gdb: add type::is_flag_enum / type::set_is_flag_enum
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 #define TYPE_FLAG_ENUM(t) ((t)->is_flag_enum ())
224
225 /* * Constant type. If this is set, the corresponding type has a
226 const modifier. */
227
228 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
229
230 /* * Volatile type. If this is set, the corresponding type has a
231 volatile modifier. */
232
233 #define TYPE_VOLATILE(t) \
234 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
235
236 /* * Restrict type. If this is set, the corresponding type has a
237 restrict modifier. */
238
239 #define TYPE_RESTRICT(t) \
240 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
241
242 /* * Atomic type. If this is set, the corresponding type has an
243 _Atomic modifier. */
244
245 #define TYPE_ATOMIC(t) \
246 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
247
248 /* * True if this type represents either an lvalue or lvalue reference type. */
249
250 #define TYPE_IS_REFERENCE(t) \
251 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
252
253 /* * True if this type is allocatable. */
254 #define TYPE_IS_ALLOCATABLE(t) \
255 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
256
257 /* * True if this type has variant parts. */
258 #define TYPE_HAS_VARIANT_PARTS(t) \
259 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
260
261 /* * True if this type has a dynamic length. */
262 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
263 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
264
265 /* * Instruction-space delimited type. This is for Harvard architectures
266 which have separate instruction and data address spaces (and perhaps
267 others).
268
269 GDB usually defines a flat address space that is a superset of the
270 architecture's two (or more) address spaces, but this is an extension
271 of the architecture's model.
272
273 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
274 resides in instruction memory, even if its address (in the extended
275 flat address space) does not reflect this.
276
277 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
278 corresponding type resides in the data memory space, even if
279 this is not indicated by its (flat address space) address.
280
281 If neither flag is set, the default space for functions / methods
282 is instruction space, and for data objects is data memory. */
283
284 #define TYPE_CODE_SPACE(t) \
285 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
286
287 #define TYPE_DATA_SPACE(t) \
288 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
289
290 /* * Address class flags. Some environments provide for pointers
291 whose size is different from that of a normal pointer or address
292 types where the bits are interpreted differently than normal
293 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
294 target specific ways to represent these different types of address
295 classes. */
296
297 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
298 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
299 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
300 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
301 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
302 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
303 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
304 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
305
306 /* * Information about a single discriminant. */
307
308 struct discriminant_range
309 {
310 /* * The range of values for the variant. This is an inclusive
311 range. */
312 ULONGEST low, high;
313
314 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
315 is true if this should be an unsigned comparison; false for
316 signed. */
317 bool contains (ULONGEST value, bool is_unsigned) const
318 {
319 if (is_unsigned)
320 return value >= low && value <= high;
321 LONGEST valuel = (LONGEST) value;
322 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
323 }
324 };
325
326 struct variant_part;
327
328 /* * A single variant. A variant has a list of discriminant values.
329 When the discriminator matches one of these, the variant is
330 enabled. Each variant controls zero or more fields; and may also
331 control other variant parts as well. This struct corresponds to
332 DW_TAG_variant in DWARF. */
333
334 struct variant : allocate_on_obstack
335 {
336 /* * The discriminant ranges for this variant. */
337 gdb::array_view<discriminant_range> discriminants;
338
339 /* * The fields controlled by this variant. This is inclusive on
340 the low end and exclusive on the high end. A variant may not
341 control any fields, in which case the two values will be equal.
342 These are indexes into the type's array of fields. */
343 int first_field;
344 int last_field;
345
346 /* * Variant parts controlled by this variant. */
347 gdb::array_view<variant_part> parts;
348
349 /* * Return true if this is the default variant. The default
350 variant can be recognized because it has no associated
351 discriminants. */
352 bool is_default () const
353 {
354 return discriminants.empty ();
355 }
356
357 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
358 if this should be an unsigned comparison; false for signed. */
359 bool matches (ULONGEST value, bool is_unsigned) const;
360 };
361
362 /* * A variant part. Each variant part has an optional discriminant
363 and holds an array of variants. This struct corresponds to
364 DW_TAG_variant_part in DWARF. */
365
366 struct variant_part : allocate_on_obstack
367 {
368 /* * The index of the discriminant field in the outer type. This is
369 an index into the type's array of fields. If this is -1, there
370 is no discriminant, and only the default variant can be
371 considered to be selected. */
372 int discriminant_index;
373
374 /* * True if this discriminant is unsigned; false if signed. This
375 comes from the type of the discriminant. */
376 bool is_unsigned;
377
378 /* * The variants that are controlled by this variant part. Note
379 that these will always be sorted by field number. */
380 gdb::array_view<variant> variants;
381 };
382
383
384 enum dynamic_prop_kind
385 {
386 PROP_UNDEFINED, /* Not defined. */
387 PROP_CONST, /* Constant. */
388 PROP_ADDR_OFFSET, /* Address offset. */
389 PROP_LOCEXPR, /* Location expression. */
390 PROP_LOCLIST, /* Location list. */
391 PROP_VARIANT_PARTS, /* Variant parts. */
392 PROP_TYPE, /* Type. */
393 };
394
395 union dynamic_prop_data
396 {
397 /* Storage for constant property. */
398
399 LONGEST const_val;
400
401 /* Storage for dynamic property. */
402
403 void *baton;
404
405 /* Storage of variant parts for a type. A type with variant parts
406 has all its fields "linearized" -- stored in a single field
407 array, just as if they had all been declared that way. The
408 variant parts are attached via a dynamic property, and then are
409 used to control which fields end up in the final type during
410 dynamic type resolution. */
411
412 const gdb::array_view<variant_part> *variant_parts;
413
414 /* Once a variant type is resolved, we may want to be able to go
415 from the resolved type to the original type. In this case we
416 rewrite the property's kind and set this field. */
417
418 struct type *original_type;
419 };
420
421 /* * Used to store a dynamic property. */
422
423 struct dynamic_prop
424 {
425 dynamic_prop_kind kind () const
426 {
427 return m_kind;
428 }
429
430 void set_undefined ()
431 {
432 m_kind = PROP_UNDEFINED;
433 }
434
435 LONGEST const_val () const
436 {
437 gdb_assert (m_kind == PROP_CONST);
438
439 return m_data.const_val;
440 }
441
442 void set_const_val (LONGEST const_val)
443 {
444 m_kind = PROP_CONST;
445 m_data.const_val = const_val;
446 }
447
448 void *baton () const
449 {
450 gdb_assert (m_kind == PROP_LOCEXPR
451 || m_kind == PROP_LOCLIST
452 || m_kind == PROP_ADDR_OFFSET);
453
454 return m_data.baton;
455 }
456
457 void set_locexpr (void *baton)
458 {
459 m_kind = PROP_LOCEXPR;
460 m_data.baton = baton;
461 }
462
463 void set_loclist (void *baton)
464 {
465 m_kind = PROP_LOCLIST;
466 m_data.baton = baton;
467 }
468
469 void set_addr_offset (void *baton)
470 {
471 m_kind = PROP_ADDR_OFFSET;
472 m_data.baton = baton;
473 }
474
475 const gdb::array_view<variant_part> *variant_parts () const
476 {
477 gdb_assert (m_kind == PROP_VARIANT_PARTS);
478
479 return m_data.variant_parts;
480 }
481
482 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
483 {
484 m_kind = PROP_VARIANT_PARTS;
485 m_data.variant_parts = variant_parts;
486 }
487
488 struct type *original_type () const
489 {
490 gdb_assert (m_kind == PROP_TYPE);
491
492 return m_data.original_type;
493 }
494
495 void set_original_type (struct type *original_type)
496 {
497 m_kind = PROP_TYPE;
498 m_data.original_type = original_type;
499 }
500
501 /* Determine which field of the union dynamic_prop.data is used. */
502 enum dynamic_prop_kind m_kind;
503
504 /* Storage for dynamic or static value. */
505 union dynamic_prop_data m_data;
506 };
507
508 /* Compare two dynamic_prop objects for equality. dynamic_prop
509 instances are equal iff they have the same type and storage. */
510 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
511
512 /* Compare two dynamic_prop objects for inequality. */
513 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
514 {
515 return !(l == r);
516 }
517
518 /* * Define a type's dynamic property node kind. */
519 enum dynamic_prop_node_kind
520 {
521 /* A property providing a type's data location.
522 Evaluating this field yields to the location of an object's data. */
523 DYN_PROP_DATA_LOCATION,
524
525 /* A property representing DW_AT_allocated. The presence of this attribute
526 indicates that the object of the type can be allocated/deallocated. */
527 DYN_PROP_ALLOCATED,
528
529 /* A property representing DW_AT_associated. The presence of this attribute
530 indicated that the object of the type can be associated. */
531 DYN_PROP_ASSOCIATED,
532
533 /* A property providing an array's byte stride. */
534 DYN_PROP_BYTE_STRIDE,
535
536 /* A property holding variant parts. */
537 DYN_PROP_VARIANT_PARTS,
538
539 /* A property holding the size of the type. */
540 DYN_PROP_BYTE_SIZE,
541 };
542
543 /* * List for dynamic type attributes. */
544 struct dynamic_prop_list
545 {
546 /* The kind of dynamic prop in this node. */
547 enum dynamic_prop_node_kind prop_kind;
548
549 /* The dynamic property itself. */
550 struct dynamic_prop prop;
551
552 /* A pointer to the next dynamic property. */
553 struct dynamic_prop_list *next;
554 };
555
556 /* * Determine which field of the union main_type.fields[x].loc is
557 used. */
558
559 enum field_loc_kind
560 {
561 FIELD_LOC_KIND_BITPOS, /**< bitpos */
562 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
563 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
564 FIELD_LOC_KIND_PHYSNAME, /**< physname */
565 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
566 };
567
568 /* * A discriminant to determine which field in the
569 main_type.type_specific union is being used, if any.
570
571 For types such as TYPE_CODE_FLT, the use of this
572 discriminant is really redundant, as we know from the type code
573 which field is going to be used. As such, it would be possible to
574 reduce the size of this enum in order to save a bit or two for
575 other fields of struct main_type. But, since we still have extra
576 room , and for the sake of clarity and consistency, we treat all fields
577 of the union the same way. */
578
579 enum type_specific_kind
580 {
581 TYPE_SPECIFIC_NONE,
582 TYPE_SPECIFIC_CPLUS_STUFF,
583 TYPE_SPECIFIC_GNAT_STUFF,
584 TYPE_SPECIFIC_FLOATFORMAT,
585 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
586 TYPE_SPECIFIC_FUNC,
587 TYPE_SPECIFIC_SELF_TYPE,
588 TYPE_SPECIFIC_INT,
589 TYPE_SPECIFIC_FIXED_POINT,
590 };
591
592 union type_owner
593 {
594 struct objfile *objfile;
595 struct gdbarch *gdbarch;
596 };
597
598 union field_location
599 {
600 /* * Position of this field, counting in bits from start of
601 containing structure. For big-endian targets, it is the bit
602 offset to the MSB. For little-endian targets, it is the bit
603 offset to the LSB. */
604
605 LONGEST bitpos;
606
607 /* * Enum value. */
608 LONGEST enumval;
609
610 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
611 physaddr is the location (in the target) of the static
612 field. Otherwise, physname is the mangled label of the
613 static field. */
614
615 CORE_ADDR physaddr;
616 const char *physname;
617
618 /* * The field location can be computed by evaluating the
619 following DWARF block. Its DATA is allocated on
620 objfile_obstack - no CU load is needed to access it. */
621
622 struct dwarf2_locexpr_baton *dwarf_block;
623 };
624
625 struct field
626 {
627 struct type *type () const
628 {
629 return this->m_type;
630 }
631
632 void set_type (struct type *type)
633 {
634 this->m_type = type;
635 }
636
637 union field_location loc;
638
639 /* * For a function or member type, this is 1 if the argument is
640 marked artificial. Artificial arguments should not be shown
641 to the user. For TYPE_CODE_RANGE it is set if the specific
642 bound is not defined. */
643
644 unsigned int artificial : 1;
645
646 /* * Discriminant for union field_location. */
647
648 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
649
650 /* * Size of this field, in bits, or zero if not packed.
651 If non-zero in an array type, indicates the element size in
652 bits (used only in Ada at the moment).
653 For an unpacked field, the field's type's length
654 says how many bytes the field occupies. */
655
656 unsigned int bitsize : 28;
657
658 /* * In a struct or union type, type of this field.
659 - In a function or member type, type of this argument.
660 - In an array type, the domain-type of the array. */
661
662 struct type *m_type;
663
664 /* * Name of field, value or argument.
665 NULL for range bounds, array domains, and member function
666 arguments. */
667
668 const char *name;
669 };
670
671 struct range_bounds
672 {
673 ULONGEST bit_stride () const
674 {
675 if (this->flag_is_byte_stride)
676 return this->stride.const_val () * 8;
677 else
678 return this->stride.const_val ();
679 }
680
681 /* * Low bound of range. */
682
683 struct dynamic_prop low;
684
685 /* * High bound of range. */
686
687 struct dynamic_prop high;
688
689 /* The stride value for this range. This can be stored in bits or bytes
690 based on the value of BYTE_STRIDE_P. It is optional to have a stride
691 value, if this range has no stride value defined then this will be set
692 to the constant zero. */
693
694 struct dynamic_prop stride;
695
696 /* * The bias. Sometimes a range value is biased before storage.
697 The bias is added to the stored bits to form the true value. */
698
699 LONGEST bias;
700
701 /* True if HIGH range bound contains the number of elements in the
702 subrange. This affects how the final high bound is computed. */
703
704 unsigned int flag_upper_bound_is_count : 1;
705
706 /* True if LOW or/and HIGH are resolved into a static bound from
707 a dynamic one. */
708
709 unsigned int flag_bound_evaluated : 1;
710
711 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
712
713 unsigned int flag_is_byte_stride : 1;
714 };
715
716 /* Compare two range_bounds objects for equality. Simply does
717 memberwise comparison. */
718 extern bool operator== (const range_bounds &l, const range_bounds &r);
719
720 /* Compare two range_bounds objects for inequality. */
721 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
722 {
723 return !(l == r);
724 }
725
726 union type_specific
727 {
728 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
729 point to cplus_struct_default, a default static instance of a
730 struct cplus_struct_type. */
731
732 struct cplus_struct_type *cplus_stuff;
733
734 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
735 provides additional information. */
736
737 struct gnat_aux_type *gnat_stuff;
738
739 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
740 floatformat object that describes the floating-point value
741 that resides within the type. */
742
743 const struct floatformat *floatformat;
744
745 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
746
747 struct func_type *func_stuff;
748
749 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
750 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
751 is a member of. */
752
753 struct type *self_type;
754
755 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
756 values of that type. */
757 struct fixed_point_type_info *fixed_point_info;
758
759 /* * An integer-like scalar type may be stored in just part of its
760 enclosing storage bytes. This structure describes this
761 situation. */
762 struct
763 {
764 /* * The bit size of the integer. This can be 0. For integers
765 that fill their storage (the ordinary case), this field holds
766 the byte size times 8. */
767 unsigned short bit_size;
768 /* * The bit offset of the integer. This is ordinarily 0, and can
769 only be non-zero if the bit size is less than the storage
770 size. */
771 unsigned short bit_offset;
772 } int_stuff;
773 };
774
775 /* * Main structure representing a type in GDB.
776
777 This structure is space-critical. Its layout has been tweaked to
778 reduce the space used. */
779
780 struct main_type
781 {
782 /* * Code for kind of type. */
783
784 ENUM_BITFIELD(type_code) code : 8;
785
786 /* * Flags about this type. These fields appear at this location
787 because they packs nicely here. See the TYPE_* macros for
788 documentation about these fields. */
789
790 unsigned int m_flag_unsigned : 1;
791 unsigned int m_flag_nosign : 1;
792 unsigned int m_flag_stub : 1;
793 unsigned int m_flag_target_stub : 1;
794 unsigned int m_flag_prototyped : 1;
795 unsigned int m_flag_varargs : 1;
796 unsigned int m_flag_vector : 1;
797 unsigned int m_flag_stub_supported : 1;
798 unsigned int m_flag_gnu_ifunc : 1;
799 unsigned int m_flag_fixed_instance : 1;
800 unsigned int m_flag_objfile_owned : 1;
801 unsigned int m_flag_endianity_not_default : 1;
802
803 /* * True if this type was declared with "class" rather than
804 "struct". */
805
806 unsigned int m_flag_declared_class : 1;
807
808 /* * True if this is an enum type with disjoint values. This
809 affects how the enum is printed. */
810
811 unsigned int m_flag_flag_enum : 1;
812
813 /* * A discriminant telling us which field of the type_specific
814 union is being used for this type, if any. */
815
816 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
817
818 /* * Number of fields described for this type. This field appears
819 at this location because it packs nicely here. */
820
821 short nfields;
822
823 /* * Name of this type, or NULL if none.
824
825 This is used for printing only. For looking up a name, look for
826 a symbol in the VAR_DOMAIN. This is generally allocated in the
827 objfile's obstack. However coffread.c uses malloc. */
828
829 const char *name;
830
831 /* * Every type is now associated with a particular objfile, and the
832 type is allocated on the objfile_obstack for that objfile. One
833 problem however, is that there are times when gdb allocates new
834 types while it is not in the process of reading symbols from a
835 particular objfile. Fortunately, these happen when the type
836 being created is a derived type of an existing type, such as in
837 lookup_pointer_type(). So we can just allocate the new type
838 using the same objfile as the existing type, but to do this we
839 need a backpointer to the objfile from the existing type. Yes
840 this is somewhat ugly, but without major overhaul of the internal
841 type system, it can't be avoided for now. */
842
843 union type_owner m_owner;
844
845 /* * For a pointer type, describes the type of object pointed to.
846 - For an array type, describes the type of the elements.
847 - For a function or method type, describes the type of the return value.
848 - For a range type, describes the type of the full range.
849 - For a complex type, describes the type of each coordinate.
850 - For a special record or union type encoding a dynamic-sized type
851 in GNAT, a memoized pointer to a corresponding static version of
852 the type.
853 - Unused otherwise. */
854
855 struct type *target_type;
856
857 /* * For structure and union types, a description of each field.
858 For set and pascal array types, there is one "field",
859 whose type is the domain type of the set or array.
860 For range types, there are two "fields",
861 the minimum and maximum values (both inclusive).
862 For enum types, each possible value is described by one "field".
863 For a function or method type, a "field" for each parameter.
864 For C++ classes, there is one field for each base class (if it is
865 a derived class) plus one field for each class data member. Member
866 functions are recorded elsewhere.
867
868 Using a pointer to a separate array of fields
869 allows all types to have the same size, which is useful
870 because we can allocate the space for a type before
871 we know what to put in it. */
872
873 union
874 {
875 struct field *fields;
876
877 /* * Union member used for range types. */
878
879 struct range_bounds *bounds;
880
881 /* If this is a scalar type, then this is its corresponding
882 complex type. */
883 struct type *complex_type;
884
885 } flds_bnds;
886
887 /* * Slot to point to additional language-specific fields of this
888 type. */
889
890 union type_specific type_specific;
891
892 /* * Contains all dynamic type properties. */
893 struct dynamic_prop_list *dyn_prop_list;
894 };
895
896 /* * Number of bits allocated for alignment. */
897
898 #define TYPE_ALIGN_BITS 8
899
900 /* * A ``struct type'' describes a particular instance of a type, with
901 some particular qualification. */
902
903 struct type
904 {
905 /* Get the type code of this type.
906
907 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
908 type, you need to do `check_typedef (type)->code ()`. */
909 type_code code () const
910 {
911 return this->main_type->code;
912 }
913
914 /* Set the type code of this type. */
915 void set_code (type_code code)
916 {
917 this->main_type->code = code;
918 }
919
920 /* Get the name of this type. */
921 const char *name () const
922 {
923 return this->main_type->name;
924 }
925
926 /* Set the name of this type. */
927 void set_name (const char *name)
928 {
929 this->main_type->name = name;
930 }
931
932 /* Get the number of fields of this type. */
933 int num_fields () const
934 {
935 return this->main_type->nfields;
936 }
937
938 /* Set the number of fields of this type. */
939 void set_num_fields (int num_fields)
940 {
941 this->main_type->nfields = num_fields;
942 }
943
944 /* Get the fields array of this type. */
945 struct field *fields () const
946 {
947 return this->main_type->flds_bnds.fields;
948 }
949
950 /* Get the field at index IDX. */
951 struct field &field (int idx) const
952 {
953 return this->fields ()[idx];
954 }
955
956 /* Set the fields array of this type. */
957 void set_fields (struct field *fields)
958 {
959 this->main_type->flds_bnds.fields = fields;
960 }
961
962 type *index_type () const
963 {
964 return this->field (0).type ();
965 }
966
967 void set_index_type (type *index_type)
968 {
969 this->field (0).set_type (index_type);
970 }
971
972 /* Return the instance flags converted to the correct type. */
973 const type_instance_flags instance_flags () const
974 {
975 return (enum type_instance_flag_value) this->m_instance_flags;
976 }
977
978 /* Set the instance flags. */
979 void set_instance_flags (type_instance_flags flags)
980 {
981 this->m_instance_flags = flags;
982 }
983
984 /* Get the bounds bounds of this type. The type must be a range type. */
985 range_bounds *bounds () const
986 {
987 switch (this->code ())
988 {
989 case TYPE_CODE_RANGE:
990 return this->main_type->flds_bnds.bounds;
991
992 case TYPE_CODE_ARRAY:
993 case TYPE_CODE_STRING:
994 return this->index_type ()->bounds ();
995
996 default:
997 gdb_assert_not_reached
998 ("type::bounds called on type with invalid code");
999 }
1000 }
1001
1002 /* Set the bounds of this type. The type must be a range type. */
1003 void set_bounds (range_bounds *bounds)
1004 {
1005 gdb_assert (this->code () == TYPE_CODE_RANGE);
1006
1007 this->main_type->flds_bnds.bounds = bounds;
1008 }
1009
1010 ULONGEST bit_stride () const
1011 {
1012 return this->bounds ()->bit_stride ();
1013 }
1014
1015 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1016 the type is signed (unless TYPE_NOSIGN is set). */
1017
1018 bool is_unsigned () const
1019 {
1020 return this->main_type->m_flag_unsigned;
1021 }
1022
1023 void set_is_unsigned (bool is_unsigned)
1024 {
1025 this->main_type->m_flag_unsigned = is_unsigned;
1026 }
1027
1028 /* No sign for this type. In C++, "char", "signed char", and
1029 "unsigned char" are distinct types; so we need an extra flag to
1030 indicate the absence of a sign! */
1031
1032 bool has_no_signedness () const
1033 {
1034 return this->main_type->m_flag_nosign;
1035 }
1036
1037 void set_has_no_signedness (bool has_no_signedness)
1038 {
1039 this->main_type->m_flag_nosign = has_no_signedness;
1040 }
1041
1042 /* This appears in a type's flags word if it is a stub type (e.g.,
1043 if someone referenced a type that wasn't defined in a source file
1044 via (struct sir_not_appearing_in_this_film *)). */
1045
1046 bool is_stub () const
1047 {
1048 return this->main_type->m_flag_stub;
1049 }
1050
1051 void set_is_stub (bool is_stub)
1052 {
1053 this->main_type->m_flag_stub = is_stub;
1054 }
1055
1056 /* The target type of this type is a stub type, and this type needs
1057 to be updated if it gets un-stubbed in check_typedef. Used for
1058 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1059 based on the TYPE_LENGTH of the target type. Also, set for
1060 TYPE_CODE_TYPEDEF. */
1061
1062 bool target_is_stub () const
1063 {
1064 return this->main_type->m_flag_target_stub;
1065 }
1066
1067 void set_target_is_stub (bool target_is_stub)
1068 {
1069 this->main_type->m_flag_target_stub = target_is_stub;
1070 }
1071
1072 /* This is a function type which appears to have a prototype. We
1073 need this for function calls in order to tell us if it's necessary
1074 to coerce the args, or to just do the standard conversions. This
1075 is used with a short field. */
1076
1077 bool is_prototyped () const
1078 {
1079 return this->main_type->m_flag_prototyped;
1080 }
1081
1082 void set_is_prototyped (bool is_prototyped)
1083 {
1084 this->main_type->m_flag_prototyped = is_prototyped;
1085 }
1086
1087 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1088 to functions. */
1089
1090 bool has_varargs () const
1091 {
1092 return this->main_type->m_flag_varargs;
1093 }
1094
1095 void set_has_varargs (bool has_varargs)
1096 {
1097 this->main_type->m_flag_varargs = has_varargs;
1098 }
1099
1100 /* Identify a vector type. Gcc is handling this by adding an extra
1101 attribute to the array type. We slurp that in as a new flag of a
1102 type. This is used only in dwarf2read.c. */
1103
1104 bool is_vector () const
1105 {
1106 return this->main_type->m_flag_vector;
1107 }
1108
1109 void set_is_vector (bool is_vector)
1110 {
1111 this->main_type->m_flag_vector = is_vector;
1112 }
1113
1114 /* This debug target supports TYPE_STUB(t). In the unsupported case
1115 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1116 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1117 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1118
1119 bool stub_is_supported () const
1120 {
1121 return this->main_type->m_flag_stub_supported;
1122 }
1123
1124 void set_stub_is_supported (bool stub_is_supported)
1125 {
1126 this->main_type->m_flag_stub_supported = stub_is_supported;
1127 }
1128
1129 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1130 address is returned by this function call. TYPE_TARGET_TYPE
1131 determines the final returned function type to be presented to
1132 user. */
1133
1134 bool is_gnu_ifunc () const
1135 {
1136 return this->main_type->m_flag_gnu_ifunc;
1137 }
1138
1139 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1140 {
1141 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1142 }
1143
1144 /* The debugging formats (especially STABS) do not contain enough
1145 information to represent all Ada types---especially those whose
1146 size depends on dynamic quantities. Therefore, the GNAT Ada
1147 compiler includes extra information in the form of additional type
1148 definitions connected by naming conventions. This flag indicates
1149 that the type is an ordinary (unencoded) GDB type that has been
1150 created from the necessary run-time information, and does not need
1151 further interpretation. Optionally marks ordinary, fixed-size GDB
1152 type. */
1153
1154 bool is_fixed_instance () const
1155 {
1156 return this->main_type->m_flag_fixed_instance;
1157 }
1158
1159 void set_is_fixed_instance (bool is_fixed_instance)
1160 {
1161 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1162 }
1163
1164 /* A compiler may supply dwarf instrumentation that indicates the desired
1165 endian interpretation of the variable differs from the native endian
1166 representation. */
1167
1168 bool endianity_is_not_default () const
1169 {
1170 return this->main_type->m_flag_endianity_not_default;
1171 }
1172
1173 void set_endianity_is_not_default (bool endianity_is_not_default)
1174 {
1175 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1176 }
1177
1178
1179 /* True if this type was declared using the "class" keyword. This is
1180 only valid for C++ structure and enum types. If false, a structure
1181 was declared as a "struct"; if true it was declared "class". For
1182 enum types, this is true when "enum class" or "enum struct" was
1183 used to declare the type. */
1184
1185 bool is_declared_class () const
1186 {
1187 return this->main_type->m_flag_declared_class;
1188 }
1189
1190 void set_is_declared_class (bool is_declared_class) const
1191 {
1192 this->main_type->m_flag_declared_class = is_declared_class;
1193 }
1194
1195 /* True if this type is a "flag" enum. A flag enum is one where all
1196 the values are pairwise disjoint when "and"ed together. This
1197 affects how enum values are printed. */
1198
1199 bool is_flag_enum () const
1200 {
1201 return this->main_type->m_flag_flag_enum;
1202 }
1203
1204 void set_is_flag_enum (bool is_flag_enum)
1205 {
1206 this->main_type->m_flag_flag_enum = is_flag_enum;
1207 }
1208
1209 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1210 to this type's fixed_point_info. */
1211
1212 struct fixed_point_type_info &fixed_point_info () const
1213 {
1214 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1215 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1216
1217 return *this->main_type->type_specific.fixed_point_info;
1218 }
1219
1220 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1221 fixed_point_info to INFO. */
1222
1223 void set_fixed_point_info (struct fixed_point_type_info *info) const
1224 {
1225 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1226
1227 this->main_type->type_specific.fixed_point_info = info;
1228 }
1229
1230 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1231
1232 In other words, this returns the type after having peeled all
1233 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1234 The TYPE_CODE of the type returned is guaranteed to be
1235 a TYPE_CODE_FIXED_POINT. */
1236
1237 struct type *fixed_point_type_base_type ();
1238
1239 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1240 factor. */
1241
1242 const gdb_mpq &fixed_point_scaling_factor ();
1243
1244 /* * Return the dynamic property of the requested KIND from this type's
1245 list of dynamic properties. */
1246 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1247
1248 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1249 property to this type.
1250
1251 This function assumes that this type is objfile-owned. */
1252 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1253
1254 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1255 void remove_dyn_prop (dynamic_prop_node_kind kind);
1256
1257 /* Return true if this type is owned by an objfile. Return false if it is
1258 owned by an architecture. */
1259 bool is_objfile_owned () const
1260 {
1261 return this->main_type->m_flag_objfile_owned;
1262 }
1263
1264 /* Set the owner of the type to be OBJFILE. */
1265 void set_owner (objfile *objfile)
1266 {
1267 gdb_assert (objfile != nullptr);
1268
1269 this->main_type->m_owner.objfile = objfile;
1270 this->main_type->m_flag_objfile_owned = true;
1271 }
1272
1273 /* Set the owner of the type to be ARCH. */
1274 void set_owner (gdbarch *arch)
1275 {
1276 gdb_assert (arch != nullptr);
1277
1278 this->main_type->m_owner.gdbarch = arch;
1279 this->main_type->m_flag_objfile_owned = false;
1280 }
1281
1282 /* Return the objfile owner of this type.
1283
1284 Return nullptr if this type is not objfile-owned. */
1285 struct objfile *objfile_owner () const
1286 {
1287 if (!this->is_objfile_owned ())
1288 return nullptr;
1289
1290 return this->main_type->m_owner.objfile;
1291 }
1292
1293 /* Return the gdbarch owner of this type.
1294
1295 Return nullptr if this type is not gdbarch-owned. */
1296 gdbarch *arch_owner () const
1297 {
1298 if (this->is_objfile_owned ())
1299 return nullptr;
1300
1301 return this->main_type->m_owner.gdbarch;
1302 }
1303
1304 /* Return the type's architecture. For types owned by an
1305 architecture, that architecture is returned. For types owned by an
1306 objfile, that objfile's architecture is returned.
1307
1308 The return value is always non-nullptr. */
1309 gdbarch *arch () const;
1310
1311 /* * Return true if this is an integer type whose logical (bit) size
1312 differs from its storage size; false otherwise. Always return
1313 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1314 bool bit_size_differs_p () const
1315 {
1316 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1317 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1318 }
1319
1320 /* * Return the logical (bit) size for this integer type. Only
1321 valid for integer (TYPE_SPECIFIC_INT) types. */
1322 unsigned short bit_size () const
1323 {
1324 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1325 return main_type->type_specific.int_stuff.bit_size;
1326 }
1327
1328 /* * Return the bit offset for this integer type. Only valid for
1329 integer (TYPE_SPECIFIC_INT) types. */
1330 unsigned short bit_offset () const
1331 {
1332 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1333 return main_type->type_specific.int_stuff.bit_offset;
1334 }
1335
1336 /* * Type that is a pointer to this type.
1337 NULL if no such pointer-to type is known yet.
1338 The debugger may add the address of such a type
1339 if it has to construct one later. */
1340
1341 struct type *pointer_type;
1342
1343 /* * C++: also need a reference type. */
1344
1345 struct type *reference_type;
1346
1347 /* * A C++ rvalue reference type added in C++11. */
1348
1349 struct type *rvalue_reference_type;
1350
1351 /* * Variant chain. This points to a type that differs from this
1352 one only in qualifiers and length. Currently, the possible
1353 qualifiers are const, volatile, code-space, data-space, and
1354 address class. The length may differ only when one of the
1355 address class flags are set. The variants are linked in a
1356 circular ring and share MAIN_TYPE. */
1357
1358 struct type *chain;
1359
1360 /* * The alignment for this type. Zero means that the alignment was
1361 not specified in the debug info. Note that this is stored in a
1362 funny way: as the log base 2 (plus 1) of the alignment; so a
1363 value of 1 means the alignment is 1, and a value of 9 means the
1364 alignment is 256. */
1365
1366 unsigned align_log2 : TYPE_ALIGN_BITS;
1367
1368 /* * Flags specific to this instance of the type, indicating where
1369 on the ring we are.
1370
1371 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1372 binary or-ed with the target type, with a special case for
1373 address class and space class. For example if this typedef does
1374 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1375 instance flags are completely inherited from the target type. No
1376 qualifiers can be cleared by the typedef. See also
1377 check_typedef. */
1378 unsigned m_instance_flags : 9;
1379
1380 /* * Length of storage for a value of this type. The value is the
1381 expression in host bytes of what sizeof(type) would return. This
1382 size includes padding. For example, an i386 extended-precision
1383 floating point value really only occupies ten bytes, but most
1384 ABI's declare its size to be 12 bytes, to preserve alignment.
1385 A `struct type' representing such a floating-point type would
1386 have a `length' value of 12, even though the last two bytes are
1387 unused.
1388
1389 Since this field is expressed in host bytes, its value is appropriate
1390 to pass to memcpy and such (it is assumed that GDB itself always runs
1391 on an 8-bits addressable architecture). However, when using it for
1392 target address arithmetic (e.g. adding it to a target address), the
1393 type_length_units function should be used in order to get the length
1394 expressed in target addressable memory units. */
1395
1396 ULONGEST length;
1397
1398 /* * Core type, shared by a group of qualified types. */
1399
1400 struct main_type *main_type;
1401 };
1402
1403 struct fn_fieldlist
1404 {
1405
1406 /* * The overloaded name.
1407 This is generally allocated in the objfile's obstack.
1408 However stabsread.c sometimes uses malloc. */
1409
1410 const char *name;
1411
1412 /* * The number of methods with this name. */
1413
1414 int length;
1415
1416 /* * The list of methods. */
1417
1418 struct fn_field *fn_fields;
1419 };
1420
1421
1422
1423 struct fn_field
1424 {
1425 /* * If is_stub is clear, this is the mangled name which we can look
1426 up to find the address of the method (FIXME: it would be cleaner
1427 to have a pointer to the struct symbol here instead).
1428
1429 If is_stub is set, this is the portion of the mangled name which
1430 specifies the arguments. For example, "ii", if there are two int
1431 arguments, or "" if there are no arguments. See gdb_mangle_name
1432 for the conversion from this format to the one used if is_stub is
1433 clear. */
1434
1435 const char *physname;
1436
1437 /* * The function type for the method.
1438
1439 (This comment used to say "The return value of the method", but
1440 that's wrong. The function type is expected here, i.e. something
1441 with TYPE_CODE_METHOD, and *not* the return-value type). */
1442
1443 struct type *type;
1444
1445 /* * For virtual functions. First baseclass that defines this
1446 virtual function. */
1447
1448 struct type *fcontext;
1449
1450 /* Attributes. */
1451
1452 unsigned int is_const:1;
1453 unsigned int is_volatile:1;
1454 unsigned int is_private:1;
1455 unsigned int is_protected:1;
1456 unsigned int is_artificial:1;
1457
1458 /* * A stub method only has some fields valid (but they are enough
1459 to reconstruct the rest of the fields). */
1460
1461 unsigned int is_stub:1;
1462
1463 /* * True if this function is a constructor, false otherwise. */
1464
1465 unsigned int is_constructor : 1;
1466
1467 /* * True if this function is deleted, false otherwise. */
1468
1469 unsigned int is_deleted : 1;
1470
1471 /* * DW_AT_defaulted attribute for this function. The value is one
1472 of the DW_DEFAULTED constants. */
1473
1474 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1475
1476 /* * Unused. */
1477
1478 unsigned int dummy:6;
1479
1480 /* * Index into that baseclass's virtual function table, minus 2;
1481 else if static: VOFFSET_STATIC; else: 0. */
1482
1483 unsigned int voffset:16;
1484
1485 #define VOFFSET_STATIC 1
1486
1487 };
1488
1489 struct decl_field
1490 {
1491 /* * Unqualified name to be prefixed by owning class qualified
1492 name. */
1493
1494 const char *name;
1495
1496 /* * Type this typedef named NAME represents. */
1497
1498 struct type *type;
1499
1500 /* * True if this field was declared protected, false otherwise. */
1501 unsigned int is_protected : 1;
1502
1503 /* * True if this field was declared private, false otherwise. */
1504 unsigned int is_private : 1;
1505 };
1506
1507 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1508 TYPE_CODE_UNION nodes. */
1509
1510 struct cplus_struct_type
1511 {
1512 /* * Number of base classes this type derives from. The
1513 baseclasses are stored in the first N_BASECLASSES fields
1514 (i.e. the `fields' field of the struct type). The only fields
1515 of struct field that are used are: type, name, loc.bitpos. */
1516
1517 short n_baseclasses;
1518
1519 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1520 All access to this field must be through TYPE_VPTR_FIELDNO as one
1521 thing it does is check whether the field has been initialized.
1522 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1523 which for portability reasons doesn't initialize this field.
1524 TYPE_VPTR_FIELDNO returns -1 for this case.
1525
1526 If -1, we were unable to find the virtual function table pointer in
1527 initial symbol reading, and get_vptr_fieldno should be called to find
1528 it if possible. get_vptr_fieldno will update this field if possible.
1529 Otherwise the value is left at -1.
1530
1531 Unused if this type does not have virtual functions. */
1532
1533 short vptr_fieldno;
1534
1535 /* * Number of methods with unique names. All overloaded methods
1536 with the same name count only once. */
1537
1538 short nfn_fields;
1539
1540 /* * Number of template arguments. */
1541
1542 unsigned short n_template_arguments;
1543
1544 /* * One if this struct is a dynamic class, as defined by the
1545 Itanium C++ ABI: if it requires a virtual table pointer,
1546 because it or any of its base classes have one or more virtual
1547 member functions or virtual base classes. Minus one if not
1548 dynamic. Zero if not yet computed. */
1549
1550 int is_dynamic : 2;
1551
1552 /* * The calling convention for this type, fetched from the
1553 DW_AT_calling_convention attribute. The value is one of the
1554 DW_CC constants. */
1555
1556 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1557
1558 /* * The base class which defined the virtual function table pointer. */
1559
1560 struct type *vptr_basetype;
1561
1562 /* * For derived classes, the number of base classes is given by
1563 n_baseclasses and virtual_field_bits is a bit vector containing
1564 one bit per base class. If the base class is virtual, the
1565 corresponding bit will be set.
1566 I.E, given:
1567
1568 class A{};
1569 class B{};
1570 class C : public B, public virtual A {};
1571
1572 B is a baseclass of C; A is a virtual baseclass for C.
1573 This is a C++ 2.0 language feature. */
1574
1575 B_TYPE *virtual_field_bits;
1576
1577 /* * For classes with private fields, the number of fields is
1578 given by nfields and private_field_bits is a bit vector
1579 containing one bit per field.
1580
1581 If the field is private, the corresponding bit will be set. */
1582
1583 B_TYPE *private_field_bits;
1584
1585 /* * For classes with protected fields, the number of fields is
1586 given by nfields and protected_field_bits is a bit vector
1587 containing one bit per field.
1588
1589 If the field is private, the corresponding bit will be set. */
1590
1591 B_TYPE *protected_field_bits;
1592
1593 /* * For classes with fields to be ignored, either this is
1594 optimized out or this field has length 0. */
1595
1596 B_TYPE *ignore_field_bits;
1597
1598 /* * For classes, structures, and unions, a description of each
1599 field, which consists of an overloaded name, followed by the
1600 types of arguments that the method expects, and then the name
1601 after it has been renamed to make it distinct.
1602
1603 fn_fieldlists points to an array of nfn_fields of these. */
1604
1605 struct fn_fieldlist *fn_fieldlists;
1606
1607 /* * typedefs defined inside this class. typedef_field points to
1608 an array of typedef_field_count elements. */
1609
1610 struct decl_field *typedef_field;
1611
1612 unsigned typedef_field_count;
1613
1614 /* * The nested types defined by this type. nested_types points to
1615 an array of nested_types_count elements. */
1616
1617 struct decl_field *nested_types;
1618
1619 unsigned nested_types_count;
1620
1621 /* * The template arguments. This is an array with
1622 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1623 classes. */
1624
1625 struct symbol **template_arguments;
1626 };
1627
1628 /* * Struct used to store conversion rankings. */
1629
1630 struct rank
1631 {
1632 short rank;
1633
1634 /* * When two conversions are of the same type and therefore have
1635 the same rank, subrank is used to differentiate the two.
1636
1637 Eg: Two derived-class-pointer to base-class-pointer conversions
1638 would both have base pointer conversion rank, but the
1639 conversion with the shorter distance to the ancestor is
1640 preferable. 'subrank' would be used to reflect that. */
1641
1642 short subrank;
1643 };
1644
1645 /* * Used for ranking a function for overload resolution. */
1646
1647 typedef std::vector<rank> badness_vector;
1648
1649 /* * GNAT Ada-specific information for various Ada types. */
1650
1651 struct gnat_aux_type
1652 {
1653 /* * Parallel type used to encode information about dynamic types
1654 used in Ada (such as variant records, variable-size array,
1655 etc). */
1656 struct type* descriptive_type;
1657 };
1658
1659 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1660
1661 struct func_type
1662 {
1663 /* * The calling convention for targets supporting multiple ABIs.
1664 Right now this is only fetched from the Dwarf-2
1665 DW_AT_calling_convention attribute. The value is one of the
1666 DW_CC constants. */
1667
1668 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1669
1670 /* * Whether this function normally returns to its caller. It is
1671 set from the DW_AT_noreturn attribute if set on the
1672 DW_TAG_subprogram. */
1673
1674 unsigned int is_noreturn : 1;
1675
1676 /* * Only those DW_TAG_call_site's in this function that have
1677 DW_AT_call_tail_call set are linked in this list. Function
1678 without its tail call list complete
1679 (DW_AT_call_all_tail_calls or its superset
1680 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1681 DW_TAG_call_site's exist in such function. */
1682
1683 struct call_site *tail_call_list;
1684
1685 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1686 contains the method. */
1687
1688 struct type *self_type;
1689 };
1690
1691 /* struct call_site_parameter can be referenced in callees by several ways. */
1692
1693 enum call_site_parameter_kind
1694 {
1695 /* * Use field call_site_parameter.u.dwarf_reg. */
1696 CALL_SITE_PARAMETER_DWARF_REG,
1697
1698 /* * Use field call_site_parameter.u.fb_offset. */
1699 CALL_SITE_PARAMETER_FB_OFFSET,
1700
1701 /* * Use field call_site_parameter.u.param_offset. */
1702 CALL_SITE_PARAMETER_PARAM_OFFSET
1703 };
1704
1705 struct call_site_target
1706 {
1707 union field_location loc;
1708
1709 /* * Discriminant for union field_location. */
1710
1711 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1712 };
1713
1714 union call_site_parameter_u
1715 {
1716 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1717 as DWARF register number, for register passed
1718 parameters. */
1719
1720 int dwarf_reg;
1721
1722 /* * Offset from the callee's frame base, for stack passed
1723 parameters. This equals offset from the caller's stack
1724 pointer. */
1725
1726 CORE_ADDR fb_offset;
1727
1728 /* * Offset relative to the start of this PER_CU to
1729 DW_TAG_formal_parameter which is referenced by both
1730 caller and the callee. */
1731
1732 cu_offset param_cu_off;
1733 };
1734
1735 struct call_site_parameter
1736 {
1737 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1738
1739 union call_site_parameter_u u;
1740
1741 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1742
1743 const gdb_byte *value;
1744 size_t value_size;
1745
1746 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1747 It may be NULL if not provided by DWARF. */
1748
1749 const gdb_byte *data_value;
1750 size_t data_value_size;
1751 };
1752
1753 /* * A place where a function gets called from, represented by
1754 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1755
1756 struct call_site
1757 {
1758 /* * Address of the first instruction after this call. It must be
1759 the first field as we overload core_addr_hash and core_addr_eq
1760 for it. */
1761
1762 CORE_ADDR pc;
1763
1764 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1765
1766 struct call_site *tail_call_next;
1767
1768 /* * Describe DW_AT_call_target. Missing attribute uses
1769 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1770
1771 struct call_site_target target;
1772
1773 /* * Size of the PARAMETER array. */
1774
1775 unsigned parameter_count;
1776
1777 /* * CU of the function where the call is located. It gets used
1778 for DWARF blocks execution in the parameter array below. */
1779
1780 dwarf2_per_cu_data *per_cu;
1781
1782 /* objfile of the function where the call is located. */
1783
1784 dwarf2_per_objfile *per_objfile;
1785
1786 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1787
1788 struct call_site_parameter parameter[1];
1789 };
1790
1791 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1792
1793 struct fixed_point_type_info
1794 {
1795 /* The fixed point type's scaling factor. */
1796 gdb_mpq scaling_factor;
1797 };
1798
1799 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1800 static structure. */
1801
1802 extern const struct cplus_struct_type cplus_struct_default;
1803
1804 extern void allocate_cplus_struct_type (struct type *);
1805
1806 #define INIT_CPLUS_SPECIFIC(type) \
1807 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1808 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1809 &cplus_struct_default)
1810
1811 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1812
1813 #define HAVE_CPLUS_STRUCT(type) \
1814 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1815 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1816
1817 #define INIT_NONE_SPECIFIC(type) \
1818 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1819 TYPE_MAIN_TYPE (type)->type_specific = {})
1820
1821 extern const struct gnat_aux_type gnat_aux_default;
1822
1823 extern void allocate_gnat_aux_type (struct type *);
1824
1825 #define INIT_GNAT_SPECIFIC(type) \
1826 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1827 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1828 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1829 /* * A macro that returns non-zero if the type-specific data should be
1830 read as "gnat-stuff". */
1831 #define HAVE_GNAT_AUX_INFO(type) \
1832 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1833
1834 /* * True if TYPE is known to be an Ada type of some kind. */
1835 #define ADA_TYPE_P(type) \
1836 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1837 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1838 && (type)->is_fixed_instance ()))
1839
1840 #define INIT_FUNC_SPECIFIC(type) \
1841 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1842 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1843 TYPE_ZALLOC (type, \
1844 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1845
1846 /* "struct fixed_point_type_info" has a field that has a destructor.
1847 See allocate_fixed_point_type_info to understand how this is
1848 handled. */
1849 #define INIT_FIXED_POINT_SPECIFIC(type) \
1850 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1851 allocate_fixed_point_type_info (type))
1852
1853 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1854 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1855 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1856 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1857 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1858 #define TYPE_CHAIN(thistype) (thistype)->chain
1859 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1860 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1861 so you only have to call check_typedef once. Since allocate_value
1862 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1863 #define TYPE_LENGTH(thistype) (thistype)->length
1864
1865 /* * Return the alignment of the type in target addressable memory
1866 units, or 0 if no alignment was specified. */
1867 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1868
1869 /* * Return the alignment of the type in target addressable memory
1870 units, or 0 if no alignment was specified. */
1871 extern unsigned type_raw_align (struct type *);
1872
1873 /* * Return the alignment of the type in target addressable memory
1874 units. Return 0 if the alignment cannot be determined; but note
1875 that this makes an effort to compute the alignment even it it was
1876 not specified in the debug info. */
1877 extern unsigned type_align (struct type *);
1878
1879 /* * Set the alignment of the type. The alignment must be a power of
1880 2. Returns false if the given value does not fit in the available
1881 space in struct type. */
1882 extern bool set_type_align (struct type *, ULONGEST);
1883
1884 /* Property accessors for the type data location. */
1885 #define TYPE_DATA_LOCATION(thistype) \
1886 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1887 #define TYPE_DATA_LOCATION_BATON(thistype) \
1888 TYPE_DATA_LOCATION (thistype)->data.baton
1889 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1890 (TYPE_DATA_LOCATION (thistype)->const_val ())
1891 #define TYPE_DATA_LOCATION_KIND(thistype) \
1892 (TYPE_DATA_LOCATION (thistype)->kind ())
1893 #define TYPE_DYNAMIC_LENGTH(thistype) \
1894 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1895
1896 /* Property accessors for the type allocated/associated. */
1897 #define TYPE_ALLOCATED_PROP(thistype) \
1898 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1899 #define TYPE_ASSOCIATED_PROP(thistype) \
1900 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1901
1902 /* C++ */
1903
1904 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1905 /* Do not call this, use TYPE_SELF_TYPE. */
1906 extern struct type *internal_type_self_type (struct type *);
1907 extern void set_type_self_type (struct type *, struct type *);
1908
1909 extern int internal_type_vptr_fieldno (struct type *);
1910 extern void set_type_vptr_fieldno (struct type *, int);
1911 extern struct type *internal_type_vptr_basetype (struct type *);
1912 extern void set_type_vptr_basetype (struct type *, struct type *);
1913 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1914 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1915
1916 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1917 #define TYPE_SPECIFIC_FIELD(thistype) \
1918 TYPE_MAIN_TYPE(thistype)->type_specific_field
1919 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1920 where we're trying to print an Ada array using the C language.
1921 In that case, there is no "cplus_stuff", but the C language assumes
1922 that there is. What we do, in that case, is pretend that there is
1923 an implicit one which is the default cplus stuff. */
1924 #define TYPE_CPLUS_SPECIFIC(thistype) \
1925 (!HAVE_CPLUS_STRUCT(thistype) \
1926 ? (struct cplus_struct_type*)&cplus_struct_default \
1927 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1928 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1929 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1930 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1931 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1932 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1933 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1934 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1935 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1936 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1937 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1938 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1939 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1940 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1941 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1942 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1943 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1944
1945 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1946 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1947 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1948
1949 #define FIELD_NAME(thisfld) ((thisfld).name)
1950 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1951 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1952 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1953 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1954 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1955 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1956 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1957 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1958 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1959 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1960 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1961 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1962 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1963 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1964 #define SET_FIELD_PHYSNAME(thisfld, name) \
1965 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1966 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1967 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1968 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1969 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1970 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1971 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1972 FIELD_DWARF_BLOCK (thisfld) = (addr))
1973 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1974 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1975
1976 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1977 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1978 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1979 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1980 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1981 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1982 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1983 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1984 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1985 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1986
1987 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1988 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1989 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1990 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1991 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1992 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1993 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1994 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1995 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1996 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1997 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1998 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1999 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2000 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2001 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2002 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2003 #define TYPE_FIELD_PRIVATE(thistype, n) \
2004 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2005 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2006 #define TYPE_FIELD_PROTECTED(thistype, n) \
2007 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2008 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2009 #define TYPE_FIELD_IGNORE(thistype, n) \
2010 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2011 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2012 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2013 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2014 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2015
2016 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2017 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2018 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2019 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2020 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2021
2022 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2023 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2024 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2025 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2026 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2027 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2028
2029 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2030 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2031 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2032 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2033 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2034 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2035 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2036 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2037 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2038 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2039 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2040 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2041 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2042 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2043 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2044 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2045 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2046
2047 /* Accessors for typedefs defined by a class. */
2048 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2049 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2050 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2051 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2052 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2053 TYPE_TYPEDEF_FIELD (thistype, n).name
2054 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2055 TYPE_TYPEDEF_FIELD (thistype, n).type
2056 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2057 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2058 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2059 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2060 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2061 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2062
2063 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2064 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2065 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2066 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2067 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2068 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2069 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2070 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2071 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2072 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2073 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2074 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2075 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2076 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2077
2078 #define TYPE_IS_OPAQUE(thistype) \
2079 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2080 || ((thistype)->code () == TYPE_CODE_UNION)) \
2081 && ((thistype)->num_fields () == 0) \
2082 && (!HAVE_CPLUS_STRUCT (thistype) \
2083 || TYPE_NFN_FIELDS (thistype) == 0) \
2084 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2085
2086 /* * A helper macro that returns the name of a type or "unnamed type"
2087 if the type has no name. */
2088
2089 #define TYPE_SAFE_NAME(type) \
2090 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2091
2092 /* * A helper macro that returns the name of an error type. If the
2093 type has a name, it is used; otherwise, a default is used. */
2094
2095 #define TYPE_ERROR_NAME(type) \
2096 (type->name () ? type->name () : _("<error type>"))
2097
2098 /* Given TYPE, return its floatformat. */
2099 const struct floatformat *floatformat_from_type (const struct type *type);
2100
2101 struct builtin_type
2102 {
2103 /* Integral types. */
2104
2105 /* Implicit size/sign (based on the architecture's ABI). */
2106 struct type *builtin_void;
2107 struct type *builtin_char;
2108 struct type *builtin_short;
2109 struct type *builtin_int;
2110 struct type *builtin_long;
2111 struct type *builtin_signed_char;
2112 struct type *builtin_unsigned_char;
2113 struct type *builtin_unsigned_short;
2114 struct type *builtin_unsigned_int;
2115 struct type *builtin_unsigned_long;
2116 struct type *builtin_bfloat16;
2117 struct type *builtin_half;
2118 struct type *builtin_float;
2119 struct type *builtin_double;
2120 struct type *builtin_long_double;
2121 struct type *builtin_complex;
2122 struct type *builtin_double_complex;
2123 struct type *builtin_string;
2124 struct type *builtin_bool;
2125 struct type *builtin_long_long;
2126 struct type *builtin_unsigned_long_long;
2127 struct type *builtin_decfloat;
2128 struct type *builtin_decdouble;
2129 struct type *builtin_declong;
2130
2131 /* "True" character types.
2132 We use these for the '/c' print format, because c_char is just a
2133 one-byte integral type, which languages less laid back than C
2134 will print as ... well, a one-byte integral type. */
2135 struct type *builtin_true_char;
2136 struct type *builtin_true_unsigned_char;
2137
2138 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2139 is for when an architecture needs to describe a register that has
2140 no size. */
2141 struct type *builtin_int0;
2142 struct type *builtin_int8;
2143 struct type *builtin_uint8;
2144 struct type *builtin_int16;
2145 struct type *builtin_uint16;
2146 struct type *builtin_int24;
2147 struct type *builtin_uint24;
2148 struct type *builtin_int32;
2149 struct type *builtin_uint32;
2150 struct type *builtin_int64;
2151 struct type *builtin_uint64;
2152 struct type *builtin_int128;
2153 struct type *builtin_uint128;
2154
2155 /* Wide character types. */
2156 struct type *builtin_char16;
2157 struct type *builtin_char32;
2158 struct type *builtin_wchar;
2159
2160 /* Pointer types. */
2161
2162 /* * `pointer to data' type. Some target platforms use an implicitly
2163 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2164 struct type *builtin_data_ptr;
2165
2166 /* * `pointer to function (returning void)' type. Harvard
2167 architectures mean that ABI function and code pointers are not
2168 interconvertible. Similarly, since ANSI, C standards have
2169 explicitly said that pointers to functions and pointers to data
2170 are not interconvertible --- that is, you can't cast a function
2171 pointer to void * and back, and expect to get the same value.
2172 However, all function pointer types are interconvertible, so void
2173 (*) () can server as a generic function pointer. */
2174
2175 struct type *builtin_func_ptr;
2176
2177 /* * `function returning pointer to function (returning void)' type.
2178 The final void return type is not significant for it. */
2179
2180 struct type *builtin_func_func;
2181
2182 /* Special-purpose types. */
2183
2184 /* * This type is used to represent a GDB internal function. */
2185
2186 struct type *internal_fn;
2187
2188 /* * This type is used to represent an xmethod. */
2189 struct type *xmethod;
2190 };
2191
2192 /* * Return the type table for the specified architecture. */
2193
2194 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2195
2196 /* * Per-objfile types used by symbol readers. */
2197
2198 struct objfile_type
2199 {
2200 /* Basic types based on the objfile architecture. */
2201 struct type *builtin_void;
2202 struct type *builtin_char;
2203 struct type *builtin_short;
2204 struct type *builtin_int;
2205 struct type *builtin_long;
2206 struct type *builtin_long_long;
2207 struct type *builtin_signed_char;
2208 struct type *builtin_unsigned_char;
2209 struct type *builtin_unsigned_short;
2210 struct type *builtin_unsigned_int;
2211 struct type *builtin_unsigned_long;
2212 struct type *builtin_unsigned_long_long;
2213 struct type *builtin_half;
2214 struct type *builtin_float;
2215 struct type *builtin_double;
2216 struct type *builtin_long_double;
2217
2218 /* * This type is used to represent symbol addresses. */
2219 struct type *builtin_core_addr;
2220
2221 /* * This type represents a type that was unrecognized in symbol
2222 read-in. */
2223 struct type *builtin_error;
2224
2225 /* * Types used for symbols with no debug information. */
2226 struct type *nodebug_text_symbol;
2227 struct type *nodebug_text_gnu_ifunc_symbol;
2228 struct type *nodebug_got_plt_symbol;
2229 struct type *nodebug_data_symbol;
2230 struct type *nodebug_unknown_symbol;
2231 struct type *nodebug_tls_symbol;
2232 };
2233
2234 /* * Return the type table for the specified objfile. */
2235
2236 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2237
2238 /* Explicit floating-point formats. See "floatformat.h". */
2239 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2240 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2241 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2242 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2243 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2244 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2245 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2246 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2247 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2248 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2249 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2250 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2251 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2252
2253 /* Allocate space for storing data associated with a particular
2254 type. We ensure that the space is allocated using the same
2255 mechanism that was used to allocate the space for the type
2256 structure itself. I.e. if the type is on an objfile's
2257 objfile_obstack, then the space for data associated with that type
2258 will also be allocated on the objfile_obstack. If the type is
2259 associated with a gdbarch, then the space for data associated with that
2260 type will also be allocated on the gdbarch_obstack.
2261
2262 If a type is not associated with neither an objfile or a gdbarch then
2263 you should not use this macro to allocate space for data, instead you
2264 should call xmalloc directly, and ensure the memory is correctly freed
2265 when it is no longer needed. */
2266
2267 #define TYPE_ALLOC(t,size) \
2268 (obstack_alloc (((t)->is_objfile_owned () \
2269 ? &((t)->objfile_owner ()->objfile_obstack) \
2270 : gdbarch_obstack ((t)->arch_owner ())), \
2271 size))
2272
2273
2274 /* See comment on TYPE_ALLOC. */
2275
2276 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2277
2278 /* Use alloc_type to allocate a type owned by an objfile. Use
2279 alloc_type_arch to allocate a type owned by an architecture. Use
2280 alloc_type_copy to allocate a type with the same owner as a
2281 pre-existing template type, no matter whether objfile or
2282 gdbarch. */
2283 extern struct type *alloc_type (struct objfile *);
2284 extern struct type *alloc_type_arch (struct gdbarch *);
2285 extern struct type *alloc_type_copy (const struct type *);
2286
2287 /* * This returns the target type (or NULL) of TYPE, also skipping
2288 past typedefs. */
2289
2290 extern struct type *get_target_type (struct type *type);
2291
2292 /* Return the equivalent of TYPE_LENGTH, but in number of target
2293 addressable memory units of the associated gdbarch instead of bytes. */
2294
2295 extern unsigned int type_length_units (struct type *type);
2296
2297 /* * Helper function to construct objfile-owned types. */
2298
2299 extern struct type *init_type (struct objfile *, enum type_code, int,
2300 const char *);
2301 extern struct type *init_integer_type (struct objfile *, int, int,
2302 const char *);
2303 extern struct type *init_character_type (struct objfile *, int, int,
2304 const char *);
2305 extern struct type *init_boolean_type (struct objfile *, int, int,
2306 const char *);
2307 extern struct type *init_float_type (struct objfile *, int, const char *,
2308 const struct floatformat **,
2309 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2310 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2311 extern bool can_create_complex_type (struct type *);
2312 extern struct type *init_complex_type (const char *, struct type *);
2313 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2314 struct type *);
2315 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2316 const char *);
2317
2318 /* Helper functions to construct architecture-owned types. */
2319 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2320 const char *);
2321 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2322 const char *);
2323 extern struct type *arch_character_type (struct gdbarch *, int, int,
2324 const char *);
2325 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2326 const char *);
2327 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2328 const struct floatformat **);
2329 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2330 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2331 struct type *);
2332
2333 /* Helper functions to construct a struct or record type. An
2334 initially empty type is created using arch_composite_type().
2335 Fields are then added using append_composite_type_field*(). A union
2336 type has its size set to the largest field. A struct type has each
2337 field packed against the previous. */
2338
2339 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2340 const char *name, enum type_code code);
2341 extern void append_composite_type_field (struct type *t, const char *name,
2342 struct type *field);
2343 extern void append_composite_type_field_aligned (struct type *t,
2344 const char *name,
2345 struct type *field,
2346 int alignment);
2347 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2348 struct type *field);
2349
2350 /* Helper functions to construct a bit flags type. An initially empty
2351 type is created using arch_flag_type(). Flags are then added using
2352 append_flag_type_field() and append_flag_type_flag(). */
2353 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2354 const char *name, int bit);
2355 extern void append_flags_type_field (struct type *type,
2356 int start_bitpos, int nr_bits,
2357 struct type *field_type, const char *name);
2358 extern void append_flags_type_flag (struct type *type, int bitpos,
2359 const char *name);
2360
2361 extern void make_vector_type (struct type *array_type);
2362 extern struct type *init_vector_type (struct type *elt_type, int n);
2363
2364 extern struct type *lookup_reference_type (struct type *, enum type_code);
2365 extern struct type *lookup_lvalue_reference_type (struct type *);
2366 extern struct type *lookup_rvalue_reference_type (struct type *);
2367
2368
2369 extern struct type *make_reference_type (struct type *, struct type **,
2370 enum type_code);
2371
2372 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2373
2374 extern struct type *make_restrict_type (struct type *);
2375
2376 extern struct type *make_unqualified_type (struct type *);
2377
2378 extern struct type *make_atomic_type (struct type *);
2379
2380 extern void replace_type (struct type *, struct type *);
2381
2382 extern type_instance_flags address_space_name_to_type_instance_flags
2383 (struct gdbarch *, const char *);
2384
2385 extern const char *address_space_type_instance_flags_to_name
2386 (struct gdbarch *, type_instance_flags);
2387
2388 extern struct type *make_type_with_address_space
2389 (struct type *type, type_instance_flags space_identifier);
2390
2391 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2392
2393 extern struct type *lookup_methodptr_type (struct type *);
2394
2395 extern void smash_to_method_type (struct type *type, struct type *self_type,
2396 struct type *to_type, struct field *args,
2397 int nargs, int varargs);
2398
2399 extern void smash_to_memberptr_type (struct type *, struct type *,
2400 struct type *);
2401
2402 extern void smash_to_methodptr_type (struct type *, struct type *);
2403
2404 extern struct type *allocate_stub_method (struct type *);
2405
2406 extern const char *type_name_or_error (struct type *type);
2407
2408 struct struct_elt
2409 {
2410 /* The field of the element, or NULL if no element was found. */
2411 struct field *field;
2412
2413 /* The bit offset of the element in the parent structure. */
2414 LONGEST offset;
2415 };
2416
2417 /* Given a type TYPE, lookup the field and offset of the component named
2418 NAME.
2419
2420 TYPE can be either a struct or union, or a pointer or reference to
2421 a struct or union. If it is a pointer or reference, its target
2422 type is automatically used. Thus '.' and '->' are interchangable,
2423 as specified for the definitions of the expression element types
2424 STRUCTOP_STRUCT and STRUCTOP_PTR.
2425
2426 If NOERR is nonzero, the returned structure will have field set to
2427 NULL if there is no component named NAME.
2428
2429 If the component NAME is a field in an anonymous substructure of
2430 TYPE, the returned offset is a "global" offset relative to TYPE
2431 rather than an offset within the substructure. */
2432
2433 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2434
2435 /* Given a type TYPE, lookup the type of the component named NAME.
2436
2437 TYPE can be either a struct or union, or a pointer or reference to
2438 a struct or union. If it is a pointer or reference, its target
2439 type is automatically used. Thus '.' and '->' are interchangable,
2440 as specified for the definitions of the expression element types
2441 STRUCTOP_STRUCT and STRUCTOP_PTR.
2442
2443 If NOERR is nonzero, return NULL if there is no component named
2444 NAME. */
2445
2446 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2447
2448 extern struct type *make_pointer_type (struct type *, struct type **);
2449
2450 extern struct type *lookup_pointer_type (struct type *);
2451
2452 extern struct type *make_function_type (struct type *, struct type **);
2453
2454 extern struct type *lookup_function_type (struct type *);
2455
2456 extern struct type *lookup_function_type_with_arguments (struct type *,
2457 int,
2458 struct type **);
2459
2460 extern struct type *create_static_range_type (struct type *, struct type *,
2461 LONGEST, LONGEST);
2462
2463
2464 extern struct type *create_array_type_with_stride
2465 (struct type *, struct type *, struct type *,
2466 struct dynamic_prop *, unsigned int);
2467
2468 extern struct type *create_range_type (struct type *, struct type *,
2469 const struct dynamic_prop *,
2470 const struct dynamic_prop *,
2471 LONGEST);
2472
2473 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2474 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2475 stride. */
2476
2477 extern struct type * create_range_type_with_stride
2478 (struct type *result_type, struct type *index_type,
2479 const struct dynamic_prop *low_bound,
2480 const struct dynamic_prop *high_bound, LONGEST bias,
2481 const struct dynamic_prop *stride, bool byte_stride_p);
2482
2483 extern struct type *create_array_type (struct type *, struct type *,
2484 struct type *);
2485
2486 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2487
2488 extern struct type *create_string_type (struct type *, struct type *,
2489 struct type *);
2490 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2491
2492 extern struct type *create_set_type (struct type *, struct type *);
2493
2494 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2495 const char *);
2496
2497 extern struct type *lookup_signed_typename (const struct language_defn *,
2498 const char *);
2499
2500 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2501
2502 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2503
2504 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2505 ADDR specifies the location of the variable the type is bound to.
2506 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2507 static properties is returned. */
2508 extern struct type *resolve_dynamic_type
2509 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2510 CORE_ADDR addr);
2511
2512 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2513 extern int is_dynamic_type (struct type *type);
2514
2515 extern struct type *check_typedef (struct type *);
2516
2517 extern void check_stub_method_group (struct type *, int);
2518
2519 extern char *gdb_mangle_name (struct type *, int, int);
2520
2521 extern struct type *lookup_typename (const struct language_defn *,
2522 const char *, const struct block *, int);
2523
2524 extern struct type *lookup_template_type (const char *, struct type *,
2525 const struct block *);
2526
2527 extern int get_vptr_fieldno (struct type *, struct type **);
2528
2529 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2530 TYPE.
2531
2532 Return true if the two bounds are available, false otherwise. */
2533
2534 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2535 LONGEST *highp);
2536
2537 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2538
2539 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2540
2541 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2542
2543 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2544
2545 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2546 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2547 Save the high bound into HIGH_BOUND if not NULL.
2548
2549 Return true if the operation was successful. Return false otherwise,
2550 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2551
2552 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2553 LONGEST *high_bound);
2554
2555 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2556 LONGEST val);
2557
2558 extern int class_types_same_p (const struct type *, const struct type *);
2559
2560 extern int is_ancestor (struct type *, struct type *);
2561
2562 extern int is_public_ancestor (struct type *, struct type *);
2563
2564 extern int is_unique_ancestor (struct type *, struct value *);
2565
2566 /* Overload resolution */
2567
2568 /* * Badness if parameter list length doesn't match arg list length. */
2569 extern const struct rank LENGTH_MISMATCH_BADNESS;
2570
2571 /* * Dummy badness value for nonexistent parameter positions. */
2572 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2573 /* * Badness if no conversion among types. */
2574 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2575
2576 /* * Badness of an exact match. */
2577 extern const struct rank EXACT_MATCH_BADNESS;
2578
2579 /* * Badness of integral promotion. */
2580 extern const struct rank INTEGER_PROMOTION_BADNESS;
2581 /* * Badness of floating promotion. */
2582 extern const struct rank FLOAT_PROMOTION_BADNESS;
2583 /* * Badness of converting a derived class pointer
2584 to a base class pointer. */
2585 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2586 /* * Badness of integral conversion. */
2587 extern const struct rank INTEGER_CONVERSION_BADNESS;
2588 /* * Badness of floating conversion. */
2589 extern const struct rank FLOAT_CONVERSION_BADNESS;
2590 /* * Badness of integer<->floating conversions. */
2591 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2592 /* * Badness of conversion of pointer to void pointer. */
2593 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2594 /* * Badness of conversion to boolean. */
2595 extern const struct rank BOOL_CONVERSION_BADNESS;
2596 /* * Badness of converting derived to base class. */
2597 extern const struct rank BASE_CONVERSION_BADNESS;
2598 /* * Badness of converting from non-reference to reference. Subrank
2599 is the type of reference conversion being done. */
2600 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2601 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2602 /* * Conversion to rvalue reference. */
2603 #define REFERENCE_CONVERSION_RVALUE 1
2604 /* * Conversion to const lvalue reference. */
2605 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2606
2607 /* * Badness of converting integer 0 to NULL pointer. */
2608 extern const struct rank NULL_POINTER_CONVERSION;
2609 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2610 being done. */
2611 extern const struct rank CV_CONVERSION_BADNESS;
2612 #define CV_CONVERSION_CONST 1
2613 #define CV_CONVERSION_VOLATILE 2
2614
2615 /* Non-standard conversions allowed by the debugger */
2616
2617 /* * Converting a pointer to an int is usually OK. */
2618 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2619
2620 /* * Badness of converting a (non-zero) integer constant
2621 to a pointer. */
2622 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2623
2624 extern struct rank sum_ranks (struct rank a, struct rank b);
2625 extern int compare_ranks (struct rank a, struct rank b);
2626
2627 extern int compare_badness (const badness_vector &,
2628 const badness_vector &);
2629
2630 extern badness_vector rank_function (gdb::array_view<type *> parms,
2631 gdb::array_view<value *> args);
2632
2633 extern struct rank rank_one_type (struct type *, struct type *,
2634 struct value *);
2635
2636 extern void recursive_dump_type (struct type *, int);
2637
2638 extern int field_is_static (struct field *);
2639
2640 /* printcmd.c */
2641
2642 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2643 const struct value_print_options *,
2644 int, struct ui_file *);
2645
2646 extern int can_dereference (struct type *);
2647
2648 extern int is_integral_type (struct type *);
2649
2650 extern int is_floating_type (struct type *);
2651
2652 extern int is_scalar_type (struct type *type);
2653
2654 extern int is_scalar_type_recursive (struct type *);
2655
2656 extern int class_or_union_p (const struct type *);
2657
2658 extern void maintenance_print_type (const char *, int);
2659
2660 extern htab_up create_copied_types_hash (struct objfile *objfile);
2661
2662 extern struct type *copy_type_recursive (struct objfile *objfile,
2663 struct type *type,
2664 htab_t copied_types);
2665
2666 extern struct type *copy_type (const struct type *type);
2667
2668 extern bool types_equal (struct type *, struct type *);
2669
2670 extern bool types_deeply_equal (struct type *, struct type *);
2671
2672 extern int type_not_allocated (const struct type *type);
2673
2674 extern int type_not_associated (const struct type *type);
2675
2676 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2677 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2678 extern bool is_fixed_point_type (struct type *type);
2679
2680 /* Allocate a fixed-point type info for TYPE. This should only be
2681 called by INIT_FIXED_POINT_SPECIFIC. */
2682 extern void allocate_fixed_point_type_info (struct type *type);
2683
2684 /* * When the type includes explicit byte ordering, return that.
2685 Otherwise, the byte ordering from gdbarch_byte_order for
2686 the type's arch is returned. */
2687
2688 extern enum bfd_endian type_byte_order (const struct type *type);
2689
2690 /* A flag to enable printing of debugging information of C++
2691 overloading. */
2692
2693 extern unsigned int overload_debug;
2694
2695 #endif /* GDBTYPES_H */
This page took 0.08018 seconds and 5 git commands to generate.