75596a2356d6a144ee369767f6af66c77baa9332
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2014 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/i386-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <errno.h>
109 #include <unistd.h>
110 #include <sys/utsname.h>
111 #include <io.h>
112 #include <dos.h>
113 #include <dpmi.h>
114 #include <go32.h>
115 #include <sys/farptr.h>
116 #include <debug/v2load.h>
117 #include <debug/dbgcom.h>
118 #if __DJGPP_MINOR__ > 2
119 #include <debug/redir.h>
120 #endif
121
122 #include <langinfo.h>
123
124 #if __DJGPP_MINOR__ < 3
125 /* This code will be provided from DJGPP 2.03 on. Until then I code it
126 here. */
127 typedef struct
128 {
129 unsigned short sig0;
130 unsigned short sig1;
131 unsigned short sig2;
132 unsigned short sig3;
133 unsigned short exponent:15;
134 unsigned short sign:1;
135 }
136 NPXREG;
137
138 typedef struct
139 {
140 unsigned int control;
141 unsigned int status;
142 unsigned int tag;
143 unsigned int eip;
144 unsigned int cs;
145 unsigned int dataptr;
146 unsigned int datasel;
147 NPXREG reg[8];
148 }
149 NPX;
150
151 static NPX npx;
152
153 static void save_npx (void); /* Save the FPU of the debugged program. */
154 static void load_npx (void); /* Restore the FPU of the debugged program. */
155
156 /* ------------------------------------------------------------------------- */
157 /* Store the contents of the NPX in the global variable `npx'. */
158 /* *INDENT-OFF* */
159
160 static void
161 save_npx (void)
162 {
163 asm ("inb $0xa0, %%al \n\
164 testb $0x20, %%al \n\
165 jz 1f \n\
166 xorb %%al, %%al \n\
167 outb %%al, $0xf0 \n\
168 movb $0x20, %%al \n\
169 outb %%al, $0xa0 \n\
170 outb %%al, $0x20 \n\
171 1: \n\
172 fnsave %0 \n\
173 fwait "
174 : "=m" (npx)
175 : /* No input */
176 : "%eax");
177 }
178
179 /* *INDENT-ON* */
180
181
182 /* ------------------------------------------------------------------------- */
183 /* Reload the contents of the NPX from the global variable `npx'. */
184
185 static void
186 load_npx (void)
187 {
188 asm ("frstor %0":"=m" (npx));
189 }
190 /* ------------------------------------------------------------------------- */
191 /* Stubs for the missing redirection functions. */
192 typedef struct {
193 char *command;
194 int redirected;
195 } cmdline_t;
196
197 void
198 redir_cmdline_delete (cmdline_t *ptr)
199 {
200 ptr->redirected = 0;
201 }
202
203 int
204 redir_cmdline_parse (const char *args, cmdline_t *ptr)
205 {
206 return -1;
207 }
208
209 int
210 redir_to_child (cmdline_t *ptr)
211 {
212 return 1;
213 }
214
215 int
216 redir_to_debugger (cmdline_t *ptr)
217 {
218 return 1;
219 }
220
221 int
222 redir_debug_init (cmdline_t *ptr)
223 {
224 return 0;
225 }
226 #endif /* __DJGPP_MINOR < 3 */
227
228 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
229
230 /* This holds the current reference counts for each debug register. */
231 static int dr_ref_count[4];
232
233 #define SOME_PID 42
234
235 static int prog_has_started = 0;
236 static void go32_mourn_inferior (struct target_ops *ops);
237
238 #define r_ofs(x) (offsetof(TSS,x))
239
240 static struct
241 {
242 size_t tss_ofs;
243 size_t size;
244 }
245 regno_mapping[] =
246 {
247 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
248 {r_ofs (tss_ecx), 4},
249 {r_ofs (tss_edx), 4},
250 {r_ofs (tss_ebx), 4},
251 {r_ofs (tss_esp), 4},
252 {r_ofs (tss_ebp), 4},
253 {r_ofs (tss_esi), 4},
254 {r_ofs (tss_edi), 4},
255 {r_ofs (tss_eip), 4},
256 {r_ofs (tss_eflags), 4},
257 {r_ofs (tss_cs), 2},
258 {r_ofs (tss_ss), 2},
259 {r_ofs (tss_ds), 2},
260 {r_ofs (tss_es), 2},
261 {r_ofs (tss_fs), 2},
262 {r_ofs (tss_gs), 2},
263 {0, 10}, /* 8 FP registers, from npx.reg[] */
264 {1, 10},
265 {2, 10},
266 {3, 10},
267 {4, 10},
268 {5, 10},
269 {6, 10},
270 {7, 10},
271 /* The order of the next 7 registers must be consistent
272 with their numbering in config/i386/tm-i386.h, which see. */
273 {0, 2}, /* control word, from npx */
274 {4, 2}, /* status word, from npx */
275 {8, 2}, /* tag word, from npx */
276 {16, 2}, /* last FP exception CS from npx */
277 {12, 4}, /* last FP exception EIP from npx */
278 {24, 2}, /* last FP exception operand selector from npx */
279 {20, 4}, /* last FP exception operand offset from npx */
280 {18, 2} /* last FP opcode from npx */
281 };
282
283 static struct
284 {
285 int go32_sig;
286 enum gdb_signal gdb_sig;
287 }
288 sig_map[] =
289 {
290 {0, GDB_SIGNAL_FPE},
291 {1, GDB_SIGNAL_TRAP},
292 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
293 but I think SIGBUS is better, since the NMI is usually activated
294 as a result of a memory parity check failure. */
295 {2, GDB_SIGNAL_BUS},
296 {3, GDB_SIGNAL_TRAP},
297 {4, GDB_SIGNAL_FPE},
298 {5, GDB_SIGNAL_SEGV},
299 {6, GDB_SIGNAL_ILL},
300 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
301 {8, GDB_SIGNAL_SEGV},
302 {9, GDB_SIGNAL_SEGV},
303 {10, GDB_SIGNAL_BUS},
304 {11, GDB_SIGNAL_SEGV},
305 {12, GDB_SIGNAL_SEGV},
306 {13, GDB_SIGNAL_SEGV},
307 {14, GDB_SIGNAL_SEGV},
308 {16, GDB_SIGNAL_FPE},
309 {17, GDB_SIGNAL_BUS},
310 {31, GDB_SIGNAL_ILL},
311 {0x1b, GDB_SIGNAL_INT},
312 {0x75, GDB_SIGNAL_FPE},
313 {0x78, GDB_SIGNAL_ALRM},
314 {0x79, GDB_SIGNAL_INT},
315 {0x7a, GDB_SIGNAL_QUIT},
316 {-1, GDB_SIGNAL_LAST}
317 };
318
319 static struct {
320 enum gdb_signal gdb_sig;
321 int djgpp_excepno;
322 } excepn_map[] = {
323 {GDB_SIGNAL_0, -1},
324 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
325 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
326 {GDB_SIGNAL_SEGV, 13}, /* GPF */
327 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
328 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
329 details. */
330 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
331 {GDB_SIGNAL_FPE, 0x75},
332 {GDB_SIGNAL_INT, 0x79},
333 {GDB_SIGNAL_QUIT, 0x7a},
334 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
335 {GDB_SIGNAL_PROF, 0x78},
336 {GDB_SIGNAL_LAST, -1}
337 };
338
339 static void
340 go32_attach (struct target_ops *ops, const char *args, int from_tty)
341 {
342 error (_("\
343 You cannot attach to a running program on this platform.\n\
344 Use the `run' command to run DJGPP programs."));
345 }
346
347 static int resume_is_step;
348 static int resume_signal = -1;
349
350 static void
351 go32_resume (struct target_ops *ops,
352 ptid_t ptid, int step, enum gdb_signal siggnal)
353 {
354 int i;
355
356 resume_is_step = step;
357
358 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
359 {
360 for (i = 0, resume_signal = -1;
361 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
362 if (excepn_map[i].gdb_sig == siggnal)
363 {
364 resume_signal = excepn_map[i].djgpp_excepno;
365 break;
366 }
367 if (resume_signal == -1)
368 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
369 gdb_signal_to_name (siggnal));
370 }
371 }
372
373 static char child_cwd[FILENAME_MAX];
374
375 static ptid_t
376 go32_wait (struct target_ops *ops,
377 ptid_t ptid, struct target_waitstatus *status, int options)
378 {
379 int i;
380 unsigned char saved_opcode;
381 unsigned long INT3_addr = 0;
382 int stepping_over_INT = 0;
383
384 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
385 if (resume_is_step)
386 {
387 /* If the next instruction is INT xx or INTO, we need to handle
388 them specially. Intel manuals say that these instructions
389 reset the single-step flag (a.k.a. TF). However, it seems
390 that, at least in the DPMI environment, and at least when
391 stepping over the DPMI interrupt 31h, the problem is having
392 TF set at all when INT 31h is executed: the debuggee either
393 crashes (and takes the system with it) or is killed by a
394 SIGTRAP.
395
396 So we need to emulate single-step mode: we put an INT3 opcode
397 right after the INT xx instruction, let the debuggee run
398 until it hits INT3 and stops, then restore the original
399 instruction which we overwrote with the INT3 opcode, and back
400 up the debuggee's EIP to that instruction. */
401 read_child (a_tss.tss_eip, &saved_opcode, 1);
402 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
403 {
404 unsigned char INT3_opcode = 0xCC;
405
406 INT3_addr
407 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
408 stepping_over_INT = 1;
409 read_child (INT3_addr, &saved_opcode, 1);
410 write_child (INT3_addr, &INT3_opcode, 1);
411 }
412 else
413 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
414 }
415
416 /* The special value FFFFh in tss_trap indicates to run_child that
417 tss_irqn holds a signal to be delivered to the debuggee. */
418 if (resume_signal <= -1)
419 {
420 a_tss.tss_trap = 0;
421 a_tss.tss_irqn = 0xff;
422 }
423 else
424 {
425 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
426 a_tss.tss_irqn = resume_signal;
427 }
428
429 /* The child might change working directory behind our back. The
430 GDB users won't like the side effects of that when they work with
431 relative file names, and GDB might be confused by its current
432 directory not being in sync with the truth. So we always make a
433 point of changing back to where GDB thinks is its cwd, when we
434 return control to the debugger, but restore child's cwd before we
435 run it. */
436 /* Initialize child_cwd, before the first call to run_child and not
437 in the initialization, so the child get also the changed directory
438 set with the gdb-command "cd ..." */
439 if (!*child_cwd)
440 /* Initialize child's cwd with the current one. */
441 getcwd (child_cwd, sizeof (child_cwd));
442
443 chdir (child_cwd);
444
445 #if __DJGPP_MINOR__ < 3
446 load_npx ();
447 #endif
448 run_child ();
449 #if __DJGPP_MINOR__ < 3
450 save_npx ();
451 #endif
452
453 /* Did we step over an INT xx instruction? */
454 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
455 {
456 /* Restore the original opcode. */
457 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
458 write_child (a_tss.tss_eip, &saved_opcode, 1);
459 /* Simulate a TRAP exception. */
460 a_tss.tss_irqn = 1;
461 a_tss.tss_eflags |= 0x0100;
462 }
463
464 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
465 chdir (current_directory);
466
467 if (a_tss.tss_irqn == 0x21)
468 {
469 status->kind = TARGET_WAITKIND_EXITED;
470 status->value.integer = a_tss.tss_eax & 0xff;
471 }
472 else
473 {
474 status->value.sig = GDB_SIGNAL_UNKNOWN;
475 status->kind = TARGET_WAITKIND_STOPPED;
476 for (i = 0; sig_map[i].go32_sig != -1; i++)
477 {
478 if (a_tss.tss_irqn == sig_map[i].go32_sig)
479 {
480 #if __DJGPP_MINOR__ < 3
481 if ((status->value.sig = sig_map[i].gdb_sig) !=
482 GDB_SIGNAL_TRAP)
483 status->kind = TARGET_WAITKIND_SIGNALLED;
484 #else
485 status->value.sig = sig_map[i].gdb_sig;
486 #endif
487 break;
488 }
489 }
490 }
491 return pid_to_ptid (SOME_PID);
492 }
493
494 static void
495 fetch_register (struct regcache *regcache, int regno)
496 {
497 struct gdbarch *gdbarch = get_regcache_arch (regcache);
498 if (regno < gdbarch_fp0_regnum (gdbarch))
499 regcache_raw_supply (regcache, regno,
500 (char *) &a_tss + regno_mapping[regno].tss_ofs);
501 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
502 regno))
503 i387_supply_fsave (regcache, regno, &npx);
504 else
505 internal_error (__FILE__, __LINE__,
506 _("Invalid register no. %d in fetch_register."), regno);
507 }
508
509 static void
510 go32_fetch_registers (struct target_ops *ops,
511 struct regcache *regcache, int regno)
512 {
513 if (regno >= 0)
514 fetch_register (regcache, regno);
515 else
516 {
517 for (regno = 0;
518 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
519 regno++)
520 fetch_register (regcache, regno);
521 i387_supply_fsave (regcache, -1, &npx);
522 }
523 }
524
525 static void
526 store_register (const struct regcache *regcache, int regno)
527 {
528 struct gdbarch *gdbarch = get_regcache_arch (regcache);
529 if (regno < gdbarch_fp0_regnum (gdbarch))
530 regcache_raw_collect (regcache, regno,
531 (char *) &a_tss + regno_mapping[regno].tss_ofs);
532 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
533 regno))
534 i387_collect_fsave (regcache, regno, &npx);
535 else
536 internal_error (__FILE__, __LINE__,
537 _("Invalid register no. %d in store_register."), regno);
538 }
539
540 static void
541 go32_store_registers (struct target_ops *ops,
542 struct regcache *regcache, int regno)
543 {
544 unsigned r;
545
546 if (regno >= 0)
547 store_register (regcache, regno);
548 else
549 {
550 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
551 store_register (regcache, r);
552 i387_collect_fsave (regcache, -1, &npx);
553 }
554 }
555
556 /* Const-correct version of DJGPP's write_child, which unfortunately
557 takes a non-const buffer pointer. */
558
559 static int
560 my_write_child (unsigned child_addr, const void *buf, unsigned len)
561 {
562 static void *buffer = NULL;
563 static unsigned buffer_len = 0;
564 int res;
565
566 if (buffer_len < len)
567 {
568 buffer = xrealloc (buffer, len);
569 buffer_len = len;
570 }
571
572 memcpy (buffer, buf, len);
573 res = write_child (child_addr, buffer, len);
574 return res;
575 }
576
577 /* Helper for go32_xfer_partial that handles memory transfers.
578 Arguments are like target_xfer_partial. */
579
580 static enum target_xfer_status
581 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
582 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
583 {
584 int res;
585
586 if (writebuf != NULL)
587 res = my_write_child (memaddr, writebuf, len);
588 else
589 res = read_child (memaddr, readbuf, len);
590
591 if (res <= 0)
592 return TARGET_XFER_E_IO;
593
594 *xfered_len = res;
595 return TARGET_XFER_OK;
596 }
597
598 /* Target to_xfer_partial implementation. */
599
600 static enum target_xfer_status
601 go32_xfer_partial (struct target_ops *ops, enum target_object object,
602 const char *annex, gdb_byte *readbuf,
603 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
604 ULONGEST *xfered_len)
605 {
606 switch (object)
607 {
608 case TARGET_OBJECT_MEMORY:
609 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
610
611 default:
612 return ops->beneath->to_xfer_partial (ops->beneath, object, annex,
613 readbuf, writebuf, offset, len,
614 xfered_len);
615 }
616 }
617
618 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
619
620 static void
621 go32_files_info (struct target_ops *target)
622 {
623 printf_unfiltered ("You are running a DJGPP V2 program.\n");
624 }
625
626 static void
627 go32_kill_inferior (struct target_ops *ops)
628 {
629 go32_mourn_inferior (ops);
630 }
631
632 static void
633 go32_create_inferior (struct target_ops *ops, char *exec_file,
634 char *args, char **env, int from_tty)
635 {
636 extern char **environ;
637 jmp_buf start_state;
638 char *cmdline;
639 char **env_save = environ;
640 size_t cmdlen;
641 struct inferior *inf;
642
643 /* If no exec file handed to us, get it from the exec-file command -- with
644 a good, common error message if none is specified. */
645 if (exec_file == 0)
646 exec_file = get_exec_file (1);
647
648 resume_signal = -1;
649 resume_is_step = 0;
650
651 /* Initialize child's cwd as empty to be initialized when starting
652 the child. */
653 *child_cwd = 0;
654
655 /* Init command line storage. */
656 if (redir_debug_init (&child_cmd) == -1)
657 internal_error (__FILE__, __LINE__,
658 _("Cannot allocate redirection storage: "
659 "not enough memory.\n"));
660
661 /* Parse the command line and create redirections. */
662 if (strpbrk (args, "<>"))
663 {
664 if (redir_cmdline_parse (args, &child_cmd) == 0)
665 args = child_cmd.command;
666 else
667 error (_("Syntax error in command line."));
668 }
669 else
670 child_cmd.command = xstrdup (args);
671
672 cmdlen = strlen (args);
673 /* v2loadimage passes command lines via DOS memory, so it cannot
674 possibly handle commands longer than 1MB. */
675 if (cmdlen > 1024*1024)
676 error (_("Command line too long."));
677
678 cmdline = xmalloc (cmdlen + 4);
679 strcpy (cmdline + 1, args);
680 /* If the command-line length fits into DOS 126-char limits, use the
681 DOS command tail format; otherwise, tell v2loadimage to pass it
682 through a buffer in conventional memory. */
683 if (cmdlen < 127)
684 {
685 cmdline[0] = strlen (args);
686 cmdline[cmdlen + 1] = 13;
687 }
688 else
689 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
690
691 environ = env;
692
693 if (v2loadimage (exec_file, cmdline, start_state))
694 {
695 environ = env_save;
696 printf_unfiltered ("Load failed for image %s\n", exec_file);
697 exit (1);
698 }
699 environ = env_save;
700 xfree (cmdline);
701
702 edi_init (start_state);
703 #if __DJGPP_MINOR__ < 3
704 save_npx ();
705 #endif
706
707 inferior_ptid = pid_to_ptid (SOME_PID);
708 inf = current_inferior ();
709 inferior_appeared (inf, SOME_PID);
710
711 if (!target_is_pushed (ops))
712 push_target (ops);
713
714 add_thread_silent (inferior_ptid);
715
716 clear_proceed_status (0);
717 insert_breakpoints ();
718 prog_has_started = 1;
719 }
720
721 static void
722 go32_mourn_inferior (struct target_ops *ops)
723 {
724 ptid_t ptid;
725
726 redir_cmdline_delete (&child_cmd);
727 resume_signal = -1;
728 resume_is_step = 0;
729
730 cleanup_client ();
731
732 /* We need to make sure all the breakpoint enable bits in the DR7
733 register are reset when the inferior exits. Otherwise, if they
734 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
735 failure to set more watchpoints, and other calamities. It would
736 be nice if GDB itself would take care to remove all breakpoints
737 at all times, but it doesn't, probably under an assumption that
738 the OS cleans up when the debuggee exits. */
739 i386_cleanup_dregs ();
740
741 ptid = inferior_ptid;
742 inferior_ptid = null_ptid;
743 delete_thread_silent (ptid);
744 prog_has_started = 0;
745
746 generic_mourn_inferior ();
747 inf_child_maybe_unpush_target (ops);
748 }
749
750 /* Hardware watchpoint support. */
751
752 #define D_REGS edi.dr
753 #define CONTROL D_REGS[7]
754 #define STATUS D_REGS[6]
755
756 /* Pass the address ADDR to the inferior in the I'th debug register.
757 Here we just store the address in D_REGS, the watchpoint will be
758 actually set up when go32_wait runs the debuggee. */
759 static void
760 go32_set_dr (int i, CORE_ADDR addr)
761 {
762 if (i < 0 || i > 3)
763 internal_error (__FILE__, __LINE__,
764 _("Invalid register %d in go32_set_dr.\n"), i);
765 D_REGS[i] = addr;
766 }
767
768 /* Pass the value VAL to the inferior in the DR7 debug control
769 register. Here we just store the address in D_REGS, the watchpoint
770 will be actually set up when go32_wait runs the debuggee. */
771 static void
772 go32_set_dr7 (unsigned long val)
773 {
774 CONTROL = val;
775 }
776
777 /* Get the value of the DR6 debug status register from the inferior.
778 Here we just return the value stored in D_REGS, as we've got it
779 from the last go32_wait call. */
780 static unsigned long
781 go32_get_dr6 (void)
782 {
783 return STATUS;
784 }
785
786 /* Get the value of the DR7 debug status register from the inferior.
787 Here we just return the value stored in D_REGS, as we've got it
788 from the last go32_wait call. */
789
790 static unsigned long
791 go32_get_dr7 (void)
792 {
793 return CONTROL;
794 }
795
796 /* Get the value of the DR debug register I from the inferior. Here
797 we just return the value stored in D_REGS, as we've got it from the
798 last go32_wait call. */
799
800 static CORE_ADDR
801 go32_get_dr (int i)
802 {
803 if (i < 0 || i > 3)
804 internal_error (__FILE__, __LINE__,
805 _("Invalid register %d in go32_get_dr.\n"), i);
806 return D_REGS[i];
807 }
808
809 /* Put the device open on handle FD into either raw or cooked
810 mode, return 1 if it was in raw mode, zero otherwise. */
811
812 static int
813 device_mode (int fd, int raw_p)
814 {
815 int oldmode, newmode;
816 __dpmi_regs regs;
817
818 regs.x.ax = 0x4400;
819 regs.x.bx = fd;
820 __dpmi_int (0x21, &regs);
821 if (regs.x.flags & 1)
822 return -1;
823 newmode = oldmode = regs.x.dx;
824
825 if (raw_p)
826 newmode |= 0x20;
827 else
828 newmode &= ~0x20;
829
830 if (oldmode & 0x80) /* Only for character dev. */
831 {
832 regs.x.ax = 0x4401;
833 regs.x.bx = fd;
834 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
835 __dpmi_int (0x21, &regs);
836 if (regs.x.flags & 1)
837 return -1;
838 }
839 return (oldmode & 0x20) == 0x20;
840 }
841
842
843 static int inf_mode_valid = 0;
844 static int inf_terminal_mode;
845
846 /* This semaphore is needed because, amazingly enough, GDB calls
847 target.to_terminal_ours more than once after the inferior stops.
848 But we need the information from the first call only, since the
849 second call will always see GDB's own cooked terminal. */
850 static int terminal_is_ours = 1;
851
852 static void
853 go32_terminal_init (struct target_ops *self)
854 {
855 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
856 terminal_is_ours = 1;
857 }
858
859 static void
860 go32_terminal_info (struct target_ops *self, const char *args, int from_tty)
861 {
862 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
863 !inf_mode_valid
864 ? "default" : inf_terminal_mode ? "raw" : "cooked");
865
866 #if __DJGPP_MINOR__ > 2
867 if (child_cmd.redirection)
868 {
869 int i;
870
871 for (i = 0; i < DBG_HANDLES; i++)
872 {
873 if (child_cmd.redirection[i]->file_name)
874 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
875 i, child_cmd.redirection[i]->file_name);
876 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
877 printf_unfiltered
878 ("\tFile handle %d appears to be closed by inferior.\n", i);
879 /* Mask off the raw/cooked bit when comparing device info words. */
880 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
881 != (_get_dev_info (i) & 0xdf))
882 printf_unfiltered
883 ("\tFile handle %d appears to be redirected by inferior.\n", i);
884 }
885 }
886 #endif
887 }
888
889 static void
890 go32_terminal_inferior (struct target_ops *self)
891 {
892 /* Redirect standard handles as child wants them. */
893 errno = 0;
894 if (redir_to_child (&child_cmd) == -1)
895 {
896 redir_to_debugger (&child_cmd);
897 error (_("Cannot redirect standard handles for program: %s."),
898 safe_strerror (errno));
899 }
900 /* Set the console device of the inferior to whatever mode
901 (raw or cooked) we found it last time. */
902 if (terminal_is_ours)
903 {
904 if (inf_mode_valid)
905 device_mode (0, inf_terminal_mode);
906 terminal_is_ours = 0;
907 }
908 }
909
910 static void
911 go32_terminal_ours (struct target_ops *self)
912 {
913 /* Switch to cooked mode on the gdb terminal and save the inferior
914 terminal mode to be restored when it is resumed. */
915 if (!terminal_is_ours)
916 {
917 inf_terminal_mode = device_mode (0, 0);
918 if (inf_terminal_mode != -1)
919 inf_mode_valid = 1;
920 else
921 /* If device_mode returned -1, we don't know what happens with
922 handle 0 anymore, so make the info invalid. */
923 inf_mode_valid = 0;
924 terminal_is_ours = 1;
925
926 /* Restore debugger's standard handles. */
927 errno = 0;
928 if (redir_to_debugger (&child_cmd) == -1)
929 {
930 redir_to_child (&child_cmd);
931 error (_("Cannot redirect standard handles for debugger: %s."),
932 safe_strerror (errno));
933 }
934 }
935 }
936
937 static int
938 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
939 {
940 return !ptid_equal (inferior_ptid, null_ptid);
941 }
942
943 static char *
944 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
945 {
946 return normal_pid_to_str (ptid);
947 }
948
949 /* Create a go32 target. */
950
951 static struct target_ops *
952 go32_target (void)
953 {
954 struct target_ops *t = inf_child_target ();
955
956 t->to_attach = go32_attach;
957 t->to_resume = go32_resume;
958 t->to_wait = go32_wait;
959 t->to_fetch_registers = go32_fetch_registers;
960 t->to_store_registers = go32_store_registers;
961 t->to_xfer_partial = go32_xfer_partial;
962 t->to_files_info = go32_files_info;
963 t->to_terminal_init = go32_terminal_init;
964 t->to_terminal_inferior = go32_terminal_inferior;
965 t->to_terminal_ours_for_output = go32_terminal_ours;
966 t->to_terminal_ours = go32_terminal_ours;
967 t->to_terminal_info = go32_terminal_info;
968 t->to_kill = go32_kill_inferior;
969 t->to_create_inferior = go32_create_inferior;
970 t->to_mourn_inferior = go32_mourn_inferior;
971 t->to_thread_alive = go32_thread_alive;
972 t->to_pid_to_str = go32_pid_to_str;
973
974 return t;
975 }
976
977 /* Return the current DOS codepage number. */
978 static int
979 dos_codepage (void)
980 {
981 __dpmi_regs regs;
982
983 regs.x.ax = 0x6601;
984 __dpmi_int (0x21, &regs);
985 if (!(regs.x.flags & 1))
986 return regs.x.bx & 0xffff;
987 else
988 return 437; /* default */
989 }
990
991 /* Limited emulation of `nl_langinfo', for charset.c. */
992 char *
993 nl_langinfo (nl_item item)
994 {
995 char *retval;
996
997 switch (item)
998 {
999 case CODESET:
1000 {
1001 /* 8 is enough for SHORT_MAX + "CP" + null. */
1002 char buf[8];
1003 int blen = sizeof (buf);
1004 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1005
1006 if (needed > blen) /* Should never happen. */
1007 buf[0] = 0;
1008 retval = xstrdup (buf);
1009 }
1010 break;
1011 default:
1012 retval = xstrdup ("");
1013 break;
1014 }
1015 return retval;
1016 }
1017
1018 unsigned short windows_major, windows_minor;
1019
1020 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1021 static void
1022 go32_get_windows_version(void)
1023 {
1024 __dpmi_regs r;
1025
1026 r.x.ax = 0x1600;
1027 __dpmi_int(0x2f, &r);
1028 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1029 && (r.h.al > 3 || r.h.ah > 0))
1030 {
1031 windows_major = r.h.al;
1032 windows_minor = r.h.ah;
1033 }
1034 else
1035 windows_major = 0xff; /* meaning no Windows */
1036 }
1037
1038 /* A subroutine of go32_sysinfo to display memory info. */
1039 static void
1040 print_mem (unsigned long datum, const char *header, int in_pages_p)
1041 {
1042 if (datum != 0xffffffffUL)
1043 {
1044 if (in_pages_p)
1045 datum <<= 12;
1046 puts_filtered (header);
1047 if (datum > 1024)
1048 {
1049 printf_filtered ("%lu KB", datum >> 10);
1050 if (datum > 1024 * 1024)
1051 printf_filtered (" (%lu MB)", datum >> 20);
1052 }
1053 else
1054 printf_filtered ("%lu Bytes", datum);
1055 puts_filtered ("\n");
1056 }
1057 }
1058
1059 /* Display assorted information about the underlying OS. */
1060 static void
1061 go32_sysinfo (char *arg, int from_tty)
1062 {
1063 static const char test_pattern[] =
1064 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1065 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1066 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1067 struct utsname u;
1068 char cpuid_vendor[13];
1069 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1070 unsigned true_dos_version = _get_dos_version (1);
1071 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1072 int dpmi_flags;
1073 char dpmi_vendor_info[129];
1074 int dpmi_vendor_available;
1075 __dpmi_version_ret dpmi_version_data;
1076 long eflags;
1077 __dpmi_free_mem_info mem_info;
1078 __dpmi_regs regs;
1079
1080 cpuid_vendor[0] = '\0';
1081 if (uname (&u))
1082 strcpy (u.machine, "Unknown x86");
1083 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1084 {
1085 /* CPUID with EAX = 0 returns the Vendor ID. */
1086 #if 0
1087 /* Ideally we would use i386_cpuid(), but it needs someone to run
1088 native tests first to make sure things actually work. They should.
1089 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1090 unsigned int eax, ebx, ecx, edx;
1091
1092 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1093 {
1094 cpuid_max = eax;
1095 memcpy (&vendor[0], &ebx, 4);
1096 memcpy (&vendor[4], &ecx, 4);
1097 memcpy (&vendor[8], &edx, 4);
1098 cpuid_vendor[12] = '\0';
1099 }
1100 #else
1101 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1102 "xorl %%ecx, %%ecx;"
1103 "xorl %%edx, %%edx;"
1104 "movl $0, %%eax;"
1105 "cpuid;"
1106 "movl %%ebx, %0;"
1107 "movl %%edx, %1;"
1108 "movl %%ecx, %2;"
1109 "movl %%eax, %3;"
1110 : "=m" (cpuid_vendor[0]),
1111 "=m" (cpuid_vendor[4]),
1112 "=m" (cpuid_vendor[8]),
1113 "=m" (cpuid_max)
1114 :
1115 : "%eax", "%ebx", "%ecx", "%edx");
1116 cpuid_vendor[12] = '\0';
1117 #endif
1118 }
1119
1120 printf_filtered ("CPU Type.......................%s", u.machine);
1121 if (cpuid_vendor[0])
1122 printf_filtered (" (%s)", cpuid_vendor);
1123 puts_filtered ("\n");
1124
1125 /* CPUID with EAX = 1 returns processor signature and features. */
1126 if (cpuid_max >= 1)
1127 {
1128 static char *brand_name[] = {
1129 "",
1130 " Celeron",
1131 " III",
1132 " III Xeon",
1133 "", "", "", "",
1134 " 4"
1135 };
1136 char cpu_string[80];
1137 char cpu_brand[20];
1138 unsigned brand_idx;
1139 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1140 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1141 unsigned cpu_family, cpu_model;
1142
1143 #if 0
1144 /* See comment above about cpuid usage. */
1145 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1146 #else
1147 __asm__ __volatile__ ("movl $1, %%eax;"
1148 "cpuid;"
1149 : "=a" (cpuid_eax),
1150 "=b" (cpuid_ebx),
1151 "=d" (cpuid_edx)
1152 :
1153 : "%ecx");
1154 #endif
1155 brand_idx = cpuid_ebx & 0xff;
1156 cpu_family = (cpuid_eax >> 8) & 0xf;
1157 cpu_model = (cpuid_eax >> 4) & 0xf;
1158 cpu_brand[0] = '\0';
1159 if (intel_p)
1160 {
1161 if (brand_idx > 0
1162 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1163 && *brand_name[brand_idx])
1164 strcpy (cpu_brand, brand_name[brand_idx]);
1165 else if (cpu_family == 5)
1166 {
1167 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1168 strcpy (cpu_brand, " MMX");
1169 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1170 strcpy (cpu_brand, " OverDrive");
1171 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1172 strcpy (cpu_brand, " Dual");
1173 }
1174 else if (cpu_family == 6 && cpu_model < 8)
1175 {
1176 switch (cpu_model)
1177 {
1178 case 1:
1179 strcpy (cpu_brand, " Pro");
1180 break;
1181 case 3:
1182 strcpy (cpu_brand, " II");
1183 break;
1184 case 5:
1185 strcpy (cpu_brand, " II Xeon");
1186 break;
1187 case 6:
1188 strcpy (cpu_brand, " Celeron");
1189 break;
1190 case 7:
1191 strcpy (cpu_brand, " III");
1192 break;
1193 }
1194 }
1195 }
1196 else if (amd_p)
1197 {
1198 switch (cpu_family)
1199 {
1200 case 4:
1201 strcpy (cpu_brand, "486/5x86");
1202 break;
1203 case 5:
1204 switch (cpu_model)
1205 {
1206 case 0:
1207 case 1:
1208 case 2:
1209 case 3:
1210 strcpy (cpu_brand, "-K5");
1211 break;
1212 case 6:
1213 case 7:
1214 strcpy (cpu_brand, "-K6");
1215 break;
1216 case 8:
1217 strcpy (cpu_brand, "-K6-2");
1218 break;
1219 case 9:
1220 strcpy (cpu_brand, "-K6-III");
1221 break;
1222 }
1223 break;
1224 case 6:
1225 switch (cpu_model)
1226 {
1227 case 1:
1228 case 2:
1229 case 4:
1230 strcpy (cpu_brand, " Athlon");
1231 break;
1232 case 3:
1233 strcpy (cpu_brand, " Duron");
1234 break;
1235 }
1236 break;
1237 }
1238 }
1239 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1240 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1241 cpu_brand, cpu_model, cpuid_eax & 0xf);
1242 printfi_filtered (31, "%s\n", cpu_string);
1243 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1244 || ((cpuid_edx & 1) == 0)
1245 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1246 {
1247 puts_filtered ("CPU Features...................");
1248 /* We only list features which might be useful in the DPMI
1249 environment. */
1250 if ((cpuid_edx & 1) == 0)
1251 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1252 if ((cpuid_edx & (1 << 1)) != 0)
1253 puts_filtered ("VME ");
1254 if ((cpuid_edx & (1 << 2)) != 0)
1255 puts_filtered ("DE ");
1256 if ((cpuid_edx & (1 << 4)) != 0)
1257 puts_filtered ("TSC ");
1258 if ((cpuid_edx & (1 << 23)) != 0)
1259 puts_filtered ("MMX ");
1260 if ((cpuid_edx & (1 << 25)) != 0)
1261 puts_filtered ("SSE ");
1262 if ((cpuid_edx & (1 << 26)) != 0)
1263 puts_filtered ("SSE2 ");
1264 if (amd_p)
1265 {
1266 if ((cpuid_edx & (1 << 31)) != 0)
1267 puts_filtered ("3DNow! ");
1268 if ((cpuid_edx & (1 << 30)) != 0)
1269 puts_filtered ("3DNow!Ext");
1270 }
1271 puts_filtered ("\n");
1272 }
1273 }
1274 puts_filtered ("\n");
1275 printf_filtered ("DOS Version....................%s %s.%s",
1276 _os_flavor, u.release, u.version);
1277 if (true_dos_version != advertized_dos_version)
1278 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1279 puts_filtered ("\n");
1280 if (!windows_major)
1281 go32_get_windows_version ();
1282 if (windows_major != 0xff)
1283 {
1284 const char *windows_flavor;
1285
1286 printf_filtered ("Windows Version................%d.%02d (Windows ",
1287 windows_major, windows_minor);
1288 switch (windows_major)
1289 {
1290 case 3:
1291 windows_flavor = "3.X";
1292 break;
1293 case 4:
1294 switch (windows_minor)
1295 {
1296 case 0:
1297 windows_flavor = "95, 95A, or 95B";
1298 break;
1299 case 3:
1300 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1301 break;
1302 case 10:
1303 windows_flavor = "98 or 98 SE";
1304 break;
1305 case 90:
1306 windows_flavor = "ME";
1307 break;
1308 default:
1309 windows_flavor = "9X";
1310 break;
1311 }
1312 break;
1313 default:
1314 windows_flavor = "??";
1315 break;
1316 }
1317 printf_filtered ("%s)\n", windows_flavor);
1318 }
1319 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1320 printf_filtered ("Windows Version................"
1321 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1322 puts_filtered ("\n");
1323 /* On some versions of Windows, __dpmi_get_capabilities returns
1324 zero, but the buffer is not filled with info, so we fill the
1325 buffer with a known pattern and test for it afterwards. */
1326 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1327 dpmi_vendor_available =
1328 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1329 if (dpmi_vendor_available == 0
1330 && memcmp (dpmi_vendor_info, test_pattern,
1331 sizeof(dpmi_vendor_info)) != 0)
1332 {
1333 /* The DPMI spec says the vendor string should be ASCIIZ, but
1334 I don't trust the vendors to follow that... */
1335 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1336 dpmi_vendor_info[128] = '\0';
1337 printf_filtered ("DPMI Host......................"
1338 "%s v%d.%d (capabilities: %#x)\n",
1339 &dpmi_vendor_info[2],
1340 (unsigned)dpmi_vendor_info[0],
1341 (unsigned)dpmi_vendor_info[1],
1342 ((unsigned)dpmi_flags & 0x7f));
1343 }
1344 else
1345 printf_filtered ("DPMI Host......................(Info not available)\n");
1346 __dpmi_get_version (&dpmi_version_data);
1347 printf_filtered ("DPMI Version...................%d.%02d\n",
1348 dpmi_version_data.major, dpmi_version_data.minor);
1349 printf_filtered ("DPMI Info......................"
1350 "%s-bit DPMI, with%s Virtual Memory support\n",
1351 (dpmi_version_data.flags & 1) ? "32" : "16",
1352 (dpmi_version_data.flags & 4) ? "" : "out");
1353 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1354 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1355 printfi_filtered (31, "Processor type: i%d86\n",
1356 dpmi_version_data.cpu);
1357 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1358 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1359
1360 /* a_tss is only initialized when the debuggee is first run. */
1361 if (prog_has_started)
1362 {
1363 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1364 printf_filtered ("Protection....................."
1365 "Ring %d (in %s), with%s I/O protection\n",
1366 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1367 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1368 }
1369 puts_filtered ("\n");
1370 __dpmi_get_free_memory_information (&mem_info);
1371 print_mem (mem_info.total_number_of_physical_pages,
1372 "DPMI Total Physical Memory.....", 1);
1373 print_mem (mem_info.total_number_of_free_pages,
1374 "DPMI Free Physical Memory......", 1);
1375 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1376 "DPMI Swap Space................", 1);
1377 print_mem (mem_info.linear_address_space_size_in_pages,
1378 "DPMI Total Linear Address Size.", 1);
1379 print_mem (mem_info.free_linear_address_space_in_pages,
1380 "DPMI Free Linear Address Size..", 1);
1381 print_mem (mem_info.largest_available_free_block_in_bytes,
1382 "DPMI Largest Free Memory Block.", 0);
1383
1384 regs.h.ah = 0x48;
1385 regs.x.bx = 0xffff;
1386 __dpmi_int (0x21, &regs);
1387 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1388 regs.x.ax = 0x5800;
1389 __dpmi_int (0x21, &regs);
1390 if ((regs.x.flags & 1) == 0)
1391 {
1392 static const char *dos_hilo[] = {
1393 "Low", "", "", "", "High", "", "", "", "High, then Low"
1394 };
1395 static const char *dos_fit[] = {
1396 "First", "Best", "Last"
1397 };
1398 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1399 int fit_idx = regs.x.ax & 0x0f;
1400
1401 if (hilo_idx > 8)
1402 hilo_idx = 0;
1403 if (fit_idx > 2)
1404 fit_idx = 0;
1405 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1406 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1407 regs.x.ax = 0x5802;
1408 __dpmi_int (0x21, &regs);
1409 if ((regs.x.flags & 1) != 0)
1410 regs.h.al = 0;
1411 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1412 regs.h.al == 0 ? "not " : "");
1413 }
1414 }
1415
1416 struct seg_descr {
1417 unsigned short limit0;
1418 unsigned short base0;
1419 unsigned char base1;
1420 unsigned stype:5;
1421 unsigned dpl:2;
1422 unsigned present:1;
1423 unsigned limit1:4;
1424 unsigned available:1;
1425 unsigned dummy:1;
1426 unsigned bit32:1;
1427 unsigned page_granular:1;
1428 unsigned char base2;
1429 } __attribute__ ((packed));
1430
1431 struct gate_descr {
1432 unsigned short offset0;
1433 unsigned short selector;
1434 unsigned param_count:5;
1435 unsigned dummy:3;
1436 unsigned stype:5;
1437 unsigned dpl:2;
1438 unsigned present:1;
1439 unsigned short offset1;
1440 } __attribute__ ((packed));
1441
1442 /* Read LEN bytes starting at logical address ADDR, and put the result
1443 into DEST. Return 1 if success, zero if not. */
1444 static int
1445 read_memory_region (unsigned long addr, void *dest, size_t len)
1446 {
1447 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1448 int retval = 1;
1449
1450 /* For the low memory, we can simply use _dos_ds. */
1451 if (addr <= dos_ds_limit - len)
1452 dosmemget (addr, len, dest);
1453 else
1454 {
1455 /* For memory above 1MB we need to set up a special segment to
1456 be able to access that memory. */
1457 int sel = __dpmi_allocate_ldt_descriptors (1);
1458
1459 if (sel <= 0)
1460 retval = 0;
1461 else
1462 {
1463 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1464 size_t segment_limit = len - 1;
1465
1466 /* Make sure the crucial bits in the descriptor access
1467 rights are set correctly. Some DPMI providers might barf
1468 if we set the segment limit to something that is not an
1469 integral multiple of 4KB pages if the granularity bit is
1470 not set to byte-granular, even though the DPMI spec says
1471 it's the host's responsibility to set that bit correctly. */
1472 if (len > 1024 * 1024)
1473 {
1474 access_rights |= 0x8000;
1475 /* Page-granular segments should have the low 12 bits of
1476 the limit set. */
1477 segment_limit |= 0xfff;
1478 }
1479 else
1480 access_rights &= ~0x8000;
1481
1482 if (__dpmi_set_segment_base_address (sel, addr) != -1
1483 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1484 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1485 /* W2K silently fails to set the segment limit, leaving
1486 it at zero; this test avoids the resulting crash. */
1487 && __dpmi_get_segment_limit (sel) >= segment_limit)
1488 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1489 else
1490 retval = 0;
1491
1492 __dpmi_free_ldt_descriptor (sel);
1493 }
1494 }
1495 return retval;
1496 }
1497
1498 /* Get a segment descriptor stored at index IDX in the descriptor
1499 table whose base address is TABLE_BASE. Return the descriptor
1500 type, or -1 if failure. */
1501 static int
1502 get_descriptor (unsigned long table_base, int idx, void *descr)
1503 {
1504 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1505
1506 if (read_memory_region (addr, descr, 8))
1507 return (int)((struct seg_descr *)descr)->stype;
1508 return -1;
1509 }
1510
1511 struct dtr_reg {
1512 unsigned short limit __attribute__((packed));
1513 unsigned long base __attribute__((packed));
1514 };
1515
1516 /* Display a segment descriptor stored at index IDX in a descriptor
1517 table whose type is TYPE and whose base address is BASE_ADDR. If
1518 FORCE is non-zero, display even invalid descriptors. */
1519 static void
1520 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1521 {
1522 struct seg_descr descr;
1523 struct gate_descr gate;
1524
1525 /* Get the descriptor from the table. */
1526 if (idx == 0 && type == 0)
1527 puts_filtered ("0x000: null descriptor\n");
1528 else if (get_descriptor (base_addr, idx, &descr) != -1)
1529 {
1530 /* For each type of descriptor table, this has a bit set if the
1531 corresponding type of selectors is valid in that table. */
1532 static unsigned allowed_descriptors[] = {
1533 0xffffdafeL, /* GDT */
1534 0x0000c0e0L, /* IDT */
1535 0xffffdafaL /* LDT */
1536 };
1537
1538 /* If the program hasn't started yet, assume the debuggee will
1539 have the same CPL as the debugger. */
1540 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1541 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1542
1543 if (descr.present
1544 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1545 {
1546 printf_filtered ("0x%03x: ",
1547 type == 1
1548 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1549 if (descr.page_granular)
1550 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1551 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1552 || descr.stype == 9 || descr.stype == 11
1553 || (descr.stype >= 16 && descr.stype < 32))
1554 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1555 descr.base2, descr.base1, descr.base0, limit);
1556
1557 switch (descr.stype)
1558 {
1559 case 1:
1560 case 3:
1561 printf_filtered (" 16-bit TSS (task %sactive)",
1562 descr.stype == 3 ? "" : "in");
1563 break;
1564 case 2:
1565 puts_filtered (" LDT");
1566 break;
1567 case 4:
1568 memcpy (&gate, &descr, sizeof gate);
1569 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1570 gate.selector, gate.offset1, gate.offset0);
1571 printf_filtered (" 16-bit Call Gate (params=%d)",
1572 gate.param_count);
1573 break;
1574 case 5:
1575 printf_filtered ("TSS selector=0x%04x", descr.base0);
1576 printfi_filtered (16, "Task Gate");
1577 break;
1578 case 6:
1579 case 7:
1580 memcpy (&gate, &descr, sizeof gate);
1581 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1582 gate.selector, gate.offset1, gate.offset0);
1583 printf_filtered (" 16-bit %s Gate",
1584 descr.stype == 6 ? "Interrupt" : "Trap");
1585 break;
1586 case 9:
1587 case 11:
1588 printf_filtered (" 32-bit TSS (task %sactive)",
1589 descr.stype == 3 ? "" : "in");
1590 break;
1591 case 12:
1592 memcpy (&gate, &descr, sizeof gate);
1593 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1594 gate.selector, gate.offset1, gate.offset0);
1595 printf_filtered (" 32-bit Call Gate (params=%d)",
1596 gate.param_count);
1597 break;
1598 case 14:
1599 case 15:
1600 memcpy (&gate, &descr, sizeof gate);
1601 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1602 gate.selector, gate.offset1, gate.offset0);
1603 printf_filtered (" 32-bit %s Gate",
1604 descr.stype == 14 ? "Interrupt" : "Trap");
1605 break;
1606 case 16: /* data segments */
1607 case 17:
1608 case 18:
1609 case 19:
1610 case 20:
1611 case 21:
1612 case 22:
1613 case 23:
1614 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1615 descr.bit32 ? "32" : "16",
1616 descr.stype & 2
1617 ? "Read/Write," : "Read-Only, ",
1618 descr.stype & 4 ? "down" : "up",
1619 descr.stype & 1 ? "" : ", N.Acc");
1620 break;
1621 case 24: /* code segments */
1622 case 25:
1623 case 26:
1624 case 27:
1625 case 28:
1626 case 29:
1627 case 30:
1628 case 31:
1629 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1630 descr.bit32 ? "32" : "16",
1631 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1632 descr.stype & 4 ? "" : "N.",
1633 descr.stype & 1 ? "" : ", N.Acc");
1634 break;
1635 default:
1636 printf_filtered ("Unknown type 0x%02x", descr.stype);
1637 break;
1638 }
1639 puts_filtered ("\n");
1640 }
1641 else if (force)
1642 {
1643 printf_filtered ("0x%03x: ",
1644 type == 1
1645 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1646 if (!descr.present)
1647 puts_filtered ("Segment not present\n");
1648 else
1649 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1650 descr.stype);
1651 }
1652 }
1653 else if (force)
1654 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1655 }
1656
1657 static void
1658 go32_sldt (char *arg, int from_tty)
1659 {
1660 struct dtr_reg gdtr;
1661 unsigned short ldtr = 0;
1662 int ldt_idx;
1663 struct seg_descr ldt_descr;
1664 long ldt_entry = -1L;
1665 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1666
1667 if (arg && *arg)
1668 {
1669 arg = skip_spaces (arg);
1670
1671 if (*arg)
1672 {
1673 ldt_entry = parse_and_eval_long (arg);
1674 if (ldt_entry < 0
1675 || (ldt_entry & 4) == 0
1676 || (ldt_entry & 3) != (cpl & 3))
1677 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1678 }
1679 }
1680
1681 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1682 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1683 ldt_idx = ldtr / 8;
1684 if (ldt_idx == 0)
1685 puts_filtered ("There is no LDT.\n");
1686 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1687 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1688 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1689 ldt_descr.base0
1690 | (ldt_descr.base1 << 16)
1691 | (ldt_descr.base2 << 24));
1692 else
1693 {
1694 unsigned base =
1695 ldt_descr.base0
1696 | (ldt_descr.base1 << 16)
1697 | (ldt_descr.base2 << 24);
1698 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1699 int max_entry;
1700
1701 if (ldt_descr.page_granular)
1702 /* Page-granular segments must have the low 12 bits of their
1703 limit set. */
1704 limit = (limit << 12) | 0xfff;
1705 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1706 64KB. */
1707 if (limit > 0xffff)
1708 limit = 0xffff;
1709
1710 max_entry = (limit + 1) / 8;
1711
1712 if (ldt_entry >= 0)
1713 {
1714 if (ldt_entry > limit)
1715 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1716 (unsigned long)ldt_entry, limit);
1717
1718 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1719 }
1720 else
1721 {
1722 int i;
1723
1724 for (i = 0; i < max_entry; i++)
1725 display_descriptor (ldt_descr.stype, base, i, 0);
1726 }
1727 }
1728 }
1729
1730 static void
1731 go32_sgdt (char *arg, int from_tty)
1732 {
1733 struct dtr_reg gdtr;
1734 long gdt_entry = -1L;
1735 int max_entry;
1736
1737 if (arg && *arg)
1738 {
1739 arg = skip_spaces (arg);
1740
1741 if (*arg)
1742 {
1743 gdt_entry = parse_and_eval_long (arg);
1744 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1745 error (_("Invalid GDT entry 0x%03lx: "
1746 "not an integral multiple of 8."),
1747 (unsigned long)gdt_entry);
1748 }
1749 }
1750
1751 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1752 max_entry = (gdtr.limit + 1) / 8;
1753
1754 if (gdt_entry >= 0)
1755 {
1756 if (gdt_entry > gdtr.limit)
1757 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1758 (unsigned long)gdt_entry, gdtr.limit);
1759
1760 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1761 }
1762 else
1763 {
1764 int i;
1765
1766 for (i = 0; i < max_entry; i++)
1767 display_descriptor (0, gdtr.base, i, 0);
1768 }
1769 }
1770
1771 static void
1772 go32_sidt (char *arg, int from_tty)
1773 {
1774 struct dtr_reg idtr;
1775 long idt_entry = -1L;
1776 int max_entry;
1777
1778 if (arg && *arg)
1779 {
1780 arg = skip_spaces (arg);
1781
1782 if (*arg)
1783 {
1784 idt_entry = parse_and_eval_long (arg);
1785 if (idt_entry < 0)
1786 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1787 }
1788 }
1789
1790 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1791 max_entry = (idtr.limit + 1) / 8;
1792 if (max_entry > 0x100) /* No more than 256 entries. */
1793 max_entry = 0x100;
1794
1795 if (idt_entry >= 0)
1796 {
1797 if (idt_entry > idtr.limit)
1798 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1799 (unsigned long)idt_entry, idtr.limit);
1800
1801 display_descriptor (1, idtr.base, idt_entry, 1);
1802 }
1803 else
1804 {
1805 int i;
1806
1807 for (i = 0; i < max_entry; i++)
1808 display_descriptor (1, idtr.base, i, 0);
1809 }
1810 }
1811
1812 /* Cached linear address of the base of the page directory. For
1813 now, available only under CWSDPMI. Code based on ideas and
1814 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1815 static unsigned long pdbr;
1816
1817 static unsigned long
1818 get_cr3 (void)
1819 {
1820 unsigned offset;
1821 unsigned taskreg;
1822 unsigned long taskbase, cr3;
1823 struct dtr_reg gdtr;
1824
1825 if (pdbr > 0 && pdbr <= 0xfffff)
1826 return pdbr;
1827
1828 /* Get the linear address of GDT and the Task Register. */
1829 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1830 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1831
1832 /* Task Register is a segment selector for the TSS of the current
1833 task. Therefore, it can be used as an index into the GDT to get
1834 at the segment descriptor for the TSS. To get the index, reset
1835 the low 3 bits of the selector (which give the CPL). Add 2 to the
1836 offset to point to the 3 low bytes of the base address. */
1837 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1838
1839
1840 /* CWSDPMI's task base is always under the 1MB mark. */
1841 if (offset > 0xfffff)
1842 return 0;
1843
1844 _farsetsel (_dos_ds);
1845 taskbase = _farnspeekl (offset) & 0xffffffU;
1846 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1847 if (taskbase > 0xfffff)
1848 return 0;
1849
1850 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1851 offset 1Ch in the TSS. */
1852 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1853 if (cr3 > 0xfffff)
1854 {
1855 #if 0 /* Not fullly supported yet. */
1856 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1857 the first Page Table right below the Page Directory. Thus,
1858 the first Page Table's entry for its own address and the Page
1859 Directory entry for that Page Table will hold the same
1860 physical address. The loop below searches the entire UMB
1861 range of addresses for such an occurence. */
1862 unsigned long addr, pte_idx;
1863
1864 for (addr = 0xb0000, pte_idx = 0xb0;
1865 pte_idx < 0xff;
1866 addr += 0x1000, pte_idx++)
1867 {
1868 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1869 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1870 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1871 {
1872 cr3 = addr + 0x1000;
1873 break;
1874 }
1875 }
1876 #endif
1877
1878 if (cr3 > 0xfffff)
1879 cr3 = 0;
1880 }
1881
1882 return cr3;
1883 }
1884
1885 /* Return the N'th Page Directory entry. */
1886 static unsigned long
1887 get_pde (int n)
1888 {
1889 unsigned long pde = 0;
1890
1891 if (pdbr && n >= 0 && n < 1024)
1892 {
1893 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1894 }
1895 return pde;
1896 }
1897
1898 /* Return the N'th entry of the Page Table whose Page Directory entry
1899 is PDE. */
1900 static unsigned long
1901 get_pte (unsigned long pde, int n)
1902 {
1903 unsigned long pte = 0;
1904
1905 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1906 page tables, for now. */
1907 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1908 {
1909 pde &= ~0xfff; /* Clear non-address bits. */
1910 pte = _farpeekl (_dos_ds, pde + 4*n);
1911 }
1912 return pte;
1913 }
1914
1915 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1916 says this is a Page Directory entry. If FORCE is non-zero, display
1917 the entry even if its Present flag is off. OFF is the offset of the
1918 address from the page's base address. */
1919 static void
1920 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1921 {
1922 if ((entry & 1) != 0)
1923 {
1924 printf_filtered ("Base=0x%05lx000", entry >> 12);
1925 if ((entry & 0x100) && !is_dir)
1926 puts_filtered (" Global");
1927 if ((entry & 0x40) && !is_dir)
1928 puts_filtered (" Dirty");
1929 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1930 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1931 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1932 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1933 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1934 if (off)
1935 printf_filtered (" +0x%x", off);
1936 puts_filtered ("\n");
1937 }
1938 else if (force)
1939 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1940 is_dir ? " Table" : "", entry >> 1);
1941 }
1942
1943 static void
1944 go32_pde (char *arg, int from_tty)
1945 {
1946 long pde_idx = -1, i;
1947
1948 if (arg && *arg)
1949 {
1950 arg = skip_spaces (arg);
1951
1952 if (*arg)
1953 {
1954 pde_idx = parse_and_eval_long (arg);
1955 if (pde_idx < 0 || pde_idx >= 1024)
1956 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1957 }
1958 }
1959
1960 pdbr = get_cr3 ();
1961 if (!pdbr)
1962 puts_filtered ("Access to Page Directories is "
1963 "not supported on this system.\n");
1964 else if (pde_idx >= 0)
1965 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1966 else
1967 for (i = 0; i < 1024; i++)
1968 display_ptable_entry (get_pde (i), 1, 0, 0);
1969 }
1970
1971 /* A helper function to display entries in a Page Table pointed to by
1972 the N'th entry in the Page Directory. If FORCE is non-zero, say
1973 something even if the Page Table is not accessible. */
1974 static void
1975 display_page_table (long n, int force)
1976 {
1977 unsigned long pde = get_pde (n);
1978
1979 if ((pde & 1) != 0)
1980 {
1981 int i;
1982
1983 printf_filtered ("Page Table pointed to by "
1984 "Page Directory entry 0x%lx:\n", n);
1985 for (i = 0; i < 1024; i++)
1986 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
1987 puts_filtered ("\n");
1988 }
1989 else if (force)
1990 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
1991 }
1992
1993 static void
1994 go32_pte (char *arg, int from_tty)
1995 {
1996 long pde_idx = -1L, i;
1997
1998 if (arg && *arg)
1999 {
2000 arg = skip_spaces (arg);
2001
2002 if (*arg)
2003 {
2004 pde_idx = parse_and_eval_long (arg);
2005 if (pde_idx < 0 || pde_idx >= 1024)
2006 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2007 }
2008 }
2009
2010 pdbr = get_cr3 ();
2011 if (!pdbr)
2012 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2013 else if (pde_idx >= 0)
2014 display_page_table (pde_idx, 1);
2015 else
2016 for (i = 0; i < 1024; i++)
2017 display_page_table (i, 0);
2018 }
2019
2020 static void
2021 go32_pte_for_address (char *arg, int from_tty)
2022 {
2023 CORE_ADDR addr = 0, i;
2024
2025 if (arg && *arg)
2026 {
2027 arg = skip_spaces (arg);
2028
2029 if (*arg)
2030 addr = parse_and_eval_address (arg);
2031 }
2032 if (!addr)
2033 error_no_arg (_("linear address"));
2034
2035 pdbr = get_cr3 ();
2036 if (!pdbr)
2037 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2038 else
2039 {
2040 int pde_idx = (addr >> 22) & 0x3ff;
2041 int pte_idx = (addr >> 12) & 0x3ff;
2042 unsigned offs = addr & 0xfff;
2043
2044 printf_filtered ("Page Table entry for address %s:\n",
2045 hex_string(addr));
2046 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2047 }
2048 }
2049
2050 static struct cmd_list_element *info_dos_cmdlist = NULL;
2051
2052 static void
2053 go32_info_dos_command (char *args, int from_tty)
2054 {
2055 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2056 }
2057
2058 /* -Wmissing-prototypes */
2059 extern initialize_file_ftype _initialize_go32_nat;
2060
2061 void
2062 _initialize_go32_nat (void)
2063 {
2064 struct target_ops *t = go32_target ();
2065
2066 i386_dr_low.set_control = go32_set_dr7;
2067 i386_dr_low.set_addr = go32_set_dr;
2068 i386_dr_low.get_status = go32_get_dr6;
2069 i386_dr_low.get_control = go32_get_dr7;
2070 i386_dr_low.get_addr = go32_get_dr;
2071 i386_set_debug_register_length (4);
2072
2073 i386_use_watchpoints (t);
2074 add_target (t);
2075
2076 /* Initialize child's cwd as empty to be initialized when starting
2077 the child. */
2078 *child_cwd = 0;
2079
2080 /* Initialize child's command line storage. */
2081 if (redir_debug_init (&child_cmd) == -1)
2082 internal_error (__FILE__, __LINE__,
2083 _("Cannot allocate redirection storage: "
2084 "not enough memory.\n"));
2085
2086 /* We are always processing GCC-compiled programs. */
2087 processing_gcc_compilation = 2;
2088
2089 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2090 Print information specific to DJGPP (aka MS-DOS) debugging."),
2091 &info_dos_cmdlist, "info dos ", 0, &infolist);
2092
2093 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2094 Display information about the target system, including CPU, OS, DPMI, etc."),
2095 &info_dos_cmdlist);
2096 add_cmd ("ldt", class_info, go32_sldt, _("\
2097 Display entries in the LDT (Local Descriptor Table).\n\
2098 Entry number (an expression) as an argument means display only that entry."),
2099 &info_dos_cmdlist);
2100 add_cmd ("gdt", class_info, go32_sgdt, _("\
2101 Display entries in the GDT (Global Descriptor Table).\n\
2102 Entry number (an expression) as an argument means display only that entry."),
2103 &info_dos_cmdlist);
2104 add_cmd ("idt", class_info, go32_sidt, _("\
2105 Display entries in the IDT (Interrupt Descriptor Table).\n\
2106 Entry number (an expression) as an argument means display only that entry."),
2107 &info_dos_cmdlist);
2108 add_cmd ("pde", class_info, go32_pde, _("\
2109 Display entries in the Page Directory.\n\
2110 Entry number (an expression) as an argument means display only that entry."),
2111 &info_dos_cmdlist);
2112 add_cmd ("pte", class_info, go32_pte, _("\
2113 Display entries in Page Tables.\n\
2114 Entry number (an expression) as an argument means display only entries\n\
2115 from the Page Table pointed to by the specified Page Directory entry."),
2116 &info_dos_cmdlist);
2117 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2118 Display a Page Table entry for a linear address.\n\
2119 The address argument must be a linear address, after adding to\n\
2120 it the base address of the appropriate segment.\n\
2121 The base address of variables and functions in the debuggee's data\n\
2122 or code segment is stored in the variable __djgpp_base_address,\n\
2123 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2124 For other segments, look up their base address in the output of\n\
2125 the `info dos ldt' command."),
2126 &info_dos_cmdlist);
2127 }
2128
2129 pid_t
2130 tcgetpgrp (int fd)
2131 {
2132 if (isatty (fd))
2133 return SOME_PID;
2134 errno = ENOTTY;
2135 return -1;
2136 }
2137
2138 int
2139 tcsetpgrp (int fd, pid_t pgid)
2140 {
2141 if (isatty (fd) && pgid == SOME_PID)
2142 return 0;
2143 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2144 return -1;
2145 }
This page took 0.07408 seconds and 4 git commands to generate.