];
973 }
974
975 /* Set the fields array of this type. */
976 void set_fields (struct field *fields)
977 {
978 this->main_type->flds_bnds.fields = fields;
979 }
980
981 type *index_type () const
982 {
983 return this->field (0).type ();
984 }
985
986 void set_index_type (type *index_type)
987 {
988 this->field (0).set_type (index_type);
989 }
990
991 /* Get the bounds bounds of this type. The type must be a range type. */
992 range_bounds *bounds () const
993 {
994 switch (this->code ())
995 {
996 case TYPE_CODE_RANGE:
997 return this->main_type->flds_bnds.bounds;
998
999 case TYPE_CODE_ARRAY:
1000 case TYPE_CODE_STRING:
1001 return this->index_type ()->bounds ();
1002
1003 default:
1004 gdb_assert_not_reached
1005 ("type::bounds called on type with invalid code");
1006 }
1007 }
1008
1009 /* Set the bounds of this type. The type must be a range type. */
1010 void set_bounds (range_bounds *bounds)
1011 {
1012 gdb_assert (this->code () == TYPE_CODE_RANGE);
1013
1014 this->main_type->flds_bnds.bounds = bounds;
1015 }
1016
1017 ULONGEST bit_stride () const
1018 {
1019 return this->bounds ()->bit_stride ();
1020 }
1021
1022 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1023 the type is signed (unless TYPE_NOSIGN is set). */
1024
1025 bool is_unsigned () const
1026 {
1027 return this->main_type->m_flag_unsigned;
1028 }
1029
1030 void set_is_unsigned (bool is_unsigned)
1031 {
1032 this->main_type->m_flag_unsigned = is_unsigned;
1033 }
1034
1035 /* No sign for this type. In C++, "char", "signed char", and
1036 "unsigned char" are distinct types; so we need an extra flag to
1037 indicate the absence of a sign! */
1038
1039 bool has_no_signedness () const
1040 {
1041 return this->main_type->m_flag_nosign;
1042 }
1043
1044 void set_has_no_signedness (bool has_no_signedness)
1045 {
1046 this->main_type->m_flag_nosign = has_no_signedness;
1047 }
1048
1049 /* This appears in a type's flags word if it is a stub type (e.g.,
1050 if someone referenced a type that wasn't defined in a source file
1051 via (struct sir_not_appearing_in_this_film *)). */
1052
1053 bool is_stub () const
1054 {
1055 return this->main_type->m_flag_stub;
1056 }
1057
1058 void set_is_stub (bool is_stub)
1059 {
1060 this->main_type->m_flag_stub = is_stub;
1061 }
1062
1063 /* The target type of this type is a stub type, and this type needs
1064 to be updated if it gets un-stubbed in check_typedef. Used for
1065 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1066 based on the TYPE_LENGTH of the target type. Also, set for
1067 TYPE_CODE_TYPEDEF. */
1068
1069 bool target_is_stub () const
1070 {
1071 return this->main_type->m_flag_target_stub;
1072 }
1073
1074 void set_target_is_stub (bool target_is_stub)
1075 {
1076 this->main_type->m_flag_target_stub = target_is_stub;
1077 }
1078
1079 /* This is a function type which appears to have a prototype. We
1080 need this for function calls in order to tell us if it's necessary
1081 to coerce the args, or to just do the standard conversions. This
1082 is used with a short field. */
1083
1084 bool is_prototyped () const
1085 {
1086 return this->main_type->m_flag_prototyped;
1087 }
1088
1089 void set_is_prototyped (bool is_prototyped)
1090 {
1091 this->main_type->m_flag_prototyped = is_prototyped;
1092 }
1093
1094 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1095 to functions. */
1096
1097 bool has_varargs () const
1098 {
1099 return this->main_type->m_flag_varargs;
1100 }
1101
1102 void set_has_varargs (bool has_varargs)
1103 {
1104 this->main_type->m_flag_varargs = has_varargs;
1105 }
1106
1107 /* Identify a vector type. Gcc is handling this by adding an extra
1108 attribute to the array type. We slurp that in as a new flag of a
1109 type. This is used only in dwarf2read.c. */
1110
1111 bool is_vector () const
1112 {
1113 return this->main_type->m_flag_vector;
1114 }
1115
1116 void set_is_vector (bool is_vector)
1117 {
1118 this->main_type->m_flag_vector = is_vector;
1119 }
1120
1121 /* This debug target supports TYPE_STUB(t). In the unsupported case
1122 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1123 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1124 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1125
1126 bool stub_is_supported () const
1127 {
1128 return this->main_type->m_flag_stub_supported;
1129 }
1130
1131 void set_stub_is_supported (bool stub_is_supported)
1132 {
1133 this->main_type->m_flag_stub_supported = stub_is_supported;
1134 }
1135
1136 bool is_gnu_ifunc () const
1137 {
1138 return this->main_type->m_flag_gnu_ifunc;
1139 }
1140
1141 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1142 {
1143 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1144 }
1145
1146 /* * Return the dynamic property of the requested KIND from this type's
1147 list of dynamic properties. */
1148 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1149
1150 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1151 property to this type.
1152
1153 This function assumes that this type is objfile-owned. */
1154 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1155
1156 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1157 void remove_dyn_prop (dynamic_prop_node_kind kind);
1158
1159 /* * Type that is a pointer to this type.
1160 NULL if no such pointer-to type is known yet.
1161 The debugger may add the address of such a type
1162 if it has to construct one later. */
1163
1164 struct type *pointer_type;
1165
1166 /* * C++: also need a reference type. */
1167
1168 struct type *reference_type;
1169
1170 /* * A C++ rvalue reference type added in C++11. */
1171
1172 struct type *rvalue_reference_type;
1173
1174 /* * Variant chain. This points to a type that differs from this
1175 one only in qualifiers and length. Currently, the possible
1176 qualifiers are const, volatile, code-space, data-space, and
1177 address class. The length may differ only when one of the
1178 address class flags are set. The variants are linked in a
1179 circular ring and share MAIN_TYPE. */
1180
1181 struct type *chain;
1182
1183 /* * The alignment for this type. Zero means that the alignment was
1184 not specified in the debug info. Note that this is stored in a
1185 funny way: as the log base 2 (plus 1) of the alignment; so a
1186 value of 1 means the alignment is 1, and a value of 9 means the
1187 alignment is 256. */
1188
1189 unsigned align_log2 : TYPE_ALIGN_BITS;
1190
1191 /* * Flags specific to this instance of the type, indicating where
1192 on the ring we are.
1193
1194 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1195 binary or-ed with the target type, with a special case for
1196 address class and space class. For example if this typedef does
1197 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1198 instance flags are completely inherited from the target type. No
1199 qualifiers can be cleared by the typedef. See also
1200 check_typedef. */
1201 unsigned instance_flags : 9;
1202
1203 /* * Length of storage for a value of this type. The value is the
1204 expression in host bytes of what sizeof(type) would return. This
1205 size includes padding. For example, an i386 extended-precision
1206 floating point value really only occupies ten bytes, but most
1207 ABI's declare its size to be 12 bytes, to preserve alignment.
1208 A `struct type' representing such a floating-point type would
1209 have a `length' value of 12, even though the last two bytes are
1210 unused.
1211
1212 Since this field is expressed in host bytes, its value is appropriate
1213 to pass to memcpy and such (it is assumed that GDB itself always runs
1214 on an 8-bits addressable architecture). However, when using it for
1215 target address arithmetic (e.g. adding it to a target address), the
1216 type_length_units function should be used in order to get the length
1217 expressed in target addressable memory units. */
1218
1219 ULONGEST length;
1220
1221 /* * Core type, shared by a group of qualified types. */
1222
1223 struct main_type *main_type;
1224 };
1225
1226 struct fn_fieldlist
1227 {
1228
1229 /* * The overloaded name.
1230 This is generally allocated in the objfile's obstack.
1231 However stabsread.c sometimes uses malloc. */
1232
1233 const char *name;
1234
1235 /* * The number of methods with this name. */
1236
1237 int length;
1238
1239 /* * The list of methods. */
1240
1241 struct fn_field *fn_fields;
1242 };
1243
1244
1245
1246 struct fn_field
1247 {
1248 /* * If is_stub is clear, this is the mangled name which we can look
1249 up to find the address of the method (FIXME: it would be cleaner
1250 to have a pointer to the struct symbol here instead).
1251
1252 If is_stub is set, this is the portion of the mangled name which
1253 specifies the arguments. For example, "ii", if there are two int
1254 arguments, or "" if there are no arguments. See gdb_mangle_name
1255 for the conversion from this format to the one used if is_stub is
1256 clear. */
1257
1258 const char *physname;
1259
1260 /* * The function type for the method.
1261
1262 (This comment used to say "The return value of the method", but
1263 that's wrong. The function type is expected here, i.e. something
1264 with TYPE_CODE_METHOD, and *not* the return-value type). */
1265
1266 struct type *type;
1267
1268 /* * For virtual functions. First baseclass that defines this
1269 virtual function. */
1270
1271 struct type *fcontext;
1272
1273 /* Attributes. */
1274
1275 unsigned int is_const:1;
1276 unsigned int is_volatile:1;
1277 unsigned int is_private:1;
1278 unsigned int is_protected:1;
1279 unsigned int is_artificial:1;
1280
1281 /* * A stub method only has some fields valid (but they are enough
1282 to reconstruct the rest of the fields). */
1283
1284 unsigned int is_stub:1;
1285
1286 /* * True if this function is a constructor, false otherwise. */
1287
1288 unsigned int is_constructor : 1;
1289
1290 /* * True if this function is deleted, false otherwise. */
1291
1292 unsigned int is_deleted : 1;
1293
1294 /* * DW_AT_defaulted attribute for this function. The value is one
1295 of the DW_DEFAULTED constants. */
1296
1297 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1298
1299 /* * Unused. */
1300
1301 unsigned int dummy:6;
1302
1303 /* * Index into that baseclass's virtual function table, minus 2;
1304 else if static: VOFFSET_STATIC; else: 0. */
1305
1306 unsigned int voffset:16;
1307
1308 #define VOFFSET_STATIC 1
1309
1310 };
1311
1312 struct decl_field
1313 {
1314 /* * Unqualified name to be prefixed by owning class qualified
1315 name. */
1316
1317 const char *name;
1318
1319 /* * Type this typedef named NAME represents. */
1320
1321 struct type *type;
1322
1323 /* * True if this field was declared protected, false otherwise. */
1324 unsigned int is_protected : 1;
1325
1326 /* * True if this field was declared private, false otherwise. */
1327 unsigned int is_private : 1;
1328 };
1329
1330 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1331 TYPE_CODE_UNION nodes. */
1332
1333 struct cplus_struct_type
1334 {
1335 /* * Number of base classes this type derives from. The
1336 baseclasses are stored in the first N_BASECLASSES fields
1337 (i.e. the `fields' field of the struct type). The only fields
1338 of struct field that are used are: type, name, loc.bitpos. */
1339
1340 short n_baseclasses;
1341
1342 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1343 All access to this field must be through TYPE_VPTR_FIELDNO as one
1344 thing it does is check whether the field has been initialized.
1345 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1346 which for portability reasons doesn't initialize this field.
1347 TYPE_VPTR_FIELDNO returns -1 for this case.
1348
1349 If -1, we were unable to find the virtual function table pointer in
1350 initial symbol reading, and get_vptr_fieldno should be called to find
1351 it if possible. get_vptr_fieldno will update this field if possible.
1352 Otherwise the value is left at -1.
1353
1354 Unused if this type does not have virtual functions. */
1355
1356 short vptr_fieldno;
1357
1358 /* * Number of methods with unique names. All overloaded methods
1359 with the same name count only once. */
1360
1361 short nfn_fields;
1362
1363 /* * Number of template arguments. */
1364
1365 unsigned short n_template_arguments;
1366
1367 /* * One if this struct is a dynamic class, as defined by the
1368 Itanium C++ ABI: if it requires a virtual table pointer,
1369 because it or any of its base classes have one or more virtual
1370 member functions or virtual base classes. Minus one if not
1371 dynamic. Zero if not yet computed. */
1372
1373 int is_dynamic : 2;
1374
1375 /* * The calling convention for this type, fetched from the
1376 DW_AT_calling_convention attribute. The value is one of the
1377 DW_CC constants. */
1378
1379 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1380
1381 /* * The base class which defined the virtual function table pointer. */
1382
1383 struct type *vptr_basetype;
1384
1385 /* * For derived classes, the number of base classes is given by
1386 n_baseclasses and virtual_field_bits is a bit vector containing
1387 one bit per base class. If the base class is virtual, the
1388 corresponding bit will be set.
1389 I.E, given:
1390
1391 class A{};
1392 class B{};
1393 class C : public B, public virtual A {};
1394
1395 B is a baseclass of C; A is a virtual baseclass for C.
1396 This is a C++ 2.0 language feature. */
1397
1398 B_TYPE *virtual_field_bits;
1399
1400 /* * For classes with private fields, the number of fields is
1401 given by nfields and private_field_bits is a bit vector
1402 containing one bit per field.
1403
1404 If the field is private, the corresponding bit will be set. */
1405
1406 B_TYPE *private_field_bits;
1407
1408 /* * For classes with protected fields, the number of fields is
1409 given by nfields and protected_field_bits is a bit vector
1410 containing one bit per field.
1411
1412 If the field is private, the corresponding bit will be set. */
1413
1414 B_TYPE *protected_field_bits;
1415
1416 /* * For classes with fields to be ignored, either this is
1417 optimized out or this field has length 0. */
1418
1419 B_TYPE *ignore_field_bits;
1420
1421 /* * For classes, structures, and unions, a description of each
1422 field, which consists of an overloaded name, followed by the
1423 types of arguments that the method expects, and then the name
1424 after it has been renamed to make it distinct.
1425
1426 fn_fieldlists points to an array of nfn_fields of these. */
1427
1428 struct fn_fieldlist *fn_fieldlists;
1429
1430 /* * typedefs defined inside this class. typedef_field points to
1431 an array of typedef_field_count elements. */
1432
1433 struct decl_field *typedef_field;
1434
1435 unsigned typedef_field_count;
1436
1437 /* * The nested types defined by this type. nested_types points to
1438 an array of nested_types_count elements. */
1439
1440 struct decl_field *nested_types;
1441
1442 unsigned nested_types_count;
1443
1444 /* * The template arguments. This is an array with
1445 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1446 classes. */
1447
1448 struct symbol **template_arguments;
1449 };
1450
1451 /* * Struct used to store conversion rankings. */
1452
1453 struct rank
1454 {
1455 short rank;
1456
1457 /* * When two conversions are of the same type and therefore have
1458 the same rank, subrank is used to differentiate the two.
1459
1460 Eg: Two derived-class-pointer to base-class-pointer conversions
1461 would both have base pointer conversion rank, but the
1462 conversion with the shorter distance to the ancestor is
1463 preferable. 'subrank' would be used to reflect that. */
1464
1465 short subrank;
1466 };
1467
1468 /* * Used for ranking a function for overload resolution. */
1469
1470 typedef std::vector<rank> badness_vector;
1471
1472 /* * GNAT Ada-specific information for various Ada types. */
1473
1474 struct gnat_aux_type
1475 {
1476 /* * Parallel type used to encode information about dynamic types
1477 used in Ada (such as variant records, variable-size array,
1478 etc). */
1479 struct type* descriptive_type;
1480 };
1481
1482 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1483
1484 struct func_type
1485 {
1486 /* * The calling convention for targets supporting multiple ABIs.
1487 Right now this is only fetched from the Dwarf-2
1488 DW_AT_calling_convention attribute. The value is one of the
1489 DW_CC constants. */
1490
1491 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1492
1493 /* * Whether this function normally returns to its caller. It is
1494 set from the DW_AT_noreturn attribute if set on the
1495 DW_TAG_subprogram. */
1496
1497 unsigned int is_noreturn : 1;
1498
1499 /* * Only those DW_TAG_call_site's in this function that have
1500 DW_AT_call_tail_call set are linked in this list. Function
1501 without its tail call list complete
1502 (DW_AT_call_all_tail_calls or its superset
1503 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1504 DW_TAG_call_site's exist in such function. */
1505
1506 struct call_site *tail_call_list;
1507
1508 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1509 contains the method. */
1510
1511 struct type *self_type;
1512 };
1513
1514 /* struct call_site_parameter can be referenced in callees by several ways. */
1515
1516 enum call_site_parameter_kind
1517 {
1518 /* * Use field call_site_parameter.u.dwarf_reg. */
1519 CALL_SITE_PARAMETER_DWARF_REG,
1520
1521 /* * Use field call_site_parameter.u.fb_offset. */
1522 CALL_SITE_PARAMETER_FB_OFFSET,
1523
1524 /* * Use field call_site_parameter.u.param_offset. */
1525 CALL_SITE_PARAMETER_PARAM_OFFSET
1526 };
1527
1528 struct call_site_target
1529 {
1530 union field_location loc;
1531
1532 /* * Discriminant for union field_location. */
1533
1534 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1535 };
1536
1537 union call_site_parameter_u
1538 {
1539 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1540 as DWARF register number, for register passed
1541 parameters. */
1542
1543 int dwarf_reg;
1544
1545 /* * Offset from the callee's frame base, for stack passed
1546 parameters. This equals offset from the caller's stack
1547 pointer. */
1548
1549 CORE_ADDR fb_offset;
1550
1551 /* * Offset relative to the start of this PER_CU to
1552 DW_TAG_formal_parameter which is referenced by both
1553 caller and the callee. */
1554
1555 cu_offset param_cu_off;
1556 };
1557
1558 struct call_site_parameter
1559 {
1560 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1561
1562 union call_site_parameter_u u;
1563
1564 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1565
1566 const gdb_byte *value;
1567 size_t value_size;
1568
1569 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1570 It may be NULL if not provided by DWARF. */
1571
1572 const gdb_byte *data_value;
1573 size_t data_value_size;
1574 };
1575
1576 /* * A place where a function gets called from, represented by
1577 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1578
1579 struct call_site
1580 {
1581 /* * Address of the first instruction after this call. It must be
1582 the first field as we overload core_addr_hash and core_addr_eq
1583 for it. */
1584
1585 CORE_ADDR pc;
1586
1587 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1588
1589 struct call_site *tail_call_next;
1590
1591 /* * Describe DW_AT_call_target. Missing attribute uses
1592 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1593
1594 struct call_site_target target;
1595
1596 /* * Size of the PARAMETER array. */
1597
1598 unsigned parameter_count;
1599
1600 /* * CU of the function where the call is located. It gets used
1601 for DWARF blocks execution in the parameter array below. */
1602
1603 dwarf2_per_cu_data *per_cu;
1604
1605 /* objfile of the function where the call is located. */
1606
1607 dwarf2_per_objfile *per_objfile;
1608
1609 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1610
1611 struct call_site_parameter parameter[1];
1612 };
1613
1614 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1615 static structure. */
1616
1617 extern const struct cplus_struct_type cplus_struct_default;
1618
1619 extern void allocate_cplus_struct_type (struct type *);
1620
1621 #define INIT_CPLUS_SPECIFIC(type) \
1622 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1623 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1624 &cplus_struct_default)
1625
1626 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1627
1628 #define HAVE_CPLUS_STRUCT(type) \
1629 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1630 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1631
1632 #define INIT_NONE_SPECIFIC(type) \
1633 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1634 TYPE_MAIN_TYPE (type)->type_specific = {})
1635
1636 extern const struct gnat_aux_type gnat_aux_default;
1637
1638 extern void allocate_gnat_aux_type (struct type *);
1639
1640 #define INIT_GNAT_SPECIFIC(type) \
1641 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1642 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1643 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1644 /* * A macro that returns non-zero if the type-specific data should be
1645 read as "gnat-stuff". */
1646 #define HAVE_GNAT_AUX_INFO(type) \
1647 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1648
1649 /* * True if TYPE is known to be an Ada type of some kind. */
1650 #define ADA_TYPE_P(type) \
1651 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1652 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1653 && TYPE_FIXED_INSTANCE (type)))
1654
1655 #define INIT_FUNC_SPECIFIC(type) \
1656 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1657 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1658 TYPE_ZALLOC (type, \
1659 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1660
1661 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1662 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1663 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1664 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1665 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1666 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1667 #define TYPE_CHAIN(thistype) (thistype)->chain
1668 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1669 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1670 so you only have to call check_typedef once. Since allocate_value
1671 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1672 #define TYPE_LENGTH(thistype) (thistype)->length
1673
1674 /* * Return the alignment of the type in target addressable memory
1675 units, or 0 if no alignment was specified. */
1676 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1677
1678 /* * Return the alignment of the type in target addressable memory
1679 units, or 0 if no alignment was specified. */
1680 extern unsigned type_raw_align (struct type *);
1681
1682 /* * Return the alignment of the type in target addressable memory
1683 units. Return 0 if the alignment cannot be determined; but note
1684 that this makes an effort to compute the alignment even it it was
1685 not specified in the debug info. */
1686 extern unsigned type_align (struct type *);
1687
1688 /* * Set the alignment of the type. The alignment must be a power of
1689 2. Returns false if the given value does not fit in the available
1690 space in struct type. */
1691 extern bool set_type_align (struct type *, ULONGEST);
1692
1693 /* Property accessors for the type data location. */
1694 #define TYPE_DATA_LOCATION(thistype) \
1695 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1696 #define TYPE_DATA_LOCATION_BATON(thistype) \
1697 TYPE_DATA_LOCATION (thistype)->data.baton
1698 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1699 (TYPE_DATA_LOCATION (thistype)->const_val ())
1700 #define TYPE_DATA_LOCATION_KIND(thistype) \
1701 (TYPE_DATA_LOCATION (thistype)->kind ())
1702 #define TYPE_DYNAMIC_LENGTH(thistype) \
1703 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1704
1705 /* Property accessors for the type allocated/associated. */
1706 #define TYPE_ALLOCATED_PROP(thistype) \
1707 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1708 #define TYPE_ASSOCIATED_PROP(thistype) \
1709 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1710
1711 /* C++ */
1712
1713 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1714 /* Do not call this, use TYPE_SELF_TYPE. */
1715 extern struct type *internal_type_self_type (struct type *);
1716 extern void set_type_self_type (struct type *, struct type *);
1717
1718 extern int internal_type_vptr_fieldno (struct type *);
1719 extern void set_type_vptr_fieldno (struct type *, int);
1720 extern struct type *internal_type_vptr_basetype (struct type *);
1721 extern void set_type_vptr_basetype (struct type *, struct type *);
1722 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1723 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1724
1725 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1726 #define TYPE_SPECIFIC_FIELD(thistype) \
1727 TYPE_MAIN_TYPE(thistype)->type_specific_field
1728 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1729 where we're trying to print an Ada array using the C language.
1730 In that case, there is no "cplus_stuff", but the C language assumes
1731 that there is. What we do, in that case, is pretend that there is
1732 an implicit one which is the default cplus stuff. */
1733 #define TYPE_CPLUS_SPECIFIC(thistype) \
1734 (!HAVE_CPLUS_STRUCT(thistype) \
1735 ? (struct cplus_struct_type*)&cplus_struct_default \
1736 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1737 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1738 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1739 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1740 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1741 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1742 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1743 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1744 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1745 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1746 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1747 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1748 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1749 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1750 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1751 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1752 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1753
1754 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1755 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1756 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1757
1758 #define FIELD_NAME(thisfld) ((thisfld).name)
1759 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1760 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1761 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1762 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1763 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1764 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1765 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1766 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1767 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1768 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1769 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1770 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1771 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1772 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1773 #define SET_FIELD_PHYSNAME(thisfld, name) \
1774 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1775 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1776 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1777 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1778 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1779 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1780 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1781 FIELD_DWARF_BLOCK (thisfld) = (addr))
1782 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1783 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1784
1785 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1786 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1787 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1788 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1789 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1790 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1791 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1792 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1793 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1794 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1795
1796 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1797 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1798 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1799 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1800 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1801 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1802 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1803 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1804 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1805 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1806 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1807 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1808 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1809 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1810 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1811 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1812 #define TYPE_FIELD_PRIVATE(thistype, n) \
1813 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1814 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1815 #define TYPE_FIELD_PROTECTED(thistype, n) \
1816 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1817 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1818 #define TYPE_FIELD_IGNORE(thistype, n) \
1819 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1820 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1821 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1822 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1823 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1824
1825 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1826 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1827 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1828 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1829 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1830
1831 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1832 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1833 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1834 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1835 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1836 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1837
1838 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1839 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1840 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1841 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1842 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1843 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1844 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1845 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1846 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1847 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1848 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1849 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1850 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1851 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1852 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1853 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1854 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1855
1856 /* Accessors for typedefs defined by a class. */
1857 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1858 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1859 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1860 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1861 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1862 TYPE_TYPEDEF_FIELD (thistype, n).name
1863 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1864 TYPE_TYPEDEF_FIELD (thistype, n).type
1865 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1866 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1867 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1868 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1869 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1870 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1871
1872 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1873 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1874 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1875 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1876 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1877 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1878 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1879 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1880 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1881 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1882 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1883 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1884 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1885 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1886
1887 #define TYPE_IS_OPAQUE(thistype) \
1888 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1889 || ((thistype)->code () == TYPE_CODE_UNION)) \
1890 && ((thistype)->num_fields () == 0) \
1891 && (!HAVE_CPLUS_STRUCT (thistype) \
1892 || TYPE_NFN_FIELDS (thistype) == 0) \
1893 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1894
1895 /* * A helper macro that returns the name of a type or "unnamed type"
1896 if the type has no name. */
1897
1898 #define TYPE_SAFE_NAME(type) \
1899 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1900
1901 /* * A helper macro that returns the name of an error type. If the
1902 type has a name, it is used; otherwise, a default is used. */
1903
1904 #define TYPE_ERROR_NAME(type) \
1905 (type->name () ? type->name () : _("<error type>"))
1906
1907 /* Given TYPE, return its floatformat. */
1908 const struct floatformat *floatformat_from_type (const struct type *type);
1909
1910 struct builtin_type
1911 {
1912 /* Integral types. */
1913
1914 /* Implicit size/sign (based on the architecture's ABI). */
1915 struct type *builtin_void;
1916 struct type *builtin_char;
1917 struct type *builtin_short;
1918 struct type *builtin_int;
1919 struct type *builtin_long;
1920 struct type *builtin_signed_char;
1921 struct type *builtin_unsigned_char;
1922 struct type *builtin_unsigned_short;
1923 struct type *builtin_unsigned_int;
1924 struct type *builtin_unsigned_long;
1925 struct type *builtin_bfloat16;
1926 struct type *builtin_half;
1927 struct type *builtin_float;
1928 struct type *builtin_double;
1929 struct type *builtin_long_double;
1930 struct type *builtin_complex;
1931 struct type *builtin_double_complex;
1932 struct type *builtin_string;
1933 struct type *builtin_bool;
1934 struct type *builtin_long_long;
1935 struct type *builtin_unsigned_long_long;
1936 struct type *builtin_decfloat;
1937 struct type *builtin_decdouble;
1938 struct type *builtin_declong;
1939
1940 /* "True" character types.
1941 We use these for the '/c' print format, because c_char is just a
1942 one-byte integral type, which languages less laid back than C
1943 will print as ... well, a one-byte integral type. */
1944 struct type *builtin_true_char;
1945 struct type *builtin_true_unsigned_char;
1946
1947 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1948 is for when an architecture needs to describe a register that has
1949 no size. */
1950 struct type *builtin_int0;
1951 struct type *builtin_int8;
1952 struct type *builtin_uint8;
1953 struct type *builtin_int16;
1954 struct type *builtin_uint16;
1955 struct type *builtin_int24;
1956 struct type *builtin_uint24;
1957 struct type *builtin_int32;
1958 struct type *builtin_uint32;
1959 struct type *builtin_int64;
1960 struct type *builtin_uint64;
1961 struct type *builtin_int128;
1962 struct type *builtin_uint128;
1963
1964 /* Wide character types. */
1965 struct type *builtin_char16;
1966 struct type *builtin_char32;
1967 struct type *builtin_wchar;
1968
1969 /* Pointer types. */
1970
1971 /* * `pointer to data' type. Some target platforms use an implicitly
1972 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1973 struct type *builtin_data_ptr;
1974
1975 /* * `pointer to function (returning void)' type. Harvard
1976 architectures mean that ABI function and code pointers are not
1977 interconvertible. Similarly, since ANSI, C standards have
1978 explicitly said that pointers to functions and pointers to data
1979 are not interconvertible --- that is, you can't cast a function
1980 pointer to void * and back, and expect to get the same value.
1981 However, all function pointer types are interconvertible, so void
1982 (*) () can server as a generic function pointer. */
1983
1984 struct type *builtin_func_ptr;
1985
1986 /* * `function returning pointer to function (returning void)' type.
1987 The final void return type is not significant for it. */
1988
1989 struct type *builtin_func_func;
1990
1991 /* Special-purpose types. */
1992
1993 /* * This type is used to represent a GDB internal function. */
1994
1995 struct type *internal_fn;
1996
1997 /* * This type is used to represent an xmethod. */
1998 struct type *xmethod;
1999 };
2000
2001 /* * Return the type table for the specified architecture. */
2002
2003 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2004
2005 /* * Per-objfile types used by symbol readers. */
2006
2007 struct objfile_type
2008 {
2009 /* Basic types based on the objfile architecture. */
2010 struct type *builtin_void;
2011 struct type *builtin_char;
2012 struct type *builtin_short;
2013 struct type *builtin_int;
2014 struct type *builtin_long;
2015 struct type *builtin_long_long;
2016 struct type *builtin_signed_char;
2017 struct type *builtin_unsigned_char;
2018 struct type *builtin_unsigned_short;
2019 struct type *builtin_unsigned_int;
2020 struct type *builtin_unsigned_long;
2021 struct type *builtin_unsigned_long_long;
2022 struct type *builtin_half;
2023 struct type *builtin_float;
2024 struct type *builtin_double;
2025 struct type *builtin_long_double;
2026
2027 /* * This type is used to represent symbol addresses. */
2028 struct type *builtin_core_addr;
2029
2030 /* * This type represents a type that was unrecognized in symbol
2031 read-in. */
2032 struct type *builtin_error;
2033
2034 /* * Types used for symbols with no debug information. */
2035 struct type *nodebug_text_symbol;
2036 struct type *nodebug_text_gnu_ifunc_symbol;
2037 struct type *nodebug_got_plt_symbol;
2038 struct type *nodebug_data_symbol;
2039 struct type *nodebug_unknown_symbol;
2040 struct type *nodebug_tls_symbol;
2041 };
2042
2043 /* * Return the type table for the specified objfile. */
2044
2045 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2046
2047 /* Explicit floating-point formats. See "floatformat.h". */
2048 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2049 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2050 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2051 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2052 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2053 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2054 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2055 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2056 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2057 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2058 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2059 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2060 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2061
2062 /* Allocate space for storing data associated with a particular
2063 type. We ensure that the space is allocated using the same
2064 mechanism that was used to allocate the space for the type
2065 structure itself. I.e. if the type is on an objfile's
2066 objfile_obstack, then the space for data associated with that type
2067 will also be allocated on the objfile_obstack. If the type is
2068 associated with a gdbarch, then the space for data associated with that
2069 type will also be allocated on the gdbarch_obstack.
2070
2071 If a type is not associated with neither an objfile or a gdbarch then
2072 you should not use this macro to allocate space for data, instead you
2073 should call xmalloc directly, and ensure the memory is correctly freed
2074 when it is no longer needed. */
2075
2076 #define TYPE_ALLOC(t,size) \
2077 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2078 ? &TYPE_OBJFILE (t)->objfile_obstack \
2079 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2080 size))
2081
2082
2083 /* See comment on TYPE_ALLOC. */
2084
2085 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2086
2087 /* Use alloc_type to allocate a type owned by an objfile. Use
2088 alloc_type_arch to allocate a type owned by an architecture. Use
2089 alloc_type_copy to allocate a type with the same owner as a
2090 pre-existing template type, no matter whether objfile or
2091 gdbarch. */
2092 extern struct type *alloc_type (struct objfile *);
2093 extern struct type *alloc_type_arch (struct gdbarch *);
2094 extern struct type *alloc_type_copy (const struct type *);
2095
2096 /* * Return the type's architecture. For types owned by an
2097 architecture, that architecture is returned. For types owned by an
2098 objfile, that objfile's architecture is returned. */
2099
2100 extern struct gdbarch *get_type_arch (const struct type *);
2101
2102 /* * This returns the target type (or NULL) of TYPE, also skipping
2103 past typedefs. */
2104
2105 extern struct type *get_target_type (struct type *type);
2106
2107 /* Return the equivalent of TYPE_LENGTH, but in number of target
2108 addressable memory units of the associated gdbarch instead of bytes. */
2109
2110 extern unsigned int type_length_units (struct type *type);
2111
2112 /* * Helper function to construct objfile-owned types. */
2113
2114 extern struct type *init_type (struct objfile *, enum type_code, int,
2115 const char *);
2116 extern struct type *init_integer_type (struct objfile *, int, int,
2117 const char *);
2118 extern struct type *init_character_type (struct objfile *, int, int,
2119 const char *);
2120 extern struct type *init_boolean_type (struct objfile *, int, int,
2121 const char *);
2122 extern struct type *init_float_type (struct objfile *, int, const char *,
2123 const struct floatformat **,
2124 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2125 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2126 extern struct type *init_complex_type (const char *, struct type *);
2127 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2128 struct type *);
2129
2130 /* Helper functions to construct architecture-owned types. */
2131 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2132 const char *);
2133 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2134 const char *);
2135 extern struct type *arch_character_type (struct gdbarch *, int, int,
2136 const char *);
2137 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2138 const char *);
2139 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2140 const struct floatformat **);
2141 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2142 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2143 struct type *);
2144
2145 /* Helper functions to construct a struct or record type. An
2146 initially empty type is created using arch_composite_type().
2147 Fields are then added using append_composite_type_field*(). A union
2148 type has its size set to the largest field. A struct type has each
2149 field packed against the previous. */
2150
2151 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2152 const char *name, enum type_code code);
2153 extern void append_composite_type_field (struct type *t, const char *name,
2154 struct type *field);
2155 extern void append_composite_type_field_aligned (struct type *t,
2156 const char *name,
2157 struct type *field,
2158 int alignment);
2159 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2160 struct type *field);
2161
2162 /* Helper functions to construct a bit flags type. An initially empty
2163 type is created using arch_flag_type(). Flags are then added using
2164 append_flag_type_field() and append_flag_type_flag(). */
2165 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2166 const char *name, int bit);
2167 extern void append_flags_type_field (struct type *type,
2168 int start_bitpos, int nr_bits,
2169 struct type *field_type, const char *name);
2170 extern void append_flags_type_flag (struct type *type, int bitpos,
2171 const char *name);
2172
2173 extern void make_vector_type (struct type *array_type);
2174 extern struct type *init_vector_type (struct type *elt_type, int n);
2175
2176 extern struct type *lookup_reference_type (struct type *, enum type_code);
2177 extern struct type *lookup_lvalue_reference_type (struct type *);
2178 extern struct type *lookup_rvalue_reference_type (struct type *);
2179
2180
2181 extern struct type *make_reference_type (struct type *, struct type **,
2182 enum type_code);
2183
2184 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2185
2186 extern struct type *make_restrict_type (struct type *);
2187
2188 extern struct type *make_unqualified_type (struct type *);
2189
2190 extern struct type *make_atomic_type (struct type *);
2191
2192 extern void replace_type (struct type *, struct type *);
2193
2194 extern int address_space_name_to_int (struct gdbarch *, const char *);
2195
2196 extern const char *address_space_int_to_name (struct gdbarch *, int);
2197
2198 extern struct type *make_type_with_address_space (struct type *type,
2199 int space_identifier);
2200
2201 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2202
2203 extern struct type *lookup_methodptr_type (struct type *);
2204
2205 extern void smash_to_method_type (struct type *type, struct type *self_type,
2206 struct type *to_type, struct field *args,
2207 int nargs, int varargs);
2208
2209 extern void smash_to_memberptr_type (struct type *, struct type *,
2210 struct type *);
2211
2212 extern void smash_to_methodptr_type (struct type *, struct type *);
2213
2214 extern struct type *allocate_stub_method (struct type *);
2215
2216 extern const char *type_name_or_error (struct type *type);
2217
2218 struct struct_elt
2219 {
2220 /* The field of the element, or NULL if no element was found. */
2221 struct field *field;
2222
2223 /* The bit offset of the element in the parent structure. */
2224 LONGEST offset;
2225 };
2226
2227 /* Given a type TYPE, lookup the field and offset of the component named
2228 NAME.
2229
2230 TYPE can be either a struct or union, or a pointer or reference to
2231 a struct or union. If it is a pointer or reference, its target
2232 type is automatically used. Thus '.' and '->' are interchangable,
2233 as specified for the definitions of the expression element types
2234 STRUCTOP_STRUCT and STRUCTOP_PTR.
2235
2236 If NOERR is nonzero, the returned structure will have field set to
2237 NULL if there is no component named NAME.
2238
2239 If the component NAME is a field in an anonymous substructure of
2240 TYPE, the returned offset is a "global" offset relative to TYPE
2241 rather than an offset within the substructure. */
2242
2243 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2244
2245 /* Given a type TYPE, lookup the type of the component named NAME.
2246
2247 TYPE can be either a struct or union, or a pointer or reference to
2248 a struct or union. If it is a pointer or reference, its target
2249 type is automatically used. Thus '.' and '->' are interchangable,
2250 as specified for the definitions of the expression element types
2251 STRUCTOP_STRUCT and STRUCTOP_PTR.
2252
2253 If NOERR is nonzero, return NULL if there is no component named
2254 NAME. */
2255
2256 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2257
2258 extern struct type *make_pointer_type (struct type *, struct type **);
2259
2260 extern struct type *lookup_pointer_type (struct type *);
2261
2262 extern struct type *make_function_type (struct type *, struct type **);
2263
2264 extern struct type *lookup_function_type (struct type *);
2265
2266 extern struct type *lookup_function_type_with_arguments (struct type *,
2267 int,
2268 struct type **);
2269
2270 extern struct type *create_static_range_type (struct type *, struct type *,
2271 LONGEST, LONGEST);
2272
2273
2274 extern struct type *create_array_type_with_stride
2275 (struct type *, struct type *, struct type *,
2276 struct dynamic_prop *, unsigned int);
2277
2278 extern struct type *create_range_type (struct type *, struct type *,
2279 const struct dynamic_prop *,
2280 const struct dynamic_prop *,
2281 LONGEST);
2282
2283 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2284 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2285 stride. */
2286
2287 extern struct type * create_range_type_with_stride
2288 (struct type *result_type, struct type *index_type,
2289 const struct dynamic_prop *low_bound,
2290 const struct dynamic_prop *high_bound, LONGEST bias,
2291 const struct dynamic_prop *stride, bool byte_stride_p);
2292
2293 extern struct type *create_array_type (struct type *, struct type *,
2294 struct type *);
2295
2296 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2297
2298 extern struct type *create_string_type (struct type *, struct type *,
2299 struct type *);
2300 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2301
2302 extern struct type *create_set_type (struct type *, struct type *);
2303
2304 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2305 const char *);
2306
2307 extern struct type *lookup_signed_typename (const struct language_defn *,
2308 const char *);
2309
2310 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2311
2312 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2313
2314 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2315 ADDR specifies the location of the variable the type is bound to.
2316 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2317 static properties is returned. */
2318 extern struct type *resolve_dynamic_type
2319 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2320 CORE_ADDR addr);
2321
2322 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2323 extern int is_dynamic_type (struct type *type);
2324
2325 extern struct type *check_typedef (struct type *);
2326
2327 extern void check_stub_method_group (struct type *, int);
2328
2329 extern char *gdb_mangle_name (struct type *, int, int);
2330
2331 extern struct type *lookup_typename (const struct language_defn *,
2332 const char *, const struct block *, int);
2333
2334 extern struct type *lookup_template_type (const char *, struct type *,
2335 const struct block *);
2336
2337 extern int get_vptr_fieldno (struct type *, struct type **);
2338
2339 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2340
2341 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2342 LONGEST *high_bound);
2343
2344 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2345
2346 extern int class_types_same_p (const struct type *, const struct type *);
2347
2348 extern int is_ancestor (struct type *, struct type *);
2349
2350 extern int is_public_ancestor (struct type *, struct type *);
2351
2352 extern int is_unique_ancestor (struct type *, struct value *);
2353
2354 /* Overload resolution */
2355
2356 /* * Badness if parameter list length doesn't match arg list length. */
2357 extern const struct rank LENGTH_MISMATCH_BADNESS;
2358
2359 /* * Dummy badness value for nonexistent parameter positions. */
2360 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2361 /* * Badness if no conversion among types. */
2362 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2363
2364 /* * Badness of an exact match. */
2365 extern const struct rank EXACT_MATCH_BADNESS;
2366
2367 /* * Badness of integral promotion. */
2368 extern const struct rank INTEGER_PROMOTION_BADNESS;
2369 /* * Badness of floating promotion. */
2370 extern const struct rank FLOAT_PROMOTION_BADNESS;
2371 /* * Badness of converting a derived class pointer
2372 to a base class pointer. */
2373 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2374 /* * Badness of integral conversion. */
2375 extern const struct rank INTEGER_CONVERSION_BADNESS;
2376 /* * Badness of floating conversion. */
2377 extern const struct rank FLOAT_CONVERSION_BADNESS;
2378 /* * Badness of integer<->floating conversions. */
2379 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2380 /* * Badness of conversion of pointer to void pointer. */
2381 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2382 /* * Badness of conversion to boolean. */
2383 extern const struct rank BOOL_CONVERSION_BADNESS;
2384 /* * Badness of converting derived to base class. */
2385 extern const struct rank BASE_CONVERSION_BADNESS;
2386 /* * Badness of converting from non-reference to reference. Subrank
2387 is the type of reference conversion being done. */
2388 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2389 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2390 /* * Conversion to rvalue reference. */
2391 #define REFERENCE_CONVERSION_RVALUE 1
2392 /* * Conversion to const lvalue reference. */
2393 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2394
2395 /* * Badness of converting integer 0 to NULL pointer. */
2396 extern const struct rank NULL_POINTER_CONVERSION;
2397 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2398 being done. */
2399 extern const struct rank CV_CONVERSION_BADNESS;
2400 #define CV_CONVERSION_CONST 1
2401 #define CV_CONVERSION_VOLATILE 2
2402
2403 /* Non-standard conversions allowed by the debugger */
2404
2405 /* * Converting a pointer to an int is usually OK. */
2406 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2407
2408 /* * Badness of converting a (non-zero) integer constant
2409 to a pointer. */
2410 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2411
2412 extern struct rank sum_ranks (struct rank a, struct rank b);
2413 extern int compare_ranks (struct rank a, struct rank b);
2414
2415 extern int compare_badness (const badness_vector &,
2416 const badness_vector &);
2417
2418 extern badness_vector rank_function (gdb::array_view<type *> parms,
2419 gdb::array_view<value *> args);
2420
2421 extern struct rank rank_one_type (struct type *, struct type *,
2422 struct value *);
2423
2424 extern void recursive_dump_type (struct type *, int);
2425
2426 extern int field_is_static (struct field *);
2427
2428 /* printcmd.c */
2429
2430 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2431 const struct value_print_options *,
2432 int, struct ui_file *);
2433
2434 extern int can_dereference (struct type *);
2435
2436 extern int is_integral_type (struct type *);
2437
2438 extern int is_floating_type (struct type *);
2439
2440 extern int is_scalar_type (struct type *type);
2441
2442 extern int is_scalar_type_recursive (struct type *);
2443
2444 extern int class_or_union_p (const struct type *);
2445
2446 extern void maintenance_print_type (const char *, int);
2447
2448 extern htab_t create_copied_types_hash (struct objfile *objfile);
2449
2450 extern struct type *copy_type_recursive (struct objfile *objfile,
2451 struct type *type,
2452 htab_t copied_types);
2453
2454 extern struct type *copy_type (const struct type *type);
2455
2456 extern bool types_equal (struct type *, struct type *);
2457
2458 extern bool types_deeply_equal (struct type *, struct type *);
2459
2460 extern int type_not_allocated (const struct type *type);
2461
2462 extern int type_not_associated (const struct type *type);
2463
2464 /* * When the type includes explicit byte ordering, return that.
2465 Otherwise, the byte ordering from gdbarch_byte_order for
2466 get_type_arch is returned. */
2467
2468 extern enum bfd_endian type_byte_order (const struct type *type);
2469
2470 /* A flag to enable printing of debugging information of C++
2471 overloading. */
2472
2473 extern unsigned int overload_debug;
2474
2475 #endif /* GDBTYPES_H */
This page took 0.087772 seconds and 5 git commands to generate.