gdb/
[deliverable/binutils-gdb.git] / gdb / gnu-v3-abi.c
1 /* Abstraction of GNU v3 abi.
2 Contributed by Jim Blandy <jimb@redhat.com>
3
4 Copyright (C) 2001, 2002, 2003, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "value.h"
24 #include "cp-abi.h"
25 #include "cp-support.h"
26 #include "demangle.h"
27 #include "objfiles.h"
28 #include "valprint.h"
29 #include "c-lang.h"
30
31 #include "gdb_assert.h"
32 #include "gdb_string.h"
33
34 static struct cp_abi_ops gnu_v3_abi_ops;
35
36 static int
37 gnuv3_is_vtable_name (const char *name)
38 {
39 return strncmp (name, "_ZTV", 4) == 0;
40 }
41
42 static int
43 gnuv3_is_operator_name (const char *name)
44 {
45 return strncmp (name, "operator", 8) == 0;
46 }
47
48
49 /* To help us find the components of a vtable, we build ourselves a
50 GDB type object representing the vtable structure. Following the
51 V3 ABI, it goes something like this:
52
53 struct gdb_gnu_v3_abi_vtable {
54
55 / * An array of virtual call and virtual base offsets. The real
56 length of this array depends on the class hierarchy; we use
57 negative subscripts to access the elements. Yucky, but
58 better than the alternatives. * /
59 ptrdiff_t vcall_and_vbase_offsets[0];
60
61 / * The offset from a virtual pointer referring to this table
62 to the top of the complete object. * /
63 ptrdiff_t offset_to_top;
64
65 / * The type_info pointer for this class. This is really a
66 std::type_info *, but GDB doesn't really look at the
67 type_info object itself, so we don't bother to get the type
68 exactly right. * /
69 void *type_info;
70
71 / * Virtual table pointers in objects point here. * /
72
73 / * Virtual function pointers. Like the vcall/vbase array, the
74 real length of this table depends on the class hierarchy. * /
75 void (*virtual_functions[0]) ();
76
77 };
78
79 The catch, of course, is that the exact layout of this table
80 depends on the ABI --- word size, endianness, alignment, etc. So
81 the GDB type object is actually a per-architecture kind of thing.
82
83 vtable_type_gdbarch_data is a gdbarch per-architecture data pointer
84 which refers to the struct type * for this structure, laid out
85 appropriately for the architecture. */
86 static struct gdbarch_data *vtable_type_gdbarch_data;
87
88
89 /* Human-readable names for the numbers of the fields above. */
90 enum {
91 vtable_field_vcall_and_vbase_offsets,
92 vtable_field_offset_to_top,
93 vtable_field_type_info,
94 vtable_field_virtual_functions
95 };
96
97
98 /* Return a GDB type representing `struct gdb_gnu_v3_abi_vtable',
99 described above, laid out appropriately for ARCH.
100
101 We use this function as the gdbarch per-architecture data
102 initialization function. */
103 static void *
104 build_gdb_vtable_type (struct gdbarch *arch)
105 {
106 struct type *t;
107 struct field *field_list, *field;
108 int offset;
109
110 struct type *void_ptr_type
111 = builtin_type (arch)->builtin_data_ptr;
112 struct type *ptr_to_void_fn_type
113 = builtin_type (arch)->builtin_func_ptr;
114
115 /* ARCH can't give us the true ptrdiff_t type, so we guess. */
116 struct type *ptrdiff_type
117 = arch_integer_type (arch, gdbarch_ptr_bit (arch), 0, "ptrdiff_t");
118
119 /* We assume no padding is necessary, since GDB doesn't know
120 anything about alignment at the moment. If this assumption bites
121 us, we should add a gdbarch method which, given a type, returns
122 the alignment that type requires, and then use that here. */
123
124 /* Build the field list. */
125 field_list = xmalloc (sizeof (struct field [4]));
126 memset (field_list, 0, sizeof (struct field [4]));
127 field = &field_list[0];
128 offset = 0;
129
130 /* ptrdiff_t vcall_and_vbase_offsets[0]; */
131 FIELD_NAME (*field) = "vcall_and_vbase_offsets";
132 FIELD_TYPE (*field) = lookup_array_range_type (ptrdiff_type, 0, -1);
133 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
134 offset += TYPE_LENGTH (FIELD_TYPE (*field));
135 field++;
136
137 /* ptrdiff_t offset_to_top; */
138 FIELD_NAME (*field) = "offset_to_top";
139 FIELD_TYPE (*field) = ptrdiff_type;
140 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
141 offset += TYPE_LENGTH (FIELD_TYPE (*field));
142 field++;
143
144 /* void *type_info; */
145 FIELD_NAME (*field) = "type_info";
146 FIELD_TYPE (*field) = void_ptr_type;
147 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
148 offset += TYPE_LENGTH (FIELD_TYPE (*field));
149 field++;
150
151 /* void (*virtual_functions[0]) (); */
152 FIELD_NAME (*field) = "virtual_functions";
153 FIELD_TYPE (*field) = lookup_array_range_type (ptr_to_void_fn_type, 0, -1);
154 FIELD_BITPOS (*field) = offset * TARGET_CHAR_BIT;
155 offset += TYPE_LENGTH (FIELD_TYPE (*field));
156 field++;
157
158 /* We assumed in the allocation above that there were four fields. */
159 gdb_assert (field == (field_list + 4));
160
161 t = arch_type (arch, TYPE_CODE_STRUCT, offset, NULL);
162 TYPE_NFIELDS (t) = field - field_list;
163 TYPE_FIELDS (t) = field_list;
164 TYPE_TAG_NAME (t) = "gdb_gnu_v3_abi_vtable";
165 INIT_CPLUS_SPECIFIC (t);
166
167 return t;
168 }
169
170
171 /* Return the ptrdiff_t type used in the vtable type. */
172 static struct type *
173 vtable_ptrdiff_type (struct gdbarch *gdbarch)
174 {
175 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
176
177 /* The "offset_to_top" field has the appropriate (ptrdiff_t) type. */
178 return TYPE_FIELD_TYPE (vtable_type, vtable_field_offset_to_top);
179 }
180
181 /* Return the offset from the start of the imaginary `struct
182 gdb_gnu_v3_abi_vtable' object to the vtable's "address point"
183 (i.e., where objects' virtual table pointers point). */
184 static int
185 vtable_address_point_offset (struct gdbarch *gdbarch)
186 {
187 struct type *vtable_type = gdbarch_data (gdbarch, vtable_type_gdbarch_data);
188
189 return (TYPE_FIELD_BITPOS (vtable_type, vtable_field_virtual_functions)
190 / TARGET_CHAR_BIT);
191 }
192
193
194 /* Determine whether structure TYPE is a dynamic class. Cache the
195 result. */
196
197 static int
198 gnuv3_dynamic_class (struct type *type)
199 {
200 int fieldnum, fieldelem;
201
202 if (TYPE_CPLUS_DYNAMIC (type))
203 return TYPE_CPLUS_DYNAMIC (type) == 1;
204
205 ALLOCATE_CPLUS_STRUCT_TYPE (type);
206
207 for (fieldnum = 0; fieldnum < TYPE_N_BASECLASSES (type); fieldnum++)
208 if (BASETYPE_VIA_VIRTUAL (type, fieldnum)
209 || gnuv3_dynamic_class (TYPE_FIELD_TYPE (type, fieldnum)))
210 {
211 TYPE_CPLUS_DYNAMIC (type) = 1;
212 return 1;
213 }
214
215 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
216 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
217 fieldelem++)
218 {
219 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, fieldnum);
220
221 if (TYPE_FN_FIELD_VIRTUAL_P (f, fieldelem))
222 {
223 TYPE_CPLUS_DYNAMIC (type) = 1;
224 return 1;
225 }
226 }
227
228 TYPE_CPLUS_DYNAMIC (type) = -1;
229 return 0;
230 }
231
232 /* Find the vtable for a value of CONTAINER_TYPE located at
233 CONTAINER_ADDR. Return a value of the correct vtable type for this
234 architecture, or NULL if CONTAINER does not have a vtable. */
235
236 static struct value *
237 gnuv3_get_vtable (struct gdbarch *gdbarch,
238 struct type *container_type, CORE_ADDR container_addr)
239 {
240 struct type *vtable_type = gdbarch_data (gdbarch,
241 vtable_type_gdbarch_data);
242 struct type *vtable_pointer_type;
243 struct value *vtable_pointer;
244 CORE_ADDR vtable_address;
245
246 /* If this type does not have a virtual table, don't read the first
247 field. */
248 if (!gnuv3_dynamic_class (check_typedef (container_type)))
249 return NULL;
250
251 /* We do not consult the debug information to find the virtual table.
252 The ABI specifies that it is always at offset zero in any class,
253 and debug information may not represent it.
254
255 We avoid using value_contents on principle, because the object might
256 be large. */
257
258 /* Find the type "pointer to virtual table". */
259 vtable_pointer_type = lookup_pointer_type (vtable_type);
260
261 /* Load it from the start of the class. */
262 vtable_pointer = value_at (vtable_pointer_type, container_addr);
263 vtable_address = value_as_address (vtable_pointer);
264
265 /* Correct it to point at the start of the virtual table, rather
266 than the address point. */
267 return value_at_lazy (vtable_type,
268 vtable_address
269 - vtable_address_point_offset (gdbarch));
270 }
271
272
273 static struct type *
274 gnuv3_rtti_type (struct value *value,
275 int *full_p, int *top_p, int *using_enc_p)
276 {
277 struct gdbarch *gdbarch;
278 struct type *values_type = check_typedef (value_type (value));
279 struct value *vtable;
280 struct minimal_symbol *vtable_symbol;
281 const char *vtable_symbol_name;
282 const char *class_name;
283 struct type *run_time_type;
284 LONGEST offset_to_top;
285
286 /* We only have RTTI for class objects. */
287 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
288 return NULL;
289
290 /* Determine architecture. */
291 gdbarch = get_type_arch (values_type);
292
293 if (using_enc_p)
294 *using_enc_p = 0;
295
296 vtable = gnuv3_get_vtable (gdbarch, value_type (value),
297 value_as_address (value_addr (value)));
298 if (vtable == NULL)
299 return NULL;
300
301 /* Find the linker symbol for this vtable. */
302 vtable_symbol
303 = lookup_minimal_symbol_by_pc (value_address (vtable)
304 + value_embedded_offset (vtable));
305 if (! vtable_symbol)
306 return NULL;
307
308 /* The symbol's demangled name should be something like "vtable for
309 CLASS", where CLASS is the name of the run-time type of VALUE.
310 If we didn't like this approach, we could instead look in the
311 type_info object itself to get the class name. But this way
312 should work just as well, and doesn't read target memory. */
313 vtable_symbol_name = SYMBOL_DEMANGLED_NAME (vtable_symbol);
314 if (vtable_symbol_name == NULL
315 || strncmp (vtable_symbol_name, "vtable for ", 11))
316 {
317 warning (_("can't find linker symbol for virtual table for `%s' value"),
318 TYPE_NAME (values_type));
319 if (vtable_symbol_name)
320 warning (_(" found `%s' instead"), vtable_symbol_name);
321 return NULL;
322 }
323 class_name = vtable_symbol_name + 11;
324
325 /* Try to look up the class name as a type name. */
326 /* FIXME: chastain/2003-11-26: block=NULL is bogus. See pr gdb/1465. */
327 run_time_type = cp_lookup_rtti_type (class_name, NULL);
328 if (run_time_type == NULL)
329 return NULL;
330
331 /* Get the offset from VALUE to the top of the complete object.
332 NOTE: this is the reverse of the meaning of *TOP_P. */
333 offset_to_top
334 = value_as_long (value_field (vtable, vtable_field_offset_to_top));
335
336 if (full_p)
337 *full_p = (- offset_to_top == value_embedded_offset (value)
338 && (TYPE_LENGTH (value_enclosing_type (value))
339 >= TYPE_LENGTH (run_time_type)));
340 if (top_p)
341 *top_p = - offset_to_top;
342 return run_time_type;
343 }
344
345 /* Return a function pointer for CONTAINER's VTABLE_INDEX'th virtual
346 function, of type FNTYPE. */
347
348 static struct value *
349 gnuv3_get_virtual_fn (struct gdbarch *gdbarch, struct value *container,
350 struct type *fntype, int vtable_index)
351 {
352 struct value *vtable, *vfn;
353
354 /* Every class with virtual functions must have a vtable. */
355 vtable = gnuv3_get_vtable (gdbarch, value_type (container),
356 value_as_address (value_addr (container)));
357 gdb_assert (vtable != NULL);
358
359 /* Fetch the appropriate function pointer from the vtable. */
360 vfn = value_subscript (value_field (vtable, vtable_field_virtual_functions),
361 vtable_index);
362
363 /* If this architecture uses function descriptors directly in the vtable,
364 then the address of the vtable entry is actually a "function pointer"
365 (i.e. points to the descriptor). We don't need to scale the index
366 by the size of a function descriptor; GCC does that before outputing
367 debug information. */
368 if (gdbarch_vtable_function_descriptors (gdbarch))
369 vfn = value_addr (vfn);
370
371 /* Cast the function pointer to the appropriate type. */
372 vfn = value_cast (lookup_pointer_type (fntype), vfn);
373
374 return vfn;
375 }
376
377 /* GNU v3 implementation of value_virtual_fn_field. See cp-abi.h
378 for a description of the arguments. */
379
380 static struct value *
381 gnuv3_virtual_fn_field (struct value **value_p,
382 struct fn_field *f, int j,
383 struct type *vfn_base, int offset)
384 {
385 struct type *values_type = check_typedef (value_type (*value_p));
386 struct gdbarch *gdbarch;
387
388 /* Some simple sanity checks. */
389 if (TYPE_CODE (values_type) != TYPE_CODE_CLASS)
390 error (_("Only classes can have virtual functions."));
391
392 /* Determine architecture. */
393 gdbarch = get_type_arch (values_type);
394
395 /* Cast our value to the base class which defines this virtual
396 function. This takes care of any necessary `this'
397 adjustments. */
398 if (vfn_base != values_type)
399 *value_p = value_cast (vfn_base, *value_p);
400
401 return gnuv3_get_virtual_fn (gdbarch, *value_p, TYPE_FN_FIELD_TYPE (f, j),
402 TYPE_FN_FIELD_VOFFSET (f, j));
403 }
404
405 /* Compute the offset of the baseclass which is
406 the INDEXth baseclass of class TYPE,
407 for value at VALADDR (in host) at ADDRESS (in target).
408 The result is the offset of the baseclass value relative
409 to (the address of)(ARG) + OFFSET.
410
411 -1 is returned on error. */
412
413 static int
414 gnuv3_baseclass_offset (struct type *type, int index,
415 const bfd_byte *valaddr, int embedded_offset,
416 CORE_ADDR address, const struct value *val)
417 {
418 struct gdbarch *gdbarch;
419 struct type *ptr_type;
420 struct value *vtable;
421 struct value *vbase_array;
422 long int cur_base_offset, base_offset;
423
424 /* Determine architecture. */
425 gdbarch = get_type_arch (type);
426 ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
427
428 /* If it isn't a virtual base, this is easy. The offset is in the
429 type definition. */
430 if (!BASETYPE_VIA_VIRTUAL (type, index))
431 return TYPE_BASECLASS_BITPOS (type, index) / 8;
432
433 /* To access a virtual base, we need to use the vbase offset stored in
434 our vtable. Recent GCC versions provide this information. If it isn't
435 available, we could get what we needed from RTTI, or from drawing the
436 complete inheritance graph based on the debug info. Neither is
437 worthwhile. */
438 cur_base_offset = TYPE_BASECLASS_BITPOS (type, index) / 8;
439 if (cur_base_offset >= - vtable_address_point_offset (gdbarch))
440 error (_("Expected a negative vbase offset (old compiler?)"));
441
442 cur_base_offset = cur_base_offset + vtable_address_point_offset (gdbarch);
443 if ((- cur_base_offset) % TYPE_LENGTH (ptr_type) != 0)
444 error (_("Misaligned vbase offset."));
445 cur_base_offset = cur_base_offset / ((int) TYPE_LENGTH (ptr_type));
446
447 vtable = gnuv3_get_vtable (gdbarch, type, address + embedded_offset);
448 gdb_assert (vtable != NULL);
449 vbase_array = value_field (vtable, vtable_field_vcall_and_vbase_offsets);
450 base_offset = value_as_long (value_subscript (vbase_array, cur_base_offset));
451 return base_offset;
452 }
453
454 /* Locate a virtual method in DOMAIN or its non-virtual base classes
455 which has virtual table index VOFFSET. The method has an associated
456 "this" adjustment of ADJUSTMENT bytes. */
457
458 static const char *
459 gnuv3_find_method_in (struct type *domain, CORE_ADDR voffset,
460 LONGEST adjustment)
461 {
462 int i;
463
464 /* Search this class first. */
465 if (adjustment == 0)
466 {
467 int len;
468
469 len = TYPE_NFN_FIELDS (domain);
470 for (i = 0; i < len; i++)
471 {
472 int len2, j;
473 struct fn_field *f;
474
475 f = TYPE_FN_FIELDLIST1 (domain, i);
476 len2 = TYPE_FN_FIELDLIST_LENGTH (domain, i);
477
478 check_stub_method_group (domain, i);
479 for (j = 0; j < len2; j++)
480 if (TYPE_FN_FIELD_VOFFSET (f, j) == voffset)
481 return TYPE_FN_FIELD_PHYSNAME (f, j);
482 }
483 }
484
485 /* Next search non-virtual bases. If it's in a virtual base,
486 we're out of luck. */
487 for (i = 0; i < TYPE_N_BASECLASSES (domain); i++)
488 {
489 int pos;
490 struct type *basetype;
491
492 if (BASETYPE_VIA_VIRTUAL (domain, i))
493 continue;
494
495 pos = TYPE_BASECLASS_BITPOS (domain, i) / 8;
496 basetype = TYPE_FIELD_TYPE (domain, i);
497 /* Recurse with a modified adjustment. We don't need to adjust
498 voffset. */
499 if (adjustment >= pos && adjustment < pos + TYPE_LENGTH (basetype))
500 return gnuv3_find_method_in (basetype, voffset, adjustment - pos);
501 }
502
503 return NULL;
504 }
505
506 /* Decode GNU v3 method pointer. */
507
508 static int
509 gnuv3_decode_method_ptr (struct gdbarch *gdbarch,
510 const gdb_byte *contents,
511 CORE_ADDR *value_p,
512 LONGEST *adjustment_p)
513 {
514 struct type *funcptr_type = builtin_type (gdbarch)->builtin_func_ptr;
515 struct type *offset_type = vtable_ptrdiff_type (gdbarch);
516 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
517 CORE_ADDR ptr_value;
518 LONGEST voffset, adjustment;
519 int vbit;
520
521 /* Extract the pointer to member. The first element is either a pointer
522 or a vtable offset. For pointers, we need to use extract_typed_address
523 to allow the back-end to convert the pointer to a GDB address -- but
524 vtable offsets we must handle as integers. At this point, we do not
525 yet know which case we have, so we extract the value under both
526 interpretations and choose the right one later on. */
527 ptr_value = extract_typed_address (contents, funcptr_type);
528 voffset = extract_signed_integer (contents,
529 TYPE_LENGTH (funcptr_type), byte_order);
530 contents += TYPE_LENGTH (funcptr_type);
531 adjustment = extract_signed_integer (contents,
532 TYPE_LENGTH (offset_type), byte_order);
533
534 if (!gdbarch_vbit_in_delta (gdbarch))
535 {
536 vbit = voffset & 1;
537 voffset = voffset ^ vbit;
538 }
539 else
540 {
541 vbit = adjustment & 1;
542 adjustment = adjustment >> 1;
543 }
544
545 *value_p = vbit? voffset : ptr_value;
546 *adjustment_p = adjustment;
547 return vbit;
548 }
549
550 /* GNU v3 implementation of cplus_print_method_ptr. */
551
552 static void
553 gnuv3_print_method_ptr (const gdb_byte *contents,
554 struct type *type,
555 struct ui_file *stream)
556 {
557 struct type *domain = TYPE_DOMAIN_TYPE (type);
558 struct gdbarch *gdbarch = get_type_arch (domain);
559 CORE_ADDR ptr_value;
560 LONGEST adjustment;
561 int vbit;
562
563 /* Extract the pointer to member. */
564 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
565
566 /* Check for NULL. */
567 if (ptr_value == 0 && vbit == 0)
568 {
569 fprintf_filtered (stream, "NULL");
570 return;
571 }
572
573 /* Search for a virtual method. */
574 if (vbit)
575 {
576 CORE_ADDR voffset;
577 const char *physname;
578
579 /* It's a virtual table offset, maybe in this class. Search
580 for a field with the correct vtable offset. First convert it
581 to an index, as used in TYPE_FN_FIELD_VOFFSET. */
582 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
583
584 physname = gnuv3_find_method_in (domain, voffset, adjustment);
585
586 /* If we found a method, print that. We don't bother to disambiguate
587 possible paths to the method based on the adjustment. */
588 if (physname)
589 {
590 char *demangled_name = cplus_demangle (physname,
591 DMGL_ANSI | DMGL_PARAMS);
592
593 fprintf_filtered (stream, "&virtual ");
594 if (demangled_name == NULL)
595 fputs_filtered (physname, stream);
596 else
597 {
598 fputs_filtered (demangled_name, stream);
599 xfree (demangled_name);
600 }
601 return;
602 }
603 }
604 else if (ptr_value != 0)
605 {
606 /* Found a non-virtual function: print out the type. */
607 fputs_filtered ("(", stream);
608 c_print_type (type, "", stream, -1, 0);
609 fputs_filtered (") ", stream);
610 }
611
612 /* We didn't find it; print the raw data. */
613 if (vbit)
614 {
615 fprintf_filtered (stream, "&virtual table offset ");
616 print_longest (stream, 'd', 1, ptr_value);
617 }
618 else
619 print_address_demangle (gdbarch, ptr_value, stream, demangle);
620
621 if (adjustment)
622 {
623 fprintf_filtered (stream, ", this adjustment ");
624 print_longest (stream, 'd', 1, adjustment);
625 }
626 }
627
628 /* GNU v3 implementation of cplus_method_ptr_size. */
629
630 static int
631 gnuv3_method_ptr_size (struct type *type)
632 {
633 struct gdbarch *gdbarch = get_type_arch (type);
634
635 return 2 * TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
636 }
637
638 /* GNU v3 implementation of cplus_make_method_ptr. */
639
640 static void
641 gnuv3_make_method_ptr (struct type *type, gdb_byte *contents,
642 CORE_ADDR value, int is_virtual)
643 {
644 struct gdbarch *gdbarch = get_type_arch (type);
645 int size = TYPE_LENGTH (builtin_type (gdbarch)->builtin_data_ptr);
646 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
647
648 /* FIXME drow/2006-12-24: The adjustment of "this" is currently
649 always zero, since the method pointer is of the correct type.
650 But if the method pointer came from a base class, this is
651 incorrect - it should be the offset to the base. The best
652 fix might be to create the pointer to member pointing at the
653 base class and cast it to the derived class, but that requires
654 support for adjusting pointers to members when casting them -
655 not currently supported by GDB. */
656
657 if (!gdbarch_vbit_in_delta (gdbarch))
658 {
659 store_unsigned_integer (contents, size, byte_order, value | is_virtual);
660 store_unsigned_integer (contents + size, size, byte_order, 0);
661 }
662 else
663 {
664 store_unsigned_integer (contents, size, byte_order, value);
665 store_unsigned_integer (contents + size, size, byte_order, is_virtual);
666 }
667 }
668
669 /* GNU v3 implementation of cplus_method_ptr_to_value. */
670
671 static struct value *
672 gnuv3_method_ptr_to_value (struct value **this_p, struct value *method_ptr)
673 {
674 struct gdbarch *gdbarch;
675 const gdb_byte *contents = value_contents (method_ptr);
676 CORE_ADDR ptr_value;
677 struct type *domain_type, *final_type, *method_type;
678 LONGEST adjustment;
679 int vbit;
680
681 domain_type = TYPE_DOMAIN_TYPE (check_typedef (value_type (method_ptr)));
682 final_type = lookup_pointer_type (domain_type);
683
684 method_type = TYPE_TARGET_TYPE (check_typedef (value_type (method_ptr)));
685
686 /* Extract the pointer to member. */
687 gdbarch = get_type_arch (domain_type);
688 vbit = gnuv3_decode_method_ptr (gdbarch, contents, &ptr_value, &adjustment);
689
690 /* First convert THIS to match the containing type of the pointer to
691 member. This cast may adjust the value of THIS. */
692 *this_p = value_cast (final_type, *this_p);
693
694 /* Then apply whatever adjustment is necessary. This creates a somewhat
695 strange pointer: it claims to have type FINAL_TYPE, but in fact it
696 might not be a valid FINAL_TYPE. For instance, it might be a
697 base class of FINAL_TYPE. And if it's not the primary base class,
698 then printing it out as a FINAL_TYPE object would produce some pretty
699 garbage.
700
701 But we don't really know the type of the first argument in
702 METHOD_TYPE either, which is why this happens. We can't
703 dereference this later as a FINAL_TYPE, but once we arrive in the
704 called method we'll have debugging information for the type of
705 "this" - and that'll match the value we produce here.
706
707 You can provoke this case by casting a Base::* to a Derived::*, for
708 instance. */
709 *this_p = value_cast (builtin_type (gdbarch)->builtin_data_ptr, *this_p);
710 *this_p = value_ptradd (*this_p, adjustment);
711 *this_p = value_cast (final_type, *this_p);
712
713 if (vbit)
714 {
715 LONGEST voffset;
716
717 voffset = ptr_value / TYPE_LENGTH (vtable_ptrdiff_type (gdbarch));
718 return gnuv3_get_virtual_fn (gdbarch, value_ind (*this_p),
719 method_type, voffset);
720 }
721 else
722 return value_from_pointer (lookup_pointer_type (method_type), ptr_value);
723 }
724
725 /* Determine if we are currently in a C++ thunk. If so, get the address
726 of the routine we are thunking to and continue to there instead. */
727
728 static CORE_ADDR
729 gnuv3_skip_trampoline (struct frame_info *frame, CORE_ADDR stop_pc)
730 {
731 CORE_ADDR real_stop_pc, method_stop_pc;
732 struct gdbarch *gdbarch = get_frame_arch (frame);
733 struct minimal_symbol *thunk_sym, *fn_sym;
734 struct obj_section *section;
735 char *thunk_name, *fn_name;
736
737 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
738 if (real_stop_pc == 0)
739 real_stop_pc = stop_pc;
740
741 /* Find the linker symbol for this potential thunk. */
742 thunk_sym = lookup_minimal_symbol_by_pc (real_stop_pc);
743 section = find_pc_section (real_stop_pc);
744 if (thunk_sym == NULL || section == NULL)
745 return 0;
746
747 /* The symbol's demangled name should be something like "virtual
748 thunk to FUNCTION", where FUNCTION is the name of the function
749 being thunked to. */
750 thunk_name = SYMBOL_DEMANGLED_NAME (thunk_sym);
751 if (thunk_name == NULL || strstr (thunk_name, " thunk to ") == NULL)
752 return 0;
753
754 fn_name = strstr (thunk_name, " thunk to ") + strlen (" thunk to ");
755 fn_sym = lookup_minimal_symbol (fn_name, NULL, section->objfile);
756 if (fn_sym == NULL)
757 return 0;
758
759 method_stop_pc = SYMBOL_VALUE_ADDRESS (fn_sym);
760 real_stop_pc = gdbarch_skip_trampoline_code
761 (gdbarch, frame, method_stop_pc);
762 if (real_stop_pc == 0)
763 real_stop_pc = method_stop_pc;
764
765 return real_stop_pc;
766 }
767
768 /* Return nonzero if a type should be passed by reference.
769
770 The rule in the v3 ABI document comes from section 3.1.1. If the
771 type has a non-trivial copy constructor or destructor, then the
772 caller must make a copy (by calling the copy constructor if there
773 is one or perform the copy itself otherwise), pass the address of
774 the copy, and then destroy the temporary (if necessary).
775
776 For return values with non-trivial copy constructors or
777 destructors, space will be allocated in the caller, and a pointer
778 will be passed as the first argument (preceding "this").
779
780 We don't have a bulletproof mechanism for determining whether a
781 constructor or destructor is trivial. For GCC and DWARF2 debug
782 information, we can check the artificial flag.
783
784 We don't do anything with the constructors or destructors,
785 but we have to get the argument passing right anyway. */
786 static int
787 gnuv3_pass_by_reference (struct type *type)
788 {
789 int fieldnum, fieldelem;
790
791 CHECK_TYPEDEF (type);
792
793 /* We're only interested in things that can have methods. */
794 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
795 && TYPE_CODE (type) != TYPE_CODE_CLASS
796 && TYPE_CODE (type) != TYPE_CODE_UNION)
797 return 0;
798
799 for (fieldnum = 0; fieldnum < TYPE_NFN_FIELDS (type); fieldnum++)
800 for (fieldelem = 0; fieldelem < TYPE_FN_FIELDLIST_LENGTH (type, fieldnum);
801 fieldelem++)
802 {
803 struct fn_field *fn = TYPE_FN_FIELDLIST1 (type, fieldnum);
804 char *name = TYPE_FN_FIELDLIST_NAME (type, fieldnum);
805 struct type *fieldtype = TYPE_FN_FIELD_TYPE (fn, fieldelem);
806
807 /* If this function is marked as artificial, it is compiler-generated,
808 and we assume it is trivial. */
809 if (TYPE_FN_FIELD_ARTIFICIAL (fn, fieldelem))
810 continue;
811
812 /* If we've found a destructor, we must pass this by reference. */
813 if (name[0] == '~')
814 return 1;
815
816 /* If the mangled name of this method doesn't indicate that it
817 is a constructor, we're not interested.
818
819 FIXME drow/2007-09-23: We could do this using the name of
820 the method and the name of the class instead of dealing
821 with the mangled name. We don't have a convenient function
822 to strip off both leading scope qualifiers and trailing
823 template arguments yet. */
824 if (!is_constructor_name (TYPE_FN_FIELD_PHYSNAME (fn, fieldelem)))
825 continue;
826
827 /* If this method takes two arguments, and the second argument is
828 a reference to this class, then it is a copy constructor. */
829 if (TYPE_NFIELDS (fieldtype) == 2
830 && TYPE_CODE (TYPE_FIELD_TYPE (fieldtype, 1)) == TYPE_CODE_REF
831 && check_typedef (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (fieldtype,
832 1))) == type)
833 return 1;
834 }
835
836 /* Even if all the constructors and destructors were artificial, one
837 of them may have invoked a non-artificial constructor or
838 destructor in a base class. If any base class needs to be passed
839 by reference, so does this class. Similarly for members, which
840 are constructed whenever this class is. We do not need to worry
841 about recursive loops here, since we are only looking at members
842 of complete class type. Also ignore any static members. */
843 for (fieldnum = 0; fieldnum < TYPE_NFIELDS (type); fieldnum++)
844 if (! field_is_static (&TYPE_FIELD (type, fieldnum))
845 && gnuv3_pass_by_reference (TYPE_FIELD_TYPE (type, fieldnum)))
846 return 1;
847
848 return 0;
849 }
850
851 static void
852 init_gnuv3_ops (void)
853 {
854 vtable_type_gdbarch_data
855 = gdbarch_data_register_post_init (build_gdb_vtable_type);
856
857 gnu_v3_abi_ops.shortname = "gnu-v3";
858 gnu_v3_abi_ops.longname = "GNU G++ Version 3 ABI";
859 gnu_v3_abi_ops.doc = "G++ Version 3 ABI";
860 gnu_v3_abi_ops.is_destructor_name =
861 (enum dtor_kinds (*) (const char *))is_gnu_v3_mangled_dtor;
862 gnu_v3_abi_ops.is_constructor_name =
863 (enum ctor_kinds (*) (const char *))is_gnu_v3_mangled_ctor;
864 gnu_v3_abi_ops.is_vtable_name = gnuv3_is_vtable_name;
865 gnu_v3_abi_ops.is_operator_name = gnuv3_is_operator_name;
866 gnu_v3_abi_ops.rtti_type = gnuv3_rtti_type;
867 gnu_v3_abi_ops.virtual_fn_field = gnuv3_virtual_fn_field;
868 gnu_v3_abi_ops.baseclass_offset = gnuv3_baseclass_offset;
869 gnu_v3_abi_ops.print_method_ptr = gnuv3_print_method_ptr;
870 gnu_v3_abi_ops.method_ptr_size = gnuv3_method_ptr_size;
871 gnu_v3_abi_ops.make_method_ptr = gnuv3_make_method_ptr;
872 gnu_v3_abi_ops.method_ptr_to_value = gnuv3_method_ptr_to_value;
873 gnu_v3_abi_ops.skip_trampoline = gnuv3_skip_trampoline;
874 gnu_v3_abi_ops.pass_by_reference = gnuv3_pass_by_reference;
875 }
876
877 extern initialize_file_ftype _initialize_gnu_v3_abi; /* -Wmissing-prototypes */
878
879 void
880 _initialize_gnu_v3_abi (void)
881 {
882 init_gnuv3_ops ();
883
884 register_cp_abi (&gnu_v3_abi_ops);
885 }
This page took 0.047246 seconds and 4 git commands to generate.