* hppa-linux-tdep.c (hppa_dwarf_reg_to_regnum): Remove surrounding
[deliverable/binutils-gdb.git] / gdb / hppa-linux-tdep.c
1 /* Target-dependent code for GNU/Linux running on PA-RISC, for GDB.
2
3 Copyright (C) 2004, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcore.h"
22 #include "osabi.h"
23 #include "target.h"
24 #include "objfiles.h"
25 #include "solib-svr4.h"
26 #include "glibc-tdep.h"
27 #include "frame-unwind.h"
28 #include "trad-frame.h"
29 #include "dwarf2-frame.h"
30 #include "value.h"
31 #include "regset.h"
32 #include "regcache.h"
33 #include "hppa-tdep.h"
34
35 #include "elf/common.h"
36
37 /* Map DWARF DBX register numbers to GDB register numbers. */
38 static int
39 hppa_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
40 {
41 /* The general registers and the sar are the same in both sets. */
42 if (reg <= 32)
43 return reg;
44
45 /* fr4-fr31 (left and right halves) are mapped from 72. */
46 if (reg >= 72 && reg <= 72 + 28 * 2)
47 return HPPA_FP4_REGNUM + (reg - 72);
48
49 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
50 return -1;
51 }
52
53 static void
54 hppa_linux_target_write_pc (struct regcache *regcache, CORE_ADDR v)
55 {
56 /* Probably this should be done by the kernel, but it isn't. */
57 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, v | 0x3);
58 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, (v + 4) | 0x3);
59 }
60
61 /* An instruction to match. */
62 struct insn_pattern
63 {
64 unsigned int data; /* See if it matches this.... */
65 unsigned int mask; /* ... with this mask. */
66 };
67
68 static struct insn_pattern hppa_sigtramp[] = {
69 /* ldi 0, %r25 or ldi 1, %r25 */
70 { 0x34190000, 0xfffffffd },
71 /* ldi __NR_rt_sigreturn, %r20 */
72 { 0x3414015a, 0xffffffff },
73 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
74 { 0xe4008200, 0xffffffff },
75 /* nop */
76 { 0x08000240, 0xffffffff },
77 { 0, 0 }
78 };
79
80 #define HPPA_MAX_INSN_PATTERN_LEN (4)
81
82 /* Return non-zero if the instructions at PC match the series
83 described in PATTERN, or zero otherwise. PATTERN is an array of
84 'struct insn_pattern' objects, terminated by an entry whose mask is
85 zero.
86
87 When the match is successful, fill INSN[i] with what PATTERN[i]
88 matched. */
89 static int
90 insns_match_pattern (CORE_ADDR pc,
91 struct insn_pattern *pattern,
92 unsigned int *insn)
93 {
94 int i;
95 CORE_ADDR npc = pc;
96
97 for (i = 0; pattern[i].mask; i++)
98 {
99 char buf[4];
100
101 target_read_memory (npc, buf, 4);
102 insn[i] = extract_unsigned_integer (buf, 4);
103 if ((insn[i] & pattern[i].mask) == pattern[i].data)
104 npc += 4;
105 else
106 return 0;
107 }
108 return 1;
109 }
110
111 /* Signal frames. */
112
113 /* (This is derived from MD_FALLBACK_FRAME_STATE_FOR in gcc.)
114
115 Unfortunately, because of various bugs and changes to the kernel,
116 we have several cases to deal with.
117
118 In 2.4, the signal trampoline is 4 bytes, and pc should point directly at
119 the beginning of the trampoline and struct rt_sigframe.
120
121 In <= 2.6.5-rc2-pa3, the signal trampoline is 9 bytes, and pc points at
122 the 4th word in the trampoline structure. This is wrong, it should point
123 at the 5th word. This is fixed in 2.6.5-rc2-pa4.
124
125 To detect these cases, we first take pc, align it to 64-bytes
126 to get the beginning of the signal frame, and then check offsets 0, 4
127 and 5 to see if we found the beginning of the trampoline. This will
128 tell us how to locate the sigcontext structure.
129
130 Note that with a 2.4 64-bit kernel, the signal context is not properly
131 passed back to userspace so the unwind will not work correctly. */
132 static CORE_ADDR
133 hppa_linux_sigtramp_find_sigcontext (CORE_ADDR pc)
134 {
135 unsigned int dummy[HPPA_MAX_INSN_PATTERN_LEN];
136 int offs = 0;
137 int try;
138 /* offsets to try to find the trampoline */
139 static int pcoffs[] = { 0, 4*4, 5*4 };
140 /* offsets to the rt_sigframe structure */
141 static int sfoffs[] = { 4*4, 10*4, 10*4 };
142 CORE_ADDR sp;
143
144 /* Most of the time, this will be correct. The one case when this will
145 fail is if the user defined an alternate stack, in which case the
146 beginning of the stack will not be align_down (pc, 64). */
147 sp = align_down (pc, 64);
148
149 /* rt_sigreturn trampoline:
150 3419000x ldi 0, %r25 or ldi 1, %r25 (x = 0 or 2)
151 3414015a ldi __NR_rt_sigreturn, %r20
152 e4008200 be,l 0x100(%sr2, %r0), %sr0, %r31
153 08000240 nop */
154
155 for (try = 0; try < ARRAY_SIZE (pcoffs); try++)
156 {
157 if (insns_match_pattern (sp + pcoffs[try], hppa_sigtramp, dummy))
158 {
159 offs = sfoffs[try];
160 break;
161 }
162 }
163
164 if (offs == 0)
165 {
166 if (insns_match_pattern (pc, hppa_sigtramp, dummy))
167 {
168 /* sigaltstack case: we have no way of knowing which offset to
169 use in this case; default to new kernel handling. If this is
170 wrong the unwinding will fail. */
171 try = 2;
172 sp = pc - pcoffs[try];
173 }
174 else
175 {
176 return 0;
177 }
178 }
179
180 /* sp + sfoffs[try] points to a struct rt_sigframe, which contains
181 a struct siginfo and a struct ucontext. struct ucontext contains
182 a struct sigcontext. Return an offset to this sigcontext here. Too
183 bad we cannot include system specific headers :-(.
184 sizeof(struct siginfo) == 128
185 offsetof(struct ucontext, uc_mcontext) == 24. */
186 return sp + sfoffs[try] + 128 + 24;
187 }
188
189 struct hppa_linux_sigtramp_unwind_cache
190 {
191 CORE_ADDR base;
192 struct trad_frame_saved_reg *saved_regs;
193 };
194
195 static struct hppa_linux_sigtramp_unwind_cache *
196 hppa_linux_sigtramp_frame_unwind_cache (struct frame_info *this_frame,
197 void **this_cache)
198 {
199 struct gdbarch *gdbarch = get_frame_arch (this_frame);
200 struct hppa_linux_sigtramp_unwind_cache *info;
201 CORE_ADDR pc, scptr;
202 int i;
203
204 if (*this_cache)
205 return *this_cache;
206
207 info = FRAME_OBSTACK_ZALLOC (struct hppa_linux_sigtramp_unwind_cache);
208 *this_cache = info;
209 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
210
211 pc = get_frame_pc (this_frame);
212 scptr = hppa_linux_sigtramp_find_sigcontext (pc);
213
214 /* structure of struct sigcontext:
215
216 struct sigcontext {
217 unsigned long sc_flags;
218 unsigned long sc_gr[32];
219 unsigned long long sc_fr[32];
220 unsigned long sc_iasq[2];
221 unsigned long sc_iaoq[2];
222 unsigned long sc_sar; */
223
224 /* Skip sc_flags. */
225 scptr += 4;
226
227 /* GR[0] is the psw, we don't restore that. */
228 scptr += 4;
229
230 /* General registers. */
231 for (i = 1; i < 32; i++)
232 {
233 info->saved_regs[HPPA_R0_REGNUM + i].addr = scptr;
234 scptr += 4;
235 }
236
237 /* Pad. */
238 scptr += 4;
239
240 /* FP regs; FP0-3 are not restored. */
241 scptr += (8 * 4);
242
243 for (i = 4; i < 32; i++)
244 {
245 info->saved_regs[HPPA_FP0_REGNUM + (i * 2)].addr = scptr;
246 scptr += 4;
247 info->saved_regs[HPPA_FP0_REGNUM + (i * 2) + 1].addr = scptr;
248 scptr += 4;
249 }
250
251 /* IASQ/IAOQ. */
252 info->saved_regs[HPPA_PCSQ_HEAD_REGNUM].addr = scptr;
253 scptr += 4;
254 info->saved_regs[HPPA_PCSQ_TAIL_REGNUM].addr = scptr;
255 scptr += 4;
256
257 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = scptr;
258 scptr += 4;
259 info->saved_regs[HPPA_PCOQ_TAIL_REGNUM].addr = scptr;
260 scptr += 4;
261
262 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
263
264 return info;
265 }
266
267 static void
268 hppa_linux_sigtramp_frame_this_id (struct frame_info *this_frame,
269 void **this_prologue_cache,
270 struct frame_id *this_id)
271 {
272 struct hppa_linux_sigtramp_unwind_cache *info
273 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
274 *this_id = frame_id_build (info->base, get_frame_pc (this_frame));
275 }
276
277 static struct value *
278 hppa_linux_sigtramp_frame_prev_register (struct frame_info *this_frame,
279 void **this_prologue_cache,
280 int regnum)
281 {
282 struct hppa_linux_sigtramp_unwind_cache *info
283 = hppa_linux_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
284 return hppa_frame_prev_register_helper (this_frame,
285 info->saved_regs, regnum);
286 }
287
288 /* hppa-linux always uses "new-style" rt-signals. The signal handler's return
289 address should point to a signal trampoline on the stack. The signal
290 trampoline is embedded in a rt_sigframe structure that is aligned on
291 the stack. We take advantage of the fact that sp must be 64-byte aligned,
292 and the trampoline is small, so by rounding down the trampoline address
293 we can find the beginning of the struct rt_sigframe. */
294 static int
295 hppa_linux_sigtramp_frame_sniffer (const struct frame_unwind *self,
296 struct frame_info *this_frame,
297 void **this_prologue_cache)
298 {
299 CORE_ADDR pc = get_frame_pc (this_frame);
300
301 if (hppa_linux_sigtramp_find_sigcontext (pc))
302 return 1;
303
304 return 0;
305 }
306
307 static const struct frame_unwind hppa_linux_sigtramp_frame_unwind = {
308 SIGTRAMP_FRAME,
309 hppa_linux_sigtramp_frame_this_id,
310 hppa_linux_sigtramp_frame_prev_register,
311 NULL,
312 hppa_linux_sigtramp_frame_sniffer
313 };
314
315 /* Attempt to find (and return) the global pointer for the given
316 function.
317
318 This is a rather nasty bit of code searchs for the .dynamic section
319 in the objfile corresponding to the pc of the function we're trying
320 to call. Once it finds the addresses at which the .dynamic section
321 lives in the child process, it scans the Elf32_Dyn entries for a
322 DT_PLTGOT tag. If it finds one of these, the corresponding
323 d_un.d_ptr value is the global pointer. */
324
325 static CORE_ADDR
326 hppa_linux_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
327 {
328 struct obj_section *faddr_sect;
329 CORE_ADDR faddr;
330
331 faddr = value_as_address (function);
332
333 /* Is this a plabel? If so, dereference it to get the gp value. */
334 if (faddr & 2)
335 {
336 int status;
337 char buf[4];
338
339 faddr &= ~3;
340
341 status = target_read_memory (faddr + 4, buf, sizeof (buf));
342 if (status == 0)
343 return extract_unsigned_integer (buf, sizeof (buf));
344 }
345
346 /* If the address is in the plt section, then the real function hasn't
347 yet been fixed up by the linker so we cannot determine the gp of
348 that function. */
349 if (in_plt_section (faddr, NULL))
350 return 0;
351
352 faddr_sect = find_pc_section (faddr);
353 if (faddr_sect != NULL)
354 {
355 struct obj_section *osect;
356
357 ALL_OBJFILE_OSECTIONS (faddr_sect->objfile, osect)
358 {
359 if (strcmp (osect->the_bfd_section->name, ".dynamic") == 0)
360 break;
361 }
362
363 if (osect < faddr_sect->objfile->sections_end)
364 {
365 CORE_ADDR addr, endaddr;
366
367 addr = obj_section_addr (osect);
368 endaddr = obj_section_endaddr (osect);
369
370 while (addr < endaddr)
371 {
372 int status;
373 LONGEST tag;
374 char buf[4];
375
376 status = target_read_memory (addr, buf, sizeof (buf));
377 if (status != 0)
378 break;
379 tag = extract_signed_integer (buf, sizeof (buf));
380
381 if (tag == DT_PLTGOT)
382 {
383 CORE_ADDR global_pointer;
384
385 status = target_read_memory (addr + 4, buf, sizeof (buf));
386 if (status != 0)
387 break;
388 global_pointer = extract_unsigned_integer (buf, sizeof (buf));
389
390 /* The payoff... */
391 return global_pointer;
392 }
393
394 if (tag == DT_NULL)
395 break;
396
397 addr += 8;
398 }
399 }
400 }
401 return 0;
402 }
403 \f
404 /*
405 * Registers saved in a coredump:
406 * gr0..gr31
407 * sr0..sr7
408 * iaoq0..iaoq1
409 * iasq0..iasq1
410 * sar, iir, isr, ior, ipsw
411 * cr0, cr24..cr31
412 * cr8,9,12,13
413 * cr10, cr15
414 */
415
416 #define GR_REGNUM(_n) (HPPA_R0_REGNUM+_n)
417 #define TR_REGNUM(_n) (HPPA_TR0_REGNUM+_n)
418 static const int greg_map[] =
419 {
420 GR_REGNUM(0), GR_REGNUM(1), GR_REGNUM(2), GR_REGNUM(3),
421 GR_REGNUM(4), GR_REGNUM(5), GR_REGNUM(6), GR_REGNUM(7),
422 GR_REGNUM(8), GR_REGNUM(9), GR_REGNUM(10), GR_REGNUM(11),
423 GR_REGNUM(12), GR_REGNUM(13), GR_REGNUM(14), GR_REGNUM(15),
424 GR_REGNUM(16), GR_REGNUM(17), GR_REGNUM(18), GR_REGNUM(19),
425 GR_REGNUM(20), GR_REGNUM(21), GR_REGNUM(22), GR_REGNUM(23),
426 GR_REGNUM(24), GR_REGNUM(25), GR_REGNUM(26), GR_REGNUM(27),
427 GR_REGNUM(28), GR_REGNUM(29), GR_REGNUM(30), GR_REGNUM(31),
428
429 HPPA_SR4_REGNUM+1, HPPA_SR4_REGNUM+2, HPPA_SR4_REGNUM+3, HPPA_SR4_REGNUM+4,
430 HPPA_SR4_REGNUM, HPPA_SR4_REGNUM+5, HPPA_SR4_REGNUM+6, HPPA_SR4_REGNUM+7,
431
432 HPPA_PCOQ_HEAD_REGNUM, HPPA_PCOQ_TAIL_REGNUM,
433 HPPA_PCSQ_HEAD_REGNUM, HPPA_PCSQ_TAIL_REGNUM,
434
435 HPPA_SAR_REGNUM, HPPA_IIR_REGNUM, HPPA_ISR_REGNUM, HPPA_IOR_REGNUM,
436 HPPA_IPSW_REGNUM, HPPA_RCR_REGNUM,
437
438 TR_REGNUM(0), TR_REGNUM(1), TR_REGNUM(2), TR_REGNUM(3),
439 TR_REGNUM(4), TR_REGNUM(5), TR_REGNUM(6), TR_REGNUM(7),
440
441 HPPA_PID0_REGNUM, HPPA_PID1_REGNUM, HPPA_PID2_REGNUM, HPPA_PID3_REGNUM,
442 HPPA_CCR_REGNUM, HPPA_EIEM_REGNUM,
443 };
444
445 static void
446 hppa_linux_supply_regset (const struct regset *regset,
447 struct regcache *regcache,
448 int regnum, const void *regs, size_t len)
449 {
450 struct gdbarch *arch = get_regcache_arch (regcache);
451 struct gdbarch_tdep *tdep = gdbarch_tdep (arch);
452 const char *buf = regs;
453 int i, offset;
454
455 offset = 0;
456 for (i = 0; i < ARRAY_SIZE (greg_map); i++)
457 {
458 if (regnum == greg_map[i] || regnum == -1)
459 regcache_raw_supply (regcache, greg_map[i], buf + offset);
460
461 offset += tdep->bytes_per_address;
462 }
463 }
464
465 static void
466 hppa_linux_supply_fpregset (const struct regset *regset,
467 struct regcache *regcache,
468 int regnum, const void *regs, size_t len)
469 {
470 const char *buf = regs;
471 int i, offset;
472
473 offset = 0;
474 for (i = 0; i < 64; i++)
475 {
476 if (regnum == HPPA_FP0_REGNUM + i || regnum == -1)
477 regcache_raw_supply (regcache, HPPA_FP0_REGNUM + i,
478 buf + offset);
479 offset += 4;
480 }
481 }
482
483 /* HPPA Linux kernel register set. */
484 static struct regset hppa_linux_regset =
485 {
486 NULL,
487 hppa_linux_supply_regset
488 };
489
490 static struct regset hppa_linux_fpregset =
491 {
492 NULL,
493 hppa_linux_supply_fpregset
494 };
495
496 static const struct regset *
497 hppa_linux_regset_from_core_section (struct gdbarch *gdbarch,
498 const char *sect_name,
499 size_t sect_size)
500 {
501 if (strcmp (sect_name, ".reg") == 0)
502 return &hppa_linux_regset;
503 else if (strcmp (sect_name, ".reg2") == 0)
504 return &hppa_linux_fpregset;
505
506 return NULL;
507 }
508 \f
509
510 /* Forward declarations. */
511 extern initialize_file_ftype _initialize_hppa_linux_tdep;
512
513 static void
514 hppa_linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
515 {
516 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
517
518 /* GNU/Linux is always ELF. */
519 tdep->is_elf = 1;
520
521 tdep->find_global_pointer = hppa_linux_find_global_pointer;
522
523 set_gdbarch_write_pc (gdbarch, hppa_linux_target_write_pc);
524
525 frame_unwind_append_unwinder (gdbarch, &hppa_linux_sigtramp_frame_unwind);
526
527 /* GNU/Linux uses SVR4-style shared libraries. */
528 set_solib_svr4_fetch_link_map_offsets
529 (gdbarch, svr4_ilp32_fetch_link_map_offsets);
530
531 tdep->in_solib_call_trampoline = hppa_in_solib_call_trampoline;
532 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
533
534 /* GNU/Linux uses the dynamic linker included in the GNU C Library. */
535 set_gdbarch_skip_solib_resolver (gdbarch, glibc_skip_solib_resolver);
536
537 /* On hppa-linux, currently, sizeof(long double) == 8. There has been
538 some discussions to support 128-bit long double, but it requires some
539 more work in gcc and glibc first. */
540 set_gdbarch_long_double_bit (gdbarch, 64);
541
542 set_gdbarch_regset_from_core_section
543 (gdbarch, hppa_linux_regset_from_core_section);
544
545 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa_dwarf_reg_to_regnum);
546
547 /* Enable TLS support. */
548 set_gdbarch_fetch_tls_load_module_address (gdbarch,
549 svr4_fetch_objfile_link_map);
550 }
551
552 void
553 _initialize_hppa_linux_tdep (void)
554 {
555 gdbarch_register_osabi (bfd_arch_hppa, 0, GDB_OSABI_LINUX, hppa_linux_init_abi);
556 gdbarch_register_osabi (bfd_arch_hppa, bfd_mach_hppa20w, GDB_OSABI_LINUX, hppa_linux_init_abi);
557 }
This page took 0.060007 seconds and 5 git commands to generate.