Simplify tui_update_source_windows_with_line
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2019 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "x86-nat.h"
89 #include "inferior.h"
90 #include "infrun.h"
91 #include "gdbthread.h"
92 #include "gdbsupport/gdb_wait.h"
93 #include "gdbcore.h"
94 #include "command.h"
95 #include "gdbcmd.h"
96 #include "floatformat.h"
97 #include "buildsym-legacy.h"
98 #include "i387-tdep.h"
99 #include "i386-tdep.h"
100 #include "nat/x86-cpuid.h"
101 #include "value.h"
102 #include "regcache.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105 #include "inf-child.h"
106
107 #include <ctype.h>
108 #include <unistd.h>
109 #include <sys/utsname.h>
110 #include <io.h>
111 #include <dos.h>
112 #include <dpmi.h>
113 #include <go32.h>
114 #include <sys/farptr.h>
115 #include <debug/v2load.h>
116 #include <debug/dbgcom.h>
117 #if __DJGPP_MINOR__ > 2
118 #include <debug/redir.h>
119 #endif
120
121 #include <langinfo.h>
122
123 #if __DJGPP_MINOR__ < 3
124 /* This code will be provided from DJGPP 2.03 on. Until then I code it
125 here. */
126 typedef struct
127 {
128 unsigned short sig0;
129 unsigned short sig1;
130 unsigned short sig2;
131 unsigned short sig3;
132 unsigned short exponent:15;
133 unsigned short sign:1;
134 }
135 NPXREG;
136
137 typedef struct
138 {
139 unsigned int control;
140 unsigned int status;
141 unsigned int tag;
142 unsigned int eip;
143 unsigned int cs;
144 unsigned int dataptr;
145 unsigned int datasel;
146 NPXREG reg[8];
147 }
148 NPX;
149
150 static NPX npx;
151
152 static void save_npx (void); /* Save the FPU of the debugged program. */
153 static void load_npx (void); /* Restore the FPU of the debugged program. */
154
155 /* ------------------------------------------------------------------------- */
156 /* Store the contents of the NPX in the global variable `npx'. */
157 /* *INDENT-OFF* */
158
159 static void
160 save_npx (void)
161 {
162 asm ("inb $0xa0, %%al \n\
163 testb $0x20, %%al \n\
164 jz 1f \n\
165 xorb %%al, %%al \n\
166 outb %%al, $0xf0 \n\
167 movb $0x20, %%al \n\
168 outb %%al, $0xa0 \n\
169 outb %%al, $0x20 \n\
170 1: \n\
171 fnsave %0 \n\
172 fwait "
173 : "=m" (npx)
174 : /* No input */
175 : "%eax");
176 }
177
178 /* *INDENT-ON* */
179
180
181 /* ------------------------------------------------------------------------- */
182 /* Reload the contents of the NPX from the global variable `npx'. */
183
184 static void
185 load_npx (void)
186 {
187 asm ("frstor %0":"=m" (npx));
188 }
189 /* ------------------------------------------------------------------------- */
190 /* Stubs for the missing redirection functions. */
191 typedef struct {
192 char *command;
193 int redirected;
194 } cmdline_t;
195
196 void
197 redir_cmdline_delete (cmdline_t *ptr)
198 {
199 ptr->redirected = 0;
200 }
201
202 int
203 redir_cmdline_parse (const char *args, cmdline_t *ptr)
204 {
205 return -1;
206 }
207
208 int
209 redir_to_child (cmdline_t *ptr)
210 {
211 return 1;
212 }
213
214 int
215 redir_to_debugger (cmdline_t *ptr)
216 {
217 return 1;
218 }
219
220 int
221 redir_debug_init (cmdline_t *ptr)
222 {
223 return 0;
224 }
225 #endif /* __DJGPP_MINOR < 3 */
226
227 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
228
229 /* This holds the current reference counts for each debug register. */
230 static int dr_ref_count[4];
231
232 #define SOME_PID 42
233
234 static int prog_has_started = 0;
235
236 #define r_ofs(x) (offsetof(TSS,x))
237
238 static struct
239 {
240 size_t tss_ofs;
241 size_t size;
242 }
243 regno_mapping[] =
244 {
245 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
246 {r_ofs (tss_ecx), 4},
247 {r_ofs (tss_edx), 4},
248 {r_ofs (tss_ebx), 4},
249 {r_ofs (tss_esp), 4},
250 {r_ofs (tss_ebp), 4},
251 {r_ofs (tss_esi), 4},
252 {r_ofs (tss_edi), 4},
253 {r_ofs (tss_eip), 4},
254 {r_ofs (tss_eflags), 4},
255 {r_ofs (tss_cs), 2},
256 {r_ofs (tss_ss), 2},
257 {r_ofs (tss_ds), 2},
258 {r_ofs (tss_es), 2},
259 {r_ofs (tss_fs), 2},
260 {r_ofs (tss_gs), 2},
261 {0, 10}, /* 8 FP registers, from npx.reg[] */
262 {1, 10},
263 {2, 10},
264 {3, 10},
265 {4, 10},
266 {5, 10},
267 {6, 10},
268 {7, 10},
269 /* The order of the next 7 registers must be consistent
270 with their numbering in config/i386/tm-i386.h, which see. */
271 {0, 2}, /* control word, from npx */
272 {4, 2}, /* status word, from npx */
273 {8, 2}, /* tag word, from npx */
274 {16, 2}, /* last FP exception CS from npx */
275 {12, 4}, /* last FP exception EIP from npx */
276 {24, 2}, /* last FP exception operand selector from npx */
277 {20, 4}, /* last FP exception operand offset from npx */
278 {18, 2} /* last FP opcode from npx */
279 };
280
281 static struct
282 {
283 int go32_sig;
284 enum gdb_signal gdb_sig;
285 }
286 sig_map[] =
287 {
288 {0, GDB_SIGNAL_FPE},
289 {1, GDB_SIGNAL_TRAP},
290 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
291 but I think SIGBUS is better, since the NMI is usually activated
292 as a result of a memory parity check failure. */
293 {2, GDB_SIGNAL_BUS},
294 {3, GDB_SIGNAL_TRAP},
295 {4, GDB_SIGNAL_FPE},
296 {5, GDB_SIGNAL_SEGV},
297 {6, GDB_SIGNAL_ILL},
298 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
299 {8, GDB_SIGNAL_SEGV},
300 {9, GDB_SIGNAL_SEGV},
301 {10, GDB_SIGNAL_BUS},
302 {11, GDB_SIGNAL_SEGV},
303 {12, GDB_SIGNAL_SEGV},
304 {13, GDB_SIGNAL_SEGV},
305 {14, GDB_SIGNAL_SEGV},
306 {16, GDB_SIGNAL_FPE},
307 {17, GDB_SIGNAL_BUS},
308 {31, GDB_SIGNAL_ILL},
309 {0x1b, GDB_SIGNAL_INT},
310 {0x75, GDB_SIGNAL_FPE},
311 {0x78, GDB_SIGNAL_ALRM},
312 {0x79, GDB_SIGNAL_INT},
313 {0x7a, GDB_SIGNAL_QUIT},
314 {-1, GDB_SIGNAL_LAST}
315 };
316
317 static struct {
318 enum gdb_signal gdb_sig;
319 int djgpp_excepno;
320 } excepn_map[] = {
321 {GDB_SIGNAL_0, -1},
322 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
323 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
324 {GDB_SIGNAL_SEGV, 13}, /* GPF */
325 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
326 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
327 details. */
328 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
329 {GDB_SIGNAL_FPE, 0x75},
330 {GDB_SIGNAL_INT, 0x79},
331 {GDB_SIGNAL_QUIT, 0x7a},
332 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
333 {GDB_SIGNAL_PROF, 0x78},
334 {GDB_SIGNAL_LAST, -1}
335 };
336
337 /* The go32 target. */
338
339 struct go32_nat_target final : public x86_nat_target<inf_child_target>
340 {
341 void attach (const char *, int) override;
342
343 void resume (ptid_t, int, enum gdb_signal) override;
344
345 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
346
347 void fetch_registers (struct regcache *, int) override;
348 void store_registers (struct regcache *, int) override;
349
350 enum target_xfer_status xfer_partial (enum target_object object,
351 const char *annex,
352 gdb_byte *readbuf,
353 const gdb_byte *writebuf,
354 ULONGEST offset, ULONGEST len,
355 ULONGEST *xfered_len) override;
356
357 void files_info () override;
358
359 void terminal_init () override;
360
361 void terminal_inferior () override;
362
363 void terminal_ours_for_output () override;
364
365 void terminal_ours () override;
366
367 void terminal_info (const char *, int) override;
368
369 void pass_ctrlc () override;
370
371 void kill () override;
372
373 void create_inferior (const char *, const std::string &,
374 char **, int) override;
375
376 void mourn_inferior () override;
377
378 bool thread_alive (ptid_t ptid) override;
379
380 std::string pid_to_str (ptid_t) override;
381 };
382
383 static go32_nat_target the_go32_nat_target;
384
385 void
386 go32_nat_target::attach (const char *args, int from_tty)
387 {
388 error (_("\
389 You cannot attach to a running program on this platform.\n\
390 Use the `run' command to run DJGPP programs."));
391 }
392
393 static int resume_is_step;
394 static int resume_signal = -1;
395
396 void
397 go32_nat_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
398 {
399 int i;
400
401 resume_is_step = step;
402
403 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
404 {
405 for (i = 0, resume_signal = -1;
406 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
407 if (excepn_map[i].gdb_sig == siggnal)
408 {
409 resume_signal = excepn_map[i].djgpp_excepno;
410 break;
411 }
412 if (resume_signal == -1)
413 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
414 gdb_signal_to_name (siggnal));
415 }
416 }
417
418 static char child_cwd[FILENAME_MAX];
419
420 ptid_t
421 go32_nat_target::wait (ptid_t ptid, struct target_waitstatus *status,
422 int options)
423 {
424 int i;
425 unsigned char saved_opcode;
426 unsigned long INT3_addr = 0;
427 int stepping_over_INT = 0;
428
429 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
430 if (resume_is_step)
431 {
432 /* If the next instruction is INT xx or INTO, we need to handle
433 them specially. Intel manuals say that these instructions
434 reset the single-step flag (a.k.a. TF). However, it seems
435 that, at least in the DPMI environment, and at least when
436 stepping over the DPMI interrupt 31h, the problem is having
437 TF set at all when INT 31h is executed: the debuggee either
438 crashes (and takes the system with it) or is killed by a
439 SIGTRAP.
440
441 So we need to emulate single-step mode: we put an INT3 opcode
442 right after the INT xx instruction, let the debuggee run
443 until it hits INT3 and stops, then restore the original
444 instruction which we overwrote with the INT3 opcode, and back
445 up the debuggee's EIP to that instruction. */
446 read_child (a_tss.tss_eip, &saved_opcode, 1);
447 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
448 {
449 unsigned char INT3_opcode = 0xCC;
450
451 INT3_addr
452 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
453 stepping_over_INT = 1;
454 read_child (INT3_addr, &saved_opcode, 1);
455 write_child (INT3_addr, &INT3_opcode, 1);
456 }
457 else
458 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
459 }
460
461 /* The special value FFFFh in tss_trap indicates to run_child that
462 tss_irqn holds a signal to be delivered to the debuggee. */
463 if (resume_signal <= -1)
464 {
465 a_tss.tss_trap = 0;
466 a_tss.tss_irqn = 0xff;
467 }
468 else
469 {
470 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
471 a_tss.tss_irqn = resume_signal;
472 }
473
474 /* The child might change working directory behind our back. The
475 GDB users won't like the side effects of that when they work with
476 relative file names, and GDB might be confused by its current
477 directory not being in sync with the truth. So we always make a
478 point of changing back to where GDB thinks is its cwd, when we
479 return control to the debugger, but restore child's cwd before we
480 run it. */
481 /* Initialize child_cwd, before the first call to run_child and not
482 in the initialization, so the child get also the changed directory
483 set with the gdb-command "cd ..." */
484 if (!*child_cwd)
485 /* Initialize child's cwd with the current one. */
486 getcwd (child_cwd, sizeof (child_cwd));
487
488 chdir (child_cwd);
489
490 #if __DJGPP_MINOR__ < 3
491 load_npx ();
492 #endif
493 run_child ();
494 #if __DJGPP_MINOR__ < 3
495 save_npx ();
496 #endif
497
498 /* Did we step over an INT xx instruction? */
499 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
500 {
501 /* Restore the original opcode. */
502 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
503 write_child (a_tss.tss_eip, &saved_opcode, 1);
504 /* Simulate a TRAP exception. */
505 a_tss.tss_irqn = 1;
506 a_tss.tss_eflags |= 0x0100;
507 }
508
509 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
510 if (current_directory != NULL)
511 chdir (current_directory);
512
513 if (a_tss.tss_irqn == 0x21)
514 {
515 status->kind = TARGET_WAITKIND_EXITED;
516 status->value.integer = a_tss.tss_eax & 0xff;
517 }
518 else
519 {
520 status->value.sig = GDB_SIGNAL_UNKNOWN;
521 status->kind = TARGET_WAITKIND_STOPPED;
522 for (i = 0; sig_map[i].go32_sig != -1; i++)
523 {
524 if (a_tss.tss_irqn == sig_map[i].go32_sig)
525 {
526 #if __DJGPP_MINOR__ < 3
527 if ((status->value.sig = sig_map[i].gdb_sig) !=
528 GDB_SIGNAL_TRAP)
529 status->kind = TARGET_WAITKIND_SIGNALLED;
530 #else
531 status->value.sig = sig_map[i].gdb_sig;
532 #endif
533 break;
534 }
535 }
536 }
537 return ptid_t (SOME_PID);
538 }
539
540 static void
541 fetch_register (struct regcache *regcache, int regno)
542 {
543 struct gdbarch *gdbarch = regcache->arch ();
544 if (regno < gdbarch_fp0_regnum (gdbarch))
545 regcache->raw_supply (regno,
546 (char *) &a_tss + regno_mapping[regno].tss_ofs);
547 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
548 regno))
549 i387_supply_fsave (regcache, regno, &npx);
550 else
551 internal_error (__FILE__, __LINE__,
552 _("Invalid register no. %d in fetch_register."), regno);
553 }
554
555 void
556 go32_nat_target::fetch_registers (struct regcache *regcache, int regno)
557 {
558 if (regno >= 0)
559 fetch_register (regcache, regno);
560 else
561 {
562 for (regno = 0;
563 regno < gdbarch_fp0_regnum (regcache->arch ());
564 regno++)
565 fetch_register (regcache, regno);
566 i387_supply_fsave (regcache, -1, &npx);
567 }
568 }
569
570 static void
571 store_register (const struct regcache *regcache, int regno)
572 {
573 struct gdbarch *gdbarch = regcache->arch ();
574 if (regno < gdbarch_fp0_regnum (gdbarch))
575 regcache->raw_collect (regno,
576 (char *) &a_tss + regno_mapping[regno].tss_ofs);
577 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
578 regno))
579 i387_collect_fsave (regcache, regno, &npx);
580 else
581 internal_error (__FILE__, __LINE__,
582 _("Invalid register no. %d in store_register."), regno);
583 }
584
585 void
586 go32_nat_target::store_registers (struct regcache *regcache, int regno)
587 {
588 unsigned r;
589
590 if (regno >= 0)
591 store_register (regcache, regno);
592 else
593 {
594 for (r = 0; r < gdbarch_fp0_regnum (regcache->arch ()); r++)
595 store_register (regcache, r);
596 i387_collect_fsave (regcache, -1, &npx);
597 }
598 }
599
600 /* Const-correct version of DJGPP's write_child, which unfortunately
601 takes a non-const buffer pointer. */
602
603 static int
604 my_write_child (unsigned child_addr, const void *buf, unsigned len)
605 {
606 static void *buffer = NULL;
607 static unsigned buffer_len = 0;
608 int res;
609
610 if (buffer_len < len)
611 {
612 buffer = xrealloc (buffer, len);
613 buffer_len = len;
614 }
615
616 memcpy (buffer, buf, len);
617 res = write_child (child_addr, buffer, len);
618 return res;
619 }
620
621 /* Helper for go32_xfer_partial that handles memory transfers.
622 Arguments are like target_xfer_partial. */
623
624 static enum target_xfer_status
625 go32_xfer_memory (gdb_byte *readbuf, const gdb_byte *writebuf,
626 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
627 {
628 int res;
629
630 if (writebuf != NULL)
631 res = my_write_child (memaddr, writebuf, len);
632 else
633 res = read_child (memaddr, readbuf, len);
634
635 /* read_child and write_child return zero on success, non-zero on
636 failure. */
637 if (res != 0)
638 return TARGET_XFER_E_IO;
639
640 *xfered_len = len;
641 return TARGET_XFER_OK;
642 }
643
644 /* Target to_xfer_partial implementation. */
645
646 enum target_xfer_status
647 go32_nat_target::xfer_partial (enum target_object object,
648 const char *annex, gdb_byte *readbuf,
649 const gdb_byte *writebuf, ULONGEST offset,
650 ULONGEST len,
651 ULONGEST *xfered_len)
652 {
653 switch (object)
654 {
655 case TARGET_OBJECT_MEMORY:
656 return go32_xfer_memory (readbuf, writebuf, offset, len, xfered_len);
657
658 default:
659 return this->beneath ()->xfer_partial (object, annex,
660 readbuf, writebuf, offset, len,
661 xfered_len);
662 }
663 }
664
665 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
666
667 void
668 go32_nat_target::files_info ()
669 {
670 printf_unfiltered ("You are running a DJGPP V2 program.\n");
671 }
672
673 void
674 go32_nat_target::kill_inferior ()
675 {
676 mourn_inferior ();
677 }
678
679 void
680 go32_nat_target::create_inferior (const char *exec_file,
681 const std::string &allargs,
682 char **env, int from_tty)
683 {
684 extern char **environ;
685 jmp_buf start_state;
686 char *cmdline;
687 char **env_save = environ;
688 size_t cmdlen;
689 struct inferior *inf;
690 int result;
691 const char *args = allargs.c_str ();
692
693 /* If no exec file handed to us, get it from the exec-file command -- with
694 a good, common error message if none is specified. */
695 if (exec_file == 0)
696 exec_file = get_exec_file (1);
697
698 resume_signal = -1;
699 resume_is_step = 0;
700
701 /* Initialize child's cwd as empty to be initialized when starting
702 the child. */
703 *child_cwd = 0;
704
705 /* Init command line storage. */
706 if (redir_debug_init (&child_cmd) == -1)
707 internal_error (__FILE__, __LINE__,
708 _("Cannot allocate redirection storage: "
709 "not enough memory.\n"));
710
711 /* Parse the command line and create redirections. */
712 if (strpbrk (args, "<>"))
713 {
714 if (redir_cmdline_parse (args, &child_cmd) == 0)
715 args = child_cmd.command;
716 else
717 error (_("Syntax error in command line."));
718 }
719 else
720 child_cmd.command = xstrdup (args);
721
722 cmdlen = strlen (args);
723 /* v2loadimage passes command lines via DOS memory, so it cannot
724 possibly handle commands longer than 1MB. */
725 if (cmdlen > 1024*1024)
726 error (_("Command line too long."));
727
728 cmdline = (char *) xmalloc (cmdlen + 4);
729 strcpy (cmdline + 1, args);
730 /* If the command-line length fits into DOS 126-char limits, use the
731 DOS command tail format; otherwise, tell v2loadimage to pass it
732 through a buffer in conventional memory. */
733 if (cmdlen < 127)
734 {
735 cmdline[0] = strlen (args);
736 cmdline[cmdlen + 1] = 13;
737 }
738 else
739 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
740
741 environ = env;
742
743 result = v2loadimage (exec_file, cmdline, start_state);
744
745 environ = env_save;
746 xfree (cmdline);
747
748 if (result != 0)
749 error (_("Load failed for image %s"), exec_file);
750
751 edi_init (start_state);
752 #if __DJGPP_MINOR__ < 3
753 save_npx ();
754 #endif
755
756 inferior_ptid = ptid_t (SOME_PID);
757 inf = current_inferior ();
758 inferior_appeared (inf, SOME_PID);
759
760 if (!target_is_pushed (this))
761 push_target (this);
762
763 add_thread_silent (inferior_ptid);
764
765 clear_proceed_status (0);
766 insert_breakpoints ();
767 prog_has_started = 1;
768 }
769
770 void
771 go32_nat_target::mourn_inferior ()
772 {
773 ptid_t ptid;
774
775 redir_cmdline_delete (&child_cmd);
776 resume_signal = -1;
777 resume_is_step = 0;
778
779 cleanup_client ();
780
781 /* We need to make sure all the breakpoint enable bits in the DR7
782 register are reset when the inferior exits. Otherwise, if they
783 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
784 failure to set more watchpoints, and other calamities. It would
785 be nice if GDB itself would take care to remove all breakpoints
786 at all times, but it doesn't, probably under an assumption that
787 the OS cleans up when the debuggee exits. */
788 x86_cleanup_dregs ();
789
790 ptid = inferior_ptid;
791 inferior_ptid = null_ptid;
792 prog_has_started = 0;
793
794 generic_mourn_inferior ();
795 maybe_unpush_target ();
796 }
797
798 /* Hardware watchpoint support. */
799
800 #define D_REGS edi.dr
801 #define CONTROL D_REGS[7]
802 #define STATUS D_REGS[6]
803
804 /* Pass the address ADDR to the inferior in the I'th debug register.
805 Here we just store the address in D_REGS, the watchpoint will be
806 actually set up when go32_wait runs the debuggee. */
807 static void
808 go32_set_dr (int i, CORE_ADDR addr)
809 {
810 if (i < 0 || i > 3)
811 internal_error (__FILE__, __LINE__,
812 _("Invalid register %d in go32_set_dr.\n"), i);
813 D_REGS[i] = addr;
814 }
815
816 /* Pass the value VAL to the inferior in the DR7 debug control
817 register. Here we just store the address in D_REGS, the watchpoint
818 will be actually set up when go32_wait runs the debuggee. */
819 static void
820 go32_set_dr7 (unsigned long val)
821 {
822 CONTROL = val;
823 }
824
825 /* Get the value of the DR6 debug status register from the inferior.
826 Here we just return the value stored in D_REGS, as we've got it
827 from the last go32_wait call. */
828 static unsigned long
829 go32_get_dr6 (void)
830 {
831 return STATUS;
832 }
833
834 /* Get the value of the DR7 debug status register from the inferior.
835 Here we just return the value stored in D_REGS, as we've got it
836 from the last go32_wait call. */
837
838 static unsigned long
839 go32_get_dr7 (void)
840 {
841 return CONTROL;
842 }
843
844 /* Get the value of the DR debug register I from the inferior. Here
845 we just return the value stored in D_REGS, as we've got it from the
846 last go32_wait call. */
847
848 static CORE_ADDR
849 go32_get_dr (int i)
850 {
851 if (i < 0 || i > 3)
852 internal_error (__FILE__, __LINE__,
853 _("Invalid register %d in go32_get_dr.\n"), i);
854 return D_REGS[i];
855 }
856
857 /* Put the device open on handle FD into either raw or cooked
858 mode, return 1 if it was in raw mode, zero otherwise. */
859
860 static int
861 device_mode (int fd, int raw_p)
862 {
863 int oldmode, newmode;
864 __dpmi_regs regs;
865
866 regs.x.ax = 0x4400;
867 regs.x.bx = fd;
868 __dpmi_int (0x21, &regs);
869 if (regs.x.flags & 1)
870 return -1;
871 newmode = oldmode = regs.x.dx;
872
873 if (raw_p)
874 newmode |= 0x20;
875 else
876 newmode &= ~0x20;
877
878 if (oldmode & 0x80) /* Only for character dev. */
879 {
880 regs.x.ax = 0x4401;
881 regs.x.bx = fd;
882 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
883 __dpmi_int (0x21, &regs);
884 if (regs.x.flags & 1)
885 return -1;
886 }
887 return (oldmode & 0x20) == 0x20;
888 }
889
890
891 static int inf_mode_valid = 0;
892 static int inf_terminal_mode;
893
894 /* This semaphore is needed because, amazingly enough, GDB calls
895 target.to_terminal_ours more than once after the inferior stops.
896 But we need the information from the first call only, since the
897 second call will always see GDB's own cooked terminal. */
898 static int terminal_is_ours = 1;
899
900 void
901 go32_nat_target::terminal_init ()
902 {
903 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
904 terminal_is_ours = 1;
905 }
906
907 void
908 go32_nat_target::terminal_info (const char *args, int from_tty)
909 {
910 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
911 !inf_mode_valid
912 ? "default" : inf_terminal_mode ? "raw" : "cooked");
913
914 #if __DJGPP_MINOR__ > 2
915 if (child_cmd.redirection)
916 {
917 int i;
918
919 for (i = 0; i < DBG_HANDLES; i++)
920 {
921 if (child_cmd.redirection[i]->file_name)
922 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
923 i, child_cmd.redirection[i]->file_name);
924 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
925 printf_unfiltered
926 ("\tFile handle %d appears to be closed by inferior.\n", i);
927 /* Mask off the raw/cooked bit when comparing device info words. */
928 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
929 != (_get_dev_info (i) & 0xdf))
930 printf_unfiltered
931 ("\tFile handle %d appears to be redirected by inferior.\n", i);
932 }
933 }
934 #endif
935 }
936
937 void
938 go32_nat_target::terminal_inferior ()
939 {
940 /* Redirect standard handles as child wants them. */
941 errno = 0;
942 if (redir_to_child (&child_cmd) == -1)
943 {
944 redir_to_debugger (&child_cmd);
945 error (_("Cannot redirect standard handles for program: %s."),
946 safe_strerror (errno));
947 }
948 /* Set the console device of the inferior to whatever mode
949 (raw or cooked) we found it last time. */
950 if (terminal_is_ours)
951 {
952 if (inf_mode_valid)
953 device_mode (0, inf_terminal_mode);
954 terminal_is_ours = 0;
955 }
956 }
957
958 void
959 go32_nat_target::terminal_ours ()
960 {
961 /* Switch to cooked mode on the gdb terminal and save the inferior
962 terminal mode to be restored when it is resumed. */
963 if (!terminal_is_ours)
964 {
965 inf_terminal_mode = device_mode (0, 0);
966 if (inf_terminal_mode != -1)
967 inf_mode_valid = 1;
968 else
969 /* If device_mode returned -1, we don't know what happens with
970 handle 0 anymore, so make the info invalid. */
971 inf_mode_valid = 0;
972 terminal_is_ours = 1;
973
974 /* Restore debugger's standard handles. */
975 errno = 0;
976 if (redir_to_debugger (&child_cmd) == -1)
977 {
978 redir_to_child (&child_cmd);
979 error (_("Cannot redirect standard handles for debugger: %s."),
980 safe_strerror (errno));
981 }
982 }
983 }
984
985 void
986 go32_nat_target::pass_ctrlc ()
987 {
988 }
989
990 bool
991 go32_nat_target::thread_alive (ptid_t ptid)
992 {
993 return ptid != null_ptid;
994 }
995
996 std::string
997 go32_nat_target::pid_to_str (ptid_t ptid)
998 {
999 return normal_pid_to_str (ptid);
1000 }
1001
1002 /* Return the current DOS codepage number. */
1003 static int
1004 dos_codepage (void)
1005 {
1006 __dpmi_regs regs;
1007
1008 regs.x.ax = 0x6601;
1009 __dpmi_int (0x21, &regs);
1010 if (!(regs.x.flags & 1))
1011 return regs.x.bx & 0xffff;
1012 else
1013 return 437; /* default */
1014 }
1015
1016 /* Limited emulation of `nl_langinfo', for charset.c. */
1017 char *
1018 nl_langinfo (nl_item item)
1019 {
1020 char *retval;
1021
1022 switch (item)
1023 {
1024 case CODESET:
1025 {
1026 /* 8 is enough for SHORT_MAX + "CP" + null. */
1027 char buf[8];
1028 int blen = sizeof (buf);
1029 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1030
1031 if (needed > blen) /* Should never happen. */
1032 buf[0] = 0;
1033 retval = xstrdup (buf);
1034 }
1035 break;
1036 default:
1037 retval = xstrdup ("");
1038 break;
1039 }
1040 return retval;
1041 }
1042
1043 unsigned short windows_major, windows_minor;
1044
1045 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1046 static void
1047 go32_get_windows_version(void)
1048 {
1049 __dpmi_regs r;
1050
1051 r.x.ax = 0x1600;
1052 __dpmi_int(0x2f, &r);
1053 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1054 && (r.h.al > 3 || r.h.ah > 0))
1055 {
1056 windows_major = r.h.al;
1057 windows_minor = r.h.ah;
1058 }
1059 else
1060 windows_major = 0xff; /* meaning no Windows */
1061 }
1062
1063 /* A subroutine of go32_sysinfo to display memory info. */
1064 static void
1065 print_mem (unsigned long datum, const char *header, int in_pages_p)
1066 {
1067 if (datum != 0xffffffffUL)
1068 {
1069 if (in_pages_p)
1070 datum <<= 12;
1071 puts_filtered (header);
1072 if (datum > 1024)
1073 {
1074 printf_filtered ("%lu KB", datum >> 10);
1075 if (datum > 1024 * 1024)
1076 printf_filtered (" (%lu MB)", datum >> 20);
1077 }
1078 else
1079 printf_filtered ("%lu Bytes", datum);
1080 puts_filtered ("\n");
1081 }
1082 }
1083
1084 /* Display assorted information about the underlying OS. */
1085 static void
1086 go32_sysinfo (const char *arg, int from_tty)
1087 {
1088 static const char test_pattern[] =
1089 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1090 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1091 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1092 struct utsname u;
1093 char cpuid_vendor[13];
1094 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1095 unsigned true_dos_version = _get_dos_version (1);
1096 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1097 int dpmi_flags;
1098 char dpmi_vendor_info[129];
1099 int dpmi_vendor_available;
1100 __dpmi_version_ret dpmi_version_data;
1101 long eflags;
1102 __dpmi_free_mem_info mem_info;
1103 __dpmi_regs regs;
1104
1105 cpuid_vendor[0] = '\0';
1106 if (uname (&u))
1107 strcpy (u.machine, "Unknown x86");
1108 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1109 {
1110 /* CPUID with EAX = 0 returns the Vendor ID. */
1111 #if 0
1112 /* Ideally we would use x86_cpuid(), but it needs someone to run
1113 native tests first to make sure things actually work. They should.
1114 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1115 unsigned int eax, ebx, ecx, edx;
1116
1117 if (x86_cpuid (0, &eax, &ebx, &ecx, &edx))
1118 {
1119 cpuid_max = eax;
1120 memcpy (&vendor[0], &ebx, 4);
1121 memcpy (&vendor[4], &ecx, 4);
1122 memcpy (&vendor[8], &edx, 4);
1123 cpuid_vendor[12] = '\0';
1124 }
1125 #else
1126 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1127 "xorl %%ecx, %%ecx;"
1128 "xorl %%edx, %%edx;"
1129 "movl $0, %%eax;"
1130 "cpuid;"
1131 "movl %%ebx, %0;"
1132 "movl %%edx, %1;"
1133 "movl %%ecx, %2;"
1134 "movl %%eax, %3;"
1135 : "=m" (cpuid_vendor[0]),
1136 "=m" (cpuid_vendor[4]),
1137 "=m" (cpuid_vendor[8]),
1138 "=m" (cpuid_max)
1139 :
1140 : "%eax", "%ebx", "%ecx", "%edx");
1141 cpuid_vendor[12] = '\0';
1142 #endif
1143 }
1144
1145 printf_filtered ("CPU Type.......................%s", u.machine);
1146 if (cpuid_vendor[0])
1147 printf_filtered (" (%s)", cpuid_vendor);
1148 puts_filtered ("\n");
1149
1150 /* CPUID with EAX = 1 returns processor signature and features. */
1151 if (cpuid_max >= 1)
1152 {
1153 static const char *brand_name[] = {
1154 "",
1155 " Celeron",
1156 " III",
1157 " III Xeon",
1158 "", "", "", "",
1159 " 4"
1160 };
1161 char cpu_string[80];
1162 char cpu_brand[20];
1163 unsigned brand_idx;
1164 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1165 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1166 int hygon_p = strcmp (cpuid_vendor, "HygonGenuine") == 0;
1167 unsigned cpu_family, cpu_model;
1168
1169 #if 0
1170 /* See comment above about cpuid usage. */
1171 x86_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1172 #else
1173 __asm__ __volatile__ ("movl $1, %%eax;"
1174 "cpuid;"
1175 : "=a" (cpuid_eax),
1176 "=b" (cpuid_ebx),
1177 "=d" (cpuid_edx)
1178 :
1179 : "%ecx");
1180 #endif
1181 brand_idx = cpuid_ebx & 0xff;
1182 cpu_family = (cpuid_eax >> 8) & 0xf;
1183 cpu_model = (cpuid_eax >> 4) & 0xf;
1184 cpu_brand[0] = '\0';
1185 if (intel_p)
1186 {
1187 if (brand_idx > 0
1188 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1189 && *brand_name[brand_idx])
1190 strcpy (cpu_brand, brand_name[brand_idx]);
1191 else if (cpu_family == 5)
1192 {
1193 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1194 strcpy (cpu_brand, " MMX");
1195 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1196 strcpy (cpu_brand, " OverDrive");
1197 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1198 strcpy (cpu_brand, " Dual");
1199 }
1200 else if (cpu_family == 6 && cpu_model < 8)
1201 {
1202 switch (cpu_model)
1203 {
1204 case 1:
1205 strcpy (cpu_brand, " Pro");
1206 break;
1207 case 3:
1208 strcpy (cpu_brand, " II");
1209 break;
1210 case 5:
1211 strcpy (cpu_brand, " II Xeon");
1212 break;
1213 case 6:
1214 strcpy (cpu_brand, " Celeron");
1215 break;
1216 case 7:
1217 strcpy (cpu_brand, " III");
1218 break;
1219 }
1220 }
1221 }
1222 else if (amd_p)
1223 {
1224 switch (cpu_family)
1225 {
1226 case 4:
1227 strcpy (cpu_brand, "486/5x86");
1228 break;
1229 case 5:
1230 switch (cpu_model)
1231 {
1232 case 0:
1233 case 1:
1234 case 2:
1235 case 3:
1236 strcpy (cpu_brand, "-K5");
1237 break;
1238 case 6:
1239 case 7:
1240 strcpy (cpu_brand, "-K6");
1241 break;
1242 case 8:
1243 strcpy (cpu_brand, "-K6-2");
1244 break;
1245 case 9:
1246 strcpy (cpu_brand, "-K6-III");
1247 break;
1248 }
1249 break;
1250 case 6:
1251 switch (cpu_model)
1252 {
1253 case 1:
1254 case 2:
1255 case 4:
1256 strcpy (cpu_brand, " Athlon");
1257 break;
1258 case 3:
1259 strcpy (cpu_brand, " Duron");
1260 break;
1261 }
1262 break;
1263 }
1264 }
1265 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1266 intel_p ? "Pentium" : (amd_p ? "AMD" : (hygon_p ? "Hygon" : "ix86")),
1267 cpu_brand, cpu_model, cpuid_eax & 0xf);
1268 printfi_filtered (31, "%s\n", cpu_string);
1269 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1270 || ((cpuid_edx & 1) == 0)
1271 || ((amd_p || hygon_p) && (cpuid_edx & (3 << 30)) != 0))
1272 {
1273 puts_filtered ("CPU Features...................");
1274 /* We only list features which might be useful in the DPMI
1275 environment. */
1276 if ((cpuid_edx & 1) == 0)
1277 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1278 if ((cpuid_edx & (1 << 1)) != 0)
1279 puts_filtered ("VME ");
1280 if ((cpuid_edx & (1 << 2)) != 0)
1281 puts_filtered ("DE ");
1282 if ((cpuid_edx & (1 << 4)) != 0)
1283 puts_filtered ("TSC ");
1284 if ((cpuid_edx & (1 << 23)) != 0)
1285 puts_filtered ("MMX ");
1286 if ((cpuid_edx & (1 << 25)) != 0)
1287 puts_filtered ("SSE ");
1288 if ((cpuid_edx & (1 << 26)) != 0)
1289 puts_filtered ("SSE2 ");
1290 if (amd_p || hygon_p)
1291 {
1292 if ((cpuid_edx & (1 << 31)) != 0)
1293 puts_filtered ("3DNow! ");
1294 if ((cpuid_edx & (1 << 30)) != 0)
1295 puts_filtered ("3DNow!Ext");
1296 }
1297 puts_filtered ("\n");
1298 }
1299 }
1300 puts_filtered ("\n");
1301 printf_filtered ("DOS Version....................%s %s.%s",
1302 _os_flavor, u.release, u.version);
1303 if (true_dos_version != advertized_dos_version)
1304 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1305 puts_filtered ("\n");
1306 if (!windows_major)
1307 go32_get_windows_version ();
1308 if (windows_major != 0xff)
1309 {
1310 const char *windows_flavor;
1311
1312 printf_filtered ("Windows Version................%d.%02d (Windows ",
1313 windows_major, windows_minor);
1314 switch (windows_major)
1315 {
1316 case 3:
1317 windows_flavor = "3.X";
1318 break;
1319 case 4:
1320 switch (windows_minor)
1321 {
1322 case 0:
1323 windows_flavor = "95, 95A, or 95B";
1324 break;
1325 case 3:
1326 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1327 break;
1328 case 10:
1329 windows_flavor = "98 or 98 SE";
1330 break;
1331 case 90:
1332 windows_flavor = "ME";
1333 break;
1334 default:
1335 windows_flavor = "9X";
1336 break;
1337 }
1338 break;
1339 default:
1340 windows_flavor = "??";
1341 break;
1342 }
1343 printf_filtered ("%s)\n", windows_flavor);
1344 }
1345 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1346 printf_filtered ("Windows Version................"
1347 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1348 puts_filtered ("\n");
1349 /* On some versions of Windows, __dpmi_get_capabilities returns
1350 zero, but the buffer is not filled with info, so we fill the
1351 buffer with a known pattern and test for it afterwards. */
1352 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1353 dpmi_vendor_available =
1354 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1355 if (dpmi_vendor_available == 0
1356 && memcmp (dpmi_vendor_info, test_pattern,
1357 sizeof(dpmi_vendor_info)) != 0)
1358 {
1359 /* The DPMI spec says the vendor string should be ASCIIZ, but
1360 I don't trust the vendors to follow that... */
1361 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1362 dpmi_vendor_info[128] = '\0';
1363 printf_filtered ("DPMI Host......................"
1364 "%s v%d.%d (capabilities: %#x)\n",
1365 &dpmi_vendor_info[2],
1366 (unsigned)dpmi_vendor_info[0],
1367 (unsigned)dpmi_vendor_info[1],
1368 ((unsigned)dpmi_flags & 0x7f));
1369 }
1370 else
1371 printf_filtered ("DPMI Host......................(Info not available)\n");
1372 __dpmi_get_version (&dpmi_version_data);
1373 printf_filtered ("DPMI Version...................%d.%02d\n",
1374 dpmi_version_data.major, dpmi_version_data.minor);
1375 printf_filtered ("DPMI Info......................"
1376 "%s-bit DPMI, with%s Virtual Memory support\n",
1377 (dpmi_version_data.flags & 1) ? "32" : "16",
1378 (dpmi_version_data.flags & 4) ? "" : "out");
1379 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1380 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1381 printfi_filtered (31, "Processor type: i%d86\n",
1382 dpmi_version_data.cpu);
1383 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1384 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1385
1386 /* a_tss is only initialized when the debuggee is first run. */
1387 if (prog_has_started)
1388 {
1389 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1390 printf_filtered ("Protection....................."
1391 "Ring %d (in %s), with%s I/O protection\n",
1392 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1393 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1394 }
1395 puts_filtered ("\n");
1396 __dpmi_get_free_memory_information (&mem_info);
1397 print_mem (mem_info.total_number_of_physical_pages,
1398 "DPMI Total Physical Memory.....", 1);
1399 print_mem (mem_info.total_number_of_free_pages,
1400 "DPMI Free Physical Memory......", 1);
1401 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1402 "DPMI Swap Space................", 1);
1403 print_mem (mem_info.linear_address_space_size_in_pages,
1404 "DPMI Total Linear Address Size.", 1);
1405 print_mem (mem_info.free_linear_address_space_in_pages,
1406 "DPMI Free Linear Address Size..", 1);
1407 print_mem (mem_info.largest_available_free_block_in_bytes,
1408 "DPMI Largest Free Memory Block.", 0);
1409
1410 regs.h.ah = 0x48;
1411 regs.x.bx = 0xffff;
1412 __dpmi_int (0x21, &regs);
1413 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1414 regs.x.ax = 0x5800;
1415 __dpmi_int (0x21, &regs);
1416 if ((regs.x.flags & 1) == 0)
1417 {
1418 static const char *dos_hilo[] = {
1419 "Low", "", "", "", "High", "", "", "", "High, then Low"
1420 };
1421 static const char *dos_fit[] = {
1422 "First", "Best", "Last"
1423 };
1424 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1425 int fit_idx = regs.x.ax & 0x0f;
1426
1427 if (hilo_idx > 8)
1428 hilo_idx = 0;
1429 if (fit_idx > 2)
1430 fit_idx = 0;
1431 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1432 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1433 regs.x.ax = 0x5802;
1434 __dpmi_int (0x21, &regs);
1435 if ((regs.x.flags & 1) != 0)
1436 regs.h.al = 0;
1437 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1438 regs.h.al == 0 ? "not " : "");
1439 }
1440 }
1441
1442 struct seg_descr {
1443 unsigned short limit0;
1444 unsigned short base0;
1445 unsigned char base1;
1446 unsigned stype:5;
1447 unsigned dpl:2;
1448 unsigned present:1;
1449 unsigned limit1:4;
1450 unsigned available:1;
1451 unsigned dummy:1;
1452 unsigned bit32:1;
1453 unsigned page_granular:1;
1454 unsigned char base2;
1455 } __attribute__ ((packed));
1456
1457 struct gate_descr {
1458 unsigned short offset0;
1459 unsigned short selector;
1460 unsigned param_count:5;
1461 unsigned dummy:3;
1462 unsigned stype:5;
1463 unsigned dpl:2;
1464 unsigned present:1;
1465 unsigned short offset1;
1466 } __attribute__ ((packed));
1467
1468 /* Read LEN bytes starting at logical address ADDR, and put the result
1469 into DEST. Return 1 if success, zero if not. */
1470 static int
1471 read_memory_region (unsigned long addr, void *dest, size_t len)
1472 {
1473 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1474 int retval = 1;
1475
1476 /* For the low memory, we can simply use _dos_ds. */
1477 if (addr <= dos_ds_limit - len)
1478 dosmemget (addr, len, dest);
1479 else
1480 {
1481 /* For memory above 1MB we need to set up a special segment to
1482 be able to access that memory. */
1483 int sel = __dpmi_allocate_ldt_descriptors (1);
1484
1485 if (sel <= 0)
1486 retval = 0;
1487 else
1488 {
1489 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1490 size_t segment_limit = len - 1;
1491
1492 /* Make sure the crucial bits in the descriptor access
1493 rights are set correctly. Some DPMI providers might barf
1494 if we set the segment limit to something that is not an
1495 integral multiple of 4KB pages if the granularity bit is
1496 not set to byte-granular, even though the DPMI spec says
1497 it's the host's responsibility to set that bit correctly. */
1498 if (len > 1024 * 1024)
1499 {
1500 access_rights |= 0x8000;
1501 /* Page-granular segments should have the low 12 bits of
1502 the limit set. */
1503 segment_limit |= 0xfff;
1504 }
1505 else
1506 access_rights &= ~0x8000;
1507
1508 if (__dpmi_set_segment_base_address (sel, addr) != -1
1509 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1510 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1511 /* W2K silently fails to set the segment limit, leaving
1512 it at zero; this test avoids the resulting crash. */
1513 && __dpmi_get_segment_limit (sel) >= segment_limit)
1514 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1515 else
1516 retval = 0;
1517
1518 __dpmi_free_ldt_descriptor (sel);
1519 }
1520 }
1521 return retval;
1522 }
1523
1524 /* Get a segment descriptor stored at index IDX in the descriptor
1525 table whose base address is TABLE_BASE. Return the descriptor
1526 type, or -1 if failure. */
1527 static int
1528 get_descriptor (unsigned long table_base, int idx, void *descr)
1529 {
1530 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1531
1532 if (read_memory_region (addr, descr, 8))
1533 return (int)((struct seg_descr *)descr)->stype;
1534 return -1;
1535 }
1536
1537 struct dtr_reg {
1538 unsigned short limit __attribute__((packed));
1539 unsigned long base __attribute__((packed));
1540 };
1541
1542 /* Display a segment descriptor stored at index IDX in a descriptor
1543 table whose type is TYPE and whose base address is BASE_ADDR. If
1544 FORCE is non-zero, display even invalid descriptors. */
1545 static void
1546 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1547 {
1548 struct seg_descr descr;
1549 struct gate_descr gate;
1550
1551 /* Get the descriptor from the table. */
1552 if (idx == 0 && type == 0)
1553 puts_filtered ("0x000: null descriptor\n");
1554 else if (get_descriptor (base_addr, idx, &descr) != -1)
1555 {
1556 /* For each type of descriptor table, this has a bit set if the
1557 corresponding type of selectors is valid in that table. */
1558 static unsigned allowed_descriptors[] = {
1559 0xffffdafeL, /* GDT */
1560 0x0000c0e0L, /* IDT */
1561 0xffffdafaL /* LDT */
1562 };
1563
1564 /* If the program hasn't started yet, assume the debuggee will
1565 have the same CPL as the debugger. */
1566 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1567 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1568
1569 if (descr.present
1570 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1571 {
1572 printf_filtered ("0x%03x: ",
1573 type == 1
1574 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1575 if (descr.page_granular)
1576 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1577 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1578 || descr.stype == 9 || descr.stype == 11
1579 || (descr.stype >= 16 && descr.stype < 32))
1580 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1581 descr.base2, descr.base1, descr.base0, limit);
1582
1583 switch (descr.stype)
1584 {
1585 case 1:
1586 case 3:
1587 printf_filtered (" 16-bit TSS (task %sactive)",
1588 descr.stype == 3 ? "" : "in");
1589 break;
1590 case 2:
1591 puts_filtered (" LDT");
1592 break;
1593 case 4:
1594 memcpy (&gate, &descr, sizeof gate);
1595 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1596 gate.selector, gate.offset1, gate.offset0);
1597 printf_filtered (" 16-bit Call Gate (params=%d)",
1598 gate.param_count);
1599 break;
1600 case 5:
1601 printf_filtered ("TSS selector=0x%04x", descr.base0);
1602 printfi_filtered (16, "Task Gate");
1603 break;
1604 case 6:
1605 case 7:
1606 memcpy (&gate, &descr, sizeof gate);
1607 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1608 gate.selector, gate.offset1, gate.offset0);
1609 printf_filtered (" 16-bit %s Gate",
1610 descr.stype == 6 ? "Interrupt" : "Trap");
1611 break;
1612 case 9:
1613 case 11:
1614 printf_filtered (" 32-bit TSS (task %sactive)",
1615 descr.stype == 3 ? "" : "in");
1616 break;
1617 case 12:
1618 memcpy (&gate, &descr, sizeof gate);
1619 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1620 gate.selector, gate.offset1, gate.offset0);
1621 printf_filtered (" 32-bit Call Gate (params=%d)",
1622 gate.param_count);
1623 break;
1624 case 14:
1625 case 15:
1626 memcpy (&gate, &descr, sizeof gate);
1627 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1628 gate.selector, gate.offset1, gate.offset0);
1629 printf_filtered (" 32-bit %s Gate",
1630 descr.stype == 14 ? "Interrupt" : "Trap");
1631 break;
1632 case 16: /* data segments */
1633 case 17:
1634 case 18:
1635 case 19:
1636 case 20:
1637 case 21:
1638 case 22:
1639 case 23:
1640 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1641 descr.bit32 ? "32" : "16",
1642 descr.stype & 2
1643 ? "Read/Write," : "Read-Only, ",
1644 descr.stype & 4 ? "down" : "up",
1645 descr.stype & 1 ? "" : ", N.Acc");
1646 break;
1647 case 24: /* code segments */
1648 case 25:
1649 case 26:
1650 case 27:
1651 case 28:
1652 case 29:
1653 case 30:
1654 case 31:
1655 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1656 descr.bit32 ? "32" : "16",
1657 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1658 descr.stype & 4 ? "" : "N.",
1659 descr.stype & 1 ? "" : ", N.Acc");
1660 break;
1661 default:
1662 printf_filtered ("Unknown type 0x%02x", descr.stype);
1663 break;
1664 }
1665 puts_filtered ("\n");
1666 }
1667 else if (force)
1668 {
1669 printf_filtered ("0x%03x: ",
1670 type == 1
1671 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1672 if (!descr.present)
1673 puts_filtered ("Segment not present\n");
1674 else
1675 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1676 descr.stype);
1677 }
1678 }
1679 else if (force)
1680 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1681 }
1682
1683 static void
1684 go32_sldt (const char *arg, int from_tty)
1685 {
1686 struct dtr_reg gdtr;
1687 unsigned short ldtr = 0;
1688 int ldt_idx;
1689 struct seg_descr ldt_descr;
1690 long ldt_entry = -1L;
1691 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1692
1693 if (arg && *arg)
1694 {
1695 arg = skip_spaces (arg);
1696
1697 if (*arg)
1698 {
1699 ldt_entry = parse_and_eval_long (arg);
1700 if (ldt_entry < 0
1701 || (ldt_entry & 4) == 0
1702 || (ldt_entry & 3) != (cpl & 3))
1703 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1704 }
1705 }
1706
1707 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1708 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1709 ldt_idx = ldtr / 8;
1710 if (ldt_idx == 0)
1711 puts_filtered ("There is no LDT.\n");
1712 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1713 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1714 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1715 ldt_descr.base0
1716 | (ldt_descr.base1 << 16)
1717 | (ldt_descr.base2 << 24));
1718 else
1719 {
1720 unsigned base =
1721 ldt_descr.base0
1722 | (ldt_descr.base1 << 16)
1723 | (ldt_descr.base2 << 24);
1724 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1725 int max_entry;
1726
1727 if (ldt_descr.page_granular)
1728 /* Page-granular segments must have the low 12 bits of their
1729 limit set. */
1730 limit = (limit << 12) | 0xfff;
1731 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1732 64KB. */
1733 if (limit > 0xffff)
1734 limit = 0xffff;
1735
1736 max_entry = (limit + 1) / 8;
1737
1738 if (ldt_entry >= 0)
1739 {
1740 if (ldt_entry > limit)
1741 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1742 (unsigned long)ldt_entry, limit);
1743
1744 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1745 }
1746 else
1747 {
1748 int i;
1749
1750 for (i = 0; i < max_entry; i++)
1751 display_descriptor (ldt_descr.stype, base, i, 0);
1752 }
1753 }
1754 }
1755
1756 static void
1757 go32_sgdt (const char *arg, int from_tty)
1758 {
1759 struct dtr_reg gdtr;
1760 long gdt_entry = -1L;
1761 int max_entry;
1762
1763 if (arg && *arg)
1764 {
1765 arg = skip_spaces (arg);
1766
1767 if (*arg)
1768 {
1769 gdt_entry = parse_and_eval_long (arg);
1770 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1771 error (_("Invalid GDT entry 0x%03lx: "
1772 "not an integral multiple of 8."),
1773 (unsigned long)gdt_entry);
1774 }
1775 }
1776
1777 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1778 max_entry = (gdtr.limit + 1) / 8;
1779
1780 if (gdt_entry >= 0)
1781 {
1782 if (gdt_entry > gdtr.limit)
1783 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1784 (unsigned long)gdt_entry, gdtr.limit);
1785
1786 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1787 }
1788 else
1789 {
1790 int i;
1791
1792 for (i = 0; i < max_entry; i++)
1793 display_descriptor (0, gdtr.base, i, 0);
1794 }
1795 }
1796
1797 static void
1798 go32_sidt (const char *arg, int from_tty)
1799 {
1800 struct dtr_reg idtr;
1801 long idt_entry = -1L;
1802 int max_entry;
1803
1804 if (arg && *arg)
1805 {
1806 arg = skip_spaces (arg);
1807
1808 if (*arg)
1809 {
1810 idt_entry = parse_and_eval_long (arg);
1811 if (idt_entry < 0)
1812 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1813 }
1814 }
1815
1816 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1817 max_entry = (idtr.limit + 1) / 8;
1818 if (max_entry > 0x100) /* No more than 256 entries. */
1819 max_entry = 0x100;
1820
1821 if (idt_entry >= 0)
1822 {
1823 if (idt_entry > idtr.limit)
1824 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1825 (unsigned long)idt_entry, idtr.limit);
1826
1827 display_descriptor (1, idtr.base, idt_entry, 1);
1828 }
1829 else
1830 {
1831 int i;
1832
1833 for (i = 0; i < max_entry; i++)
1834 display_descriptor (1, idtr.base, i, 0);
1835 }
1836 }
1837
1838 /* Cached linear address of the base of the page directory. For
1839 now, available only under CWSDPMI. Code based on ideas and
1840 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1841 static unsigned long pdbr;
1842
1843 static unsigned long
1844 get_cr3 (void)
1845 {
1846 unsigned offset;
1847 unsigned taskreg;
1848 unsigned long taskbase, cr3;
1849 struct dtr_reg gdtr;
1850
1851 if (pdbr > 0 && pdbr <= 0xfffff)
1852 return pdbr;
1853
1854 /* Get the linear address of GDT and the Task Register. */
1855 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1856 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1857
1858 /* Task Register is a segment selector for the TSS of the current
1859 task. Therefore, it can be used as an index into the GDT to get
1860 at the segment descriptor for the TSS. To get the index, reset
1861 the low 3 bits of the selector (which give the CPL). Add 2 to the
1862 offset to point to the 3 low bytes of the base address. */
1863 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1864
1865
1866 /* CWSDPMI's task base is always under the 1MB mark. */
1867 if (offset > 0xfffff)
1868 return 0;
1869
1870 _farsetsel (_dos_ds);
1871 taskbase = _farnspeekl (offset) & 0xffffffU;
1872 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1873 if (taskbase > 0xfffff)
1874 return 0;
1875
1876 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1877 offset 1Ch in the TSS. */
1878 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1879 if (cr3 > 0xfffff)
1880 {
1881 #if 0 /* Not fully supported yet. */
1882 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1883 the first Page Table right below the Page Directory. Thus,
1884 the first Page Table's entry for its own address and the Page
1885 Directory entry for that Page Table will hold the same
1886 physical address. The loop below searches the entire UMB
1887 range of addresses for such an occurrence. */
1888 unsigned long addr, pte_idx;
1889
1890 for (addr = 0xb0000, pte_idx = 0xb0;
1891 pte_idx < 0xff;
1892 addr += 0x1000, pte_idx++)
1893 {
1894 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1895 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1896 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1897 {
1898 cr3 = addr + 0x1000;
1899 break;
1900 }
1901 }
1902 #endif
1903
1904 if (cr3 > 0xfffff)
1905 cr3 = 0;
1906 }
1907
1908 return cr3;
1909 }
1910
1911 /* Return the N'th Page Directory entry. */
1912 static unsigned long
1913 get_pde (int n)
1914 {
1915 unsigned long pde = 0;
1916
1917 if (pdbr && n >= 0 && n < 1024)
1918 {
1919 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1920 }
1921 return pde;
1922 }
1923
1924 /* Return the N'th entry of the Page Table whose Page Directory entry
1925 is PDE. */
1926 static unsigned long
1927 get_pte (unsigned long pde, int n)
1928 {
1929 unsigned long pte = 0;
1930
1931 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1932 page tables, for now. */
1933 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1934 {
1935 pde &= ~0xfff; /* Clear non-address bits. */
1936 pte = _farpeekl (_dos_ds, pde + 4*n);
1937 }
1938 return pte;
1939 }
1940
1941 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1942 says this is a Page Directory entry. If FORCE is non-zero, display
1943 the entry even if its Present flag is off. OFF is the offset of the
1944 address from the page's base address. */
1945 static void
1946 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1947 {
1948 if ((entry & 1) != 0)
1949 {
1950 printf_filtered ("Base=0x%05lx000", entry >> 12);
1951 if ((entry & 0x100) && !is_dir)
1952 puts_filtered (" Global");
1953 if ((entry & 0x40) && !is_dir)
1954 puts_filtered (" Dirty");
1955 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1956 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1957 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1958 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1959 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1960 if (off)
1961 printf_filtered (" +0x%x", off);
1962 puts_filtered ("\n");
1963 }
1964 else if (force)
1965 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1966 is_dir ? " Table" : "", entry >> 1);
1967 }
1968
1969 static void
1970 go32_pde (const char *arg, int from_tty)
1971 {
1972 long pde_idx = -1, i;
1973
1974 if (arg && *arg)
1975 {
1976 arg = skip_spaces (arg);
1977
1978 if (*arg)
1979 {
1980 pde_idx = parse_and_eval_long (arg);
1981 if (pde_idx < 0 || pde_idx >= 1024)
1982 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
1983 }
1984 }
1985
1986 pdbr = get_cr3 ();
1987 if (!pdbr)
1988 puts_filtered ("Access to Page Directories is "
1989 "not supported on this system.\n");
1990 else if (pde_idx >= 0)
1991 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
1992 else
1993 for (i = 0; i < 1024; i++)
1994 display_ptable_entry (get_pde (i), 1, 0, 0);
1995 }
1996
1997 /* A helper function to display entries in a Page Table pointed to by
1998 the N'th entry in the Page Directory. If FORCE is non-zero, say
1999 something even if the Page Table is not accessible. */
2000 static void
2001 display_page_table (long n, int force)
2002 {
2003 unsigned long pde = get_pde (n);
2004
2005 if ((pde & 1) != 0)
2006 {
2007 int i;
2008
2009 printf_filtered ("Page Table pointed to by "
2010 "Page Directory entry 0x%lx:\n", n);
2011 for (i = 0; i < 1024; i++)
2012 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2013 puts_filtered ("\n");
2014 }
2015 else if (force)
2016 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2017 }
2018
2019 static void
2020 go32_pte (const char *arg, int from_tty)
2021 {
2022 long pde_idx = -1L, i;
2023
2024 if (arg && *arg)
2025 {
2026 arg = skip_spaces (arg);
2027
2028 if (*arg)
2029 {
2030 pde_idx = parse_and_eval_long (arg);
2031 if (pde_idx < 0 || pde_idx >= 1024)
2032 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2033 }
2034 }
2035
2036 pdbr = get_cr3 ();
2037 if (!pdbr)
2038 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2039 else if (pde_idx >= 0)
2040 display_page_table (pde_idx, 1);
2041 else
2042 for (i = 0; i < 1024; i++)
2043 display_page_table (i, 0);
2044 }
2045
2046 static void
2047 go32_pte_for_address (const char *arg, int from_tty)
2048 {
2049 CORE_ADDR addr = 0, i;
2050
2051 if (arg && *arg)
2052 {
2053 arg = skip_spaces (arg);
2054
2055 if (*arg)
2056 addr = parse_and_eval_address (arg);
2057 }
2058 if (!addr)
2059 error_no_arg (_("linear address"));
2060
2061 pdbr = get_cr3 ();
2062 if (!pdbr)
2063 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2064 else
2065 {
2066 int pde_idx = (addr >> 22) & 0x3ff;
2067 int pte_idx = (addr >> 12) & 0x3ff;
2068 unsigned offs = addr & 0xfff;
2069
2070 printf_filtered ("Page Table entry for address %s:\n",
2071 hex_string(addr));
2072 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2073 }
2074 }
2075
2076 static struct cmd_list_element *info_dos_cmdlist = NULL;
2077
2078 static void
2079 go32_info_dos_command (const char *args, int from_tty)
2080 {
2081 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2082 }
2083
2084 void
2085 _initialize_go32_nat (void)
2086 {
2087 x86_dr_low.set_control = go32_set_dr7;
2088 x86_dr_low.set_addr = go32_set_dr;
2089 x86_dr_low.get_status = go32_get_dr6;
2090 x86_dr_low.get_control = go32_get_dr7;
2091 x86_dr_low.get_addr = go32_get_dr;
2092 x86_set_debug_register_length (4);
2093
2094 add_inf_child_target (&the_go32_nat_target);
2095
2096 /* Initialize child's cwd as empty to be initialized when starting
2097 the child. */
2098 *child_cwd = 0;
2099
2100 /* Initialize child's command line storage. */
2101 if (redir_debug_init (&child_cmd) == -1)
2102 internal_error (__FILE__, __LINE__,
2103 _("Cannot allocate redirection storage: "
2104 "not enough memory.\n"));
2105
2106 /* We are always processing GCC-compiled programs. */
2107 processing_gcc_compilation = 2;
2108
2109 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2110 Print information specific to DJGPP (aka MS-DOS) debugging."),
2111 &info_dos_cmdlist, "info dos ", 0, &infolist);
2112
2113 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2114 Display information about the target system, including CPU, OS, DPMI, etc."),
2115 &info_dos_cmdlist);
2116 add_cmd ("ldt", class_info, go32_sldt, _("\
2117 Display entries in the LDT (Local Descriptor Table).\n\
2118 Entry number (an expression) as an argument means display only that entry."),
2119 &info_dos_cmdlist);
2120 add_cmd ("gdt", class_info, go32_sgdt, _("\
2121 Display entries in the GDT (Global Descriptor Table).\n\
2122 Entry number (an expression) as an argument means display only that entry."),
2123 &info_dos_cmdlist);
2124 add_cmd ("idt", class_info, go32_sidt, _("\
2125 Display entries in the IDT (Interrupt Descriptor Table).\n\
2126 Entry number (an expression) as an argument means display only that entry."),
2127 &info_dos_cmdlist);
2128 add_cmd ("pde", class_info, go32_pde, _("\
2129 Display entries in the Page Directory.\n\
2130 Entry number (an expression) as an argument means display only that entry."),
2131 &info_dos_cmdlist);
2132 add_cmd ("pte", class_info, go32_pte, _("\
2133 Display entries in Page Tables.\n\
2134 Entry number (an expression) as an argument means display only entries\n\
2135 from the Page Table pointed to by the specified Page Directory entry."),
2136 &info_dos_cmdlist);
2137 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2138 Display a Page Table entry for a linear address.\n\
2139 The address argument must be a linear address, after adding to\n\
2140 it the base address of the appropriate segment.\n\
2141 The base address of variables and functions in the debuggee's data\n\
2142 or code segment is stored in the variable __djgpp_base_address,\n\
2143 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2144 For other segments, look up their base address in the output of\n\
2145 the `info dos ldt' command."),
2146 &info_dos_cmdlist);
2147 }
2148
2149 pid_t
2150 tcgetpgrp (int fd)
2151 {
2152 if (isatty (fd))
2153 return SOME_PID;
2154 errno = ENOTTY;
2155 return -1;
2156 }
2157
2158 int
2159 tcsetpgrp (int fd, pid_t pgid)
2160 {
2161 if (isatty (fd) && pgid == SOME_PID)
2162 return 0;
2163 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2164 return -1;
2165 }
This page took 0.075034 seconds and 4 git commands to generate.