* mon960-rom.c (mon960_open): Add floating point detection to
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #include "dis-asm.h"
30 #include "gdbcmd.h"
31 #include "gdbtypes.h"
32 #include "gdbcore.h"
33 #include "gdb_string.h"
34 #include "value.h"
35
36
37 #undef NUM_REGS
38 #define NUM_REGS 11
39
40 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
41
42 /* an easy to debug H8 stack frame looks like:
43 0x6df6 push r6
44 0x0d76 mov.w r7,r6
45 0x6dfn push reg
46 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
47 0x1957 sub.w r5,sp
48
49 */
50
51 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
52 #define IS_PUSH_FP(x) (x == 0x6df6)
53 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
54 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
55 #define IS_SUB2_SP(x) (x==0x1b87)
56 #define IS_SUB4_SP(x) (x==0x1b97)
57 #define IS_SUBL_SP(x) (x==0x7a37)
58 #define IS_MOVK_R5(x) (x==0x7905)
59 #define IS_SUB_R5SP(x) (x==0x1957)
60
61 /* Local function declarations. */
62
63 static CORE_ADDR examine_prologue ();
64 static void set_machine_hook PARAMS ((char *filename));
65
66 void frame_find_saved_regs ();
67 CORE_ADDR
68 h8300_skip_prologue (start_pc)
69 CORE_ADDR start_pc;
70 {
71 short int w;
72 int adjust = 0;
73
74 w = read_memory_unsigned_integer (start_pc, 2);
75 if (w == 0x0100)
76 {
77 w = read_memory_unsigned_integer (start_pc + 2, 2);
78 adjust = 2;
79 }
80
81 /* Skip past all push insns */
82 while (IS_PUSH_FP (w))
83 {
84 start_pc += 2 + adjust;
85 w = read_memory_unsigned_integer (start_pc, 2);
86 }
87
88 /* Skip past a move to FP */
89 if (IS_MOVE_FP (w))
90 {
91 start_pc += 2;
92 w = read_memory_unsigned_integer (start_pc, 2);
93 }
94
95 /* Skip the stack adjust */
96
97 if (IS_MOVK_R5 (w))
98 {
99 start_pc += 2;
100 w = read_memory_unsigned_integer (start_pc, 2);
101 }
102 if (IS_SUB_R5SP (w))
103 {
104 start_pc += 2;
105 w = read_memory_unsigned_integer (start_pc, 2);
106 }
107 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
108 {
109 start_pc += 2;
110 w = read_memory_unsigned_integer (start_pc, 2);
111 }
112
113 if (IS_SUBL_SP (w))
114 start_pc += 6;
115
116 return start_pc;
117 }
118
119 int
120 gdb_print_insn_h8300 (memaddr, info)
121 bfd_vma memaddr;
122 disassemble_info *info;
123 {
124 if (h8300smode)
125 return print_insn_h8300s (memaddr, info);
126 else if (h8300hmode)
127 return print_insn_h8300h (memaddr, info);
128 else
129 return print_insn_h8300 (memaddr, info);
130 }
131
132 /* Given a GDB frame, determine the address of the calling function's frame.
133 This will be used to create a new GDB frame struct, and then
134 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
135
136 For us, the frame address is its stack pointer value, so we look up
137 the function prologue to determine the caller's sp value, and return it. */
138
139 CORE_ADDR
140 h8300_frame_chain (thisframe)
141 struct frame_info *thisframe;
142 {
143 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
144 return thisframe->fsr->regs[SP_REGNUM];
145 }
146
147 /* Put here the code to store, into a struct frame_saved_regs,
148 the addresses of the saved registers of frame described by FRAME_INFO.
149 This includes special registers such as pc and fp saved in special
150 ways in the stack frame. sp is even more special:
151 the address we return for it IS the sp for the next frame.
152
153 We cache the result of doing this in the frame_cache_obstack, since
154 it is fairly expensive. */
155
156 void
157 frame_find_saved_regs (fi, fsr)
158 struct frame_info *fi;
159 struct frame_saved_regs *fsr;
160 {
161 register struct frame_saved_regs *cache_fsr;
162 extern struct obstack frame_cache_obstack;
163 CORE_ADDR ip;
164 struct symtab_and_line sal;
165 CORE_ADDR limit;
166
167 if (!fi->fsr)
168 {
169 cache_fsr = (struct frame_saved_regs *)
170 obstack_alloc (&frame_cache_obstack,
171 sizeof (struct frame_saved_regs));
172 memset (cache_fsr, '\0', sizeof (struct frame_saved_regs));
173
174 fi->fsr = cache_fsr;
175
176 /* Find the start and end of the function prologue. If the PC
177 is in the function prologue, we only consider the part that
178 has executed already. */
179
180 ip = get_pc_function_start (fi->pc);
181 sal = find_pc_line (ip, 0);
182 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
183
184 /* This will fill in fields in *fi as well as in cache_fsr. */
185 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
186 }
187
188 if (fsr)
189 *fsr = *fi->fsr;
190 }
191
192 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
193 is not the address of a valid instruction, the address of the next
194 instruction beyond ADDR otherwise. *PWORD1 receives the first word
195 of the instruction.*/
196
197 CORE_ADDR
198 NEXT_PROLOGUE_INSN (addr, lim, pword1)
199 CORE_ADDR addr;
200 CORE_ADDR lim;
201 INSN_WORD *pword1;
202 {
203 char buf[2];
204 if (addr < lim + 8)
205 {
206 read_memory (addr, buf, 2);
207 *pword1 = extract_signed_integer (buf, 2);
208
209 return addr + 2;
210 }
211 return 0;
212 }
213
214 /* Examine the prologue of a function. `ip' points to the first instruction.
215 `limit' is the limit of the prologue (e.g. the addr of the first
216 linenumber, or perhaps the program counter if we're stepping through).
217 `frame_sp' is the stack pointer value in use in this frame.
218 `fsr' is a pointer to a frame_saved_regs structure into which we put
219 info about the registers saved by this frame.
220 `fi' is a struct frame_info pointer; we fill in various fields in it
221 to reflect the offsets of the arg pointer and the locals pointer. */
222
223 static CORE_ADDR
224 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
225 register CORE_ADDR ip;
226 register CORE_ADDR limit;
227 CORE_ADDR after_prolog_fp;
228 struct frame_saved_regs *fsr;
229 struct frame_info *fi;
230 {
231 register CORE_ADDR next_ip;
232 int r;
233 int have_fp = 0;
234 INSN_WORD insn_word;
235 /* Number of things pushed onto stack, starts at 2/4, 'cause the
236 PC is already there */
237 unsigned int reg_save_depth = h8300hmode ? 4 : 2;
238
239 unsigned int auto_depth = 0; /* Number of bytes of autos */
240
241 char in_frame[11]; /* One for each reg */
242
243 int adjust = 0;
244
245 memset (in_frame, 1, 11);
246 for (r = 0; r < 8; r++)
247 {
248 fsr->regs[r] = 0;
249 }
250 if (after_prolog_fp == 0)
251 {
252 after_prolog_fp = read_register (SP_REGNUM);
253 }
254 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
255 return 0;
256
257 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
258
259 if (insn_word == 0x0100)
260 {
261 insn_word = read_memory_unsigned_integer (ip + 2, 2);
262 adjust = 2;
263 }
264
265 /* Skip over any fp push instructions */
266 fsr->regs[6] = after_prolog_fp;
267 while (next_ip && IS_PUSH_FP (insn_word))
268 {
269 ip = next_ip + adjust;
270
271 in_frame[insn_word & 0x7] = reg_save_depth;
272 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
273 reg_save_depth += 2 + adjust;
274 }
275
276 /* Is this a move into the fp */
277 if (next_ip && IS_MOV_SP_FP (insn_word))
278 {
279 ip = next_ip;
280 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
281 have_fp = 1;
282 }
283
284 /* Skip over any stack adjustment, happens either with a number of
285 sub#2,sp or a mov #x,r5 sub r5,sp */
286
287 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
288 {
289 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
290 {
291 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
292 ip = next_ip;
293 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
294 }
295 }
296 else
297 {
298 if (next_ip && IS_MOVK_R5 (insn_word))
299 {
300 ip = next_ip;
301 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
302 auto_depth += insn_word;
303
304 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
305 auto_depth += insn_word;
306 }
307 if (next_ip && IS_SUBL_SP (insn_word))
308 {
309 ip = next_ip;
310 auto_depth += read_memory_unsigned_integer (ip, 4);
311 ip += 4;
312
313 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
314 }
315 }
316
317 /* Work out which regs are stored where */
318 while (next_ip && IS_PUSH (insn_word))
319 {
320 ip = next_ip;
321 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
322 fsr->regs[r] = after_prolog_fp + auto_depth;
323 auto_depth += 2;
324 }
325
326 /* The args are always reffed based from the stack pointer */
327 fi->args_pointer = after_prolog_fp;
328 /* Locals are always reffed based from the fp */
329 fi->locals_pointer = after_prolog_fp;
330 /* The PC is at a known place */
331 fi->from_pc = read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
332
333 /* Rememeber any others too */
334 in_frame[PC_REGNUM] = 0;
335
336 if (have_fp)
337 /* We keep the old FP in the SP spot */
338 fsr->regs[SP_REGNUM] = read_memory_unsigned_integer (fsr->regs[6], BINWORD);
339 else
340 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
341
342 return (ip);
343 }
344
345 void
346 init_extra_frame_info (fromleaf, fi)
347 int fromleaf;
348 struct frame_info *fi;
349 {
350 fi->fsr = 0; /* Not yet allocated */
351 fi->args_pointer = 0; /* Unknown */
352 fi->locals_pointer = 0; /* Unknown */
353 fi->from_pc = 0;
354 }
355
356 /* Return the saved PC from this frame.
357
358 If the frame has a memory copy of SRP_REGNUM, use that. If not,
359 just use the register SRP_REGNUM itself. */
360
361 CORE_ADDR
362 frame_saved_pc (frame)
363 struct frame_info *frame;
364 {
365 return frame->from_pc;
366 }
367
368 CORE_ADDR
369 frame_locals_address (fi)
370 struct frame_info *fi;
371 {
372 if (!fi->locals_pointer)
373 {
374 struct frame_saved_regs ignore;
375
376 get_frame_saved_regs (fi, &ignore);
377
378 }
379 return fi->locals_pointer;
380 }
381
382 /* Return the address of the argument block for the frame
383 described by FI. Returns 0 if the address is unknown. */
384
385 CORE_ADDR
386 frame_args_address (fi)
387 struct frame_info *fi;
388 {
389 if (!fi->args_pointer)
390 {
391 struct frame_saved_regs ignore;
392
393 get_frame_saved_regs (fi, &ignore);
394
395 }
396
397 return fi->args_pointer;
398 }
399
400 void
401 h8300_pop_frame ()
402 {
403 unsigned regnum;
404 struct frame_saved_regs fsr;
405 struct frame_info *frame = get_current_frame ();
406
407 get_frame_saved_regs (frame, &fsr);
408
409 for (regnum = 0; regnum < 8; regnum++)
410 {
411 /* Don't forget SP_REGNUM is a frame_saved_regs struct is the
412 actual value we want, not the address of the value we want. */
413 if (fsr.regs[regnum] && regnum != SP_REGNUM)
414 write_register (regnum, read_memory_integer(fsr.regs[regnum], BINWORD));
415 else if (fsr.regs[regnum] && regnum == SP_REGNUM)
416 write_register (regnum, fsr.regs[regnum]);
417 }
418
419 /* Don't forget the update the PC too! */
420 write_pc (frame->from_pc);
421 flush_cached_frames ();
422 }
423
424
425 struct cmd_list_element *setmemorylist;
426
427 static void
428 h8300_command(args, from_tty)
429 {
430 extern int h8300hmode;
431 h8300hmode = 0;
432 h8300smode = 0;
433 }
434
435 static void
436 h8300h_command(args, from_tty)
437 {
438 extern int h8300hmode;
439 h8300hmode = 1;
440 h8300smode = 0;
441 }
442 static void
443 h8300s_command(args, from_tty)
444 {
445 extern int h8300smode;
446 extern int h8300hmode;
447 h8300smode = 1;
448 h8300hmode = 1;
449 }
450
451
452 static void
453 set_machine (args, from_tty)
454 char *args;
455 int from_tty;
456 {
457 printf_unfiltered ("\"set machine\" must be followed by h8300, h8300h");
458 printf_unfiltered ("or h8300s");
459 help_list (setmemorylist, "set memory ", -1, gdb_stdout);
460 }
461
462 /* set_machine_hook is called as the exec file is being opened, but
463 before the symbol file is opened. This allows us to set the
464 h8300hmode flag based on the machine type specified in the exec
465 file. This in turn will cause subsequently defined pointer types
466 to be 16 or 32 bits as appropriate for the machine. */
467
468 static void
469 set_machine_hook (filename)
470 char *filename;
471 {
472 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300s)
473 {
474 h8300smode = 1;
475 h8300hmode = 1;
476 }
477 else
478 if (bfd_get_mach (exec_bfd) == bfd_mach_h8300h)
479 {
480 h8300smode = 0;
481 h8300hmode = 1;
482 }
483 else
484 {
485 h8300smode = 0;
486 h8300hmode = 0;
487 }
488 }
489
490 void
491 _initialize_h8300m ()
492 {
493 add_prefix_cmd ("machine", no_class, set_machine,
494 "set the machine type", &setmemorylist, "set machine ", 0,
495 &setlist);
496
497 add_cmd ("h8300", class_support, h8300_command,
498 "Set machine to be H8/300.", &setmemorylist);
499
500 add_cmd ("h8300h", class_support, h8300h_command,
501 "Set machine to be H8/300H.", &setmemorylist);
502
503 add_cmd ("h8300s", class_support, h8300s_command,
504 "Set machine to be H8/300S.", &setmemorylist);
505
506 /* Add a hook to set the machine type when we're loading a file. */
507
508 specify_exec_file_hook(set_machine_hook);
509 }
510
511
512
513 void
514 print_register_hook (regno)
515 {
516 if (regno == 8)
517 {
518 /* CCR register */
519 int C, Z, N, V;
520 unsigned char b[4];
521 unsigned char l;
522 read_relative_register_raw_bytes (regno, b);
523 l = b[REGISTER_VIRTUAL_SIZE(8) -1];
524 printf_unfiltered ("\t");
525 printf_unfiltered ("I-%d - ", (l & 0x80) != 0);
526 printf_unfiltered ("H-%d - ", (l & 0x20) != 0);
527 N = (l & 0x8) != 0;
528 Z = (l & 0x4) != 0;
529 V = (l & 0x2) != 0;
530 C = (l & 0x1) != 0;
531 printf_unfiltered ("N-%d ", N);
532 printf_unfiltered ("Z-%d ", Z);
533 printf_unfiltered ("V-%d ", V);
534 printf_unfiltered ("C-%d ", C);
535 if ((C | Z) == 0)
536 printf_unfiltered ("u> ");
537 if ((C | Z) == 1)
538 printf_unfiltered ("u<= ");
539 if ((C == 0))
540 printf_unfiltered ("u>= ");
541 if (C == 1)
542 printf_unfiltered ("u< ");
543 if (Z == 0)
544 printf_unfiltered ("!= ");
545 if (Z == 1)
546 printf_unfiltered ("== ");
547 if ((N ^ V) == 0)
548 printf_unfiltered (">= ");
549 if ((N ^ V) == 1)
550 printf_unfiltered ("< ");
551 if ((Z | (N ^ V)) == 0)
552 printf_unfiltered ("> ");
553 if ((Z | (N ^ V)) == 1)
554 printf_unfiltered ("<= ");
555 }
556 }
557
558 void
559 _initialize_h8300_tdep ()
560 {
561 tm_print_insn = gdb_print_insn_h8300;
562 }
This page took 0.039983 seconds and 4 git commands to generate.