gdb: add type::is_declared_class / type::set_is_declared_class
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2021 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb_optional.h"
50 #include "gdbsupport/offset-type.h"
51 #include "gdbsupport/enum-flags.h"
52 #include "gdbsupport/underlying.h"
53 #include "gdbsupport/print-utils.h"
54 #include "dwarf2.h"
55 #include "gdb_obstack.h"
56 #include "gmp-utils.h"
57
58 /* Forward declarations for prototypes. */
59 struct field;
60 struct block;
61 struct value_print_options;
62 struct language_defn;
63 struct dwarf2_per_cu_data;
64 struct dwarf2_per_objfile;
65
66 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
67 are already DWARF-specific. */
68
69 /* * Offset relative to the start of its containing CU (compilation
70 unit). */
71 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
72
73 /* * Offset relative to the start of its .debug_info or .debug_types
74 section. */
75 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
76
77 static inline char *
78 sect_offset_str (sect_offset offset)
79 {
80 return hex_string (to_underlying (offset));
81 }
82
83 /* Some macros for char-based bitfields. */
84
85 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
86 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
87 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
88 #define B_TYPE unsigned char
89 #define B_BYTES(x) ( 1 + ((x)>>3) )
90 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
91
92 /* * Different kinds of data types are distinguished by the `code'
93 field. */
94
95 enum type_code
96 {
97 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
98 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
99 TYPE_CODE_PTR, /**< Pointer type */
100
101 /* * Array type with lower & upper bounds.
102
103 Regardless of the language, GDB represents multidimensional
104 array types the way C does: as arrays of arrays. So an
105 instance of a GDB array type T can always be seen as a series
106 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
107 memory.
108
109 Row-major languages like C lay out multi-dimensional arrays so
110 that incrementing the rightmost index in a subscripting
111 expression results in the smallest change in the address of the
112 element referred to. Column-major languages like Fortran lay
113 them out so that incrementing the leftmost index results in the
114 smallest change.
115
116 This means that, in column-major languages, working our way
117 from type to target type corresponds to working through indices
118 from right to left, not left to right. */
119 TYPE_CODE_ARRAY,
120
121 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
122 TYPE_CODE_UNION, /**< C union or Pascal variant part */
123 TYPE_CODE_ENUM, /**< Enumeration type */
124 TYPE_CODE_FLAGS, /**< Bit flags type */
125 TYPE_CODE_FUNC, /**< Function type */
126 TYPE_CODE_INT, /**< Integer type */
127
128 /* * Floating type. This is *NOT* a complex type. */
129 TYPE_CODE_FLT,
130
131 /* * Void type. The length field specifies the length (probably
132 always one) which is used in pointer arithmetic involving
133 pointers to this type, but actually dereferencing such a
134 pointer is invalid; a void type has no length and no actual
135 representation in memory or registers. A pointer to a void
136 type is a generic pointer. */
137 TYPE_CODE_VOID,
138
139 TYPE_CODE_SET, /**< Pascal sets */
140 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
141
142 /* * A string type which is like an array of character but prints
143 differently. It does not contain a length field as Pascal
144 strings (for many Pascals, anyway) do; if we want to deal with
145 such strings, we should use a new type code. */
146 TYPE_CODE_STRING,
147
148 /* * Unknown type. The length field is valid if we were able to
149 deduce that much about the type, or 0 if we don't even know
150 that. */
151 TYPE_CODE_ERROR,
152
153 /* C++ */
154 TYPE_CODE_METHOD, /**< Method type */
155
156 /* * Pointer-to-member-function type. This describes how to access a
157 particular member function of a class (possibly a virtual
158 member function). The representation may vary between different
159 C++ ABIs. */
160 TYPE_CODE_METHODPTR,
161
162 /* * Pointer-to-member type. This is the offset within a class to
163 some particular data member. The only currently supported
164 representation uses an unbiased offset, with -1 representing
165 NULL; this is used by the Itanium C++ ABI (used by GCC on all
166 platforms). */
167 TYPE_CODE_MEMBERPTR,
168
169 TYPE_CODE_REF, /**< C++ Reference types */
170
171 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
172
173 TYPE_CODE_CHAR, /**< *real* character type */
174
175 /* * Boolean type. 0 is false, 1 is true, and other values are
176 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
177 TYPE_CODE_BOOL,
178
179 /* Fortran */
180 TYPE_CODE_COMPLEX, /**< Complex float */
181
182 TYPE_CODE_TYPEDEF,
183
184 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
185
186 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
187
188 TYPE_CODE_MODULE, /**< Fortran module. */
189
190 /* * Internal function type. */
191 TYPE_CODE_INTERNAL_FUNCTION,
192
193 /* * Methods implemented in extension languages. */
194 TYPE_CODE_XMETHOD,
195
196 /* * Fixed Point type. */
197 TYPE_CODE_FIXED_POINT,
198 };
199
200 /* * Some bits for the type's instance_flags word. See the macros
201 below for documentation on each bit. */
202
203 enum type_instance_flag_value : unsigned
204 {
205 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
206 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
207 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
208 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
209 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
210 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
211 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
212 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
213 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
214 };
215
216 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
217
218 /* * Not textual. By default, GDB treats all single byte integers as
219 characters (or elements of strings) unless this flag is set. */
220
221 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
222
223 /* * True if this type was declared using the "class" keyword. This is
224 only valid for C++ structure and enum types. If false, a structure
225 was declared as a "struct"; if true it was declared "class". For
226 enum types, this is true when "enum class" or "enum struct" was
227 used to declare the type.. */
228
229 #define TYPE_DECLARED_CLASS(t) ((t)->declared_class ())
230
231 /* * True if this type is a "flag" enum. A flag enum is one where all
232 the values are pairwise disjoint when "and"ed together. This
233 affects how enum values are printed. */
234
235 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
236
237 /* * Constant type. If this is set, the corresponding type has a
238 const modifier. */
239
240 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
241
242 /* * Volatile type. If this is set, the corresponding type has a
243 volatile modifier. */
244
245 #define TYPE_VOLATILE(t) \
246 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
247
248 /* * Restrict type. If this is set, the corresponding type has a
249 restrict modifier. */
250
251 #define TYPE_RESTRICT(t) \
252 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
253
254 /* * Atomic type. If this is set, the corresponding type has an
255 _Atomic modifier. */
256
257 #define TYPE_ATOMIC(t) \
258 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
259
260 /* * True if this type represents either an lvalue or lvalue reference type. */
261
262 #define TYPE_IS_REFERENCE(t) \
263 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
264
265 /* * True if this type is allocatable. */
266 #define TYPE_IS_ALLOCATABLE(t) \
267 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
268
269 /* * True if this type has variant parts. */
270 #define TYPE_HAS_VARIANT_PARTS(t) \
271 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
272
273 /* * True if this type has a dynamic length. */
274 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
275 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
276
277 /* * Instruction-space delimited type. This is for Harvard architectures
278 which have separate instruction and data address spaces (and perhaps
279 others).
280
281 GDB usually defines a flat address space that is a superset of the
282 architecture's two (or more) address spaces, but this is an extension
283 of the architecture's model.
284
285 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
286 resides in instruction memory, even if its address (in the extended
287 flat address space) does not reflect this.
288
289 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
290 corresponding type resides in the data memory space, even if
291 this is not indicated by its (flat address space) address.
292
293 If neither flag is set, the default space for functions / methods
294 is instruction space, and for data objects is data memory. */
295
296 #define TYPE_CODE_SPACE(t) \
297 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
298
299 #define TYPE_DATA_SPACE(t) \
300 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
301
302 /* * Address class flags. Some environments provide for pointers
303 whose size is different from that of a normal pointer or address
304 types where the bits are interpreted differently than normal
305 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
306 target specific ways to represent these different types of address
307 classes. */
308
309 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
310 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
311 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
312 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
313 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
314 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
315 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
316 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
317
318 /* * Information about a single discriminant. */
319
320 struct discriminant_range
321 {
322 /* * The range of values for the variant. This is an inclusive
323 range. */
324 ULONGEST low, high;
325
326 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
327 is true if this should be an unsigned comparison; false for
328 signed. */
329 bool contains (ULONGEST value, bool is_unsigned) const
330 {
331 if (is_unsigned)
332 return value >= low && value <= high;
333 LONGEST valuel = (LONGEST) value;
334 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
335 }
336 };
337
338 struct variant_part;
339
340 /* * A single variant. A variant has a list of discriminant values.
341 When the discriminator matches one of these, the variant is
342 enabled. Each variant controls zero or more fields; and may also
343 control other variant parts as well. This struct corresponds to
344 DW_TAG_variant in DWARF. */
345
346 struct variant : allocate_on_obstack
347 {
348 /* * The discriminant ranges for this variant. */
349 gdb::array_view<discriminant_range> discriminants;
350
351 /* * The fields controlled by this variant. This is inclusive on
352 the low end and exclusive on the high end. A variant may not
353 control any fields, in which case the two values will be equal.
354 These are indexes into the type's array of fields. */
355 int first_field;
356 int last_field;
357
358 /* * Variant parts controlled by this variant. */
359 gdb::array_view<variant_part> parts;
360
361 /* * Return true if this is the default variant. The default
362 variant can be recognized because it has no associated
363 discriminants. */
364 bool is_default () const
365 {
366 return discriminants.empty ();
367 }
368
369 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
370 if this should be an unsigned comparison; false for signed. */
371 bool matches (ULONGEST value, bool is_unsigned) const;
372 };
373
374 /* * A variant part. Each variant part has an optional discriminant
375 and holds an array of variants. This struct corresponds to
376 DW_TAG_variant_part in DWARF. */
377
378 struct variant_part : allocate_on_obstack
379 {
380 /* * The index of the discriminant field in the outer type. This is
381 an index into the type's array of fields. If this is -1, there
382 is no discriminant, and only the default variant can be
383 considered to be selected. */
384 int discriminant_index;
385
386 /* * True if this discriminant is unsigned; false if signed. This
387 comes from the type of the discriminant. */
388 bool is_unsigned;
389
390 /* * The variants that are controlled by this variant part. Note
391 that these will always be sorted by field number. */
392 gdb::array_view<variant> variants;
393 };
394
395
396 enum dynamic_prop_kind
397 {
398 PROP_UNDEFINED, /* Not defined. */
399 PROP_CONST, /* Constant. */
400 PROP_ADDR_OFFSET, /* Address offset. */
401 PROP_LOCEXPR, /* Location expression. */
402 PROP_LOCLIST, /* Location list. */
403 PROP_VARIANT_PARTS, /* Variant parts. */
404 PROP_TYPE, /* Type. */
405 };
406
407 union dynamic_prop_data
408 {
409 /* Storage for constant property. */
410
411 LONGEST const_val;
412
413 /* Storage for dynamic property. */
414
415 void *baton;
416
417 /* Storage of variant parts for a type. A type with variant parts
418 has all its fields "linearized" -- stored in a single field
419 array, just as if they had all been declared that way. The
420 variant parts are attached via a dynamic property, and then are
421 used to control which fields end up in the final type during
422 dynamic type resolution. */
423
424 const gdb::array_view<variant_part> *variant_parts;
425
426 /* Once a variant type is resolved, we may want to be able to go
427 from the resolved type to the original type. In this case we
428 rewrite the property's kind and set this field. */
429
430 struct type *original_type;
431 };
432
433 /* * Used to store a dynamic property. */
434
435 struct dynamic_prop
436 {
437 dynamic_prop_kind kind () const
438 {
439 return m_kind;
440 }
441
442 void set_undefined ()
443 {
444 m_kind = PROP_UNDEFINED;
445 }
446
447 LONGEST const_val () const
448 {
449 gdb_assert (m_kind == PROP_CONST);
450
451 return m_data.const_val;
452 }
453
454 void set_const_val (LONGEST const_val)
455 {
456 m_kind = PROP_CONST;
457 m_data.const_val = const_val;
458 }
459
460 void *baton () const
461 {
462 gdb_assert (m_kind == PROP_LOCEXPR
463 || m_kind == PROP_LOCLIST
464 || m_kind == PROP_ADDR_OFFSET);
465
466 return m_data.baton;
467 }
468
469 void set_locexpr (void *baton)
470 {
471 m_kind = PROP_LOCEXPR;
472 m_data.baton = baton;
473 }
474
475 void set_loclist (void *baton)
476 {
477 m_kind = PROP_LOCLIST;
478 m_data.baton = baton;
479 }
480
481 void set_addr_offset (void *baton)
482 {
483 m_kind = PROP_ADDR_OFFSET;
484 m_data.baton = baton;
485 }
486
487 const gdb::array_view<variant_part> *variant_parts () const
488 {
489 gdb_assert (m_kind == PROP_VARIANT_PARTS);
490
491 return m_data.variant_parts;
492 }
493
494 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
495 {
496 m_kind = PROP_VARIANT_PARTS;
497 m_data.variant_parts = variant_parts;
498 }
499
500 struct type *original_type () const
501 {
502 gdb_assert (m_kind == PROP_TYPE);
503
504 return m_data.original_type;
505 }
506
507 void set_original_type (struct type *original_type)
508 {
509 m_kind = PROP_TYPE;
510 m_data.original_type = original_type;
511 }
512
513 /* Determine which field of the union dynamic_prop.data is used. */
514 enum dynamic_prop_kind m_kind;
515
516 /* Storage for dynamic or static value. */
517 union dynamic_prop_data m_data;
518 };
519
520 /* Compare two dynamic_prop objects for equality. dynamic_prop
521 instances are equal iff they have the same type and storage. */
522 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
523
524 /* Compare two dynamic_prop objects for inequality. */
525 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
526 {
527 return !(l == r);
528 }
529
530 /* * Define a type's dynamic property node kind. */
531 enum dynamic_prop_node_kind
532 {
533 /* A property providing a type's data location.
534 Evaluating this field yields to the location of an object's data. */
535 DYN_PROP_DATA_LOCATION,
536
537 /* A property representing DW_AT_allocated. The presence of this attribute
538 indicates that the object of the type can be allocated/deallocated. */
539 DYN_PROP_ALLOCATED,
540
541 /* A property representing DW_AT_associated. The presence of this attribute
542 indicated that the object of the type can be associated. */
543 DYN_PROP_ASSOCIATED,
544
545 /* A property providing an array's byte stride. */
546 DYN_PROP_BYTE_STRIDE,
547
548 /* A property holding variant parts. */
549 DYN_PROP_VARIANT_PARTS,
550
551 /* A property holding the size of the type. */
552 DYN_PROP_BYTE_SIZE,
553 };
554
555 /* * List for dynamic type attributes. */
556 struct dynamic_prop_list
557 {
558 /* The kind of dynamic prop in this node. */
559 enum dynamic_prop_node_kind prop_kind;
560
561 /* The dynamic property itself. */
562 struct dynamic_prop prop;
563
564 /* A pointer to the next dynamic property. */
565 struct dynamic_prop_list *next;
566 };
567
568 /* * Determine which field of the union main_type.fields[x].loc is
569 used. */
570
571 enum field_loc_kind
572 {
573 FIELD_LOC_KIND_BITPOS, /**< bitpos */
574 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
575 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
576 FIELD_LOC_KIND_PHYSNAME, /**< physname */
577 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
578 };
579
580 /* * A discriminant to determine which field in the
581 main_type.type_specific union is being used, if any.
582
583 For types such as TYPE_CODE_FLT, the use of this
584 discriminant is really redundant, as we know from the type code
585 which field is going to be used. As such, it would be possible to
586 reduce the size of this enum in order to save a bit or two for
587 other fields of struct main_type. But, since we still have extra
588 room , and for the sake of clarity and consistency, we treat all fields
589 of the union the same way. */
590
591 enum type_specific_kind
592 {
593 TYPE_SPECIFIC_NONE,
594 TYPE_SPECIFIC_CPLUS_STUFF,
595 TYPE_SPECIFIC_GNAT_STUFF,
596 TYPE_SPECIFIC_FLOATFORMAT,
597 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
598 TYPE_SPECIFIC_FUNC,
599 TYPE_SPECIFIC_SELF_TYPE,
600 TYPE_SPECIFIC_INT,
601 TYPE_SPECIFIC_FIXED_POINT,
602 };
603
604 union type_owner
605 {
606 struct objfile *objfile;
607 struct gdbarch *gdbarch;
608 };
609
610 union field_location
611 {
612 /* * Position of this field, counting in bits from start of
613 containing structure. For big-endian targets, it is the bit
614 offset to the MSB. For little-endian targets, it is the bit
615 offset to the LSB. */
616
617 LONGEST bitpos;
618
619 /* * Enum value. */
620 LONGEST enumval;
621
622 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
623 physaddr is the location (in the target) of the static
624 field. Otherwise, physname is the mangled label of the
625 static field. */
626
627 CORE_ADDR physaddr;
628 const char *physname;
629
630 /* * The field location can be computed by evaluating the
631 following DWARF block. Its DATA is allocated on
632 objfile_obstack - no CU load is needed to access it. */
633
634 struct dwarf2_locexpr_baton *dwarf_block;
635 };
636
637 struct field
638 {
639 struct type *type () const
640 {
641 return this->m_type;
642 }
643
644 void set_type (struct type *type)
645 {
646 this->m_type = type;
647 }
648
649 union field_location loc;
650
651 /* * For a function or member type, this is 1 if the argument is
652 marked artificial. Artificial arguments should not be shown
653 to the user. For TYPE_CODE_RANGE it is set if the specific
654 bound is not defined. */
655
656 unsigned int artificial : 1;
657
658 /* * Discriminant for union field_location. */
659
660 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
661
662 /* * Size of this field, in bits, or zero if not packed.
663 If non-zero in an array type, indicates the element size in
664 bits (used only in Ada at the moment).
665 For an unpacked field, the field's type's length
666 says how many bytes the field occupies. */
667
668 unsigned int bitsize : 28;
669
670 /* * In a struct or union type, type of this field.
671 - In a function or member type, type of this argument.
672 - In an array type, the domain-type of the array. */
673
674 struct type *m_type;
675
676 /* * Name of field, value or argument.
677 NULL for range bounds, array domains, and member function
678 arguments. */
679
680 const char *name;
681 };
682
683 struct range_bounds
684 {
685 ULONGEST bit_stride () const
686 {
687 if (this->flag_is_byte_stride)
688 return this->stride.const_val () * 8;
689 else
690 return this->stride.const_val ();
691 }
692
693 /* * Low bound of range. */
694
695 struct dynamic_prop low;
696
697 /* * High bound of range. */
698
699 struct dynamic_prop high;
700
701 /* The stride value for this range. This can be stored in bits or bytes
702 based on the value of BYTE_STRIDE_P. It is optional to have a stride
703 value, if this range has no stride value defined then this will be set
704 to the constant zero. */
705
706 struct dynamic_prop stride;
707
708 /* * The bias. Sometimes a range value is biased before storage.
709 The bias is added to the stored bits to form the true value. */
710
711 LONGEST bias;
712
713 /* True if HIGH range bound contains the number of elements in the
714 subrange. This affects how the final high bound is computed. */
715
716 unsigned int flag_upper_bound_is_count : 1;
717
718 /* True if LOW or/and HIGH are resolved into a static bound from
719 a dynamic one. */
720
721 unsigned int flag_bound_evaluated : 1;
722
723 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
724
725 unsigned int flag_is_byte_stride : 1;
726 };
727
728 /* Compare two range_bounds objects for equality. Simply does
729 memberwise comparison. */
730 extern bool operator== (const range_bounds &l, const range_bounds &r);
731
732 /* Compare two range_bounds objects for inequality. */
733 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
734 {
735 return !(l == r);
736 }
737
738 union type_specific
739 {
740 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
741 point to cplus_struct_default, a default static instance of a
742 struct cplus_struct_type. */
743
744 struct cplus_struct_type *cplus_stuff;
745
746 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
747 provides additional information. */
748
749 struct gnat_aux_type *gnat_stuff;
750
751 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
752 floatformat object that describes the floating-point value
753 that resides within the type. */
754
755 const struct floatformat *floatformat;
756
757 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
758
759 struct func_type *func_stuff;
760
761 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
762 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
763 is a member of. */
764
765 struct type *self_type;
766
767 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
768 values of that type. */
769 struct fixed_point_type_info *fixed_point_info;
770
771 /* * An integer-like scalar type may be stored in just part of its
772 enclosing storage bytes. This structure describes this
773 situation. */
774 struct
775 {
776 /* * The bit size of the integer. This can be 0. For integers
777 that fill their storage (the ordinary case), this field holds
778 the byte size times 8. */
779 unsigned short bit_size;
780 /* * The bit offset of the integer. This is ordinarily 0, and can
781 only be non-zero if the bit size is less than the storage
782 size. */
783 unsigned short bit_offset;
784 } int_stuff;
785 };
786
787 /* * Main structure representing a type in GDB.
788
789 This structure is space-critical. Its layout has been tweaked to
790 reduce the space used. */
791
792 struct main_type
793 {
794 /* * Code for kind of type. */
795
796 ENUM_BITFIELD(type_code) code : 8;
797
798 /* * Flags about this type. These fields appear at this location
799 because they packs nicely here. See the TYPE_* macros for
800 documentation about these fields. */
801
802 unsigned int m_flag_unsigned : 1;
803 unsigned int m_flag_nosign : 1;
804 unsigned int m_flag_stub : 1;
805 unsigned int m_flag_target_stub : 1;
806 unsigned int m_flag_prototyped : 1;
807 unsigned int m_flag_varargs : 1;
808 unsigned int m_flag_vector : 1;
809 unsigned int m_flag_stub_supported : 1;
810 unsigned int m_flag_gnu_ifunc : 1;
811 unsigned int m_flag_fixed_instance : 1;
812 unsigned int m_flag_objfile_owned : 1;
813 unsigned int m_flag_endianity_not_default : 1;
814
815 /* * True if this type was declared with "class" rather than
816 "struct". */
817
818 unsigned int m_flag_declared_class : 1;
819
820 /* * True if this is an enum type with disjoint values. This
821 affects how the enum is printed. */
822
823 unsigned int flag_flag_enum : 1;
824
825 /* * A discriminant telling us which field of the type_specific
826 union is being used for this type, if any. */
827
828 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
829
830 /* * Number of fields described for this type. This field appears
831 at this location because it packs nicely here. */
832
833 short nfields;
834
835 /* * Name of this type, or NULL if none.
836
837 This is used for printing only. For looking up a name, look for
838 a symbol in the VAR_DOMAIN. This is generally allocated in the
839 objfile's obstack. However coffread.c uses malloc. */
840
841 const char *name;
842
843 /* * Every type is now associated with a particular objfile, and the
844 type is allocated on the objfile_obstack for that objfile. One
845 problem however, is that there are times when gdb allocates new
846 types while it is not in the process of reading symbols from a
847 particular objfile. Fortunately, these happen when the type
848 being created is a derived type of an existing type, such as in
849 lookup_pointer_type(). So we can just allocate the new type
850 using the same objfile as the existing type, but to do this we
851 need a backpointer to the objfile from the existing type. Yes
852 this is somewhat ugly, but without major overhaul of the internal
853 type system, it can't be avoided for now. */
854
855 union type_owner m_owner;
856
857 /* * For a pointer type, describes the type of object pointed to.
858 - For an array type, describes the type of the elements.
859 - For a function or method type, describes the type of the return value.
860 - For a range type, describes the type of the full range.
861 - For a complex type, describes the type of each coordinate.
862 - For a special record or union type encoding a dynamic-sized type
863 in GNAT, a memoized pointer to a corresponding static version of
864 the type.
865 - Unused otherwise. */
866
867 struct type *target_type;
868
869 /* * For structure and union types, a description of each field.
870 For set and pascal array types, there is one "field",
871 whose type is the domain type of the set or array.
872 For range types, there are two "fields",
873 the minimum and maximum values (both inclusive).
874 For enum types, each possible value is described by one "field".
875 For a function or method type, a "field" for each parameter.
876 For C++ classes, there is one field for each base class (if it is
877 a derived class) plus one field for each class data member. Member
878 functions are recorded elsewhere.
879
880 Using a pointer to a separate array of fields
881 allows all types to have the same size, which is useful
882 because we can allocate the space for a type before
883 we know what to put in it. */
884
885 union
886 {
887 struct field *fields;
888
889 /* * Union member used for range types. */
890
891 struct range_bounds *bounds;
892
893 /* If this is a scalar type, then this is its corresponding
894 complex type. */
895 struct type *complex_type;
896
897 } flds_bnds;
898
899 /* * Slot to point to additional language-specific fields of this
900 type. */
901
902 union type_specific type_specific;
903
904 /* * Contains all dynamic type properties. */
905 struct dynamic_prop_list *dyn_prop_list;
906 };
907
908 /* * Number of bits allocated for alignment. */
909
910 #define TYPE_ALIGN_BITS 8
911
912 /* * A ``struct type'' describes a particular instance of a type, with
913 some particular qualification. */
914
915 struct type
916 {
917 /* Get the type code of this type.
918
919 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
920 type, you need to do `check_typedef (type)->code ()`. */
921 type_code code () const
922 {
923 return this->main_type->code;
924 }
925
926 /* Set the type code of this type. */
927 void set_code (type_code code)
928 {
929 this->main_type->code = code;
930 }
931
932 /* Get the name of this type. */
933 const char *name () const
934 {
935 return this->main_type->name;
936 }
937
938 /* Set the name of this type. */
939 void set_name (const char *name)
940 {
941 this->main_type->name = name;
942 }
943
944 /* Get the number of fields of this type. */
945 int num_fields () const
946 {
947 return this->main_type->nfields;
948 }
949
950 /* Set the number of fields of this type. */
951 void set_num_fields (int num_fields)
952 {
953 this->main_type->nfields = num_fields;
954 }
955
956 /* Get the fields array of this type. */
957 struct field *fields () const
958 {
959 return this->main_type->flds_bnds.fields;
960 }
961
962 /* Get the field at index IDX. */
963 struct field &field (int idx) const
964 {
965 return this->fields ()[idx];
966 }
967
968 /* Set the fields array of this type. */
969 void set_fields (struct field *fields)
970 {
971 this->main_type->flds_bnds.fields = fields;
972 }
973
974 type *index_type () const
975 {
976 return this->field (0).type ();
977 }
978
979 void set_index_type (type *index_type)
980 {
981 this->field (0).set_type (index_type);
982 }
983
984 /* Return the instance flags converted to the correct type. */
985 const type_instance_flags instance_flags () const
986 {
987 return (enum type_instance_flag_value) this->m_instance_flags;
988 }
989
990 /* Set the instance flags. */
991 void set_instance_flags (type_instance_flags flags)
992 {
993 this->m_instance_flags = flags;
994 }
995
996 /* Get the bounds bounds of this type. The type must be a range type. */
997 range_bounds *bounds () const
998 {
999 switch (this->code ())
1000 {
1001 case TYPE_CODE_RANGE:
1002 return this->main_type->flds_bnds.bounds;
1003
1004 case TYPE_CODE_ARRAY:
1005 case TYPE_CODE_STRING:
1006 return this->index_type ()->bounds ();
1007
1008 default:
1009 gdb_assert_not_reached
1010 ("type::bounds called on type with invalid code");
1011 }
1012 }
1013
1014 /* Set the bounds of this type. The type must be a range type. */
1015 void set_bounds (range_bounds *bounds)
1016 {
1017 gdb_assert (this->code () == TYPE_CODE_RANGE);
1018
1019 this->main_type->flds_bnds.bounds = bounds;
1020 }
1021
1022 ULONGEST bit_stride () const
1023 {
1024 return this->bounds ()->bit_stride ();
1025 }
1026
1027 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1028 the type is signed (unless TYPE_NOSIGN is set). */
1029
1030 bool is_unsigned () const
1031 {
1032 return this->main_type->m_flag_unsigned;
1033 }
1034
1035 void set_is_unsigned (bool is_unsigned)
1036 {
1037 this->main_type->m_flag_unsigned = is_unsigned;
1038 }
1039
1040 /* No sign for this type. In C++, "char", "signed char", and
1041 "unsigned char" are distinct types; so we need an extra flag to
1042 indicate the absence of a sign! */
1043
1044 bool has_no_signedness () const
1045 {
1046 return this->main_type->m_flag_nosign;
1047 }
1048
1049 void set_has_no_signedness (bool has_no_signedness)
1050 {
1051 this->main_type->m_flag_nosign = has_no_signedness;
1052 }
1053
1054 /* This appears in a type's flags word if it is a stub type (e.g.,
1055 if someone referenced a type that wasn't defined in a source file
1056 via (struct sir_not_appearing_in_this_film *)). */
1057
1058 bool is_stub () const
1059 {
1060 return this->main_type->m_flag_stub;
1061 }
1062
1063 void set_is_stub (bool is_stub)
1064 {
1065 this->main_type->m_flag_stub = is_stub;
1066 }
1067
1068 /* The target type of this type is a stub type, and this type needs
1069 to be updated if it gets un-stubbed in check_typedef. Used for
1070 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1071 based on the TYPE_LENGTH of the target type. Also, set for
1072 TYPE_CODE_TYPEDEF. */
1073
1074 bool target_is_stub () const
1075 {
1076 return this->main_type->m_flag_target_stub;
1077 }
1078
1079 void set_target_is_stub (bool target_is_stub)
1080 {
1081 this->main_type->m_flag_target_stub = target_is_stub;
1082 }
1083
1084 /* This is a function type which appears to have a prototype. We
1085 need this for function calls in order to tell us if it's necessary
1086 to coerce the args, or to just do the standard conversions. This
1087 is used with a short field. */
1088
1089 bool is_prototyped () const
1090 {
1091 return this->main_type->m_flag_prototyped;
1092 }
1093
1094 void set_is_prototyped (bool is_prototyped)
1095 {
1096 this->main_type->m_flag_prototyped = is_prototyped;
1097 }
1098
1099 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1100 to functions. */
1101
1102 bool has_varargs () const
1103 {
1104 return this->main_type->m_flag_varargs;
1105 }
1106
1107 void set_has_varargs (bool has_varargs)
1108 {
1109 this->main_type->m_flag_varargs = has_varargs;
1110 }
1111
1112 /* Identify a vector type. Gcc is handling this by adding an extra
1113 attribute to the array type. We slurp that in as a new flag of a
1114 type. This is used only in dwarf2read.c. */
1115
1116 bool is_vector () const
1117 {
1118 return this->main_type->m_flag_vector;
1119 }
1120
1121 void set_is_vector (bool is_vector)
1122 {
1123 this->main_type->m_flag_vector = is_vector;
1124 }
1125
1126 /* This debug target supports TYPE_STUB(t). In the unsupported case
1127 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1128 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1129 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1130
1131 bool stub_is_supported () const
1132 {
1133 return this->main_type->m_flag_stub_supported;
1134 }
1135
1136 void set_stub_is_supported (bool stub_is_supported)
1137 {
1138 this->main_type->m_flag_stub_supported = stub_is_supported;
1139 }
1140
1141 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1142 address is returned by this function call. TYPE_TARGET_TYPE
1143 determines the final returned function type to be presented to
1144 user. */
1145
1146 bool is_gnu_ifunc () const
1147 {
1148 return this->main_type->m_flag_gnu_ifunc;
1149 }
1150
1151 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1152 {
1153 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1154 }
1155
1156 /* The debugging formats (especially STABS) do not contain enough
1157 information to represent all Ada types---especially those whose
1158 size depends on dynamic quantities. Therefore, the GNAT Ada
1159 compiler includes extra information in the form of additional type
1160 definitions connected by naming conventions. This flag indicates
1161 that the type is an ordinary (unencoded) GDB type that has been
1162 created from the necessary run-time information, and does not need
1163 further interpretation. Optionally marks ordinary, fixed-size GDB
1164 type. */
1165
1166 bool is_fixed_instance () const
1167 {
1168 return this->main_type->m_flag_fixed_instance;
1169 }
1170
1171 void set_is_fixed_instance (bool is_fixed_instance)
1172 {
1173 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1174 }
1175
1176 /* A compiler may supply dwarf instrumentation that indicates the desired
1177 endian interpretation of the variable differs from the native endian
1178 representation. */
1179
1180 bool endianity_is_not_default () const
1181 {
1182 return this->main_type->m_flag_endianity_not_default;
1183 }
1184
1185 void set_endianity_is_not_default (bool endianity_is_not_default)
1186 {
1187 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1188 }
1189
1190
1191 /* True if this type was declared using the "class" keyword. This is
1192 only valid for C++ structure and enum types. If false, a structure
1193 was declared as a "struct"; if true it was declared "class". For
1194 enum types, this is true when "enum class" or "enum struct" was
1195 used to declare the type. */
1196
1197 bool is_declared_class () const
1198 {
1199 return this->main_type->m_flag_declared_class;
1200 }
1201
1202 void set_is_declared_class (bool is_declared_class) const
1203 {
1204 this->main_type->m_flag_declared_class = is_declared_class;
1205 }
1206
1207 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1208 to this type's fixed_point_info. */
1209
1210 struct fixed_point_type_info &fixed_point_info () const
1211 {
1212 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1213 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1214
1215 return *this->main_type->type_specific.fixed_point_info;
1216 }
1217
1218 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1219 fixed_point_info to INFO. */
1220
1221 void set_fixed_point_info (struct fixed_point_type_info *info) const
1222 {
1223 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1224
1225 this->main_type->type_specific.fixed_point_info = info;
1226 }
1227
1228 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1229
1230 In other words, this returns the type after having peeled all
1231 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1232 The TYPE_CODE of the type returned is guaranteed to be
1233 a TYPE_CODE_FIXED_POINT. */
1234
1235 struct type *fixed_point_type_base_type ();
1236
1237 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1238 factor. */
1239
1240 const gdb_mpq &fixed_point_scaling_factor ();
1241
1242 /* * Return the dynamic property of the requested KIND from this type's
1243 list of dynamic properties. */
1244 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1245
1246 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1247 property to this type.
1248
1249 This function assumes that this type is objfile-owned. */
1250 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1251
1252 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1253 void remove_dyn_prop (dynamic_prop_node_kind kind);
1254
1255 /* Return true if this type is owned by an objfile. Return false if it is
1256 owned by an architecture. */
1257 bool is_objfile_owned () const
1258 {
1259 return this->main_type->m_flag_objfile_owned;
1260 }
1261
1262 /* Set the owner of the type to be OBJFILE. */
1263 void set_owner (objfile *objfile)
1264 {
1265 gdb_assert (objfile != nullptr);
1266
1267 this->main_type->m_owner.objfile = objfile;
1268 this->main_type->m_flag_objfile_owned = true;
1269 }
1270
1271 /* Set the owner of the type to be ARCH. */
1272 void set_owner (gdbarch *arch)
1273 {
1274 gdb_assert (arch != nullptr);
1275
1276 this->main_type->m_owner.gdbarch = arch;
1277 this->main_type->m_flag_objfile_owned = false;
1278 }
1279
1280 /* Return the objfile owner of this type.
1281
1282 Return nullptr if this type is not objfile-owned. */
1283 struct objfile *objfile_owner () const
1284 {
1285 if (!this->is_objfile_owned ())
1286 return nullptr;
1287
1288 return this->main_type->m_owner.objfile;
1289 }
1290
1291 /* Return the gdbarch owner of this type.
1292
1293 Return nullptr if this type is not gdbarch-owned. */
1294 gdbarch *arch_owner () const
1295 {
1296 if (this->is_objfile_owned ())
1297 return nullptr;
1298
1299 return this->main_type->m_owner.gdbarch;
1300 }
1301
1302 /* Return the type's architecture. For types owned by an
1303 architecture, that architecture is returned. For types owned by an
1304 objfile, that objfile's architecture is returned.
1305
1306 The return value is always non-nullptr. */
1307 gdbarch *arch () const;
1308
1309 /* * Return true if this is an integer type whose logical (bit) size
1310 differs from its storage size; false otherwise. Always return
1311 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1312 bool bit_size_differs_p () const
1313 {
1314 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1315 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1316 }
1317
1318 /* * Return the logical (bit) size for this integer type. Only
1319 valid for integer (TYPE_SPECIFIC_INT) types. */
1320 unsigned short bit_size () const
1321 {
1322 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1323 return main_type->type_specific.int_stuff.bit_size;
1324 }
1325
1326 /* * Return the bit offset for this integer type. Only valid for
1327 integer (TYPE_SPECIFIC_INT) types. */
1328 unsigned short bit_offset () const
1329 {
1330 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1331 return main_type->type_specific.int_stuff.bit_offset;
1332 }
1333
1334 /* * Type that is a pointer to this type.
1335 NULL if no such pointer-to type is known yet.
1336 The debugger may add the address of such a type
1337 if it has to construct one later. */
1338
1339 struct type *pointer_type;
1340
1341 /* * C++: also need a reference type. */
1342
1343 struct type *reference_type;
1344
1345 /* * A C++ rvalue reference type added in C++11. */
1346
1347 struct type *rvalue_reference_type;
1348
1349 /* * Variant chain. This points to a type that differs from this
1350 one only in qualifiers and length. Currently, the possible
1351 qualifiers are const, volatile, code-space, data-space, and
1352 address class. The length may differ only when one of the
1353 address class flags are set. The variants are linked in a
1354 circular ring and share MAIN_TYPE. */
1355
1356 struct type *chain;
1357
1358 /* * The alignment for this type. Zero means that the alignment was
1359 not specified in the debug info. Note that this is stored in a
1360 funny way: as the log base 2 (plus 1) of the alignment; so a
1361 value of 1 means the alignment is 1, and a value of 9 means the
1362 alignment is 256. */
1363
1364 unsigned align_log2 : TYPE_ALIGN_BITS;
1365
1366 /* * Flags specific to this instance of the type, indicating where
1367 on the ring we are.
1368
1369 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1370 binary or-ed with the target type, with a special case for
1371 address class and space class. For example if this typedef does
1372 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1373 instance flags are completely inherited from the target type. No
1374 qualifiers can be cleared by the typedef. See also
1375 check_typedef. */
1376 unsigned m_instance_flags : 9;
1377
1378 /* * Length of storage for a value of this type. The value is the
1379 expression in host bytes of what sizeof(type) would return. This
1380 size includes padding. For example, an i386 extended-precision
1381 floating point value really only occupies ten bytes, but most
1382 ABI's declare its size to be 12 bytes, to preserve alignment.
1383 A `struct type' representing such a floating-point type would
1384 have a `length' value of 12, even though the last two bytes are
1385 unused.
1386
1387 Since this field is expressed in host bytes, its value is appropriate
1388 to pass to memcpy and such (it is assumed that GDB itself always runs
1389 on an 8-bits addressable architecture). However, when using it for
1390 target address arithmetic (e.g. adding it to a target address), the
1391 type_length_units function should be used in order to get the length
1392 expressed in target addressable memory units. */
1393
1394 ULONGEST length;
1395
1396 /* * Core type, shared by a group of qualified types. */
1397
1398 struct main_type *main_type;
1399 };
1400
1401 struct fn_fieldlist
1402 {
1403
1404 /* * The overloaded name.
1405 This is generally allocated in the objfile's obstack.
1406 However stabsread.c sometimes uses malloc. */
1407
1408 const char *name;
1409
1410 /* * The number of methods with this name. */
1411
1412 int length;
1413
1414 /* * The list of methods. */
1415
1416 struct fn_field *fn_fields;
1417 };
1418
1419
1420
1421 struct fn_field
1422 {
1423 /* * If is_stub is clear, this is the mangled name which we can look
1424 up to find the address of the method (FIXME: it would be cleaner
1425 to have a pointer to the struct symbol here instead).
1426
1427 If is_stub is set, this is the portion of the mangled name which
1428 specifies the arguments. For example, "ii", if there are two int
1429 arguments, or "" if there are no arguments. See gdb_mangle_name
1430 for the conversion from this format to the one used if is_stub is
1431 clear. */
1432
1433 const char *physname;
1434
1435 /* * The function type for the method.
1436
1437 (This comment used to say "The return value of the method", but
1438 that's wrong. The function type is expected here, i.e. something
1439 with TYPE_CODE_METHOD, and *not* the return-value type). */
1440
1441 struct type *type;
1442
1443 /* * For virtual functions. First baseclass that defines this
1444 virtual function. */
1445
1446 struct type *fcontext;
1447
1448 /* Attributes. */
1449
1450 unsigned int is_const:1;
1451 unsigned int is_volatile:1;
1452 unsigned int is_private:1;
1453 unsigned int is_protected:1;
1454 unsigned int is_artificial:1;
1455
1456 /* * A stub method only has some fields valid (but they are enough
1457 to reconstruct the rest of the fields). */
1458
1459 unsigned int is_stub:1;
1460
1461 /* * True if this function is a constructor, false otherwise. */
1462
1463 unsigned int is_constructor : 1;
1464
1465 /* * True if this function is deleted, false otherwise. */
1466
1467 unsigned int is_deleted : 1;
1468
1469 /* * DW_AT_defaulted attribute for this function. The value is one
1470 of the DW_DEFAULTED constants. */
1471
1472 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1473
1474 /* * Unused. */
1475
1476 unsigned int dummy:6;
1477
1478 /* * Index into that baseclass's virtual function table, minus 2;
1479 else if static: VOFFSET_STATIC; else: 0. */
1480
1481 unsigned int voffset:16;
1482
1483 #define VOFFSET_STATIC 1
1484
1485 };
1486
1487 struct decl_field
1488 {
1489 /* * Unqualified name to be prefixed by owning class qualified
1490 name. */
1491
1492 const char *name;
1493
1494 /* * Type this typedef named NAME represents. */
1495
1496 struct type *type;
1497
1498 /* * True if this field was declared protected, false otherwise. */
1499 unsigned int is_protected : 1;
1500
1501 /* * True if this field was declared private, false otherwise. */
1502 unsigned int is_private : 1;
1503 };
1504
1505 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1506 TYPE_CODE_UNION nodes. */
1507
1508 struct cplus_struct_type
1509 {
1510 /* * Number of base classes this type derives from. The
1511 baseclasses are stored in the first N_BASECLASSES fields
1512 (i.e. the `fields' field of the struct type). The only fields
1513 of struct field that are used are: type, name, loc.bitpos. */
1514
1515 short n_baseclasses;
1516
1517 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1518 All access to this field must be through TYPE_VPTR_FIELDNO as one
1519 thing it does is check whether the field has been initialized.
1520 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1521 which for portability reasons doesn't initialize this field.
1522 TYPE_VPTR_FIELDNO returns -1 for this case.
1523
1524 If -1, we were unable to find the virtual function table pointer in
1525 initial symbol reading, and get_vptr_fieldno should be called to find
1526 it if possible. get_vptr_fieldno will update this field if possible.
1527 Otherwise the value is left at -1.
1528
1529 Unused if this type does not have virtual functions. */
1530
1531 short vptr_fieldno;
1532
1533 /* * Number of methods with unique names. All overloaded methods
1534 with the same name count only once. */
1535
1536 short nfn_fields;
1537
1538 /* * Number of template arguments. */
1539
1540 unsigned short n_template_arguments;
1541
1542 /* * One if this struct is a dynamic class, as defined by the
1543 Itanium C++ ABI: if it requires a virtual table pointer,
1544 because it or any of its base classes have one or more virtual
1545 member functions or virtual base classes. Minus one if not
1546 dynamic. Zero if not yet computed. */
1547
1548 int is_dynamic : 2;
1549
1550 /* * The calling convention for this type, fetched from the
1551 DW_AT_calling_convention attribute. The value is one of the
1552 DW_CC constants. */
1553
1554 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1555
1556 /* * The base class which defined the virtual function table pointer. */
1557
1558 struct type *vptr_basetype;
1559
1560 /* * For derived classes, the number of base classes is given by
1561 n_baseclasses and virtual_field_bits is a bit vector containing
1562 one bit per base class. If the base class is virtual, the
1563 corresponding bit will be set.
1564 I.E, given:
1565
1566 class A{};
1567 class B{};
1568 class C : public B, public virtual A {};
1569
1570 B is a baseclass of C; A is a virtual baseclass for C.
1571 This is a C++ 2.0 language feature. */
1572
1573 B_TYPE *virtual_field_bits;
1574
1575 /* * For classes with private fields, the number of fields is
1576 given by nfields and private_field_bits is a bit vector
1577 containing one bit per field.
1578
1579 If the field is private, the corresponding bit will be set. */
1580
1581 B_TYPE *private_field_bits;
1582
1583 /* * For classes with protected fields, the number of fields is
1584 given by nfields and protected_field_bits is a bit vector
1585 containing one bit per field.
1586
1587 If the field is private, the corresponding bit will be set. */
1588
1589 B_TYPE *protected_field_bits;
1590
1591 /* * For classes with fields to be ignored, either this is
1592 optimized out or this field has length 0. */
1593
1594 B_TYPE *ignore_field_bits;
1595
1596 /* * For classes, structures, and unions, a description of each
1597 field, which consists of an overloaded name, followed by the
1598 types of arguments that the method expects, and then the name
1599 after it has been renamed to make it distinct.
1600
1601 fn_fieldlists points to an array of nfn_fields of these. */
1602
1603 struct fn_fieldlist *fn_fieldlists;
1604
1605 /* * typedefs defined inside this class. typedef_field points to
1606 an array of typedef_field_count elements. */
1607
1608 struct decl_field *typedef_field;
1609
1610 unsigned typedef_field_count;
1611
1612 /* * The nested types defined by this type. nested_types points to
1613 an array of nested_types_count elements. */
1614
1615 struct decl_field *nested_types;
1616
1617 unsigned nested_types_count;
1618
1619 /* * The template arguments. This is an array with
1620 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1621 classes. */
1622
1623 struct symbol **template_arguments;
1624 };
1625
1626 /* * Struct used to store conversion rankings. */
1627
1628 struct rank
1629 {
1630 short rank;
1631
1632 /* * When two conversions are of the same type and therefore have
1633 the same rank, subrank is used to differentiate the two.
1634
1635 Eg: Two derived-class-pointer to base-class-pointer conversions
1636 would both have base pointer conversion rank, but the
1637 conversion with the shorter distance to the ancestor is
1638 preferable. 'subrank' would be used to reflect that. */
1639
1640 short subrank;
1641 };
1642
1643 /* * Used for ranking a function for overload resolution. */
1644
1645 typedef std::vector<rank> badness_vector;
1646
1647 /* * GNAT Ada-specific information for various Ada types. */
1648
1649 struct gnat_aux_type
1650 {
1651 /* * Parallel type used to encode information about dynamic types
1652 used in Ada (such as variant records, variable-size array,
1653 etc). */
1654 struct type* descriptive_type;
1655 };
1656
1657 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1658
1659 struct func_type
1660 {
1661 /* * The calling convention for targets supporting multiple ABIs.
1662 Right now this is only fetched from the Dwarf-2
1663 DW_AT_calling_convention attribute. The value is one of the
1664 DW_CC constants. */
1665
1666 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1667
1668 /* * Whether this function normally returns to its caller. It is
1669 set from the DW_AT_noreturn attribute if set on the
1670 DW_TAG_subprogram. */
1671
1672 unsigned int is_noreturn : 1;
1673
1674 /* * Only those DW_TAG_call_site's in this function that have
1675 DW_AT_call_tail_call set are linked in this list. Function
1676 without its tail call list complete
1677 (DW_AT_call_all_tail_calls or its superset
1678 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1679 DW_TAG_call_site's exist in such function. */
1680
1681 struct call_site *tail_call_list;
1682
1683 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1684 contains the method. */
1685
1686 struct type *self_type;
1687 };
1688
1689 /* struct call_site_parameter can be referenced in callees by several ways. */
1690
1691 enum call_site_parameter_kind
1692 {
1693 /* * Use field call_site_parameter.u.dwarf_reg. */
1694 CALL_SITE_PARAMETER_DWARF_REG,
1695
1696 /* * Use field call_site_parameter.u.fb_offset. */
1697 CALL_SITE_PARAMETER_FB_OFFSET,
1698
1699 /* * Use field call_site_parameter.u.param_offset. */
1700 CALL_SITE_PARAMETER_PARAM_OFFSET
1701 };
1702
1703 struct call_site_target
1704 {
1705 union field_location loc;
1706
1707 /* * Discriminant for union field_location. */
1708
1709 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1710 };
1711
1712 union call_site_parameter_u
1713 {
1714 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1715 as DWARF register number, for register passed
1716 parameters. */
1717
1718 int dwarf_reg;
1719
1720 /* * Offset from the callee's frame base, for stack passed
1721 parameters. This equals offset from the caller's stack
1722 pointer. */
1723
1724 CORE_ADDR fb_offset;
1725
1726 /* * Offset relative to the start of this PER_CU to
1727 DW_TAG_formal_parameter which is referenced by both
1728 caller and the callee. */
1729
1730 cu_offset param_cu_off;
1731 };
1732
1733 struct call_site_parameter
1734 {
1735 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1736
1737 union call_site_parameter_u u;
1738
1739 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1740
1741 const gdb_byte *value;
1742 size_t value_size;
1743
1744 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1745 It may be NULL if not provided by DWARF. */
1746
1747 const gdb_byte *data_value;
1748 size_t data_value_size;
1749 };
1750
1751 /* * A place where a function gets called from, represented by
1752 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1753
1754 struct call_site
1755 {
1756 /* * Address of the first instruction after this call. It must be
1757 the first field as we overload core_addr_hash and core_addr_eq
1758 for it. */
1759
1760 CORE_ADDR pc;
1761
1762 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1763
1764 struct call_site *tail_call_next;
1765
1766 /* * Describe DW_AT_call_target. Missing attribute uses
1767 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1768
1769 struct call_site_target target;
1770
1771 /* * Size of the PARAMETER array. */
1772
1773 unsigned parameter_count;
1774
1775 /* * CU of the function where the call is located. It gets used
1776 for DWARF blocks execution in the parameter array below. */
1777
1778 dwarf2_per_cu_data *per_cu;
1779
1780 /* objfile of the function where the call is located. */
1781
1782 dwarf2_per_objfile *per_objfile;
1783
1784 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1785
1786 struct call_site_parameter parameter[1];
1787 };
1788
1789 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
1790
1791 struct fixed_point_type_info
1792 {
1793 /* The fixed point type's scaling factor. */
1794 gdb_mpq scaling_factor;
1795 };
1796
1797 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1798 static structure. */
1799
1800 extern const struct cplus_struct_type cplus_struct_default;
1801
1802 extern void allocate_cplus_struct_type (struct type *);
1803
1804 #define INIT_CPLUS_SPECIFIC(type) \
1805 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1806 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1807 &cplus_struct_default)
1808
1809 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1810
1811 #define HAVE_CPLUS_STRUCT(type) \
1812 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1813 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1814
1815 #define INIT_NONE_SPECIFIC(type) \
1816 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1817 TYPE_MAIN_TYPE (type)->type_specific = {})
1818
1819 extern const struct gnat_aux_type gnat_aux_default;
1820
1821 extern void allocate_gnat_aux_type (struct type *);
1822
1823 #define INIT_GNAT_SPECIFIC(type) \
1824 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1825 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1826 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1827 /* * A macro that returns non-zero if the type-specific data should be
1828 read as "gnat-stuff". */
1829 #define HAVE_GNAT_AUX_INFO(type) \
1830 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1831
1832 /* * True if TYPE is known to be an Ada type of some kind. */
1833 #define ADA_TYPE_P(type) \
1834 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1835 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1836 && (type)->is_fixed_instance ()))
1837
1838 #define INIT_FUNC_SPECIFIC(type) \
1839 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1840 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1841 TYPE_ZALLOC (type, \
1842 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1843
1844 /* "struct fixed_point_type_info" has a field that has a destructor.
1845 See allocate_fixed_point_type_info to understand how this is
1846 handled. */
1847 #define INIT_FIXED_POINT_SPECIFIC(type) \
1848 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
1849 allocate_fixed_point_type_info (type))
1850
1851 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1852 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1853 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1854 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1855 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1856 #define TYPE_CHAIN(thistype) (thistype)->chain
1857 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1858 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1859 so you only have to call check_typedef once. Since allocate_value
1860 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1861 #define TYPE_LENGTH(thistype) (thistype)->length
1862
1863 /* * Return the alignment of the type in target addressable memory
1864 units, or 0 if no alignment was specified. */
1865 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1866
1867 /* * Return the alignment of the type in target addressable memory
1868 units, or 0 if no alignment was specified. */
1869 extern unsigned type_raw_align (struct type *);
1870
1871 /* * Return the alignment of the type in target addressable memory
1872 units. Return 0 if the alignment cannot be determined; but note
1873 that this makes an effort to compute the alignment even it it was
1874 not specified in the debug info. */
1875 extern unsigned type_align (struct type *);
1876
1877 /* * Set the alignment of the type. The alignment must be a power of
1878 2. Returns false if the given value does not fit in the available
1879 space in struct type. */
1880 extern bool set_type_align (struct type *, ULONGEST);
1881
1882 /* Property accessors for the type data location. */
1883 #define TYPE_DATA_LOCATION(thistype) \
1884 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1885 #define TYPE_DATA_LOCATION_BATON(thistype) \
1886 TYPE_DATA_LOCATION (thistype)->data.baton
1887 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1888 (TYPE_DATA_LOCATION (thistype)->const_val ())
1889 #define TYPE_DATA_LOCATION_KIND(thistype) \
1890 (TYPE_DATA_LOCATION (thistype)->kind ())
1891 #define TYPE_DYNAMIC_LENGTH(thistype) \
1892 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1893
1894 /* Property accessors for the type allocated/associated. */
1895 #define TYPE_ALLOCATED_PROP(thistype) \
1896 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1897 #define TYPE_ASSOCIATED_PROP(thistype) \
1898 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1899
1900 /* C++ */
1901
1902 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1903 /* Do not call this, use TYPE_SELF_TYPE. */
1904 extern struct type *internal_type_self_type (struct type *);
1905 extern void set_type_self_type (struct type *, struct type *);
1906
1907 extern int internal_type_vptr_fieldno (struct type *);
1908 extern void set_type_vptr_fieldno (struct type *, int);
1909 extern struct type *internal_type_vptr_basetype (struct type *);
1910 extern void set_type_vptr_basetype (struct type *, struct type *);
1911 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1912 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1913
1914 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1915 #define TYPE_SPECIFIC_FIELD(thistype) \
1916 TYPE_MAIN_TYPE(thistype)->type_specific_field
1917 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1918 where we're trying to print an Ada array using the C language.
1919 In that case, there is no "cplus_stuff", but the C language assumes
1920 that there is. What we do, in that case, is pretend that there is
1921 an implicit one which is the default cplus stuff. */
1922 #define TYPE_CPLUS_SPECIFIC(thistype) \
1923 (!HAVE_CPLUS_STRUCT(thistype) \
1924 ? (struct cplus_struct_type*)&cplus_struct_default \
1925 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1926 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1927 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1928 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1929 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1930 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1931 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1932 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1933 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1934 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1935 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1936 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1937 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1938 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1939 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1940 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1941 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1942
1943 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1944 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1945 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1946
1947 #define FIELD_NAME(thisfld) ((thisfld).name)
1948 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1949 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1950 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1951 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1952 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1953 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1954 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1955 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1956 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1957 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1958 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1959 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1960 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1961 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1962 #define SET_FIELD_PHYSNAME(thisfld, name) \
1963 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1964 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1965 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1966 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1967 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1968 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1969 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1970 FIELD_DWARF_BLOCK (thisfld) = (addr))
1971 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1972 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1973
1974 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1975 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1976 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1977 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1978 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1979 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1980 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1981 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1982 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1983 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1984
1985 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1986 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1987 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1988 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1989 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1990 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1991 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1992 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1993 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1994 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1995 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1996 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1997 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1998 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1999 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2000 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2001 #define TYPE_FIELD_PRIVATE(thistype, n) \
2002 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2003 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2004 #define TYPE_FIELD_PROTECTED(thistype, n) \
2005 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2006 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2007 #define TYPE_FIELD_IGNORE(thistype, n) \
2008 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2009 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2010 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2011 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2012 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2013
2014 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2015 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2016 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2017 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2018 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2019
2020 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2021 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2022 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2023 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2024 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2025 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2026
2027 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2028 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2029 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2030 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2031 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2032 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2033 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2034 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2035 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2036 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2037 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2038 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2039 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2040 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2041 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2042 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2043 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2044
2045 /* Accessors for typedefs defined by a class. */
2046 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2047 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2048 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2049 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2050 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2051 TYPE_TYPEDEF_FIELD (thistype, n).name
2052 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2053 TYPE_TYPEDEF_FIELD (thistype, n).type
2054 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2055 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2056 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2057 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2058 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2059 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2060
2061 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2062 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2063 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2064 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2065 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2066 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2067 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2068 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2069 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2070 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2071 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2072 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2073 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2074 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2075
2076 #define TYPE_IS_OPAQUE(thistype) \
2077 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2078 || ((thistype)->code () == TYPE_CODE_UNION)) \
2079 && ((thistype)->num_fields () == 0) \
2080 && (!HAVE_CPLUS_STRUCT (thistype) \
2081 || TYPE_NFN_FIELDS (thistype) == 0) \
2082 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2083
2084 /* * A helper macro that returns the name of a type or "unnamed type"
2085 if the type has no name. */
2086
2087 #define TYPE_SAFE_NAME(type) \
2088 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2089
2090 /* * A helper macro that returns the name of an error type. If the
2091 type has a name, it is used; otherwise, a default is used. */
2092
2093 #define TYPE_ERROR_NAME(type) \
2094 (type->name () ? type->name () : _("<error type>"))
2095
2096 /* Given TYPE, return its floatformat. */
2097 const struct floatformat *floatformat_from_type (const struct type *type);
2098
2099 struct builtin_type
2100 {
2101 /* Integral types. */
2102
2103 /* Implicit size/sign (based on the architecture's ABI). */
2104 struct type *builtin_void;
2105 struct type *builtin_char;
2106 struct type *builtin_short;
2107 struct type *builtin_int;
2108 struct type *builtin_long;
2109 struct type *builtin_signed_char;
2110 struct type *builtin_unsigned_char;
2111 struct type *builtin_unsigned_short;
2112 struct type *builtin_unsigned_int;
2113 struct type *builtin_unsigned_long;
2114 struct type *builtin_bfloat16;
2115 struct type *builtin_half;
2116 struct type *builtin_float;
2117 struct type *builtin_double;
2118 struct type *builtin_long_double;
2119 struct type *builtin_complex;
2120 struct type *builtin_double_complex;
2121 struct type *builtin_string;
2122 struct type *builtin_bool;
2123 struct type *builtin_long_long;
2124 struct type *builtin_unsigned_long_long;
2125 struct type *builtin_decfloat;
2126 struct type *builtin_decdouble;
2127 struct type *builtin_declong;
2128
2129 /* "True" character types.
2130 We use these for the '/c' print format, because c_char is just a
2131 one-byte integral type, which languages less laid back than C
2132 will print as ... well, a one-byte integral type. */
2133 struct type *builtin_true_char;
2134 struct type *builtin_true_unsigned_char;
2135
2136 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2137 is for when an architecture needs to describe a register that has
2138 no size. */
2139 struct type *builtin_int0;
2140 struct type *builtin_int8;
2141 struct type *builtin_uint8;
2142 struct type *builtin_int16;
2143 struct type *builtin_uint16;
2144 struct type *builtin_int24;
2145 struct type *builtin_uint24;
2146 struct type *builtin_int32;
2147 struct type *builtin_uint32;
2148 struct type *builtin_int64;
2149 struct type *builtin_uint64;
2150 struct type *builtin_int128;
2151 struct type *builtin_uint128;
2152
2153 /* Wide character types. */
2154 struct type *builtin_char16;
2155 struct type *builtin_char32;
2156 struct type *builtin_wchar;
2157
2158 /* Pointer types. */
2159
2160 /* * `pointer to data' type. Some target platforms use an implicitly
2161 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2162 struct type *builtin_data_ptr;
2163
2164 /* * `pointer to function (returning void)' type. Harvard
2165 architectures mean that ABI function and code pointers are not
2166 interconvertible. Similarly, since ANSI, C standards have
2167 explicitly said that pointers to functions and pointers to data
2168 are not interconvertible --- that is, you can't cast a function
2169 pointer to void * and back, and expect to get the same value.
2170 However, all function pointer types are interconvertible, so void
2171 (*) () can server as a generic function pointer. */
2172
2173 struct type *builtin_func_ptr;
2174
2175 /* * `function returning pointer to function (returning void)' type.
2176 The final void return type is not significant for it. */
2177
2178 struct type *builtin_func_func;
2179
2180 /* Special-purpose types. */
2181
2182 /* * This type is used to represent a GDB internal function. */
2183
2184 struct type *internal_fn;
2185
2186 /* * This type is used to represent an xmethod. */
2187 struct type *xmethod;
2188 };
2189
2190 /* * Return the type table for the specified architecture. */
2191
2192 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2193
2194 /* * Per-objfile types used by symbol readers. */
2195
2196 struct objfile_type
2197 {
2198 /* Basic types based on the objfile architecture. */
2199 struct type *builtin_void;
2200 struct type *builtin_char;
2201 struct type *builtin_short;
2202 struct type *builtin_int;
2203 struct type *builtin_long;
2204 struct type *builtin_long_long;
2205 struct type *builtin_signed_char;
2206 struct type *builtin_unsigned_char;
2207 struct type *builtin_unsigned_short;
2208 struct type *builtin_unsigned_int;
2209 struct type *builtin_unsigned_long;
2210 struct type *builtin_unsigned_long_long;
2211 struct type *builtin_half;
2212 struct type *builtin_float;
2213 struct type *builtin_double;
2214 struct type *builtin_long_double;
2215
2216 /* * This type is used to represent symbol addresses. */
2217 struct type *builtin_core_addr;
2218
2219 /* * This type represents a type that was unrecognized in symbol
2220 read-in. */
2221 struct type *builtin_error;
2222
2223 /* * Types used for symbols with no debug information. */
2224 struct type *nodebug_text_symbol;
2225 struct type *nodebug_text_gnu_ifunc_symbol;
2226 struct type *nodebug_got_plt_symbol;
2227 struct type *nodebug_data_symbol;
2228 struct type *nodebug_unknown_symbol;
2229 struct type *nodebug_tls_symbol;
2230 };
2231
2232 /* * Return the type table for the specified objfile. */
2233
2234 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2235
2236 /* Explicit floating-point formats. See "floatformat.h". */
2237 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2238 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2239 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2240 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2241 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2242 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2243 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2244 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2245 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2246 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2247 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2248 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2249 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2250
2251 /* Allocate space for storing data associated with a particular
2252 type. We ensure that the space is allocated using the same
2253 mechanism that was used to allocate the space for the type
2254 structure itself. I.e. if the type is on an objfile's
2255 objfile_obstack, then the space for data associated with that type
2256 will also be allocated on the objfile_obstack. If the type is
2257 associated with a gdbarch, then the space for data associated with that
2258 type will also be allocated on the gdbarch_obstack.
2259
2260 If a type is not associated with neither an objfile or a gdbarch then
2261 you should not use this macro to allocate space for data, instead you
2262 should call xmalloc directly, and ensure the memory is correctly freed
2263 when it is no longer needed. */
2264
2265 #define TYPE_ALLOC(t,size) \
2266 (obstack_alloc (((t)->is_objfile_owned () \
2267 ? &((t)->objfile_owner ()->objfile_obstack) \
2268 : gdbarch_obstack ((t)->arch_owner ())), \
2269 size))
2270
2271
2272 /* See comment on TYPE_ALLOC. */
2273
2274 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2275
2276 /* Use alloc_type to allocate a type owned by an objfile. Use
2277 alloc_type_arch to allocate a type owned by an architecture. Use
2278 alloc_type_copy to allocate a type with the same owner as a
2279 pre-existing template type, no matter whether objfile or
2280 gdbarch. */
2281 extern struct type *alloc_type (struct objfile *);
2282 extern struct type *alloc_type_arch (struct gdbarch *);
2283 extern struct type *alloc_type_copy (const struct type *);
2284
2285 /* * This returns the target type (or NULL) of TYPE, also skipping
2286 past typedefs. */
2287
2288 extern struct type *get_target_type (struct type *type);
2289
2290 /* Return the equivalent of TYPE_LENGTH, but in number of target
2291 addressable memory units of the associated gdbarch instead of bytes. */
2292
2293 extern unsigned int type_length_units (struct type *type);
2294
2295 /* * Helper function to construct objfile-owned types. */
2296
2297 extern struct type *init_type (struct objfile *, enum type_code, int,
2298 const char *);
2299 extern struct type *init_integer_type (struct objfile *, int, int,
2300 const char *);
2301 extern struct type *init_character_type (struct objfile *, int, int,
2302 const char *);
2303 extern struct type *init_boolean_type (struct objfile *, int, int,
2304 const char *);
2305 extern struct type *init_float_type (struct objfile *, int, const char *,
2306 const struct floatformat **,
2307 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2308 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2309 extern bool can_create_complex_type (struct type *);
2310 extern struct type *init_complex_type (const char *, struct type *);
2311 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2312 struct type *);
2313 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2314 const char *);
2315
2316 /* Helper functions to construct architecture-owned types. */
2317 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2318 const char *);
2319 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2320 const char *);
2321 extern struct type *arch_character_type (struct gdbarch *, int, int,
2322 const char *);
2323 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2324 const char *);
2325 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2326 const struct floatformat **);
2327 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2328 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2329 struct type *);
2330
2331 /* Helper functions to construct a struct or record type. An
2332 initially empty type is created using arch_composite_type().
2333 Fields are then added using append_composite_type_field*(). A union
2334 type has its size set to the largest field. A struct type has each
2335 field packed against the previous. */
2336
2337 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2338 const char *name, enum type_code code);
2339 extern void append_composite_type_field (struct type *t, const char *name,
2340 struct type *field);
2341 extern void append_composite_type_field_aligned (struct type *t,
2342 const char *name,
2343 struct type *field,
2344 int alignment);
2345 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2346 struct type *field);
2347
2348 /* Helper functions to construct a bit flags type. An initially empty
2349 type is created using arch_flag_type(). Flags are then added using
2350 append_flag_type_field() and append_flag_type_flag(). */
2351 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2352 const char *name, int bit);
2353 extern void append_flags_type_field (struct type *type,
2354 int start_bitpos, int nr_bits,
2355 struct type *field_type, const char *name);
2356 extern void append_flags_type_flag (struct type *type, int bitpos,
2357 const char *name);
2358
2359 extern void make_vector_type (struct type *array_type);
2360 extern struct type *init_vector_type (struct type *elt_type, int n);
2361
2362 extern struct type *lookup_reference_type (struct type *, enum type_code);
2363 extern struct type *lookup_lvalue_reference_type (struct type *);
2364 extern struct type *lookup_rvalue_reference_type (struct type *);
2365
2366
2367 extern struct type *make_reference_type (struct type *, struct type **,
2368 enum type_code);
2369
2370 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2371
2372 extern struct type *make_restrict_type (struct type *);
2373
2374 extern struct type *make_unqualified_type (struct type *);
2375
2376 extern struct type *make_atomic_type (struct type *);
2377
2378 extern void replace_type (struct type *, struct type *);
2379
2380 extern type_instance_flags address_space_name_to_type_instance_flags
2381 (struct gdbarch *, const char *);
2382
2383 extern const char *address_space_type_instance_flags_to_name
2384 (struct gdbarch *, type_instance_flags);
2385
2386 extern struct type *make_type_with_address_space
2387 (struct type *type, type_instance_flags space_identifier);
2388
2389 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2390
2391 extern struct type *lookup_methodptr_type (struct type *);
2392
2393 extern void smash_to_method_type (struct type *type, struct type *self_type,
2394 struct type *to_type, struct field *args,
2395 int nargs, int varargs);
2396
2397 extern void smash_to_memberptr_type (struct type *, struct type *,
2398 struct type *);
2399
2400 extern void smash_to_methodptr_type (struct type *, struct type *);
2401
2402 extern struct type *allocate_stub_method (struct type *);
2403
2404 extern const char *type_name_or_error (struct type *type);
2405
2406 struct struct_elt
2407 {
2408 /* The field of the element, or NULL if no element was found. */
2409 struct field *field;
2410
2411 /* The bit offset of the element in the parent structure. */
2412 LONGEST offset;
2413 };
2414
2415 /* Given a type TYPE, lookup the field and offset of the component named
2416 NAME.
2417
2418 TYPE can be either a struct or union, or a pointer or reference to
2419 a struct or union. If it is a pointer or reference, its target
2420 type is automatically used. Thus '.' and '->' are interchangable,
2421 as specified for the definitions of the expression element types
2422 STRUCTOP_STRUCT and STRUCTOP_PTR.
2423
2424 If NOERR is nonzero, the returned structure will have field set to
2425 NULL if there is no component named NAME.
2426
2427 If the component NAME is a field in an anonymous substructure of
2428 TYPE, the returned offset is a "global" offset relative to TYPE
2429 rather than an offset within the substructure. */
2430
2431 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2432
2433 /* Given a type TYPE, lookup the type of the component named NAME.
2434
2435 TYPE can be either a struct or union, or a pointer or reference to
2436 a struct or union. If it is a pointer or reference, its target
2437 type is automatically used. Thus '.' and '->' are interchangable,
2438 as specified for the definitions of the expression element types
2439 STRUCTOP_STRUCT and STRUCTOP_PTR.
2440
2441 If NOERR is nonzero, return NULL if there is no component named
2442 NAME. */
2443
2444 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2445
2446 extern struct type *make_pointer_type (struct type *, struct type **);
2447
2448 extern struct type *lookup_pointer_type (struct type *);
2449
2450 extern struct type *make_function_type (struct type *, struct type **);
2451
2452 extern struct type *lookup_function_type (struct type *);
2453
2454 extern struct type *lookup_function_type_with_arguments (struct type *,
2455 int,
2456 struct type **);
2457
2458 extern struct type *create_static_range_type (struct type *, struct type *,
2459 LONGEST, LONGEST);
2460
2461
2462 extern struct type *create_array_type_with_stride
2463 (struct type *, struct type *, struct type *,
2464 struct dynamic_prop *, unsigned int);
2465
2466 extern struct type *create_range_type (struct type *, struct type *,
2467 const struct dynamic_prop *,
2468 const struct dynamic_prop *,
2469 LONGEST);
2470
2471 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2472 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2473 stride. */
2474
2475 extern struct type * create_range_type_with_stride
2476 (struct type *result_type, struct type *index_type,
2477 const struct dynamic_prop *low_bound,
2478 const struct dynamic_prop *high_bound, LONGEST bias,
2479 const struct dynamic_prop *stride, bool byte_stride_p);
2480
2481 extern struct type *create_array_type (struct type *, struct type *,
2482 struct type *);
2483
2484 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2485
2486 extern struct type *create_string_type (struct type *, struct type *,
2487 struct type *);
2488 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2489
2490 extern struct type *create_set_type (struct type *, struct type *);
2491
2492 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2493 const char *);
2494
2495 extern struct type *lookup_signed_typename (const struct language_defn *,
2496 const char *);
2497
2498 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2499
2500 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2501
2502 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2503 ADDR specifies the location of the variable the type is bound to.
2504 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2505 static properties is returned. */
2506 extern struct type *resolve_dynamic_type
2507 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2508 CORE_ADDR addr);
2509
2510 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2511 extern int is_dynamic_type (struct type *type);
2512
2513 extern struct type *check_typedef (struct type *);
2514
2515 extern void check_stub_method_group (struct type *, int);
2516
2517 extern char *gdb_mangle_name (struct type *, int, int);
2518
2519 extern struct type *lookup_typename (const struct language_defn *,
2520 const char *, const struct block *, int);
2521
2522 extern struct type *lookup_template_type (const char *, struct type *,
2523 const struct block *);
2524
2525 extern int get_vptr_fieldno (struct type *, struct type **);
2526
2527 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2528 TYPE.
2529
2530 Return true if the two bounds are available, false otherwise. */
2531
2532 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2533 LONGEST *highp);
2534
2535 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2536
2537 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2538
2539 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2540
2541 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2542
2543 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2544 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2545 Save the high bound into HIGH_BOUND if not NULL.
2546
2547 Return true if the operation was successful. Return false otherwise,
2548 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2549
2550 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2551 LONGEST *high_bound);
2552
2553 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2554 LONGEST val);
2555
2556 extern int class_types_same_p (const struct type *, const struct type *);
2557
2558 extern int is_ancestor (struct type *, struct type *);
2559
2560 extern int is_public_ancestor (struct type *, struct type *);
2561
2562 extern int is_unique_ancestor (struct type *, struct value *);
2563
2564 /* Overload resolution */
2565
2566 /* * Badness if parameter list length doesn't match arg list length. */
2567 extern const struct rank LENGTH_MISMATCH_BADNESS;
2568
2569 /* * Dummy badness value for nonexistent parameter positions. */
2570 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2571 /* * Badness if no conversion among types. */
2572 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2573
2574 /* * Badness of an exact match. */
2575 extern const struct rank EXACT_MATCH_BADNESS;
2576
2577 /* * Badness of integral promotion. */
2578 extern const struct rank INTEGER_PROMOTION_BADNESS;
2579 /* * Badness of floating promotion. */
2580 extern const struct rank FLOAT_PROMOTION_BADNESS;
2581 /* * Badness of converting a derived class pointer
2582 to a base class pointer. */
2583 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2584 /* * Badness of integral conversion. */
2585 extern const struct rank INTEGER_CONVERSION_BADNESS;
2586 /* * Badness of floating conversion. */
2587 extern const struct rank FLOAT_CONVERSION_BADNESS;
2588 /* * Badness of integer<->floating conversions. */
2589 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2590 /* * Badness of conversion of pointer to void pointer. */
2591 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2592 /* * Badness of conversion to boolean. */
2593 extern const struct rank BOOL_CONVERSION_BADNESS;
2594 /* * Badness of converting derived to base class. */
2595 extern const struct rank BASE_CONVERSION_BADNESS;
2596 /* * Badness of converting from non-reference to reference. Subrank
2597 is the type of reference conversion being done. */
2598 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2599 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2600 /* * Conversion to rvalue reference. */
2601 #define REFERENCE_CONVERSION_RVALUE 1
2602 /* * Conversion to const lvalue reference. */
2603 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2604
2605 /* * Badness of converting integer 0 to NULL pointer. */
2606 extern const struct rank NULL_POINTER_CONVERSION;
2607 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2608 being done. */
2609 extern const struct rank CV_CONVERSION_BADNESS;
2610 #define CV_CONVERSION_CONST 1
2611 #define CV_CONVERSION_VOLATILE 2
2612
2613 /* Non-standard conversions allowed by the debugger */
2614
2615 /* * Converting a pointer to an int is usually OK. */
2616 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2617
2618 /* * Badness of converting a (non-zero) integer constant
2619 to a pointer. */
2620 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2621
2622 extern struct rank sum_ranks (struct rank a, struct rank b);
2623 extern int compare_ranks (struct rank a, struct rank b);
2624
2625 extern int compare_badness (const badness_vector &,
2626 const badness_vector &);
2627
2628 extern badness_vector rank_function (gdb::array_view<type *> parms,
2629 gdb::array_view<value *> args);
2630
2631 extern struct rank rank_one_type (struct type *, struct type *,
2632 struct value *);
2633
2634 extern void recursive_dump_type (struct type *, int);
2635
2636 extern int field_is_static (struct field *);
2637
2638 /* printcmd.c */
2639
2640 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2641 const struct value_print_options *,
2642 int, struct ui_file *);
2643
2644 extern int can_dereference (struct type *);
2645
2646 extern int is_integral_type (struct type *);
2647
2648 extern int is_floating_type (struct type *);
2649
2650 extern int is_scalar_type (struct type *type);
2651
2652 extern int is_scalar_type_recursive (struct type *);
2653
2654 extern int class_or_union_p (const struct type *);
2655
2656 extern void maintenance_print_type (const char *, int);
2657
2658 extern htab_up create_copied_types_hash (struct objfile *objfile);
2659
2660 extern struct type *copy_type_recursive (struct objfile *objfile,
2661 struct type *type,
2662 htab_t copied_types);
2663
2664 extern struct type *copy_type (const struct type *type);
2665
2666 extern bool types_equal (struct type *, struct type *);
2667
2668 extern bool types_deeply_equal (struct type *, struct type *);
2669
2670 extern int type_not_allocated (const struct type *type);
2671
2672 extern int type_not_associated (const struct type *type);
2673
2674 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2675 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2676 extern bool is_fixed_point_type (struct type *type);
2677
2678 /* Allocate a fixed-point type info for TYPE. This should only be
2679 called by INIT_FIXED_POINT_SPECIFIC. */
2680 extern void allocate_fixed_point_type_info (struct type *type);
2681
2682 /* * When the type includes explicit byte ordering, return that.
2683 Otherwise, the byte ordering from gdbarch_byte_order for
2684 the type's arch is returned. */
2685
2686 extern enum bfd_endian type_byte_order (const struct type *type);
2687
2688 /* A flag to enable printing of debugging information of C++
2689 overloading. */
2690
2691 extern unsigned int overload_debug;
2692
2693 #endif /* GDBTYPES_H */
This page took 0.082492 seconds and 5 git commands to generate.