btrace: add replay position to btrace thread info
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "i386-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include <string.h>
103 #include "top.h"
104 #include "cli/cli-utils.h"
105
106 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
107 #include <stdlib.h>
108 #include <ctype.h>
109 #include <errno.h>
110 #include <unistd.h>
111 #include <sys/utsname.h>
112 #include <io.h>
113 #include <dos.h>
114 #include <dpmi.h>
115 #include <go32.h>
116 #include <sys/farptr.h>
117 #include <debug/v2load.h>
118 #include <debug/dbgcom.h>
119 #if __DJGPP_MINOR__ > 2
120 #include <debug/redir.h>
121 #endif
122
123 #include <langinfo.h>
124
125 #if __DJGPP_MINOR__ < 3
126 /* This code will be provided from DJGPP 2.03 on. Until then I code it
127 here. */
128 typedef struct
129 {
130 unsigned short sig0;
131 unsigned short sig1;
132 unsigned short sig2;
133 unsigned short sig3;
134 unsigned short exponent:15;
135 unsigned short sign:1;
136 }
137 NPXREG;
138
139 typedef struct
140 {
141 unsigned int control;
142 unsigned int status;
143 unsigned int tag;
144 unsigned int eip;
145 unsigned int cs;
146 unsigned int dataptr;
147 unsigned int datasel;
148 NPXREG reg[8];
149 }
150 NPX;
151
152 static NPX npx;
153
154 static void save_npx (void); /* Save the FPU of the debugged program. */
155 static void load_npx (void); /* Restore the FPU of the debugged program. */
156
157 /* ------------------------------------------------------------------------- */
158 /* Store the contents of the NPX in the global variable `npx'. */
159 /* *INDENT-OFF* */
160
161 static void
162 save_npx (void)
163 {
164 asm ("inb $0xa0, %%al \n\
165 testb $0x20, %%al \n\
166 jz 1f \n\
167 xorb %%al, %%al \n\
168 outb %%al, $0xf0 \n\
169 movb $0x20, %%al \n\
170 outb %%al, $0xa0 \n\
171 outb %%al, $0x20 \n\
172 1: \n\
173 fnsave %0 \n\
174 fwait "
175 : "=m" (npx)
176 : /* No input */
177 : "%eax");
178 }
179
180 /* *INDENT-ON* */
181
182
183 /* ------------------------------------------------------------------------- */
184 /* Reload the contents of the NPX from the global variable `npx'. */
185
186 static void
187 load_npx (void)
188 {
189 asm ("frstor %0":"=m" (npx));
190 }
191 /* ------------------------------------------------------------------------- */
192 /* Stubs for the missing redirection functions. */
193 typedef struct {
194 char *command;
195 int redirected;
196 } cmdline_t;
197
198 void
199 redir_cmdline_delete (cmdline_t *ptr)
200 {
201 ptr->redirected = 0;
202 }
203
204 int
205 redir_cmdline_parse (const char *args, cmdline_t *ptr)
206 {
207 return -1;
208 }
209
210 int
211 redir_to_child (cmdline_t *ptr)
212 {
213 return 1;
214 }
215
216 int
217 redir_to_debugger (cmdline_t *ptr)
218 {
219 return 1;
220 }
221
222 int
223 redir_debug_init (cmdline_t *ptr)
224 {
225 return 0;
226 }
227 #endif /* __DJGPP_MINOR < 3 */
228
229 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
230
231 /* This holds the current reference counts for each debug register. */
232 static int dr_ref_count[4];
233
234 #define SOME_PID 42
235
236 static int prog_has_started = 0;
237
238 static void go32_mourn_inferior (struct target_ops *ops);
239
240 static struct target_ops go32_ops;
241
242 #define r_ofs(x) (offsetof(TSS,x))
243
244 static struct
245 {
246 size_t tss_ofs;
247 size_t size;
248 }
249 regno_mapping[] =
250 {
251 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
252 {r_ofs (tss_ecx), 4},
253 {r_ofs (tss_edx), 4},
254 {r_ofs (tss_ebx), 4},
255 {r_ofs (tss_esp), 4},
256 {r_ofs (tss_ebp), 4},
257 {r_ofs (tss_esi), 4},
258 {r_ofs (tss_edi), 4},
259 {r_ofs (tss_eip), 4},
260 {r_ofs (tss_eflags), 4},
261 {r_ofs (tss_cs), 2},
262 {r_ofs (tss_ss), 2},
263 {r_ofs (tss_ds), 2},
264 {r_ofs (tss_es), 2},
265 {r_ofs (tss_fs), 2},
266 {r_ofs (tss_gs), 2},
267 {0, 10}, /* 8 FP registers, from npx.reg[] */
268 {1, 10},
269 {2, 10},
270 {3, 10},
271 {4, 10},
272 {5, 10},
273 {6, 10},
274 {7, 10},
275 /* The order of the next 7 registers must be consistent
276 with their numbering in config/i386/tm-i386.h, which see. */
277 {0, 2}, /* control word, from npx */
278 {4, 2}, /* status word, from npx */
279 {8, 2}, /* tag word, from npx */
280 {16, 2}, /* last FP exception CS from npx */
281 {12, 4}, /* last FP exception EIP from npx */
282 {24, 2}, /* last FP exception operand selector from npx */
283 {20, 4}, /* last FP exception operand offset from npx */
284 {18, 2} /* last FP opcode from npx */
285 };
286
287 static struct
288 {
289 int go32_sig;
290 enum gdb_signal gdb_sig;
291 }
292 sig_map[] =
293 {
294 {0, GDB_SIGNAL_FPE},
295 {1, GDB_SIGNAL_TRAP},
296 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
297 but I think SIGBUS is better, since the NMI is usually activated
298 as a result of a memory parity check failure. */
299 {2, GDB_SIGNAL_BUS},
300 {3, GDB_SIGNAL_TRAP},
301 {4, GDB_SIGNAL_FPE},
302 {5, GDB_SIGNAL_SEGV},
303 {6, GDB_SIGNAL_ILL},
304 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
305 {8, GDB_SIGNAL_SEGV},
306 {9, GDB_SIGNAL_SEGV},
307 {10, GDB_SIGNAL_BUS},
308 {11, GDB_SIGNAL_SEGV},
309 {12, GDB_SIGNAL_SEGV},
310 {13, GDB_SIGNAL_SEGV},
311 {14, GDB_SIGNAL_SEGV},
312 {16, GDB_SIGNAL_FPE},
313 {17, GDB_SIGNAL_BUS},
314 {31, GDB_SIGNAL_ILL},
315 {0x1b, GDB_SIGNAL_INT},
316 {0x75, GDB_SIGNAL_FPE},
317 {0x78, GDB_SIGNAL_ALRM},
318 {0x79, GDB_SIGNAL_INT},
319 {0x7a, GDB_SIGNAL_QUIT},
320 {-1, GDB_SIGNAL_LAST}
321 };
322
323 static struct {
324 enum gdb_signal gdb_sig;
325 int djgpp_excepno;
326 } excepn_map[] = {
327 {GDB_SIGNAL_0, -1},
328 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
329 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
330 {GDB_SIGNAL_SEGV, 13}, /* GPF */
331 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
332 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
333 details. */
334 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
335 {GDB_SIGNAL_FPE, 0x75},
336 {GDB_SIGNAL_INT, 0x79},
337 {GDB_SIGNAL_QUIT, 0x7a},
338 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
339 {GDB_SIGNAL_PROF, 0x78},
340 {GDB_SIGNAL_LAST, -1}
341 };
342
343 static void
344 go32_open (char *name, int from_tty)
345 {
346 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
347 }
348
349 static void
350 go32_close (void)
351 {
352 }
353
354 static void
355 go32_attach (struct target_ops *ops, char *args, int from_tty)
356 {
357 error (_("\
358 You cannot attach to a running program on this platform.\n\
359 Use the `run' command to run DJGPP programs."));
360 }
361
362 static void
363 go32_detach (struct target_ops *ops, const char *args, int from_tty)
364 {
365 }
366
367 static int resume_is_step;
368 static int resume_signal = -1;
369
370 static void
371 go32_resume (struct target_ops *ops,
372 ptid_t ptid, int step, enum gdb_signal siggnal)
373 {
374 int i;
375
376 resume_is_step = step;
377
378 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
379 {
380 for (i = 0, resume_signal = -1;
381 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
382 if (excepn_map[i].gdb_sig == siggnal)
383 {
384 resume_signal = excepn_map[i].djgpp_excepno;
385 break;
386 }
387 if (resume_signal == -1)
388 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
389 gdb_signal_to_name (siggnal));
390 }
391 }
392
393 static char child_cwd[FILENAME_MAX];
394
395 static ptid_t
396 go32_wait (struct target_ops *ops,
397 ptid_t ptid, struct target_waitstatus *status, int options)
398 {
399 int i;
400 unsigned char saved_opcode;
401 unsigned long INT3_addr = 0;
402 int stepping_over_INT = 0;
403
404 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
405 if (resume_is_step)
406 {
407 /* If the next instruction is INT xx or INTO, we need to handle
408 them specially. Intel manuals say that these instructions
409 reset the single-step flag (a.k.a. TF). However, it seems
410 that, at least in the DPMI environment, and at least when
411 stepping over the DPMI interrupt 31h, the problem is having
412 TF set at all when INT 31h is executed: the debuggee either
413 crashes (and takes the system with it) or is killed by a
414 SIGTRAP.
415
416 So we need to emulate single-step mode: we put an INT3 opcode
417 right after the INT xx instruction, let the debuggee run
418 until it hits INT3 and stops, then restore the original
419 instruction which we overwrote with the INT3 opcode, and back
420 up the debuggee's EIP to that instruction. */
421 read_child (a_tss.tss_eip, &saved_opcode, 1);
422 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
423 {
424 unsigned char INT3_opcode = 0xCC;
425
426 INT3_addr
427 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
428 stepping_over_INT = 1;
429 read_child (INT3_addr, &saved_opcode, 1);
430 write_child (INT3_addr, &INT3_opcode, 1);
431 }
432 else
433 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
434 }
435
436 /* The special value FFFFh in tss_trap indicates to run_child that
437 tss_irqn holds a signal to be delivered to the debuggee. */
438 if (resume_signal <= -1)
439 {
440 a_tss.tss_trap = 0;
441 a_tss.tss_irqn = 0xff;
442 }
443 else
444 {
445 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
446 a_tss.tss_irqn = resume_signal;
447 }
448
449 /* The child might change working directory behind our back. The
450 GDB users won't like the side effects of that when they work with
451 relative file names, and GDB might be confused by its current
452 directory not being in sync with the truth. So we always make a
453 point of changing back to where GDB thinks is its cwd, when we
454 return control to the debugger, but restore child's cwd before we
455 run it. */
456 /* Initialize child_cwd, before the first call to run_child and not
457 in the initialization, so the child get also the changed directory
458 set with the gdb-command "cd ..." */
459 if (!*child_cwd)
460 /* Initialize child's cwd with the current one. */
461 getcwd (child_cwd, sizeof (child_cwd));
462
463 chdir (child_cwd);
464
465 #if __DJGPP_MINOR__ < 3
466 load_npx ();
467 #endif
468 run_child ();
469 #if __DJGPP_MINOR__ < 3
470 save_npx ();
471 #endif
472
473 /* Did we step over an INT xx instruction? */
474 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
475 {
476 /* Restore the original opcode. */
477 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
478 write_child (a_tss.tss_eip, &saved_opcode, 1);
479 /* Simulate a TRAP exception. */
480 a_tss.tss_irqn = 1;
481 a_tss.tss_eflags |= 0x0100;
482 }
483
484 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
485 chdir (current_directory);
486
487 if (a_tss.tss_irqn == 0x21)
488 {
489 status->kind = TARGET_WAITKIND_EXITED;
490 status->value.integer = a_tss.tss_eax & 0xff;
491 }
492 else
493 {
494 status->value.sig = GDB_SIGNAL_UNKNOWN;
495 status->kind = TARGET_WAITKIND_STOPPED;
496 for (i = 0; sig_map[i].go32_sig != -1; i++)
497 {
498 if (a_tss.tss_irqn == sig_map[i].go32_sig)
499 {
500 #if __DJGPP_MINOR__ < 3
501 if ((status->value.sig = sig_map[i].gdb_sig) !=
502 GDB_SIGNAL_TRAP)
503 status->kind = TARGET_WAITKIND_SIGNALLED;
504 #else
505 status->value.sig = sig_map[i].gdb_sig;
506 #endif
507 break;
508 }
509 }
510 }
511 return pid_to_ptid (SOME_PID);
512 }
513
514 static void
515 fetch_register (struct regcache *regcache, int regno)
516 {
517 struct gdbarch *gdbarch = get_regcache_arch (regcache);
518 if (regno < gdbarch_fp0_regnum (gdbarch))
519 regcache_raw_supply (regcache, regno,
520 (char *) &a_tss + regno_mapping[regno].tss_ofs);
521 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
522 regno))
523 i387_supply_fsave (regcache, regno, &npx);
524 else
525 internal_error (__FILE__, __LINE__,
526 _("Invalid register no. %d in fetch_register."), regno);
527 }
528
529 static void
530 go32_fetch_registers (struct target_ops *ops,
531 struct regcache *regcache, int regno)
532 {
533 if (regno >= 0)
534 fetch_register (regcache, regno);
535 else
536 {
537 for (regno = 0;
538 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
539 regno++)
540 fetch_register (regcache, regno);
541 i387_supply_fsave (regcache, -1, &npx);
542 }
543 }
544
545 static void
546 store_register (const struct regcache *regcache, int regno)
547 {
548 struct gdbarch *gdbarch = get_regcache_arch (regcache);
549 if (regno < gdbarch_fp0_regnum (gdbarch))
550 regcache_raw_collect (regcache, regno,
551 (char *) &a_tss + regno_mapping[regno].tss_ofs);
552 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
553 regno))
554 i387_collect_fsave (regcache, regno, &npx);
555 else
556 internal_error (__FILE__, __LINE__,
557 _("Invalid register no. %d in store_register."), regno);
558 }
559
560 static void
561 go32_store_registers (struct target_ops *ops,
562 struct regcache *regcache, int regno)
563 {
564 unsigned r;
565
566 if (regno >= 0)
567 store_register (regcache, regno);
568 else
569 {
570 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
571 store_register (regcache, r);
572 i387_collect_fsave (regcache, -1, &npx);
573 }
574 }
575
576 static void
577 go32_prepare_to_store (struct regcache *regcache)
578 {
579 }
580
581 static int
582 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
583 struct mem_attrib *attrib, struct target_ops *target)
584 {
585 if (write)
586 {
587 if (write_child (memaddr, myaddr, len))
588 {
589 return 0;
590 }
591 else
592 {
593 return len;
594 }
595 }
596 else
597 {
598 if (read_child (memaddr, myaddr, len))
599 {
600 return 0;
601 }
602 else
603 {
604 return len;
605 }
606 }
607 }
608
609 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
610
611 static void
612 go32_files_info (struct target_ops *target)
613 {
614 printf_unfiltered ("You are running a DJGPP V2 program.\n");
615 }
616
617 static void
618 go32_kill_inferior (struct target_ops *ops)
619 {
620 go32_mourn_inferior (ops);
621 }
622
623 static void
624 go32_create_inferior (struct target_ops *ops, char *exec_file,
625 char *args, char **env, int from_tty)
626 {
627 extern char **environ;
628 jmp_buf start_state;
629 char *cmdline;
630 char **env_save = environ;
631 size_t cmdlen;
632 struct inferior *inf;
633
634 /* If no exec file handed to us, get it from the exec-file command -- with
635 a good, common error message if none is specified. */
636 if (exec_file == 0)
637 exec_file = get_exec_file (1);
638
639 resume_signal = -1;
640 resume_is_step = 0;
641
642 /* Initialize child's cwd as empty to be initialized when starting
643 the child. */
644 *child_cwd = 0;
645
646 /* Init command line storage. */
647 if (redir_debug_init (&child_cmd) == -1)
648 internal_error (__FILE__, __LINE__,
649 _("Cannot allocate redirection storage: "
650 "not enough memory.\n"));
651
652 /* Parse the command line and create redirections. */
653 if (strpbrk (args, "<>"))
654 {
655 if (redir_cmdline_parse (args, &child_cmd) == 0)
656 args = child_cmd.command;
657 else
658 error (_("Syntax error in command line."));
659 }
660 else
661 child_cmd.command = xstrdup (args);
662
663 cmdlen = strlen (args);
664 /* v2loadimage passes command lines via DOS memory, so it cannot
665 possibly handle commands longer than 1MB. */
666 if (cmdlen > 1024*1024)
667 error (_("Command line too long."));
668
669 cmdline = xmalloc (cmdlen + 4);
670 strcpy (cmdline + 1, args);
671 /* If the command-line length fits into DOS 126-char limits, use the
672 DOS command tail format; otherwise, tell v2loadimage to pass it
673 through a buffer in conventional memory. */
674 if (cmdlen < 127)
675 {
676 cmdline[0] = strlen (args);
677 cmdline[cmdlen + 1] = 13;
678 }
679 else
680 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
681
682 environ = env;
683
684 if (v2loadimage (exec_file, cmdline, start_state))
685 {
686 environ = env_save;
687 printf_unfiltered ("Load failed for image %s\n", exec_file);
688 exit (1);
689 }
690 environ = env_save;
691 xfree (cmdline);
692
693 edi_init (start_state);
694 #if __DJGPP_MINOR__ < 3
695 save_npx ();
696 #endif
697
698 inferior_ptid = pid_to_ptid (SOME_PID);
699 inf = current_inferior ();
700 inferior_appeared (inf, SOME_PID);
701
702 push_target (&go32_ops);
703
704 add_thread_silent (inferior_ptid);
705
706 clear_proceed_status ();
707 insert_breakpoints ();
708 prog_has_started = 1;
709 }
710
711 static void
712 go32_mourn_inferior (struct target_ops *ops)
713 {
714 ptid_t ptid;
715
716 redir_cmdline_delete (&child_cmd);
717 resume_signal = -1;
718 resume_is_step = 0;
719
720 cleanup_client ();
721
722 /* We need to make sure all the breakpoint enable bits in the DR7
723 register are reset when the inferior exits. Otherwise, if they
724 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
725 failure to set more watchpoints, and other calamities. It would
726 be nice if GDB itself would take care to remove all breakpoints
727 at all times, but it doesn't, probably under an assumption that
728 the OS cleans up when the debuggee exits. */
729 i386_cleanup_dregs ();
730
731 ptid = inferior_ptid;
732 inferior_ptid = null_ptid;
733 delete_thread_silent (ptid);
734 prog_has_started = 0;
735
736 unpush_target (ops);
737 generic_mourn_inferior ();
738 }
739
740 static int
741 go32_can_run (void)
742 {
743 return 1;
744 }
745
746 /* Hardware watchpoint support. */
747
748 #define D_REGS edi.dr
749 #define CONTROL D_REGS[7]
750 #define STATUS D_REGS[6]
751
752 /* Pass the address ADDR to the inferior in the I'th debug register.
753 Here we just store the address in D_REGS, the watchpoint will be
754 actually set up when go32_wait runs the debuggee. */
755 static void
756 go32_set_dr (int i, CORE_ADDR addr)
757 {
758 if (i < 0 || i > 3)
759 internal_error (__FILE__, __LINE__,
760 _("Invalid register %d in go32_set_dr.\n"), i);
761 D_REGS[i] = addr;
762 }
763
764 /* Pass the value VAL to the inferior in the DR7 debug control
765 register. Here we just store the address in D_REGS, the watchpoint
766 will be actually set up when go32_wait runs the debuggee. */
767 static void
768 go32_set_dr7 (unsigned long val)
769 {
770 CONTROL = val;
771 }
772
773 /* Get the value of the DR6 debug status register from the inferior.
774 Here we just return the value stored in D_REGS, as we've got it
775 from the last go32_wait call. */
776 static unsigned long
777 go32_get_dr6 (void)
778 {
779 return STATUS;
780 }
781
782 /* Get the value of the DR7 debug status register from the inferior.
783 Here we just return the value stored in D_REGS, as we've got it
784 from the last go32_wait call. */
785
786 static unsigned long
787 go32_get_dr7 (void)
788 {
789 return CONTROL;
790 }
791
792 /* Get the value of the DR debug register I from the inferior. Here
793 we just return the value stored in D_REGS, as we've got it from the
794 last go32_wait call. */
795
796 static CORE_ADDR
797 go32_get_dr (int i)
798 {
799 if (i < 0 || i > 3)
800 internal_error (__FILE__, __LINE__,
801 _("Invalid register %d in go32_get_dr.\n"), i);
802 return D_REGS[i];
803 }
804
805 /* Put the device open on handle FD into either raw or cooked
806 mode, return 1 if it was in raw mode, zero otherwise. */
807
808 static int
809 device_mode (int fd, int raw_p)
810 {
811 int oldmode, newmode;
812 __dpmi_regs regs;
813
814 regs.x.ax = 0x4400;
815 regs.x.bx = fd;
816 __dpmi_int (0x21, &regs);
817 if (regs.x.flags & 1)
818 return -1;
819 newmode = oldmode = regs.x.dx;
820
821 if (raw_p)
822 newmode |= 0x20;
823 else
824 newmode &= ~0x20;
825
826 if (oldmode & 0x80) /* Only for character dev. */
827 {
828 regs.x.ax = 0x4401;
829 regs.x.bx = fd;
830 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
831 __dpmi_int (0x21, &regs);
832 if (regs.x.flags & 1)
833 return -1;
834 }
835 return (oldmode & 0x20) == 0x20;
836 }
837
838
839 static int inf_mode_valid = 0;
840 static int inf_terminal_mode;
841
842 /* This semaphore is needed because, amazingly enough, GDB calls
843 target.to_terminal_ours more than once after the inferior stops.
844 But we need the information from the first call only, since the
845 second call will always see GDB's own cooked terminal. */
846 static int terminal_is_ours = 1;
847
848 static void
849 go32_terminal_init (void)
850 {
851 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
852 terminal_is_ours = 1;
853 }
854
855 static void
856 go32_terminal_info (const char *args, int from_tty)
857 {
858 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
859 !inf_mode_valid
860 ? "default" : inf_terminal_mode ? "raw" : "cooked");
861
862 #if __DJGPP_MINOR__ > 2
863 if (child_cmd.redirection)
864 {
865 int i;
866
867 for (i = 0; i < DBG_HANDLES; i++)
868 {
869 if (child_cmd.redirection[i]->file_name)
870 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
871 i, child_cmd.redirection[i]->file_name);
872 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
873 printf_unfiltered
874 ("\tFile handle %d appears to be closed by inferior.\n", i);
875 /* Mask off the raw/cooked bit when comparing device info words. */
876 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
877 != (_get_dev_info (i) & 0xdf))
878 printf_unfiltered
879 ("\tFile handle %d appears to be redirected by inferior.\n", i);
880 }
881 }
882 #endif
883 }
884
885 static void
886 go32_terminal_inferior (void)
887 {
888 /* Redirect standard handles as child wants them. */
889 errno = 0;
890 if (redir_to_child (&child_cmd) == -1)
891 {
892 redir_to_debugger (&child_cmd);
893 error (_("Cannot redirect standard handles for program: %s."),
894 safe_strerror (errno));
895 }
896 /* Set the console device of the inferior to whatever mode
897 (raw or cooked) we found it last time. */
898 if (terminal_is_ours)
899 {
900 if (inf_mode_valid)
901 device_mode (0, inf_terminal_mode);
902 terminal_is_ours = 0;
903 }
904 }
905
906 static void
907 go32_terminal_ours (void)
908 {
909 /* Switch to cooked mode on the gdb terminal and save the inferior
910 terminal mode to be restored when it is resumed. */
911 if (!terminal_is_ours)
912 {
913 inf_terminal_mode = device_mode (0, 0);
914 if (inf_terminal_mode != -1)
915 inf_mode_valid = 1;
916 else
917 /* If device_mode returned -1, we don't know what happens with
918 handle 0 anymore, so make the info invalid. */
919 inf_mode_valid = 0;
920 terminal_is_ours = 1;
921
922 /* Restore debugger's standard handles. */
923 errno = 0;
924 if (redir_to_debugger (&child_cmd) == -1)
925 {
926 redir_to_child (&child_cmd);
927 error (_("Cannot redirect standard handles for debugger: %s."),
928 safe_strerror (errno));
929 }
930 }
931 }
932
933 static int
934 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
935 {
936 return !ptid_equal (inferior_ptid, null_ptid);
937 }
938
939 static char *
940 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
941 {
942 return normal_pid_to_str (ptid);
943 }
944
945 static void
946 init_go32_ops (void)
947 {
948 go32_ops.to_shortname = "djgpp";
949 go32_ops.to_longname = "djgpp target process";
950 go32_ops.to_doc =
951 "Program loaded by djgpp, when gdb is used as an external debugger";
952 go32_ops.to_open = go32_open;
953 go32_ops.to_close = go32_close;
954 go32_ops.to_attach = go32_attach;
955 go32_ops.to_detach = go32_detach;
956 go32_ops.to_resume = go32_resume;
957 go32_ops.to_wait = go32_wait;
958 go32_ops.to_fetch_registers = go32_fetch_registers;
959 go32_ops.to_store_registers = go32_store_registers;
960 go32_ops.to_prepare_to_store = go32_prepare_to_store;
961 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
962 go32_ops.to_files_info = go32_files_info;
963 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
964 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
965 go32_ops.to_terminal_init = go32_terminal_init;
966 go32_ops.to_terminal_inferior = go32_terminal_inferior;
967 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
968 go32_ops.to_terminal_ours = go32_terminal_ours;
969 go32_ops.to_terminal_info = go32_terminal_info;
970 go32_ops.to_kill = go32_kill_inferior;
971 go32_ops.to_create_inferior = go32_create_inferior;
972 go32_ops.to_mourn_inferior = go32_mourn_inferior;
973 go32_ops.to_can_run = go32_can_run;
974 go32_ops.to_thread_alive = go32_thread_alive;
975 go32_ops.to_pid_to_str = go32_pid_to_str;
976 go32_ops.to_stratum = process_stratum;
977 go32_ops.to_has_all_memory = default_child_has_all_memory;
978 go32_ops.to_has_memory = default_child_has_memory;
979 go32_ops.to_has_stack = default_child_has_stack;
980 go32_ops.to_has_registers = default_child_has_registers;
981 go32_ops.to_has_execution = default_child_has_execution;
982
983 i386_use_watchpoints (&go32_ops);
984
985
986 i386_dr_low.set_control = go32_set_dr7;
987 i386_dr_low.set_addr = go32_set_dr;
988 i386_dr_low.get_status = go32_get_dr6;
989 i386_dr_low.get_control = go32_get_dr7;
990 i386_dr_low.get_addr = go32_get_dr;
991 i386_set_debug_register_length (4);
992
993 go32_ops.to_magic = OPS_MAGIC;
994
995 /* Initialize child's cwd as empty to be initialized when starting
996 the child. */
997 *child_cwd = 0;
998
999 /* Initialize child's command line storage. */
1000 if (redir_debug_init (&child_cmd) == -1)
1001 internal_error (__FILE__, __LINE__,
1002 _("Cannot allocate redirection storage: "
1003 "not enough memory.\n"));
1004
1005 /* We are always processing GCC-compiled programs. */
1006 processing_gcc_compilation = 2;
1007 }
1008
1009 /* Return the current DOS codepage number. */
1010 static int
1011 dos_codepage (void)
1012 {
1013 __dpmi_regs regs;
1014
1015 regs.x.ax = 0x6601;
1016 __dpmi_int (0x21, &regs);
1017 if (!(regs.x.flags & 1))
1018 return regs.x.bx & 0xffff;
1019 else
1020 return 437; /* default */
1021 }
1022
1023 /* Limited emulation of `nl_langinfo', for charset.c. */
1024 char *
1025 nl_langinfo (nl_item item)
1026 {
1027 char *retval;
1028
1029 switch (item)
1030 {
1031 case CODESET:
1032 {
1033 /* 8 is enough for SHORT_MAX + "CP" + null. */
1034 char buf[8];
1035 int blen = sizeof (buf);
1036 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1037
1038 if (needed > blen) /* Should never happen. */
1039 buf[0] = 0;
1040 retval = xstrdup (buf);
1041 }
1042 break;
1043 default:
1044 retval = xstrdup ("");
1045 break;
1046 }
1047 return retval;
1048 }
1049
1050 unsigned short windows_major, windows_minor;
1051
1052 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1053 static void
1054 go32_get_windows_version(void)
1055 {
1056 __dpmi_regs r;
1057
1058 r.x.ax = 0x1600;
1059 __dpmi_int(0x2f, &r);
1060 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1061 && (r.h.al > 3 || r.h.ah > 0))
1062 {
1063 windows_major = r.h.al;
1064 windows_minor = r.h.ah;
1065 }
1066 else
1067 windows_major = 0xff; /* meaning no Windows */
1068 }
1069
1070 /* A subroutine of go32_sysinfo to display memory info. */
1071 static void
1072 print_mem (unsigned long datum, const char *header, int in_pages_p)
1073 {
1074 if (datum != 0xffffffffUL)
1075 {
1076 if (in_pages_p)
1077 datum <<= 12;
1078 puts_filtered (header);
1079 if (datum > 1024)
1080 {
1081 printf_filtered ("%lu KB", datum >> 10);
1082 if (datum > 1024 * 1024)
1083 printf_filtered (" (%lu MB)", datum >> 20);
1084 }
1085 else
1086 printf_filtered ("%lu Bytes", datum);
1087 puts_filtered ("\n");
1088 }
1089 }
1090
1091 /* Display assorted information about the underlying OS. */
1092 static void
1093 go32_sysinfo (char *arg, int from_tty)
1094 {
1095 static const char test_pattern[] =
1096 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1097 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1098 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1099 struct utsname u;
1100 char cpuid_vendor[13];
1101 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1102 unsigned true_dos_version = _get_dos_version (1);
1103 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1104 int dpmi_flags;
1105 char dpmi_vendor_info[129];
1106 int dpmi_vendor_available;
1107 __dpmi_version_ret dpmi_version_data;
1108 long eflags;
1109 __dpmi_free_mem_info mem_info;
1110 __dpmi_regs regs;
1111
1112 cpuid_vendor[0] = '\0';
1113 if (uname (&u))
1114 strcpy (u.machine, "Unknown x86");
1115 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1116 {
1117 /* CPUID with EAX = 0 returns the Vendor ID. */
1118 #if 0
1119 /* Ideally we would use i386_cpuid(), but it needs someone to run
1120 native tests first to make sure things actually work. They should.
1121 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1122 unsigned int eax, ebx, ecx, edx;
1123
1124 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1125 {
1126 cpuid_max = eax;
1127 memcpy (&vendor[0], &ebx, 4);
1128 memcpy (&vendor[4], &ecx, 4);
1129 memcpy (&vendor[8], &edx, 4);
1130 cpuid_vendor[12] = '\0';
1131 }
1132 #else
1133 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1134 "xorl %%ecx, %%ecx;"
1135 "xorl %%edx, %%edx;"
1136 "movl $0, %%eax;"
1137 "cpuid;"
1138 "movl %%ebx, %0;"
1139 "movl %%edx, %1;"
1140 "movl %%ecx, %2;"
1141 "movl %%eax, %3;"
1142 : "=m" (cpuid_vendor[0]),
1143 "=m" (cpuid_vendor[4]),
1144 "=m" (cpuid_vendor[8]),
1145 "=m" (cpuid_max)
1146 :
1147 : "%eax", "%ebx", "%ecx", "%edx");
1148 cpuid_vendor[12] = '\0';
1149 #endif
1150 }
1151
1152 printf_filtered ("CPU Type.......................%s", u.machine);
1153 if (cpuid_vendor[0])
1154 printf_filtered (" (%s)", cpuid_vendor);
1155 puts_filtered ("\n");
1156
1157 /* CPUID with EAX = 1 returns processor signature and features. */
1158 if (cpuid_max >= 1)
1159 {
1160 static char *brand_name[] = {
1161 "",
1162 " Celeron",
1163 " III",
1164 " III Xeon",
1165 "", "", "", "",
1166 " 4"
1167 };
1168 char cpu_string[80];
1169 char cpu_brand[20];
1170 unsigned brand_idx;
1171 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1172 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1173 unsigned cpu_family, cpu_model;
1174
1175 #if 0
1176 /* See comment above about cpuid usage. */
1177 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1178 #else
1179 __asm__ __volatile__ ("movl $1, %%eax;"
1180 "cpuid;"
1181 : "=a" (cpuid_eax),
1182 "=b" (cpuid_ebx),
1183 "=d" (cpuid_edx)
1184 :
1185 : "%ecx");
1186 #endif
1187 brand_idx = cpuid_ebx & 0xff;
1188 cpu_family = (cpuid_eax >> 8) & 0xf;
1189 cpu_model = (cpuid_eax >> 4) & 0xf;
1190 cpu_brand[0] = '\0';
1191 if (intel_p)
1192 {
1193 if (brand_idx > 0
1194 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1195 && *brand_name[brand_idx])
1196 strcpy (cpu_brand, brand_name[brand_idx]);
1197 else if (cpu_family == 5)
1198 {
1199 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1200 strcpy (cpu_brand, " MMX");
1201 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1202 strcpy (cpu_brand, " OverDrive");
1203 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1204 strcpy (cpu_brand, " Dual");
1205 }
1206 else if (cpu_family == 6 && cpu_model < 8)
1207 {
1208 switch (cpu_model)
1209 {
1210 case 1:
1211 strcpy (cpu_brand, " Pro");
1212 break;
1213 case 3:
1214 strcpy (cpu_brand, " II");
1215 break;
1216 case 5:
1217 strcpy (cpu_brand, " II Xeon");
1218 break;
1219 case 6:
1220 strcpy (cpu_brand, " Celeron");
1221 break;
1222 case 7:
1223 strcpy (cpu_brand, " III");
1224 break;
1225 }
1226 }
1227 }
1228 else if (amd_p)
1229 {
1230 switch (cpu_family)
1231 {
1232 case 4:
1233 strcpy (cpu_brand, "486/5x86");
1234 break;
1235 case 5:
1236 switch (cpu_model)
1237 {
1238 case 0:
1239 case 1:
1240 case 2:
1241 case 3:
1242 strcpy (cpu_brand, "-K5");
1243 break;
1244 case 6:
1245 case 7:
1246 strcpy (cpu_brand, "-K6");
1247 break;
1248 case 8:
1249 strcpy (cpu_brand, "-K6-2");
1250 break;
1251 case 9:
1252 strcpy (cpu_brand, "-K6-III");
1253 break;
1254 }
1255 break;
1256 case 6:
1257 switch (cpu_model)
1258 {
1259 case 1:
1260 case 2:
1261 case 4:
1262 strcpy (cpu_brand, " Athlon");
1263 break;
1264 case 3:
1265 strcpy (cpu_brand, " Duron");
1266 break;
1267 }
1268 break;
1269 }
1270 }
1271 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1272 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1273 cpu_brand, cpu_model, cpuid_eax & 0xf);
1274 printfi_filtered (31, "%s\n", cpu_string);
1275 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1276 || ((cpuid_edx & 1) == 0)
1277 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1278 {
1279 puts_filtered ("CPU Features...................");
1280 /* We only list features which might be useful in the DPMI
1281 environment. */
1282 if ((cpuid_edx & 1) == 0)
1283 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1284 if ((cpuid_edx & (1 << 1)) != 0)
1285 puts_filtered ("VME ");
1286 if ((cpuid_edx & (1 << 2)) != 0)
1287 puts_filtered ("DE ");
1288 if ((cpuid_edx & (1 << 4)) != 0)
1289 puts_filtered ("TSC ");
1290 if ((cpuid_edx & (1 << 23)) != 0)
1291 puts_filtered ("MMX ");
1292 if ((cpuid_edx & (1 << 25)) != 0)
1293 puts_filtered ("SSE ");
1294 if ((cpuid_edx & (1 << 26)) != 0)
1295 puts_filtered ("SSE2 ");
1296 if (amd_p)
1297 {
1298 if ((cpuid_edx & (1 << 31)) != 0)
1299 puts_filtered ("3DNow! ");
1300 if ((cpuid_edx & (1 << 30)) != 0)
1301 puts_filtered ("3DNow!Ext");
1302 }
1303 puts_filtered ("\n");
1304 }
1305 }
1306 puts_filtered ("\n");
1307 printf_filtered ("DOS Version....................%s %s.%s",
1308 _os_flavor, u.release, u.version);
1309 if (true_dos_version != advertized_dos_version)
1310 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1311 puts_filtered ("\n");
1312 if (!windows_major)
1313 go32_get_windows_version ();
1314 if (windows_major != 0xff)
1315 {
1316 const char *windows_flavor;
1317
1318 printf_filtered ("Windows Version................%d.%02d (Windows ",
1319 windows_major, windows_minor);
1320 switch (windows_major)
1321 {
1322 case 3:
1323 windows_flavor = "3.X";
1324 break;
1325 case 4:
1326 switch (windows_minor)
1327 {
1328 case 0:
1329 windows_flavor = "95, 95A, or 95B";
1330 break;
1331 case 3:
1332 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1333 break;
1334 case 10:
1335 windows_flavor = "98 or 98 SE";
1336 break;
1337 case 90:
1338 windows_flavor = "ME";
1339 break;
1340 default:
1341 windows_flavor = "9X";
1342 break;
1343 }
1344 break;
1345 default:
1346 windows_flavor = "??";
1347 break;
1348 }
1349 printf_filtered ("%s)\n", windows_flavor);
1350 }
1351 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1352 printf_filtered ("Windows Version................"
1353 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1354 puts_filtered ("\n");
1355 /* On some versions of Windows, __dpmi_get_capabilities returns
1356 zero, but the buffer is not filled with info, so we fill the
1357 buffer with a known pattern and test for it afterwards. */
1358 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1359 dpmi_vendor_available =
1360 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1361 if (dpmi_vendor_available == 0
1362 && memcmp (dpmi_vendor_info, test_pattern,
1363 sizeof(dpmi_vendor_info)) != 0)
1364 {
1365 /* The DPMI spec says the vendor string should be ASCIIZ, but
1366 I don't trust the vendors to follow that... */
1367 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1368 dpmi_vendor_info[128] = '\0';
1369 printf_filtered ("DPMI Host......................"
1370 "%s v%d.%d (capabilities: %#x)\n",
1371 &dpmi_vendor_info[2],
1372 (unsigned)dpmi_vendor_info[0],
1373 (unsigned)dpmi_vendor_info[1],
1374 ((unsigned)dpmi_flags & 0x7f));
1375 }
1376 else
1377 printf_filtered ("DPMI Host......................(Info not available)\n");
1378 __dpmi_get_version (&dpmi_version_data);
1379 printf_filtered ("DPMI Version...................%d.%02d\n",
1380 dpmi_version_data.major, dpmi_version_data.minor);
1381 printf_filtered ("DPMI Info......................"
1382 "%s-bit DPMI, with%s Virtual Memory support\n",
1383 (dpmi_version_data.flags & 1) ? "32" : "16",
1384 (dpmi_version_data.flags & 4) ? "" : "out");
1385 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1386 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1387 printfi_filtered (31, "Processor type: i%d86\n",
1388 dpmi_version_data.cpu);
1389 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1390 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1391
1392 /* a_tss is only initialized when the debuggee is first run. */
1393 if (prog_has_started)
1394 {
1395 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1396 printf_filtered ("Protection....................."
1397 "Ring %d (in %s), with%s I/O protection\n",
1398 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1399 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1400 }
1401 puts_filtered ("\n");
1402 __dpmi_get_free_memory_information (&mem_info);
1403 print_mem (mem_info.total_number_of_physical_pages,
1404 "DPMI Total Physical Memory.....", 1);
1405 print_mem (mem_info.total_number_of_free_pages,
1406 "DPMI Free Physical Memory......", 1);
1407 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1408 "DPMI Swap Space................", 1);
1409 print_mem (mem_info.linear_address_space_size_in_pages,
1410 "DPMI Total Linear Address Size.", 1);
1411 print_mem (mem_info.free_linear_address_space_in_pages,
1412 "DPMI Free Linear Address Size..", 1);
1413 print_mem (mem_info.largest_available_free_block_in_bytes,
1414 "DPMI Largest Free Memory Block.", 0);
1415
1416 regs.h.ah = 0x48;
1417 regs.x.bx = 0xffff;
1418 __dpmi_int (0x21, &regs);
1419 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1420 regs.x.ax = 0x5800;
1421 __dpmi_int (0x21, &regs);
1422 if ((regs.x.flags & 1) == 0)
1423 {
1424 static const char *dos_hilo[] = {
1425 "Low", "", "", "", "High", "", "", "", "High, then Low"
1426 };
1427 static const char *dos_fit[] = {
1428 "First", "Best", "Last"
1429 };
1430 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1431 int fit_idx = regs.x.ax & 0x0f;
1432
1433 if (hilo_idx > 8)
1434 hilo_idx = 0;
1435 if (fit_idx > 2)
1436 fit_idx = 0;
1437 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1438 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1439 regs.x.ax = 0x5802;
1440 __dpmi_int (0x21, &regs);
1441 if ((regs.x.flags & 1) != 0)
1442 regs.h.al = 0;
1443 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1444 regs.h.al == 0 ? "not " : "");
1445 }
1446 }
1447
1448 struct seg_descr {
1449 unsigned short limit0;
1450 unsigned short base0;
1451 unsigned char base1;
1452 unsigned stype:5;
1453 unsigned dpl:2;
1454 unsigned present:1;
1455 unsigned limit1:4;
1456 unsigned available:1;
1457 unsigned dummy:1;
1458 unsigned bit32:1;
1459 unsigned page_granular:1;
1460 unsigned char base2;
1461 } __attribute__ ((packed));
1462
1463 struct gate_descr {
1464 unsigned short offset0;
1465 unsigned short selector;
1466 unsigned param_count:5;
1467 unsigned dummy:3;
1468 unsigned stype:5;
1469 unsigned dpl:2;
1470 unsigned present:1;
1471 unsigned short offset1;
1472 } __attribute__ ((packed));
1473
1474 /* Read LEN bytes starting at logical address ADDR, and put the result
1475 into DEST. Return 1 if success, zero if not. */
1476 static int
1477 read_memory_region (unsigned long addr, void *dest, size_t len)
1478 {
1479 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1480 int retval = 1;
1481
1482 /* For the low memory, we can simply use _dos_ds. */
1483 if (addr <= dos_ds_limit - len)
1484 dosmemget (addr, len, dest);
1485 else
1486 {
1487 /* For memory above 1MB we need to set up a special segment to
1488 be able to access that memory. */
1489 int sel = __dpmi_allocate_ldt_descriptors (1);
1490
1491 if (sel <= 0)
1492 retval = 0;
1493 else
1494 {
1495 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1496 size_t segment_limit = len - 1;
1497
1498 /* Make sure the crucial bits in the descriptor access
1499 rights are set correctly. Some DPMI providers might barf
1500 if we set the segment limit to something that is not an
1501 integral multiple of 4KB pages if the granularity bit is
1502 not set to byte-granular, even though the DPMI spec says
1503 it's the host's responsibility to set that bit correctly. */
1504 if (len > 1024 * 1024)
1505 {
1506 access_rights |= 0x8000;
1507 /* Page-granular segments should have the low 12 bits of
1508 the limit set. */
1509 segment_limit |= 0xfff;
1510 }
1511 else
1512 access_rights &= ~0x8000;
1513
1514 if (__dpmi_set_segment_base_address (sel, addr) != -1
1515 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1516 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1517 /* W2K silently fails to set the segment limit, leaving
1518 it at zero; this test avoids the resulting crash. */
1519 && __dpmi_get_segment_limit (sel) >= segment_limit)
1520 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1521 else
1522 retval = 0;
1523
1524 __dpmi_free_ldt_descriptor (sel);
1525 }
1526 }
1527 return retval;
1528 }
1529
1530 /* Get a segment descriptor stored at index IDX in the descriptor
1531 table whose base address is TABLE_BASE. Return the descriptor
1532 type, or -1 if failure. */
1533 static int
1534 get_descriptor (unsigned long table_base, int idx, void *descr)
1535 {
1536 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1537
1538 if (read_memory_region (addr, descr, 8))
1539 return (int)((struct seg_descr *)descr)->stype;
1540 return -1;
1541 }
1542
1543 struct dtr_reg {
1544 unsigned short limit __attribute__((packed));
1545 unsigned long base __attribute__((packed));
1546 };
1547
1548 /* Display a segment descriptor stored at index IDX in a descriptor
1549 table whose type is TYPE and whose base address is BASE_ADDR. If
1550 FORCE is non-zero, display even invalid descriptors. */
1551 static void
1552 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1553 {
1554 struct seg_descr descr;
1555 struct gate_descr gate;
1556
1557 /* Get the descriptor from the table. */
1558 if (idx == 0 && type == 0)
1559 puts_filtered ("0x000: null descriptor\n");
1560 else if (get_descriptor (base_addr, idx, &descr) != -1)
1561 {
1562 /* For each type of descriptor table, this has a bit set if the
1563 corresponding type of selectors is valid in that table. */
1564 static unsigned allowed_descriptors[] = {
1565 0xffffdafeL, /* GDT */
1566 0x0000c0e0L, /* IDT */
1567 0xffffdafaL /* LDT */
1568 };
1569
1570 /* If the program hasn't started yet, assume the debuggee will
1571 have the same CPL as the debugger. */
1572 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1573 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1574
1575 if (descr.present
1576 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1577 {
1578 printf_filtered ("0x%03x: ",
1579 type == 1
1580 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1581 if (descr.page_granular)
1582 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1583 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1584 || descr.stype == 9 || descr.stype == 11
1585 || (descr.stype >= 16 && descr.stype < 32))
1586 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1587 descr.base2, descr.base1, descr.base0, limit);
1588
1589 switch (descr.stype)
1590 {
1591 case 1:
1592 case 3:
1593 printf_filtered (" 16-bit TSS (task %sactive)",
1594 descr.stype == 3 ? "" : "in");
1595 break;
1596 case 2:
1597 puts_filtered (" LDT");
1598 break;
1599 case 4:
1600 memcpy (&gate, &descr, sizeof gate);
1601 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1602 gate.selector, gate.offset1, gate.offset0);
1603 printf_filtered (" 16-bit Call Gate (params=%d)",
1604 gate.param_count);
1605 break;
1606 case 5:
1607 printf_filtered ("TSS selector=0x%04x", descr.base0);
1608 printfi_filtered (16, "Task Gate");
1609 break;
1610 case 6:
1611 case 7:
1612 memcpy (&gate, &descr, sizeof gate);
1613 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1614 gate.selector, gate.offset1, gate.offset0);
1615 printf_filtered (" 16-bit %s Gate",
1616 descr.stype == 6 ? "Interrupt" : "Trap");
1617 break;
1618 case 9:
1619 case 11:
1620 printf_filtered (" 32-bit TSS (task %sactive)",
1621 descr.stype == 3 ? "" : "in");
1622 break;
1623 case 12:
1624 memcpy (&gate, &descr, sizeof gate);
1625 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1626 gate.selector, gate.offset1, gate.offset0);
1627 printf_filtered (" 32-bit Call Gate (params=%d)",
1628 gate.param_count);
1629 break;
1630 case 14:
1631 case 15:
1632 memcpy (&gate, &descr, sizeof gate);
1633 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1634 gate.selector, gate.offset1, gate.offset0);
1635 printf_filtered (" 32-bit %s Gate",
1636 descr.stype == 14 ? "Interrupt" : "Trap");
1637 break;
1638 case 16: /* data segments */
1639 case 17:
1640 case 18:
1641 case 19:
1642 case 20:
1643 case 21:
1644 case 22:
1645 case 23:
1646 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1647 descr.bit32 ? "32" : "16",
1648 descr.stype & 2
1649 ? "Read/Write," : "Read-Only, ",
1650 descr.stype & 4 ? "down" : "up",
1651 descr.stype & 1 ? "" : ", N.Acc");
1652 break;
1653 case 24: /* code segments */
1654 case 25:
1655 case 26:
1656 case 27:
1657 case 28:
1658 case 29:
1659 case 30:
1660 case 31:
1661 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1662 descr.bit32 ? "32" : "16",
1663 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1664 descr.stype & 4 ? "" : "N.",
1665 descr.stype & 1 ? "" : ", N.Acc");
1666 break;
1667 default:
1668 printf_filtered ("Unknown type 0x%02x", descr.stype);
1669 break;
1670 }
1671 puts_filtered ("\n");
1672 }
1673 else if (force)
1674 {
1675 printf_filtered ("0x%03x: ",
1676 type == 1
1677 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1678 if (!descr.present)
1679 puts_filtered ("Segment not present\n");
1680 else
1681 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1682 descr.stype);
1683 }
1684 }
1685 else if (force)
1686 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1687 }
1688
1689 static void
1690 go32_sldt (char *arg, int from_tty)
1691 {
1692 struct dtr_reg gdtr;
1693 unsigned short ldtr = 0;
1694 int ldt_idx;
1695 struct seg_descr ldt_descr;
1696 long ldt_entry = -1L;
1697 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1698
1699 if (arg && *arg)
1700 {
1701 arg = skip_spaces (arg);
1702
1703 if (*arg)
1704 {
1705 ldt_entry = parse_and_eval_long (arg);
1706 if (ldt_entry < 0
1707 || (ldt_entry & 4) == 0
1708 || (ldt_entry & 3) != (cpl & 3))
1709 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1710 }
1711 }
1712
1713 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1714 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1715 ldt_idx = ldtr / 8;
1716 if (ldt_idx == 0)
1717 puts_filtered ("There is no LDT.\n");
1718 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1719 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1720 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1721 ldt_descr.base0
1722 | (ldt_descr.base1 << 16)
1723 | (ldt_descr.base2 << 24));
1724 else
1725 {
1726 unsigned base =
1727 ldt_descr.base0
1728 | (ldt_descr.base1 << 16)
1729 | (ldt_descr.base2 << 24);
1730 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1731 int max_entry;
1732
1733 if (ldt_descr.page_granular)
1734 /* Page-granular segments must have the low 12 bits of their
1735 limit set. */
1736 limit = (limit << 12) | 0xfff;
1737 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1738 64KB. */
1739 if (limit > 0xffff)
1740 limit = 0xffff;
1741
1742 max_entry = (limit + 1) / 8;
1743
1744 if (ldt_entry >= 0)
1745 {
1746 if (ldt_entry > limit)
1747 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1748 (unsigned long)ldt_entry, limit);
1749
1750 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1751 }
1752 else
1753 {
1754 int i;
1755
1756 for (i = 0; i < max_entry; i++)
1757 display_descriptor (ldt_descr.stype, base, i, 0);
1758 }
1759 }
1760 }
1761
1762 static void
1763 go32_sgdt (char *arg, int from_tty)
1764 {
1765 struct dtr_reg gdtr;
1766 long gdt_entry = -1L;
1767 int max_entry;
1768
1769 if (arg && *arg)
1770 {
1771 arg = skip_spaces (arg);
1772
1773 if (*arg)
1774 {
1775 gdt_entry = parse_and_eval_long (arg);
1776 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1777 error (_("Invalid GDT entry 0x%03lx: "
1778 "not an integral multiple of 8."),
1779 (unsigned long)gdt_entry);
1780 }
1781 }
1782
1783 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1784 max_entry = (gdtr.limit + 1) / 8;
1785
1786 if (gdt_entry >= 0)
1787 {
1788 if (gdt_entry > gdtr.limit)
1789 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1790 (unsigned long)gdt_entry, gdtr.limit);
1791
1792 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1793 }
1794 else
1795 {
1796 int i;
1797
1798 for (i = 0; i < max_entry; i++)
1799 display_descriptor (0, gdtr.base, i, 0);
1800 }
1801 }
1802
1803 static void
1804 go32_sidt (char *arg, int from_tty)
1805 {
1806 struct dtr_reg idtr;
1807 long idt_entry = -1L;
1808 int max_entry;
1809
1810 if (arg && *arg)
1811 {
1812 arg = skip_spaces (arg);
1813
1814 if (*arg)
1815 {
1816 idt_entry = parse_and_eval_long (arg);
1817 if (idt_entry < 0)
1818 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1819 }
1820 }
1821
1822 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1823 max_entry = (idtr.limit + 1) / 8;
1824 if (max_entry > 0x100) /* No more than 256 entries. */
1825 max_entry = 0x100;
1826
1827 if (idt_entry >= 0)
1828 {
1829 if (idt_entry > idtr.limit)
1830 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1831 (unsigned long)idt_entry, idtr.limit);
1832
1833 display_descriptor (1, idtr.base, idt_entry, 1);
1834 }
1835 else
1836 {
1837 int i;
1838
1839 for (i = 0; i < max_entry; i++)
1840 display_descriptor (1, idtr.base, i, 0);
1841 }
1842 }
1843
1844 /* Cached linear address of the base of the page directory. For
1845 now, available only under CWSDPMI. Code based on ideas and
1846 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1847 static unsigned long pdbr;
1848
1849 static unsigned long
1850 get_cr3 (void)
1851 {
1852 unsigned offset;
1853 unsigned taskreg;
1854 unsigned long taskbase, cr3;
1855 struct dtr_reg gdtr;
1856
1857 if (pdbr > 0 && pdbr <= 0xfffff)
1858 return pdbr;
1859
1860 /* Get the linear address of GDT and the Task Register. */
1861 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1862 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1863
1864 /* Task Register is a segment selector for the TSS of the current
1865 task. Therefore, it can be used as an index into the GDT to get
1866 at the segment descriptor for the TSS. To get the index, reset
1867 the low 3 bits of the selector (which give the CPL). Add 2 to the
1868 offset to point to the 3 low bytes of the base address. */
1869 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1870
1871
1872 /* CWSDPMI's task base is always under the 1MB mark. */
1873 if (offset > 0xfffff)
1874 return 0;
1875
1876 _farsetsel (_dos_ds);
1877 taskbase = _farnspeekl (offset) & 0xffffffU;
1878 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1879 if (taskbase > 0xfffff)
1880 return 0;
1881
1882 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1883 offset 1Ch in the TSS. */
1884 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1885 if (cr3 > 0xfffff)
1886 {
1887 #if 0 /* Not fullly supported yet. */
1888 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1889 the first Page Table right below the Page Directory. Thus,
1890 the first Page Table's entry for its own address and the Page
1891 Directory entry for that Page Table will hold the same
1892 physical address. The loop below searches the entire UMB
1893 range of addresses for such an occurence. */
1894 unsigned long addr, pte_idx;
1895
1896 for (addr = 0xb0000, pte_idx = 0xb0;
1897 pte_idx < 0xff;
1898 addr += 0x1000, pte_idx++)
1899 {
1900 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1901 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1902 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1903 {
1904 cr3 = addr + 0x1000;
1905 break;
1906 }
1907 }
1908 #endif
1909
1910 if (cr3 > 0xfffff)
1911 cr3 = 0;
1912 }
1913
1914 return cr3;
1915 }
1916
1917 /* Return the N'th Page Directory entry. */
1918 static unsigned long
1919 get_pde (int n)
1920 {
1921 unsigned long pde = 0;
1922
1923 if (pdbr && n >= 0 && n < 1024)
1924 {
1925 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1926 }
1927 return pde;
1928 }
1929
1930 /* Return the N'th entry of the Page Table whose Page Directory entry
1931 is PDE. */
1932 static unsigned long
1933 get_pte (unsigned long pde, int n)
1934 {
1935 unsigned long pte = 0;
1936
1937 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1938 page tables, for now. */
1939 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1940 {
1941 pde &= ~0xfff; /* Clear non-address bits. */
1942 pte = _farpeekl (_dos_ds, pde + 4*n);
1943 }
1944 return pte;
1945 }
1946
1947 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1948 says this is a Page Directory entry. If FORCE is non-zero, display
1949 the entry even if its Present flag is off. OFF is the offset of the
1950 address from the page's base address. */
1951 static void
1952 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1953 {
1954 if ((entry & 1) != 0)
1955 {
1956 printf_filtered ("Base=0x%05lx000", entry >> 12);
1957 if ((entry & 0x100) && !is_dir)
1958 puts_filtered (" Global");
1959 if ((entry & 0x40) && !is_dir)
1960 puts_filtered (" Dirty");
1961 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1962 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1963 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1964 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1965 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1966 if (off)
1967 printf_filtered (" +0x%x", off);
1968 puts_filtered ("\n");
1969 }
1970 else if (force)
1971 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1972 is_dir ? " Table" : "", entry >> 1);
1973 }
1974
1975 static void
1976 go32_pde (char *arg, int from_tty)
1977 {
1978 long pde_idx = -1, i;
1979
1980 if (arg && *arg)
1981 {
1982 arg = skip_spaces (arg);
1983
1984 if (*arg)
1985 {
1986 pde_idx = parse_and_eval_long (arg);
1987 if (pde_idx < 0 || pde_idx >= 1024)
1988 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1989 }
1990 }
1991
1992 pdbr = get_cr3 ();
1993 if (!pdbr)
1994 puts_filtered ("Access to Page Directories is "
1995 "not supported on this system.\n");
1996 else if (pde_idx >= 0)
1997 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1998 else
1999 for (i = 0; i < 1024; i++)
2000 display_ptable_entry (get_pde (i), 1, 0, 0);
2001 }
2002
2003 /* A helper function to display entries in a Page Table pointed to by
2004 the N'th entry in the Page Directory. If FORCE is non-zero, say
2005 something even if the Page Table is not accessible. */
2006 static void
2007 display_page_table (long n, int force)
2008 {
2009 unsigned long pde = get_pde (n);
2010
2011 if ((pde & 1) != 0)
2012 {
2013 int i;
2014
2015 printf_filtered ("Page Table pointed to by "
2016 "Page Directory entry 0x%lx:\n", n);
2017 for (i = 0; i < 1024; i++)
2018 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2019 puts_filtered ("\n");
2020 }
2021 else if (force)
2022 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2023 }
2024
2025 static void
2026 go32_pte (char *arg, int from_tty)
2027 {
2028 long pde_idx = -1L, i;
2029
2030 if (arg && *arg)
2031 {
2032 arg = skip_spaces (arg);
2033
2034 if (*arg)
2035 {
2036 pde_idx = parse_and_eval_long (arg);
2037 if (pde_idx < 0 || pde_idx >= 1024)
2038 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2039 }
2040 }
2041
2042 pdbr = get_cr3 ();
2043 if (!pdbr)
2044 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2045 else if (pde_idx >= 0)
2046 display_page_table (pde_idx, 1);
2047 else
2048 for (i = 0; i < 1024; i++)
2049 display_page_table (i, 0);
2050 }
2051
2052 static void
2053 go32_pte_for_address (char *arg, int from_tty)
2054 {
2055 CORE_ADDR addr = 0, i;
2056
2057 if (arg && *arg)
2058 {
2059 arg = skip_spaces (arg);
2060
2061 if (*arg)
2062 addr = parse_and_eval_address (arg);
2063 }
2064 if (!addr)
2065 error_no_arg (_("linear address"));
2066
2067 pdbr = get_cr3 ();
2068 if (!pdbr)
2069 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2070 else
2071 {
2072 int pde_idx = (addr >> 22) & 0x3ff;
2073 int pte_idx = (addr >> 12) & 0x3ff;
2074 unsigned offs = addr & 0xfff;
2075
2076 printf_filtered ("Page Table entry for address %s:\n",
2077 hex_string(addr));
2078 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2079 }
2080 }
2081
2082 static struct cmd_list_element *info_dos_cmdlist = NULL;
2083
2084 static void
2085 go32_info_dos_command (char *args, int from_tty)
2086 {
2087 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2088 }
2089
2090 /* -Wmissing-prototypes */
2091 extern initialize_file_ftype _initialize_go32_nat;
2092
2093 void
2094 _initialize_go32_nat (void)
2095 {
2096 init_go32_ops ();
2097 add_target (&go32_ops);
2098
2099 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2100 Print information specific to DJGPP (aka MS-DOS) debugging."),
2101 &info_dos_cmdlist, "info dos ", 0, &infolist);
2102
2103 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2104 Display information about the target system, including CPU, OS, DPMI, etc."),
2105 &info_dos_cmdlist);
2106 add_cmd ("ldt", class_info, go32_sldt, _("\
2107 Display entries in the LDT (Local Descriptor Table).\n\
2108 Entry number (an expression) as an argument means display only that entry."),
2109 &info_dos_cmdlist);
2110 add_cmd ("gdt", class_info, go32_sgdt, _("\
2111 Display entries in the GDT (Global Descriptor Table).\n\
2112 Entry number (an expression) as an argument means display only that entry."),
2113 &info_dos_cmdlist);
2114 add_cmd ("idt", class_info, go32_sidt, _("\
2115 Display entries in the IDT (Interrupt Descriptor Table).\n\
2116 Entry number (an expression) as an argument means display only that entry."),
2117 &info_dos_cmdlist);
2118 add_cmd ("pde", class_info, go32_pde, _("\
2119 Display entries in the Page Directory.\n\
2120 Entry number (an expression) as an argument means display only that entry."),
2121 &info_dos_cmdlist);
2122 add_cmd ("pte", class_info, go32_pte, _("\
2123 Display entries in Page Tables.\n\
2124 Entry number (an expression) as an argument means display only entries\n\
2125 from the Page Table pointed to by the specified Page Directory entry."),
2126 &info_dos_cmdlist);
2127 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2128 Display a Page Table entry for a linear address.\n\
2129 The address argument must be a linear address, after adding to\n\
2130 it the base address of the appropriate segment.\n\
2131 The base address of variables and functions in the debuggee's data\n\
2132 or code segment is stored in the variable __djgpp_base_address,\n\
2133 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2134 For other segments, look up their base address in the output of\n\
2135 the `info dos ldt' command."),
2136 &info_dos_cmdlist);
2137 }
2138
2139 pid_t
2140 tcgetpgrp (int fd)
2141 {
2142 if (isatty (fd))
2143 return SOME_PID;
2144 errno = ENOTTY;
2145 return -1;
2146 }
2147
2148 int
2149 tcsetpgrp (int fd, pid_t pgid)
2150 {
2151 if (isatty (fd) && pgid == SOME_PID)
2152 return 0;
2153 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2154 return -1;
2155 }
This page took 0.074784 seconds and 4 git commands to generate.