Constify main.c:get_init_files.
[deliverable/binutils-gdb.git] / gdb / go32-nat.c
1 /* Native debugging support for Intel x86 running DJGPP.
2 Copyright (C) 1997-2013 Free Software Foundation, Inc.
3 Written by Robert Hoehne.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* To whomever it may concern, here's a general description of how
21 debugging in DJGPP works, and the special quirks GDB does to
22 support that.
23
24 When the DJGPP port of GDB is debugging a DJGPP program natively,
25 there aren't 2 separate processes, the debuggee and GDB itself, as
26 on other systems. (This is DOS, where there can only be one active
27 process at any given time, remember?) Instead, GDB and the
28 debuggee live in the same process. So when GDB calls
29 go32_create_inferior below, and that function calls edi_init from
30 the DJGPP debug support library libdbg.a, we load the debuggee's
31 executable file into GDB's address space, set it up for execution
32 as the stub loader (a short real-mode program prepended to each
33 DJGPP executable) normally would, and do a lot of preparations for
34 swapping between GDB's and debuggee's internal state, primarily wrt
35 the exception handlers. This swapping happens every time we resume
36 the debuggee or switch back to GDB's code, and it includes:
37
38 . swapping all the segment registers
39 . swapping the PSP (the Program Segment Prefix)
40 . swapping the signal handlers
41 . swapping the exception handlers
42 . swapping the FPU status
43 . swapping the 3 standard file handles (more about this below)
44
45 Then running the debuggee simply means longjmp into it where its PC
46 is and let it run until it stops for some reason. When it stops,
47 GDB catches the exception that stopped it and longjmp's back into
48 its own code. All the possible exit points of the debuggee are
49 watched; for example, the normal exit point is recognized because a
50 DOS program issues a special system call to exit. If one of those
51 exit points is hit, we mourn the inferior and clean up after it.
52 Cleaning up is very important, even if the process exits normally,
53 because otherwise we might leave behind traces of previous
54 execution, and in several cases GDB itself might be left hosed,
55 because all the exception handlers were not restored.
56
57 Swapping of the standard handles (in redir_to_child and
58 redir_to_debugger) is needed because, since both GDB and the
59 debuggee live in the same process, as far as the OS is concerned,
60 the share the same file table. This means that the standard
61 handles 0, 1, and 2 point to the same file table entries, and thus
62 are connected to the same devices. Therefore, if the debugger
63 redirects its standard output, the standard output of the debuggee
64 is also automagically redirected to the same file/device!
65 Similarly, if the debuggee redirects its stdout to a file, you
66 won't be able to see debugger's output (it will go to the same file
67 where the debuggee has its output); and if the debuggee closes its
68 standard input, you will lose the ability to talk to debugger!
69
70 For this reason, every time the debuggee is about to be resumed, we
71 call redir_to_child, which redirects the standard handles to where
72 the debuggee expects them to be. When the debuggee stops and GDB
73 regains control, we call redir_to_debugger, which redirects those 3
74 handles back to where GDB expects.
75
76 Note that only the first 3 handles are swapped, so if the debuggee
77 redirects or closes any other handles, GDB will not notice. In
78 particular, the exit code of a DJGPP program forcibly closes all
79 file handles beyond the first 3 ones, so when the debuggee exits,
80 GDB currently loses its stdaux and stdprn streams. Fortunately,
81 GDB does not use those as of this writing, and will never need
82 to. */
83
84 #include "defs.h"
85
86 #include <fcntl.h>
87
88 #include "i386-nat.h"
89 #include "inferior.h"
90 #include "gdbthread.h"
91 #include "gdb_wait.h"
92 #include "gdbcore.h"
93 #include "command.h"
94 #include "gdbcmd.h"
95 #include "floatformat.h"
96 #include "buildsym.h"
97 #include "i387-tdep.h"
98 #include "i386-tdep.h"
99 #include "i386-cpuid.h"
100 #include "value.h"
101 #include "regcache.h"
102 #include "gdb_string.h"
103 #include "top.h"
104 #include "cli/cli-utils.h"
105
106 #include <stdio.h> /* might be required for __DJGPP_MINOR__ */
107 #include <stdlib.h>
108 #include <ctype.h>
109 #include <errno.h>
110 #include <unistd.h>
111 #include <sys/utsname.h>
112 #include <io.h>
113 #include <dos.h>
114 #include <dpmi.h>
115 #include <go32.h>
116 #include <sys/farptr.h>
117 #include <debug/v2load.h>
118 #include <debug/dbgcom.h>
119 #if __DJGPP_MINOR__ > 2
120 #include <debug/redir.h>
121 #endif
122
123 #include <langinfo.h>
124
125 #if __DJGPP_MINOR__ < 3
126 /* This code will be provided from DJGPP 2.03 on. Until then I code it
127 here. */
128 typedef struct
129 {
130 unsigned short sig0;
131 unsigned short sig1;
132 unsigned short sig2;
133 unsigned short sig3;
134 unsigned short exponent:15;
135 unsigned short sign:1;
136 }
137 NPXREG;
138
139 typedef struct
140 {
141 unsigned int control;
142 unsigned int status;
143 unsigned int tag;
144 unsigned int eip;
145 unsigned int cs;
146 unsigned int dataptr;
147 unsigned int datasel;
148 NPXREG reg[8];
149 }
150 NPX;
151
152 static NPX npx;
153
154 static void save_npx (void); /* Save the FPU of the debugged program. */
155 static void load_npx (void); /* Restore the FPU of the debugged program. */
156
157 /* ------------------------------------------------------------------------- */
158 /* Store the contents of the NPX in the global variable `npx'. */
159 /* *INDENT-OFF* */
160
161 static void
162 save_npx (void)
163 {
164 asm ("inb $0xa0, %%al \n\
165 testb $0x20, %%al \n\
166 jz 1f \n\
167 xorb %%al, %%al \n\
168 outb %%al, $0xf0 \n\
169 movb $0x20, %%al \n\
170 outb %%al, $0xa0 \n\
171 outb %%al, $0x20 \n\
172 1: \n\
173 fnsave %0 \n\
174 fwait "
175 : "=m" (npx)
176 : /* No input */
177 : "%eax");
178 }
179
180 /* *INDENT-ON* */
181
182
183 /* ------------------------------------------------------------------------- */
184 /* Reload the contents of the NPX from the global variable `npx'. */
185
186 static void
187 load_npx (void)
188 {
189 asm ("frstor %0":"=m" (npx));
190 }
191 /* ------------------------------------------------------------------------- */
192 /* Stubs for the missing redirection functions. */
193 typedef struct {
194 char *command;
195 int redirected;
196 } cmdline_t;
197
198 void
199 redir_cmdline_delete (cmdline_t *ptr)
200 {
201 ptr->redirected = 0;
202 }
203
204 int
205 redir_cmdline_parse (const char *args, cmdline_t *ptr)
206 {
207 return -1;
208 }
209
210 int
211 redir_to_child (cmdline_t *ptr)
212 {
213 return 1;
214 }
215
216 int
217 redir_to_debugger (cmdline_t *ptr)
218 {
219 return 1;
220 }
221
222 int
223 redir_debug_init (cmdline_t *ptr)
224 {
225 return 0;
226 }
227 #endif /* __DJGPP_MINOR < 3 */
228
229 typedef enum { wp_insert, wp_remove, wp_count } wp_op;
230
231 /* This holds the current reference counts for each debug register. */
232 static int dr_ref_count[4];
233
234 #define SOME_PID 42
235
236 static int prog_has_started = 0;
237 static void go32_open (char *name, int from_tty);
238 static void go32_close (void);
239 static void go32_attach (struct target_ops *ops, char *args, int from_tty);
240 static void go32_detach (struct target_ops *ops, char *args, int from_tty);
241 static void go32_resume (struct target_ops *ops,
242 ptid_t ptid, int step,
243 enum gdb_signal siggnal);
244 static void go32_fetch_registers (struct target_ops *ops,
245 struct regcache *, int regno);
246 static void store_register (const struct regcache *, int regno);
247 static void go32_store_registers (struct target_ops *ops,
248 struct regcache *, int regno);
249 static void go32_prepare_to_store (struct regcache *);
250 static int go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len,
251 int write,
252 struct mem_attrib *attrib,
253 struct target_ops *target);
254 static void go32_files_info (struct target_ops *target);
255 static void go32_kill_inferior (struct target_ops *ops);
256 static void go32_create_inferior (struct target_ops *ops, char *exec_file,
257 char *args, char **env, int from_tty);
258 static void go32_mourn_inferior (struct target_ops *ops);
259 static int go32_can_run (void);
260
261 static struct target_ops go32_ops;
262 static void go32_terminal_init (void);
263 static void go32_terminal_inferior (void);
264 static void go32_terminal_ours (void);
265
266 #define r_ofs(x) (offsetof(TSS,x))
267
268 static struct
269 {
270 size_t tss_ofs;
271 size_t size;
272 }
273 regno_mapping[] =
274 {
275 {r_ofs (tss_eax), 4}, /* normal registers, from a_tss */
276 {r_ofs (tss_ecx), 4},
277 {r_ofs (tss_edx), 4},
278 {r_ofs (tss_ebx), 4},
279 {r_ofs (tss_esp), 4},
280 {r_ofs (tss_ebp), 4},
281 {r_ofs (tss_esi), 4},
282 {r_ofs (tss_edi), 4},
283 {r_ofs (tss_eip), 4},
284 {r_ofs (tss_eflags), 4},
285 {r_ofs (tss_cs), 2},
286 {r_ofs (tss_ss), 2},
287 {r_ofs (tss_ds), 2},
288 {r_ofs (tss_es), 2},
289 {r_ofs (tss_fs), 2},
290 {r_ofs (tss_gs), 2},
291 {0, 10}, /* 8 FP registers, from npx.reg[] */
292 {1, 10},
293 {2, 10},
294 {3, 10},
295 {4, 10},
296 {5, 10},
297 {6, 10},
298 {7, 10},
299 /* The order of the next 7 registers must be consistent
300 with their numbering in config/i386/tm-i386.h, which see. */
301 {0, 2}, /* control word, from npx */
302 {4, 2}, /* status word, from npx */
303 {8, 2}, /* tag word, from npx */
304 {16, 2}, /* last FP exception CS from npx */
305 {12, 4}, /* last FP exception EIP from npx */
306 {24, 2}, /* last FP exception operand selector from npx */
307 {20, 4}, /* last FP exception operand offset from npx */
308 {18, 2} /* last FP opcode from npx */
309 };
310
311 static struct
312 {
313 int go32_sig;
314 enum gdb_signal gdb_sig;
315 }
316 sig_map[] =
317 {
318 {0, GDB_SIGNAL_FPE},
319 {1, GDB_SIGNAL_TRAP},
320 /* Exception 2 is triggered by the NMI. DJGPP handles it as SIGILL,
321 but I think SIGBUS is better, since the NMI is usually activated
322 as a result of a memory parity check failure. */
323 {2, GDB_SIGNAL_BUS},
324 {3, GDB_SIGNAL_TRAP},
325 {4, GDB_SIGNAL_FPE},
326 {5, GDB_SIGNAL_SEGV},
327 {6, GDB_SIGNAL_ILL},
328 {7, GDB_SIGNAL_EMT}, /* no-coprocessor exception */
329 {8, GDB_SIGNAL_SEGV},
330 {9, GDB_SIGNAL_SEGV},
331 {10, GDB_SIGNAL_BUS},
332 {11, GDB_SIGNAL_SEGV},
333 {12, GDB_SIGNAL_SEGV},
334 {13, GDB_SIGNAL_SEGV},
335 {14, GDB_SIGNAL_SEGV},
336 {16, GDB_SIGNAL_FPE},
337 {17, GDB_SIGNAL_BUS},
338 {31, GDB_SIGNAL_ILL},
339 {0x1b, GDB_SIGNAL_INT},
340 {0x75, GDB_SIGNAL_FPE},
341 {0x78, GDB_SIGNAL_ALRM},
342 {0x79, GDB_SIGNAL_INT},
343 {0x7a, GDB_SIGNAL_QUIT},
344 {-1, GDB_SIGNAL_LAST}
345 };
346
347 static struct {
348 enum gdb_signal gdb_sig;
349 int djgpp_excepno;
350 } excepn_map[] = {
351 {GDB_SIGNAL_0, -1},
352 {GDB_SIGNAL_ILL, 6}, /* Invalid Opcode */
353 {GDB_SIGNAL_EMT, 7}, /* triggers SIGNOFP */
354 {GDB_SIGNAL_SEGV, 13}, /* GPF */
355 {GDB_SIGNAL_BUS, 17}, /* Alignment Check */
356 /* The rest are fake exceptions, see dpmiexcp.c in djlsr*.zip for
357 details. */
358 {GDB_SIGNAL_TERM, 0x1b}, /* triggers Ctrl-Break type of SIGINT */
359 {GDB_SIGNAL_FPE, 0x75},
360 {GDB_SIGNAL_INT, 0x79},
361 {GDB_SIGNAL_QUIT, 0x7a},
362 {GDB_SIGNAL_ALRM, 0x78}, /* triggers SIGTIMR */
363 {GDB_SIGNAL_PROF, 0x78},
364 {GDB_SIGNAL_LAST, -1}
365 };
366
367 static void
368 go32_open (char *name, int from_tty)
369 {
370 printf_unfiltered ("Done. Use the \"run\" command to run the program.\n");
371 }
372
373 static void
374 go32_close (void)
375 {
376 }
377
378 static void
379 go32_attach (struct target_ops *ops, char *args, int from_tty)
380 {
381 error (_("\
382 You cannot attach to a running program on this platform.\n\
383 Use the `run' command to run DJGPP programs."));
384 }
385
386 static void
387 go32_detach (struct target_ops *ops, char *args, int from_tty)
388 {
389 }
390
391 static int resume_is_step;
392 static int resume_signal = -1;
393
394 static void
395 go32_resume (struct target_ops *ops,
396 ptid_t ptid, int step, enum gdb_signal siggnal)
397 {
398 int i;
399
400 resume_is_step = step;
401
402 if (siggnal != GDB_SIGNAL_0 && siggnal != GDB_SIGNAL_TRAP)
403 {
404 for (i = 0, resume_signal = -1;
405 excepn_map[i].gdb_sig != GDB_SIGNAL_LAST; i++)
406 if (excepn_map[i].gdb_sig == siggnal)
407 {
408 resume_signal = excepn_map[i].djgpp_excepno;
409 break;
410 }
411 if (resume_signal == -1)
412 printf_unfiltered ("Cannot deliver signal %s on this platform.\n",
413 gdb_signal_to_name (siggnal));
414 }
415 }
416
417 static char child_cwd[FILENAME_MAX];
418
419 static ptid_t
420 go32_wait (struct target_ops *ops,
421 ptid_t ptid, struct target_waitstatus *status, int options)
422 {
423 int i;
424 unsigned char saved_opcode;
425 unsigned long INT3_addr = 0;
426 int stepping_over_INT = 0;
427
428 a_tss.tss_eflags &= 0xfeff; /* Reset the single-step flag (TF). */
429 if (resume_is_step)
430 {
431 /* If the next instruction is INT xx or INTO, we need to handle
432 them specially. Intel manuals say that these instructions
433 reset the single-step flag (a.k.a. TF). However, it seems
434 that, at least in the DPMI environment, and at least when
435 stepping over the DPMI interrupt 31h, the problem is having
436 TF set at all when INT 31h is executed: the debuggee either
437 crashes (and takes the system with it) or is killed by a
438 SIGTRAP.
439
440 So we need to emulate single-step mode: we put an INT3 opcode
441 right after the INT xx instruction, let the debuggee run
442 until it hits INT3 and stops, then restore the original
443 instruction which we overwrote with the INT3 opcode, and back
444 up the debuggee's EIP to that instruction. */
445 read_child (a_tss.tss_eip, &saved_opcode, 1);
446 if (saved_opcode == 0xCD || saved_opcode == 0xCE)
447 {
448 unsigned char INT3_opcode = 0xCC;
449
450 INT3_addr
451 = saved_opcode == 0xCD ? a_tss.tss_eip + 2 : a_tss.tss_eip + 1;
452 stepping_over_INT = 1;
453 read_child (INT3_addr, &saved_opcode, 1);
454 write_child (INT3_addr, &INT3_opcode, 1);
455 }
456 else
457 a_tss.tss_eflags |= 0x0100; /* normal instruction: set TF */
458 }
459
460 /* The special value FFFFh in tss_trap indicates to run_child that
461 tss_irqn holds a signal to be delivered to the debuggee. */
462 if (resume_signal <= -1)
463 {
464 a_tss.tss_trap = 0;
465 a_tss.tss_irqn = 0xff;
466 }
467 else
468 {
469 a_tss.tss_trap = 0xffff; /* run_child looks for this. */
470 a_tss.tss_irqn = resume_signal;
471 }
472
473 /* The child might change working directory behind our back. The
474 GDB users won't like the side effects of that when they work with
475 relative file names, and GDB might be confused by its current
476 directory not being in sync with the truth. So we always make a
477 point of changing back to where GDB thinks is its cwd, when we
478 return control to the debugger, but restore child's cwd before we
479 run it. */
480 /* Initialize child_cwd, before the first call to run_child and not
481 in the initialization, so the child get also the changed directory
482 set with the gdb-command "cd ..." */
483 if (!*child_cwd)
484 /* Initialize child's cwd with the current one. */
485 getcwd (child_cwd, sizeof (child_cwd));
486
487 chdir (child_cwd);
488
489 #if __DJGPP_MINOR__ < 3
490 load_npx ();
491 #endif
492 run_child ();
493 #if __DJGPP_MINOR__ < 3
494 save_npx ();
495 #endif
496
497 /* Did we step over an INT xx instruction? */
498 if (stepping_over_INT && a_tss.tss_eip == INT3_addr + 1)
499 {
500 /* Restore the original opcode. */
501 a_tss.tss_eip--; /* EIP points *after* the INT3 instruction. */
502 write_child (a_tss.tss_eip, &saved_opcode, 1);
503 /* Simulate a TRAP exception. */
504 a_tss.tss_irqn = 1;
505 a_tss.tss_eflags |= 0x0100;
506 }
507
508 getcwd (child_cwd, sizeof (child_cwd)); /* in case it has changed */
509 chdir (current_directory);
510
511 if (a_tss.tss_irqn == 0x21)
512 {
513 status->kind = TARGET_WAITKIND_EXITED;
514 status->value.integer = a_tss.tss_eax & 0xff;
515 }
516 else
517 {
518 status->value.sig = GDB_SIGNAL_UNKNOWN;
519 status->kind = TARGET_WAITKIND_STOPPED;
520 for (i = 0; sig_map[i].go32_sig != -1; i++)
521 {
522 if (a_tss.tss_irqn == sig_map[i].go32_sig)
523 {
524 #if __DJGPP_MINOR__ < 3
525 if ((status->value.sig = sig_map[i].gdb_sig) !=
526 GDB_SIGNAL_TRAP)
527 status->kind = TARGET_WAITKIND_SIGNALLED;
528 #else
529 status->value.sig = sig_map[i].gdb_sig;
530 #endif
531 break;
532 }
533 }
534 }
535 return pid_to_ptid (SOME_PID);
536 }
537
538 static void
539 fetch_register (struct regcache *regcache, int regno)
540 {
541 struct gdbarch *gdbarch = get_regcache_arch (regcache);
542 if (regno < gdbarch_fp0_regnum (gdbarch))
543 regcache_raw_supply (regcache, regno,
544 (char *) &a_tss + regno_mapping[regno].tss_ofs);
545 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
546 regno))
547 i387_supply_fsave (regcache, regno, &npx);
548 else
549 internal_error (__FILE__, __LINE__,
550 _("Invalid register no. %d in fetch_register."), regno);
551 }
552
553 static void
554 go32_fetch_registers (struct target_ops *ops,
555 struct regcache *regcache, int regno)
556 {
557 if (regno >= 0)
558 fetch_register (regcache, regno);
559 else
560 {
561 for (regno = 0;
562 regno < gdbarch_fp0_regnum (get_regcache_arch (regcache));
563 regno++)
564 fetch_register (regcache, regno);
565 i387_supply_fsave (regcache, -1, &npx);
566 }
567 }
568
569 static void
570 store_register (const struct regcache *regcache, int regno)
571 {
572 struct gdbarch *gdbarch = get_regcache_arch (regcache);
573 if (regno < gdbarch_fp0_regnum (gdbarch))
574 regcache_raw_collect (regcache, regno,
575 (char *) &a_tss + regno_mapping[regno].tss_ofs);
576 else if (i386_fp_regnum_p (gdbarch, regno) || i386_fpc_regnum_p (gdbarch,
577 regno))
578 i387_collect_fsave (regcache, regno, &npx);
579 else
580 internal_error (__FILE__, __LINE__,
581 _("Invalid register no. %d in store_register."), regno);
582 }
583
584 static void
585 go32_store_registers (struct target_ops *ops,
586 struct regcache *regcache, int regno)
587 {
588 unsigned r;
589
590 if (regno >= 0)
591 store_register (regcache, regno);
592 else
593 {
594 for (r = 0; r < gdbarch_fp0_regnum (get_regcache_arch (regcache)); r++)
595 store_register (regcache, r);
596 i387_collect_fsave (regcache, -1, &npx);
597 }
598 }
599
600 static void
601 go32_prepare_to_store (struct regcache *regcache)
602 {
603 }
604
605 static int
606 go32_xfer_memory (CORE_ADDR memaddr, gdb_byte *myaddr, int len, int write,
607 struct mem_attrib *attrib, struct target_ops *target)
608 {
609 if (write)
610 {
611 if (write_child (memaddr, myaddr, len))
612 {
613 return 0;
614 }
615 else
616 {
617 return len;
618 }
619 }
620 else
621 {
622 if (read_child (memaddr, myaddr, len))
623 {
624 return 0;
625 }
626 else
627 {
628 return len;
629 }
630 }
631 }
632
633 static cmdline_t child_cmd; /* Parsed child's command line kept here. */
634
635 static void
636 go32_files_info (struct target_ops *target)
637 {
638 printf_unfiltered ("You are running a DJGPP V2 program.\n");
639 }
640
641 static void
642 go32_kill_inferior (struct target_ops *ops)
643 {
644 go32_mourn_inferior (ops);
645 }
646
647 static void
648 go32_create_inferior (struct target_ops *ops, char *exec_file,
649 char *args, char **env, int from_tty)
650 {
651 extern char **environ;
652 jmp_buf start_state;
653 char *cmdline;
654 char **env_save = environ;
655 size_t cmdlen;
656 struct inferior *inf;
657
658 /* If no exec file handed to us, get it from the exec-file command -- with
659 a good, common error message if none is specified. */
660 if (exec_file == 0)
661 exec_file = get_exec_file (1);
662
663 resume_signal = -1;
664 resume_is_step = 0;
665
666 /* Initialize child's cwd as empty to be initialized when starting
667 the child. */
668 *child_cwd = 0;
669
670 /* Init command line storage. */
671 if (redir_debug_init (&child_cmd) == -1)
672 internal_error (__FILE__, __LINE__,
673 _("Cannot allocate redirection storage: "
674 "not enough memory.\n"));
675
676 /* Parse the command line and create redirections. */
677 if (strpbrk (args, "<>"))
678 {
679 if (redir_cmdline_parse (args, &child_cmd) == 0)
680 args = child_cmd.command;
681 else
682 error (_("Syntax error in command line."));
683 }
684 else
685 child_cmd.command = xstrdup (args);
686
687 cmdlen = strlen (args);
688 /* v2loadimage passes command lines via DOS memory, so it cannot
689 possibly handle commands longer than 1MB. */
690 if (cmdlen > 1024*1024)
691 error (_("Command line too long."));
692
693 cmdline = xmalloc (cmdlen + 4);
694 strcpy (cmdline + 1, args);
695 /* If the command-line length fits into DOS 126-char limits, use the
696 DOS command tail format; otherwise, tell v2loadimage to pass it
697 through a buffer in conventional memory. */
698 if (cmdlen < 127)
699 {
700 cmdline[0] = strlen (args);
701 cmdline[cmdlen + 1] = 13;
702 }
703 else
704 cmdline[0] = 0xff; /* Signal v2loadimage it's a long command. */
705
706 environ = env;
707
708 if (v2loadimage (exec_file, cmdline, start_state))
709 {
710 environ = env_save;
711 printf_unfiltered ("Load failed for image %s\n", exec_file);
712 exit (1);
713 }
714 environ = env_save;
715 xfree (cmdline);
716
717 edi_init (start_state);
718 #if __DJGPP_MINOR__ < 3
719 save_npx ();
720 #endif
721
722 inferior_ptid = pid_to_ptid (SOME_PID);
723 inf = current_inferior ();
724 inferior_appeared (inf, SOME_PID);
725
726 push_target (&go32_ops);
727
728 add_thread_silent (inferior_ptid);
729
730 clear_proceed_status ();
731 insert_breakpoints ();
732 prog_has_started = 1;
733 }
734
735 static void
736 go32_mourn_inferior (struct target_ops *ops)
737 {
738 ptid_t ptid;
739
740 redir_cmdline_delete (&child_cmd);
741 resume_signal = -1;
742 resume_is_step = 0;
743
744 cleanup_client ();
745
746 /* We need to make sure all the breakpoint enable bits in the DR7
747 register are reset when the inferior exits. Otherwise, if they
748 rerun the inferior, the uncleared bits may cause random SIGTRAPs,
749 failure to set more watchpoints, and other calamities. It would
750 be nice if GDB itself would take care to remove all breakpoints
751 at all times, but it doesn't, probably under an assumption that
752 the OS cleans up when the debuggee exits. */
753 i386_cleanup_dregs ();
754
755 ptid = inferior_ptid;
756 inferior_ptid = null_ptid;
757 delete_thread_silent (ptid);
758 prog_has_started = 0;
759
760 unpush_target (ops);
761 generic_mourn_inferior ();
762 }
763
764 static int
765 go32_can_run (void)
766 {
767 return 1;
768 }
769
770 /* Hardware watchpoint support. */
771
772 #define D_REGS edi.dr
773 #define CONTROL D_REGS[7]
774 #define STATUS D_REGS[6]
775
776 /* Pass the address ADDR to the inferior in the I'th debug register.
777 Here we just store the address in D_REGS, the watchpoint will be
778 actually set up when go32_wait runs the debuggee. */
779 static void
780 go32_set_dr (int i, CORE_ADDR addr)
781 {
782 if (i < 0 || i > 3)
783 internal_error (__FILE__, __LINE__,
784 _("Invalid register %d in go32_set_dr.\n"), i);
785 D_REGS[i] = addr;
786 }
787
788 /* Pass the value VAL to the inferior in the DR7 debug control
789 register. Here we just store the address in D_REGS, the watchpoint
790 will be actually set up when go32_wait runs the debuggee. */
791 static void
792 go32_set_dr7 (unsigned long val)
793 {
794 CONTROL = val;
795 }
796
797 /* Get the value of the DR6 debug status register from the inferior.
798 Here we just return the value stored in D_REGS, as we've got it
799 from the last go32_wait call. */
800 static unsigned long
801 go32_get_dr6 (void)
802 {
803 return STATUS;
804 }
805
806 /* Get the value of the DR7 debug status register from the inferior.
807 Here we just return the value stored in D_REGS, as we've got it
808 from the last go32_wait call. */
809
810 static unsigned long
811 go32_get_dr7 (void)
812 {
813 return CONTROL;
814 }
815
816 /* Get the value of the DR debug register I from the inferior. Here
817 we just return the value stored in D_REGS, as we've got it from the
818 last go32_wait call. */
819
820 static CORE_ADDR
821 go32_get_dr (int i)
822 {
823 if (i < 0 || i > 3)
824 internal_error (__FILE__, __LINE__,
825 _("Invalid register %d in go32_get_dr.\n"), i);
826 return D_REGS[i];
827 }
828
829 /* Put the device open on handle FD into either raw or cooked
830 mode, return 1 if it was in raw mode, zero otherwise. */
831
832 static int
833 device_mode (int fd, int raw_p)
834 {
835 int oldmode, newmode;
836 __dpmi_regs regs;
837
838 regs.x.ax = 0x4400;
839 regs.x.bx = fd;
840 __dpmi_int (0x21, &regs);
841 if (regs.x.flags & 1)
842 return -1;
843 newmode = oldmode = regs.x.dx;
844
845 if (raw_p)
846 newmode |= 0x20;
847 else
848 newmode &= ~0x20;
849
850 if (oldmode & 0x80) /* Only for character dev. */
851 {
852 regs.x.ax = 0x4401;
853 regs.x.bx = fd;
854 regs.x.dx = newmode & 0xff; /* Force upper byte zero, else it fails. */
855 __dpmi_int (0x21, &regs);
856 if (regs.x.flags & 1)
857 return -1;
858 }
859 return (oldmode & 0x20) == 0x20;
860 }
861
862
863 static int inf_mode_valid = 0;
864 static int inf_terminal_mode;
865
866 /* This semaphore is needed because, amazingly enough, GDB calls
867 target.to_terminal_ours more than once after the inferior stops.
868 But we need the information from the first call only, since the
869 second call will always see GDB's own cooked terminal. */
870 static int terminal_is_ours = 1;
871
872 static void
873 go32_terminal_init (void)
874 {
875 inf_mode_valid = 0; /* Reinitialize, in case they are restarting child. */
876 terminal_is_ours = 1;
877 }
878
879 static void
880 go32_terminal_info (const char *args, int from_tty)
881 {
882 printf_unfiltered ("Inferior's terminal is in %s mode.\n",
883 !inf_mode_valid
884 ? "default" : inf_terminal_mode ? "raw" : "cooked");
885
886 #if __DJGPP_MINOR__ > 2
887 if (child_cmd.redirection)
888 {
889 int i;
890
891 for (i = 0; i < DBG_HANDLES; i++)
892 {
893 if (child_cmd.redirection[i]->file_name)
894 printf_unfiltered ("\tFile handle %d is redirected to `%s'.\n",
895 i, child_cmd.redirection[i]->file_name);
896 else if (_get_dev_info (child_cmd.redirection[i]->inf_handle) == -1)
897 printf_unfiltered
898 ("\tFile handle %d appears to be closed by inferior.\n", i);
899 /* Mask off the raw/cooked bit when comparing device info words. */
900 else if ((_get_dev_info (child_cmd.redirection[i]->inf_handle) & 0xdf)
901 != (_get_dev_info (i) & 0xdf))
902 printf_unfiltered
903 ("\tFile handle %d appears to be redirected by inferior.\n", i);
904 }
905 }
906 #endif
907 }
908
909 static void
910 go32_terminal_inferior (void)
911 {
912 /* Redirect standard handles as child wants them. */
913 errno = 0;
914 if (redir_to_child (&child_cmd) == -1)
915 {
916 redir_to_debugger (&child_cmd);
917 error (_("Cannot redirect standard handles for program: %s."),
918 safe_strerror (errno));
919 }
920 /* Set the console device of the inferior to whatever mode
921 (raw or cooked) we found it last time. */
922 if (terminal_is_ours)
923 {
924 if (inf_mode_valid)
925 device_mode (0, inf_terminal_mode);
926 terminal_is_ours = 0;
927 }
928 }
929
930 static void
931 go32_terminal_ours (void)
932 {
933 /* Switch to cooked mode on the gdb terminal and save the inferior
934 terminal mode to be restored when it is resumed. */
935 if (!terminal_is_ours)
936 {
937 inf_terminal_mode = device_mode (0, 0);
938 if (inf_terminal_mode != -1)
939 inf_mode_valid = 1;
940 else
941 /* If device_mode returned -1, we don't know what happens with
942 handle 0 anymore, so make the info invalid. */
943 inf_mode_valid = 0;
944 terminal_is_ours = 1;
945
946 /* Restore debugger's standard handles. */
947 errno = 0;
948 if (redir_to_debugger (&child_cmd) == -1)
949 {
950 redir_to_child (&child_cmd);
951 error (_("Cannot redirect standard handles for debugger: %s."),
952 safe_strerror (errno));
953 }
954 }
955 }
956
957 static int
958 go32_thread_alive (struct target_ops *ops, ptid_t ptid)
959 {
960 return !ptid_equal (inferior_ptid, null_ptid);
961 }
962
963 static char *
964 go32_pid_to_str (struct target_ops *ops, ptid_t ptid)
965 {
966 return normal_pid_to_str (ptid);
967 }
968
969 static void
970 init_go32_ops (void)
971 {
972 go32_ops.to_shortname = "djgpp";
973 go32_ops.to_longname = "djgpp target process";
974 go32_ops.to_doc =
975 "Program loaded by djgpp, when gdb is used as an external debugger";
976 go32_ops.to_open = go32_open;
977 go32_ops.to_close = go32_close;
978 go32_ops.to_attach = go32_attach;
979 go32_ops.to_detach = go32_detach;
980 go32_ops.to_resume = go32_resume;
981 go32_ops.to_wait = go32_wait;
982 go32_ops.to_fetch_registers = go32_fetch_registers;
983 go32_ops.to_store_registers = go32_store_registers;
984 go32_ops.to_prepare_to_store = go32_prepare_to_store;
985 go32_ops.deprecated_xfer_memory = go32_xfer_memory;
986 go32_ops.to_files_info = go32_files_info;
987 go32_ops.to_insert_breakpoint = memory_insert_breakpoint;
988 go32_ops.to_remove_breakpoint = memory_remove_breakpoint;
989 go32_ops.to_terminal_init = go32_terminal_init;
990 go32_ops.to_terminal_inferior = go32_terminal_inferior;
991 go32_ops.to_terminal_ours_for_output = go32_terminal_ours;
992 go32_ops.to_terminal_ours = go32_terminal_ours;
993 go32_ops.to_terminal_info = go32_terminal_info;
994 go32_ops.to_kill = go32_kill_inferior;
995 go32_ops.to_create_inferior = go32_create_inferior;
996 go32_ops.to_mourn_inferior = go32_mourn_inferior;
997 go32_ops.to_can_run = go32_can_run;
998 go32_ops.to_thread_alive = go32_thread_alive;
999 go32_ops.to_pid_to_str = go32_pid_to_str;
1000 go32_ops.to_stratum = process_stratum;
1001 go32_ops.to_has_all_memory = default_child_has_all_memory;
1002 go32_ops.to_has_memory = default_child_has_memory;
1003 go32_ops.to_has_stack = default_child_has_stack;
1004 go32_ops.to_has_registers = default_child_has_registers;
1005 go32_ops.to_has_execution = default_child_has_execution;
1006
1007 i386_use_watchpoints (&go32_ops);
1008
1009
1010 i386_dr_low.set_control = go32_set_dr7;
1011 i386_dr_low.set_addr = go32_set_dr;
1012 i386_dr_low.get_status = go32_get_dr6;
1013 i386_dr_low.get_control = go32_get_dr7;
1014 i386_dr_low.get_addr = go32_get_dr;
1015 i386_set_debug_register_length (4);
1016
1017 go32_ops.to_magic = OPS_MAGIC;
1018
1019 /* Initialize child's cwd as empty to be initialized when starting
1020 the child. */
1021 *child_cwd = 0;
1022
1023 /* Initialize child's command line storage. */
1024 if (redir_debug_init (&child_cmd) == -1)
1025 internal_error (__FILE__, __LINE__,
1026 _("Cannot allocate redirection storage: "
1027 "not enough memory.\n"));
1028
1029 /* We are always processing GCC-compiled programs. */
1030 processing_gcc_compilation = 2;
1031
1032 /* Override the default name of the GDB init file. */
1033 strcpy (gdbinit, "gdb.ini");
1034 }
1035
1036 /* Return the current DOS codepage number. */
1037 static int
1038 dos_codepage (void)
1039 {
1040 __dpmi_regs regs;
1041
1042 regs.x.ax = 0x6601;
1043 __dpmi_int (0x21, &regs);
1044 if (!(regs.x.flags & 1))
1045 return regs.x.bx & 0xffff;
1046 else
1047 return 437; /* default */
1048 }
1049
1050 /* Limited emulation of `nl_langinfo', for charset.c. */
1051 char *
1052 nl_langinfo (nl_item item)
1053 {
1054 char *retval;
1055
1056 switch (item)
1057 {
1058 case CODESET:
1059 {
1060 /* 8 is enough for SHORT_MAX + "CP" + null. */
1061 char buf[8];
1062 int blen = sizeof (buf);
1063 int needed = snprintf (buf, blen, "CP%d", dos_codepage ());
1064
1065 if (needed > blen) /* Should never happen. */
1066 buf[0] = 0;
1067 retval = xstrdup (buf);
1068 }
1069 break;
1070 default:
1071 retval = xstrdup ("");
1072 break;
1073 }
1074 return retval;
1075 }
1076
1077 unsigned short windows_major, windows_minor;
1078
1079 /* Compute the version Windows reports via Int 2Fh/AX=1600h. */
1080 static void
1081 go32_get_windows_version(void)
1082 {
1083 __dpmi_regs r;
1084
1085 r.x.ax = 0x1600;
1086 __dpmi_int(0x2f, &r);
1087 if (r.h.al > 2 && r.h.al != 0x80 && r.h.al != 0xff
1088 && (r.h.al > 3 || r.h.ah > 0))
1089 {
1090 windows_major = r.h.al;
1091 windows_minor = r.h.ah;
1092 }
1093 else
1094 windows_major = 0xff; /* meaning no Windows */
1095 }
1096
1097 /* A subroutine of go32_sysinfo to display memory info. */
1098 static void
1099 print_mem (unsigned long datum, const char *header, int in_pages_p)
1100 {
1101 if (datum != 0xffffffffUL)
1102 {
1103 if (in_pages_p)
1104 datum <<= 12;
1105 puts_filtered (header);
1106 if (datum > 1024)
1107 {
1108 printf_filtered ("%lu KB", datum >> 10);
1109 if (datum > 1024 * 1024)
1110 printf_filtered (" (%lu MB)", datum >> 20);
1111 }
1112 else
1113 printf_filtered ("%lu Bytes", datum);
1114 puts_filtered ("\n");
1115 }
1116 }
1117
1118 /* Display assorted information about the underlying OS. */
1119 static void
1120 go32_sysinfo (char *arg, int from_tty)
1121 {
1122 static const char test_pattern[] =
1123 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1124 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeaf"
1125 "deadbeafdeadbeafdeadbeafdeadbeafdeadbeafdeadbeaf";
1126 struct utsname u;
1127 char cpuid_vendor[13];
1128 unsigned cpuid_max = 0, cpuid_eax, cpuid_ebx, cpuid_ecx, cpuid_edx;
1129 unsigned true_dos_version = _get_dos_version (1);
1130 unsigned advertized_dos_version = ((unsigned int)_osmajor << 8) | _osminor;
1131 int dpmi_flags;
1132 char dpmi_vendor_info[129];
1133 int dpmi_vendor_available;
1134 __dpmi_version_ret dpmi_version_data;
1135 long eflags;
1136 __dpmi_free_mem_info mem_info;
1137 __dpmi_regs regs;
1138
1139 cpuid_vendor[0] = '\0';
1140 if (uname (&u))
1141 strcpy (u.machine, "Unknown x86");
1142 else if (u.machine[0] == 'i' && u.machine[1] > 4)
1143 {
1144 /* CPUID with EAX = 0 returns the Vendor ID. */
1145 #if 0
1146 /* Ideally we would use i386_cpuid(), but it needs someone to run
1147 native tests first to make sure things actually work. They should.
1148 http://sourceware.org/ml/gdb-patches/2013-05/msg00164.html */
1149 unsigned int eax, ebx, ecx, edx;
1150
1151 if (i386_cpuid (0, &eax, &ebx, &ecx, &edx))
1152 {
1153 cpuid_max = eax;
1154 memcpy (&vendor[0], &ebx, 4);
1155 memcpy (&vendor[4], &ecx, 4);
1156 memcpy (&vendor[8], &edx, 4);
1157 cpuid_vendor[12] = '\0';
1158 }
1159 #else
1160 __asm__ __volatile__ ("xorl %%ebx, %%ebx;"
1161 "xorl %%ecx, %%ecx;"
1162 "xorl %%edx, %%edx;"
1163 "movl $0, %%eax;"
1164 "cpuid;"
1165 "movl %%ebx, %0;"
1166 "movl %%edx, %1;"
1167 "movl %%ecx, %2;"
1168 "movl %%eax, %3;"
1169 : "=m" (cpuid_vendor[0]),
1170 "=m" (cpuid_vendor[4]),
1171 "=m" (cpuid_vendor[8]),
1172 "=m" (cpuid_max)
1173 :
1174 : "%eax", "%ebx", "%ecx", "%edx");
1175 cpuid_vendor[12] = '\0';
1176 #endif
1177 }
1178
1179 printf_filtered ("CPU Type.......................%s", u.machine);
1180 if (cpuid_vendor[0])
1181 printf_filtered (" (%s)", cpuid_vendor);
1182 puts_filtered ("\n");
1183
1184 /* CPUID with EAX = 1 returns processor signature and features. */
1185 if (cpuid_max >= 1)
1186 {
1187 static char *brand_name[] = {
1188 "",
1189 " Celeron",
1190 " III",
1191 " III Xeon",
1192 "", "", "", "",
1193 " 4"
1194 };
1195 char cpu_string[80];
1196 char cpu_brand[20];
1197 unsigned brand_idx;
1198 int intel_p = strcmp (cpuid_vendor, "GenuineIntel") == 0;
1199 int amd_p = strcmp (cpuid_vendor, "AuthenticAMD") == 0;
1200 unsigned cpu_family, cpu_model;
1201
1202 #if 0
1203 /* See comment above about cpuid usage. */
1204 i386_cpuid (1, &cpuid_eax, &cpuid_ebx, NULL, &cpuid_edx);
1205 #else
1206 __asm__ __volatile__ ("movl $1, %%eax;"
1207 "cpuid;"
1208 : "=a" (cpuid_eax),
1209 "=b" (cpuid_ebx),
1210 "=d" (cpuid_edx)
1211 :
1212 : "%ecx");
1213 #endif
1214 brand_idx = cpuid_ebx & 0xff;
1215 cpu_family = (cpuid_eax >> 8) & 0xf;
1216 cpu_model = (cpuid_eax >> 4) & 0xf;
1217 cpu_brand[0] = '\0';
1218 if (intel_p)
1219 {
1220 if (brand_idx > 0
1221 && brand_idx < sizeof(brand_name)/sizeof(brand_name[0])
1222 && *brand_name[brand_idx])
1223 strcpy (cpu_brand, brand_name[brand_idx]);
1224 else if (cpu_family == 5)
1225 {
1226 if (((cpuid_eax >> 12) & 3) == 0 && cpu_model == 4)
1227 strcpy (cpu_brand, " MMX");
1228 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 1)
1229 strcpy (cpu_brand, " OverDrive");
1230 else if (cpu_model > 1 && ((cpuid_eax >> 12) & 3) == 2)
1231 strcpy (cpu_brand, " Dual");
1232 }
1233 else if (cpu_family == 6 && cpu_model < 8)
1234 {
1235 switch (cpu_model)
1236 {
1237 case 1:
1238 strcpy (cpu_brand, " Pro");
1239 break;
1240 case 3:
1241 strcpy (cpu_brand, " II");
1242 break;
1243 case 5:
1244 strcpy (cpu_brand, " II Xeon");
1245 break;
1246 case 6:
1247 strcpy (cpu_brand, " Celeron");
1248 break;
1249 case 7:
1250 strcpy (cpu_brand, " III");
1251 break;
1252 }
1253 }
1254 }
1255 else if (amd_p)
1256 {
1257 switch (cpu_family)
1258 {
1259 case 4:
1260 strcpy (cpu_brand, "486/5x86");
1261 break;
1262 case 5:
1263 switch (cpu_model)
1264 {
1265 case 0:
1266 case 1:
1267 case 2:
1268 case 3:
1269 strcpy (cpu_brand, "-K5");
1270 break;
1271 case 6:
1272 case 7:
1273 strcpy (cpu_brand, "-K6");
1274 break;
1275 case 8:
1276 strcpy (cpu_brand, "-K6-2");
1277 break;
1278 case 9:
1279 strcpy (cpu_brand, "-K6-III");
1280 break;
1281 }
1282 break;
1283 case 6:
1284 switch (cpu_model)
1285 {
1286 case 1:
1287 case 2:
1288 case 4:
1289 strcpy (cpu_brand, " Athlon");
1290 break;
1291 case 3:
1292 strcpy (cpu_brand, " Duron");
1293 break;
1294 }
1295 break;
1296 }
1297 }
1298 xsnprintf (cpu_string, sizeof (cpu_string), "%s%s Model %d Stepping %d",
1299 intel_p ? "Pentium" : (amd_p ? "AMD" : "ix86"),
1300 cpu_brand, cpu_model, cpuid_eax & 0xf);
1301 printfi_filtered (31, "%s\n", cpu_string);
1302 if (((cpuid_edx & (6 | (0x0d << 23))) != 0)
1303 || ((cpuid_edx & 1) == 0)
1304 || (amd_p && (cpuid_edx & (3 << 30)) != 0))
1305 {
1306 puts_filtered ("CPU Features...................");
1307 /* We only list features which might be useful in the DPMI
1308 environment. */
1309 if ((cpuid_edx & 1) == 0)
1310 puts_filtered ("No FPU "); /* It's unusual to not have an FPU. */
1311 if ((cpuid_edx & (1 << 1)) != 0)
1312 puts_filtered ("VME ");
1313 if ((cpuid_edx & (1 << 2)) != 0)
1314 puts_filtered ("DE ");
1315 if ((cpuid_edx & (1 << 4)) != 0)
1316 puts_filtered ("TSC ");
1317 if ((cpuid_edx & (1 << 23)) != 0)
1318 puts_filtered ("MMX ");
1319 if ((cpuid_edx & (1 << 25)) != 0)
1320 puts_filtered ("SSE ");
1321 if ((cpuid_edx & (1 << 26)) != 0)
1322 puts_filtered ("SSE2 ");
1323 if (amd_p)
1324 {
1325 if ((cpuid_edx & (1 << 31)) != 0)
1326 puts_filtered ("3DNow! ");
1327 if ((cpuid_edx & (1 << 30)) != 0)
1328 puts_filtered ("3DNow!Ext");
1329 }
1330 puts_filtered ("\n");
1331 }
1332 }
1333 puts_filtered ("\n");
1334 printf_filtered ("DOS Version....................%s %s.%s",
1335 _os_flavor, u.release, u.version);
1336 if (true_dos_version != advertized_dos_version)
1337 printf_filtered (" (disguised as v%d.%d)", _osmajor, _osminor);
1338 puts_filtered ("\n");
1339 if (!windows_major)
1340 go32_get_windows_version ();
1341 if (windows_major != 0xff)
1342 {
1343 const char *windows_flavor;
1344
1345 printf_filtered ("Windows Version................%d.%02d (Windows ",
1346 windows_major, windows_minor);
1347 switch (windows_major)
1348 {
1349 case 3:
1350 windows_flavor = "3.X";
1351 break;
1352 case 4:
1353 switch (windows_minor)
1354 {
1355 case 0:
1356 windows_flavor = "95, 95A, or 95B";
1357 break;
1358 case 3:
1359 windows_flavor = "95B OSR2.1 or 95C OSR2.5";
1360 break;
1361 case 10:
1362 windows_flavor = "98 or 98 SE";
1363 break;
1364 case 90:
1365 windows_flavor = "ME";
1366 break;
1367 default:
1368 windows_flavor = "9X";
1369 break;
1370 }
1371 break;
1372 default:
1373 windows_flavor = "??";
1374 break;
1375 }
1376 printf_filtered ("%s)\n", windows_flavor);
1377 }
1378 else if (true_dos_version == 0x532 && advertized_dos_version == 0x500)
1379 printf_filtered ("Windows Version................"
1380 "Windows NT family (W2K/XP/W2K3/Vista/W2K8)\n");
1381 puts_filtered ("\n");
1382 /* On some versions of Windows, __dpmi_get_capabilities returns
1383 zero, but the buffer is not filled with info, so we fill the
1384 buffer with a known pattern and test for it afterwards. */
1385 memcpy (dpmi_vendor_info, test_pattern, sizeof(dpmi_vendor_info));
1386 dpmi_vendor_available =
1387 __dpmi_get_capabilities (&dpmi_flags, dpmi_vendor_info);
1388 if (dpmi_vendor_available == 0
1389 && memcmp (dpmi_vendor_info, test_pattern,
1390 sizeof(dpmi_vendor_info)) != 0)
1391 {
1392 /* The DPMI spec says the vendor string should be ASCIIZ, but
1393 I don't trust the vendors to follow that... */
1394 if (!memchr (&dpmi_vendor_info[2], 0, 126))
1395 dpmi_vendor_info[128] = '\0';
1396 printf_filtered ("DPMI Host......................"
1397 "%s v%d.%d (capabilities: %#x)\n",
1398 &dpmi_vendor_info[2],
1399 (unsigned)dpmi_vendor_info[0],
1400 (unsigned)dpmi_vendor_info[1],
1401 ((unsigned)dpmi_flags & 0x7f));
1402 }
1403 else
1404 printf_filtered ("DPMI Host......................(Info not available)\n");
1405 __dpmi_get_version (&dpmi_version_data);
1406 printf_filtered ("DPMI Version...................%d.%02d\n",
1407 dpmi_version_data.major, dpmi_version_data.minor);
1408 printf_filtered ("DPMI Info......................"
1409 "%s-bit DPMI, with%s Virtual Memory support\n",
1410 (dpmi_version_data.flags & 1) ? "32" : "16",
1411 (dpmi_version_data.flags & 4) ? "" : "out");
1412 printfi_filtered (31, "Interrupts reflected to %s mode\n",
1413 (dpmi_version_data.flags & 2) ? "V86" : "Real");
1414 printfi_filtered (31, "Processor type: i%d86\n",
1415 dpmi_version_data.cpu);
1416 printfi_filtered (31, "PIC base interrupt: Master: %#x Slave: %#x\n",
1417 dpmi_version_data.master_pic, dpmi_version_data.slave_pic);
1418
1419 /* a_tss is only initialized when the debuggee is first run. */
1420 if (prog_has_started)
1421 {
1422 __asm__ __volatile__ ("pushfl ; popl %0" : "=g" (eflags));
1423 printf_filtered ("Protection....................."
1424 "Ring %d (in %s), with%s I/O protection\n",
1425 a_tss.tss_cs & 3, (a_tss.tss_cs & 4) ? "LDT" : "GDT",
1426 (a_tss.tss_cs & 3) > ((eflags >> 12) & 3) ? "" : "out");
1427 }
1428 puts_filtered ("\n");
1429 __dpmi_get_free_memory_information (&mem_info);
1430 print_mem (mem_info.total_number_of_physical_pages,
1431 "DPMI Total Physical Memory.....", 1);
1432 print_mem (mem_info.total_number_of_free_pages,
1433 "DPMI Free Physical Memory......", 1);
1434 print_mem (mem_info.size_of_paging_file_partition_in_pages,
1435 "DPMI Swap Space................", 1);
1436 print_mem (mem_info.linear_address_space_size_in_pages,
1437 "DPMI Total Linear Address Size.", 1);
1438 print_mem (mem_info.free_linear_address_space_in_pages,
1439 "DPMI Free Linear Address Size..", 1);
1440 print_mem (mem_info.largest_available_free_block_in_bytes,
1441 "DPMI Largest Free Memory Block.", 0);
1442
1443 regs.h.ah = 0x48;
1444 regs.x.bx = 0xffff;
1445 __dpmi_int (0x21, &regs);
1446 print_mem (regs.x.bx << 4, "Free DOS Memory................", 0);
1447 regs.x.ax = 0x5800;
1448 __dpmi_int (0x21, &regs);
1449 if ((regs.x.flags & 1) == 0)
1450 {
1451 static const char *dos_hilo[] = {
1452 "Low", "", "", "", "High", "", "", "", "High, then Low"
1453 };
1454 static const char *dos_fit[] = {
1455 "First", "Best", "Last"
1456 };
1457 int hilo_idx = (regs.x.ax >> 4) & 0x0f;
1458 int fit_idx = regs.x.ax & 0x0f;
1459
1460 if (hilo_idx > 8)
1461 hilo_idx = 0;
1462 if (fit_idx > 2)
1463 fit_idx = 0;
1464 printf_filtered ("DOS Memory Allocation..........%s memory, %s fit\n",
1465 dos_hilo[hilo_idx], dos_fit[fit_idx]);
1466 regs.x.ax = 0x5802;
1467 __dpmi_int (0x21, &regs);
1468 if ((regs.x.flags & 1) != 0)
1469 regs.h.al = 0;
1470 printfi_filtered (31, "UMBs %sin DOS memory chain\n",
1471 regs.h.al == 0 ? "not " : "");
1472 }
1473 }
1474
1475 struct seg_descr {
1476 unsigned short limit0;
1477 unsigned short base0;
1478 unsigned char base1;
1479 unsigned stype:5;
1480 unsigned dpl:2;
1481 unsigned present:1;
1482 unsigned limit1:4;
1483 unsigned available:1;
1484 unsigned dummy:1;
1485 unsigned bit32:1;
1486 unsigned page_granular:1;
1487 unsigned char base2;
1488 } __attribute__ ((packed));
1489
1490 struct gate_descr {
1491 unsigned short offset0;
1492 unsigned short selector;
1493 unsigned param_count:5;
1494 unsigned dummy:3;
1495 unsigned stype:5;
1496 unsigned dpl:2;
1497 unsigned present:1;
1498 unsigned short offset1;
1499 } __attribute__ ((packed));
1500
1501 /* Read LEN bytes starting at logical address ADDR, and put the result
1502 into DEST. Return 1 if success, zero if not. */
1503 static int
1504 read_memory_region (unsigned long addr, void *dest, size_t len)
1505 {
1506 unsigned long dos_ds_limit = __dpmi_get_segment_limit (_dos_ds);
1507 int retval = 1;
1508
1509 /* For the low memory, we can simply use _dos_ds. */
1510 if (addr <= dos_ds_limit - len)
1511 dosmemget (addr, len, dest);
1512 else
1513 {
1514 /* For memory above 1MB we need to set up a special segment to
1515 be able to access that memory. */
1516 int sel = __dpmi_allocate_ldt_descriptors (1);
1517
1518 if (sel <= 0)
1519 retval = 0;
1520 else
1521 {
1522 int access_rights = __dpmi_get_descriptor_access_rights (sel);
1523 size_t segment_limit = len - 1;
1524
1525 /* Make sure the crucial bits in the descriptor access
1526 rights are set correctly. Some DPMI providers might barf
1527 if we set the segment limit to something that is not an
1528 integral multiple of 4KB pages if the granularity bit is
1529 not set to byte-granular, even though the DPMI spec says
1530 it's the host's responsibility to set that bit correctly. */
1531 if (len > 1024 * 1024)
1532 {
1533 access_rights |= 0x8000;
1534 /* Page-granular segments should have the low 12 bits of
1535 the limit set. */
1536 segment_limit |= 0xfff;
1537 }
1538 else
1539 access_rights &= ~0x8000;
1540
1541 if (__dpmi_set_segment_base_address (sel, addr) != -1
1542 && __dpmi_set_descriptor_access_rights (sel, access_rights) != -1
1543 && __dpmi_set_segment_limit (sel, segment_limit) != -1
1544 /* W2K silently fails to set the segment limit, leaving
1545 it at zero; this test avoids the resulting crash. */
1546 && __dpmi_get_segment_limit (sel) >= segment_limit)
1547 movedata (sel, 0, _my_ds (), (unsigned)dest, len);
1548 else
1549 retval = 0;
1550
1551 __dpmi_free_ldt_descriptor (sel);
1552 }
1553 }
1554 return retval;
1555 }
1556
1557 /* Get a segment descriptor stored at index IDX in the descriptor
1558 table whose base address is TABLE_BASE. Return the descriptor
1559 type, or -1 if failure. */
1560 static int
1561 get_descriptor (unsigned long table_base, int idx, void *descr)
1562 {
1563 unsigned long addr = table_base + idx * 8; /* 8 bytes per entry */
1564
1565 if (read_memory_region (addr, descr, 8))
1566 return (int)((struct seg_descr *)descr)->stype;
1567 return -1;
1568 }
1569
1570 struct dtr_reg {
1571 unsigned short limit __attribute__((packed));
1572 unsigned long base __attribute__((packed));
1573 };
1574
1575 /* Display a segment descriptor stored at index IDX in a descriptor
1576 table whose type is TYPE and whose base address is BASE_ADDR. If
1577 FORCE is non-zero, display even invalid descriptors. */
1578 static void
1579 display_descriptor (unsigned type, unsigned long base_addr, int idx, int force)
1580 {
1581 struct seg_descr descr;
1582 struct gate_descr gate;
1583
1584 /* Get the descriptor from the table. */
1585 if (idx == 0 && type == 0)
1586 puts_filtered ("0x000: null descriptor\n");
1587 else if (get_descriptor (base_addr, idx, &descr) != -1)
1588 {
1589 /* For each type of descriptor table, this has a bit set if the
1590 corresponding type of selectors is valid in that table. */
1591 static unsigned allowed_descriptors[] = {
1592 0xffffdafeL, /* GDT */
1593 0x0000c0e0L, /* IDT */
1594 0xffffdafaL /* LDT */
1595 };
1596
1597 /* If the program hasn't started yet, assume the debuggee will
1598 have the same CPL as the debugger. */
1599 int cpl = prog_has_started ? (a_tss.tss_cs & 3) : _my_cs () & 3;
1600 unsigned long limit = (descr.limit1 << 16) | descr.limit0;
1601
1602 if (descr.present
1603 && (allowed_descriptors[type] & (1 << descr.stype)) != 0)
1604 {
1605 printf_filtered ("0x%03x: ",
1606 type == 1
1607 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1608 if (descr.page_granular)
1609 limit = (limit << 12) | 0xfff; /* big segment: low 12 bit set */
1610 if (descr.stype == 1 || descr.stype == 2 || descr.stype == 3
1611 || descr.stype == 9 || descr.stype == 11
1612 || (descr.stype >= 16 && descr.stype < 32))
1613 printf_filtered ("base=0x%02x%02x%04x limit=0x%08lx",
1614 descr.base2, descr.base1, descr.base0, limit);
1615
1616 switch (descr.stype)
1617 {
1618 case 1:
1619 case 3:
1620 printf_filtered (" 16-bit TSS (task %sactive)",
1621 descr.stype == 3 ? "" : "in");
1622 break;
1623 case 2:
1624 puts_filtered (" LDT");
1625 break;
1626 case 4:
1627 memcpy (&gate, &descr, sizeof gate);
1628 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1629 gate.selector, gate.offset1, gate.offset0);
1630 printf_filtered (" 16-bit Call Gate (params=%d)",
1631 gate.param_count);
1632 break;
1633 case 5:
1634 printf_filtered ("TSS selector=0x%04x", descr.base0);
1635 printfi_filtered (16, "Task Gate");
1636 break;
1637 case 6:
1638 case 7:
1639 memcpy (&gate, &descr, sizeof gate);
1640 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1641 gate.selector, gate.offset1, gate.offset0);
1642 printf_filtered (" 16-bit %s Gate",
1643 descr.stype == 6 ? "Interrupt" : "Trap");
1644 break;
1645 case 9:
1646 case 11:
1647 printf_filtered (" 32-bit TSS (task %sactive)",
1648 descr.stype == 3 ? "" : "in");
1649 break;
1650 case 12:
1651 memcpy (&gate, &descr, sizeof gate);
1652 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1653 gate.selector, gate.offset1, gate.offset0);
1654 printf_filtered (" 32-bit Call Gate (params=%d)",
1655 gate.param_count);
1656 break;
1657 case 14:
1658 case 15:
1659 memcpy (&gate, &descr, sizeof gate);
1660 printf_filtered ("selector=0x%04x offs=0x%04x%04x",
1661 gate.selector, gate.offset1, gate.offset0);
1662 printf_filtered (" 32-bit %s Gate",
1663 descr.stype == 14 ? "Interrupt" : "Trap");
1664 break;
1665 case 16: /* data segments */
1666 case 17:
1667 case 18:
1668 case 19:
1669 case 20:
1670 case 21:
1671 case 22:
1672 case 23:
1673 printf_filtered (" %s-bit Data (%s Exp-%s%s)",
1674 descr.bit32 ? "32" : "16",
1675 descr.stype & 2
1676 ? "Read/Write," : "Read-Only, ",
1677 descr.stype & 4 ? "down" : "up",
1678 descr.stype & 1 ? "" : ", N.Acc");
1679 break;
1680 case 24: /* code segments */
1681 case 25:
1682 case 26:
1683 case 27:
1684 case 28:
1685 case 29:
1686 case 30:
1687 case 31:
1688 printf_filtered (" %s-bit Code (%s, %sConf%s)",
1689 descr.bit32 ? "32" : "16",
1690 descr.stype & 2 ? "Exec/Read" : "Exec-Only",
1691 descr.stype & 4 ? "" : "N.",
1692 descr.stype & 1 ? "" : ", N.Acc");
1693 break;
1694 default:
1695 printf_filtered ("Unknown type 0x%02x", descr.stype);
1696 break;
1697 }
1698 puts_filtered ("\n");
1699 }
1700 else if (force)
1701 {
1702 printf_filtered ("0x%03x: ",
1703 type == 1
1704 ? idx : (idx * 8) | (type ? (cpl | 4) : 0));
1705 if (!descr.present)
1706 puts_filtered ("Segment not present\n");
1707 else
1708 printf_filtered ("Segment type 0x%02x is invalid in this table\n",
1709 descr.stype);
1710 }
1711 }
1712 else if (force)
1713 printf_filtered ("0x%03x: Cannot read this descriptor\n", idx);
1714 }
1715
1716 static void
1717 go32_sldt (char *arg, int from_tty)
1718 {
1719 struct dtr_reg gdtr;
1720 unsigned short ldtr = 0;
1721 int ldt_idx;
1722 struct seg_descr ldt_descr;
1723 long ldt_entry = -1L;
1724 int cpl = (prog_has_started ? a_tss.tss_cs : _my_cs ()) & 3;
1725
1726 if (arg && *arg)
1727 {
1728 arg = skip_spaces (arg);
1729
1730 if (*arg)
1731 {
1732 ldt_entry = parse_and_eval_long (arg);
1733 if (ldt_entry < 0
1734 || (ldt_entry & 4) == 0
1735 || (ldt_entry & 3) != (cpl & 3))
1736 error (_("Invalid LDT entry 0x%03lx."), (unsigned long)ldt_entry);
1737 }
1738 }
1739
1740 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1741 __asm__ __volatile__ ("sldt %0" : "=m" (ldtr) : /* no inputs */ );
1742 ldt_idx = ldtr / 8;
1743 if (ldt_idx == 0)
1744 puts_filtered ("There is no LDT.\n");
1745 /* LDT's entry in the GDT must have the type LDT, which is 2. */
1746 else if (get_descriptor (gdtr.base, ldt_idx, &ldt_descr) != 2)
1747 printf_filtered ("LDT is present (at %#x), but unreadable by GDB.\n",
1748 ldt_descr.base0
1749 | (ldt_descr.base1 << 16)
1750 | (ldt_descr.base2 << 24));
1751 else
1752 {
1753 unsigned base =
1754 ldt_descr.base0
1755 | (ldt_descr.base1 << 16)
1756 | (ldt_descr.base2 << 24);
1757 unsigned limit = ldt_descr.limit0 | (ldt_descr.limit1 << 16);
1758 int max_entry;
1759
1760 if (ldt_descr.page_granular)
1761 /* Page-granular segments must have the low 12 bits of their
1762 limit set. */
1763 limit = (limit << 12) | 0xfff;
1764 /* LDT cannot have more than 8K 8-byte entries, i.e. more than
1765 64KB. */
1766 if (limit > 0xffff)
1767 limit = 0xffff;
1768
1769 max_entry = (limit + 1) / 8;
1770
1771 if (ldt_entry >= 0)
1772 {
1773 if (ldt_entry > limit)
1774 error (_("Invalid LDT entry %#lx: outside valid limits [0..%#x]"),
1775 (unsigned long)ldt_entry, limit);
1776
1777 display_descriptor (ldt_descr.stype, base, ldt_entry / 8, 1);
1778 }
1779 else
1780 {
1781 int i;
1782
1783 for (i = 0; i < max_entry; i++)
1784 display_descriptor (ldt_descr.stype, base, i, 0);
1785 }
1786 }
1787 }
1788
1789 static void
1790 go32_sgdt (char *arg, int from_tty)
1791 {
1792 struct dtr_reg gdtr;
1793 long gdt_entry = -1L;
1794 int max_entry;
1795
1796 if (arg && *arg)
1797 {
1798 arg = skip_spaces (arg);
1799
1800 if (*arg)
1801 {
1802 gdt_entry = parse_and_eval_long (arg);
1803 if (gdt_entry < 0 || (gdt_entry & 7) != 0)
1804 error (_("Invalid GDT entry 0x%03lx: "
1805 "not an integral multiple of 8."),
1806 (unsigned long)gdt_entry);
1807 }
1808 }
1809
1810 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1811 max_entry = (gdtr.limit + 1) / 8;
1812
1813 if (gdt_entry >= 0)
1814 {
1815 if (gdt_entry > gdtr.limit)
1816 error (_("Invalid GDT entry %#lx: outside valid limits [0..%#x]"),
1817 (unsigned long)gdt_entry, gdtr.limit);
1818
1819 display_descriptor (0, gdtr.base, gdt_entry / 8, 1);
1820 }
1821 else
1822 {
1823 int i;
1824
1825 for (i = 0; i < max_entry; i++)
1826 display_descriptor (0, gdtr.base, i, 0);
1827 }
1828 }
1829
1830 static void
1831 go32_sidt (char *arg, int from_tty)
1832 {
1833 struct dtr_reg idtr;
1834 long idt_entry = -1L;
1835 int max_entry;
1836
1837 if (arg && *arg)
1838 {
1839 arg = skip_spaces (arg);
1840
1841 if (*arg)
1842 {
1843 idt_entry = parse_and_eval_long (arg);
1844 if (idt_entry < 0)
1845 error (_("Invalid (negative) IDT entry %ld."), idt_entry);
1846 }
1847 }
1848
1849 __asm__ __volatile__ ("sidt %0" : "=m" (idtr) : /* no inputs */ );
1850 max_entry = (idtr.limit + 1) / 8;
1851 if (max_entry > 0x100) /* No more than 256 entries. */
1852 max_entry = 0x100;
1853
1854 if (idt_entry >= 0)
1855 {
1856 if (idt_entry > idtr.limit)
1857 error (_("Invalid IDT entry %#lx: outside valid limits [0..%#x]"),
1858 (unsigned long)idt_entry, idtr.limit);
1859
1860 display_descriptor (1, idtr.base, idt_entry, 1);
1861 }
1862 else
1863 {
1864 int i;
1865
1866 for (i = 0; i < max_entry; i++)
1867 display_descriptor (1, idtr.base, i, 0);
1868 }
1869 }
1870
1871 /* Cached linear address of the base of the page directory. For
1872 now, available only under CWSDPMI. Code based on ideas and
1873 suggestions from Charles Sandmann <sandmann@clio.rice.edu>. */
1874 static unsigned long pdbr;
1875
1876 static unsigned long
1877 get_cr3 (void)
1878 {
1879 unsigned offset;
1880 unsigned taskreg;
1881 unsigned long taskbase, cr3;
1882 struct dtr_reg gdtr;
1883
1884 if (pdbr > 0 && pdbr <= 0xfffff)
1885 return pdbr;
1886
1887 /* Get the linear address of GDT and the Task Register. */
1888 __asm__ __volatile__ ("sgdt %0" : "=m" (gdtr) : /* no inputs */ );
1889 __asm__ __volatile__ ("str %0" : "=m" (taskreg) : /* no inputs */ );
1890
1891 /* Task Register is a segment selector for the TSS of the current
1892 task. Therefore, it can be used as an index into the GDT to get
1893 at the segment descriptor for the TSS. To get the index, reset
1894 the low 3 bits of the selector (which give the CPL). Add 2 to the
1895 offset to point to the 3 low bytes of the base address. */
1896 offset = gdtr.base + (taskreg & 0xfff8) + 2;
1897
1898
1899 /* CWSDPMI's task base is always under the 1MB mark. */
1900 if (offset > 0xfffff)
1901 return 0;
1902
1903 _farsetsel (_dos_ds);
1904 taskbase = _farnspeekl (offset) & 0xffffffU;
1905 taskbase += _farnspeekl (offset + 2) & 0xff000000U;
1906 if (taskbase > 0xfffff)
1907 return 0;
1908
1909 /* CR3 (a.k.a. PDBR, the Page Directory Base Register) is stored at
1910 offset 1Ch in the TSS. */
1911 cr3 = _farnspeekl (taskbase + 0x1c) & ~0xfff;
1912 if (cr3 > 0xfffff)
1913 {
1914 #if 0 /* Not fullly supported yet. */
1915 /* The Page Directory is in UMBs. In that case, CWSDPMI puts
1916 the first Page Table right below the Page Directory. Thus,
1917 the first Page Table's entry for its own address and the Page
1918 Directory entry for that Page Table will hold the same
1919 physical address. The loop below searches the entire UMB
1920 range of addresses for such an occurence. */
1921 unsigned long addr, pte_idx;
1922
1923 for (addr = 0xb0000, pte_idx = 0xb0;
1924 pte_idx < 0xff;
1925 addr += 0x1000, pte_idx++)
1926 {
1927 if (((_farnspeekl (addr + 4 * pte_idx) & 0xfffff027) ==
1928 (_farnspeekl (addr + 0x1000) & 0xfffff027))
1929 && ((_farnspeekl (addr + 4 * pte_idx + 4) & 0xfffff000) == cr3))
1930 {
1931 cr3 = addr + 0x1000;
1932 break;
1933 }
1934 }
1935 #endif
1936
1937 if (cr3 > 0xfffff)
1938 cr3 = 0;
1939 }
1940
1941 return cr3;
1942 }
1943
1944 /* Return the N'th Page Directory entry. */
1945 static unsigned long
1946 get_pde (int n)
1947 {
1948 unsigned long pde = 0;
1949
1950 if (pdbr && n >= 0 && n < 1024)
1951 {
1952 pde = _farpeekl (_dos_ds, pdbr + 4*n);
1953 }
1954 return pde;
1955 }
1956
1957 /* Return the N'th entry of the Page Table whose Page Directory entry
1958 is PDE. */
1959 static unsigned long
1960 get_pte (unsigned long pde, int n)
1961 {
1962 unsigned long pte = 0;
1963
1964 /* pde & 0x80 tests the 4MB page bit. We don't support 4MB
1965 page tables, for now. */
1966 if ((pde & 1) && !(pde & 0x80) && n >= 0 && n < 1024)
1967 {
1968 pde &= ~0xfff; /* Clear non-address bits. */
1969 pte = _farpeekl (_dos_ds, pde + 4*n);
1970 }
1971 return pte;
1972 }
1973
1974 /* Display a Page Directory or Page Table entry. IS_DIR, if non-zero,
1975 says this is a Page Directory entry. If FORCE is non-zero, display
1976 the entry even if its Present flag is off. OFF is the offset of the
1977 address from the page's base address. */
1978 static void
1979 display_ptable_entry (unsigned long entry, int is_dir, int force, unsigned off)
1980 {
1981 if ((entry & 1) != 0)
1982 {
1983 printf_filtered ("Base=0x%05lx000", entry >> 12);
1984 if ((entry & 0x100) && !is_dir)
1985 puts_filtered (" Global");
1986 if ((entry & 0x40) && !is_dir)
1987 puts_filtered (" Dirty");
1988 printf_filtered (" %sAcc.", (entry & 0x20) ? "" : "Not-");
1989 printf_filtered (" %sCached", (entry & 0x10) ? "" : "Not-");
1990 printf_filtered (" Write-%s", (entry & 8) ? "Thru" : "Back");
1991 printf_filtered (" %s", (entry & 4) ? "Usr" : "Sup");
1992 printf_filtered (" Read-%s", (entry & 2) ? "Write" : "Only");
1993 if (off)
1994 printf_filtered (" +0x%x", off);
1995 puts_filtered ("\n");
1996 }
1997 else if (force)
1998 printf_filtered ("Page%s not present or not supported; value=0x%lx.\n",
1999 is_dir ? " Table" : "", entry >> 1);
2000 }
2001
2002 static void
2003 go32_pde (char *arg, int from_tty)
2004 {
2005 long pde_idx = -1, i;
2006
2007 if (arg && *arg)
2008 {
2009 arg = skip_spaces (arg);
2010
2011 if (*arg)
2012 {
2013 pde_idx = parse_and_eval_long (arg);
2014 if (pde_idx < 0 || pde_idx >= 1024)
2015 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2016 }
2017 }
2018
2019 pdbr = get_cr3 ();
2020 if (!pdbr)
2021 puts_filtered ("Access to Page Directories is "
2022 "not supported on this system.\n");
2023 else if (pde_idx >= 0)
2024 display_ptable_entry (get_pde (pde_idx), 1, 1, 0);
2025 else
2026 for (i = 0; i < 1024; i++)
2027 display_ptable_entry (get_pde (i), 1, 0, 0);
2028 }
2029
2030 /* A helper function to display entries in a Page Table pointed to by
2031 the N'th entry in the Page Directory. If FORCE is non-zero, say
2032 something even if the Page Table is not accessible. */
2033 static void
2034 display_page_table (long n, int force)
2035 {
2036 unsigned long pde = get_pde (n);
2037
2038 if ((pde & 1) != 0)
2039 {
2040 int i;
2041
2042 printf_filtered ("Page Table pointed to by "
2043 "Page Directory entry 0x%lx:\n", n);
2044 for (i = 0; i < 1024; i++)
2045 display_ptable_entry (get_pte (pde, i), 0, 0, 0);
2046 puts_filtered ("\n");
2047 }
2048 else if (force)
2049 printf_filtered ("Page Table not present; value=0x%lx.\n", pde >> 1);
2050 }
2051
2052 static void
2053 go32_pte (char *arg, int from_tty)
2054 {
2055 long pde_idx = -1L, i;
2056
2057 if (arg && *arg)
2058 {
2059 arg = skip_spaces (arg);
2060
2061 if (*arg)
2062 {
2063 pde_idx = parse_and_eval_long (arg);
2064 if (pde_idx < 0 || pde_idx >= 1024)
2065 error (_("Entry %ld is outside valid limits [0..1023]."), pde_idx);
2066 }
2067 }
2068
2069 pdbr = get_cr3 ();
2070 if (!pdbr)
2071 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2072 else if (pde_idx >= 0)
2073 display_page_table (pde_idx, 1);
2074 else
2075 for (i = 0; i < 1024; i++)
2076 display_page_table (i, 0);
2077 }
2078
2079 static void
2080 go32_pte_for_address (char *arg, int from_tty)
2081 {
2082 CORE_ADDR addr = 0, i;
2083
2084 if (arg && *arg)
2085 {
2086 arg = skip_spaces (arg);
2087
2088 if (*arg)
2089 addr = parse_and_eval_address (arg);
2090 }
2091 if (!addr)
2092 error_no_arg (_("linear address"));
2093
2094 pdbr = get_cr3 ();
2095 if (!pdbr)
2096 puts_filtered ("Access to Page Tables is not supported on this system.\n");
2097 else
2098 {
2099 int pde_idx = (addr >> 22) & 0x3ff;
2100 int pte_idx = (addr >> 12) & 0x3ff;
2101 unsigned offs = addr & 0xfff;
2102
2103 printf_filtered ("Page Table entry for address %s:\n",
2104 hex_string(addr));
2105 display_ptable_entry (get_pte (get_pde (pde_idx), pte_idx), 0, 1, offs);
2106 }
2107 }
2108
2109 static struct cmd_list_element *info_dos_cmdlist = NULL;
2110
2111 static void
2112 go32_info_dos_command (char *args, int from_tty)
2113 {
2114 help_list (info_dos_cmdlist, "info dos ", class_info, gdb_stdout);
2115 }
2116
2117 /* -Wmissing-prototypes */
2118 extern initialize_file_ftype _initialize_go32_nat;
2119
2120 void
2121 _initialize_go32_nat (void)
2122 {
2123 init_go32_ops ();
2124 add_target (&go32_ops);
2125
2126 add_prefix_cmd ("dos", class_info, go32_info_dos_command, _("\
2127 Print information specific to DJGPP (aka MS-DOS) debugging."),
2128 &info_dos_cmdlist, "info dos ", 0, &infolist);
2129
2130 add_cmd ("sysinfo", class_info, go32_sysinfo, _("\
2131 Display information about the target system, including CPU, OS, DPMI, etc."),
2132 &info_dos_cmdlist);
2133 add_cmd ("ldt", class_info, go32_sldt, _("\
2134 Display entries in the LDT (Local Descriptor Table).\n\
2135 Entry number (an expression) as an argument means display only that entry."),
2136 &info_dos_cmdlist);
2137 add_cmd ("gdt", class_info, go32_sgdt, _("\
2138 Display entries in the GDT (Global Descriptor Table).\n\
2139 Entry number (an expression) as an argument means display only that entry."),
2140 &info_dos_cmdlist);
2141 add_cmd ("idt", class_info, go32_sidt, _("\
2142 Display entries in the IDT (Interrupt Descriptor Table).\n\
2143 Entry number (an expression) as an argument means display only that entry."),
2144 &info_dos_cmdlist);
2145 add_cmd ("pde", class_info, go32_pde, _("\
2146 Display entries in the Page Directory.\n\
2147 Entry number (an expression) as an argument means display only that entry."),
2148 &info_dos_cmdlist);
2149 add_cmd ("pte", class_info, go32_pte, _("\
2150 Display entries in Page Tables.\n\
2151 Entry number (an expression) as an argument means display only entries\n\
2152 from the Page Table pointed to by the specified Page Directory entry."),
2153 &info_dos_cmdlist);
2154 add_cmd ("address-pte", class_info, go32_pte_for_address, _("\
2155 Display a Page Table entry for a linear address.\n\
2156 The address argument must be a linear address, after adding to\n\
2157 it the base address of the appropriate segment.\n\
2158 The base address of variables and functions in the debuggee's data\n\
2159 or code segment is stored in the variable __djgpp_base_address,\n\
2160 so use `__djgpp_base_address + (char *)&var' as the argument.\n\
2161 For other segments, look up their base address in the output of\n\
2162 the `info dos ldt' command."),
2163 &info_dos_cmdlist);
2164 }
2165
2166 pid_t
2167 tcgetpgrp (int fd)
2168 {
2169 if (isatty (fd))
2170 return SOME_PID;
2171 errno = ENOTTY;
2172 return -1;
2173 }
2174
2175 int
2176 tcsetpgrp (int fd, pid_t pgid)
2177 {
2178 if (isatty (fd) && pgid == SOME_PID)
2179 return 0;
2180 errno = pgid == SOME_PID ? ENOTTY : ENOSYS;
2181 return -1;
2182 }
This page took 0.074916 seconds and 4 git commands to generate.