gdb: add type::endianity_is_not_default / type::set_endianity_is_not_default
[deliverable/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2020 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/offset-type.h"
50 #include "gdbsupport/enum-flags.h"
51 #include "gdbsupport/underlying.h"
52 #include "gdbsupport/print-utils.h"
53 #include "dwarf2.h"
54 #include "gdb_obstack.h"
55
56 /* Forward declarations for prototypes. */
57 struct field;
58 struct block;
59 struct value_print_options;
60 struct language_defn;
61 struct dwarf2_per_cu_data;
62 struct dwarf2_per_objfile;
63
64 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
65 are already DWARF-specific. */
66
67 /* * Offset relative to the start of its containing CU (compilation
68 unit). */
69 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
70
71 /* * Offset relative to the start of its .debug_info or .debug_types
72 section. */
73 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
74
75 static inline char *
76 sect_offset_str (sect_offset offset)
77 {
78 return hex_string (to_underlying (offset));
79 }
80
81 /* Some macros for char-based bitfields. */
82
83 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
84 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
85 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
86 #define B_TYPE unsigned char
87 #define B_BYTES(x) ( 1 + ((x)>>3) )
88 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
89
90 /* * Different kinds of data types are distinguished by the `code'
91 field. */
92
93 enum type_code
94 {
95 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
96 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
97 TYPE_CODE_PTR, /**< Pointer type */
98
99 /* * Array type with lower & upper bounds.
100
101 Regardless of the language, GDB represents multidimensional
102 array types the way C does: as arrays of arrays. So an
103 instance of a GDB array type T can always be seen as a series
104 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
105 memory.
106
107 Row-major languages like C lay out multi-dimensional arrays so
108 that incrementing the rightmost index in a subscripting
109 expression results in the smallest change in the address of the
110 element referred to. Column-major languages like Fortran lay
111 them out so that incrementing the leftmost index results in the
112 smallest change.
113
114 This means that, in column-major languages, working our way
115 from type to target type corresponds to working through indices
116 from right to left, not left to right. */
117 TYPE_CODE_ARRAY,
118
119 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
120 TYPE_CODE_UNION, /**< C union or Pascal variant part */
121 TYPE_CODE_ENUM, /**< Enumeration type */
122 TYPE_CODE_FLAGS, /**< Bit flags type */
123 TYPE_CODE_FUNC, /**< Function type */
124 TYPE_CODE_INT, /**< Integer type */
125
126 /* * Floating type. This is *NOT* a complex type. */
127 TYPE_CODE_FLT,
128
129 /* * Void type. The length field specifies the length (probably
130 always one) which is used in pointer arithmetic involving
131 pointers to this type, but actually dereferencing such a
132 pointer is invalid; a void type has no length and no actual
133 representation in memory or registers. A pointer to a void
134 type is a generic pointer. */
135 TYPE_CODE_VOID,
136
137 TYPE_CODE_SET, /**< Pascal sets */
138 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
139
140 /* * A string type which is like an array of character but prints
141 differently. It does not contain a length field as Pascal
142 strings (for many Pascals, anyway) do; if we want to deal with
143 such strings, we should use a new type code. */
144 TYPE_CODE_STRING,
145
146 /* * Unknown type. The length field is valid if we were able to
147 deduce that much about the type, or 0 if we don't even know
148 that. */
149 TYPE_CODE_ERROR,
150
151 /* C++ */
152 TYPE_CODE_METHOD, /**< Method type */
153
154 /* * Pointer-to-member-function type. This describes how to access a
155 particular member function of a class (possibly a virtual
156 member function). The representation may vary between different
157 C++ ABIs. */
158 TYPE_CODE_METHODPTR,
159
160 /* * Pointer-to-member type. This is the offset within a class to
161 some particular data member. The only currently supported
162 representation uses an unbiased offset, with -1 representing
163 NULL; this is used by the Itanium C++ ABI (used by GCC on all
164 platforms). */
165 TYPE_CODE_MEMBERPTR,
166
167 TYPE_CODE_REF, /**< C++ Reference types */
168
169 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
170
171 TYPE_CODE_CHAR, /**< *real* character type */
172
173 /* * Boolean type. 0 is false, 1 is true, and other values are
174 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
175 TYPE_CODE_BOOL,
176
177 /* Fortran */
178 TYPE_CODE_COMPLEX, /**< Complex float */
179
180 TYPE_CODE_TYPEDEF,
181
182 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
183
184 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
185
186 TYPE_CODE_MODULE, /**< Fortran module. */
187
188 /* * Internal function type. */
189 TYPE_CODE_INTERNAL_FUNCTION,
190
191 /* * Methods implemented in extension languages. */
192 TYPE_CODE_XMETHOD
193 };
194
195 /* * Some bits for the type's instance_flags word. See the macros
196 below for documentation on each bit. */
197
198 enum type_instance_flag_value : unsigned
199 {
200 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
201 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
202 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
203 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
204 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
205 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
206 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
207 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
208 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
209 };
210
211 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
212
213 /* * A compiler may supply dwarf instrumentation
214 that indicates the desired endian interpretation of the variable
215 differs from the native endian representation. */
216
217 #define TYPE_ENDIANITY_NOT_DEFAULT(t) ((t)->endianity_is_not_default ())
218
219 /* * Not textual. By default, GDB treats all single byte integers as
220 characters (or elements of strings) unless this flag is set. */
221
222 #define TYPE_NOTTEXT(t) (TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_NOTTEXT)
223
224 /* * Type owner. If TYPE_OBJFILE_OWNED is true, the type is owned by
225 the objfile retrieved as TYPE_OBJFILE. Otherwise, the type is
226 owned by an architecture; TYPE_OBJFILE is NULL in this case. */
227
228 #define TYPE_OBJFILE_OWNED(t) (TYPE_MAIN_TYPE (t)->flag_objfile_owned)
229 #define TYPE_OWNER(t) TYPE_MAIN_TYPE(t)->owner
230 #define TYPE_OBJFILE(t) (TYPE_OBJFILE_OWNED(t)? TYPE_OWNER(t).objfile : NULL)
231
232 /* * True if this type was declared using the "class" keyword. This is
233 only valid for C++ structure and enum types. If false, a structure
234 was declared as a "struct"; if true it was declared "class". For
235 enum types, this is true when "enum class" or "enum struct" was
236 used to declare the type.. */
237
238 #define TYPE_DECLARED_CLASS(t) (TYPE_MAIN_TYPE (t)->flag_declared_class)
239
240 /* * True if this type is a "flag" enum. A flag enum is one where all
241 the values are pairwise disjoint when "and"ed together. This
242 affects how enum values are printed. */
243
244 #define TYPE_FLAG_ENUM(t) (TYPE_MAIN_TYPE (t)->flag_flag_enum)
245
246 /* * Constant type. If this is set, the corresponding type has a
247 const modifier. */
248
249 #define TYPE_CONST(t) ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CONST) != 0)
250
251 /* * Volatile type. If this is set, the corresponding type has a
252 volatile modifier. */
253
254 #define TYPE_VOLATILE(t) \
255 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
256
257 /* * Restrict type. If this is set, the corresponding type has a
258 restrict modifier. */
259
260 #define TYPE_RESTRICT(t) \
261 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
262
263 /* * Atomic type. If this is set, the corresponding type has an
264 _Atomic modifier. */
265
266 #define TYPE_ATOMIC(t) \
267 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
268
269 /* * True if this type represents either an lvalue or lvalue reference type. */
270
271 #define TYPE_IS_REFERENCE(t) \
272 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
273
274 /* * True if this type is allocatable. */
275 #define TYPE_IS_ALLOCATABLE(t) \
276 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
277
278 /* * True if this type has variant parts. */
279 #define TYPE_HAS_VARIANT_PARTS(t) \
280 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
281
282 /* * True if this type has a dynamic length. */
283 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
284 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
285
286 /* * Instruction-space delimited type. This is for Harvard architectures
287 which have separate instruction and data address spaces (and perhaps
288 others).
289
290 GDB usually defines a flat address space that is a superset of the
291 architecture's two (or more) address spaces, but this is an extension
292 of the architecture's model.
293
294 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
295 resides in instruction memory, even if its address (in the extended
296 flat address space) does not reflect this.
297
298 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
299 corresponding type resides in the data memory space, even if
300 this is not indicated by its (flat address space) address.
301
302 If neither flag is set, the default space for functions / methods
303 is instruction space, and for data objects is data memory. */
304
305 #define TYPE_CODE_SPACE(t) \
306 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
307
308 #define TYPE_DATA_SPACE(t) \
309 ((TYPE_INSTANCE_FLAGS (t) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
310
311 /* * Address class flags. Some environments provide for pointers
312 whose size is different from that of a normal pointer or address
313 types where the bits are interpreted differently than normal
314 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
315 target specific ways to represent these different types of address
316 classes. */
317
318 #define TYPE_ADDRESS_CLASS_1(t) (TYPE_INSTANCE_FLAGS(t) \
319 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
320 #define TYPE_ADDRESS_CLASS_2(t) (TYPE_INSTANCE_FLAGS(t) \
321 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
322 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
323 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
324 #define TYPE_ADDRESS_CLASS_ALL(t) (TYPE_INSTANCE_FLAGS(t) \
325 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
326
327 /* * Information about a single discriminant. */
328
329 struct discriminant_range
330 {
331 /* * The range of values for the variant. This is an inclusive
332 range. */
333 ULONGEST low, high;
334
335 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
336 is true if this should be an unsigned comparison; false for
337 signed. */
338 bool contains (ULONGEST value, bool is_unsigned) const
339 {
340 if (is_unsigned)
341 return value >= low && value <= high;
342 LONGEST valuel = (LONGEST) value;
343 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
344 }
345 };
346
347 struct variant_part;
348
349 /* * A single variant. A variant has a list of discriminant values.
350 When the discriminator matches one of these, the variant is
351 enabled. Each variant controls zero or more fields; and may also
352 control other variant parts as well. This struct corresponds to
353 DW_TAG_variant in DWARF. */
354
355 struct variant : allocate_on_obstack
356 {
357 /* * The discriminant ranges for this variant. */
358 gdb::array_view<discriminant_range> discriminants;
359
360 /* * The fields controlled by this variant. This is inclusive on
361 the low end and exclusive on the high end. A variant may not
362 control any fields, in which case the two values will be equal.
363 These are indexes into the type's array of fields. */
364 int first_field;
365 int last_field;
366
367 /* * Variant parts controlled by this variant. */
368 gdb::array_view<variant_part> parts;
369
370 /* * Return true if this is the default variant. The default
371 variant can be recognized because it has no associated
372 discriminants. */
373 bool is_default () const
374 {
375 return discriminants.empty ();
376 }
377
378 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
379 if this should be an unsigned comparison; false for signed. */
380 bool matches (ULONGEST value, bool is_unsigned) const;
381 };
382
383 /* * A variant part. Each variant part has an optional discriminant
384 and holds an array of variants. This struct corresponds to
385 DW_TAG_variant_part in DWARF. */
386
387 struct variant_part : allocate_on_obstack
388 {
389 /* * The index of the discriminant field in the outer type. This is
390 an index into the type's array of fields. If this is -1, there
391 is no discriminant, and only the default variant can be
392 considered to be selected. */
393 int discriminant_index;
394
395 /* * True if this discriminant is unsigned; false if signed. This
396 comes from the type of the discriminant. */
397 bool is_unsigned;
398
399 /* * The variants that are controlled by this variant part. Note
400 that these will always be sorted by field number. */
401 gdb::array_view<variant> variants;
402 };
403
404
405 enum dynamic_prop_kind
406 {
407 PROP_UNDEFINED, /* Not defined. */
408 PROP_CONST, /* Constant. */
409 PROP_ADDR_OFFSET, /* Address offset. */
410 PROP_LOCEXPR, /* Location expression. */
411 PROP_LOCLIST, /* Location list. */
412 PROP_VARIANT_PARTS, /* Variant parts. */
413 PROP_TYPE, /* Type. */
414 };
415
416 union dynamic_prop_data
417 {
418 /* Storage for constant property. */
419
420 LONGEST const_val;
421
422 /* Storage for dynamic property. */
423
424 void *baton;
425
426 /* Storage of variant parts for a type. A type with variant parts
427 has all its fields "linearized" -- stored in a single field
428 array, just as if they had all been declared that way. The
429 variant parts are attached via a dynamic property, and then are
430 used to control which fields end up in the final type during
431 dynamic type resolution. */
432
433 const gdb::array_view<variant_part> *variant_parts;
434
435 /* Once a variant type is resolved, we may want to be able to go
436 from the resolved type to the original type. In this case we
437 rewrite the property's kind and set this field. */
438
439 struct type *original_type;
440 };
441
442 /* * Used to store a dynamic property. */
443
444 struct dynamic_prop
445 {
446 dynamic_prop_kind kind () const
447 {
448 return m_kind;
449 }
450
451 void set_undefined ()
452 {
453 m_kind = PROP_UNDEFINED;
454 }
455
456 LONGEST const_val () const
457 {
458 gdb_assert (m_kind == PROP_CONST);
459
460 return m_data.const_val;
461 }
462
463 void set_const_val (LONGEST const_val)
464 {
465 m_kind = PROP_CONST;
466 m_data.const_val = const_val;
467 }
468
469 void *baton () const
470 {
471 gdb_assert (m_kind == PROP_LOCEXPR
472 || m_kind == PROP_LOCLIST
473 || m_kind == PROP_ADDR_OFFSET);
474
475 return m_data.baton;
476 }
477
478 void set_locexpr (void *baton)
479 {
480 m_kind = PROP_LOCEXPR;
481 m_data.baton = baton;
482 }
483
484 void set_loclist (void *baton)
485 {
486 m_kind = PROP_LOCLIST;
487 m_data.baton = baton;
488 }
489
490 void set_addr_offset (void *baton)
491 {
492 m_kind = PROP_ADDR_OFFSET;
493 m_data.baton = baton;
494 }
495
496 const gdb::array_view<variant_part> *variant_parts () const
497 {
498 gdb_assert (m_kind == PROP_VARIANT_PARTS);
499
500 return m_data.variant_parts;
501 }
502
503 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
504 {
505 m_kind = PROP_VARIANT_PARTS;
506 m_data.variant_parts = variant_parts;
507 }
508
509 struct type *original_type () const
510 {
511 gdb_assert (m_kind == PROP_TYPE);
512
513 return m_data.original_type;
514 }
515
516 void set_original_type (struct type *original_type)
517 {
518 m_kind = PROP_TYPE;
519 m_data.original_type = original_type;
520 }
521
522 /* Determine which field of the union dynamic_prop.data is used. */
523 enum dynamic_prop_kind m_kind;
524
525 /* Storage for dynamic or static value. */
526 union dynamic_prop_data m_data;
527 };
528
529 /* Compare two dynamic_prop objects for equality. dynamic_prop
530 instances are equal iff they have the same type and storage. */
531 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
532
533 /* Compare two dynamic_prop objects for inequality. */
534 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
535 {
536 return !(l == r);
537 }
538
539 /* * Define a type's dynamic property node kind. */
540 enum dynamic_prop_node_kind
541 {
542 /* A property providing a type's data location.
543 Evaluating this field yields to the location of an object's data. */
544 DYN_PROP_DATA_LOCATION,
545
546 /* A property representing DW_AT_allocated. The presence of this attribute
547 indicates that the object of the type can be allocated/deallocated. */
548 DYN_PROP_ALLOCATED,
549
550 /* A property representing DW_AT_associated. The presence of this attribute
551 indicated that the object of the type can be associated. */
552 DYN_PROP_ASSOCIATED,
553
554 /* A property providing an array's byte stride. */
555 DYN_PROP_BYTE_STRIDE,
556
557 /* A property holding variant parts. */
558 DYN_PROP_VARIANT_PARTS,
559
560 /* A property holding the size of the type. */
561 DYN_PROP_BYTE_SIZE,
562 };
563
564 /* * List for dynamic type attributes. */
565 struct dynamic_prop_list
566 {
567 /* The kind of dynamic prop in this node. */
568 enum dynamic_prop_node_kind prop_kind;
569
570 /* The dynamic property itself. */
571 struct dynamic_prop prop;
572
573 /* A pointer to the next dynamic property. */
574 struct dynamic_prop_list *next;
575 };
576
577 /* * Determine which field of the union main_type.fields[x].loc is
578 used. */
579
580 enum field_loc_kind
581 {
582 FIELD_LOC_KIND_BITPOS, /**< bitpos */
583 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
584 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
585 FIELD_LOC_KIND_PHYSNAME, /**< physname */
586 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
587 };
588
589 /* * A discriminant to determine which field in the
590 main_type.type_specific union is being used, if any.
591
592 For types such as TYPE_CODE_FLT, the use of this
593 discriminant is really redundant, as we know from the type code
594 which field is going to be used. As such, it would be possible to
595 reduce the size of this enum in order to save a bit or two for
596 other fields of struct main_type. But, since we still have extra
597 room , and for the sake of clarity and consistency, we treat all fields
598 of the union the same way. */
599
600 enum type_specific_kind
601 {
602 TYPE_SPECIFIC_NONE,
603 TYPE_SPECIFIC_CPLUS_STUFF,
604 TYPE_SPECIFIC_GNAT_STUFF,
605 TYPE_SPECIFIC_FLOATFORMAT,
606 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
607 TYPE_SPECIFIC_FUNC,
608 TYPE_SPECIFIC_SELF_TYPE
609 };
610
611 union type_owner
612 {
613 struct objfile *objfile;
614 struct gdbarch *gdbarch;
615 };
616
617 union field_location
618 {
619 /* * Position of this field, counting in bits from start of
620 containing structure. For big-endian targets, it is the bit
621 offset to the MSB. For little-endian targets, it is the bit
622 offset to the LSB. */
623
624 LONGEST bitpos;
625
626 /* * Enum value. */
627 LONGEST enumval;
628
629 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
630 physaddr is the location (in the target) of the static
631 field. Otherwise, physname is the mangled label of the
632 static field. */
633
634 CORE_ADDR physaddr;
635 const char *physname;
636
637 /* * The field location can be computed by evaluating the
638 following DWARF block. Its DATA is allocated on
639 objfile_obstack - no CU load is needed to access it. */
640
641 struct dwarf2_locexpr_baton *dwarf_block;
642 };
643
644 struct field
645 {
646 struct type *type () const
647 {
648 return this->m_type;
649 }
650
651 void set_type (struct type *type)
652 {
653 this->m_type = type;
654 }
655
656 union field_location loc;
657
658 /* * For a function or member type, this is 1 if the argument is
659 marked artificial. Artificial arguments should not be shown
660 to the user. For TYPE_CODE_RANGE it is set if the specific
661 bound is not defined. */
662
663 unsigned int artificial : 1;
664
665 /* * Discriminant for union field_location. */
666
667 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
668
669 /* * Size of this field, in bits, or zero if not packed.
670 If non-zero in an array type, indicates the element size in
671 bits (used only in Ada at the moment).
672 For an unpacked field, the field's type's length
673 says how many bytes the field occupies. */
674
675 unsigned int bitsize : 28;
676
677 /* * In a struct or union type, type of this field.
678 - In a function or member type, type of this argument.
679 - In an array type, the domain-type of the array. */
680
681 struct type *m_type;
682
683 /* * Name of field, value or argument.
684 NULL for range bounds, array domains, and member function
685 arguments. */
686
687 const char *name;
688 };
689
690 struct range_bounds
691 {
692 ULONGEST bit_stride () const
693 {
694 if (this->flag_is_byte_stride)
695 return this->stride.const_val () * 8;
696 else
697 return this->stride.const_val ();
698 }
699
700 /* * Low bound of range. */
701
702 struct dynamic_prop low;
703
704 /* * High bound of range. */
705
706 struct dynamic_prop high;
707
708 /* The stride value for this range. This can be stored in bits or bytes
709 based on the value of BYTE_STRIDE_P. It is optional to have a stride
710 value, if this range has no stride value defined then this will be set
711 to the constant zero. */
712
713 struct dynamic_prop stride;
714
715 /* * The bias. Sometimes a range value is biased before storage.
716 The bias is added to the stored bits to form the true value. */
717
718 LONGEST bias;
719
720 /* True if HIGH range bound contains the number of elements in the
721 subrange. This affects how the final high bound is computed. */
722
723 unsigned int flag_upper_bound_is_count : 1;
724
725 /* True if LOW or/and HIGH are resolved into a static bound from
726 a dynamic one. */
727
728 unsigned int flag_bound_evaluated : 1;
729
730 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
731
732 unsigned int flag_is_byte_stride : 1;
733 };
734
735 /* Compare two range_bounds objects for equality. Simply does
736 memberwise comparison. */
737 extern bool operator== (const range_bounds &l, const range_bounds &r);
738
739 /* Compare two range_bounds objects for inequality. */
740 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
741 {
742 return !(l == r);
743 }
744
745 union type_specific
746 {
747 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
748 point to cplus_struct_default, a default static instance of a
749 struct cplus_struct_type. */
750
751 struct cplus_struct_type *cplus_stuff;
752
753 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
754 provides additional information. */
755
756 struct gnat_aux_type *gnat_stuff;
757
758 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
759 floatformat object that describes the floating-point value
760 that resides within the type. */
761
762 const struct floatformat *floatformat;
763
764 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
765
766 struct func_type *func_stuff;
767
768 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
769 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
770 is a member of. */
771
772 struct type *self_type;
773 };
774
775 /* * Main structure representing a type in GDB.
776
777 This structure is space-critical. Its layout has been tweaked to
778 reduce the space used. */
779
780 struct main_type
781 {
782 /* * Code for kind of type. */
783
784 ENUM_BITFIELD(type_code) code : 8;
785
786 /* * Flags about this type. These fields appear at this location
787 because they packs nicely here. See the TYPE_* macros for
788 documentation about these fields. */
789
790 unsigned int m_flag_unsigned : 1;
791 unsigned int m_flag_nosign : 1;
792 unsigned int m_flag_stub : 1;
793 unsigned int m_flag_target_stub : 1;
794 unsigned int m_flag_prototyped : 1;
795 unsigned int m_flag_varargs : 1;
796 unsigned int m_flag_vector : 1;
797 unsigned int m_flag_stub_supported : 1;
798 unsigned int m_flag_gnu_ifunc : 1;
799 unsigned int m_flag_fixed_instance : 1;
800 unsigned int flag_objfile_owned : 1;
801 unsigned int m_flag_endianity_not_default : 1;
802
803 /* * True if this type was declared with "class" rather than
804 "struct". */
805
806 unsigned int flag_declared_class : 1;
807
808 /* * True if this is an enum type with disjoint values. This
809 affects how the enum is printed. */
810
811 unsigned int flag_flag_enum : 1;
812
813 /* * A discriminant telling us which field of the type_specific
814 union is being used for this type, if any. */
815
816 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
817
818 /* * Number of fields described for this type. This field appears
819 at this location because it packs nicely here. */
820
821 short nfields;
822
823 /* * Name of this type, or NULL if none.
824
825 This is used for printing only. For looking up a name, look for
826 a symbol in the VAR_DOMAIN. This is generally allocated in the
827 objfile's obstack. However coffread.c uses malloc. */
828
829 const char *name;
830
831 /* * Every type is now associated with a particular objfile, and the
832 type is allocated on the objfile_obstack for that objfile. One
833 problem however, is that there are times when gdb allocates new
834 types while it is not in the process of reading symbols from a
835 particular objfile. Fortunately, these happen when the type
836 being created is a derived type of an existing type, such as in
837 lookup_pointer_type(). So we can just allocate the new type
838 using the same objfile as the existing type, but to do this we
839 need a backpointer to the objfile from the existing type. Yes
840 this is somewhat ugly, but without major overhaul of the internal
841 type system, it can't be avoided for now. */
842
843 union type_owner owner;
844
845 /* * For a pointer type, describes the type of object pointed to.
846 - For an array type, describes the type of the elements.
847 - For a function or method type, describes the type of the return value.
848 - For a range type, describes the type of the full range.
849 - For a complex type, describes the type of each coordinate.
850 - For a special record or union type encoding a dynamic-sized type
851 in GNAT, a memoized pointer to a corresponding static version of
852 the type.
853 - Unused otherwise. */
854
855 struct type *target_type;
856
857 /* * For structure and union types, a description of each field.
858 For set and pascal array types, there is one "field",
859 whose type is the domain type of the set or array.
860 For range types, there are two "fields",
861 the minimum and maximum values (both inclusive).
862 For enum types, each possible value is described by one "field".
863 For a function or method type, a "field" for each parameter.
864 For C++ classes, there is one field for each base class (if it is
865 a derived class) plus one field for each class data member. Member
866 functions are recorded elsewhere.
867
868 Using a pointer to a separate array of fields
869 allows all types to have the same size, which is useful
870 because we can allocate the space for a type before
871 we know what to put in it. */
872
873 union
874 {
875 struct field *fields;
876
877 /* * Union member used for range types. */
878
879 struct range_bounds *bounds;
880
881 /* If this is a scalar type, then this is its corresponding
882 complex type. */
883 struct type *complex_type;
884
885 } flds_bnds;
886
887 /* * Slot to point to additional language-specific fields of this
888 type. */
889
890 union type_specific type_specific;
891
892 /* * Contains all dynamic type properties. */
893 struct dynamic_prop_list *dyn_prop_list;
894 };
895
896 /* * Number of bits allocated for alignment. */
897
898 #define TYPE_ALIGN_BITS 8
899
900 /* * A ``struct type'' describes a particular instance of a type, with
901 some particular qualification. */
902
903 struct type
904 {
905 /* Get the type code of this type.
906
907 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
908 type, you need to do `check_typedef (type)->code ()`. */
909 type_code code () const
910 {
911 return this->main_type->code;
912 }
913
914 /* Set the type code of this type. */
915 void set_code (type_code code)
916 {
917 this->main_type->code = code;
918 }
919
920 /* Get the name of this type. */
921 const char *name () const
922 {
923 return this->main_type->name;
924 }
925
926 /* Set the name of this type. */
927 void set_name (const char *name)
928 {
929 this->main_type->name = name;
930 }
931
932 /* Get the number of fields of this type. */
933 int num_fields () const
934 {
935 return this->main_type->nfields;
936 }
937
938 /* Set the number of fields of this type. */
939 void set_num_fields (int num_fields)
940 {
941 this->main_type->nfields = num_fields;
942 }
943
944 /* Get the fields array of this type. */
945 struct field *fields () const
946 {
947 return this->main_type->flds_bnds.fields;
948 }
949
950 /* Get the field at index IDX. */
951 struct field &field (int idx) const
952 {
953 return this->fields ()[idx];
954 }
955
956 /* Set the fields array of this type. */
957 void set_fields (struct field *fields)
958 {
959 this->main_type->flds_bnds.fields = fields;
960 }
961
962 type *index_type () const
963 {
964 return this->field (0).type ();
965 }
966
967 void set_index_type (type *index_type)
968 {
969 this->field (0).set_type (index_type);
970 }
971
972 /* Get the bounds bounds of this type. The type must be a range type. */
973 range_bounds *bounds () const
974 {
975 switch (this->code ())
976 {
977 case TYPE_CODE_RANGE:
978 return this->main_type->flds_bnds.bounds;
979
980 case TYPE_CODE_ARRAY:
981 case TYPE_CODE_STRING:
982 return this->index_type ()->bounds ();
983
984 default:
985 gdb_assert_not_reached
986 ("type::bounds called on type with invalid code");
987 }
988 }
989
990 /* Set the bounds of this type. The type must be a range type. */
991 void set_bounds (range_bounds *bounds)
992 {
993 gdb_assert (this->code () == TYPE_CODE_RANGE);
994
995 this->main_type->flds_bnds.bounds = bounds;
996 }
997
998 ULONGEST bit_stride () const
999 {
1000 return this->bounds ()->bit_stride ();
1001 }
1002
1003 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1004 the type is signed (unless TYPE_NOSIGN is set). */
1005
1006 bool is_unsigned () const
1007 {
1008 return this->main_type->m_flag_unsigned;
1009 }
1010
1011 void set_is_unsigned (bool is_unsigned)
1012 {
1013 this->main_type->m_flag_unsigned = is_unsigned;
1014 }
1015
1016 /* No sign for this type. In C++, "char", "signed char", and
1017 "unsigned char" are distinct types; so we need an extra flag to
1018 indicate the absence of a sign! */
1019
1020 bool has_no_signedness () const
1021 {
1022 return this->main_type->m_flag_nosign;
1023 }
1024
1025 void set_has_no_signedness (bool has_no_signedness)
1026 {
1027 this->main_type->m_flag_nosign = has_no_signedness;
1028 }
1029
1030 /* This appears in a type's flags word if it is a stub type (e.g.,
1031 if someone referenced a type that wasn't defined in a source file
1032 via (struct sir_not_appearing_in_this_film *)). */
1033
1034 bool is_stub () const
1035 {
1036 return this->main_type->m_flag_stub;
1037 }
1038
1039 void set_is_stub (bool is_stub)
1040 {
1041 this->main_type->m_flag_stub = is_stub;
1042 }
1043
1044 /* The target type of this type is a stub type, and this type needs
1045 to be updated if it gets un-stubbed in check_typedef. Used for
1046 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1047 based on the TYPE_LENGTH of the target type. Also, set for
1048 TYPE_CODE_TYPEDEF. */
1049
1050 bool target_is_stub () const
1051 {
1052 return this->main_type->m_flag_target_stub;
1053 }
1054
1055 void set_target_is_stub (bool target_is_stub)
1056 {
1057 this->main_type->m_flag_target_stub = target_is_stub;
1058 }
1059
1060 /* This is a function type which appears to have a prototype. We
1061 need this for function calls in order to tell us if it's necessary
1062 to coerce the args, or to just do the standard conversions. This
1063 is used with a short field. */
1064
1065 bool is_prototyped () const
1066 {
1067 return this->main_type->m_flag_prototyped;
1068 }
1069
1070 void set_is_prototyped (bool is_prototyped)
1071 {
1072 this->main_type->m_flag_prototyped = is_prototyped;
1073 }
1074
1075 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1076 to functions. */
1077
1078 bool has_varargs () const
1079 {
1080 return this->main_type->m_flag_varargs;
1081 }
1082
1083 void set_has_varargs (bool has_varargs)
1084 {
1085 this->main_type->m_flag_varargs = has_varargs;
1086 }
1087
1088 /* Identify a vector type. Gcc is handling this by adding an extra
1089 attribute to the array type. We slurp that in as a new flag of a
1090 type. This is used only in dwarf2read.c. */
1091
1092 bool is_vector () const
1093 {
1094 return this->main_type->m_flag_vector;
1095 }
1096
1097 void set_is_vector (bool is_vector)
1098 {
1099 this->main_type->m_flag_vector = is_vector;
1100 }
1101
1102 /* This debug target supports TYPE_STUB(t). In the unsupported case
1103 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1104 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1105 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1106
1107 bool stub_is_supported () const
1108 {
1109 return this->main_type->m_flag_stub_supported;
1110 }
1111
1112 void set_stub_is_supported (bool stub_is_supported)
1113 {
1114 this->main_type->m_flag_stub_supported = stub_is_supported;
1115 }
1116
1117 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1118 address is returned by this function call. TYPE_TARGET_TYPE
1119 determines the final returned function type to be presented to
1120 user. */
1121
1122 bool is_gnu_ifunc () const
1123 {
1124 return this->main_type->m_flag_gnu_ifunc;
1125 }
1126
1127 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1128 {
1129 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1130 }
1131
1132 /* The debugging formats (especially STABS) do not contain enough
1133 information to represent all Ada types---especially those whose
1134 size depends on dynamic quantities. Therefore, the GNAT Ada
1135 compiler includes extra information in the form of additional type
1136 definitions connected by naming conventions. This flag indicates
1137 that the type is an ordinary (unencoded) GDB type that has been
1138 created from the necessary run-time information, and does not need
1139 further interpretation. Optionally marks ordinary, fixed-size GDB
1140 type. */
1141
1142 bool is_fixed_instance () const
1143 {
1144 return this->main_type->m_flag_fixed_instance;
1145 }
1146
1147 void set_is_fixed_instance (bool is_fixed_instance)
1148 {
1149 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1150 }
1151
1152 bool endianity_is_not_default () const
1153 {
1154 return this->main_type->m_flag_endianity_not_default;
1155 }
1156
1157 void set_endianity_is_not_default (bool endianity_is_not_default)
1158 {
1159 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1160 }
1161
1162 /* * Return the dynamic property of the requested KIND from this type's
1163 list of dynamic properties. */
1164 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1165
1166 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1167 property to this type.
1168
1169 This function assumes that this type is objfile-owned. */
1170 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1171
1172 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1173 void remove_dyn_prop (dynamic_prop_node_kind kind);
1174
1175 /* * Type that is a pointer to this type.
1176 NULL if no such pointer-to type is known yet.
1177 The debugger may add the address of such a type
1178 if it has to construct one later. */
1179
1180 struct type *pointer_type;
1181
1182 /* * C++: also need a reference type. */
1183
1184 struct type *reference_type;
1185
1186 /* * A C++ rvalue reference type added in C++11. */
1187
1188 struct type *rvalue_reference_type;
1189
1190 /* * Variant chain. This points to a type that differs from this
1191 one only in qualifiers and length. Currently, the possible
1192 qualifiers are const, volatile, code-space, data-space, and
1193 address class. The length may differ only when one of the
1194 address class flags are set. The variants are linked in a
1195 circular ring and share MAIN_TYPE. */
1196
1197 struct type *chain;
1198
1199 /* * The alignment for this type. Zero means that the alignment was
1200 not specified in the debug info. Note that this is stored in a
1201 funny way: as the log base 2 (plus 1) of the alignment; so a
1202 value of 1 means the alignment is 1, and a value of 9 means the
1203 alignment is 256. */
1204
1205 unsigned align_log2 : TYPE_ALIGN_BITS;
1206
1207 /* * Flags specific to this instance of the type, indicating where
1208 on the ring we are.
1209
1210 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1211 binary or-ed with the target type, with a special case for
1212 address class and space class. For example if this typedef does
1213 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1214 instance flags are completely inherited from the target type. No
1215 qualifiers can be cleared by the typedef. See also
1216 check_typedef. */
1217 unsigned instance_flags : 9;
1218
1219 /* * Length of storage for a value of this type. The value is the
1220 expression in host bytes of what sizeof(type) would return. This
1221 size includes padding. For example, an i386 extended-precision
1222 floating point value really only occupies ten bytes, but most
1223 ABI's declare its size to be 12 bytes, to preserve alignment.
1224 A `struct type' representing such a floating-point type would
1225 have a `length' value of 12, even though the last two bytes are
1226 unused.
1227
1228 Since this field is expressed in host bytes, its value is appropriate
1229 to pass to memcpy and such (it is assumed that GDB itself always runs
1230 on an 8-bits addressable architecture). However, when using it for
1231 target address arithmetic (e.g. adding it to a target address), the
1232 type_length_units function should be used in order to get the length
1233 expressed in target addressable memory units. */
1234
1235 ULONGEST length;
1236
1237 /* * Core type, shared by a group of qualified types. */
1238
1239 struct main_type *main_type;
1240 };
1241
1242 struct fn_fieldlist
1243 {
1244
1245 /* * The overloaded name.
1246 This is generally allocated in the objfile's obstack.
1247 However stabsread.c sometimes uses malloc. */
1248
1249 const char *name;
1250
1251 /* * The number of methods with this name. */
1252
1253 int length;
1254
1255 /* * The list of methods. */
1256
1257 struct fn_field *fn_fields;
1258 };
1259
1260
1261
1262 struct fn_field
1263 {
1264 /* * If is_stub is clear, this is the mangled name which we can look
1265 up to find the address of the method (FIXME: it would be cleaner
1266 to have a pointer to the struct symbol here instead).
1267
1268 If is_stub is set, this is the portion of the mangled name which
1269 specifies the arguments. For example, "ii", if there are two int
1270 arguments, or "" if there are no arguments. See gdb_mangle_name
1271 for the conversion from this format to the one used if is_stub is
1272 clear. */
1273
1274 const char *physname;
1275
1276 /* * The function type for the method.
1277
1278 (This comment used to say "The return value of the method", but
1279 that's wrong. The function type is expected here, i.e. something
1280 with TYPE_CODE_METHOD, and *not* the return-value type). */
1281
1282 struct type *type;
1283
1284 /* * For virtual functions. First baseclass that defines this
1285 virtual function. */
1286
1287 struct type *fcontext;
1288
1289 /* Attributes. */
1290
1291 unsigned int is_const:1;
1292 unsigned int is_volatile:1;
1293 unsigned int is_private:1;
1294 unsigned int is_protected:1;
1295 unsigned int is_artificial:1;
1296
1297 /* * A stub method only has some fields valid (but they are enough
1298 to reconstruct the rest of the fields). */
1299
1300 unsigned int is_stub:1;
1301
1302 /* * True if this function is a constructor, false otherwise. */
1303
1304 unsigned int is_constructor : 1;
1305
1306 /* * True if this function is deleted, false otherwise. */
1307
1308 unsigned int is_deleted : 1;
1309
1310 /* * DW_AT_defaulted attribute for this function. The value is one
1311 of the DW_DEFAULTED constants. */
1312
1313 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1314
1315 /* * Unused. */
1316
1317 unsigned int dummy:6;
1318
1319 /* * Index into that baseclass's virtual function table, minus 2;
1320 else if static: VOFFSET_STATIC; else: 0. */
1321
1322 unsigned int voffset:16;
1323
1324 #define VOFFSET_STATIC 1
1325
1326 };
1327
1328 struct decl_field
1329 {
1330 /* * Unqualified name to be prefixed by owning class qualified
1331 name. */
1332
1333 const char *name;
1334
1335 /* * Type this typedef named NAME represents. */
1336
1337 struct type *type;
1338
1339 /* * True if this field was declared protected, false otherwise. */
1340 unsigned int is_protected : 1;
1341
1342 /* * True if this field was declared private, false otherwise. */
1343 unsigned int is_private : 1;
1344 };
1345
1346 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1347 TYPE_CODE_UNION nodes. */
1348
1349 struct cplus_struct_type
1350 {
1351 /* * Number of base classes this type derives from. The
1352 baseclasses are stored in the first N_BASECLASSES fields
1353 (i.e. the `fields' field of the struct type). The only fields
1354 of struct field that are used are: type, name, loc.bitpos. */
1355
1356 short n_baseclasses;
1357
1358 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1359 All access to this field must be through TYPE_VPTR_FIELDNO as one
1360 thing it does is check whether the field has been initialized.
1361 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1362 which for portability reasons doesn't initialize this field.
1363 TYPE_VPTR_FIELDNO returns -1 for this case.
1364
1365 If -1, we were unable to find the virtual function table pointer in
1366 initial symbol reading, and get_vptr_fieldno should be called to find
1367 it if possible. get_vptr_fieldno will update this field if possible.
1368 Otherwise the value is left at -1.
1369
1370 Unused if this type does not have virtual functions. */
1371
1372 short vptr_fieldno;
1373
1374 /* * Number of methods with unique names. All overloaded methods
1375 with the same name count only once. */
1376
1377 short nfn_fields;
1378
1379 /* * Number of template arguments. */
1380
1381 unsigned short n_template_arguments;
1382
1383 /* * One if this struct is a dynamic class, as defined by the
1384 Itanium C++ ABI: if it requires a virtual table pointer,
1385 because it or any of its base classes have one or more virtual
1386 member functions or virtual base classes. Minus one if not
1387 dynamic. Zero if not yet computed. */
1388
1389 int is_dynamic : 2;
1390
1391 /* * The calling convention for this type, fetched from the
1392 DW_AT_calling_convention attribute. The value is one of the
1393 DW_CC constants. */
1394
1395 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1396
1397 /* * The base class which defined the virtual function table pointer. */
1398
1399 struct type *vptr_basetype;
1400
1401 /* * For derived classes, the number of base classes is given by
1402 n_baseclasses and virtual_field_bits is a bit vector containing
1403 one bit per base class. If the base class is virtual, the
1404 corresponding bit will be set.
1405 I.E, given:
1406
1407 class A{};
1408 class B{};
1409 class C : public B, public virtual A {};
1410
1411 B is a baseclass of C; A is a virtual baseclass for C.
1412 This is a C++ 2.0 language feature. */
1413
1414 B_TYPE *virtual_field_bits;
1415
1416 /* * For classes with private fields, the number of fields is
1417 given by nfields and private_field_bits is a bit vector
1418 containing one bit per field.
1419
1420 If the field is private, the corresponding bit will be set. */
1421
1422 B_TYPE *private_field_bits;
1423
1424 /* * For classes with protected fields, the number of fields is
1425 given by nfields and protected_field_bits is a bit vector
1426 containing one bit per field.
1427
1428 If the field is private, the corresponding bit will be set. */
1429
1430 B_TYPE *protected_field_bits;
1431
1432 /* * For classes with fields to be ignored, either this is
1433 optimized out or this field has length 0. */
1434
1435 B_TYPE *ignore_field_bits;
1436
1437 /* * For classes, structures, and unions, a description of each
1438 field, which consists of an overloaded name, followed by the
1439 types of arguments that the method expects, and then the name
1440 after it has been renamed to make it distinct.
1441
1442 fn_fieldlists points to an array of nfn_fields of these. */
1443
1444 struct fn_fieldlist *fn_fieldlists;
1445
1446 /* * typedefs defined inside this class. typedef_field points to
1447 an array of typedef_field_count elements. */
1448
1449 struct decl_field *typedef_field;
1450
1451 unsigned typedef_field_count;
1452
1453 /* * The nested types defined by this type. nested_types points to
1454 an array of nested_types_count elements. */
1455
1456 struct decl_field *nested_types;
1457
1458 unsigned nested_types_count;
1459
1460 /* * The template arguments. This is an array with
1461 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1462 classes. */
1463
1464 struct symbol **template_arguments;
1465 };
1466
1467 /* * Struct used to store conversion rankings. */
1468
1469 struct rank
1470 {
1471 short rank;
1472
1473 /* * When two conversions are of the same type and therefore have
1474 the same rank, subrank is used to differentiate the two.
1475
1476 Eg: Two derived-class-pointer to base-class-pointer conversions
1477 would both have base pointer conversion rank, but the
1478 conversion with the shorter distance to the ancestor is
1479 preferable. 'subrank' would be used to reflect that. */
1480
1481 short subrank;
1482 };
1483
1484 /* * Used for ranking a function for overload resolution. */
1485
1486 typedef std::vector<rank> badness_vector;
1487
1488 /* * GNAT Ada-specific information for various Ada types. */
1489
1490 struct gnat_aux_type
1491 {
1492 /* * Parallel type used to encode information about dynamic types
1493 used in Ada (such as variant records, variable-size array,
1494 etc). */
1495 struct type* descriptive_type;
1496 };
1497
1498 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1499
1500 struct func_type
1501 {
1502 /* * The calling convention for targets supporting multiple ABIs.
1503 Right now this is only fetched from the Dwarf-2
1504 DW_AT_calling_convention attribute. The value is one of the
1505 DW_CC constants. */
1506
1507 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1508
1509 /* * Whether this function normally returns to its caller. It is
1510 set from the DW_AT_noreturn attribute if set on the
1511 DW_TAG_subprogram. */
1512
1513 unsigned int is_noreturn : 1;
1514
1515 /* * Only those DW_TAG_call_site's in this function that have
1516 DW_AT_call_tail_call set are linked in this list. Function
1517 without its tail call list complete
1518 (DW_AT_call_all_tail_calls or its superset
1519 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1520 DW_TAG_call_site's exist in such function. */
1521
1522 struct call_site *tail_call_list;
1523
1524 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1525 contains the method. */
1526
1527 struct type *self_type;
1528 };
1529
1530 /* struct call_site_parameter can be referenced in callees by several ways. */
1531
1532 enum call_site_parameter_kind
1533 {
1534 /* * Use field call_site_parameter.u.dwarf_reg. */
1535 CALL_SITE_PARAMETER_DWARF_REG,
1536
1537 /* * Use field call_site_parameter.u.fb_offset. */
1538 CALL_SITE_PARAMETER_FB_OFFSET,
1539
1540 /* * Use field call_site_parameter.u.param_offset. */
1541 CALL_SITE_PARAMETER_PARAM_OFFSET
1542 };
1543
1544 struct call_site_target
1545 {
1546 union field_location loc;
1547
1548 /* * Discriminant for union field_location. */
1549
1550 ENUM_BITFIELD(field_loc_kind) loc_kind : 3;
1551 };
1552
1553 union call_site_parameter_u
1554 {
1555 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1556 as DWARF register number, for register passed
1557 parameters. */
1558
1559 int dwarf_reg;
1560
1561 /* * Offset from the callee's frame base, for stack passed
1562 parameters. This equals offset from the caller's stack
1563 pointer. */
1564
1565 CORE_ADDR fb_offset;
1566
1567 /* * Offset relative to the start of this PER_CU to
1568 DW_TAG_formal_parameter which is referenced by both
1569 caller and the callee. */
1570
1571 cu_offset param_cu_off;
1572 };
1573
1574 struct call_site_parameter
1575 {
1576 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1577
1578 union call_site_parameter_u u;
1579
1580 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1581
1582 const gdb_byte *value;
1583 size_t value_size;
1584
1585 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1586 It may be NULL if not provided by DWARF. */
1587
1588 const gdb_byte *data_value;
1589 size_t data_value_size;
1590 };
1591
1592 /* * A place where a function gets called from, represented by
1593 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1594
1595 struct call_site
1596 {
1597 /* * Address of the first instruction after this call. It must be
1598 the first field as we overload core_addr_hash and core_addr_eq
1599 for it. */
1600
1601 CORE_ADDR pc;
1602
1603 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1604
1605 struct call_site *tail_call_next;
1606
1607 /* * Describe DW_AT_call_target. Missing attribute uses
1608 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1609
1610 struct call_site_target target;
1611
1612 /* * Size of the PARAMETER array. */
1613
1614 unsigned parameter_count;
1615
1616 /* * CU of the function where the call is located. It gets used
1617 for DWARF blocks execution in the parameter array below. */
1618
1619 dwarf2_per_cu_data *per_cu;
1620
1621 /* objfile of the function where the call is located. */
1622
1623 dwarf2_per_objfile *per_objfile;
1624
1625 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
1626
1627 struct call_site_parameter parameter[1];
1628 };
1629
1630 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
1631 static structure. */
1632
1633 extern const struct cplus_struct_type cplus_struct_default;
1634
1635 extern void allocate_cplus_struct_type (struct type *);
1636
1637 #define INIT_CPLUS_SPECIFIC(type) \
1638 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
1639 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
1640 &cplus_struct_default)
1641
1642 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
1643
1644 #define HAVE_CPLUS_STRUCT(type) \
1645 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
1646 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
1647
1648 #define INIT_NONE_SPECIFIC(type) \
1649 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
1650 TYPE_MAIN_TYPE (type)->type_specific = {})
1651
1652 extern const struct gnat_aux_type gnat_aux_default;
1653
1654 extern void allocate_gnat_aux_type (struct type *);
1655
1656 #define INIT_GNAT_SPECIFIC(type) \
1657 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
1658 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
1659 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
1660 /* * A macro that returns non-zero if the type-specific data should be
1661 read as "gnat-stuff". */
1662 #define HAVE_GNAT_AUX_INFO(type) \
1663 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
1664
1665 /* * True if TYPE is known to be an Ada type of some kind. */
1666 #define ADA_TYPE_P(type) \
1667 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
1668 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
1669 && (type)->is_fixed_instance ()))
1670
1671 #define INIT_FUNC_SPECIFIC(type) \
1672 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
1673 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
1674 TYPE_ZALLOC (type, \
1675 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
1676
1677 #define TYPE_INSTANCE_FLAGS(thistype) (thistype)->instance_flags
1678 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
1679 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
1680 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
1681 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
1682 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
1683 #define TYPE_CHAIN(thistype) (thistype)->chain
1684 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
1685 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
1686 so you only have to call check_typedef once. Since allocate_value
1687 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
1688 #define TYPE_LENGTH(thistype) (thistype)->length
1689
1690 /* * Return the alignment of the type in target addressable memory
1691 units, or 0 if no alignment was specified. */
1692 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
1693
1694 /* * Return the alignment of the type in target addressable memory
1695 units, or 0 if no alignment was specified. */
1696 extern unsigned type_raw_align (struct type *);
1697
1698 /* * Return the alignment of the type in target addressable memory
1699 units. Return 0 if the alignment cannot be determined; but note
1700 that this makes an effort to compute the alignment even it it was
1701 not specified in the debug info. */
1702 extern unsigned type_align (struct type *);
1703
1704 /* * Set the alignment of the type. The alignment must be a power of
1705 2. Returns false if the given value does not fit in the available
1706 space in struct type. */
1707 extern bool set_type_align (struct type *, ULONGEST);
1708
1709 /* Property accessors for the type data location. */
1710 #define TYPE_DATA_LOCATION(thistype) \
1711 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
1712 #define TYPE_DATA_LOCATION_BATON(thistype) \
1713 TYPE_DATA_LOCATION (thistype)->data.baton
1714 #define TYPE_DATA_LOCATION_ADDR(thistype) \
1715 (TYPE_DATA_LOCATION (thistype)->const_val ())
1716 #define TYPE_DATA_LOCATION_KIND(thistype) \
1717 (TYPE_DATA_LOCATION (thistype)->kind ())
1718 #define TYPE_DYNAMIC_LENGTH(thistype) \
1719 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
1720
1721 /* Property accessors for the type allocated/associated. */
1722 #define TYPE_ALLOCATED_PROP(thistype) \
1723 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
1724 #define TYPE_ASSOCIATED_PROP(thistype) \
1725 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
1726
1727 /* C++ */
1728
1729 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
1730 /* Do not call this, use TYPE_SELF_TYPE. */
1731 extern struct type *internal_type_self_type (struct type *);
1732 extern void set_type_self_type (struct type *, struct type *);
1733
1734 extern int internal_type_vptr_fieldno (struct type *);
1735 extern void set_type_vptr_fieldno (struct type *, int);
1736 extern struct type *internal_type_vptr_basetype (struct type *);
1737 extern void set_type_vptr_basetype (struct type *, struct type *);
1738 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
1739 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
1740
1741 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
1742 #define TYPE_SPECIFIC_FIELD(thistype) \
1743 TYPE_MAIN_TYPE(thistype)->type_specific_field
1744 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
1745 where we're trying to print an Ada array using the C language.
1746 In that case, there is no "cplus_stuff", but the C language assumes
1747 that there is. What we do, in that case, is pretend that there is
1748 an implicit one which is the default cplus stuff. */
1749 #define TYPE_CPLUS_SPECIFIC(thistype) \
1750 (!HAVE_CPLUS_STRUCT(thistype) \
1751 ? (struct cplus_struct_type*)&cplus_struct_default \
1752 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
1753 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
1754 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
1755 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
1756 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
1757 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
1758 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
1759 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
1760 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
1761 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
1762 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
1763 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
1764 #define TYPE_BASECLASS_NAME(thistype,index) TYPE_FIELD_NAME(thistype, index)
1765 #define TYPE_BASECLASS_BITPOS(thistype,index) TYPE_FIELD_BITPOS(thistype,index)
1766 #define BASETYPE_VIA_PUBLIC(thistype, index) \
1767 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
1768 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
1769
1770 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
1771 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1772 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
1773
1774 #define FIELD_NAME(thisfld) ((thisfld).name)
1775 #define FIELD_LOC_KIND(thisfld) ((thisfld).loc_kind)
1776 #define FIELD_BITPOS_LVAL(thisfld) ((thisfld).loc.bitpos)
1777 #define FIELD_BITPOS(thisfld) (FIELD_BITPOS_LVAL (thisfld) + 0)
1778 #define FIELD_ENUMVAL_LVAL(thisfld) ((thisfld).loc.enumval)
1779 #define FIELD_ENUMVAL(thisfld) (FIELD_ENUMVAL_LVAL (thisfld) + 0)
1780 #define FIELD_STATIC_PHYSNAME(thisfld) ((thisfld).loc.physname)
1781 #define FIELD_STATIC_PHYSADDR(thisfld) ((thisfld).loc.physaddr)
1782 #define FIELD_DWARF_BLOCK(thisfld) ((thisfld).loc.dwarf_block)
1783 #define SET_FIELD_BITPOS(thisfld, bitpos) \
1784 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_BITPOS, \
1785 FIELD_BITPOS_LVAL (thisfld) = (bitpos))
1786 #define SET_FIELD_ENUMVAL(thisfld, enumval) \
1787 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_ENUMVAL, \
1788 FIELD_ENUMVAL_LVAL (thisfld) = (enumval))
1789 #define SET_FIELD_PHYSNAME(thisfld, name) \
1790 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSNAME, \
1791 FIELD_STATIC_PHYSNAME (thisfld) = (name))
1792 #define SET_FIELD_PHYSADDR(thisfld, addr) \
1793 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_PHYSADDR, \
1794 FIELD_STATIC_PHYSADDR (thisfld) = (addr))
1795 #define SET_FIELD_DWARF_BLOCK(thisfld, addr) \
1796 (FIELD_LOC_KIND (thisfld) = FIELD_LOC_KIND_DWARF_BLOCK, \
1797 FIELD_DWARF_BLOCK (thisfld) = (addr))
1798 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
1799 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
1800
1801 #define TYPE_FIELD_NAME(thistype, n) FIELD_NAME((thistype)->field (n))
1802 #define TYPE_FIELD_LOC_KIND(thistype, n) FIELD_LOC_KIND ((thistype)->field (n))
1803 #define TYPE_FIELD_BITPOS(thistype, n) FIELD_BITPOS ((thistype)->field (n))
1804 #define TYPE_FIELD_ENUMVAL(thistype, n) FIELD_ENUMVAL ((thistype)->field (n))
1805 #define TYPE_FIELD_STATIC_PHYSNAME(thistype, n) FIELD_STATIC_PHYSNAME ((thistype)->field (n))
1806 #define TYPE_FIELD_STATIC_PHYSADDR(thistype, n) FIELD_STATIC_PHYSADDR ((thistype)->field (n))
1807 #define TYPE_FIELD_DWARF_BLOCK(thistype, n) FIELD_DWARF_BLOCK ((thistype)->field (n))
1808 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
1809 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
1810 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
1811
1812 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
1813 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
1814 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
1815 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
1816 #define TYPE_FIELD_IGNORE_BITS(thistype) \
1817 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
1818 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
1819 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
1820 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
1821 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
1822 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
1823 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
1824 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
1825 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
1826 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
1827 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
1828 #define TYPE_FIELD_PRIVATE(thistype, n) \
1829 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
1830 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
1831 #define TYPE_FIELD_PROTECTED(thistype, n) \
1832 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
1833 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
1834 #define TYPE_FIELD_IGNORE(thistype, n) \
1835 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
1836 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
1837 #define TYPE_FIELD_VIRTUAL(thistype, n) \
1838 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
1839 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
1840
1841 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
1842 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
1843 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
1844 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
1845 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
1846
1847 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
1848 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
1849 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
1850 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
1851 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
1852 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
1853
1854 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
1855 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
1856 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
1857 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
1858 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
1859 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
1860 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
1861 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
1862 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
1863 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
1864 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
1865 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
1866 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
1867 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
1868 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
1869 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
1870 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
1871
1872 /* Accessors for typedefs defined by a class. */
1873 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
1874 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
1875 #define TYPE_TYPEDEF_FIELD(thistype, n) \
1876 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
1877 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
1878 TYPE_TYPEDEF_FIELD (thistype, n).name
1879 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
1880 TYPE_TYPEDEF_FIELD (thistype, n).type
1881 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
1882 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
1883 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
1884 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
1885 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
1886 TYPE_TYPEDEF_FIELD (thistype, n).is_private
1887
1888 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
1889 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
1890 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
1891 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
1892 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
1893 TYPE_NESTED_TYPES_FIELD (thistype, n).name
1894 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
1895 TYPE_NESTED_TYPES_FIELD (thistype, n).type
1896 #define TYPE_NESTED_TYPES_COUNT(thistype) \
1897 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
1898 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
1899 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
1900 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
1901 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
1902
1903 #define TYPE_IS_OPAQUE(thistype) \
1904 ((((thistype)->code () == TYPE_CODE_STRUCT) \
1905 || ((thistype)->code () == TYPE_CODE_UNION)) \
1906 && ((thistype)->num_fields () == 0) \
1907 && (!HAVE_CPLUS_STRUCT (thistype) \
1908 || TYPE_NFN_FIELDS (thistype) == 0) \
1909 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
1910
1911 /* * A helper macro that returns the name of a type or "unnamed type"
1912 if the type has no name. */
1913
1914 #define TYPE_SAFE_NAME(type) \
1915 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
1916
1917 /* * A helper macro that returns the name of an error type. If the
1918 type has a name, it is used; otherwise, a default is used. */
1919
1920 #define TYPE_ERROR_NAME(type) \
1921 (type->name () ? type->name () : _("<error type>"))
1922
1923 /* Given TYPE, return its floatformat. */
1924 const struct floatformat *floatformat_from_type (const struct type *type);
1925
1926 struct builtin_type
1927 {
1928 /* Integral types. */
1929
1930 /* Implicit size/sign (based on the architecture's ABI). */
1931 struct type *builtin_void;
1932 struct type *builtin_char;
1933 struct type *builtin_short;
1934 struct type *builtin_int;
1935 struct type *builtin_long;
1936 struct type *builtin_signed_char;
1937 struct type *builtin_unsigned_char;
1938 struct type *builtin_unsigned_short;
1939 struct type *builtin_unsigned_int;
1940 struct type *builtin_unsigned_long;
1941 struct type *builtin_bfloat16;
1942 struct type *builtin_half;
1943 struct type *builtin_float;
1944 struct type *builtin_double;
1945 struct type *builtin_long_double;
1946 struct type *builtin_complex;
1947 struct type *builtin_double_complex;
1948 struct type *builtin_string;
1949 struct type *builtin_bool;
1950 struct type *builtin_long_long;
1951 struct type *builtin_unsigned_long_long;
1952 struct type *builtin_decfloat;
1953 struct type *builtin_decdouble;
1954 struct type *builtin_declong;
1955
1956 /* "True" character types.
1957 We use these for the '/c' print format, because c_char is just a
1958 one-byte integral type, which languages less laid back than C
1959 will print as ... well, a one-byte integral type. */
1960 struct type *builtin_true_char;
1961 struct type *builtin_true_unsigned_char;
1962
1963 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
1964 is for when an architecture needs to describe a register that has
1965 no size. */
1966 struct type *builtin_int0;
1967 struct type *builtin_int8;
1968 struct type *builtin_uint8;
1969 struct type *builtin_int16;
1970 struct type *builtin_uint16;
1971 struct type *builtin_int24;
1972 struct type *builtin_uint24;
1973 struct type *builtin_int32;
1974 struct type *builtin_uint32;
1975 struct type *builtin_int64;
1976 struct type *builtin_uint64;
1977 struct type *builtin_int128;
1978 struct type *builtin_uint128;
1979
1980 /* Wide character types. */
1981 struct type *builtin_char16;
1982 struct type *builtin_char32;
1983 struct type *builtin_wchar;
1984
1985 /* Pointer types. */
1986
1987 /* * `pointer to data' type. Some target platforms use an implicitly
1988 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
1989 struct type *builtin_data_ptr;
1990
1991 /* * `pointer to function (returning void)' type. Harvard
1992 architectures mean that ABI function and code pointers are not
1993 interconvertible. Similarly, since ANSI, C standards have
1994 explicitly said that pointers to functions and pointers to data
1995 are not interconvertible --- that is, you can't cast a function
1996 pointer to void * and back, and expect to get the same value.
1997 However, all function pointer types are interconvertible, so void
1998 (*) () can server as a generic function pointer. */
1999
2000 struct type *builtin_func_ptr;
2001
2002 /* * `function returning pointer to function (returning void)' type.
2003 The final void return type is not significant for it. */
2004
2005 struct type *builtin_func_func;
2006
2007 /* Special-purpose types. */
2008
2009 /* * This type is used to represent a GDB internal function. */
2010
2011 struct type *internal_fn;
2012
2013 /* * This type is used to represent an xmethod. */
2014 struct type *xmethod;
2015 };
2016
2017 /* * Return the type table for the specified architecture. */
2018
2019 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2020
2021 /* * Per-objfile types used by symbol readers. */
2022
2023 struct objfile_type
2024 {
2025 /* Basic types based on the objfile architecture. */
2026 struct type *builtin_void;
2027 struct type *builtin_char;
2028 struct type *builtin_short;
2029 struct type *builtin_int;
2030 struct type *builtin_long;
2031 struct type *builtin_long_long;
2032 struct type *builtin_signed_char;
2033 struct type *builtin_unsigned_char;
2034 struct type *builtin_unsigned_short;
2035 struct type *builtin_unsigned_int;
2036 struct type *builtin_unsigned_long;
2037 struct type *builtin_unsigned_long_long;
2038 struct type *builtin_half;
2039 struct type *builtin_float;
2040 struct type *builtin_double;
2041 struct type *builtin_long_double;
2042
2043 /* * This type is used to represent symbol addresses. */
2044 struct type *builtin_core_addr;
2045
2046 /* * This type represents a type that was unrecognized in symbol
2047 read-in. */
2048 struct type *builtin_error;
2049
2050 /* * Types used for symbols with no debug information. */
2051 struct type *nodebug_text_symbol;
2052 struct type *nodebug_text_gnu_ifunc_symbol;
2053 struct type *nodebug_got_plt_symbol;
2054 struct type *nodebug_data_symbol;
2055 struct type *nodebug_unknown_symbol;
2056 struct type *nodebug_tls_symbol;
2057 };
2058
2059 /* * Return the type table for the specified objfile. */
2060
2061 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2062
2063 /* Explicit floating-point formats. See "floatformat.h". */
2064 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2065 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2066 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2067 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2068 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2069 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2070 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2071 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2072 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2073 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2074 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2075 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2076 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2077
2078 /* Allocate space for storing data associated with a particular
2079 type. We ensure that the space is allocated using the same
2080 mechanism that was used to allocate the space for the type
2081 structure itself. I.e. if the type is on an objfile's
2082 objfile_obstack, then the space for data associated with that type
2083 will also be allocated on the objfile_obstack. If the type is
2084 associated with a gdbarch, then the space for data associated with that
2085 type will also be allocated on the gdbarch_obstack.
2086
2087 If a type is not associated with neither an objfile or a gdbarch then
2088 you should not use this macro to allocate space for data, instead you
2089 should call xmalloc directly, and ensure the memory is correctly freed
2090 when it is no longer needed. */
2091
2092 #define TYPE_ALLOC(t,size) \
2093 (obstack_alloc ((TYPE_OBJFILE_OWNED (t) \
2094 ? &TYPE_OBJFILE (t)->objfile_obstack \
2095 : gdbarch_obstack (TYPE_OWNER (t).gdbarch)), \
2096 size))
2097
2098
2099 /* See comment on TYPE_ALLOC. */
2100
2101 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2102
2103 /* Use alloc_type to allocate a type owned by an objfile. Use
2104 alloc_type_arch to allocate a type owned by an architecture. Use
2105 alloc_type_copy to allocate a type with the same owner as a
2106 pre-existing template type, no matter whether objfile or
2107 gdbarch. */
2108 extern struct type *alloc_type (struct objfile *);
2109 extern struct type *alloc_type_arch (struct gdbarch *);
2110 extern struct type *alloc_type_copy (const struct type *);
2111
2112 /* * Return the type's architecture. For types owned by an
2113 architecture, that architecture is returned. For types owned by an
2114 objfile, that objfile's architecture is returned. */
2115
2116 extern struct gdbarch *get_type_arch (const struct type *);
2117
2118 /* * This returns the target type (or NULL) of TYPE, also skipping
2119 past typedefs. */
2120
2121 extern struct type *get_target_type (struct type *type);
2122
2123 /* Return the equivalent of TYPE_LENGTH, but in number of target
2124 addressable memory units of the associated gdbarch instead of bytes. */
2125
2126 extern unsigned int type_length_units (struct type *type);
2127
2128 /* * Helper function to construct objfile-owned types. */
2129
2130 extern struct type *init_type (struct objfile *, enum type_code, int,
2131 const char *);
2132 extern struct type *init_integer_type (struct objfile *, int, int,
2133 const char *);
2134 extern struct type *init_character_type (struct objfile *, int, int,
2135 const char *);
2136 extern struct type *init_boolean_type (struct objfile *, int, int,
2137 const char *);
2138 extern struct type *init_float_type (struct objfile *, int, const char *,
2139 const struct floatformat **,
2140 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2141 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2142 extern struct type *init_complex_type (const char *, struct type *);
2143 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2144 struct type *);
2145
2146 /* Helper functions to construct architecture-owned types. */
2147 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2148 const char *);
2149 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2150 const char *);
2151 extern struct type *arch_character_type (struct gdbarch *, int, int,
2152 const char *);
2153 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2154 const char *);
2155 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2156 const struct floatformat **);
2157 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2158 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2159 struct type *);
2160
2161 /* Helper functions to construct a struct or record type. An
2162 initially empty type is created using arch_composite_type().
2163 Fields are then added using append_composite_type_field*(). A union
2164 type has its size set to the largest field. A struct type has each
2165 field packed against the previous. */
2166
2167 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2168 const char *name, enum type_code code);
2169 extern void append_composite_type_field (struct type *t, const char *name,
2170 struct type *field);
2171 extern void append_composite_type_field_aligned (struct type *t,
2172 const char *name,
2173 struct type *field,
2174 int alignment);
2175 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2176 struct type *field);
2177
2178 /* Helper functions to construct a bit flags type. An initially empty
2179 type is created using arch_flag_type(). Flags are then added using
2180 append_flag_type_field() and append_flag_type_flag(). */
2181 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2182 const char *name, int bit);
2183 extern void append_flags_type_field (struct type *type,
2184 int start_bitpos, int nr_bits,
2185 struct type *field_type, const char *name);
2186 extern void append_flags_type_flag (struct type *type, int bitpos,
2187 const char *name);
2188
2189 extern void make_vector_type (struct type *array_type);
2190 extern struct type *init_vector_type (struct type *elt_type, int n);
2191
2192 extern struct type *lookup_reference_type (struct type *, enum type_code);
2193 extern struct type *lookup_lvalue_reference_type (struct type *);
2194 extern struct type *lookup_rvalue_reference_type (struct type *);
2195
2196
2197 extern struct type *make_reference_type (struct type *, struct type **,
2198 enum type_code);
2199
2200 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2201
2202 extern struct type *make_restrict_type (struct type *);
2203
2204 extern struct type *make_unqualified_type (struct type *);
2205
2206 extern struct type *make_atomic_type (struct type *);
2207
2208 extern void replace_type (struct type *, struct type *);
2209
2210 extern int address_space_name_to_int (struct gdbarch *, const char *);
2211
2212 extern const char *address_space_int_to_name (struct gdbarch *, int);
2213
2214 extern struct type *make_type_with_address_space (struct type *type,
2215 int space_identifier);
2216
2217 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2218
2219 extern struct type *lookup_methodptr_type (struct type *);
2220
2221 extern void smash_to_method_type (struct type *type, struct type *self_type,
2222 struct type *to_type, struct field *args,
2223 int nargs, int varargs);
2224
2225 extern void smash_to_memberptr_type (struct type *, struct type *,
2226 struct type *);
2227
2228 extern void smash_to_methodptr_type (struct type *, struct type *);
2229
2230 extern struct type *allocate_stub_method (struct type *);
2231
2232 extern const char *type_name_or_error (struct type *type);
2233
2234 struct struct_elt
2235 {
2236 /* The field of the element, or NULL if no element was found. */
2237 struct field *field;
2238
2239 /* The bit offset of the element in the parent structure. */
2240 LONGEST offset;
2241 };
2242
2243 /* Given a type TYPE, lookup the field and offset of the component named
2244 NAME.
2245
2246 TYPE can be either a struct or union, or a pointer or reference to
2247 a struct or union. If it is a pointer or reference, its target
2248 type is automatically used. Thus '.' and '->' are interchangable,
2249 as specified for the definitions of the expression element types
2250 STRUCTOP_STRUCT and STRUCTOP_PTR.
2251
2252 If NOERR is nonzero, the returned structure will have field set to
2253 NULL if there is no component named NAME.
2254
2255 If the component NAME is a field in an anonymous substructure of
2256 TYPE, the returned offset is a "global" offset relative to TYPE
2257 rather than an offset within the substructure. */
2258
2259 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2260
2261 /* Given a type TYPE, lookup the type of the component named NAME.
2262
2263 TYPE can be either a struct or union, or a pointer or reference to
2264 a struct or union. If it is a pointer or reference, its target
2265 type is automatically used. Thus '.' and '->' are interchangable,
2266 as specified for the definitions of the expression element types
2267 STRUCTOP_STRUCT and STRUCTOP_PTR.
2268
2269 If NOERR is nonzero, return NULL if there is no component named
2270 NAME. */
2271
2272 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2273
2274 extern struct type *make_pointer_type (struct type *, struct type **);
2275
2276 extern struct type *lookup_pointer_type (struct type *);
2277
2278 extern struct type *make_function_type (struct type *, struct type **);
2279
2280 extern struct type *lookup_function_type (struct type *);
2281
2282 extern struct type *lookup_function_type_with_arguments (struct type *,
2283 int,
2284 struct type **);
2285
2286 extern struct type *create_static_range_type (struct type *, struct type *,
2287 LONGEST, LONGEST);
2288
2289
2290 extern struct type *create_array_type_with_stride
2291 (struct type *, struct type *, struct type *,
2292 struct dynamic_prop *, unsigned int);
2293
2294 extern struct type *create_range_type (struct type *, struct type *,
2295 const struct dynamic_prop *,
2296 const struct dynamic_prop *,
2297 LONGEST);
2298
2299 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2300 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2301 stride. */
2302
2303 extern struct type * create_range_type_with_stride
2304 (struct type *result_type, struct type *index_type,
2305 const struct dynamic_prop *low_bound,
2306 const struct dynamic_prop *high_bound, LONGEST bias,
2307 const struct dynamic_prop *stride, bool byte_stride_p);
2308
2309 extern struct type *create_array_type (struct type *, struct type *,
2310 struct type *);
2311
2312 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2313
2314 extern struct type *create_string_type (struct type *, struct type *,
2315 struct type *);
2316 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2317
2318 extern struct type *create_set_type (struct type *, struct type *);
2319
2320 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2321 const char *);
2322
2323 extern struct type *lookup_signed_typename (const struct language_defn *,
2324 const char *);
2325
2326 extern void get_unsigned_type_max (struct type *, ULONGEST *);
2327
2328 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2329
2330 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2331 ADDR specifies the location of the variable the type is bound to.
2332 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2333 static properties is returned. */
2334 extern struct type *resolve_dynamic_type
2335 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2336 CORE_ADDR addr);
2337
2338 /* * Predicate if the type has dynamic values, which are not resolved yet. */
2339 extern int is_dynamic_type (struct type *type);
2340
2341 extern struct type *check_typedef (struct type *);
2342
2343 extern void check_stub_method_group (struct type *, int);
2344
2345 extern char *gdb_mangle_name (struct type *, int, int);
2346
2347 extern struct type *lookup_typename (const struct language_defn *,
2348 const char *, const struct block *, int);
2349
2350 extern struct type *lookup_template_type (const char *, struct type *,
2351 const struct block *);
2352
2353 extern int get_vptr_fieldno (struct type *, struct type **);
2354
2355 extern int get_discrete_bounds (struct type *, LONGEST *, LONGEST *);
2356
2357 extern int get_array_bounds (struct type *type, LONGEST *low_bound,
2358 LONGEST *high_bound);
2359
2360 extern int discrete_position (struct type *type, LONGEST val, LONGEST *pos);
2361
2362 extern int class_types_same_p (const struct type *, const struct type *);
2363
2364 extern int is_ancestor (struct type *, struct type *);
2365
2366 extern int is_public_ancestor (struct type *, struct type *);
2367
2368 extern int is_unique_ancestor (struct type *, struct value *);
2369
2370 /* Overload resolution */
2371
2372 /* * Badness if parameter list length doesn't match arg list length. */
2373 extern const struct rank LENGTH_MISMATCH_BADNESS;
2374
2375 /* * Dummy badness value for nonexistent parameter positions. */
2376 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2377 /* * Badness if no conversion among types. */
2378 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2379
2380 /* * Badness of an exact match. */
2381 extern const struct rank EXACT_MATCH_BADNESS;
2382
2383 /* * Badness of integral promotion. */
2384 extern const struct rank INTEGER_PROMOTION_BADNESS;
2385 /* * Badness of floating promotion. */
2386 extern const struct rank FLOAT_PROMOTION_BADNESS;
2387 /* * Badness of converting a derived class pointer
2388 to a base class pointer. */
2389 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2390 /* * Badness of integral conversion. */
2391 extern const struct rank INTEGER_CONVERSION_BADNESS;
2392 /* * Badness of floating conversion. */
2393 extern const struct rank FLOAT_CONVERSION_BADNESS;
2394 /* * Badness of integer<->floating conversions. */
2395 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2396 /* * Badness of conversion of pointer to void pointer. */
2397 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2398 /* * Badness of conversion to boolean. */
2399 extern const struct rank BOOL_CONVERSION_BADNESS;
2400 /* * Badness of converting derived to base class. */
2401 extern const struct rank BASE_CONVERSION_BADNESS;
2402 /* * Badness of converting from non-reference to reference. Subrank
2403 is the type of reference conversion being done. */
2404 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2405 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2406 /* * Conversion to rvalue reference. */
2407 #define REFERENCE_CONVERSION_RVALUE 1
2408 /* * Conversion to const lvalue reference. */
2409 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2410
2411 /* * Badness of converting integer 0 to NULL pointer. */
2412 extern const struct rank NULL_POINTER_CONVERSION;
2413 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2414 being done. */
2415 extern const struct rank CV_CONVERSION_BADNESS;
2416 #define CV_CONVERSION_CONST 1
2417 #define CV_CONVERSION_VOLATILE 2
2418
2419 /* Non-standard conversions allowed by the debugger */
2420
2421 /* * Converting a pointer to an int is usually OK. */
2422 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2423
2424 /* * Badness of converting a (non-zero) integer constant
2425 to a pointer. */
2426 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2427
2428 extern struct rank sum_ranks (struct rank a, struct rank b);
2429 extern int compare_ranks (struct rank a, struct rank b);
2430
2431 extern int compare_badness (const badness_vector &,
2432 const badness_vector &);
2433
2434 extern badness_vector rank_function (gdb::array_view<type *> parms,
2435 gdb::array_view<value *> args);
2436
2437 extern struct rank rank_one_type (struct type *, struct type *,
2438 struct value *);
2439
2440 extern void recursive_dump_type (struct type *, int);
2441
2442 extern int field_is_static (struct field *);
2443
2444 /* printcmd.c */
2445
2446 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2447 const struct value_print_options *,
2448 int, struct ui_file *);
2449
2450 extern int can_dereference (struct type *);
2451
2452 extern int is_integral_type (struct type *);
2453
2454 extern int is_floating_type (struct type *);
2455
2456 extern int is_scalar_type (struct type *type);
2457
2458 extern int is_scalar_type_recursive (struct type *);
2459
2460 extern int class_or_union_p (const struct type *);
2461
2462 extern void maintenance_print_type (const char *, int);
2463
2464 extern htab_t create_copied_types_hash (struct objfile *objfile);
2465
2466 extern struct type *copy_type_recursive (struct objfile *objfile,
2467 struct type *type,
2468 htab_t copied_types);
2469
2470 extern struct type *copy_type (const struct type *type);
2471
2472 extern bool types_equal (struct type *, struct type *);
2473
2474 extern bool types_deeply_equal (struct type *, struct type *);
2475
2476 extern int type_not_allocated (const struct type *type);
2477
2478 extern int type_not_associated (const struct type *type);
2479
2480 /* * When the type includes explicit byte ordering, return that.
2481 Otherwise, the byte ordering from gdbarch_byte_order for
2482 get_type_arch is returned. */
2483
2484 extern enum bfd_endian type_byte_order (const struct type *type);
2485
2486 /* A flag to enable printing of debugging information of C++
2487 overloading. */
2488
2489 extern unsigned int overload_debug;
2490
2491 #endif /* GDBTYPES_H */
This page took 0.0818 seconds and 5 git commands to generate.