e74913e76e96e4ab7cfe543e6e768a905a16ed5c
[deliverable/binutils-gdb.git] / gdb / h8300-tdep.c
1 /* Target-machine dependent code for Hitachi H8/300, for GDB.
2
3 Copyright 1988, 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1998,
4 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 /*
24 Contributed by Steve Chamberlain
25 sac@cygnus.com
26 */
27
28 #include "defs.h"
29 #include "value.h"
30 #include "inferior.h"
31 #include "symfile.h"
32 #include "arch-utils.h"
33 #include "regcache.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "gdbcmd.h"
37 #include "gdb_assert.h"
38
39 /* Extra info which is saved in each frame_info. */
40 struct frame_extra_info
41 {
42 CORE_ADDR from_pc;
43 };
44
45 enum
46 {
47 h8300_reg_size = 2,
48 h8300h_reg_size = 4,
49 h8300_max_reg_size = 4,
50 };
51 #define BINWORD (h8300hmode ? h8300h_reg_size : h8300_reg_size)
52
53 enum gdb_regnum
54 {
55 E_R0_REGNUM, E_ER0_REGNUM = E_R0_REGNUM, E_ARG0_REGNUM = E_R0_REGNUM,
56 E_RET0_REGNUM = E_R0_REGNUM,
57 E_R1_REGNUM, E_ER1_REGNUM = E_R1_REGNUM, E_RET1_REGNUM = E_R1_REGNUM,
58 E_R2_REGNUM, E_ER2_REGNUM = E_R2_REGNUM, E_ARGLAST_REGNUM = E_R2_REGNUM,
59 E_R3_REGNUM, E_ER3_REGNUM = E_R3_REGNUM,
60 E_R4_REGNUM, E_ER4_REGNUM = E_R4_REGNUM,
61 E_R5_REGNUM, E_ER5_REGNUM = E_R5_REGNUM,
62 E_R6_REGNUM, E_ER6_REGNUM = E_R6_REGNUM, E_FP_REGNUM = E_R6_REGNUM,
63 E_SP_REGNUM,
64 E_CCR_REGNUM,
65 E_PC_REGNUM,
66 E_CYCLES_REGNUM,
67 E_TICK_REGNUM, E_EXR_REGNUM = E_TICK_REGNUM,
68 E_INST_REGNUM, E_TICKS_REGNUM = E_INST_REGNUM,
69 E_INSTS_REGNUM,
70 E_MACH_REGNUM,
71 E_MACL_REGNUM,
72 E_SBR_REGNUM,
73 E_VBR_REGNUM
74 };
75
76 #define E_PSEUDO_CCR_REGNUM (NUM_REGS)
77 #define E_PSEUDO_EXR_REGNUM (NUM_REGS+1)
78
79 #define UNSIGNED_SHORT(X) ((X) & 0xffff)
80
81 #define IS_PUSH(x) ((x & 0xfff0)==0x6df0)
82 #define IS_PUSH_FP(x) (x == 0x6df6)
83 #define IS_MOVE_FP(x) (x == 0x0d76 || x == 0x0ff6)
84 #define IS_MOV_SP_FP(x) (x == 0x0d76 || x == 0x0ff6)
85 #define IS_SUB2_SP(x) (x==0x1b87)
86 #define IS_SUB4_SP(x) (x==0x1b97)
87 #define IS_SUBL_SP(x) (x==0x7a37)
88 #define IS_MOVK_R5(x) (x==0x7905)
89 #define IS_SUB_R5SP(x) (x==0x1957)
90
91 /* If the instruction at PC is an argument register spill, return its
92 length. Otherwise, return zero.
93
94 An argument register spill is an instruction that moves an argument
95 from the register in which it was passed to the stack slot in which
96 it really lives. It is a byte, word, or longword move from an
97 argument register to a negative offset from the frame pointer.
98
99 CV, 2003-06-16: Or, in optimized code or when the `register' qualifier
100 is used, it could be a byte, word or long move to registers r3-r5. */
101
102 static int
103 h8300_is_argument_spill (CORE_ADDR pc)
104 {
105 int w = read_memory_unsigned_integer (pc, 2);
106
107 if (((w & 0xff88) == 0x0c88 /* mov.b Rsl, Rdl */
108 || (w & 0xff88) == 0x0d00 /* mov.w Rs, Rd */
109 || (w & 0xff88) == 0x0f80) /* mov.l Rs, Rd */
110 && (w & 0x70) <= 0x20 /* Rs is R0, R1 or R2 */
111 && (w & 0x7) >= 0x3 && (w & 0x7) <= 0x5)/* Rd is R3, R4 or R5 */
112 return 2;
113
114 if ((w & 0xfff0) == 0x6ee0 /* mov.b Rs,@(d:16,er6) */
115 && 8 <= (w & 0xf) && (w & 0xf) <= 10) /* Rs is R0L, R1L, or R2L */
116 {
117 int w2 = read_memory_integer (pc + 2, 2);
118
119 /* ... and d:16 is negative. */
120 if (w2 < 0)
121 return 4;
122 }
123 else if (w == 0x7860)
124 {
125 int w2 = read_memory_integer (pc + 2, 2);
126
127 if ((w2 & 0xfff0) == 0x6aa0) /* mov.b Rs, @(d:24,er6) */
128 {
129 LONGEST disp = read_memory_integer (pc + 4, 4);
130
131 /* ... and d:24 is negative. */
132 if (disp < 0 && disp > 0xffffff)
133 return 8;
134 }
135 }
136 else if ((w & 0xfff0) == 0x6fe0 /* mov.w Rs,@(d:16,er6) */
137 && (w & 0xf) <= 2) /* Rs is R0, R1, or R2 */
138 {
139 int w2 = read_memory_integer (pc + 2, 2);
140
141 /* ... and d:16 is negative. */
142 if (w2 < 0)
143 return 4;
144 }
145 else if (w == 0x78e0)
146 {
147 int w2 = read_memory_integer (pc + 2, 2);
148
149 if ((w2 & 0xfff0) == 0x6ba0) /* mov.b Rs, @(d:24,er6) */
150 {
151 LONGEST disp = read_memory_integer (pc + 4, 4);
152
153 /* ... and d:24 is negative. */
154 if (disp < 0 && disp > 0xffffff)
155 return 8;
156 }
157 }
158 else if (w == 0x0100)
159 {
160 int w2 = read_memory_integer (pc + 2, 2);
161
162 if ((w2 & 0xfff0) == 0x6fe0 /* mov.l Rs,@(d:16,er6) */
163 && (w2 & 0xf) <= 2) /* Rs is ER0, ER1, or ER2 */
164 {
165 int w3 = read_memory_integer (pc + 4, 2);
166
167 /* ... and d:16 is negative. */
168 if (w3 < 0)
169 return 6;
170 }
171 else if (w2 == 0x78e0)
172 {
173 int w3 = read_memory_integer (pc + 4, 2);
174
175 if ((w3 & 0xfff0) == 0x6ba0) /* mov.l Rs, @(d:24,er6) */
176 {
177 LONGEST disp = read_memory_integer (pc + 6, 4);
178
179 /* ... and d:24 is negative. */
180 if (disp < 0 && disp > 0xffffff)
181 return 10;
182 }
183 }
184 }
185
186 return 0;
187 }
188
189 static CORE_ADDR
190 h8300_skip_prologue (CORE_ADDR start_pc)
191 {
192 short int w;
193 int adjust = 0;
194
195 /* Skip past all push and stm insns. */
196 while (1)
197 {
198 w = read_memory_unsigned_integer (start_pc, 2);
199 /* First look for push insns. */
200 if (w == 0x0100 || w == 0x0110 || w == 0x0120 || w == 0x0130)
201 {
202 w = read_memory_unsigned_integer (start_pc + 2, 2);
203 adjust = 2;
204 }
205
206 if (IS_PUSH (w))
207 {
208 start_pc += 2 + adjust;
209 w = read_memory_unsigned_integer (start_pc, 2);
210 continue;
211 }
212 adjust = 0;
213 break;
214 }
215
216 /* Skip past a move to FP, either word or long sized */
217 w = read_memory_unsigned_integer (start_pc, 2);
218 if (w == 0x0100)
219 {
220 w = read_memory_unsigned_integer (start_pc + 2, 2);
221 adjust += 2;
222 }
223
224 if (IS_MOVE_FP (w))
225 {
226 start_pc += 2 + adjust;
227 w = read_memory_unsigned_integer (start_pc, 2);
228 }
229
230 /* Check for loading either a word constant into r5;
231 long versions are handled by the SUBL_SP below. */
232 if (IS_MOVK_R5 (w))
233 {
234 start_pc += 2;
235 w = read_memory_unsigned_integer (start_pc, 2);
236 }
237
238 /* Now check for subtracting r5 from sp, word sized only. */
239 if (IS_SUB_R5SP (w))
240 {
241 start_pc += 2 + adjust;
242 w = read_memory_unsigned_integer (start_pc, 2);
243 }
244
245 /* Check for subs #2 and subs #4. */
246 while (IS_SUB2_SP (w) || IS_SUB4_SP (w))
247 {
248 start_pc += 2 + adjust;
249 w = read_memory_unsigned_integer (start_pc, 2);
250 }
251
252 /* Check for a 32bit subtract. */
253 if (IS_SUBL_SP (w))
254 start_pc += 6 + adjust;
255
256 /* Skip past another possible stm insn for registers R3 to R5 (possibly used
257 for register qualified arguments. */
258 w = read_memory_unsigned_integer (start_pc, 2);
259 /* First look for push insns. */
260 if (w == 0x0110 || w == 0x0120 || w == 0x0130)
261 {
262 w = read_memory_unsigned_integer (start_pc + 2, 2);
263 if (IS_PUSH (w) && (w & 0xf) >= 0x3 && (w & 0xf) <= 0x5)
264 start_pc += 4;
265 }
266
267 /* Check for spilling an argument register to the stack frame.
268 This could also be an initializing store from non-prologue code,
269 but I don't think there's any harm in skipping that. */
270 for (;;)
271 {
272 int spill_size = h8300_is_argument_spill (start_pc);
273 if (spill_size == 0)
274 break;
275 start_pc += spill_size;
276 }
277
278 return start_pc;
279 }
280
281 /* Fetch the instruction at ADDR, returning 0 if ADDR is beyond LIM or
282 is not the address of a valid instruction, the address of the next
283 instruction beyond ADDR otherwise. *PWORD1 receives the first word
284 of the instruction. */
285
286 static CORE_ADDR
287 h8300_next_prologue_insn (CORE_ADDR addr,
288 CORE_ADDR lim,
289 unsigned short* pword1)
290 {
291 char buf[2];
292 if (addr < lim + 8)
293 {
294 read_memory (addr, buf, 2);
295 *pword1 = extract_signed_integer (buf, 2);
296
297 return addr + 2;
298 }
299 return 0;
300 }
301
302 /* Examine the prologue of a function. `ip' points to the first instruction.
303 `limit' is the limit of the prologue (e.g. the addr of the first
304 linenumber, or perhaps the program counter if we're stepping through).
305 `frame_sp' is the stack pointer value in use in this frame.
306 `fsr' is a pointer to a frame_saved_regs structure into which we put
307 info about the registers saved by this frame.
308 `fi' is a struct frame_info pointer; we fill in various fields in it
309 to reflect the offsets of the arg pointer and the locals pointer. */
310
311 /* Any function with a frame looks like this
312 SECOND ARG
313 FIRST ARG
314 RET PC
315 SAVED R2
316 SAVED R3
317 SAVED FP <-FP POINTS HERE
318 LOCALS0
319 LOCALS1 <-SP POINTS HERE
320 */
321
322 static CORE_ADDR
323 h8300_examine_prologue (register CORE_ADDR ip, register CORE_ADDR limit,
324 CORE_ADDR after_prolog_fp, CORE_ADDR *fsr,
325 struct frame_info *fi)
326 {
327 register CORE_ADDR next_ip;
328 int r;
329 int have_fp = 0;
330 unsigned short insn_word;
331 /* Number of things pushed onto stack, starts at 2/4, 'cause the
332 PC is already there */
333 unsigned int reg_save_depth = BINWORD;
334
335 unsigned int auto_depth = 0; /* Number of bytes of autos */
336
337 char in_frame[11]; /* One for each reg */
338
339 int adjust = 0;
340
341 memset (in_frame, 1, 11);
342 for (r = 0; r < 8; r++)
343 {
344 fsr[r] = 0;
345 }
346 if (after_prolog_fp == 0)
347 {
348 after_prolog_fp = read_register (E_SP_REGNUM);
349 }
350
351 /* If the PC isn't valid, quit now. */
352 if (ip == 0 || ip & (h8300hmode ? ~0xffffff : ~0xffff))
353 return 0;
354
355 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
356
357 if (insn_word == 0x0100) /* mov.l */
358 {
359 insn_word = read_memory_unsigned_integer (ip + 2, 2);
360 adjust = 2;
361 }
362
363 /* Skip over any fp push instructions */
364 fsr[E_FP_REGNUM] = after_prolog_fp;
365 while (next_ip && IS_PUSH_FP (insn_word))
366 {
367 ip = next_ip + adjust;
368
369 in_frame[insn_word & 0x7] = reg_save_depth;
370 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
371 reg_save_depth += 2 + adjust;
372 }
373
374 /* Is this a move into the fp */
375 if (next_ip && IS_MOV_SP_FP (insn_word))
376 {
377 ip = next_ip;
378 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
379 have_fp = 1;
380 }
381
382 /* Skip over any stack adjustment, happens either with a number of
383 sub#2,sp or a mov #x,r5 sub r5,sp */
384
385 if (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
386 {
387 while (next_ip && (IS_SUB2_SP (insn_word) || IS_SUB4_SP (insn_word)))
388 {
389 auto_depth += IS_SUB2_SP (insn_word) ? 2 : 4;
390 ip = next_ip;
391 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
392 }
393 }
394 else
395 {
396 if (next_ip && IS_MOVK_R5 (insn_word))
397 {
398 ip = next_ip;
399 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
400 auto_depth += insn_word;
401
402 next_ip = h8300_next_prologue_insn (next_ip, limit, &insn_word);
403 auto_depth += insn_word;
404 }
405 if (next_ip && IS_SUBL_SP (insn_word))
406 {
407 ip = next_ip;
408 auto_depth += read_memory_unsigned_integer (ip, 4);
409 ip += 4;
410
411 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
412 }
413 }
414
415 /* Now examine the push insns to determine where everything lives
416 on the stack. */
417 while (1)
418 {
419 adjust = 0;
420 if (!next_ip)
421 break;
422
423 if (insn_word == 0x0100)
424 {
425 ip = next_ip;
426 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
427 adjust = 2;
428 }
429
430 if (IS_PUSH (insn_word))
431 {
432 auto_depth += 2 + adjust;
433 fsr[insn_word & 0x7] = after_prolog_fp - auto_depth;
434 ip = next_ip;
435 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
436 continue;
437 }
438
439 /* Now check for push multiple insns. */
440 if (insn_word == 0x0110 || insn_word == 0x0120 || insn_word == 0x0130)
441 {
442 int count = ((insn_word >> 4) & 0xf) + 1;
443 int start, i;
444
445 ip = next_ip;
446 next_ip = h8300_next_prologue_insn (ip, limit, &insn_word);
447 start = insn_word & 0x7;
448
449 for (i = start; i < start + count; i++)
450 {
451 auto_depth += 4;
452 fsr[i] = after_prolog_fp - auto_depth;
453 }
454 }
455 break;
456 }
457
458 /* The PC is at a known place */
459 get_frame_extra_info (fi)->from_pc =
460 read_memory_unsigned_integer (after_prolog_fp + BINWORD, BINWORD);
461
462 /* Rememeber any others too */
463 in_frame[E_PC_REGNUM] = 0;
464
465 if (have_fp)
466 /* We keep the old FP in the SP spot */
467 fsr[E_SP_REGNUM] = read_memory_unsigned_integer (fsr[E_FP_REGNUM],
468 BINWORD);
469 else
470 fsr[E_SP_REGNUM] = after_prolog_fp + auto_depth;
471
472 return (ip);
473 }
474
475 static void
476 h8300_frame_init_saved_regs (struct frame_info *fi)
477 {
478 CORE_ADDR func_addr, func_end;
479
480 if (!get_frame_saved_regs (fi))
481 {
482 frame_saved_regs_zalloc (fi);
483
484 /* Find the beginning of this function, so we can analyze its
485 prologue. */
486 if (find_pc_partial_function (get_frame_pc (fi), NULL,
487 &func_addr, &func_end))
488 {
489 struct symtab_and_line sal = find_pc_line (func_addr, 0);
490 CORE_ADDR limit = (sal.end && sal.end < get_frame_pc (fi))
491 ? sal.end : get_frame_pc (fi);
492 /* This will fill in fields in fi. */
493 h8300_examine_prologue (func_addr, limit, get_frame_base (fi),
494 get_frame_saved_regs (fi), fi);
495 }
496 /* Else we're out of luck (can't debug completely stripped code).
497 FIXME. */
498 }
499 }
500
501 /* Given a GDB frame, determine the address of the calling function's
502 frame. This will be used to create a new GDB frame struct, and
503 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
504 will be called for the new frame.
505
506 For us, the frame address is its stack pointer value, so we look up
507 the function prologue to determine the caller's sp value, and
508 return it. */
509
510 static CORE_ADDR
511 h8300_frame_chain (struct frame_info *thisframe)
512 {
513 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (thisframe),
514 get_frame_base (thisframe),
515 get_frame_base (thisframe)))
516 { /* initialize the from_pc now */
517 get_frame_extra_info (thisframe)->from_pc =
518 deprecated_read_register_dummy (get_frame_pc (thisframe),
519 get_frame_base (thisframe),
520 E_PC_REGNUM);
521 return get_frame_base (thisframe);
522 }
523 return get_frame_saved_regs (thisframe)[E_SP_REGNUM];
524 }
525
526 /* Return the saved PC from this frame.
527
528 If the frame has a memory copy of SRP_REGNUM, use that. If not,
529 just use the register SRP_REGNUM itself. */
530
531 static CORE_ADDR
532 h8300_frame_saved_pc (struct frame_info *frame)
533 {
534 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
535 get_frame_base (frame),
536 get_frame_base (frame)))
537 return deprecated_read_register_dummy (get_frame_pc (frame),
538 get_frame_base (frame),
539 E_PC_REGNUM);
540 else
541 return get_frame_extra_info (frame)->from_pc;
542 }
543
544 static void
545 h8300_init_extra_frame_info (int fromleaf, struct frame_info *fi)
546 {
547 if (!get_frame_extra_info (fi))
548 {
549 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
550 get_frame_extra_info (fi)->from_pc = 0;
551
552 if (!get_frame_pc (fi))
553 {
554 if (get_next_frame (fi))
555 deprecated_update_frame_pc_hack (fi, h8300_frame_saved_pc (get_next_frame (fi)));
556 }
557 h8300_frame_init_saved_regs (fi);
558 }
559 }
560
561 /* Round N up or down to the nearest multiple of UNIT.
562 Evaluate N only once, UNIT several times.
563 UNIT must be a power of two. */
564 #define round_up(n, unit) (((n) + (unit) - 1) & -(unit))
565 #define round_down(n, unit) ((n) & -(unit))
566
567 /* Function: push_dummy_call
568 Setup the function arguments for calling a function in the inferior.
569 In this discussion, a `word' is 16 bits on the H8/300s, and 32 bits
570 on the H8/300H.
571
572 There are actually two ABI's here: -mquickcall (the default) and
573 -mno-quickcall. With -mno-quickcall, all arguments are passed on
574 the stack after the return address, word-aligned. With
575 -mquickcall, GCC tries to use r0 -- r2 to pass registers. Since
576 GCC doesn't indicate in the object file which ABI was used to
577 compile it, GDB only supports the default --- -mquickcall.
578
579 Here are the rules for -mquickcall, in detail:
580
581 Each argument, whether scalar or aggregate, is padded to occupy a
582 whole number of words. Arguments smaller than a word are padded at
583 the most significant end; those larger than a word are padded at
584 the least significant end.
585
586 The initial arguments are passed in r0 -- r2. Earlier arguments go in
587 lower-numbered registers. Multi-word arguments are passed in
588 consecutive registers, with the most significant end in the
589 lower-numbered register.
590
591 If an argument doesn't fit entirely in the remaining registers, it
592 is passed entirely on the stack. Stack arguments begin just after
593 the return address. Once an argument has overflowed onto the stack
594 this way, all subsequent arguments are passed on the stack.
595
596 The above rule has odd consequences. For example, on the h8/300s,
597 if a function takes two longs and an int as arguments:
598 - the first long will be passed in r0/r1,
599 - the second long will be passed entirely on the stack, since it
600 doesn't fit in r2,
601 - and the int will be passed on the stack, even though it could fit
602 in r2.
603
604 A weird exception: if an argument is larger than a word, but not a
605 whole number of words in length (before padding), it is passed on
606 the stack following the rules for stack arguments above, even if
607 there are sufficient registers available to hold it. Stranger
608 still, the argument registers are still `used up' --- even though
609 there's nothing in them.
610
611 So, for example, on the h8/300s, if a function expects a three-byte
612 structure and an int, the structure will go on the stack, and the
613 int will go in r2, not r0.
614
615 If the function returns an aggregate type (struct, union, or class)
616 by value, the caller must allocate space to hold the return value,
617 and pass the callee a pointer to this space as an invisible first
618 argument, in R0.
619
620 For varargs functions, the last fixed argument and all the variable
621 arguments are always passed on the stack. This means that calls to
622 varargs functions don't work properly unless there is a prototype
623 in scope.
624
625 Basically, this ABI is not good, for the following reasons:
626 - You can't call vararg functions properly unless a prototype is in scope.
627 - Structure passing is inconsistent, to no purpose I can see.
628 - It often wastes argument registers, of which there are only three
629 to begin with. */
630
631 static CORE_ADDR
632 h8300_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
633 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
634 struct value **args, CORE_ADDR sp, int struct_return,
635 CORE_ADDR struct_addr)
636 {
637 int stack_alloc = 0, stack_offset = 0;
638 int wordsize = BINWORD;
639 int reg = E_ARG0_REGNUM;
640 int argument;
641
642 /* First, make sure the stack is properly aligned. */
643 sp = round_down (sp, wordsize);
644
645 /* Now make sure there's space on the stack for the arguments. We
646 may over-allocate a little here, but that won't hurt anything. */
647 for (argument = 0; argument < nargs; argument++)
648 stack_alloc += round_up (TYPE_LENGTH (VALUE_TYPE (args[argument])),
649 wordsize);
650 sp -= stack_alloc;
651
652 /* Now load as many arguments as possible into registers, and push
653 the rest onto the stack.
654 If we're returning a structure by value, then we must pass a
655 pointer to the buffer for the return value as an invisible first
656 argument. */
657 if (struct_return)
658 regcache_cooked_write_unsigned (regcache, reg++, struct_addr);
659
660 for (argument = 0; argument < nargs; argument++)
661 {
662 struct type *type = VALUE_TYPE (args[argument]);
663 int len = TYPE_LENGTH (type);
664 char *contents = (char *) VALUE_CONTENTS (args[argument]);
665
666 /* Pad the argument appropriately. */
667 int padded_len = round_up (len, wordsize);
668 char *padded = alloca (padded_len);
669
670 memset (padded, 0, padded_len);
671 memcpy (len < wordsize ? padded + padded_len - len : padded,
672 contents, len);
673
674 /* Could the argument fit in the remaining registers? */
675 if (padded_len <= (E_ARGLAST_REGNUM - reg + 1) * wordsize)
676 {
677 /* Are we going to pass it on the stack anyway, for no good
678 reason? */
679 if (len > wordsize && len % wordsize)
680 {
681 /* I feel so unclean. */
682 write_memory (sp + stack_offset, padded, padded_len);
683 stack_offset += padded_len;
684
685 /* That's right --- even though we passed the argument
686 on the stack, we consume the registers anyway! Love
687 me, love my dog. */
688 reg += padded_len / wordsize;
689 }
690 else
691 {
692 /* Heavens to Betsy --- it's really going in registers!
693 It would be nice if we could use write_register_bytes
694 here, but on the h8/300s, there are gaps between
695 the registers in the register file. */
696 int offset;
697
698 for (offset = 0; offset < padded_len; offset += wordsize)
699 {
700 ULONGEST word = extract_unsigned_integer (padded + offset,
701 wordsize);
702 regcache_cooked_write_unsigned (regcache, reg++, word);
703 }
704 }
705 }
706 else
707 {
708 /* It doesn't fit in registers! Onto the stack it goes. */
709 write_memory (sp + stack_offset, padded, padded_len);
710 stack_offset += padded_len;
711
712 /* Once one argument has spilled onto the stack, all
713 subsequent arguments go on the stack. */
714 reg = E_ARGLAST_REGNUM + 1;
715 }
716 }
717
718 /* Store return address. */
719 sp -= wordsize;
720 write_memory_unsigned_integer (sp, wordsize, bp_addr);
721
722 /* Update stack pointer. */
723 regcache_cooked_write_unsigned (regcache, E_SP_REGNUM, sp);
724
725 return sp;
726 }
727
728 /* Function: h8300_pop_frame
729 Restore the machine to the state it had before the current frame
730 was created. Usually used either by the "RETURN" command, or by
731 call_function_by_hand after the dummy_frame is finished. */
732
733 static void
734 h8300_pop_frame (void)
735 {
736 unsigned regno;
737 struct frame_info *frame = get_current_frame ();
738
739 if (DEPRECATED_PC_IN_CALL_DUMMY (get_frame_pc (frame),
740 get_frame_base (frame),
741 get_frame_base (frame)))
742 {
743 generic_pop_dummy_frame ();
744 }
745 else
746 {
747 for (regno = 0; regno < 8; regno++)
748 {
749 /* Don't forget E_SP_REGNUM is a frame_saved_regs struct is the
750 actual value we want, not the address of the value we want. */
751 if (get_frame_saved_regs (frame)[regno] && regno != E_SP_REGNUM)
752 write_register (regno,
753 read_memory_integer
754 (get_frame_saved_regs (frame)[regno], BINWORD));
755 else if (get_frame_saved_regs (frame)[regno] && regno == E_SP_REGNUM)
756 write_register (regno, get_frame_base (frame) + 2 * BINWORD);
757 }
758
759 /* Don't forget to update the PC too! */
760 write_register (E_PC_REGNUM, get_frame_extra_info (frame)->from_pc);
761 }
762 flush_cached_frames ();
763 }
764
765 /* Function: extract_return_value
766 Figure out where in REGBUF the called function has left its return value.
767 Copy that into VALBUF. Be sure to account for CPU type. */
768
769 static void
770 h8300_extract_return_value (struct type *type, struct regcache *regcache,
771 void *valbuf)
772 {
773 int len = TYPE_LENGTH (type);
774 ULONGEST c;
775
776 switch (len)
777 {
778 case 1:
779 case 2:
780 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
781 store_unsigned_integer (valbuf, len, c);
782 break;
783 case 4: /* Needs two registers on plain H8/300 */
784 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
785 store_unsigned_integer (valbuf, 2, c);
786 regcache_cooked_read_unsigned (regcache, E_RET1_REGNUM, &c);
787 store_unsigned_integer ((void*)((char *)valbuf + 2), 2, c);
788 break;
789 case 8: /* long long, double and long double are all defined
790 as 4 byte types so far so this shouldn't happen. */
791 error ("I don't know how a 8 byte value is returned.");
792 break;
793 }
794 }
795
796 static void
797 h8300h_extract_return_value (struct type *type, struct regcache *regcache,
798 void *valbuf)
799 {
800 int len = TYPE_LENGTH (type);
801 ULONGEST c;
802
803 switch (len)
804 {
805 case 1:
806 case 2:
807 case 4:
808 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &c);
809 store_unsigned_integer (valbuf, len, c);
810 break;
811 case 8: /* long long, double and long double are all defined
812 as 4 byte types so far so this shouldn't happen. */
813 error ("I don't know how a 8 byte value is returned.");
814 break;
815 }
816 }
817
818
819 /* Function: store_return_value
820 Place the appropriate value in the appropriate registers.
821 Primarily used by the RETURN command. */
822
823 static void
824 h8300_store_return_value (struct type *type, struct regcache *regcache,
825 const void *valbuf)
826 {
827 int len = TYPE_LENGTH (type);
828 ULONGEST val;
829
830 switch (len)
831 {
832 case 1:
833 case 2:
834 val = extract_unsigned_integer (valbuf, len);
835 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
836 break;
837 case 4: /* long, float */
838 val = extract_unsigned_integer (valbuf, len);
839 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM,
840 (val >> 16) &0xffff);
841 regcache_cooked_write_unsigned (regcache, E_RET1_REGNUM, val & 0xffff);
842 break;
843 case 8: /* long long, double and long double are all defined
844 as 4 byte types so far so this shouldn't happen. */
845 error ("I don't know how to return a 8 byte value.");
846 break;
847 }
848 }
849
850 static void
851 h8300h_store_return_value (struct type *type, struct regcache *regcache,
852 const void *valbuf)
853 {
854 int len = TYPE_LENGTH (type);
855 ULONGEST val;
856
857 switch (len)
858 {
859 case 1:
860 case 2:
861 case 4: /* long, float */
862 val = extract_unsigned_integer (valbuf, len);
863 regcache_cooked_write_unsigned (regcache, E_RET0_REGNUM, val);
864 break;
865 case 8: /* long long, double and long double are all defined
866 as 4 byte types so far so this shouldn't happen. */
867 error ("I don't know how to return a 8 byte value.");
868 break;
869 }
870 }
871
872 static struct cmd_list_element *setmachinelist;
873
874 static const char *
875 h8300_register_name (int regno)
876 {
877 /* The register names change depending on which h8300 processor
878 type is selected. */
879 static char *register_names[] = {
880 "r0", "r1", "r2", "r3", "r4", "r5", "r6",
881 "sp", "","pc","cycles", "tick", "inst",
882 "ccr", /* pseudo register */
883 };
884 if (regno < 0
885 || regno >= (sizeof (register_names) / sizeof (*register_names)))
886 internal_error (__FILE__, __LINE__,
887 "h8300_register_name: illegal register number %d", regno);
888 else
889 return register_names[regno];
890 }
891
892 static const char *
893 h8300s_register_name (int regno)
894 {
895 static char *register_names[] = {
896 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
897 "sp", "", "pc", "cycles", "", "tick", "inst",
898 //"mach", "macl",
899 "ccr", "exr" /* pseudo registers */
900 };
901 if (regno < 0
902 || regno >= (sizeof (register_names) / sizeof (*register_names)))
903 internal_error (__FILE__, __LINE__,
904 "h8300s_register_name: illegal register number %d", regno);
905 else
906 return register_names[regno];
907 }
908
909 static const char *
910 h8300sx_register_name (int regno)
911 {
912 static char *register_names[] = {
913 "er0", "er1", "er2", "er3", "er4", "er5", "er6",
914 "sp", "", "pc", "cycles", "", "tick", "inst",
915 "mach", "macl", "sbr", "vbr",
916 "ccr", "exr" /* pseudo registers */
917 };
918 if (regno < 0
919 || regno >= (sizeof (register_names) / sizeof (*register_names)))
920 internal_error (__FILE__, __LINE__,
921 "h8300sx_register_name: illegal register number %d", regno);
922 else
923 return register_names[regno];
924 }
925
926 static void
927 h8300_print_register (struct gdbarch *gdbarch, struct ui_file *file,
928 struct frame_info *frame, int regno)
929 {
930 LONGEST rval;
931 const char *name = gdbarch_register_name (gdbarch, regno);
932
933 if (!name || !*name)
934 return;
935
936 frame_read_signed_register (frame, regno, &rval);
937
938 fprintf_filtered (file, "%-14s ", name);
939 if (regno == E_PSEUDO_CCR_REGNUM || (regno == E_PSEUDO_EXR_REGNUM && h8300smode))
940 {
941 fprintf_filtered (file, "0x%02x ", (unsigned char)rval);
942 print_longest (file, 'u', 1, rval);
943 }
944 else
945 {
946 fprintf_filtered (file, "0x%s ", phex ((ULONGEST)rval, BINWORD));
947 print_longest (file, 'd', 1, rval);
948 }
949 if (regno == E_PSEUDO_CCR_REGNUM)
950 {
951 /* CCR register */
952 int C, Z, N, V;
953 unsigned char l = rval & 0xff;
954 fprintf_filtered (file, "\t");
955 fprintf_filtered (file, "I-%d ", (l & 0x80) != 0);
956 fprintf_filtered (file, "UI-%d ", (l & 0x40) != 0);
957 fprintf_filtered (file, "H-%d ", (l & 0x20) != 0);
958 fprintf_filtered (file, "U-%d ", (l & 0x10) != 0);
959 N = (l & 0x8) != 0;
960 Z = (l & 0x4) != 0;
961 V = (l & 0x2) != 0;
962 C = (l & 0x1) != 0;
963 fprintf_filtered (file, "N-%d ", N);
964 fprintf_filtered (file, "Z-%d ", Z);
965 fprintf_filtered (file, "V-%d ", V);
966 fprintf_filtered (file, "C-%d ", C);
967 if ((C | Z) == 0)
968 fprintf_filtered (file, "u> ");
969 if ((C | Z) == 1)
970 fprintf_filtered (file, "u<= ");
971 if ((C == 0))
972 fprintf_filtered (file, "u>= ");
973 if (C == 1)
974 fprintf_filtered (file, "u< ");
975 if (Z == 0)
976 fprintf_filtered (file, "!= ");
977 if (Z == 1)
978 fprintf_filtered (file, "== ");
979 if ((N ^ V) == 0)
980 fprintf_filtered (file, ">= ");
981 if ((N ^ V) == 1)
982 fprintf_filtered (file, "< ");
983 if ((Z | (N ^ V)) == 0)
984 fprintf_filtered (file, "> ");
985 if ((Z | (N ^ V)) == 1)
986 fprintf_filtered (file, "<= ");
987 }
988 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
989 {
990 /* EXR register */
991 unsigned char l = rval & 0xff;
992 fprintf_filtered (file, "\t");
993 fprintf_filtered (file, "T-%d - - - ", (l & 0x80) != 0);
994 fprintf_filtered (file, "I2-%d ", (l & 4) != 0);
995 fprintf_filtered (file, "I1-%d ", (l & 2) != 0);
996 fprintf_filtered (file, "I0-%d", (l & 1) != 0);
997 }
998 fprintf_filtered (file, "\n");
999 }
1000
1001 static void
1002 h8300_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1003 struct frame_info *frame, int regno, int cpregs)
1004 {
1005 if (regno < 0)
1006 {
1007 for (regno = E_R0_REGNUM; regno <= E_SP_REGNUM; ++regno)
1008 h8300_print_register (gdbarch, file, frame, regno);
1009 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1010 h8300_print_register (gdbarch, file, frame, E_PC_REGNUM);
1011 if (h8300smode)
1012 {
1013 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1014 if (h8300sxmode)
1015 {
1016 h8300_print_register (gdbarch, file, frame, E_SBR_REGNUM);
1017 h8300_print_register (gdbarch, file, frame, E_VBR_REGNUM);
1018 h8300_print_register (gdbarch, file, frame, E_MACH_REGNUM);
1019 h8300_print_register (gdbarch, file, frame, E_MACL_REGNUM);
1020 }
1021 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1022 h8300_print_register (gdbarch, file, frame, E_TICKS_REGNUM);
1023 h8300_print_register (gdbarch, file, frame, E_INSTS_REGNUM);
1024 }
1025 else
1026 {
1027 h8300_print_register (gdbarch, file, frame, E_CYCLES_REGNUM);
1028 h8300_print_register (gdbarch, file, frame, E_TICK_REGNUM);
1029 h8300_print_register (gdbarch, file, frame, E_INST_REGNUM);
1030 }
1031 }
1032 else
1033 {
1034 if (regno == E_CCR_REGNUM)
1035 h8300_print_register (gdbarch, file, frame, E_PSEUDO_CCR_REGNUM);
1036 else if (regno == E_PSEUDO_EXR_REGNUM && h8300smode)
1037 h8300_print_register (gdbarch, file, frame, E_PSEUDO_EXR_REGNUM);
1038 else
1039 h8300_print_register (gdbarch, file, frame, regno);
1040 }
1041 }
1042
1043 static CORE_ADDR
1044 h8300_saved_pc_after_call (struct frame_info *ignore)
1045 {
1046 return read_memory_unsigned_integer (read_register (E_SP_REGNUM), BINWORD);
1047 }
1048
1049 static struct type *
1050 h8300_register_type (struct gdbarch *gdbarch, int regno)
1051 {
1052 if (regno < 0 || regno >= NUM_REGS + NUM_PSEUDO_REGS)
1053 internal_error (__FILE__, __LINE__,
1054 "h8300_register_type: illegal register number %d",
1055 regno);
1056 else
1057 {
1058 switch (regno)
1059 {
1060 case E_PC_REGNUM:
1061 return builtin_type_void_func_ptr;
1062 case E_SP_REGNUM:
1063 case E_FP_REGNUM:
1064 return builtin_type_void_data_ptr;
1065 default:
1066 if (regno == E_PSEUDO_CCR_REGNUM)
1067 return builtin_type_uint8;
1068 else if (regno == E_PSEUDO_EXR_REGNUM)
1069 return builtin_type_uint8;
1070 else if (h8300hmode)
1071 return builtin_type_int32;
1072 else
1073 return builtin_type_int16;
1074 }
1075 }
1076 }
1077
1078 static void
1079 h8300_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
1080 int regno, void *buf)
1081 {
1082 if (regno == E_PSEUDO_CCR_REGNUM)
1083 regcache_raw_read (regcache, E_CCR_REGNUM, buf);
1084 else if (regno == E_PSEUDO_EXR_REGNUM)
1085 regcache_raw_read (regcache, E_EXR_REGNUM, buf);
1086 else
1087 regcache_raw_read (regcache, regno, buf);
1088 }
1089
1090 static void
1091 h8300_pseudo_register_write (struct gdbarch *gdbarch, struct regcache *regcache,
1092 int regno, const void *buf)
1093 {
1094 if (regno == E_PSEUDO_CCR_REGNUM)
1095 regcache_raw_write (regcache, E_CCR_REGNUM, buf);
1096 else if (regno == E_PSEUDO_EXR_REGNUM)
1097 regcache_raw_write (regcache, E_EXR_REGNUM, buf);
1098 else
1099 regcache_raw_write (regcache, regno, buf);
1100 }
1101
1102 static int
1103 h8300_dbg_reg_to_regnum (int regno)
1104 {
1105 if (regno == E_CCR_REGNUM)
1106 return E_PSEUDO_CCR_REGNUM;
1107 return regno;
1108 }
1109
1110 static int
1111 h8300s_dbg_reg_to_regnum (int regno)
1112 {
1113 if (regno == E_CCR_REGNUM)
1114 return E_PSEUDO_CCR_REGNUM;
1115 if (regno == E_EXR_REGNUM)
1116 return E_PSEUDO_EXR_REGNUM;
1117 return regno;
1118 }
1119
1120 static CORE_ADDR
1121 h8300_extract_struct_value_address (struct regcache *regcache)
1122 {
1123 ULONGEST addr;
1124 regcache_cooked_read_unsigned (regcache, E_RET0_REGNUM, &addr);
1125 return addr;
1126 }
1127
1128 const static unsigned char *
1129 h8300_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
1130 {
1131 /*static unsigned char breakpoint[] = { 0x7A, 0xFF };*/ /* ??? */
1132 static unsigned char breakpoint[] = { 0x01, 0x80 }; /* Sleep */
1133
1134 *lenptr = sizeof (breakpoint);
1135 return breakpoint;
1136 }
1137
1138 static CORE_ADDR
1139 h8300_push_dummy_code (struct gdbarch *gdbarch,
1140 CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc,
1141 struct value **args, int nargs,
1142 struct type *value_type,
1143 CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
1144 {
1145 /* Allocate space sufficient for a breakpoint. */
1146 sp = (sp - 2) & ~1;
1147 /* Store the address of that breakpoint */
1148 *bp_addr = sp;
1149 /* h8300 always starts the call at the callee's entry point. */
1150 *real_pc = funaddr;
1151 return sp;
1152 }
1153
1154 static void
1155 h8300_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1156 struct frame_info *frame, const char *args)
1157 {
1158 fprintf_filtered (file, "\
1159 No floating-point info available for this processor.\n");
1160 }
1161
1162 static struct gdbarch *
1163 h8300_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1164 {
1165 struct gdbarch_tdep *tdep = NULL;
1166 struct gdbarch *gdbarch;
1167
1168 arches = gdbarch_list_lookup_by_info (arches, &info);
1169 if (arches != NULL)
1170 return arches->gdbarch;
1171
1172 #if 0
1173 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1174 #endif
1175
1176 if (info.bfd_arch_info->arch != bfd_arch_h8300)
1177 return NULL;
1178
1179 gdbarch = gdbarch_alloc (&info, 0);
1180
1181 switch (info.bfd_arch_info->mach)
1182 {
1183 case bfd_mach_h8300:
1184 h8300sxmode = 0;
1185 h8300smode = 0;
1186 h8300hmode = 0;
1187 set_gdbarch_num_regs (gdbarch, 13);
1188 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1189 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1190 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1191 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1192 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1193 set_gdbarch_register_name (gdbarch, h8300_register_name);
1194 set_gdbarch_ptr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1195 set_gdbarch_addr_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1196 set_gdbarch_extract_return_value (gdbarch, h8300_extract_return_value);
1197 set_gdbarch_store_return_value (gdbarch, h8300_store_return_value);
1198 set_gdbarch_print_insn (gdbarch, print_insn_h8300);
1199 break;
1200 case bfd_mach_h8300h:
1201 case bfd_mach_h8300hn:
1202 h8300sxmode = 0;
1203 h8300smode = 0;
1204 h8300hmode = 1;
1205 set_gdbarch_num_regs (gdbarch, 13);
1206 set_gdbarch_num_pseudo_regs (gdbarch, 1);
1207 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1208 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1209 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1210 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300_dbg_reg_to_regnum);
1211 set_gdbarch_register_name (gdbarch, h8300_register_name);
1212 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1213 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1214 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1215 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1216 set_gdbarch_print_insn (gdbarch, print_insn_h8300h);
1217 break;
1218 case bfd_mach_h8300s:
1219 case bfd_mach_h8300sn:
1220 h8300sxmode = 0;
1221 h8300smode = 1;
1222 h8300hmode = 1;
1223 set_gdbarch_num_regs (gdbarch, 14);
1224 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1225 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1226 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1227 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1228 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1229 set_gdbarch_register_name (gdbarch, h8300s_register_name);
1230 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1231 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1232 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1233 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1234 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1235 break;
1236 case bfd_mach_h8300sx:
1237 case bfd_mach_h8300sxn:
1238 h8300sxmode = 1;
1239 h8300smode = 1;
1240 h8300hmode = 1;
1241 set_gdbarch_num_regs (gdbarch, 18);
1242 set_gdbarch_num_pseudo_regs (gdbarch, 2);
1243 set_gdbarch_ecoff_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1244 set_gdbarch_dwarf_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1245 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1246 set_gdbarch_stab_reg_to_regnum (gdbarch, h8300s_dbg_reg_to_regnum);
1247 set_gdbarch_register_name (gdbarch, h8300sx_register_name);
1248 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1249 set_gdbarch_addr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1250 set_gdbarch_extract_return_value (gdbarch, h8300h_extract_return_value);
1251 set_gdbarch_store_return_value (gdbarch, h8300h_store_return_value);
1252 set_gdbarch_print_insn (gdbarch, print_insn_h8300s);
1253 break;
1254 }
1255
1256 set_gdbarch_pseudo_register_read (gdbarch, h8300_pseudo_register_read);
1257 set_gdbarch_pseudo_register_write (gdbarch, h8300_pseudo_register_write);
1258
1259 /* NOTE: cagney/2002-12-06: This can be deleted when this arch is
1260 ready to unwind the PC first (see frame.c:get_prev_frame()). */
1261 set_gdbarch_deprecated_init_frame_pc (gdbarch, init_frame_pc_default);
1262
1263 /*
1264 * Basic register fields and methods.
1265 */
1266
1267 set_gdbarch_sp_regnum (gdbarch, E_SP_REGNUM);
1268 set_gdbarch_deprecated_fp_regnum (gdbarch, E_FP_REGNUM);
1269 set_gdbarch_pc_regnum (gdbarch, E_PC_REGNUM);
1270 set_gdbarch_register_type (gdbarch, h8300_register_type);
1271 set_gdbarch_print_registers_info (gdbarch, h8300_print_registers_info);
1272 set_gdbarch_print_float_info (gdbarch, h8300_print_float_info);
1273
1274 /*
1275 * Frame Info
1276 */
1277 set_gdbarch_skip_prologue (gdbarch, h8300_skip_prologue);
1278
1279 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch,
1280 h8300_frame_init_saved_regs);
1281 set_gdbarch_deprecated_init_extra_frame_info (gdbarch,
1282 h8300_init_extra_frame_info);
1283 set_gdbarch_deprecated_frame_chain (gdbarch, h8300_frame_chain);
1284 set_gdbarch_deprecated_saved_pc_after_call (gdbarch,
1285 h8300_saved_pc_after_call);
1286 set_gdbarch_deprecated_frame_saved_pc (gdbarch, h8300_frame_saved_pc);
1287 set_gdbarch_deprecated_pop_frame (gdbarch, h8300_pop_frame);
1288
1289 /*
1290 * Miscelany
1291 */
1292 /* Stack grows up. */
1293 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1294 /* PC stops zero byte after a trap instruction
1295 (which means: exactly on trap instruction). */
1296 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1297 /* This value is almost never non-zero... */
1298 set_gdbarch_function_start_offset (gdbarch, 0);
1299 /* This value is almost never non-zero... */
1300 set_gdbarch_frame_args_skip (gdbarch, 0);
1301 set_gdbarch_frameless_function_invocation (gdbarch,
1302 frameless_look_for_prologue);
1303
1304 set_gdbarch_extract_struct_value_address (gdbarch,
1305 h8300_extract_struct_value_address);
1306 set_gdbarch_use_struct_convention (gdbarch, always_use_struct_convention);
1307 set_gdbarch_breakpoint_from_pc (gdbarch, h8300_breakpoint_from_pc);
1308 set_gdbarch_push_dummy_code (gdbarch, h8300_push_dummy_code);
1309 set_gdbarch_push_dummy_call (gdbarch, h8300_push_dummy_call);
1310
1311 set_gdbarch_int_bit (gdbarch, 2 * TARGET_CHAR_BIT);
1312 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1313 set_gdbarch_long_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1314 set_gdbarch_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1315 set_gdbarch_long_double_bit (gdbarch, 4 * TARGET_CHAR_BIT);
1316
1317 /* set_gdbarch_stack_align (gdbarch, SOME_stack_align); */
1318 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1319
1320 return gdbarch;
1321 }
1322
1323 extern initialize_file_ftype _initialize_h8300_tdep; /* -Wmissing-prototypes */
1324
1325 void
1326 _initialize_h8300_tdep (void)
1327 {
1328 register_gdbarch_init (bfd_arch_h8300, h8300_gdbarch_init);
1329 }
This page took 0.05583 seconds and 4 git commands to generate.