Add m88k-coff target Makefile fragment.
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include <dis-asm.h>
30 #undef NUM_REGS
31 #define NUM_REGS 11
32
33 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
34
35 /* an easy to debug H8 stack frame looks like:
36 0x6df6 push r6
37 0x0d76 mov.w r7,r6
38 0x6dfn push reg
39 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
40 0x1957 sub.w r5,sp
41
42 */
43
44 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
45 #define IS_PUSH_FP(x) (x == 0x6df6)
46 #define IS_MOVE_FP(x) (x == 0x0d76)
47 #define IS_MOV_SP_FP(x) (x == 0x0d76)
48 #define IS_SUB2_SP(x) (x==0x1b87)
49 #define IS_MOVK_R5(x) (x==0x7905)
50 #define IS_SUB_R5SP(x) (x==0x1957)
51 CORE_ADDR examine_prologue ();
52
53 void frame_find_saved_regs ();
54 CORE_ADDR
55 h8300_skip_prologue (start_pc)
56 CORE_ADDR start_pc;
57 {
58 short int w;
59
60 w = read_memory_unsigned_integer (start_pc, 2);
61 /* Skip past all push insns */
62 while (IS_PUSH_FP (w))
63 {
64 start_pc += 2;
65 w = read_memory_unsigned_integer (start_pc, 2);
66 }
67
68 /* Skip past a move to FP */
69 if (IS_MOVE_FP (w))
70 {
71 start_pc += 2;
72 w = read_memory_unsigned_integer (start_pc, 2);
73 }
74
75 /* Skip the stack adjust */
76
77 if (IS_MOVK_R5 (w))
78 {
79 start_pc += 2;
80 w = read_memory_unsigned_integer (start_pc, 2);
81 }
82 if (IS_SUB_R5SP (w))
83 {
84 start_pc += 2;
85 w = read_memory_unsigned_integer (start_pc, 2);
86 }
87 while (IS_SUB2_SP (w))
88 {
89 start_pc += 2;
90 w = read_memory_unsigned_integer (start_pc, 2);
91 }
92
93 return start_pc;
94 }
95
96 int
97 print_insn (memaddr, stream)
98 CORE_ADDR memaddr;
99 FILE *stream;
100 {
101 disassemble_info info;
102 GDB_INIT_DISASSEMBLE_INFO(info, stream);
103 if (HMODE)
104 return print_insn_h8300h (memaddr, &info);
105 else
106 return print_insn_h8300 (memaddr, &info);
107 }
108
109 /* Given a GDB frame, determine the address of the calling function's frame.
110 This will be used to create a new GDB frame struct, and then
111 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
112
113 For us, the frame address is its stack pointer value, so we look up
114 the function prologue to determine the caller's sp value, and return it. */
115
116 FRAME_ADDR
117 FRAME_CHAIN (thisframe)
118 FRAME thisframe;
119 {
120 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
121 return thisframe->fsr->regs[SP_REGNUM];
122 }
123
124 /* Put here the code to store, into a struct frame_saved_regs,
125 the addresses of the saved registers of frame described by FRAME_INFO.
126 This includes special registers such as pc and fp saved in special
127 ways in the stack frame. sp is even more special:
128 the address we return for it IS the sp for the next frame.
129
130 We cache the result of doing this in the frame_cache_obstack, since
131 it is fairly expensive. */
132
133 void
134 frame_find_saved_regs (fi, fsr)
135 struct frame_info *fi;
136 struct frame_saved_regs *fsr;
137 {
138 register CORE_ADDR next_addr;
139 register CORE_ADDR *saved_regs;
140 register int regnum;
141 register struct frame_saved_regs *cache_fsr;
142 extern struct obstack frame_cache_obstack;
143 CORE_ADDR ip;
144 struct symtab_and_line sal;
145 CORE_ADDR limit;
146
147 if (!fi->fsr)
148 {
149 cache_fsr = (struct frame_saved_regs *)
150 obstack_alloc (&frame_cache_obstack,
151 sizeof (struct frame_saved_regs));
152 bzero (cache_fsr, sizeof (struct frame_saved_regs));
153
154 fi->fsr = cache_fsr;
155
156 /* Find the start and end of the function prologue. If the PC
157 is in the function prologue, we only consider the part that
158 has executed already. */
159
160 ip = get_pc_function_start (fi->pc);
161 sal = find_pc_line (ip, 0);
162 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
163
164 /* This will fill in fields in *fi as well as in cache_fsr. */
165 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
166 }
167
168 if (fsr)
169 *fsr = *fi->fsr;
170 }
171
172 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
173 is not the address of a valid instruction, the address of the next
174 instruction beyond ADDR otherwise. *PWORD1 receives the first word
175 of the instruction.*/
176
177 CORE_ADDR
178 NEXT_PROLOGUE_INSN (addr, lim, pword1)
179 CORE_ADDR addr;
180 CORE_ADDR lim;
181 INSN_WORD *pword1;
182 {
183 char buf[2];
184 if (addr < lim + 8)
185 {
186 read_memory (addr, buf, 2);
187 *pword1 = extract_signed_integer (buf, 2);
188
189 return addr + 2;
190 }
191 return 0;
192 }
193
194 /* Examine the prologue of a function. `ip' points to the first instruction.
195 `limit' is the limit of the prologue (e.g. the addr of the first
196 linenumber, or perhaps the program counter if we're stepping through).
197 `frame_sp' is the stack pointer value in use in this frame.
198 `fsr' is a pointer to a frame_saved_regs structure into which we put
199 info about the registers saved by this frame.
200 `fi' is a struct frame_info pointer; we fill in various fields in it
201 to reflect the offsets of the arg pointer and the locals pointer. */
202
203 static CORE_ADDR
204 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
205 register CORE_ADDR ip;
206 register CORE_ADDR limit;
207 FRAME_ADDR after_prolog_fp;
208 struct frame_saved_regs *fsr;
209 struct frame_info *fi;
210 {
211 register CORE_ADDR next_ip;
212 int r;
213 int i;
214 int have_fp = 0;
215 register int src;
216 register struct pic_prologue_code *pcode;
217 INSN_WORD insn_word;
218 int size, offset;
219 /* Number of things pushed onto stack, starts at 2/4, 'cause the
220 PC is already there */
221 unsigned int reg_save_depth = HMODE ? 4 : 2;
222
223 unsigned int auto_depth = 0; /* Number of bytes of autos */
224
225 char in_frame[11]; /* One for each reg */
226
227 memset (in_frame, 1, 11);
228 for (r = 0; r < 8; r++)
229 {
230 fsr->regs[r] = 0;
231 }
232 if (after_prolog_fp == 0)
233 {
234 after_prolog_fp = read_register (SP_REGNUM);
235 }
236 if (ip == 0 || ip & (HMODE ? ~0xffff : ~0xffff))
237 return 0;
238
239 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
240
241 /* Skip over any fp push instructions */
242 fsr->regs[6] = after_prolog_fp;
243 while (next_ip && IS_PUSH_FP (insn_word))
244 {
245 ip = next_ip;
246
247 in_frame[insn_word & 0x7] = reg_save_depth;
248 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
249 reg_save_depth += 2;
250 }
251
252 /* Is this a move into the fp */
253 if (next_ip && IS_MOV_SP_FP (insn_word))
254 {
255 ip = next_ip;
256 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
257 have_fp = 1;
258 }
259
260 /* Skip over any stack adjustment, happens either with a number of
261 sub#2,sp or a mov #x,r5 sub r5,sp */
262
263 if (next_ip && IS_SUB2_SP (insn_word))
264 {
265 while (next_ip && IS_SUB2_SP (insn_word))
266 {
267 auto_depth += 2;
268 ip = next_ip;
269 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
270 }
271 }
272 else
273 {
274 if (next_ip && IS_MOVK_R5 (insn_word))
275 {
276 ip = next_ip;
277 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
278 auto_depth += insn_word;
279
280 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
281 auto_depth += insn_word;
282 }
283 }
284 /* Work out which regs are stored where */
285 while (next_ip && IS_PUSH (insn_word))
286 {
287 ip = next_ip;
288 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
289 fsr->regs[r] = after_prolog_fp + auto_depth;
290 auto_depth += 2;
291 }
292
293 /* The args are always reffed based from the stack pointer */
294 fi->args_pointer = after_prolog_fp;
295 /* Locals are always reffed based from the fp */
296 fi->locals_pointer = after_prolog_fp;
297 /* The PC is at a known place */
298 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + 2, BINWORD);
299
300 /* Rememeber any others too */
301 in_frame[PC_REGNUM] = 0;
302
303 if (have_fp)
304 /* We keep the old FP in the SP spot */
305 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
306 else
307 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
308
309 return (ip);
310 }
311
312 void
313 init_extra_frame_info (fromleaf, fi)
314 int fromleaf;
315 struct frame_info *fi;
316 {
317 fi->fsr = 0; /* Not yet allocated */
318 fi->args_pointer = 0; /* Unknown */
319 fi->locals_pointer = 0; /* Unknown */
320 fi->from_pc = 0;
321 }
322
323 /* Return the saved PC from this frame.
324
325 If the frame has a memory copy of SRP_REGNUM, use that. If not,
326 just use the register SRP_REGNUM itself. */
327
328 CORE_ADDR
329 frame_saved_pc (frame)
330 FRAME frame;
331 {
332 return frame->from_pc;
333 }
334
335 CORE_ADDR
336 frame_locals_address (fi)
337 struct frame_info *fi;
338 {
339 if (!fi->locals_pointer)
340 {
341 struct frame_saved_regs ignore;
342
343 get_frame_saved_regs (fi, &ignore);
344
345 }
346 return fi->locals_pointer;
347 }
348
349 /* Return the address of the argument block for the frame
350 described by FI. Returns 0 if the address is unknown. */
351
352 CORE_ADDR
353 frame_args_address (fi)
354 struct frame_info *fi;
355 {
356 if (!fi->args_pointer)
357 {
358 struct frame_saved_regs ignore;
359
360 get_frame_saved_regs (fi, &ignore);
361
362 }
363
364 return fi->args_pointer;
365 }
366
367 void
368 h8300_pop_frame ()
369 {
370 unsigned regnum;
371 struct frame_saved_regs fsr;
372 struct frame_info *fi;
373
374 FRAME frame = get_current_frame ();
375
376 fi = get_frame_info (frame);
377 get_frame_saved_regs (fi, &fsr);
378
379 for (regnum = 0; regnum < 8; regnum++)
380 {
381 if (fsr.regs[regnum])
382 {
383 write_register (regnum, read_memory_integer(fsr.regs[regnum]), BINWORD);
384 }
385
386 flush_cached_frames ();
387 set_current_frame (create_new_frame (read_register (FP_REGNUM),
388 read_pc ()));
389 }
390 }
391
392 void
393 print_register_hook (regno)
394 {
395 if (regno == 8)
396 {
397 /* CCR register */
398
399 int C, Z, N, V;
400 unsigned char b[2];
401 unsigned char l;
402
403 read_relative_register_raw_bytes (regno, b);
404 l = b[1];
405 printf ("\t");
406 printf ("I-%d - ", (l & 0x80) != 0);
407 printf ("H-%d - ", (l & 0x20) != 0);
408 N = (l & 0x8) != 0;
409 Z = (l & 0x4) != 0;
410 V = (l & 0x2) != 0;
411 C = (l & 0x1) != 0;
412 printf ("N-%d ", N);
413 printf ("Z-%d ", Z);
414 printf ("V-%d ", V);
415 printf ("C-%d ", C);
416 if ((C | Z) == 0)
417 printf ("u> ");
418 if ((C | Z) == 1)
419 printf ("u<= ");
420 if ((C == 0))
421 printf ("u>= ");
422 if (C == 1)
423 printf ("u< ");
424 if (Z == 0)
425 printf ("!= ");
426 if (Z == 1)
427 printf ("== ");
428 if ((N ^ V) == 0)
429 printf (">= ");
430 if ((N ^ V) == 1)
431 printf ("< ");
432 if ((Z | (N ^ V)) == 0)
433 printf ("> ");
434 if ((Z | (N ^ V)) == 1)
435 printf ("<= ");
436 }
437 }
This page took 0.040196 seconds and 4 git commands to generate.