1b96ba99c66dd5343e366363672d68b62f3a5984
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 extract_17 (word)
259 unsigned word;
260 {
261 return sign_extend (GET_FIELD (word, 19, 28) |
262 GET_FIELD (word, 29, 29) << 10 |
263 GET_FIELD (word, 11, 15) << 11 |
264 (word & 0x1) << 16, 17) << 2;
265 }
266 \f
267
268 /* Compare the start address for two unwind entries returning 1 if
269 the first address is larger than the second, -1 if the second is
270 larger than the first, and zero if they are equal. */
271
272 static int
273 compare_unwind_entries (a, b)
274 const struct unwind_table_entry *a;
275 const struct unwind_table_entry *b;
276 {
277 if (a->region_start > b->region_start)
278 return 1;
279 else if (a->region_start < b->region_start)
280 return -1;
281 else
282 return 0;
283 }
284
285 static void
286 internalize_unwinds (objfile, table, section, entries, size, text_offset)
287 struct objfile *objfile;
288 struct unwind_table_entry *table;
289 asection *section;
290 unsigned int entries, size;
291 CORE_ADDR text_offset;
292 {
293 /* We will read the unwind entries into temporary memory, then
294 fill in the actual unwind table. */
295 if (size > 0)
296 {
297 unsigned long tmp;
298 unsigned i;
299 char *buf = alloca (size);
300
301 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
302
303 /* Now internalize the information being careful to handle host/target
304 endian issues. */
305 for (i = 0; i < entries; i++)
306 {
307 table[i].region_start = bfd_get_32 (objfile->obfd,
308 (bfd_byte *)buf);
309 table[i].region_start += text_offset;
310 buf += 4;
311 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
312 table[i].region_end += text_offset;
313 buf += 4;
314 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
315 buf += 4;
316 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
317 table[i].Millicode = (tmp >> 30) & 0x1;
318 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
319 table[i].Region_description = (tmp >> 27) & 0x3;
320 table[i].reserved1 = (tmp >> 26) & 0x1;
321 table[i].Entry_SR = (tmp >> 25) & 0x1;
322 table[i].Entry_FR = (tmp >> 21) & 0xf;
323 table[i].Entry_GR = (tmp >> 16) & 0x1f;
324 table[i].Args_stored = (tmp >> 15) & 0x1;
325 table[i].Variable_Frame = (tmp >> 14) & 0x1;
326 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
327 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
328 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
329 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
330 table[i].Ada_Region = (tmp >> 9) & 0x1;
331 table[i].reserved2 = (tmp >> 5) & 0xf;
332 table[i].Save_SP = (tmp >> 4) & 0x1;
333 table[i].Save_RP = (tmp >> 3) & 0x1;
334 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
335 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
336 table[i].Cleanup_defined = tmp & 0x1;
337 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
338 buf += 4;
339 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
340 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
341 table[i].Large_frame = (tmp >> 29) & 0x1;
342 table[i].reserved4 = (tmp >> 27) & 0x3;
343 table[i].Total_frame_size = tmp & 0x7ffffff;
344 }
345 }
346 }
347
348 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
349 the object file. This info is used mainly by find_unwind_entry() to find
350 out the stack frame size and frame pointer used by procedures. We put
351 everything on the psymbol obstack in the objfile so that it automatically
352 gets freed when the objfile is destroyed. */
353
354 static void
355 read_unwind_info (objfile)
356 struct objfile *objfile;
357 {
358 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
359 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
360 unsigned index, unwind_entries, elf_unwind_entries;
361 unsigned stub_entries, total_entries;
362 CORE_ADDR text_offset;
363 struct obj_unwind_info *ui;
364
365 text_offset = ANOFFSET (objfile->section_offsets, 0);
366 ui = obstack_alloc (&objfile->psymbol_obstack,
367 sizeof (struct obj_unwind_info));
368
369 ui->table = NULL;
370 ui->cache = NULL;
371 ui->last = -1;
372
373 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
374 section in ELF at the moment. */
375 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
376 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
377 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
378
379 /* Get sizes and unwind counts for all sections. */
380 if (unwind_sec)
381 {
382 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
383 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
384 }
385 else
386 {
387 unwind_size = 0;
388 unwind_entries = 0;
389 }
390
391 if (elf_unwind_sec)
392 {
393 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
394 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
395 }
396 else
397 {
398 elf_unwind_size = 0;
399 elf_unwind_entries = 0;
400 }
401
402 if (stub_unwind_sec)
403 {
404 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
405 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
406 }
407 else
408 {
409 stub_unwind_size = 0;
410 stub_entries = 0;
411 }
412
413 /* Compute total number of unwind entries and their total size. */
414 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
415 total_size = total_entries * sizeof (struct unwind_table_entry);
416
417 /* Allocate memory for the unwind table. */
418 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
419 ui->last = total_entries - 1;
420
421 /* Internalize the standard unwind entries. */
422 index = 0;
423 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
424 unwind_entries, unwind_size, text_offset);
425 index += unwind_entries;
426 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
427 elf_unwind_entries, elf_unwind_size, text_offset);
428 index += elf_unwind_entries;
429
430 /* Now internalize the stub unwind entries. */
431 if (stub_unwind_size > 0)
432 {
433 unsigned int i;
434 char *buf = alloca (stub_unwind_size);
435
436 /* Read in the stub unwind entries. */
437 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
438 0, stub_unwind_size);
439
440 /* Now convert them into regular unwind entries. */
441 for (i = 0; i < stub_entries; i++, index++)
442 {
443 /* Clear out the next unwind entry. */
444 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
445
446 /* Convert offset & size into region_start and region_end.
447 Stuff away the stub type into "reserved" fields. */
448 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
449 (bfd_byte *) buf);
450 ui->table[index].region_start += text_offset;
451 buf += 4;
452 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
453 (bfd_byte *) buf);
454 buf += 2;
455 ui->table[index].region_end
456 = ui->table[index].region_start + 4 *
457 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
458 buf += 2;
459 }
460
461 }
462
463 /* Unwind table needs to be kept sorted. */
464 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
465 compare_unwind_entries);
466
467 /* Keep a pointer to the unwind information. */
468 objfile->obj_private = (PTR) ui;
469 }
470
471 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
472 of the objfiles seeking the unwind table entry for this PC. Each objfile
473 contains a sorted list of struct unwind_table_entry. Since we do a binary
474 search of the unwind tables, we depend upon them to be sorted. */
475
476 static struct unwind_table_entry *
477 find_unwind_entry(pc)
478 CORE_ADDR pc;
479 {
480 int first, middle, last;
481 struct objfile *objfile;
482
483 ALL_OBJFILES (objfile)
484 {
485 struct obj_unwind_info *ui;
486
487 ui = OBJ_UNWIND_INFO (objfile);
488
489 if (!ui)
490 {
491 read_unwind_info (objfile);
492 ui = OBJ_UNWIND_INFO (objfile);
493 }
494
495 /* First, check the cache */
496
497 if (ui->cache
498 && pc >= ui->cache->region_start
499 && pc <= ui->cache->region_end)
500 return ui->cache;
501
502 /* Not in the cache, do a binary search */
503
504 first = 0;
505 last = ui->last;
506
507 while (first <= last)
508 {
509 middle = (first + last) / 2;
510 if (pc >= ui->table[middle].region_start
511 && pc <= ui->table[middle].region_end)
512 {
513 ui->cache = &ui->table[middle];
514 return &ui->table[middle];
515 }
516
517 if (pc < ui->table[middle].region_start)
518 last = middle - 1;
519 else
520 first = middle + 1;
521 }
522 } /* ALL_OBJFILES() */
523 return NULL;
524 }
525
526 /* Return the adjustment necessary to make for addresses on the stack
527 as presented by hpread.c.
528
529 This is necessary because of the stack direction on the PA and the
530 bizarre way in which someone (?) decided they wanted to handle
531 frame pointerless code in GDB. */
532 int
533 hpread_adjust_stack_address (func_addr)
534 CORE_ADDR func_addr;
535 {
536 struct unwind_table_entry *u;
537
538 u = find_unwind_entry (func_addr);
539 if (!u)
540 return 0;
541 else
542 return u->Total_frame_size << 3;
543 }
544
545 /* Called to determine if PC is in an interrupt handler of some
546 kind. */
547
548 static int
549 pc_in_interrupt_handler (pc)
550 CORE_ADDR pc;
551 {
552 struct unwind_table_entry *u;
553 struct minimal_symbol *msym_us;
554
555 u = find_unwind_entry (pc);
556 if (!u)
557 return 0;
558
559 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
560 its frame isn't a pure interrupt frame. Deal with this. */
561 msym_us = lookup_minimal_symbol_by_pc (pc);
562
563 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
564 }
565
566 /* Called when no unwind descriptor was found for PC. Returns 1 if it
567 appears that PC is in a linker stub. */
568
569 static int
570 pc_in_linker_stub (pc)
571 CORE_ADDR pc;
572 {
573 int found_magic_instruction = 0;
574 int i;
575 char buf[4];
576
577 /* If unable to read memory, assume pc is not in a linker stub. */
578 if (target_read_memory (pc, buf, 4) != 0)
579 return 0;
580
581 /* We are looking for something like
582
583 ; $$dyncall jams RP into this special spot in the frame (RP')
584 ; before calling the "call stub"
585 ldw -18(sp),rp
586
587 ldsid (rp),r1 ; Get space associated with RP into r1
588 mtsp r1,sp ; Move it into space register 0
589 be,n 0(sr0),rp) ; back to your regularly scheduled program
590 */
591
592 /* Maximum known linker stub size is 4 instructions. Search forward
593 from the given PC, then backward. */
594 for (i = 0; i < 4; i++)
595 {
596 /* If we hit something with an unwind, stop searching this direction. */
597
598 if (find_unwind_entry (pc + i * 4) != 0)
599 break;
600
601 /* Check for ldsid (rp),r1 which is the magic instruction for a
602 return from a cross-space function call. */
603 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
604 {
605 found_magic_instruction = 1;
606 break;
607 }
608 /* Add code to handle long call/branch and argument relocation stubs
609 here. */
610 }
611
612 if (found_magic_instruction != 0)
613 return 1;
614
615 /* Now look backward. */
616 for (i = 0; i < 4; i++)
617 {
618 /* If we hit something with an unwind, stop searching this direction. */
619
620 if (find_unwind_entry (pc - i * 4) != 0)
621 break;
622
623 /* Check for ldsid (rp),r1 which is the magic instruction for a
624 return from a cross-space function call. */
625 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
626 {
627 found_magic_instruction = 1;
628 break;
629 }
630 /* Add code to handle long call/branch and argument relocation stubs
631 here. */
632 }
633 return found_magic_instruction;
634 }
635
636 static int
637 find_return_regnum(pc)
638 CORE_ADDR pc;
639 {
640 struct unwind_table_entry *u;
641
642 u = find_unwind_entry (pc);
643
644 if (!u)
645 return RP_REGNUM;
646
647 if (u->Millicode)
648 return 31;
649
650 return RP_REGNUM;
651 }
652
653 /* Return size of frame, or -1 if we should use a frame pointer. */
654 int
655 find_proc_framesize (pc)
656 CORE_ADDR pc;
657 {
658 struct unwind_table_entry *u;
659 struct minimal_symbol *msym_us;
660
661 u = find_unwind_entry (pc);
662
663 if (!u)
664 {
665 if (pc_in_linker_stub (pc))
666 /* Linker stubs have a zero size frame. */
667 return 0;
668 else
669 return -1;
670 }
671
672 msym_us = lookup_minimal_symbol_by_pc (pc);
673
674 /* If Save_SP is set, and we're not in an interrupt or signal caller,
675 then we have a frame pointer. Use it. */
676 if (u->Save_SP && !pc_in_interrupt_handler (pc)
677 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
678 return -1;
679
680 return u->Total_frame_size << 3;
681 }
682
683 /* Return offset from sp at which rp is saved, or 0 if not saved. */
684 static int rp_saved PARAMS ((CORE_ADDR));
685
686 static int
687 rp_saved (pc)
688 CORE_ADDR pc;
689 {
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (pc);
693
694 if (!u)
695 {
696 if (pc_in_linker_stub (pc))
697 /* This is the so-called RP'. */
698 return -24;
699 else
700 return 0;
701 }
702
703 if (u->Save_RP)
704 return -20;
705 else if (u->stub_type != 0)
706 {
707 switch (u->stub_type)
708 {
709 case EXPORT:
710 case IMPORT:
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
718 else
719 return 0;
720 }
721 \f
722 int
723 frameless_function_invocation (frame)
724 struct frame_info *frame;
725 {
726 struct unwind_table_entry *u;
727
728 u = find_unwind_entry (frame->pc);
729
730 if (u == 0)
731 return 0;
732
733 return (u->Total_frame_size == 0 && u->stub_type == 0);
734 }
735
736 CORE_ADDR
737 saved_pc_after_call (frame)
738 struct frame_info *frame;
739 {
740 int ret_regnum;
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
754 }
755 \f
756 CORE_ADDR
757 frame_saved_pc (frame)
758 struct frame_info *frame;
759 {
760 CORE_ADDR pc = get_frame_pc (frame);
761 struct unwind_table_entry *u;
762
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
775 return rp & ~0x3;
776 }
777
778 if (frameless_function_invocation (frame))
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
792 struct frame_saved_regs saved_regs;
793
794 get_frame_saved_regs (frame->next, &saved_regs);
795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
806 else
807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
808 }
809 else
810 pc = read_register (ret_regnum) & ~0x3;
811 }
812 else
813 {
814 int rp_offset;
815
816 restart:
817 rp_offset = rp_saved (pc);
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
826 struct frame_saved_regs saved_regs;
827
828 get_frame_saved_regs (frame->next, &saved_regs);
829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
840 else
841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
842 }
843 else if (rp_offset == 0)
844 pc = read_register (RP_REGNUM) & ~0x3;
845 else
846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
847 }
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
856 }
857 \f
858 /* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861 void
862 init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865 {
866 int flags;
867 int framesize;
868
869 if (frame->next && !fromleaf)
870 return;
871
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
910 }
911 \f
912 /* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
919
920 CORE_ADDR
921 frame_chain (frame)
922 struct frame_info *frame;
923 {
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
940
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
945
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
949 return frame_base - caller_framesize;
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
955 return read_memory_integer (frame_base, 4);
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
965 unwind descriptors to determine if %r3 ever gets saved into the
966 stack. If so return whatever value got saved into the stack.
967 If it was never saved in the stack, then the value in %r3 is still
968 valid, so use it.
969
970 We use information from unwind descriptors to determine if %r3
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
988 saved in the stack. It starts at %r3, so %r3 would be 1. */
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
1004 return read_memory_integer (frame->frame, 4);
1005 /* %r3 was saved somewhere in the stack. Dig it out. */
1006 else
1007 {
1008 struct frame_saved_regs saved_regs;
1009
1010 get_frame_saved_regs (frame, &saved_regs);
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
1013 }
1014 else
1015 {
1016 /* The value in %r3 was never saved into the stack (thus %r3 still
1017 holds the value of the previous frame pointer). */
1018 return read_register (FP_REGNUM);
1019 }
1020 }
1021
1022 \f
1023 /* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026 int
1027 frame_chain_valid (chain, thisframe)
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
1030 {
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
1033 struct unwind_table_entry *u, *next_u = NULL;
1034 struct frame_info *next;
1035
1036 if (!chain)
1037 return 0;
1038
1039 u = find_unwind_entry (thisframe->pc);
1040
1041 if (u == NULL)
1042 return 1;
1043
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1055 return 0;
1056
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
1060
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
1067 return 1;
1068
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
1082 void
1083 push_dummy_frame (inf_status)
1084 struct inferior_status *inf_status;
1085 {
1086 CORE_ADDR sp, pc, pcspace;
1087 register int regnum;
1088 int int_buffer;
1089 double freg_buffer;
1090
1091 /* Oh, what a hack. If we're trying to perform an inferior call
1092 while the inferior is asleep, we have to make sure to clear
1093 the "in system call" bit in the flag register (the call will
1094 start after the syscall returns, so we're no longer in the system
1095 call!) This state is kept in "inf_status", change it there.
1096
1097 We also need a number of horrid hacks to deal with lossage in the
1098 PC queue registers (apparently they're not valid when the in syscall
1099 bit is set). */
1100 pc = target_read_pc (inferior_pid);
1101 int_buffer = read_register (FLAGS_REGNUM);
1102 if (int_buffer & 0x2)
1103 {
1104 unsigned int sid;
1105 int_buffer &= ~0x2;
1106 memcpy (inf_status->registers, &int_buffer, 4);
1107 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1108 pc += 4;
1109 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1110 pc -= 4;
1111 sid = (pc >> 30) & 0x3;
1112 if (sid == 0)
1113 pcspace = read_register (SR4_REGNUM);
1114 else
1115 pcspace = read_register (SR4_REGNUM + 4 + sid);
1116 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1117 &pcspace, 4);
1118 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1119 &pcspace, 4);
1120 }
1121 else
1122 pcspace = read_register (PCSQ_HEAD_REGNUM);
1123
1124 /* Space for "arguments"; the RP goes in here. */
1125 sp = read_register (SP_REGNUM) + 48;
1126 int_buffer = read_register (RP_REGNUM) | 0x3;
1127 write_memory (sp - 20, (char *)&int_buffer, 4);
1128
1129 int_buffer = read_register (FP_REGNUM);
1130 write_memory (sp, (char *)&int_buffer, 4);
1131
1132 write_register (FP_REGNUM, sp);
1133
1134 sp += 8;
1135
1136 for (regnum = 1; regnum < 32; regnum++)
1137 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1138 sp = push_word (sp, read_register (regnum));
1139
1140 sp += 4;
1141
1142 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1143 {
1144 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1145 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1146 }
1147 sp = push_word (sp, read_register (IPSW_REGNUM));
1148 sp = push_word (sp, read_register (SAR_REGNUM));
1149 sp = push_word (sp, pc);
1150 sp = push_word (sp, pcspace);
1151 sp = push_word (sp, pc + 4);
1152 sp = push_word (sp, pcspace);
1153 write_register (SP_REGNUM, sp);
1154 }
1155
1156 void
1157 find_dummy_frame_regs (frame, frame_saved_regs)
1158 struct frame_info *frame;
1159 struct frame_saved_regs *frame_saved_regs;
1160 {
1161 CORE_ADDR fp = frame->frame;
1162 int i;
1163
1164 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1165 frame_saved_regs->regs[FP_REGNUM] = fp;
1166 frame_saved_regs->regs[1] = fp + 8;
1167
1168 for (fp += 12, i = 3; i < 32; i++)
1169 {
1170 if (i != FP_REGNUM)
1171 {
1172 frame_saved_regs->regs[i] = fp;
1173 fp += 4;
1174 }
1175 }
1176
1177 fp += 4;
1178 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1179 frame_saved_regs->regs[i] = fp;
1180
1181 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1182 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1183 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1184 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1185 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1186 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1187 }
1188
1189 void
1190 hppa_pop_frame ()
1191 {
1192 register struct frame_info *frame = get_current_frame ();
1193 register CORE_ADDR fp, npc, target_pc;
1194 register int regnum;
1195 struct frame_saved_regs fsr;
1196 double freg_buffer;
1197
1198 fp = FRAME_FP (frame);
1199 get_frame_saved_regs (frame, &fsr);
1200
1201 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1202 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1203 restore_pc_queue (&fsr);
1204 #endif
1205
1206 for (regnum = 31; regnum > 0; regnum--)
1207 if (fsr.regs[regnum])
1208 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1209
1210 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1211 if (fsr.regs[regnum])
1212 {
1213 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1214 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1215 }
1216
1217 if (fsr.regs[IPSW_REGNUM])
1218 write_register (IPSW_REGNUM,
1219 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1220
1221 if (fsr.regs[SAR_REGNUM])
1222 write_register (SAR_REGNUM,
1223 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1224
1225 /* If the PC was explicitly saved, then just restore it. */
1226 if (fsr.regs[PCOQ_TAIL_REGNUM])
1227 {
1228 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1229 write_register (PCOQ_TAIL_REGNUM, npc);
1230 }
1231 /* Else use the value in %rp to set the new PC. */
1232 else
1233 {
1234 npc = read_register (RP_REGNUM);
1235 target_write_pc (npc, 0);
1236 }
1237
1238 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1239
1240 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1241 write_register (SP_REGNUM, fp - 48);
1242 else
1243 write_register (SP_REGNUM, fp);
1244
1245 /* The PC we just restored may be inside a return trampoline. If so
1246 we want to restart the inferior and run it through the trampoline.
1247
1248 Do this by setting a momentary breakpoint at the location the
1249 trampoline returns to.
1250
1251 Don't skip through the trampoline if we're popping a dummy frame. */
1252 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1253 if (target_pc && !fsr.regs[IPSW_REGNUM])
1254 {
1255 struct symtab_and_line sal;
1256 struct breakpoint *breakpoint;
1257 struct cleanup *old_chain;
1258
1259 /* Set up our breakpoint. Set it to be silent as the MI code
1260 for "return_command" will print the frame we returned to. */
1261 sal = find_pc_line (target_pc, 0);
1262 sal.pc = target_pc;
1263 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1264 breakpoint->silent = 1;
1265
1266 /* So we can clean things up. */
1267 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1268
1269 /* Start up the inferior. */
1270 proceed_to_finish = 1;
1271 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1272
1273 /* Perform our cleanups. */
1274 do_cleanups (old_chain);
1275 }
1276 flush_cached_frames ();
1277 }
1278
1279 /*
1280 * After returning to a dummy on the stack, restore the instruction
1281 * queue space registers. */
1282
1283 static int
1284 restore_pc_queue (fsr)
1285 struct frame_saved_regs *fsr;
1286 {
1287 CORE_ADDR pc = read_pc ();
1288 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1289 struct target_waitstatus w;
1290 int insn_count;
1291
1292 /* Advance past break instruction in the call dummy. */
1293 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1294 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1295
1296 /*
1297 * HPUX doesn't let us set the space registers or the space
1298 * registers of the PC queue through ptrace. Boo, hiss.
1299 * Conveniently, the call dummy has this sequence of instructions
1300 * after the break:
1301 * mtsp r21, sr0
1302 * ble,n 0(sr0, r22)
1303 *
1304 * So, load up the registers and single step until we are in the
1305 * right place.
1306 */
1307
1308 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1309 write_register (22, new_pc);
1310
1311 for (insn_count = 0; insn_count < 3; insn_count++)
1312 {
1313 /* FIXME: What if the inferior gets a signal right now? Want to
1314 merge this into wait_for_inferior (as a special kind of
1315 watchpoint? By setting a breakpoint at the end? Is there
1316 any other choice? Is there *any* way to do this stuff with
1317 ptrace() or some equivalent?). */
1318 resume (1, 0);
1319 target_wait (inferior_pid, &w);
1320
1321 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1322 {
1323 stop_signal = w.value.sig;
1324 terminal_ours_for_output ();
1325 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1326 target_signal_to_name (stop_signal),
1327 target_signal_to_string (stop_signal));
1328 gdb_flush (gdb_stdout);
1329 return 0;
1330 }
1331 }
1332 target_terminal_ours ();
1333 target_fetch_registers (-1);
1334 return 1;
1335 }
1336
1337 CORE_ADDR
1338 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1339 int nargs;
1340 value_ptr *args;
1341 CORE_ADDR sp;
1342 int struct_return;
1343 CORE_ADDR struct_addr;
1344 {
1345 /* array of arguments' offsets */
1346 int *offset = (int *)alloca(nargs * sizeof (int));
1347 int cum = 0;
1348 int i, alignment;
1349
1350 for (i = 0; i < nargs; i++)
1351 {
1352 /* Coerce chars to int & float to double if necessary */
1353 args[i] = value_arg_coerce (args[i]);
1354
1355 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1356
1357 /* value must go at proper alignment. Assume alignment is a
1358 power of two.*/
1359 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1360 if (cum % alignment)
1361 cum = (cum + alignment) & -alignment;
1362 offset[i] = -cum;
1363 }
1364 sp += max ((cum + 7) & -8, 16);
1365
1366 for (i = 0; i < nargs; i++)
1367 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1368 TYPE_LENGTH (VALUE_TYPE (args[i])));
1369
1370 if (struct_return)
1371 write_register (28, struct_addr);
1372 return sp + 32;
1373 }
1374
1375 /*
1376 * Insert the specified number of args and function address
1377 * into a call sequence of the above form stored at DUMMYNAME.
1378 *
1379 * On the hppa we need to call the stack dummy through $$dyncall.
1380 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1381 * real_pc, which is the location where gdb should start up the
1382 * inferior to do the function call.
1383 */
1384
1385 CORE_ADDR
1386 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1387 char *dummy;
1388 CORE_ADDR pc;
1389 CORE_ADDR fun;
1390 int nargs;
1391 value_ptr *args;
1392 struct type *type;
1393 int gcc_p;
1394 {
1395 CORE_ADDR dyncall_addr, sr4export_addr;
1396 struct minimal_symbol *msymbol;
1397 int flags = read_register (FLAGS_REGNUM);
1398 struct unwind_table_entry *u;
1399
1400 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1401 if (msymbol == NULL)
1402 error ("Can't find an address for $$dyncall trampoline");
1403
1404 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1405
1406 /* FUN could be a procedure label, in which case we have to get
1407 its real address and the value of its GOT/DP. */
1408 if (fun & 0x2)
1409 {
1410 /* Get the GOT/DP value for the target function. It's
1411 at *(fun+4). Note the call dummy is *NOT* allowed to
1412 trash %r19 before calling the target function. */
1413 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1414
1415 /* Now get the real address for the function we are calling, it's
1416 at *fun. */
1417 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1418 }
1419 else
1420 {
1421
1422 /* FUN could be either an export stub, or the real address of a
1423 function in a shared library.
1424
1425 To call this function we need to get the GOT/DP value for the target
1426 function. Do this by calling shared library support routines in
1427 somsolib.c. Once the GOT value is in %r19 we can call the procedure
1428 in the normal fashion. */
1429
1430 #ifndef GDB_TARGET_IS_PA_ELF
1431 write_register (19, som_solib_get_got_by_pc (fun));
1432 #endif
1433 }
1434
1435 /* If we are calling an import stub (eg calling into a dynamic library)
1436 then have sr4export call the magic __d_plt_call routine which is linked
1437 in from end.o. (You can't use _sr4export to call the import stub as
1438 the value in sp-24 will get fried and you end up returning to the
1439 wrong location. You can't call the import stub directly as the code
1440 to bind the PLT entry to a function can't return to a stack address.) */
1441 u = find_unwind_entry (fun);
1442 if (u && u->stub_type == IMPORT)
1443 {
1444 CORE_ADDR new_fun;
1445 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1446 if (msymbol == NULL)
1447 error ("Can't find an address for __d_plt_call trampoline");
1448
1449 /* This is where sr4export will jump to. */
1450 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1451
1452 /* We have to store the address of the stub in __shlib_funcptr. */
1453 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1454 (struct objfile *)NULL);
1455 if (msymbol == NULL)
1456 error ("Can't find an address for __shlib_funcptr");
1457
1458 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1459 fun = new_fun;
1460
1461 }
1462
1463 /* We still need sr4export's address too. */
1464 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1465 if (msymbol == NULL)
1466 error ("Can't find an address for _sr4export trampoline");
1467
1468 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1469
1470 store_unsigned_integer
1471 (&dummy[9*REGISTER_SIZE],
1472 REGISTER_SIZE,
1473 deposit_21 (fun >> 11,
1474 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1475 REGISTER_SIZE)));
1476 store_unsigned_integer
1477 (&dummy[10*REGISTER_SIZE],
1478 REGISTER_SIZE,
1479 deposit_14 (fun & MASK_11,
1480 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1481 REGISTER_SIZE)));
1482 store_unsigned_integer
1483 (&dummy[12*REGISTER_SIZE],
1484 REGISTER_SIZE,
1485 deposit_21 (sr4export_addr >> 11,
1486 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1487 REGISTER_SIZE)));
1488 store_unsigned_integer
1489 (&dummy[13*REGISTER_SIZE],
1490 REGISTER_SIZE,
1491 deposit_14 (sr4export_addr & MASK_11,
1492 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1493 REGISTER_SIZE)));
1494
1495 write_register (22, pc);
1496
1497 /* If we are in a syscall, then we should call the stack dummy
1498 directly. $$dyncall is not needed as the kernel sets up the
1499 space id registers properly based on the value in %r31. In
1500 fact calling $$dyncall will not work because the value in %r22
1501 will be clobbered on the syscall exit path.
1502
1503 Similarly if the current PC is in a shared library. Note however,
1504 this scheme won't work if the shared library isn't mapped into
1505 the same space as the stack. */
1506 if (flags & 2)
1507 return pc;
1508 #ifndef GDB_TARGET_IS_PA_ELF
1509 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1510 return pc;
1511 #endif
1512 else
1513 return dyncall_addr;
1514
1515 }
1516
1517 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1518 bits. */
1519
1520 CORE_ADDR
1521 target_read_pc (pid)
1522 int pid;
1523 {
1524 int flags = read_register (FLAGS_REGNUM);
1525
1526 if (flags & 2)
1527 return read_register (31) & ~0x3;
1528 return read_register (PC_REGNUM) & ~0x3;
1529 }
1530
1531 /* Write out the PC. If currently in a syscall, then also write the new
1532 PC value into %r31. */
1533
1534 void
1535 target_write_pc (v, pid)
1536 CORE_ADDR v;
1537 int pid;
1538 {
1539 int flags = read_register (FLAGS_REGNUM);
1540
1541 /* If in a syscall, then set %r31. Also make sure to get the
1542 privilege bits set correctly. */
1543 if (flags & 2)
1544 write_register (31, (long) (v | 0x3));
1545
1546 write_register (PC_REGNUM, (long) v);
1547 write_register (NPC_REGNUM, (long) v + 4);
1548 }
1549
1550 /* return the alignment of a type in bytes. Structures have the maximum
1551 alignment required by their fields. */
1552
1553 static int
1554 hppa_alignof (arg)
1555 struct type *arg;
1556 {
1557 int max_align, align, i;
1558 switch (TYPE_CODE (arg))
1559 {
1560 case TYPE_CODE_PTR:
1561 case TYPE_CODE_INT:
1562 case TYPE_CODE_FLT:
1563 return TYPE_LENGTH (arg);
1564 case TYPE_CODE_ARRAY:
1565 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1566 case TYPE_CODE_STRUCT:
1567 case TYPE_CODE_UNION:
1568 max_align = 2;
1569 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1570 {
1571 /* Bit fields have no real alignment. */
1572 if (!TYPE_FIELD_BITPOS (arg, i))
1573 {
1574 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1575 max_align = max (max_align, align);
1576 }
1577 }
1578 return max_align;
1579 default:
1580 return 4;
1581 }
1582 }
1583
1584 /* Print the register regnum, or all registers if regnum is -1 */
1585
1586 void
1587 pa_do_registers_info (regnum, fpregs)
1588 int regnum;
1589 int fpregs;
1590 {
1591 char raw_regs [REGISTER_BYTES];
1592 int i;
1593
1594 for (i = 0; i < NUM_REGS; i++)
1595 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1596 if (regnum == -1)
1597 pa_print_registers (raw_regs, regnum, fpregs);
1598 else if (regnum < FP0_REGNUM)
1599 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1600 REGISTER_BYTE (regnum)));
1601 else
1602 pa_print_fp_reg (regnum);
1603 }
1604
1605 static void
1606 pa_print_registers (raw_regs, regnum, fpregs)
1607 char *raw_regs;
1608 int regnum;
1609 int fpregs;
1610 {
1611 int i;
1612
1613 for (i = 0; i < 18; i++)
1614 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1615 reg_names[i],
1616 *(int *)(raw_regs + REGISTER_BYTE (i)),
1617 reg_names[i + 18],
1618 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1619 reg_names[i + 36],
1620 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1621 reg_names[i + 54],
1622 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1623
1624 if (fpregs)
1625 for (i = 72; i < NUM_REGS; i++)
1626 pa_print_fp_reg (i);
1627 }
1628
1629 static void
1630 pa_print_fp_reg (i)
1631 int i;
1632 {
1633 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1634 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1635
1636 /* Get 32bits of data. */
1637 read_relative_register_raw_bytes (i, raw_buffer);
1638
1639 /* Put it in the buffer. No conversions are ever necessary. */
1640 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1641
1642 fputs_filtered (reg_names[i], gdb_stdout);
1643 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1644 fputs_filtered ("(single precision) ", gdb_stdout);
1645
1646 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1647 1, 0, Val_pretty_default);
1648 printf_filtered ("\n");
1649
1650 /* If "i" is even, then this register can also be a double-precision
1651 FP register. Dump it out as such. */
1652 if ((i % 2) == 0)
1653 {
1654 /* Get the data in raw format for the 2nd half. */
1655 read_relative_register_raw_bytes (i + 1, raw_buffer);
1656
1657 /* Copy it into the appropriate part of the virtual buffer. */
1658 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1659 REGISTER_RAW_SIZE (i));
1660
1661 /* Dump it as a double. */
1662 fputs_filtered (reg_names[i], gdb_stdout);
1663 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1664 fputs_filtered ("(double precision) ", gdb_stdout);
1665
1666 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1667 1, 0, Val_pretty_default);
1668 printf_filtered ("\n");
1669 }
1670 }
1671
1672 /* Return one if PC is in the call path of a trampoline, else return zero.
1673
1674 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1675 just shared library trampolines (import, export). */
1676
1677 int
1678 in_solib_call_trampoline (pc, name)
1679 CORE_ADDR pc;
1680 char *name;
1681 {
1682 struct minimal_symbol *minsym;
1683 struct unwind_table_entry *u;
1684 static CORE_ADDR dyncall = 0;
1685 static CORE_ADDR sr4export = 0;
1686
1687 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1688 new exec file */
1689
1690 /* First see if PC is in one of the two C-library trampolines. */
1691 if (!dyncall)
1692 {
1693 minsym = lookup_minimal_symbol ("$$dyncall", NULL);
1694 if (minsym)
1695 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1696 else
1697 dyncall = -1;
1698 }
1699
1700 if (!sr4export)
1701 {
1702 minsym = lookup_minimal_symbol ("_sr4export", NULL);
1703 if (minsym)
1704 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1705 else
1706 sr4export = -1;
1707 }
1708
1709 if (pc == dyncall || pc == sr4export)
1710 return 1;
1711
1712 /* Get the unwind descriptor corresponding to PC, return zero
1713 if no unwind was found. */
1714 u = find_unwind_entry (pc);
1715 if (!u)
1716 return 0;
1717
1718 /* If this isn't a linker stub, then return now. */
1719 if (u->stub_type == 0)
1720 return 0;
1721
1722 /* By definition a long-branch stub is a call stub. */
1723 if (u->stub_type == LONG_BRANCH)
1724 return 1;
1725
1726 /* The call and return path execute the same instructions within
1727 an IMPORT stub! So an IMPORT stub is both a call and return
1728 trampoline. */
1729 if (u->stub_type == IMPORT)
1730 return 1;
1731
1732 /* Parameter relocation stubs always have a call path and may have a
1733 return path. */
1734 if (u->stub_type == PARAMETER_RELOCATION
1735 || u->stub_type == EXPORT)
1736 {
1737 CORE_ADDR addr;
1738
1739 /* Search forward from the current PC until we hit a branch
1740 or the end of the stub. */
1741 for (addr = pc; addr <= u->region_end; addr += 4)
1742 {
1743 unsigned long insn;
1744
1745 insn = read_memory_integer (addr, 4);
1746
1747 /* Does it look like a bl? If so then it's the call path, if
1748 we find a bv or be first, then we're on the return path. */
1749 if ((insn & 0xfc00e000) == 0xe8000000)
1750 return 1;
1751 else if ((insn & 0xfc00e001) == 0xe800c000
1752 || (insn & 0xfc000000) == 0xe0000000)
1753 return 0;
1754 }
1755
1756 /* Should never happen. */
1757 warning ("Unable to find branch in parameter relocation stub.\n");
1758 return 0;
1759 }
1760
1761 /* Unknown stub type. For now, just return zero. */
1762 return 0;
1763 }
1764
1765 /* Return one if PC is in the return path of a trampoline, else return zero.
1766
1767 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1768 just shared library trampolines (import, export). */
1769
1770 int
1771 in_solib_return_trampoline (pc, name)
1772 CORE_ADDR pc;
1773 char *name;
1774 {
1775 struct unwind_table_entry *u;
1776
1777 /* Get the unwind descriptor corresponding to PC, return zero
1778 if no unwind was found. */
1779 u = find_unwind_entry (pc);
1780 if (!u)
1781 return 0;
1782
1783 /* If this isn't a linker stub or it's just a long branch stub, then
1784 return zero. */
1785 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1786 return 0;
1787
1788 /* The call and return path execute the same instructions within
1789 an IMPORT stub! So an IMPORT stub is both a call and return
1790 trampoline. */
1791 if (u->stub_type == IMPORT)
1792 return 1;
1793
1794 /* Parameter relocation stubs always have a call path and may have a
1795 return path. */
1796 if (u->stub_type == PARAMETER_RELOCATION
1797 || u->stub_type == EXPORT)
1798 {
1799 CORE_ADDR addr;
1800
1801 /* Search forward from the current PC until we hit a branch
1802 or the end of the stub. */
1803 for (addr = pc; addr <= u->region_end; addr += 4)
1804 {
1805 unsigned long insn;
1806
1807 insn = read_memory_integer (addr, 4);
1808
1809 /* Does it look like a bl? If so then it's the call path, if
1810 we find a bv or be first, then we're on the return path. */
1811 if ((insn & 0xfc00e000) == 0xe8000000)
1812 return 0;
1813 else if ((insn & 0xfc00e001) == 0xe800c000
1814 || (insn & 0xfc000000) == 0xe0000000)
1815 return 1;
1816 }
1817
1818 /* Should never happen. */
1819 warning ("Unable to find branch in parameter relocation stub.\n");
1820 return 0;
1821 }
1822
1823 /* Unknown stub type. For now, just return zero. */
1824 return 0;
1825
1826 }
1827
1828 /* Figure out if PC is in a trampoline, and if so find out where
1829 the trampoline will jump to. If not in a trampoline, return zero.
1830
1831 Simple code examination probably is not a good idea since the code
1832 sequences in trampolines can also appear in user code.
1833
1834 We use unwinds and information from the minimal symbol table to
1835 determine when we're in a trampoline. This won't work for ELF
1836 (yet) since it doesn't create stub unwind entries. Whether or
1837 not ELF will create stub unwinds or normal unwinds for linker
1838 stubs is still being debated.
1839
1840 This should handle simple calls through dyncall or sr4export,
1841 long calls, argument relocation stubs, and dyncall/sr4export
1842 calling an argument relocation stub. It even handles some stubs
1843 used in dynamic executables. */
1844
1845 CORE_ADDR
1846 skip_trampoline_code (pc, name)
1847 CORE_ADDR pc;
1848 char *name;
1849 {
1850 long orig_pc = pc;
1851 long prev_inst, curr_inst, loc;
1852 static CORE_ADDR dyncall = 0;
1853 static CORE_ADDR sr4export = 0;
1854 struct minimal_symbol *msym;
1855 struct unwind_table_entry *u;
1856
1857 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1858 new exec file */
1859
1860 if (!dyncall)
1861 {
1862 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1863 if (msym)
1864 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1865 else
1866 dyncall = -1;
1867 }
1868
1869 if (!sr4export)
1870 {
1871 msym = lookup_minimal_symbol ("_sr4export", NULL);
1872 if (msym)
1873 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1874 else
1875 sr4export = -1;
1876 }
1877
1878 /* Addresses passed to dyncall may *NOT* be the actual address
1879 of the function. So we may have to do something special. */
1880 if (pc == dyncall)
1881 {
1882 pc = (CORE_ADDR) read_register (22);
1883
1884 /* If bit 30 (counting from the left) is on, then pc is the address of
1885 the PLT entry for this function, not the address of the function
1886 itself. Bit 31 has meaning too, but only for MPE. */
1887 if (pc & 0x2)
1888 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1889 }
1890 else if (pc == sr4export)
1891 pc = (CORE_ADDR) (read_register (22));
1892
1893 /* Get the unwind descriptor corresponding to PC, return zero
1894 if no unwind was found. */
1895 u = find_unwind_entry (pc);
1896 if (!u)
1897 return 0;
1898
1899 /* If this isn't a linker stub, then return now. */
1900 if (u->stub_type == 0)
1901 return orig_pc == pc ? 0 : pc & ~0x3;
1902
1903 /* It's a stub. Search for a branch and figure out where it goes.
1904 Note we have to handle multi insn branch sequences like ldil;ble.
1905 Most (all?) other branches can be determined by examining the contents
1906 of certain registers and the stack. */
1907 loc = pc;
1908 curr_inst = 0;
1909 prev_inst = 0;
1910 while (1)
1911 {
1912 /* Make sure we haven't walked outside the range of this stub. */
1913 if (u != find_unwind_entry (loc))
1914 {
1915 warning ("Unable to find branch in linker stub");
1916 return orig_pc == pc ? 0 : pc & ~0x3;
1917 }
1918
1919 prev_inst = curr_inst;
1920 curr_inst = read_memory_integer (loc, 4);
1921
1922 /* Does it look like a branch external using %r1? Then it's the
1923 branch from the stub to the actual function. */
1924 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1925 {
1926 /* Yup. See if the previous instruction loaded
1927 a value into %r1. If so compute and return the jump address. */
1928 if ((prev_inst & 0xffe00000) == 0x20200000)
1929 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1930 else
1931 {
1932 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1933 return orig_pc == pc ? 0 : pc & ~0x3;
1934 }
1935 }
1936
1937 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
1938 import stub to an export stub.
1939
1940 It is impossible to determine the target of the branch via
1941 simple examination of instructions and/or data (consider
1942 that the address in the plabel may be the address of the
1943 bind-on-reference routine in the dynamic loader).
1944
1945 So we have try an alternative approach.
1946
1947 Get the name of the symbol at our current location; it should
1948 be a stub symbol with the same name as the symbol in the
1949 shared library.
1950
1951 Then lookup a minimal symbol with the same name; we should
1952 get the minimal symbol for the target routine in the shared
1953 library as those take precedence of import/export stubs. */
1954 if (curr_inst == 0xe2a00000)
1955 {
1956 struct minimal_symbol *stubsym, *libsym;
1957
1958 stubsym = lookup_minimal_symbol_by_pc (loc);
1959 if (stubsym == NULL)
1960 {
1961 warning ("Unable to find symbol for 0x%x", loc);
1962 return orig_pc == pc ? 0 : pc & ~0x3;
1963 }
1964
1965 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL);
1966 if (libsym == NULL)
1967 {
1968 warning ("Unable to find library symbol for %s\n",
1969 SYMBOL_NAME (stubsym));
1970 return orig_pc == pc ? 0 : pc & ~0x3;
1971 }
1972
1973 return SYMBOL_VALUE (libsym);
1974 }
1975
1976 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1977 branch from the stub to the actual function. */
1978 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1979 || (curr_inst & 0xffe0e000) == 0xe8000000)
1980 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1981
1982 /* Does it look like bv (rp)? Note this depends on the
1983 current stack pointer being the same as the stack
1984 pointer in the stub itself! This is a branch on from the
1985 stub back to the original caller. */
1986 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1987 {
1988 /* Yup. See if the previous instruction loaded
1989 rp from sp - 8. */
1990 if (prev_inst == 0x4bc23ff1)
1991 return (read_memory_integer
1992 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1993 else
1994 {
1995 warning ("Unable to find restore of %%rp before bv (%%rp).");
1996 return orig_pc == pc ? 0 : pc & ~0x3;
1997 }
1998 }
1999
2000 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2001 the original caller from the stub. Used in dynamic executables. */
2002 else if (curr_inst == 0xe0400002)
2003 {
2004 /* The value we jump to is sitting in sp - 24. But that's
2005 loaded several instructions before the be instruction.
2006 I guess we could check for the previous instruction being
2007 mtsp %r1,%sr0 if we want to do sanity checking. */
2008 return (read_memory_integer
2009 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2010 }
2011
2012 /* Haven't found the branch yet, but we're still in the stub.
2013 Keep looking. */
2014 loc += 4;
2015 }
2016 }
2017
2018 /* For the given instruction (INST), return any adjustment it makes
2019 to the stack pointer or zero for no adjustment.
2020
2021 This only handles instructions commonly found in prologues. */
2022
2023 static int
2024 prologue_inst_adjust_sp (inst)
2025 unsigned long inst;
2026 {
2027 /* This must persist across calls. */
2028 static int save_high21;
2029
2030 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2031 if ((inst & 0xffffc000) == 0x37de0000)
2032 return extract_14 (inst);
2033
2034 /* stwm X,D(sp) */
2035 if ((inst & 0xffe00000) == 0x6fc00000)
2036 return extract_14 (inst);
2037
2038 /* addil high21,%r1; ldo low11,(%r1),%r30)
2039 save high bits in save_high21 for later use. */
2040 if ((inst & 0xffe00000) == 0x28200000)
2041 {
2042 save_high21 = extract_21 (inst);
2043 return 0;
2044 }
2045
2046 if ((inst & 0xffff0000) == 0x343e0000)
2047 return save_high21 + extract_14 (inst);
2048
2049 /* fstws as used by the HP compilers. */
2050 if ((inst & 0xffffffe0) == 0x2fd01220)
2051 return extract_5_load (inst);
2052
2053 /* No adjustment. */
2054 return 0;
2055 }
2056
2057 /* Return nonzero if INST is a branch of some kind, else return zero. */
2058
2059 static int
2060 is_branch (inst)
2061 unsigned long inst;
2062 {
2063 switch (inst >> 26)
2064 {
2065 case 0x20:
2066 case 0x21:
2067 case 0x22:
2068 case 0x23:
2069 case 0x28:
2070 case 0x29:
2071 case 0x2a:
2072 case 0x2b:
2073 case 0x30:
2074 case 0x31:
2075 case 0x32:
2076 case 0x33:
2077 case 0x38:
2078 case 0x39:
2079 case 0x3a:
2080 return 1;
2081
2082 default:
2083 return 0;
2084 }
2085 }
2086
2087 /* Return the register number for a GR which is saved by INST or
2088 zero it INST does not save a GR. */
2089
2090 static int
2091 inst_saves_gr (inst)
2092 unsigned long inst;
2093 {
2094 /* Does it look like a stw? */
2095 if ((inst >> 26) == 0x1a)
2096 return extract_5R_store (inst);
2097
2098 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2099 if ((inst >> 26) == 0x1b)
2100 return extract_5R_store (inst);
2101
2102 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2103 too. */
2104 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2105 return extract_5R_store (inst);
2106
2107 return 0;
2108 }
2109
2110 /* Return the register number for a FR which is saved by INST or
2111 zero it INST does not save a FR.
2112
2113 Note we only care about full 64bit register stores (that's the only
2114 kind of stores the prologue will use).
2115
2116 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2117
2118 static int
2119 inst_saves_fr (inst)
2120 unsigned long inst;
2121 {
2122 if ((inst & 0xfc00dfc0) == 0x2c001200)
2123 return extract_5r_store (inst);
2124 return 0;
2125 }
2126
2127 /* Advance PC across any function entry prologue instructions
2128 to reach some "real" code.
2129
2130 Use information in the unwind table to determine what exactly should
2131 be in the prologue. */
2132
2133 CORE_ADDR
2134 skip_prologue (pc)
2135 CORE_ADDR pc;
2136 {
2137 char buf[4];
2138 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2139 unsigned long args_stored, status, i;
2140 struct unwind_table_entry *u;
2141
2142 u = find_unwind_entry (pc);
2143 if (!u)
2144 return pc;
2145
2146 /* If we are not at the beginning of a function, then return now. */
2147 if ((pc & ~0x3) != u->region_start)
2148 return pc;
2149
2150 /* This is how much of a frame adjustment we need to account for. */
2151 stack_remaining = u->Total_frame_size << 3;
2152
2153 /* Magic register saves we want to know about. */
2154 save_rp = u->Save_RP;
2155 save_sp = u->Save_SP;
2156
2157 /* An indication that args may be stored into the stack. Unfortunately
2158 the HPUX compilers tend to set this in cases where no args were
2159 stored too!. */
2160 args_stored = u->Args_stored;
2161
2162 /* Turn the Entry_GR field into a bitmask. */
2163 save_gr = 0;
2164 for (i = 3; i < u->Entry_GR + 3; i++)
2165 {
2166 /* Frame pointer gets saved into a special location. */
2167 if (u->Save_SP && i == FP_REGNUM)
2168 continue;
2169
2170 save_gr |= (1 << i);
2171 }
2172
2173 /* Turn the Entry_FR field into a bitmask too. */
2174 save_fr = 0;
2175 for (i = 12; i < u->Entry_FR + 12; i++)
2176 save_fr |= (1 << i);
2177
2178 /* Loop until we find everything of interest or hit a branch.
2179
2180 For unoptimized GCC code and for any HP CC code this will never ever
2181 examine any user instructions.
2182
2183 For optimzied GCC code we're faced with problems. GCC will schedule
2184 its prologue and make prologue instructions available for delay slot
2185 filling. The end result is user code gets mixed in with the prologue
2186 and a prologue instruction may be in the delay slot of the first branch
2187 or call.
2188
2189 Some unexpected things are expected with debugging optimized code, so
2190 we allow this routine to walk past user instructions in optimized
2191 GCC code. */
2192 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2193 || args_stored)
2194 {
2195 unsigned int reg_num;
2196 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2197 unsigned long old_save_rp, old_save_sp, next_inst;
2198
2199 /* Save copies of all the triggers so we can compare them later
2200 (only for HPC). */
2201 old_save_gr = save_gr;
2202 old_save_fr = save_fr;
2203 old_save_rp = save_rp;
2204 old_save_sp = save_sp;
2205 old_stack_remaining = stack_remaining;
2206
2207 status = target_read_memory (pc, buf, 4);
2208 inst = extract_unsigned_integer (buf, 4);
2209
2210 /* Yow! */
2211 if (status != 0)
2212 return pc;
2213
2214 /* Note the interesting effects of this instruction. */
2215 stack_remaining -= prologue_inst_adjust_sp (inst);
2216
2217 /* There is only one instruction used for saving RP into the stack. */
2218 if (inst == 0x6bc23fd9)
2219 save_rp = 0;
2220
2221 /* This is the only way we save SP into the stack. At this time
2222 the HP compilers never bother to save SP into the stack. */
2223 if ((inst & 0xffffc000) == 0x6fc10000)
2224 save_sp = 0;
2225
2226 /* Account for general and floating-point register saves. */
2227 reg_num = inst_saves_gr (inst);
2228 save_gr &= ~(1 << reg_num);
2229
2230 /* Ugh. Also account for argument stores into the stack.
2231 Unfortunately args_stored only tells us that some arguments
2232 where stored into the stack. Not how many or what kind!
2233
2234 This is a kludge as on the HP compiler sets this bit and it
2235 never does prologue scheduling. So once we see one, skip past
2236 all of them. We have similar code for the fp arg stores below.
2237
2238 FIXME. Can still die if we have a mix of GR and FR argument
2239 stores! */
2240 if (reg_num >= 23 && reg_num <= 26)
2241 {
2242 while (reg_num >= 23 && reg_num <= 26)
2243 {
2244 pc += 4;
2245 status = target_read_memory (pc, buf, 4);
2246 inst = extract_unsigned_integer (buf, 4);
2247 if (status != 0)
2248 return pc;
2249 reg_num = inst_saves_gr (inst);
2250 }
2251 args_stored = 0;
2252 continue;
2253 }
2254
2255 reg_num = inst_saves_fr (inst);
2256 save_fr &= ~(1 << reg_num);
2257
2258 status = target_read_memory (pc + 4, buf, 4);
2259 next_inst = extract_unsigned_integer (buf, 4);
2260
2261 /* Yow! */
2262 if (status != 0)
2263 return pc;
2264
2265 /* We've got to be read to handle the ldo before the fp register
2266 save. */
2267 if ((inst & 0xfc000000) == 0x34000000
2268 && inst_saves_fr (next_inst) >= 4
2269 && inst_saves_fr (next_inst) <= 7)
2270 {
2271 /* So we drop into the code below in a reasonable state. */
2272 reg_num = inst_saves_fr (next_inst);
2273 pc -= 4;
2274 }
2275
2276 /* Ugh. Also account for argument stores into the stack.
2277 This is a kludge as on the HP compiler sets this bit and it
2278 never does prologue scheduling. So once we see one, skip past
2279 all of them. */
2280 if (reg_num >= 4 && reg_num <= 7)
2281 {
2282 while (reg_num >= 4 && reg_num <= 7)
2283 {
2284 pc += 8;
2285 status = target_read_memory (pc, buf, 4);
2286 inst = extract_unsigned_integer (buf, 4);
2287 if (status != 0)
2288 return pc;
2289 if ((inst & 0xfc000000) != 0x34000000)
2290 break;
2291 status = target_read_memory (pc + 4, buf, 4);
2292 next_inst = extract_unsigned_integer (buf, 4);
2293 if (status != 0)
2294 return pc;
2295 reg_num = inst_saves_fr (next_inst);
2296 }
2297 args_stored = 0;
2298 continue;
2299 }
2300
2301 /* Quit if we hit any kind of branch. This can happen if a prologue
2302 instruction is in the delay slot of the first call/branch. */
2303 if (is_branch (inst))
2304 break;
2305
2306 /* What a crock. The HP compilers set args_stored even if no
2307 arguments were stored into the stack (boo hiss). This could
2308 cause this code to then skip a bunch of user insns (up to the
2309 first branch).
2310
2311 To combat this we try to identify when args_stored was bogusly
2312 set and clear it. We only do this when args_stored is nonzero,
2313 all other resources are accounted for, and nothing changed on
2314 this pass. */
2315 if (args_stored
2316 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2317 && old_save_gr == save_gr && old_save_fr == save_fr
2318 && old_save_rp == save_rp && old_save_sp == save_sp
2319 && old_stack_remaining == stack_remaining)
2320 break;
2321
2322 /* Bump the PC. */
2323 pc += 4;
2324 }
2325
2326 return pc;
2327 }
2328
2329 /* Put here the code to store, into a struct frame_saved_regs,
2330 the addresses of the saved registers of frame described by FRAME_INFO.
2331 This includes special registers such as pc and fp saved in special
2332 ways in the stack frame. sp is even more special:
2333 the address we return for it IS the sp for the next frame. */
2334
2335 void
2336 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2337 struct frame_info *frame_info;
2338 struct frame_saved_regs *frame_saved_regs;
2339 {
2340 CORE_ADDR pc;
2341 struct unwind_table_entry *u;
2342 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2343 int status, i, reg;
2344 char buf[4];
2345 int fp_loc = -1;
2346
2347 /* Zero out everything. */
2348 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2349
2350 /* Call dummy frames always look the same, so there's no need to
2351 examine the dummy code to determine locations of saved registers;
2352 instead, let find_dummy_frame_regs fill in the correct offsets
2353 for the saved registers. */
2354 if ((frame_info->pc >= frame_info->frame
2355 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2356 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2357 + 6 * 4)))
2358 find_dummy_frame_regs (frame_info, frame_saved_regs);
2359
2360 /* Interrupt handlers are special too. They lay out the register
2361 state in the exact same order as the register numbers in GDB. */
2362 if (pc_in_interrupt_handler (frame_info->pc))
2363 {
2364 for (i = 0; i < NUM_REGS; i++)
2365 {
2366 /* SP is a little special. */
2367 if (i == SP_REGNUM)
2368 frame_saved_regs->regs[SP_REGNUM]
2369 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2370 else
2371 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2372 }
2373 return;
2374 }
2375
2376 /* Handle signal handler callers. */
2377 if (frame_info->signal_handler_caller)
2378 {
2379 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2380 return;
2381 }
2382
2383 /* Get the starting address of the function referred to by the PC
2384 saved in frame. */
2385 pc = get_pc_function_start (frame_info->pc);
2386
2387 /* Yow! */
2388 u = find_unwind_entry (pc);
2389 if (!u)
2390 return;
2391
2392 /* This is how much of a frame adjustment we need to account for. */
2393 stack_remaining = u->Total_frame_size << 3;
2394
2395 /* Magic register saves we want to know about. */
2396 save_rp = u->Save_RP;
2397 save_sp = u->Save_SP;
2398
2399 /* Turn the Entry_GR field into a bitmask. */
2400 save_gr = 0;
2401 for (i = 3; i < u->Entry_GR + 3; i++)
2402 {
2403 /* Frame pointer gets saved into a special location. */
2404 if (u->Save_SP && i == FP_REGNUM)
2405 continue;
2406
2407 save_gr |= (1 << i);
2408 }
2409
2410 /* Turn the Entry_FR field into a bitmask too. */
2411 save_fr = 0;
2412 for (i = 12; i < u->Entry_FR + 12; i++)
2413 save_fr |= (1 << i);
2414
2415 /* The frame always represents the value of %sp at entry to the
2416 current function (and is thus equivalent to the "saved" stack
2417 pointer. */
2418 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2419
2420 /* Loop until we find everything of interest or hit a branch.
2421
2422 For unoptimized GCC code and for any HP CC code this will never ever
2423 examine any user instructions.
2424
2425 For optimzied GCC code we're faced with problems. GCC will schedule
2426 its prologue and make prologue instructions available for delay slot
2427 filling. The end result is user code gets mixed in with the prologue
2428 and a prologue instruction may be in the delay slot of the first branch
2429 or call.
2430
2431 Some unexpected things are expected with debugging optimized code, so
2432 we allow this routine to walk past user instructions in optimized
2433 GCC code. */
2434 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2435 {
2436 status = target_read_memory (pc, buf, 4);
2437 inst = extract_unsigned_integer (buf, 4);
2438
2439 /* Yow! */
2440 if (status != 0)
2441 return;
2442
2443 /* Note the interesting effects of this instruction. */
2444 stack_remaining -= prologue_inst_adjust_sp (inst);
2445
2446 /* There is only one instruction used for saving RP into the stack. */
2447 if (inst == 0x6bc23fd9)
2448 {
2449 save_rp = 0;
2450 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2451 }
2452
2453 /* Just note that we found the save of SP into the stack. The
2454 value for frame_saved_regs was computed above. */
2455 if ((inst & 0xffffc000) == 0x6fc10000)
2456 save_sp = 0;
2457
2458 /* Account for general and floating-point register saves. */
2459 reg = inst_saves_gr (inst);
2460 if (reg >= 3 && reg <= 18
2461 && (!u->Save_SP || reg != FP_REGNUM))
2462 {
2463 save_gr &= ~(1 << reg);
2464
2465 /* stwm with a positive displacement is a *post modify*. */
2466 if ((inst >> 26) == 0x1b
2467 && extract_14 (inst) >= 0)
2468 frame_saved_regs->regs[reg] = frame_info->frame;
2469 else
2470 {
2471 /* Handle code with and without frame pointers. */
2472 if (u->Save_SP)
2473 frame_saved_regs->regs[reg]
2474 = frame_info->frame + extract_14 (inst);
2475 else
2476 frame_saved_regs->regs[reg]
2477 = frame_info->frame + (u->Total_frame_size << 3)
2478 + extract_14 (inst);
2479 }
2480 }
2481
2482
2483 /* GCC handles callee saved FP regs a little differently.
2484
2485 It emits an instruction to put the value of the start of
2486 the FP store area into %r1. It then uses fstds,ma with
2487 a basereg of %r1 for the stores.
2488
2489 HP CC emits them at the current stack pointer modifying
2490 the stack pointer as it stores each register. */
2491
2492 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2493 if ((inst & 0xffffc000) == 0x34610000
2494 || (inst & 0xffffc000) == 0x37c10000)
2495 fp_loc = extract_14 (inst);
2496
2497 reg = inst_saves_fr (inst);
2498 if (reg >= 12 && reg <= 21)
2499 {
2500 /* Note +4 braindamage below is necessary because the FP status
2501 registers are internally 8 registers rather than the expected
2502 4 registers. */
2503 save_fr &= ~(1 << reg);
2504 if (fp_loc == -1)
2505 {
2506 /* 1st HP CC FP register store. After this instruction
2507 we've set enough state that the GCC and HPCC code are
2508 both handled in the same manner. */
2509 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2510 fp_loc = 8;
2511 }
2512 else
2513 {
2514 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2515 = frame_info->frame + fp_loc;
2516 fp_loc += 8;
2517 }
2518 }
2519
2520 /* Quit if we hit any kind of branch. This can happen if a prologue
2521 instruction is in the delay slot of the first call/branch. */
2522 if (is_branch (inst))
2523 break;
2524
2525 /* Bump the PC. */
2526 pc += 4;
2527 }
2528 }
2529
2530 #ifdef MAINTENANCE_CMDS
2531
2532 static void
2533 unwind_command (exp, from_tty)
2534 char *exp;
2535 int from_tty;
2536 {
2537 CORE_ADDR address;
2538 union
2539 {
2540 int *foo;
2541 struct unwind_table_entry *u;
2542 } xxx;
2543
2544 /* If we have an expression, evaluate it and use it as the address. */
2545
2546 if (exp != 0 && *exp != 0)
2547 address = parse_and_eval_address (exp);
2548 else
2549 return;
2550
2551 xxx.u = find_unwind_entry (address);
2552
2553 if (!xxx.u)
2554 {
2555 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2556 return;
2557 }
2558
2559 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2560 xxx.foo[3]);
2561 }
2562 #endif /* MAINTENANCE_CMDS */
2563
2564 void
2565 _initialize_hppa_tdep ()
2566 {
2567 #ifdef MAINTENANCE_CMDS
2568 add_cmd ("unwind", class_maintenance, unwind_command,
2569 "Print unwind table entry at given address.",
2570 &maintenanceprintlist);
2571 #endif /* MAINTENANCE_CMDS */
2572 }
This page took 0.08413 seconds and 4 git commands to generate.