* config/obj-coffbfd.c (fill_section): Don't set NOLOAD bit for
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2 Copyright (C) 1988, 1990, 1991 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
19
20 /*
21 Contributed by Steve Chamberlain
22 sac@cygnus.com
23 */
24
25 #include "defs.h"
26 #include "frame.h"
27 #include "obstack.h"
28 #include "symtab.h"
29 #undef NUM_REGS
30 #define NUM_REGS 11
31
32 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
33
34 /* an easy to debug H8 stack frame looks like:
35 0x6df6 push r6
36 0x0d76 mov.w r7,r6
37 0x6dfn push reg
38 0x7905 nnnn mov.w #n,r5 or 0x1b87 subs #2,sp
39 0x1957 sub.w r5,sp
40
41 */
42
43 #define IS_PUSH(x) ((x & 0xff00)==0x6d00)
44 #define IS_PUSH_FP(x) (x == 0x6df6)
45 #define IS_MOVE_FP(x) (x == 0x0d76)
46 #define IS_MOV_SP_FP(x) (x == 0x0d76)
47 #define IS_SUB2_SP(x) (x==0x1b87)
48 #define IS_MOVK_R5(x) (x==0x7905)
49 #define IS_SUB_R5SP(x) (x==0x1957)
50 CORE_ADDR examine_prologue ();
51
52 void frame_find_saved_regs ();
53 CORE_ADDR
54 h8300_skip_prologue (start_pc)
55 CORE_ADDR start_pc;
56
57 {
58 short int w;
59
60 w = read_memory_short (start_pc);
61 /* Skip past all push insns */
62 while (IS_PUSH_FP (w))
63 {
64 start_pc += 2;
65 w = read_memory_short (start_pc);
66 }
67
68 /* Skip past a move to FP */
69 if (IS_MOVE_FP (w))
70 {
71 start_pc += 2;
72 w = read_memory_short (start_pc);
73 }
74
75 /* Skip the stack adjust */
76
77 if (IS_MOVK_R5 (w))
78 {
79 start_pc += 2;
80 w = read_memory_short (start_pc);
81 }
82 if (IS_SUB_R5SP (w))
83 {
84 start_pc += 2;
85 w = read_memory_short (start_pc);
86 }
87 while (IS_SUB2_SP (w))
88 {
89 start_pc += 2;
90 w = read_memory_short (start_pc);
91 }
92
93 return start_pc;
94
95 }
96
97 int
98 print_insn (memaddr, stream)
99 CORE_ADDR memaddr;
100 FILE *stream;
101 {
102 /* Nothing is bigger than 8 bytes */
103 char data[8];
104
105 read_memory (memaddr, data, sizeof (data));
106 return print_insn_h8300 (memaddr, data, stream);
107 }
108
109 /* Given a GDB frame, determine the address of the calling function's frame.
110 This will be used to create a new GDB frame struct, and then
111 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
112
113 For us, the frame address is its stack pointer value, so we look up
114 the function prologue to determine the caller's sp value, and return it. */
115
116 FRAME_ADDR
117 FRAME_CHAIN (thisframe)
118 FRAME thisframe;
119 {
120
121 frame_find_saved_regs (thisframe, (struct frame_saved_regs *) 0);
122 return thisframe->fsr->regs[SP_REGNUM];
123 }
124
125 /* Put here the code to store, into a struct frame_saved_regs,
126 the addresses of the saved registers of frame described by FRAME_INFO.
127 This includes special registers such as pc and fp saved in special
128 ways in the stack frame. sp is even more special:
129 the address we return for it IS the sp for the next frame.
130
131 We cache the result of doing this in the frame_cache_obstack, since
132 it is fairly expensive. */
133
134 void
135 frame_find_saved_regs (fi, fsr)
136 struct frame_info *fi;
137 struct frame_saved_regs *fsr;
138 {
139 register CORE_ADDR next_addr;
140 register CORE_ADDR *saved_regs;
141 register int regnum;
142 register struct frame_saved_regs *cache_fsr;
143 extern struct obstack frame_cache_obstack;
144 CORE_ADDR ip;
145 struct symtab_and_line sal;
146 CORE_ADDR limit;
147
148 if (!fi->fsr)
149 {
150 cache_fsr = (struct frame_saved_regs *)
151 obstack_alloc (&frame_cache_obstack,
152 sizeof (struct frame_saved_regs));
153 bzero (cache_fsr, sizeof (struct frame_saved_regs));
154
155 fi->fsr = cache_fsr;
156
157 /* Find the start and end of the function prologue. If the PC
158 is in the function prologue, we only consider the part that
159 has executed already. */
160
161 ip = get_pc_function_start (fi->pc);
162 sal = find_pc_line (ip, 0);
163 limit = (sal.end && sal.end < fi->pc) ? sal.end : fi->pc;
164
165 /* This will fill in fields in *fi as well as in cache_fsr. */
166 examine_prologue (ip, limit, fi->frame, cache_fsr, fi);
167 }
168
169 if (fsr)
170 *fsr = *fi->fsr;
171 }
172
173 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
174 is not the address of a valid instruction, the address of the next
175 instruction beyond ADDR otherwise. *PWORD1 receives the first word
176 of the instruction.*/
177
178 CORE_ADDR
179 NEXT_PROLOGUE_INSN (addr, lim, pword1)
180 CORE_ADDR addr;
181 CORE_ADDR lim;
182 short *pword1;
183 {
184 if (addr < lim + 8)
185 {
186 read_memory (addr, pword1, sizeof (*pword1));
187 SWAP_TARGET_AND_HOST (pword1, sizeof (short));
188
189 return addr + 2;
190 }
191 return 0;
192 }
193
194 /* Examine the prologue of a function. `ip' points to the first instruction.
195 `limit' is the limit of the prologue (e.g. the addr of the first
196 linenumber, or perhaps the program counter if we're stepping through).
197 `frame_sp' is the stack pointer value in use in this frame.
198 `fsr' is a pointer to a frame_saved_regs structure into which we put
199 info about the registers saved by this frame.
200 `fi' is a struct frame_info pointer; we fill in various fields in it
201 to reflect the offsets of the arg pointer and the locals pointer. */
202
203 static CORE_ADDR
204 examine_prologue (ip, limit, after_prolog_fp, fsr, fi)
205 register CORE_ADDR ip;
206 register CORE_ADDR limit;
207 FRAME_ADDR after_prolog_fp;
208 struct frame_saved_regs *fsr;
209 struct frame_info *fi;
210 {
211 register CORE_ADDR next_ip;
212 int r;
213 int i;
214 int have_fp = 0;
215
216 register int src;
217 register struct pic_prologue_code *pcode;
218 INSN_WORD insn_word;
219 int size, offset;
220 unsigned int reg_save_depth = 2; /* Number of things pushed onto
221 stack, starts at 2, 'cause the
222 PC is already there */
223
224 unsigned int auto_depth = 0; /* Number of bytes of autos */
225
226 char in_frame[11]; /* One for each reg */
227
228 memset (in_frame, 1, 11);
229 for (r = 0; r < 8; r++)
230 {
231 fsr->regs[r] = 0;
232 }
233 if (after_prolog_fp == 0)
234 {
235 after_prolog_fp = read_register (SP_REGNUM);
236 }
237 if (ip == 0 || ip & ~0xffff)
238 return 0;
239
240 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
241
242 /* Skip over any fp push instructions */
243 fsr->regs[6] = after_prolog_fp;
244 while (next_ip && IS_PUSH_FP (insn_word))
245 {
246 ip = next_ip;
247
248 in_frame[insn_word & 0x7] = reg_save_depth;
249 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
250 reg_save_depth += 2;
251 }
252
253 /* Is this a move into the fp */
254 if (next_ip && IS_MOV_SP_FP (insn_word))
255 {
256 ip = next_ip;
257 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
258 have_fp = 1;
259 }
260
261 /* Skip over any stack adjustment, happens either with a number of
262 sub#2,sp or a mov #x,r5 sub r5,sp */
263
264 if (next_ip && IS_SUB2_SP (insn_word))
265 {
266 while (next_ip && IS_SUB2_SP (insn_word))
267 {
268 auto_depth += 2;
269 ip = next_ip;
270 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
271 }
272 }
273 else
274 {
275 if (next_ip && IS_MOVK_R5 (insn_word))
276 {
277 ip = next_ip;
278 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
279 auto_depth += insn_word;
280
281 next_ip = NEXT_PROLOGUE_INSN (next_ip, limit, &insn_word);
282 auto_depth += insn_word;
283
284 }
285 }
286 /* Work out which regs are stored where */
287 while (next_ip && IS_PUSH (insn_word))
288 {
289 ip = next_ip;
290 next_ip = NEXT_PROLOGUE_INSN (ip, limit, &insn_word);
291 fsr->regs[r] = after_prolog_fp + auto_depth;
292 auto_depth += 2;
293 }
294
295 /* The args are always reffed based from the stack pointer */
296 fi->args_pointer = after_prolog_fp;
297 /* Locals are always reffed based from the fp */
298 fi->locals_pointer = after_prolog_fp;
299 /* The PC is at a known place */
300 fi->from_pc = read_memory_short (after_prolog_fp + 2);
301
302 /* Rememeber any others too */
303 in_frame[PC_REGNUM] = 0;
304
305 if (have_fp)
306 /* We keep the old FP in the SP spot */
307 fsr->regs[SP_REGNUM] = (read_memory_short (fsr->regs[6]));
308 else
309 fsr->regs[SP_REGNUM] = after_prolog_fp + auto_depth;
310
311 return (ip);
312 }
313
314 void
315 init_extra_frame_info (fromleaf, fi)
316 int fromleaf;
317 struct frame_info *fi;
318 {
319 fi->fsr = 0; /* Not yet allocated */
320 fi->args_pointer = 0; /* Unknown */
321 fi->locals_pointer = 0; /* Unknown */
322 fi->from_pc = 0;
323
324 }
325
326 /* Return the saved PC from this frame.
327
328 If the frame has a memory copy of SRP_REGNUM, use that. If not,
329 just use the register SRP_REGNUM itself. */
330
331 CORE_ADDR
332 frame_saved_pc (frame)
333 FRAME frame;
334
335 {
336 return frame->from_pc;
337 }
338
339 CORE_ADDR
340 frame_locals_address (fi)
341 struct frame_info *fi;
342 {
343 if (!fi->locals_pointer)
344 {
345 struct frame_saved_regs ignore;
346
347 get_frame_saved_regs (fi, &ignore);
348
349 }
350 return fi->locals_pointer;
351 }
352
353 /* Return the address of the argument block for the frame
354 described by FI. Returns 0 if the address is unknown. */
355
356 CORE_ADDR
357 frame_args_address (fi)
358 struct frame_info *fi;
359 {
360 if (!fi->args_pointer)
361 {
362 struct frame_saved_regs ignore;
363
364 get_frame_saved_regs (fi, &ignore);
365
366 }
367
368 return fi->args_pointer;
369 }
370
371 void
372 h8300_pop_frame ()
373 {
374 unsigned regnum;
375 struct frame_saved_regs fsr;
376 struct frame_info *fi;
377
378 FRAME frame = get_current_frame ();
379
380 fi = get_frame_info (frame);
381 get_frame_saved_regs (fi, &fsr);
382
383 for (regnum = 0; regnum < 8; regnum++)
384 {
385 if (fsr.regs[regnum])
386 {
387 write_register (regnum, read_memory_short (fsr.regs[regnum]));
388 }
389
390 flush_cached_frames ();
391 set_current_frame (create_new_frame (read_register (FP_REGNUM),
392 read_pc ()));
393
394 }
395
396 }
397
398 void
399 print_register_hook (regno)
400 {
401 if (regno == 8)
402 {
403 /* CCR register */
404
405 int C, Z, N, V;
406 unsigned char b[2];
407 unsigned char l;
408
409 read_relative_register_raw_bytes (regno, b);
410 l = b[1];
411 printf ("\t");
412 printf ("I-%d - ", (l & 0x80) != 0);
413 printf ("H-%d - ", (l & 0x20) != 0);
414 N = (l & 0x8) != 0;
415 Z = (l & 0x4) != 0;
416 V = (l & 0x2) != 0;
417 C = (l & 0x1) != 0;
418 printf ("N-%d ", N);
419 printf ("Z-%d ", Z);
420 printf ("V-%d ", V);
421 printf ("C-%d ", C);
422 if ((C | Z) == 0)
423 printf ("u> ");
424 if ((C | Z) == 1)
425 printf ("u<= ");
426 if ((C == 0))
427 printf ("u>= ");
428 if (C == 1)
429 printf ("u< ");
430 if (Z == 0)
431 printf ("!= ");
432 if (Z == 1)
433 printf ("== ");
434 if ((N ^ V) == 0)
435 printf (">= ");
436 if ((N ^ V) == 1)
437 printf ("< ");
438 if ((Z | (N ^ V)) == 0)
439 printf ("> ");
440 if ((Z | (N ^ V)) == 1)
441 printf ("<= ");
442 }
443 }
This page took 0.03791 seconds and 4 git commands to generate.