37aa44b835ff640eeb8f891f9c09239c2580730b
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35 #include "gdb_assert.h"
36 #include "infttrace.h"
37 /* For argument passing to the inferior */
38 #include "symtab.h"
39 #include "infcall.h"
40
41 #ifdef USG
42 #include <sys/types.h>
43 #endif
44
45 #include <dl.h>
46 #include <sys/param.h>
47 #include <signal.h>
48
49 #include <sys/ptrace.h>
50 #include <machine/save_state.h>
51
52 #ifdef COFF_ENCAPSULATE
53 #include "a.out.encap.h"
54 #else
55 #endif
56
57 /*#include <sys/user.h> After a.out.h */
58 #include <sys/file.h>
59 #include "gdb_stat.h"
60 #include "gdb_wait.h"
61
62 #include "gdbcore.h"
63 #include "gdbcmd.h"
64 #include "target.h"
65 #include "symfile.h"
66 #include "objfiles.h"
67
68 /* Some local constants. */
69 static const int hppa_num_regs = 128;
70
71 /* Get at various relevent fields of an instruction word. */
72 #define MASK_5 0x1f
73 #define MASK_11 0x7ff
74 #define MASK_14 0x3fff
75 #define MASK_21 0x1fffff
76
77 /* Define offsets into the call dummy for the target function address.
78 See comments related to CALL_DUMMY for more info. */
79 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
80 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
81
82 /* Define offsets into the call dummy for the _sr4export address.
83 See comments related to CALL_DUMMY for more info. */
84 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
85 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
86
87 /* To support detection of the pseudo-initial frame
88 that threads have. */
89 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
90 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
91
92 /* Sizes (in bytes) of the native unwind entries. */
93 #define UNWIND_ENTRY_SIZE 16
94 #define STUB_UNWIND_ENTRY_SIZE 8
95
96 static int get_field (unsigned word, int from, int to);
97
98 static int extract_5_load (unsigned int);
99
100 static unsigned extract_5R_store (unsigned int);
101
102 static unsigned extract_5r_store (unsigned int);
103
104 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
105
106 static int find_proc_framesize (CORE_ADDR);
107
108 static int find_return_regnum (CORE_ADDR);
109
110 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
111
112 static int extract_17 (unsigned int);
113
114 static unsigned deposit_21 (unsigned int, unsigned int);
115
116 static int extract_21 (unsigned);
117
118 static unsigned deposit_14 (int, unsigned int);
119
120 static int extract_14 (unsigned);
121
122 static void unwind_command (char *, int);
123
124 static int low_sign_extend (unsigned int, unsigned int);
125
126 static int sign_extend (unsigned int, unsigned int);
127
128 static int restore_pc_queue (CORE_ADDR *);
129
130 static int hppa_alignof (struct type *);
131
132 static int prologue_inst_adjust_sp (unsigned long);
133
134 static int is_branch (unsigned long);
135
136 static int inst_saves_gr (unsigned long);
137
138 static int inst_saves_fr (unsigned long);
139
140 static int pc_in_interrupt_handler (CORE_ADDR);
141
142 static int pc_in_linker_stub (CORE_ADDR);
143
144 static int compare_unwind_entries (const void *, const void *);
145
146 static void read_unwind_info (struct objfile *);
147
148 static void internalize_unwinds (struct objfile *,
149 struct unwind_table_entry *,
150 asection *, unsigned int,
151 unsigned int, CORE_ADDR);
152 static void pa_print_registers (char *, int, int);
153 static void pa_strcat_registers (char *, int, int, struct ui_file *);
154 static void pa_register_look_aside (char *, int, long *);
155 static void pa_print_fp_reg (int);
156 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
157 static void record_text_segment_lowaddr (bfd *, asection *, void *);
158 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
159 following functions static, once we hppa is partially multiarched. */
160 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
161 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
162 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
163 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
164 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
165 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
166 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
167 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
168 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
169 int hppa_instruction_nullified (void);
170 int hppa_register_raw_size (int reg_nr);
171 int hppa_register_byte (int reg_nr);
172 struct type * hppa_register_virtual_type (int reg_nr);
173 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
174 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
175 int hppa_use_struct_convention (int gcc_p, struct type *type);
176 void hppa_store_return_value (struct type *type, char *valbuf);
177 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
178 int hppa_cannot_store_register (int regnum);
179 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
180 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
181 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
182 int hppa_frameless_function_invocation (struct frame_info *frame);
183 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
184 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
185 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
186 int hppa_frame_num_args (struct frame_info *frame);
187 void hppa_push_dummy_frame (void);
188 void hppa_pop_frame (void);
189 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
190 int nargs, struct value **args,
191 struct type *type, int gcc_p);
192 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
193 int struct_return, CORE_ADDR struct_addr);
194 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
195 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
196 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
197 CORE_ADDR hppa_target_read_fp (void);
198
199 typedef struct
200 {
201 struct minimal_symbol *msym;
202 CORE_ADDR solib_handle;
203 CORE_ADDR return_val;
204 }
205 args_for_find_stub;
206
207 static int cover_find_stub_with_shl_get (void *);
208
209 static int is_pa_2 = 0; /* False */
210
211 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
212 extern int hp_som_som_object_present;
213
214 /* In breakpoint.c */
215 extern int exception_catchpoints_are_fragile;
216
217 /* Should call_function allocate stack space for a struct return? */
218
219 int
220 hppa_use_struct_convention (int gcc_p, struct type *type)
221 {
222 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
223 }
224 \f
225
226 /* Routines to extract various sized constants out of hppa
227 instructions. */
228
229 /* This assumes that no garbage lies outside of the lower bits of
230 value. */
231
232 static int
233 sign_extend (unsigned val, unsigned bits)
234 {
235 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
236 }
237
238 /* For many immediate values the sign bit is the low bit! */
239
240 static int
241 low_sign_extend (unsigned val, unsigned bits)
242 {
243 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
244 }
245
246 /* Extract the bits at positions between FROM and TO, using HP's numbering
247 (MSB = 0). */
248
249 static int
250 get_field (unsigned word, int from, int to)
251 {
252 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
253 }
254
255 /* extract the immediate field from a ld{bhw}s instruction */
256
257 static int
258 extract_5_load (unsigned word)
259 {
260 return low_sign_extend (word >> 16 & MASK_5, 5);
261 }
262
263 /* extract the immediate field from a break instruction */
264
265 static unsigned
266 extract_5r_store (unsigned word)
267 {
268 return (word & MASK_5);
269 }
270
271 /* extract the immediate field from a {sr}sm instruction */
272
273 static unsigned
274 extract_5R_store (unsigned word)
275 {
276 return (word >> 16 & MASK_5);
277 }
278
279 /* extract a 14 bit immediate field */
280
281 static int
282 extract_14 (unsigned word)
283 {
284 return low_sign_extend (word & MASK_14, 14);
285 }
286
287 /* deposit a 14 bit constant in a word */
288
289 static unsigned
290 deposit_14 (int opnd, unsigned word)
291 {
292 unsigned sign = (opnd < 0 ? 1 : 0);
293
294 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
295 }
296
297 /* extract a 21 bit constant */
298
299 static int
300 extract_21 (unsigned word)
301 {
302 int val;
303
304 word &= MASK_21;
305 word <<= 11;
306 val = get_field (word, 20, 20);
307 val <<= 11;
308 val |= get_field (word, 9, 19);
309 val <<= 2;
310 val |= get_field (word, 5, 6);
311 val <<= 5;
312 val |= get_field (word, 0, 4);
313 val <<= 2;
314 val |= get_field (word, 7, 8);
315 return sign_extend (val, 21) << 11;
316 }
317
318 /* deposit a 21 bit constant in a word. Although 21 bit constants are
319 usually the top 21 bits of a 32 bit constant, we assume that only
320 the low 21 bits of opnd are relevant */
321
322 static unsigned
323 deposit_21 (unsigned opnd, unsigned word)
324 {
325 unsigned val = 0;
326
327 val |= get_field (opnd, 11 + 14, 11 + 18);
328 val <<= 2;
329 val |= get_field (opnd, 11 + 12, 11 + 13);
330 val <<= 2;
331 val |= get_field (opnd, 11 + 19, 11 + 20);
332 val <<= 11;
333 val |= get_field (opnd, 11 + 1, 11 + 11);
334 val <<= 1;
335 val |= get_field (opnd, 11 + 0, 11 + 0);
336 return word | val;
337 }
338
339 /* extract a 17 bit constant from branch instructions, returning the
340 19 bit signed value. */
341
342 static int
343 extract_17 (unsigned word)
344 {
345 return sign_extend (get_field (word, 19, 28) |
346 get_field (word, 29, 29) << 10 |
347 get_field (word, 11, 15) << 11 |
348 (word & 0x1) << 16, 17) << 2;
349 }
350 \f
351
352 /* Compare the start address for two unwind entries returning 1 if
353 the first address is larger than the second, -1 if the second is
354 larger than the first, and zero if they are equal. */
355
356 static int
357 compare_unwind_entries (const void *arg1, const void *arg2)
358 {
359 const struct unwind_table_entry *a = arg1;
360 const struct unwind_table_entry *b = arg2;
361
362 if (a->region_start > b->region_start)
363 return 1;
364 else if (a->region_start < b->region_start)
365 return -1;
366 else
367 return 0;
368 }
369
370 static CORE_ADDR low_text_segment_address;
371
372 static void
373 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
374 {
375 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
376 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
377 && section->vma < low_text_segment_address)
378 low_text_segment_address = section->vma;
379 }
380
381 static void
382 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
383 asection *section, unsigned int entries, unsigned int size,
384 CORE_ADDR text_offset)
385 {
386 /* We will read the unwind entries into temporary memory, then
387 fill in the actual unwind table. */
388 if (size > 0)
389 {
390 unsigned long tmp;
391 unsigned i;
392 char *buf = alloca (size);
393
394 low_text_segment_address = -1;
395
396 /* If addresses are 64 bits wide, then unwinds are supposed to
397 be segment relative offsets instead of absolute addresses.
398
399 Note that when loading a shared library (text_offset != 0) the
400 unwinds are already relative to the text_offset that will be
401 passed in. */
402 if (TARGET_PTR_BIT == 64 && text_offset == 0)
403 {
404 bfd_map_over_sections (objfile->obfd,
405 record_text_segment_lowaddr, NULL);
406
407 /* ?!? Mask off some low bits. Should this instead subtract
408 out the lowest section's filepos or something like that?
409 This looks very hokey to me. */
410 low_text_segment_address &= ~0xfff;
411 text_offset += low_text_segment_address;
412 }
413
414 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
415
416 /* Now internalize the information being careful to handle host/target
417 endian issues. */
418 for (i = 0; i < entries; i++)
419 {
420 table[i].region_start = bfd_get_32 (objfile->obfd,
421 (bfd_byte *) buf);
422 table[i].region_start += text_offset;
423 buf += 4;
424 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
425 table[i].region_end += text_offset;
426 buf += 4;
427 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
428 buf += 4;
429 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
430 table[i].Millicode = (tmp >> 30) & 0x1;
431 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
432 table[i].Region_description = (tmp >> 27) & 0x3;
433 table[i].reserved1 = (tmp >> 26) & 0x1;
434 table[i].Entry_SR = (tmp >> 25) & 0x1;
435 table[i].Entry_FR = (tmp >> 21) & 0xf;
436 table[i].Entry_GR = (tmp >> 16) & 0x1f;
437 table[i].Args_stored = (tmp >> 15) & 0x1;
438 table[i].Variable_Frame = (tmp >> 14) & 0x1;
439 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
440 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
441 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
442 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
443 table[i].Ada_Region = (tmp >> 9) & 0x1;
444 table[i].cxx_info = (tmp >> 8) & 0x1;
445 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
446 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
447 table[i].reserved2 = (tmp >> 5) & 0x1;
448 table[i].Save_SP = (tmp >> 4) & 0x1;
449 table[i].Save_RP = (tmp >> 3) & 0x1;
450 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
451 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
452 table[i].Cleanup_defined = tmp & 0x1;
453 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
454 buf += 4;
455 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
456 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
457 table[i].Large_frame = (tmp >> 29) & 0x1;
458 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
459 table[i].reserved4 = (tmp >> 27) & 0x1;
460 table[i].Total_frame_size = tmp & 0x7ffffff;
461
462 /* Stub unwinds are handled elsewhere. */
463 table[i].stub_unwind.stub_type = 0;
464 table[i].stub_unwind.padding = 0;
465 }
466 }
467 }
468
469 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
470 the object file. This info is used mainly by find_unwind_entry() to find
471 out the stack frame size and frame pointer used by procedures. We put
472 everything on the psymbol obstack in the objfile so that it automatically
473 gets freed when the objfile is destroyed. */
474
475 static void
476 read_unwind_info (struct objfile *objfile)
477 {
478 asection *unwind_sec, *stub_unwind_sec;
479 unsigned unwind_size, stub_unwind_size, total_size;
480 unsigned index, unwind_entries;
481 unsigned stub_entries, total_entries;
482 CORE_ADDR text_offset;
483 struct obj_unwind_info *ui;
484 obj_private_data_t *obj_private;
485
486 text_offset = ANOFFSET (objfile->section_offsets, 0);
487 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
488 sizeof (struct obj_unwind_info));
489
490 ui->table = NULL;
491 ui->cache = NULL;
492 ui->last = -1;
493
494 /* For reasons unknown the HP PA64 tools generate multiple unwinder
495 sections in a single executable. So we just iterate over every
496 section in the BFD looking for unwinder sections intead of trying
497 to do a lookup with bfd_get_section_by_name.
498
499 First determine the total size of the unwind tables so that we
500 can allocate memory in a nice big hunk. */
501 total_entries = 0;
502 for (unwind_sec = objfile->obfd->sections;
503 unwind_sec;
504 unwind_sec = unwind_sec->next)
505 {
506 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
507 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
508 {
509 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
510 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
511
512 total_entries += unwind_entries;
513 }
514 }
515
516 /* Now compute the size of the stub unwinds. Note the ELF tools do not
517 use stub unwinds at the curren time. */
518 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
519
520 if (stub_unwind_sec)
521 {
522 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
523 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
524 }
525 else
526 {
527 stub_unwind_size = 0;
528 stub_entries = 0;
529 }
530
531 /* Compute total number of unwind entries and their total size. */
532 total_entries += stub_entries;
533 total_size = total_entries * sizeof (struct unwind_table_entry);
534
535 /* Allocate memory for the unwind table. */
536 ui->table = (struct unwind_table_entry *)
537 obstack_alloc (&objfile->psymbol_obstack, total_size);
538 ui->last = total_entries - 1;
539
540 /* Now read in each unwind section and internalize the standard unwind
541 entries. */
542 index = 0;
543 for (unwind_sec = objfile->obfd->sections;
544 unwind_sec;
545 unwind_sec = unwind_sec->next)
546 {
547 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
548 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
549 {
550 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
551 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
552
553 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
554 unwind_entries, unwind_size, text_offset);
555 index += unwind_entries;
556 }
557 }
558
559 /* Now read in and internalize the stub unwind entries. */
560 if (stub_unwind_size > 0)
561 {
562 unsigned int i;
563 char *buf = alloca (stub_unwind_size);
564
565 /* Read in the stub unwind entries. */
566 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
567 0, stub_unwind_size);
568
569 /* Now convert them into regular unwind entries. */
570 for (i = 0; i < stub_entries; i++, index++)
571 {
572 /* Clear out the next unwind entry. */
573 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
574
575 /* Convert offset & size into region_start and region_end.
576 Stuff away the stub type into "reserved" fields. */
577 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
578 (bfd_byte *) buf);
579 ui->table[index].region_start += text_offset;
580 buf += 4;
581 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
582 (bfd_byte *) buf);
583 buf += 2;
584 ui->table[index].region_end
585 = ui->table[index].region_start + 4 *
586 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
587 buf += 2;
588 }
589
590 }
591
592 /* Unwind table needs to be kept sorted. */
593 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
594 compare_unwind_entries);
595
596 /* Keep a pointer to the unwind information. */
597 if (objfile->obj_private == NULL)
598 {
599 obj_private = (obj_private_data_t *)
600 obstack_alloc (&objfile->psymbol_obstack,
601 sizeof (obj_private_data_t));
602 obj_private->unwind_info = NULL;
603 obj_private->so_info = NULL;
604 obj_private->dp = 0;
605
606 objfile->obj_private = obj_private;
607 }
608 obj_private = (obj_private_data_t *) objfile->obj_private;
609 obj_private->unwind_info = ui;
610 }
611
612 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
613 of the objfiles seeking the unwind table entry for this PC. Each objfile
614 contains a sorted list of struct unwind_table_entry. Since we do a binary
615 search of the unwind tables, we depend upon them to be sorted. */
616
617 struct unwind_table_entry *
618 find_unwind_entry (CORE_ADDR pc)
619 {
620 int first, middle, last;
621 struct objfile *objfile;
622
623 /* A function at address 0? Not in HP-UX! */
624 if (pc == (CORE_ADDR) 0)
625 return NULL;
626
627 ALL_OBJFILES (objfile)
628 {
629 struct obj_unwind_info *ui;
630 ui = NULL;
631 if (objfile->obj_private)
632 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
633
634 if (!ui)
635 {
636 read_unwind_info (objfile);
637 if (objfile->obj_private == NULL)
638 error ("Internal error reading unwind information.");
639 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
640 }
641
642 /* First, check the cache */
643
644 if (ui->cache
645 && pc >= ui->cache->region_start
646 && pc <= ui->cache->region_end)
647 return ui->cache;
648
649 /* Not in the cache, do a binary search */
650
651 first = 0;
652 last = ui->last;
653
654 while (first <= last)
655 {
656 middle = (first + last) / 2;
657 if (pc >= ui->table[middle].region_start
658 && pc <= ui->table[middle].region_end)
659 {
660 ui->cache = &ui->table[middle];
661 return &ui->table[middle];
662 }
663
664 if (pc < ui->table[middle].region_start)
665 last = middle - 1;
666 else
667 first = middle + 1;
668 }
669 } /* ALL_OBJFILES() */
670 return NULL;
671 }
672
673 const unsigned char *
674 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
675 {
676 static const char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
677 (*len) = sizeof (breakpoint);
678 return breakpoint;
679 }
680
681 /* Return the adjustment necessary to make for addresses on the stack
682 as presented by hpread.c.
683
684 This is necessary because of the stack direction on the PA and the
685 bizarre way in which someone (?) decided they wanted to handle
686 frame pointerless code in GDB. */
687 int
688 hpread_adjust_stack_address (CORE_ADDR func_addr)
689 {
690 struct unwind_table_entry *u;
691
692 u = find_unwind_entry (func_addr);
693 if (!u)
694 return 0;
695 else
696 return u->Total_frame_size << 3;
697 }
698
699 /* Called to determine if PC is in an interrupt handler of some
700 kind. */
701
702 static int
703 pc_in_interrupt_handler (CORE_ADDR pc)
704 {
705 struct unwind_table_entry *u;
706 struct minimal_symbol *msym_us;
707
708 u = find_unwind_entry (pc);
709 if (!u)
710 return 0;
711
712 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
713 its frame isn't a pure interrupt frame. Deal with this. */
714 msym_us = lookup_minimal_symbol_by_pc (pc);
715
716 return (u->HP_UX_interrupt_marker
717 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
718 }
719
720 /* Called when no unwind descriptor was found for PC. Returns 1 if it
721 appears that PC is in a linker stub.
722
723 ?!? Need to handle stubs which appear in PA64 code. */
724
725 static int
726 pc_in_linker_stub (CORE_ADDR pc)
727 {
728 int found_magic_instruction = 0;
729 int i;
730 char buf[4];
731
732 /* If unable to read memory, assume pc is not in a linker stub. */
733 if (target_read_memory (pc, buf, 4) != 0)
734 return 0;
735
736 /* We are looking for something like
737
738 ; $$dyncall jams RP into this special spot in the frame (RP')
739 ; before calling the "call stub"
740 ldw -18(sp),rp
741
742 ldsid (rp),r1 ; Get space associated with RP into r1
743 mtsp r1,sp ; Move it into space register 0
744 be,n 0(sr0),rp) ; back to your regularly scheduled program */
745
746 /* Maximum known linker stub size is 4 instructions. Search forward
747 from the given PC, then backward. */
748 for (i = 0; i < 4; i++)
749 {
750 /* If we hit something with an unwind, stop searching this direction. */
751
752 if (find_unwind_entry (pc + i * 4) != 0)
753 break;
754
755 /* Check for ldsid (rp),r1 which is the magic instruction for a
756 return from a cross-space function call. */
757 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
758 {
759 found_magic_instruction = 1;
760 break;
761 }
762 /* Add code to handle long call/branch and argument relocation stubs
763 here. */
764 }
765
766 if (found_magic_instruction != 0)
767 return 1;
768
769 /* Now look backward. */
770 for (i = 0; i < 4; i++)
771 {
772 /* If we hit something with an unwind, stop searching this direction. */
773
774 if (find_unwind_entry (pc - i * 4) != 0)
775 break;
776
777 /* Check for ldsid (rp),r1 which is the magic instruction for a
778 return from a cross-space function call. */
779 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
780 {
781 found_magic_instruction = 1;
782 break;
783 }
784 /* Add code to handle long call/branch and argument relocation stubs
785 here. */
786 }
787 return found_magic_instruction;
788 }
789
790 static int
791 find_return_regnum (CORE_ADDR pc)
792 {
793 struct unwind_table_entry *u;
794
795 u = find_unwind_entry (pc);
796
797 if (!u)
798 return RP_REGNUM;
799
800 if (u->Millicode)
801 return 31;
802
803 return RP_REGNUM;
804 }
805
806 /* Return size of frame, or -1 if we should use a frame pointer. */
807 static int
808 find_proc_framesize (CORE_ADDR pc)
809 {
810 struct unwind_table_entry *u;
811 struct minimal_symbol *msym_us;
812
813 /* This may indicate a bug in our callers... */
814 if (pc == (CORE_ADDR) 0)
815 return -1;
816
817 u = find_unwind_entry (pc);
818
819 if (!u)
820 {
821 if (pc_in_linker_stub (pc))
822 /* Linker stubs have a zero size frame. */
823 return 0;
824 else
825 return -1;
826 }
827
828 msym_us = lookup_minimal_symbol_by_pc (pc);
829
830 /* If Save_SP is set, and we're not in an interrupt or signal caller,
831 then we have a frame pointer. Use it. */
832 if (u->Save_SP
833 && !pc_in_interrupt_handler (pc)
834 && msym_us
835 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
836 return -1;
837
838 return u->Total_frame_size << 3;
839 }
840
841 /* Return offset from sp at which rp is saved, or 0 if not saved. */
842 static int rp_saved (CORE_ADDR);
843
844 static int
845 rp_saved (CORE_ADDR pc)
846 {
847 struct unwind_table_entry *u;
848
849 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
850 if (pc == (CORE_ADDR) 0)
851 return 0;
852
853 u = find_unwind_entry (pc);
854
855 if (!u)
856 {
857 if (pc_in_linker_stub (pc))
858 /* This is the so-called RP'. */
859 return -24;
860 else
861 return 0;
862 }
863
864 if (u->Save_RP)
865 return (TARGET_PTR_BIT == 64 ? -16 : -20);
866 else if (u->stub_unwind.stub_type != 0)
867 {
868 switch (u->stub_unwind.stub_type)
869 {
870 case EXPORT:
871 case IMPORT:
872 return -24;
873 case PARAMETER_RELOCATION:
874 return -8;
875 default:
876 return 0;
877 }
878 }
879 else
880 return 0;
881 }
882 \f
883 int
884 hppa_frameless_function_invocation (struct frame_info *frame)
885 {
886 struct unwind_table_entry *u;
887
888 u = find_unwind_entry (get_frame_pc (frame));
889
890 if (u == 0)
891 return 0;
892
893 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
894 }
895
896 /* Immediately after a function call, return the saved pc.
897 Can't go through the frames for this because on some machines
898 the new frame is not set up until the new function executes
899 some instructions. */
900
901 CORE_ADDR
902 hppa_saved_pc_after_call (struct frame_info *frame)
903 {
904 int ret_regnum;
905 CORE_ADDR pc;
906 struct unwind_table_entry *u;
907
908 ret_regnum = find_return_regnum (get_frame_pc (frame));
909 pc = read_register (ret_regnum) & ~0x3;
910
911 /* If PC is in a linker stub, then we need to dig the address
912 the stub will return to out of the stack. */
913 u = find_unwind_entry (pc);
914 if (u && u->stub_unwind.stub_type != 0)
915 return DEPRECATED_FRAME_SAVED_PC (frame);
916 else
917 return pc;
918 }
919 \f
920 CORE_ADDR
921 hppa_frame_saved_pc (struct frame_info *frame)
922 {
923 CORE_ADDR pc = get_frame_pc (frame);
924 struct unwind_table_entry *u;
925 CORE_ADDR old_pc = 0;
926 int spun_around_loop = 0;
927 int rp_offset = 0;
928
929 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
930 at the base of the frame in an interrupt handler. Registers within
931 are saved in the exact same order as GDB numbers registers. How
932 convienent. */
933 if (pc_in_interrupt_handler (pc))
934 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
935 TARGET_PTR_BIT / 8) & ~0x3;
936
937 if ((get_frame_pc (frame) >= get_frame_base (frame)
938 && (get_frame_pc (frame)
939 <= (get_frame_base (frame)
940 /* A call dummy is sized in words, but it is actually a
941 series of instructions. Account for that scaling
942 factor. */
943 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
944 * DEPRECATED_CALL_DUMMY_LENGTH)
945 /* Similarly we have to account for 64bit wide register
946 saves. */
947 + (32 * DEPRECATED_REGISTER_SIZE)
948 /* We always consider FP regs 8 bytes long. */
949 + (NUM_REGS - FP0_REGNUM) * 8
950 /* Similarly we have to account for 64bit wide register
951 saves. */
952 + (6 * DEPRECATED_REGISTER_SIZE)))))
953 {
954 return read_memory_integer ((get_frame_base (frame)
955 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
956 TARGET_PTR_BIT / 8) & ~0x3;
957 }
958
959 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
960 /* Deal with signal handler caller frames too. */
961 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
962 {
963 CORE_ADDR rp;
964 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
965 return rp & ~0x3;
966 }
967 #endif
968
969 if (hppa_frameless_function_invocation (frame))
970 {
971 int ret_regnum;
972
973 ret_regnum = find_return_regnum (pc);
974
975 /* If the next frame is an interrupt frame or a signal
976 handler caller, then we need to look in the saved
977 register area to get the return pointer (the values
978 in the registers may not correspond to anything useful). */
979 if (get_next_frame (frame)
980 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
981 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
982 {
983 CORE_ADDR *saved_regs;
984 hppa_frame_init_saved_regs (get_next_frame (frame));
985 saved_regs = get_frame_saved_regs (get_next_frame (frame));
986 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
987 TARGET_PTR_BIT / 8) & 0x2)
988 {
989 pc = read_memory_integer (saved_regs[31],
990 TARGET_PTR_BIT / 8) & ~0x3;
991
992 /* Syscalls are really two frames. The syscall stub itself
993 with a return pointer in %rp and the kernel call with
994 a return pointer in %r31. We return the %rp variant
995 if %r31 is the same as frame->pc. */
996 if (pc == get_frame_pc (frame))
997 pc = read_memory_integer (saved_regs[RP_REGNUM],
998 TARGET_PTR_BIT / 8) & ~0x3;
999 }
1000 else
1001 pc = read_memory_integer (saved_regs[RP_REGNUM],
1002 TARGET_PTR_BIT / 8) & ~0x3;
1003 }
1004 else
1005 pc = read_register (ret_regnum) & ~0x3;
1006 }
1007 else
1008 {
1009 spun_around_loop = 0;
1010 old_pc = pc;
1011
1012 restart:
1013 rp_offset = rp_saved (pc);
1014
1015 /* Similar to code in frameless function case. If the next
1016 frame is a signal or interrupt handler, then dig the right
1017 information out of the saved register info. */
1018 if (rp_offset == 0
1019 && get_next_frame (frame)
1020 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1021 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1022 {
1023 CORE_ADDR *saved_regs;
1024 hppa_frame_init_saved_regs (get_next_frame (frame));
1025 saved_regs = get_frame_saved_regs (get_next_frame (frame));
1026 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1027 TARGET_PTR_BIT / 8) & 0x2)
1028 {
1029 pc = read_memory_integer (saved_regs[31],
1030 TARGET_PTR_BIT / 8) & ~0x3;
1031
1032 /* Syscalls are really two frames. The syscall stub itself
1033 with a return pointer in %rp and the kernel call with
1034 a return pointer in %r31. We return the %rp variant
1035 if %r31 is the same as frame->pc. */
1036 if (pc == get_frame_pc (frame))
1037 pc = read_memory_integer (saved_regs[RP_REGNUM],
1038 TARGET_PTR_BIT / 8) & ~0x3;
1039 }
1040 else
1041 pc = read_memory_integer (saved_regs[RP_REGNUM],
1042 TARGET_PTR_BIT / 8) & ~0x3;
1043 }
1044 else if (rp_offset == 0)
1045 {
1046 old_pc = pc;
1047 pc = read_register (RP_REGNUM) & ~0x3;
1048 }
1049 else
1050 {
1051 old_pc = pc;
1052 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1053 TARGET_PTR_BIT / 8) & ~0x3;
1054 }
1055 }
1056
1057 /* If PC is inside a linker stub, then dig out the address the stub
1058 will return to.
1059
1060 Don't do this for long branch stubs. Why? For some unknown reason
1061 _start is marked as a long branch stub in hpux10. */
1062 u = find_unwind_entry (pc);
1063 if (u && u->stub_unwind.stub_type != 0
1064 && u->stub_unwind.stub_type != LONG_BRANCH)
1065 {
1066 unsigned int insn;
1067
1068 /* If this is a dynamic executable, and we're in a signal handler,
1069 then the call chain will eventually point us into the stub for
1070 _sigreturn. Unlike most cases, we'll be pointed to the branch
1071 to the real sigreturn rather than the code after the real branch!.
1072
1073 Else, try to dig the address the stub will return to in the normal
1074 fashion. */
1075 insn = read_memory_integer (pc, 4);
1076 if ((insn & 0xfc00e000) == 0xe8000000)
1077 return (pc + extract_17 (insn) + 8) & ~0x3;
1078 else
1079 {
1080 if (old_pc == pc)
1081 spun_around_loop++;
1082
1083 if (spun_around_loop > 1)
1084 {
1085 /* We're just about to go around the loop again with
1086 no more hope of success. Die. */
1087 error ("Unable to find return pc for this frame");
1088 }
1089 else
1090 goto restart;
1091 }
1092 }
1093
1094 return pc;
1095 }
1096 \f
1097 /* We need to correct the PC and the FP for the outermost frame when we are
1098 in a system call. */
1099
1100 void
1101 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1102 {
1103 int flags;
1104 int framesize;
1105
1106 if (get_next_frame (frame) && !fromleaf)
1107 return;
1108
1109 /* If the next frame represents a frameless function invocation then
1110 we have to do some adjustments that are normally done by
1111 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1112 this case.) */
1113 if (fromleaf)
1114 {
1115 /* Find the framesize of *this* frame without peeking at the PC
1116 in the current frame structure (it isn't set yet). */
1117 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1118
1119 /* Now adjust our base frame accordingly. If we have a frame pointer
1120 use it, else subtract the size of this frame from the current
1121 frame. (we always want frame->frame to point at the lowest address
1122 in the frame). */
1123 if (framesize == -1)
1124 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1125 else
1126 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1127 return;
1128 }
1129
1130 flags = read_register (FLAGS_REGNUM);
1131 if (flags & 2) /* In system call? */
1132 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1133
1134 /* The outermost frame is always derived from PC-framesize
1135
1136 One might think frameless innermost frames should have
1137 a frame->frame that is the same as the parent's frame->frame.
1138 That is wrong; frame->frame in that case should be the *high*
1139 address of the parent's frame. It's complicated as hell to
1140 explain, but the parent *always* creates some stack space for
1141 the child. So the child actually does have a frame of some
1142 sorts, and its base is the high address in its parent's frame. */
1143 framesize = find_proc_framesize (get_frame_pc (frame));
1144 if (framesize == -1)
1145 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1146 else
1147 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1148 }
1149 \f
1150 /* Given a GDB frame, determine the address of the calling function's
1151 frame. This will be used to create a new GDB frame struct, and
1152 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1153 will be called for the new frame.
1154
1155 This may involve searching through prologues for several functions
1156 at boundaries where GCC calls HP C code, or where code which has
1157 a frame pointer calls code without a frame pointer. */
1158
1159 CORE_ADDR
1160 hppa_frame_chain (struct frame_info *frame)
1161 {
1162 int my_framesize, caller_framesize;
1163 struct unwind_table_entry *u;
1164 CORE_ADDR frame_base;
1165 struct frame_info *tmp_frame;
1166
1167 /* A frame in the current frame list, or zero. */
1168 struct frame_info *saved_regs_frame = 0;
1169 /* Where the registers were saved in saved_regs_frame. If
1170 saved_regs_frame is zero, this is garbage. */
1171 CORE_ADDR *saved_regs = NULL;
1172
1173 CORE_ADDR caller_pc;
1174
1175 struct minimal_symbol *min_frame_symbol;
1176 struct symbol *frame_symbol;
1177 char *frame_symbol_name;
1178
1179 /* If this is a threaded application, and we see the
1180 routine "__pthread_exit", treat it as the stack root
1181 for this thread. */
1182 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1183 frame_symbol = find_pc_function (get_frame_pc (frame));
1184
1185 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1186 {
1187 /* The test above for "no user function name" would defend
1188 against the slim likelihood that a user might define a
1189 routine named "__pthread_exit" and then try to debug it.
1190
1191 If it weren't commented out, and you tried to debug the
1192 pthread library itself, you'd get errors.
1193
1194 So for today, we don't make that check. */
1195 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1196 if (frame_symbol_name != 0)
1197 {
1198 if (0 == strncmp (frame_symbol_name,
1199 THREAD_INITIAL_FRAME_SYMBOL,
1200 THREAD_INITIAL_FRAME_SYM_LEN))
1201 {
1202 /* Pretend we've reached the bottom of the stack. */
1203 return (CORE_ADDR) 0;
1204 }
1205 }
1206 } /* End of hacky code for threads. */
1207
1208 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1209 are easy; at *sp we have a full save state strucutre which we can
1210 pull the old stack pointer from. Also see frame_saved_pc for
1211 code to dig a saved PC out of the save state structure. */
1212 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1213 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1214 TARGET_PTR_BIT / 8);
1215 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1216 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1217 {
1218 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1219 }
1220 #endif
1221 else
1222 frame_base = get_frame_base (frame);
1223
1224 /* Get frame sizes for the current frame and the frame of the
1225 caller. */
1226 my_framesize = find_proc_framesize (get_frame_pc (frame));
1227 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1228
1229 /* If we can't determine the caller's PC, then it's not likely we can
1230 really determine anything meaningful about its frame. We'll consider
1231 this to be stack bottom. */
1232 if (caller_pc == (CORE_ADDR) 0)
1233 return (CORE_ADDR) 0;
1234
1235 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1236
1237 /* If caller does not have a frame pointer, then its frame
1238 can be found at current_frame - caller_framesize. */
1239 if (caller_framesize != -1)
1240 {
1241 return frame_base - caller_framesize;
1242 }
1243 /* Both caller and callee have frame pointers and are GCC compiled
1244 (SAVE_SP bit in unwind descriptor is on for both functions.
1245 The previous frame pointer is found at the top of the current frame. */
1246 if (caller_framesize == -1 && my_framesize == -1)
1247 {
1248 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1249 }
1250 /* Caller has a frame pointer, but callee does not. This is a little
1251 more difficult as GCC and HP C lay out locals and callee register save
1252 areas very differently.
1253
1254 The previous frame pointer could be in a register, or in one of
1255 several areas on the stack.
1256
1257 Walk from the current frame to the innermost frame examining
1258 unwind descriptors to determine if %r3 ever gets saved into the
1259 stack. If so return whatever value got saved into the stack.
1260 If it was never saved in the stack, then the value in %r3 is still
1261 valid, so use it.
1262
1263 We use information from unwind descriptors to determine if %r3
1264 is saved into the stack (Entry_GR field has this information). */
1265
1266 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1267 {
1268 u = find_unwind_entry (get_frame_pc (tmp_frame));
1269
1270 if (!u)
1271 {
1272 /* We could find this information by examining prologues. I don't
1273 think anyone has actually written any tools (not even "strip")
1274 which leave them out of an executable, so maybe this is a moot
1275 point. */
1276 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1277 code that doesn't have unwind entries. For example, stepping into
1278 the dynamic linker will give you a PC that has none. Thus, I've
1279 disabled this warning. */
1280 #if 0
1281 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1282 #endif
1283 return (CORE_ADDR) 0;
1284 }
1285
1286 if (u->Save_SP
1287 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1288 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1289 break;
1290
1291 /* Entry_GR specifies the number of callee-saved general registers
1292 saved in the stack. It starts at %r3, so %r3 would be 1. */
1293 if (u->Entry_GR >= 1)
1294 {
1295 /* The unwind entry claims that r3 is saved here. However,
1296 in optimized code, GCC often doesn't actually save r3.
1297 We'll discover this if we look at the prologue. */
1298 hppa_frame_init_saved_regs (tmp_frame);
1299 saved_regs = get_frame_saved_regs (tmp_frame);
1300 saved_regs_frame = tmp_frame;
1301
1302 /* If we have an address for r3, that's good. */
1303 if (saved_regs[DEPRECATED_FP_REGNUM])
1304 break;
1305 }
1306 }
1307
1308 if (tmp_frame)
1309 {
1310 /* We may have walked down the chain into a function with a frame
1311 pointer. */
1312 if (u->Save_SP
1313 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1314 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1315 {
1316 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1317 }
1318 /* %r3 was saved somewhere in the stack. Dig it out. */
1319 else
1320 {
1321 /* Sick.
1322
1323 For optimization purposes many kernels don't have the
1324 callee saved registers into the save_state structure upon
1325 entry into the kernel for a syscall; the optimization
1326 is usually turned off if the process is being traced so
1327 that the debugger can get full register state for the
1328 process.
1329
1330 This scheme works well except for two cases:
1331
1332 * Attaching to a process when the process is in the
1333 kernel performing a system call (debugger can't get
1334 full register state for the inferior process since
1335 the process wasn't being traced when it entered the
1336 system call).
1337
1338 * Register state is not complete if the system call
1339 causes the process to core dump.
1340
1341
1342 The following heinous code is an attempt to deal with
1343 the lack of register state in a core dump. It will
1344 fail miserably if the function which performs the
1345 system call has a variable sized stack frame. */
1346
1347 if (tmp_frame != saved_regs_frame)
1348 {
1349 hppa_frame_init_saved_regs (tmp_frame);
1350 saved_regs = get_frame_saved_regs (tmp_frame);
1351 }
1352
1353 /* Abominable hack. */
1354 if (current_target.to_has_execution == 0
1355 && ((saved_regs[FLAGS_REGNUM]
1356 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1357 TARGET_PTR_BIT / 8)
1358 & 0x2))
1359 || (saved_regs[FLAGS_REGNUM] == 0
1360 && read_register (FLAGS_REGNUM) & 0x2)))
1361 {
1362 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1363 if (!u)
1364 {
1365 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1366 TARGET_PTR_BIT / 8);
1367 }
1368 else
1369 {
1370 return frame_base - (u->Total_frame_size << 3);
1371 }
1372 }
1373
1374 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1375 TARGET_PTR_BIT / 8);
1376 }
1377 }
1378 else
1379 {
1380 /* Get the innermost frame. */
1381 tmp_frame = frame;
1382 while (get_next_frame (tmp_frame) != NULL)
1383 tmp_frame = get_next_frame (tmp_frame);
1384
1385 if (tmp_frame != saved_regs_frame)
1386 {
1387 hppa_frame_init_saved_regs (tmp_frame);
1388 saved_regs = get_frame_saved_regs (tmp_frame);
1389 }
1390
1391 /* Abominable hack. See above. */
1392 if (current_target.to_has_execution == 0
1393 && ((saved_regs[FLAGS_REGNUM]
1394 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1395 TARGET_PTR_BIT / 8)
1396 & 0x2))
1397 || (saved_regs[FLAGS_REGNUM] == 0
1398 && read_register (FLAGS_REGNUM) & 0x2)))
1399 {
1400 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1401 if (!u)
1402 {
1403 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1404 TARGET_PTR_BIT / 8);
1405 }
1406 else
1407 {
1408 return frame_base - (u->Total_frame_size << 3);
1409 }
1410 }
1411
1412 /* The value in %r3 was never saved into the stack (thus %r3 still
1413 holds the value of the previous frame pointer). */
1414 return deprecated_read_fp ();
1415 }
1416 }
1417 \f
1418
1419 /* To see if a frame chain is valid, see if the caller looks like it
1420 was compiled with gcc. */
1421
1422 int
1423 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1424 {
1425 struct minimal_symbol *msym_us;
1426 struct minimal_symbol *msym_start;
1427 struct unwind_table_entry *u, *next_u = NULL;
1428 struct frame_info *next;
1429
1430 u = find_unwind_entry (get_frame_pc (thisframe));
1431
1432 if (u == NULL)
1433 return 1;
1434
1435 /* We can't just check that the same of msym_us is "_start", because
1436 someone idiotically decided that they were going to make a Ltext_end
1437 symbol with the same address. This Ltext_end symbol is totally
1438 indistinguishable (as nearly as I can tell) from the symbol for a function
1439 which is (legitimately, since it is in the user's namespace)
1440 named Ltext_end, so we can't just ignore it. */
1441 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1442 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1443 if (msym_us
1444 && msym_start
1445 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1446 return 0;
1447
1448 /* Grrrr. Some new idiot decided that they don't want _start for the
1449 PRO configurations; $START$ calls main directly.... Deal with it. */
1450 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1451 if (msym_us
1452 && msym_start
1453 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1454 return 0;
1455
1456 next = get_next_frame (thisframe);
1457 if (next)
1458 next_u = find_unwind_entry (get_frame_pc (next));
1459
1460 /* If this frame does not save SP, has no stack, isn't a stub,
1461 and doesn't "call" an interrupt routine or signal handler caller,
1462 then its not valid. */
1463 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1464 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1465 || (next_u && next_u->HP_UX_interrupt_marker))
1466 return 1;
1467
1468 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1469 return 1;
1470
1471 return 0;
1472 }
1473
1474 /* These functions deal with saving and restoring register state
1475 around a function call in the inferior. They keep the stack
1476 double-word aligned; eventually, on an hp700, the stack will have
1477 to be aligned to a 64-byte boundary. */
1478
1479 void
1480 hppa_push_dummy_frame (void)
1481 {
1482 CORE_ADDR sp, pc, pcspace;
1483 register int regnum;
1484 CORE_ADDR int_buffer;
1485 double freg_buffer;
1486
1487 pc = hppa_target_read_pc (inferior_ptid);
1488 int_buffer = read_register (FLAGS_REGNUM);
1489 if (int_buffer & 0x2)
1490 {
1491 const unsigned int sid = (pc >> 30) & 0x3;
1492 if (sid == 0)
1493 pcspace = read_register (SR4_REGNUM);
1494 else
1495 pcspace = read_register (SR4_REGNUM + 4 + sid);
1496 }
1497 else
1498 pcspace = read_register (PCSQ_HEAD_REGNUM);
1499
1500 /* Space for "arguments"; the RP goes in here. */
1501 sp = read_register (SP_REGNUM) + 48;
1502 int_buffer = read_register (RP_REGNUM) | 0x3;
1503
1504 /* The 32bit and 64bit ABIs save the return pointer into different
1505 stack slots. */
1506 if (DEPRECATED_REGISTER_SIZE == 8)
1507 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1508 else
1509 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1510
1511 int_buffer = deprecated_read_fp ();
1512 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1513
1514 write_register (DEPRECATED_FP_REGNUM, sp);
1515
1516 sp += 2 * DEPRECATED_REGISTER_SIZE;
1517
1518 for (regnum = 1; regnum < 32; regnum++)
1519 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1520 sp = push_word (sp, read_register (regnum));
1521
1522 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1523 if (DEPRECATED_REGISTER_SIZE != 8)
1524 sp += 4;
1525
1526 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1527 {
1528 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1529 (char *) &freg_buffer, 8);
1530 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1531 }
1532 sp = push_word (sp, read_register (IPSW_REGNUM));
1533 sp = push_word (sp, read_register (SAR_REGNUM));
1534 sp = push_word (sp, pc);
1535 sp = push_word (sp, pcspace);
1536 sp = push_word (sp, pc + 4);
1537 sp = push_word (sp, pcspace);
1538 write_register (SP_REGNUM, sp);
1539 }
1540
1541 static void
1542 find_dummy_frame_regs (struct frame_info *frame,
1543 CORE_ADDR frame_saved_regs[])
1544 {
1545 CORE_ADDR fp = get_frame_base (frame);
1546 int i;
1547
1548 /* The 32bit and 64bit ABIs save RP into different locations. */
1549 if (DEPRECATED_REGISTER_SIZE == 8)
1550 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1551 else
1552 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1553
1554 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1555
1556 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1557
1558 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1559 {
1560 if (i != DEPRECATED_FP_REGNUM)
1561 {
1562 frame_saved_regs[i] = fp;
1563 fp += DEPRECATED_REGISTER_SIZE;
1564 }
1565 }
1566
1567 /* This is not necessary or desirable for the 64bit ABI. */
1568 if (DEPRECATED_REGISTER_SIZE != 8)
1569 fp += 4;
1570
1571 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1572 frame_saved_regs[i] = fp;
1573
1574 frame_saved_regs[IPSW_REGNUM] = fp;
1575 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1576 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1577 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1578 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1579 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1580 }
1581
1582 void
1583 hppa_pop_frame (void)
1584 {
1585 register struct frame_info *frame = get_current_frame ();
1586 register CORE_ADDR fp, npc, target_pc;
1587 register int regnum;
1588 CORE_ADDR *fsr;
1589 double freg_buffer;
1590
1591 fp = get_frame_base (frame);
1592 hppa_frame_init_saved_regs (frame);
1593 fsr = get_frame_saved_regs (frame);
1594
1595 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1596 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1597 restore_pc_queue (fsr);
1598 #endif
1599
1600 for (regnum = 31; regnum > 0; regnum--)
1601 if (fsr[regnum])
1602 write_register (regnum, read_memory_integer (fsr[regnum],
1603 DEPRECATED_REGISTER_SIZE));
1604
1605 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1606 if (fsr[regnum])
1607 {
1608 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1609 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1610 (char *) &freg_buffer, 8);
1611 }
1612
1613 if (fsr[IPSW_REGNUM])
1614 write_register (IPSW_REGNUM,
1615 read_memory_integer (fsr[IPSW_REGNUM],
1616 DEPRECATED_REGISTER_SIZE));
1617
1618 if (fsr[SAR_REGNUM])
1619 write_register (SAR_REGNUM,
1620 read_memory_integer (fsr[SAR_REGNUM],
1621 DEPRECATED_REGISTER_SIZE));
1622
1623 /* If the PC was explicitly saved, then just restore it. */
1624 if (fsr[PCOQ_TAIL_REGNUM])
1625 {
1626 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1627 DEPRECATED_REGISTER_SIZE);
1628 write_register (PCOQ_TAIL_REGNUM, npc);
1629 }
1630 /* Else use the value in %rp to set the new PC. */
1631 else
1632 {
1633 npc = read_register (RP_REGNUM);
1634 write_pc (npc);
1635 }
1636
1637 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1638
1639 if (fsr[IPSW_REGNUM]) /* call dummy */
1640 write_register (SP_REGNUM, fp - 48);
1641 else
1642 write_register (SP_REGNUM, fp);
1643
1644 /* The PC we just restored may be inside a return trampoline. If so
1645 we want to restart the inferior and run it through the trampoline.
1646
1647 Do this by setting a momentary breakpoint at the location the
1648 trampoline returns to.
1649
1650 Don't skip through the trampoline if we're popping a dummy frame. */
1651 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1652 if (target_pc && !fsr[IPSW_REGNUM])
1653 {
1654 struct symtab_and_line sal;
1655 struct breakpoint *breakpoint;
1656 struct cleanup *old_chain;
1657
1658 /* Set up our breakpoint. Set it to be silent as the MI code
1659 for "return_command" will print the frame we returned to. */
1660 sal = find_pc_line (target_pc, 0);
1661 sal.pc = target_pc;
1662 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1663 breakpoint->silent = 1;
1664
1665 /* So we can clean things up. */
1666 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1667
1668 /* Start up the inferior. */
1669 clear_proceed_status ();
1670 proceed_to_finish = 1;
1671 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1672
1673 /* Perform our cleanups. */
1674 do_cleanups (old_chain);
1675 }
1676 flush_cached_frames ();
1677 }
1678
1679 /* After returning to a dummy on the stack, restore the instruction
1680 queue space registers. */
1681
1682 static int
1683 restore_pc_queue (CORE_ADDR *fsr)
1684 {
1685 CORE_ADDR pc = read_pc ();
1686 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1687 TARGET_PTR_BIT / 8);
1688 struct target_waitstatus w;
1689 int insn_count;
1690
1691 /* Advance past break instruction in the call dummy. */
1692 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1693 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1694
1695 /* HPUX doesn't let us set the space registers or the space
1696 registers of the PC queue through ptrace. Boo, hiss.
1697 Conveniently, the call dummy has this sequence of instructions
1698 after the break:
1699 mtsp r21, sr0
1700 ble,n 0(sr0, r22)
1701
1702 So, load up the registers and single step until we are in the
1703 right place. */
1704
1705 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1706 DEPRECATED_REGISTER_SIZE));
1707 write_register (22, new_pc);
1708
1709 for (insn_count = 0; insn_count < 3; insn_count++)
1710 {
1711 /* FIXME: What if the inferior gets a signal right now? Want to
1712 merge this into wait_for_inferior (as a special kind of
1713 watchpoint? By setting a breakpoint at the end? Is there
1714 any other choice? Is there *any* way to do this stuff with
1715 ptrace() or some equivalent?). */
1716 resume (1, 0);
1717 target_wait (inferior_ptid, &w);
1718
1719 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1720 {
1721 stop_signal = w.value.sig;
1722 terminal_ours_for_output ();
1723 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1724 target_signal_to_name (stop_signal),
1725 target_signal_to_string (stop_signal));
1726 gdb_flush (gdb_stdout);
1727 return 0;
1728 }
1729 }
1730 target_terminal_ours ();
1731 target_fetch_registers (-1);
1732 return 1;
1733 }
1734
1735
1736 #ifdef PA20W_CALLING_CONVENTIONS
1737
1738 /* This function pushes a stack frame with arguments as part of the
1739 inferior function calling mechanism.
1740
1741 This is the version for the PA64, in which later arguments appear
1742 at higher addresses. (The stack always grows towards higher
1743 addresses.)
1744
1745 We simply allocate the appropriate amount of stack space and put
1746 arguments into their proper slots. The call dummy code will copy
1747 arguments into registers as needed by the ABI.
1748
1749 This ABI also requires that the caller provide an argument pointer
1750 to the callee, so we do that too. */
1751
1752 CORE_ADDR
1753 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1754 int struct_return, CORE_ADDR struct_addr)
1755 {
1756 /* array of arguments' offsets */
1757 int *offset = (int *) alloca (nargs * sizeof (int));
1758
1759 /* array of arguments' lengths: real lengths in bytes, not aligned to
1760 word size */
1761 int *lengths = (int *) alloca (nargs * sizeof (int));
1762
1763 /* The value of SP as it was passed into this function after
1764 aligning. */
1765 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1766
1767 /* The number of stack bytes occupied by the current argument. */
1768 int bytes_reserved;
1769
1770 /* The total number of bytes reserved for the arguments. */
1771 int cum_bytes_reserved = 0;
1772
1773 /* Similarly, but aligned. */
1774 int cum_bytes_aligned = 0;
1775 int i;
1776
1777 /* Iterate over each argument provided by the user. */
1778 for (i = 0; i < nargs; i++)
1779 {
1780 struct type *arg_type = VALUE_TYPE (args[i]);
1781
1782 /* Integral scalar values smaller than a register are padded on
1783 the left. We do this by promoting them to full-width,
1784 although the ABI says to pad them with garbage. */
1785 if (is_integral_type (arg_type)
1786 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1787 {
1788 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1789 ? builtin_type_unsigned_long
1790 : builtin_type_long),
1791 args[i]);
1792 arg_type = VALUE_TYPE (args[i]);
1793 }
1794
1795 lengths[i] = TYPE_LENGTH (arg_type);
1796
1797 /* Align the size of the argument to the word size for this
1798 target. */
1799 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1800
1801 offset[i] = cum_bytes_reserved;
1802
1803 /* Aggregates larger than eight bytes (the only types larger
1804 than eight bytes we have) are aligned on a 16-byte boundary,
1805 possibly padded on the right with garbage. This may leave an
1806 empty word on the stack, and thus an unused register, as per
1807 the ABI. */
1808 if (bytes_reserved > 8)
1809 {
1810 /* Round up the offset to a multiple of two slots. */
1811 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
1812 & -(2*DEPRECATED_REGISTER_SIZE));
1813
1814 /* Note the space we've wasted, if any. */
1815 bytes_reserved += new_offset - offset[i];
1816 offset[i] = new_offset;
1817 }
1818
1819 cum_bytes_reserved += bytes_reserved;
1820 }
1821
1822 /* CUM_BYTES_RESERVED already accounts for all the arguments
1823 passed by the user. However, the ABIs mandate minimum stack space
1824 allocations for outgoing arguments.
1825
1826 The ABIs also mandate minimum stack alignments which we must
1827 preserve. */
1828 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1829 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1830
1831 /* Now write each of the args at the proper offset down the stack. */
1832 for (i = 0; i < nargs; i++)
1833 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1834
1835 /* If a structure has to be returned, set up register 28 to hold its
1836 address */
1837 if (struct_return)
1838 write_register (28, struct_addr);
1839
1840 /* For the PA64 we must pass a pointer to the outgoing argument list.
1841 The ABI mandates that the pointer should point to the first byte of
1842 storage beyond the register flushback area.
1843
1844 However, the call dummy expects the outgoing argument pointer to
1845 be passed in register %r4. */
1846 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1847
1848 /* ?!? This needs further work. We need to set up the global data
1849 pointer for this procedure. This assumes the same global pointer
1850 for every procedure. The call dummy expects the dp value to
1851 be passed in register %r6. */
1852 write_register (6, read_register (27));
1853
1854 /* The stack will have 64 bytes of additional space for a frame marker. */
1855 return sp + 64;
1856 }
1857
1858 #else
1859
1860 /* This function pushes a stack frame with arguments as part of the
1861 inferior function calling mechanism.
1862
1863 This is the version of the function for the 32-bit PA machines, in
1864 which later arguments appear at lower addresses. (The stack always
1865 grows towards higher addresses.)
1866
1867 We simply allocate the appropriate amount of stack space and put
1868 arguments into their proper slots. The call dummy code will copy
1869 arguments into registers as needed by the ABI. */
1870
1871 CORE_ADDR
1872 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1873 int struct_return, CORE_ADDR struct_addr)
1874 {
1875 /* array of arguments' offsets */
1876 int *offset = (int *) alloca (nargs * sizeof (int));
1877
1878 /* array of arguments' lengths: real lengths in bytes, not aligned to
1879 word size */
1880 int *lengths = (int *) alloca (nargs * sizeof (int));
1881
1882 /* The number of stack bytes occupied by the current argument. */
1883 int bytes_reserved;
1884
1885 /* The total number of bytes reserved for the arguments. */
1886 int cum_bytes_reserved = 0;
1887
1888 /* Similarly, but aligned. */
1889 int cum_bytes_aligned = 0;
1890 int i;
1891
1892 /* Iterate over each argument provided by the user. */
1893 for (i = 0; i < nargs; i++)
1894 {
1895 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1896
1897 /* Align the size of the argument to the word size for this
1898 target. */
1899 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
1900
1901 offset[i] = (cum_bytes_reserved
1902 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1903
1904 /* If the argument is a double word argument, then it needs to be
1905 double word aligned. */
1906 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
1907 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
1908 {
1909 int new_offset = 0;
1910 /* BYTES_RESERVED is already aligned to the word, so we put
1911 the argument at one word more down the stack.
1912
1913 This will leave one empty word on the stack, and one unused
1914 register as mandated by the ABI. */
1915 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
1916 & -(2 * DEPRECATED_REGISTER_SIZE));
1917
1918 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
1919 {
1920 bytes_reserved += DEPRECATED_REGISTER_SIZE;
1921 offset[i] += DEPRECATED_REGISTER_SIZE;
1922 }
1923 }
1924
1925 cum_bytes_reserved += bytes_reserved;
1926
1927 }
1928
1929 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1930 by the user. However, the ABI mandates minimum stack space
1931 allocations for outgoing arguments.
1932
1933 The ABI also mandates minimum stack alignments which we must
1934 preserve. */
1935 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1936 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1937
1938 /* Now write each of the args at the proper offset down the stack.
1939 ?!? We need to promote values to a full register instead of skipping
1940 words in the stack. */
1941 for (i = 0; i < nargs; i++)
1942 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1943
1944 /* If a structure has to be returned, set up register 28 to hold its
1945 address */
1946 if (struct_return)
1947 write_register (28, struct_addr);
1948
1949 /* The stack will have 32 bytes of additional space for a frame marker. */
1950 return sp + 32;
1951 }
1952
1953 #endif
1954
1955 /* elz: this function returns a value which is built looking at the given address.
1956 It is called from call_function_by_hand, in case we need to return a
1957 value which is larger than 64 bits, and it is stored in the stack rather than
1958 in the registers r28 and r29 or fr4.
1959 This function does the same stuff as value_being_returned in values.c, but
1960 gets the value from the stack rather than from the buffer where all the
1961 registers were saved when the function called completed. */
1962 struct value *
1963 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1964 {
1965 register struct value *val;
1966
1967 val = allocate_value (valtype);
1968 CHECK_TYPEDEF (valtype);
1969 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1970
1971 return val;
1972 }
1973
1974
1975
1976 /* elz: Used to lookup a symbol in the shared libraries.
1977 This function calls shl_findsym, indirectly through a
1978 call to __d_shl_get. __d_shl_get is in end.c, which is always
1979 linked in by the hp compilers/linkers.
1980 The call to shl_findsym cannot be made directly because it needs
1981 to be active in target address space.
1982 inputs: - minimal symbol pointer for the function we want to look up
1983 - address in target space of the descriptor for the library
1984 where we want to look the symbol up.
1985 This address is retrieved using the
1986 som_solib_get_solib_by_pc function (somsolib.c).
1987 output: - real address in the library of the function.
1988 note: the handle can be null, in which case shl_findsym will look for
1989 the symbol in all the loaded shared libraries.
1990 files to look at if you need reference on this stuff:
1991 dld.c, dld_shl_findsym.c
1992 end.c
1993 man entry for shl_findsym */
1994
1995 CORE_ADDR
1996 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1997 {
1998 struct symbol *get_sym, *symbol2;
1999 struct minimal_symbol *buff_minsym, *msymbol;
2000 struct type *ftype;
2001 struct value **args;
2002 struct value *funcval;
2003 struct value *val;
2004
2005 int x, namelen, err_value, tmp = -1;
2006 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2007 CORE_ADDR stub_addr;
2008
2009
2010 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2011 funcval = find_function_in_inferior ("__d_shl_get");
2012 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2013 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2014 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2015 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2016 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2017 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2018 value_return_addr = endo_buff_addr + namelen;
2019 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2020
2021 /* do alignment */
2022 if ((x = value_return_addr % 64) != 0)
2023 value_return_addr = value_return_addr + 64 - x;
2024
2025 errno_return_addr = value_return_addr + 64;
2026
2027
2028 /* set up stuff needed by __d_shl_get in buffer in end.o */
2029
2030 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2031
2032 target_write_memory (value_return_addr, (char *) &tmp, 4);
2033
2034 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2035
2036 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2037 (char *) &handle, 4);
2038
2039 /* now prepare the arguments for the call */
2040
2041 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2042 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2043 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2044 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2045 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2046 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2047
2048 /* now call the function */
2049
2050 val = call_function_by_hand (funcval, 6, args);
2051
2052 /* now get the results */
2053
2054 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2055
2056 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2057 if (stub_addr <= 0)
2058 error ("call to __d_shl_get failed, error code is %d", err_value);
2059
2060 return (stub_addr);
2061 }
2062
2063 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2064 static int
2065 cover_find_stub_with_shl_get (void *args_untyped)
2066 {
2067 args_for_find_stub *args = args_untyped;
2068 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2069 return 0;
2070 }
2071
2072 /* Insert the specified number of args and function address
2073 into a call sequence of the above form stored at DUMMYNAME.
2074
2075 On the hppa we need to call the stack dummy through $$dyncall.
2076 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2077 argument, real_pc, which is the location where gdb should start up
2078 the inferior to do the function call.
2079
2080 This has to work across several versions of hpux, bsd, osf1. It has to
2081 work regardless of what compiler was used to build the inferior program.
2082 It should work regardless of whether or not end.o is available. It has
2083 to work even if gdb can not call into the dynamic loader in the inferior
2084 to query it for symbol names and addresses.
2085
2086 Yes, all those cases should work. Luckily code exists to handle most
2087 of them. The complexity is in selecting exactly what scheme should
2088 be used to perform the inferior call.
2089
2090 At the current time this routine is known not to handle cases where
2091 the program was linked with HP's compiler without including end.o.
2092
2093 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2094
2095 CORE_ADDR
2096 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2097 struct value **args, struct type *type, int gcc_p)
2098 {
2099 CORE_ADDR dyncall_addr;
2100 struct minimal_symbol *msymbol;
2101 struct minimal_symbol *trampoline;
2102 int flags = read_register (FLAGS_REGNUM);
2103 struct unwind_table_entry *u = NULL;
2104 CORE_ADDR new_stub = 0;
2105 CORE_ADDR solib_handle = 0;
2106
2107 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2108 passed an import stub, not a PLABEL. It is also necessary to set %r19
2109 (the PIC register) before performing the call.
2110
2111 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2112 are calling the target directly. When using __d_plt_call we want to
2113 use a PLABEL instead of an import stub. */
2114 int using_gcc_plt_call = 1;
2115
2116 #ifdef GDB_TARGET_IS_HPPA_20W
2117 /* We currently use completely different code for the PA2.0W inferior
2118 function call sequences. This needs to be cleaned up. */
2119 {
2120 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2121 struct target_waitstatus w;
2122 int inst1, inst2;
2123 char buf[4];
2124 int status;
2125 struct objfile *objfile;
2126
2127 /* We can not modify the PC space queues directly, so we start
2128 up the inferior and execute a couple instructions to set the
2129 space queues so that they point to the call dummy in the stack. */
2130 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2131 sr5 = read_register (SR5_REGNUM);
2132 if (1)
2133 {
2134 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2135 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2136 if (target_read_memory (pcoqh, buf, 4) != 0)
2137 error ("Couldn't modify space queue\n");
2138 inst1 = extract_unsigned_integer (buf, 4);
2139
2140 if (target_read_memory (pcoqt, buf, 4) != 0)
2141 error ("Couldn't modify space queue\n");
2142 inst2 = extract_unsigned_integer (buf, 4);
2143
2144 /* BVE (r1) */
2145 *((int *) buf) = 0xe820d000;
2146 if (target_write_memory (pcoqh, buf, 4) != 0)
2147 error ("Couldn't modify space queue\n");
2148
2149 /* NOP */
2150 *((int *) buf) = 0x08000240;
2151 if (target_write_memory (pcoqt, buf, 4) != 0)
2152 {
2153 *((int *) buf) = inst1;
2154 target_write_memory (pcoqh, buf, 4);
2155 error ("Couldn't modify space queue\n");
2156 }
2157
2158 write_register (1, pc);
2159
2160 /* Single step twice, the BVE instruction will set the space queue
2161 such that it points to the PC value written immediately above
2162 (ie the call dummy). */
2163 resume (1, 0);
2164 target_wait (inferior_ptid, &w);
2165 resume (1, 0);
2166 target_wait (inferior_ptid, &w);
2167
2168 /* Restore the two instructions at the old PC locations. */
2169 *((int *) buf) = inst1;
2170 target_write_memory (pcoqh, buf, 4);
2171 *((int *) buf) = inst2;
2172 target_write_memory (pcoqt, buf, 4);
2173 }
2174
2175 /* The call dummy wants the ultimate destination address initially
2176 in register %r5. */
2177 write_register (5, fun);
2178
2179 /* We need to see if this objfile has a different DP value than our
2180 own (it could be a shared library for example). */
2181 ALL_OBJFILES (objfile)
2182 {
2183 struct obj_section *s;
2184 obj_private_data_t *obj_private;
2185
2186 /* See if FUN is in any section within this shared library. */
2187 for (s = objfile->sections; s < objfile->sections_end; s++)
2188 if (s->addr <= fun && fun < s->endaddr)
2189 break;
2190
2191 if (s >= objfile->sections_end)
2192 continue;
2193
2194 obj_private = (obj_private_data_t *) objfile->obj_private;
2195
2196 /* The DP value may be different for each objfile. But within an
2197 objfile each function uses the same dp value. Thus we do not need
2198 to grope around the opd section looking for dp values.
2199
2200 ?!? This is not strictly correct since we may be in a shared library
2201 and want to call back into the main program. To make that case
2202 work correctly we need to set obj_private->dp for the main program's
2203 objfile, then remove this conditional. */
2204 if (obj_private->dp)
2205 write_register (27, obj_private->dp);
2206 break;
2207 }
2208 return pc;
2209 }
2210 #endif
2211
2212 #ifndef GDB_TARGET_IS_HPPA_20W
2213 /* Prefer __gcc_plt_call over the HP supplied routine because
2214 __gcc_plt_call works for any number of arguments. */
2215 trampoline = NULL;
2216 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2217 using_gcc_plt_call = 0;
2218
2219 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2220 if (msymbol == NULL)
2221 error ("Can't find an address for $$dyncall trampoline");
2222
2223 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2224
2225 /* FUN could be a procedure label, in which case we have to get
2226 its real address and the value of its GOT/DP if we plan to
2227 call the routine via gcc_plt_call. */
2228 if ((fun & 0x2) && using_gcc_plt_call)
2229 {
2230 /* Get the GOT/DP value for the target function. It's
2231 at *(fun+4). Note the call dummy is *NOT* allowed to
2232 trash %r19 before calling the target function. */
2233 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2234 DEPRECATED_REGISTER_SIZE));
2235
2236 /* Now get the real address for the function we are calling, it's
2237 at *fun. */
2238 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2239 TARGET_PTR_BIT / 8);
2240 }
2241 else
2242 {
2243
2244 #ifndef GDB_TARGET_IS_PA_ELF
2245 /* FUN could be an export stub, the real address of a function, or
2246 a PLABEL. When using gcc's PLT call routine we must call an import
2247 stub rather than the export stub or real function for lazy binding
2248 to work correctly
2249
2250 If we are using the gcc PLT call routine, then we need to
2251 get the import stub for the target function. */
2252 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2253 {
2254 struct objfile *objfile;
2255 struct minimal_symbol *funsymbol, *stub_symbol;
2256 CORE_ADDR newfun = 0;
2257
2258 funsymbol = lookup_minimal_symbol_by_pc (fun);
2259 if (!funsymbol)
2260 error ("Unable to find minimal symbol for target function.\n");
2261
2262 /* Search all the object files for an import symbol with the
2263 right name. */
2264 ALL_OBJFILES (objfile)
2265 {
2266 stub_symbol
2267 = lookup_minimal_symbol_solib_trampoline
2268 (DEPRECATED_SYMBOL_NAME (funsymbol), NULL, objfile);
2269
2270 if (!stub_symbol)
2271 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2272 NULL, objfile);
2273
2274 /* Found a symbol with the right name. */
2275 if (stub_symbol)
2276 {
2277 struct unwind_table_entry *u;
2278 /* It must be a shared library trampoline. */
2279 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2280 continue;
2281
2282 /* It must also be an import stub. */
2283 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2284 if (u == NULL
2285 || (u->stub_unwind.stub_type != IMPORT
2286 #ifdef GDB_NATIVE_HPUX_11
2287 /* Sigh. The hpux 10.20 dynamic linker will blow
2288 chunks if we perform a call to an unbound function
2289 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2290 linker will blow chunks if we do not call the
2291 unbound function via the IMPORT_SHLIB stub.
2292
2293 We currently have no way to select bevahior on just
2294 the target. However, we only support HPUX/SOM in
2295 native mode. So we conditinalize on a native
2296 #ifdef. Ugly. Ugly. Ugly */
2297 && u->stub_unwind.stub_type != IMPORT_SHLIB
2298 #endif
2299 ))
2300 continue;
2301
2302 /* OK. Looks like the correct import stub. */
2303 newfun = SYMBOL_VALUE (stub_symbol);
2304 fun = newfun;
2305
2306 /* If we found an IMPORT stub, then we want to stop
2307 searching now. If we found an IMPORT_SHLIB, we want
2308 to continue the search in the hopes that we will find
2309 an IMPORT stub. */
2310 if (u->stub_unwind.stub_type == IMPORT)
2311 break;
2312 }
2313 }
2314
2315 /* Ouch. We did not find an import stub. Make an attempt to
2316 do the right thing instead of just croaking. Most of the
2317 time this will actually work. */
2318 if (newfun == 0)
2319 write_register (19, som_solib_get_got_by_pc (fun));
2320
2321 u = find_unwind_entry (fun);
2322 if (u
2323 && (u->stub_unwind.stub_type == IMPORT
2324 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2325 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2326
2327 /* If we found the import stub in the shared library, then we have
2328 to set %r19 before we call the stub. */
2329 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2330 write_register (19, som_solib_get_got_by_pc (fun));
2331 }
2332 #endif
2333 }
2334
2335 /* If we are calling into another load module then have sr4export call the
2336 magic __d_plt_call routine which is linked in from end.o.
2337
2338 You can't use _sr4export to make the call as the value in sp-24 will get
2339 fried and you end up returning to the wrong location. You can't call the
2340 target as the code to bind the PLT entry to a function can't return to a
2341 stack address.
2342
2343 Also, query the dynamic linker in the inferior to provide a suitable
2344 PLABEL for the target function. */
2345 if (!using_gcc_plt_call)
2346 {
2347 CORE_ADDR new_fun;
2348
2349 /* Get a handle for the shared library containing FUN. Given the
2350 handle we can query the shared library for a PLABEL. */
2351 solib_handle = som_solib_get_solib_by_pc (fun);
2352
2353 if (solib_handle)
2354 {
2355 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2356
2357 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2358
2359 if (trampoline == NULL)
2360 {
2361 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2362 }
2363
2364 /* This is where sr4export will jump to. */
2365 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2366
2367 /* If the function is in a shared library, then call __d_shl_get to
2368 get a PLABEL for the target function. */
2369 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2370
2371 if (new_stub == 0)
2372 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2373
2374 /* We have to store the address of the stub in __shlib_funcptr. */
2375 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2376 (struct objfile *) NULL);
2377
2378 if (msymbol == NULL)
2379 error ("Can't find an address for __shlib_funcptr");
2380 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2381 (char *) &new_stub, 4);
2382
2383 /* We want sr4export to call __d_plt_call, so we claim it is
2384 the final target. Clear trampoline. */
2385 fun = new_fun;
2386 trampoline = NULL;
2387 }
2388 }
2389
2390 /* Store upper 21 bits of function address into ldil. fun will either be
2391 the final target (most cases) or __d_plt_call when calling into a shared
2392 library and __gcc_plt_call is not available. */
2393 store_unsigned_integer
2394 (&dummy[FUNC_LDIL_OFFSET],
2395 INSTRUCTION_SIZE,
2396 deposit_21 (fun >> 11,
2397 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2398 INSTRUCTION_SIZE)));
2399
2400 /* Store lower 11 bits of function address into ldo */
2401 store_unsigned_integer
2402 (&dummy[FUNC_LDO_OFFSET],
2403 INSTRUCTION_SIZE,
2404 deposit_14 (fun & MASK_11,
2405 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2406 INSTRUCTION_SIZE)));
2407 #ifdef SR4EXPORT_LDIL_OFFSET
2408
2409 {
2410 CORE_ADDR trampoline_addr;
2411
2412 /* We may still need sr4export's address too. */
2413
2414 if (trampoline == NULL)
2415 {
2416 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2417 if (msymbol == NULL)
2418 error ("Can't find an address for _sr4export trampoline");
2419
2420 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2421 }
2422 else
2423 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2424
2425
2426 /* Store upper 21 bits of trampoline's address into ldil */
2427 store_unsigned_integer
2428 (&dummy[SR4EXPORT_LDIL_OFFSET],
2429 INSTRUCTION_SIZE,
2430 deposit_21 (trampoline_addr >> 11,
2431 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2432 INSTRUCTION_SIZE)));
2433
2434 /* Store lower 11 bits of trampoline's address into ldo */
2435 store_unsigned_integer
2436 (&dummy[SR4EXPORT_LDO_OFFSET],
2437 INSTRUCTION_SIZE,
2438 deposit_14 (trampoline_addr & MASK_11,
2439 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2440 INSTRUCTION_SIZE)));
2441 }
2442 #endif
2443
2444 write_register (22, pc);
2445
2446 /* If we are in a syscall, then we should call the stack dummy
2447 directly. $$dyncall is not needed as the kernel sets up the
2448 space id registers properly based on the value in %r31. In
2449 fact calling $$dyncall will not work because the value in %r22
2450 will be clobbered on the syscall exit path.
2451
2452 Similarly if the current PC is in a shared library. Note however,
2453 this scheme won't work if the shared library isn't mapped into
2454 the same space as the stack. */
2455 if (flags & 2)
2456 return pc;
2457 #ifndef GDB_TARGET_IS_PA_ELF
2458 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2459 return pc;
2460 #endif
2461 else
2462 return dyncall_addr;
2463 #endif
2464 }
2465
2466 /* If the pid is in a syscall, then the FP register is not readable.
2467 We'll return zero in that case, rather than attempting to read it
2468 and cause a warning. */
2469
2470 CORE_ADDR
2471 hppa_read_fp (int pid)
2472 {
2473 int flags = read_register (FLAGS_REGNUM);
2474
2475 if (flags & 2)
2476 {
2477 return (CORE_ADDR) 0;
2478 }
2479
2480 /* This is the only site that may directly read_register () the FP
2481 register. All others must use deprecated_read_fp (). */
2482 return read_register (DEPRECATED_FP_REGNUM);
2483 }
2484
2485 CORE_ADDR
2486 hppa_target_read_fp (void)
2487 {
2488 return hppa_read_fp (PIDGET (inferior_ptid));
2489 }
2490
2491 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2492 bits. */
2493
2494 CORE_ADDR
2495 hppa_target_read_pc (ptid_t ptid)
2496 {
2497 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2498
2499 /* The following test does not belong here. It is OS-specific, and belongs
2500 in native code. */
2501 /* Test SS_INSYSCALL */
2502 if (flags & 2)
2503 return read_register_pid (31, ptid) & ~0x3;
2504
2505 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2506 }
2507
2508 /* Write out the PC. If currently in a syscall, then also write the new
2509 PC value into %r31. */
2510
2511 void
2512 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2513 {
2514 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2515
2516 /* The following test does not belong here. It is OS-specific, and belongs
2517 in native code. */
2518 /* If in a syscall, then set %r31. Also make sure to get the
2519 privilege bits set correctly. */
2520 /* Test SS_INSYSCALL */
2521 if (flags & 2)
2522 write_register_pid (31, v | 0x3, ptid);
2523
2524 write_register_pid (PC_REGNUM, v, ptid);
2525 write_register_pid (NPC_REGNUM, v + 4, ptid);
2526 }
2527
2528 /* return the alignment of a type in bytes. Structures have the maximum
2529 alignment required by their fields. */
2530
2531 static int
2532 hppa_alignof (struct type *type)
2533 {
2534 int max_align, align, i;
2535 CHECK_TYPEDEF (type);
2536 switch (TYPE_CODE (type))
2537 {
2538 case TYPE_CODE_PTR:
2539 case TYPE_CODE_INT:
2540 case TYPE_CODE_FLT:
2541 return TYPE_LENGTH (type);
2542 case TYPE_CODE_ARRAY:
2543 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2544 case TYPE_CODE_STRUCT:
2545 case TYPE_CODE_UNION:
2546 max_align = 1;
2547 for (i = 0; i < TYPE_NFIELDS (type); i++)
2548 {
2549 /* Bit fields have no real alignment. */
2550 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2551 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2552 {
2553 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2554 max_align = max (max_align, align);
2555 }
2556 }
2557 return max_align;
2558 default:
2559 return 4;
2560 }
2561 }
2562
2563 /* Print the register regnum, or all registers if regnum is -1 */
2564
2565 void
2566 pa_do_registers_info (int regnum, int fpregs)
2567 {
2568 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2569 int i;
2570
2571 /* Make a copy of gdb's save area (may cause actual
2572 reads from the target). */
2573 for (i = 0; i < NUM_REGS; i++)
2574 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2575
2576 if (regnum == -1)
2577 pa_print_registers (raw_regs, regnum, fpregs);
2578 else if (regnum < FP4_REGNUM)
2579 {
2580 long reg_val[2];
2581
2582 /* Why is the value not passed through "extract_signed_integer"
2583 as in "pa_print_registers" below? */
2584 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2585
2586 if (!is_pa_2)
2587 {
2588 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2589 }
2590 else
2591 {
2592 /* Fancy % formats to prevent leading zeros. */
2593 if (reg_val[0] == 0)
2594 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2595 else
2596 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2597 reg_val[0], reg_val[1]);
2598 }
2599 }
2600 else
2601 /* Note that real floating point values only start at
2602 FP4_REGNUM. FP0 and up are just status and error
2603 registers, which have integral (bit) values. */
2604 pa_print_fp_reg (regnum);
2605 }
2606
2607 /********** new function ********************/
2608 void
2609 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2610 enum precision_type precision)
2611 {
2612 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2613 int i;
2614
2615 /* Make a copy of gdb's save area (may cause actual
2616 reads from the target). */
2617 for (i = 0; i < NUM_REGS; i++)
2618 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2619
2620 if (regnum == -1)
2621 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2622
2623 else if (regnum < FP4_REGNUM)
2624 {
2625 long reg_val[2];
2626
2627 /* Why is the value not passed through "extract_signed_integer"
2628 as in "pa_print_registers" below? */
2629 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2630
2631 if (!is_pa_2)
2632 {
2633 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2634 }
2635 else
2636 {
2637 /* Fancy % formats to prevent leading zeros. */
2638 if (reg_val[0] == 0)
2639 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2640 reg_val[1]);
2641 else
2642 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2643 reg_val[0], reg_val[1]);
2644 }
2645 }
2646 else
2647 /* Note that real floating point values only start at
2648 FP4_REGNUM. FP0 and up are just status and error
2649 registers, which have integral (bit) values. */
2650 pa_strcat_fp_reg (regnum, stream, precision);
2651 }
2652
2653 /* If this is a PA2.0 machine, fetch the real 64-bit register
2654 value. Otherwise use the info from gdb's saved register area.
2655
2656 Note that reg_val is really expected to be an array of longs,
2657 with two elements. */
2658 static void
2659 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2660 {
2661 static int know_which = 0; /* False */
2662
2663 int regaddr;
2664 unsigned int offset;
2665 register int i;
2666 int start;
2667
2668
2669 char buf[MAX_REGISTER_SIZE];
2670 long long reg_val;
2671
2672 if (!know_which)
2673 {
2674 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2675 {
2676 is_pa_2 = (1 == 1);
2677 }
2678
2679 know_which = 1; /* True */
2680 }
2681
2682 raw_val[0] = 0;
2683 raw_val[1] = 0;
2684
2685 if (!is_pa_2)
2686 {
2687 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2688 return;
2689 }
2690
2691 /* Code below copied from hppah-nat.c, with fixes for wide
2692 registers, using different area of save_state, etc. */
2693 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2694 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2695 {
2696 /* Use narrow regs area of save_state and default macro. */
2697 offset = U_REGS_OFFSET;
2698 regaddr = register_addr (regnum, offset);
2699 start = 1;
2700 }
2701 else
2702 {
2703 /* Use wide regs area, and calculate registers as 8 bytes wide.
2704
2705 We'd like to do this, but current version of "C" doesn't
2706 permit "offsetof":
2707
2708 offset = offsetof(save_state_t, ss_wide);
2709
2710 Note that to avoid "C" doing typed pointer arithmetic, we
2711 have to cast away the type in our offset calculation:
2712 otherwise we get an offset of 1! */
2713
2714 /* NB: save_state_t is not available before HPUX 9.
2715 The ss_wide field is not available previous to HPUX 10.20,
2716 so to avoid compile-time warnings, we only compile this for
2717 PA 2.0 processors. This control path should only be followed
2718 if we're debugging a PA 2.0 processor, so this should not cause
2719 problems. */
2720
2721 /* #if the following code out so that this file can still be
2722 compiled on older HPUX boxes (< 10.20) which don't have
2723 this structure/structure member. */
2724 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2725 save_state_t temp;
2726
2727 offset = ((int) &temp.ss_wide) - ((int) &temp);
2728 regaddr = offset + regnum * 8;
2729 start = 0;
2730 #endif
2731 }
2732
2733 for (i = start; i < 2; i++)
2734 {
2735 errno = 0;
2736 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2737 (PTRACE_ARG3_TYPE) regaddr, 0);
2738 if (errno != 0)
2739 {
2740 /* Warning, not error, in case we are attached; sometimes the
2741 kernel doesn't let us at the registers. */
2742 char *err = safe_strerror (errno);
2743 char *msg = alloca (strlen (err) + 128);
2744 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2745 warning (msg);
2746 goto error_exit;
2747 }
2748
2749 regaddr += sizeof (long);
2750 }
2751
2752 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2753 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2754
2755 error_exit:
2756 ;
2757 }
2758
2759 /* "Info all-reg" command */
2760
2761 static void
2762 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2763 {
2764 int i, j;
2765 /* Alas, we are compiled so that "long long" is 32 bits */
2766 long raw_val[2];
2767 long long_val;
2768 int rows = 48, columns = 2;
2769
2770 for (i = 0; i < rows; i++)
2771 {
2772 for (j = 0; j < columns; j++)
2773 {
2774 /* We display registers in column-major order. */
2775 int regnum = i + j * rows;
2776
2777 /* Q: Why is the value passed through "extract_signed_integer",
2778 while above, in "pa_do_registers_info" it isn't?
2779 A: ? */
2780 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2781
2782 /* Even fancier % formats to prevent leading zeros
2783 and still maintain the output in columns. */
2784 if (!is_pa_2)
2785 {
2786 /* Being big-endian, on this machine the low bits
2787 (the ones we want to look at) are in the second longword. */
2788 long_val = extract_signed_integer (&raw_val[1], 4);
2789 printf_filtered ("%10.10s: %8lx ",
2790 REGISTER_NAME (regnum), long_val);
2791 }
2792 else
2793 {
2794 /* raw_val = extract_signed_integer(&raw_val, 8); */
2795 if (raw_val[0] == 0)
2796 printf_filtered ("%10.10s: %8lx ",
2797 REGISTER_NAME (regnum), raw_val[1]);
2798 else
2799 printf_filtered ("%10.10s: %8lx%8.8lx ",
2800 REGISTER_NAME (regnum),
2801 raw_val[0], raw_val[1]);
2802 }
2803 }
2804 printf_unfiltered ("\n");
2805 }
2806
2807 if (fpregs)
2808 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2809 pa_print_fp_reg (i);
2810 }
2811
2812 /************* new function ******************/
2813 static void
2814 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2815 struct ui_file *stream)
2816 {
2817 int i, j;
2818 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2819 long long_val;
2820 enum precision_type precision;
2821
2822 precision = unspecified_precision;
2823
2824 for (i = 0; i < 18; i++)
2825 {
2826 for (j = 0; j < 4; j++)
2827 {
2828 /* Q: Why is the value passed through "extract_signed_integer",
2829 while above, in "pa_do_registers_info" it isn't?
2830 A: ? */
2831 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2832
2833 /* Even fancier % formats to prevent leading zeros
2834 and still maintain the output in columns. */
2835 if (!is_pa_2)
2836 {
2837 /* Being big-endian, on this machine the low bits
2838 (the ones we want to look at) are in the second longword. */
2839 long_val = extract_signed_integer (&raw_val[1], 4);
2840 fprintf_filtered (stream, "%8.8s: %8lx ",
2841 REGISTER_NAME (i + (j * 18)), long_val);
2842 }
2843 else
2844 {
2845 /* raw_val = extract_signed_integer(&raw_val, 8); */
2846 if (raw_val[0] == 0)
2847 fprintf_filtered (stream, "%8.8s: %8lx ",
2848 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2849 else
2850 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2851 REGISTER_NAME (i + (j * 18)), raw_val[0],
2852 raw_val[1]);
2853 }
2854 }
2855 fprintf_unfiltered (stream, "\n");
2856 }
2857
2858 if (fpregs)
2859 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2860 pa_strcat_fp_reg (i, stream, precision);
2861 }
2862
2863 static void
2864 pa_print_fp_reg (int i)
2865 {
2866 char raw_buffer[MAX_REGISTER_SIZE];
2867 char virtual_buffer[MAX_REGISTER_SIZE];
2868
2869 /* Get 32bits of data. */
2870 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2871
2872 /* Put it in the buffer. No conversions are ever necessary. */
2873 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2874
2875 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2876 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2877 fputs_filtered ("(single precision) ", gdb_stdout);
2878
2879 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2880 1, 0, Val_pretty_default);
2881 printf_filtered ("\n");
2882
2883 /* If "i" is even, then this register can also be a double-precision
2884 FP register. Dump it out as such. */
2885 if ((i % 2) == 0)
2886 {
2887 /* Get the data in raw format for the 2nd half. */
2888 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2889
2890 /* Copy it into the appropriate part of the virtual buffer. */
2891 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2892 REGISTER_RAW_SIZE (i));
2893
2894 /* Dump it as a double. */
2895 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2896 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2897 fputs_filtered ("(double precision) ", gdb_stdout);
2898
2899 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2900 1, 0, Val_pretty_default);
2901 printf_filtered ("\n");
2902 }
2903 }
2904
2905 /*************** new function ***********************/
2906 static void
2907 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2908 {
2909 char raw_buffer[MAX_REGISTER_SIZE];
2910 char virtual_buffer[MAX_REGISTER_SIZE];
2911
2912 fputs_filtered (REGISTER_NAME (i), stream);
2913 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2914
2915 /* Get 32bits of data. */
2916 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2917
2918 /* Put it in the buffer. No conversions are ever necessary. */
2919 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2920
2921 if (precision == double_precision && (i % 2) == 0)
2922 {
2923
2924 char raw_buf[MAX_REGISTER_SIZE];
2925
2926 /* Get the data in raw format for the 2nd half. */
2927 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2928
2929 /* Copy it into the appropriate part of the virtual buffer. */
2930 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2931
2932 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2933 1, 0, Val_pretty_default);
2934
2935 }
2936 else
2937 {
2938 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2939 1, 0, Val_pretty_default);
2940 }
2941
2942 }
2943
2944 /* Return one if PC is in the call path of a trampoline, else return zero.
2945
2946 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2947 just shared library trampolines (import, export). */
2948
2949 int
2950 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2951 {
2952 struct minimal_symbol *minsym;
2953 struct unwind_table_entry *u;
2954 static CORE_ADDR dyncall = 0;
2955 static CORE_ADDR sr4export = 0;
2956
2957 #ifdef GDB_TARGET_IS_HPPA_20W
2958 /* PA64 has a completely different stub/trampoline scheme. Is it
2959 better? Maybe. It's certainly harder to determine with any
2960 certainty that we are in a stub because we can not refer to the
2961 unwinders to help.
2962
2963 The heuristic is simple. Try to lookup the current PC value in th
2964 minimal symbol table. If that fails, then assume we are not in a
2965 stub and return.
2966
2967 Then see if the PC value falls within the section bounds for the
2968 section containing the minimal symbol we found in the first
2969 step. If it does, then assume we are not in a stub and return.
2970
2971 Finally peek at the instructions to see if they look like a stub. */
2972 {
2973 struct minimal_symbol *minsym;
2974 asection *sec;
2975 CORE_ADDR addr;
2976 int insn, i;
2977
2978 minsym = lookup_minimal_symbol_by_pc (pc);
2979 if (! minsym)
2980 return 0;
2981
2982 sec = SYMBOL_BFD_SECTION (minsym);
2983
2984 if (sec->vma <= pc
2985 && sec->vma + sec->_cooked_size < pc)
2986 return 0;
2987
2988 /* We might be in a stub. Peek at the instructions. Stubs are 3
2989 instructions long. */
2990 insn = read_memory_integer (pc, 4);
2991
2992 /* Find out where we think we are within the stub. */
2993 if ((insn & 0xffffc00e) == 0x53610000)
2994 addr = pc;
2995 else if ((insn & 0xffffffff) == 0xe820d000)
2996 addr = pc - 4;
2997 else if ((insn & 0xffffc00e) == 0x537b0000)
2998 addr = pc - 8;
2999 else
3000 return 0;
3001
3002 /* Now verify each insn in the range looks like a stub instruction. */
3003 insn = read_memory_integer (addr, 4);
3004 if ((insn & 0xffffc00e) != 0x53610000)
3005 return 0;
3006
3007 /* Now verify each insn in the range looks like a stub instruction. */
3008 insn = read_memory_integer (addr + 4, 4);
3009 if ((insn & 0xffffffff) != 0xe820d000)
3010 return 0;
3011
3012 /* Now verify each insn in the range looks like a stub instruction. */
3013 insn = read_memory_integer (addr + 8, 4);
3014 if ((insn & 0xffffc00e) != 0x537b0000)
3015 return 0;
3016
3017 /* Looks like a stub. */
3018 return 1;
3019 }
3020 #endif
3021
3022 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3023 new exec file */
3024
3025 /* First see if PC is in one of the two C-library trampolines. */
3026 if (!dyncall)
3027 {
3028 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3029 if (minsym)
3030 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3031 else
3032 dyncall = -1;
3033 }
3034
3035 if (!sr4export)
3036 {
3037 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3038 if (minsym)
3039 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3040 else
3041 sr4export = -1;
3042 }
3043
3044 if (pc == dyncall || pc == sr4export)
3045 return 1;
3046
3047 minsym = lookup_minimal_symbol_by_pc (pc);
3048 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3049 return 1;
3050
3051 /* Get the unwind descriptor corresponding to PC, return zero
3052 if no unwind was found. */
3053 u = find_unwind_entry (pc);
3054 if (!u)
3055 return 0;
3056
3057 /* If this isn't a linker stub, then return now. */
3058 if (u->stub_unwind.stub_type == 0)
3059 return 0;
3060
3061 /* By definition a long-branch stub is a call stub. */
3062 if (u->stub_unwind.stub_type == LONG_BRANCH)
3063 return 1;
3064
3065 /* The call and return path execute the same instructions within
3066 an IMPORT stub! So an IMPORT stub is both a call and return
3067 trampoline. */
3068 if (u->stub_unwind.stub_type == IMPORT)
3069 return 1;
3070
3071 /* Parameter relocation stubs always have a call path and may have a
3072 return path. */
3073 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3074 || u->stub_unwind.stub_type == EXPORT)
3075 {
3076 CORE_ADDR addr;
3077
3078 /* Search forward from the current PC until we hit a branch
3079 or the end of the stub. */
3080 for (addr = pc; addr <= u->region_end; addr += 4)
3081 {
3082 unsigned long insn;
3083
3084 insn = read_memory_integer (addr, 4);
3085
3086 /* Does it look like a bl? If so then it's the call path, if
3087 we find a bv or be first, then we're on the return path. */
3088 if ((insn & 0xfc00e000) == 0xe8000000)
3089 return 1;
3090 else if ((insn & 0xfc00e001) == 0xe800c000
3091 || (insn & 0xfc000000) == 0xe0000000)
3092 return 0;
3093 }
3094
3095 /* Should never happen. */
3096 warning ("Unable to find branch in parameter relocation stub.\n");
3097 return 0;
3098 }
3099
3100 /* Unknown stub type. For now, just return zero. */
3101 return 0;
3102 }
3103
3104 /* Return one if PC is in the return path of a trampoline, else return zero.
3105
3106 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3107 just shared library trampolines (import, export). */
3108
3109 int
3110 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3111 {
3112 struct unwind_table_entry *u;
3113
3114 /* Get the unwind descriptor corresponding to PC, return zero
3115 if no unwind was found. */
3116 u = find_unwind_entry (pc);
3117 if (!u)
3118 return 0;
3119
3120 /* If this isn't a linker stub or it's just a long branch stub, then
3121 return zero. */
3122 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3123 return 0;
3124
3125 /* The call and return path execute the same instructions within
3126 an IMPORT stub! So an IMPORT stub is both a call and return
3127 trampoline. */
3128 if (u->stub_unwind.stub_type == IMPORT)
3129 return 1;
3130
3131 /* Parameter relocation stubs always have a call path and may have a
3132 return path. */
3133 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3134 || u->stub_unwind.stub_type == EXPORT)
3135 {
3136 CORE_ADDR addr;
3137
3138 /* Search forward from the current PC until we hit a branch
3139 or the end of the stub. */
3140 for (addr = pc; addr <= u->region_end; addr += 4)
3141 {
3142 unsigned long insn;
3143
3144 insn = read_memory_integer (addr, 4);
3145
3146 /* Does it look like a bl? If so then it's the call path, if
3147 we find a bv or be first, then we're on the return path. */
3148 if ((insn & 0xfc00e000) == 0xe8000000)
3149 return 0;
3150 else if ((insn & 0xfc00e001) == 0xe800c000
3151 || (insn & 0xfc000000) == 0xe0000000)
3152 return 1;
3153 }
3154
3155 /* Should never happen. */
3156 warning ("Unable to find branch in parameter relocation stub.\n");
3157 return 0;
3158 }
3159
3160 /* Unknown stub type. For now, just return zero. */
3161 return 0;
3162
3163 }
3164
3165 /* Figure out if PC is in a trampoline, and if so find out where
3166 the trampoline will jump to. If not in a trampoline, return zero.
3167
3168 Simple code examination probably is not a good idea since the code
3169 sequences in trampolines can also appear in user code.
3170
3171 We use unwinds and information from the minimal symbol table to
3172 determine when we're in a trampoline. This won't work for ELF
3173 (yet) since it doesn't create stub unwind entries. Whether or
3174 not ELF will create stub unwinds or normal unwinds for linker
3175 stubs is still being debated.
3176
3177 This should handle simple calls through dyncall or sr4export,
3178 long calls, argument relocation stubs, and dyncall/sr4export
3179 calling an argument relocation stub. It even handles some stubs
3180 used in dynamic executables. */
3181
3182 CORE_ADDR
3183 hppa_skip_trampoline_code (CORE_ADDR pc)
3184 {
3185 long orig_pc = pc;
3186 long prev_inst, curr_inst, loc;
3187 static CORE_ADDR dyncall = 0;
3188 static CORE_ADDR dyncall_external = 0;
3189 static CORE_ADDR sr4export = 0;
3190 struct minimal_symbol *msym;
3191 struct unwind_table_entry *u;
3192
3193 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3194 new exec file */
3195
3196 if (!dyncall)
3197 {
3198 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3199 if (msym)
3200 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3201 else
3202 dyncall = -1;
3203 }
3204
3205 if (!dyncall_external)
3206 {
3207 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3208 if (msym)
3209 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3210 else
3211 dyncall_external = -1;
3212 }
3213
3214 if (!sr4export)
3215 {
3216 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3217 if (msym)
3218 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3219 else
3220 sr4export = -1;
3221 }
3222
3223 /* Addresses passed to dyncall may *NOT* be the actual address
3224 of the function. So we may have to do something special. */
3225 if (pc == dyncall)
3226 {
3227 pc = (CORE_ADDR) read_register (22);
3228
3229 /* If bit 30 (counting from the left) is on, then pc is the address of
3230 the PLT entry for this function, not the address of the function
3231 itself. Bit 31 has meaning too, but only for MPE. */
3232 if (pc & 0x2)
3233 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3234 }
3235 if (pc == dyncall_external)
3236 {
3237 pc = (CORE_ADDR) read_register (22);
3238 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3239 }
3240 else if (pc == sr4export)
3241 pc = (CORE_ADDR) (read_register (22));
3242
3243 /* Get the unwind descriptor corresponding to PC, return zero
3244 if no unwind was found. */
3245 u = find_unwind_entry (pc);
3246 if (!u)
3247 return 0;
3248
3249 /* If this isn't a linker stub, then return now. */
3250 /* elz: attention here! (FIXME) because of a compiler/linker
3251 error, some stubs which should have a non zero stub_unwind.stub_type
3252 have unfortunately a value of zero. So this function would return here
3253 as if we were not in a trampoline. To fix this, we go look at the partial
3254 symbol information, which reports this guy as a stub.
3255 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3256 partial symbol information is also wrong sometimes. This is because
3257 when it is entered (somread.c::som_symtab_read()) it can happen that
3258 if the type of the symbol (from the som) is Entry, and the symbol is
3259 in a shared library, then it can also be a trampoline. This would
3260 be OK, except that I believe the way they decide if we are ina shared library
3261 does not work. SOOOO..., even if we have a regular function w/o trampolines
3262 its minimal symbol can be assigned type mst_solib_trampoline.
3263 Also, if we find that the symbol is a real stub, then we fix the unwind
3264 descriptor, and define the stub type to be EXPORT.
3265 Hopefully this is correct most of the times. */
3266 if (u->stub_unwind.stub_type == 0)
3267 {
3268
3269 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3270 we can delete all the code which appears between the lines */
3271 /*--------------------------------------------------------------------------*/
3272 msym = lookup_minimal_symbol_by_pc (pc);
3273
3274 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3275 return orig_pc == pc ? 0 : pc & ~0x3;
3276
3277 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3278 {
3279 struct objfile *objfile;
3280 struct minimal_symbol *msymbol;
3281 int function_found = 0;
3282
3283 /* go look if there is another minimal symbol with the same name as
3284 this one, but with type mst_text. This would happen if the msym
3285 is an actual trampoline, in which case there would be another
3286 symbol with the same name corresponding to the real function */
3287
3288 ALL_MSYMBOLS (objfile, msymbol)
3289 {
3290 if (MSYMBOL_TYPE (msymbol) == mst_text
3291 && STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3292 {
3293 function_found = 1;
3294 break;
3295 }
3296 }
3297
3298 if (function_found)
3299 /* the type of msym is correct (mst_solib_trampoline), but
3300 the unwind info is wrong, so set it to the correct value */
3301 u->stub_unwind.stub_type = EXPORT;
3302 else
3303 /* the stub type info in the unwind is correct (this is not a
3304 trampoline), but the msym type information is wrong, it
3305 should be mst_text. So we need to fix the msym, and also
3306 get out of this function */
3307 {
3308 MSYMBOL_TYPE (msym) = mst_text;
3309 return orig_pc == pc ? 0 : pc & ~0x3;
3310 }
3311 }
3312
3313 /*--------------------------------------------------------------------------*/
3314 }
3315
3316 /* It's a stub. Search for a branch and figure out where it goes.
3317 Note we have to handle multi insn branch sequences like ldil;ble.
3318 Most (all?) other branches can be determined by examining the contents
3319 of certain registers and the stack. */
3320
3321 loc = pc;
3322 curr_inst = 0;
3323 prev_inst = 0;
3324 while (1)
3325 {
3326 /* Make sure we haven't walked outside the range of this stub. */
3327 if (u != find_unwind_entry (loc))
3328 {
3329 warning ("Unable to find branch in linker stub");
3330 return orig_pc == pc ? 0 : pc & ~0x3;
3331 }
3332
3333 prev_inst = curr_inst;
3334 curr_inst = read_memory_integer (loc, 4);
3335
3336 /* Does it look like a branch external using %r1? Then it's the
3337 branch from the stub to the actual function. */
3338 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3339 {
3340 /* Yup. See if the previous instruction loaded
3341 a value into %r1. If so compute and return the jump address. */
3342 if ((prev_inst & 0xffe00000) == 0x20200000)
3343 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3344 else
3345 {
3346 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3347 return orig_pc == pc ? 0 : pc & ~0x3;
3348 }
3349 }
3350
3351 /* Does it look like a be 0(sr0,%r21)? OR
3352 Does it look like a be, n 0(sr0,%r21)? OR
3353 Does it look like a bve (r21)? (this is on PA2.0)
3354 Does it look like a bve, n(r21)? (this is also on PA2.0)
3355 That's the branch from an
3356 import stub to an export stub.
3357
3358 It is impossible to determine the target of the branch via
3359 simple examination of instructions and/or data (consider
3360 that the address in the plabel may be the address of the
3361 bind-on-reference routine in the dynamic loader).
3362
3363 So we have try an alternative approach.
3364
3365 Get the name of the symbol at our current location; it should
3366 be a stub symbol with the same name as the symbol in the
3367 shared library.
3368
3369 Then lookup a minimal symbol with the same name; we should
3370 get the minimal symbol for the target routine in the shared
3371 library as those take precedence of import/export stubs. */
3372 if ((curr_inst == 0xe2a00000) ||
3373 (curr_inst == 0xe2a00002) ||
3374 (curr_inst == 0xeaa0d000) ||
3375 (curr_inst == 0xeaa0d002))
3376 {
3377 struct minimal_symbol *stubsym, *libsym;
3378
3379 stubsym = lookup_minimal_symbol_by_pc (loc);
3380 if (stubsym == NULL)
3381 {
3382 warning ("Unable to find symbol for 0x%lx", loc);
3383 return orig_pc == pc ? 0 : pc & ~0x3;
3384 }
3385
3386 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3387 if (libsym == NULL)
3388 {
3389 warning ("Unable to find library symbol for %s\n",
3390 DEPRECATED_SYMBOL_NAME (stubsym));
3391 return orig_pc == pc ? 0 : pc & ~0x3;
3392 }
3393
3394 return SYMBOL_VALUE (libsym);
3395 }
3396
3397 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3398 branch from the stub to the actual function. */
3399 /*elz */
3400 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3401 || (curr_inst & 0xffe0e000) == 0xe8000000
3402 || (curr_inst & 0xffe0e000) == 0xe800A000)
3403 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3404
3405 /* Does it look like bv (rp)? Note this depends on the
3406 current stack pointer being the same as the stack
3407 pointer in the stub itself! This is a branch on from the
3408 stub back to the original caller. */
3409 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3410 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3411 {
3412 /* Yup. See if the previous instruction loaded
3413 rp from sp - 8. */
3414 if (prev_inst == 0x4bc23ff1)
3415 return (read_memory_integer
3416 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3417 else
3418 {
3419 warning ("Unable to find restore of %%rp before bv (%%rp).");
3420 return orig_pc == pc ? 0 : pc & ~0x3;
3421 }
3422 }
3423
3424 /* elz: added this case to capture the new instruction
3425 at the end of the return part of an export stub used by
3426 the PA2.0: BVE, n (rp) */
3427 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3428 {
3429 return (read_memory_integer
3430 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3431 }
3432
3433 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3434 the original caller from the stub. Used in dynamic executables. */
3435 else if (curr_inst == 0xe0400002)
3436 {
3437 /* The value we jump to is sitting in sp - 24. But that's
3438 loaded several instructions before the be instruction.
3439 I guess we could check for the previous instruction being
3440 mtsp %r1,%sr0 if we want to do sanity checking. */
3441 return (read_memory_integer
3442 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3443 }
3444
3445 /* Haven't found the branch yet, but we're still in the stub.
3446 Keep looking. */
3447 loc += 4;
3448 }
3449 }
3450
3451
3452 /* For the given instruction (INST), return any adjustment it makes
3453 to the stack pointer or zero for no adjustment.
3454
3455 This only handles instructions commonly found in prologues. */
3456
3457 static int
3458 prologue_inst_adjust_sp (unsigned long inst)
3459 {
3460 /* This must persist across calls. */
3461 static int save_high21;
3462
3463 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3464 if ((inst & 0xffffc000) == 0x37de0000)
3465 return extract_14 (inst);
3466
3467 /* stwm X,D(sp) */
3468 if ((inst & 0xffe00000) == 0x6fc00000)
3469 return extract_14 (inst);
3470
3471 /* std,ma X,D(sp) */
3472 if ((inst & 0xffe00008) == 0x73c00008)
3473 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3474
3475 /* addil high21,%r1; ldo low11,(%r1),%r30)
3476 save high bits in save_high21 for later use. */
3477 if ((inst & 0xffe00000) == 0x28200000)
3478 {
3479 save_high21 = extract_21 (inst);
3480 return 0;
3481 }
3482
3483 if ((inst & 0xffff0000) == 0x343e0000)
3484 return save_high21 + extract_14 (inst);
3485
3486 /* fstws as used by the HP compilers. */
3487 if ((inst & 0xffffffe0) == 0x2fd01220)
3488 return extract_5_load (inst);
3489
3490 /* No adjustment. */
3491 return 0;
3492 }
3493
3494 /* Return nonzero if INST is a branch of some kind, else return zero. */
3495
3496 static int
3497 is_branch (unsigned long inst)
3498 {
3499 switch (inst >> 26)
3500 {
3501 case 0x20:
3502 case 0x21:
3503 case 0x22:
3504 case 0x23:
3505 case 0x27:
3506 case 0x28:
3507 case 0x29:
3508 case 0x2a:
3509 case 0x2b:
3510 case 0x2f:
3511 case 0x30:
3512 case 0x31:
3513 case 0x32:
3514 case 0x33:
3515 case 0x38:
3516 case 0x39:
3517 case 0x3a:
3518 case 0x3b:
3519 return 1;
3520
3521 default:
3522 return 0;
3523 }
3524 }
3525
3526 /* Return the register number for a GR which is saved by INST or
3527 zero it INST does not save a GR. */
3528
3529 static int
3530 inst_saves_gr (unsigned long inst)
3531 {
3532 /* Does it look like a stw? */
3533 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3534 || (inst >> 26) == 0x1f
3535 || ((inst >> 26) == 0x1f
3536 && ((inst >> 6) == 0xa)))
3537 return extract_5R_store (inst);
3538
3539 /* Does it look like a std? */
3540 if ((inst >> 26) == 0x1c
3541 || ((inst >> 26) == 0x03
3542 && ((inst >> 6) & 0xf) == 0xb))
3543 return extract_5R_store (inst);
3544
3545 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3546 if ((inst >> 26) == 0x1b)
3547 return extract_5R_store (inst);
3548
3549 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3550 too. */
3551 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3552 || ((inst >> 26) == 0x3
3553 && (((inst >> 6) & 0xf) == 0x8
3554 || (inst >> 6) & 0xf) == 0x9))
3555 return extract_5R_store (inst);
3556
3557 return 0;
3558 }
3559
3560 /* Return the register number for a FR which is saved by INST or
3561 zero it INST does not save a FR.
3562
3563 Note we only care about full 64bit register stores (that's the only
3564 kind of stores the prologue will use).
3565
3566 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3567
3568 static int
3569 inst_saves_fr (unsigned long inst)
3570 {
3571 /* is this an FSTD ? */
3572 if ((inst & 0xfc00dfc0) == 0x2c001200)
3573 return extract_5r_store (inst);
3574 if ((inst & 0xfc000002) == 0x70000002)
3575 return extract_5R_store (inst);
3576 /* is this an FSTW ? */
3577 if ((inst & 0xfc00df80) == 0x24001200)
3578 return extract_5r_store (inst);
3579 if ((inst & 0xfc000002) == 0x7c000000)
3580 return extract_5R_store (inst);
3581 return 0;
3582 }
3583
3584 /* Advance PC across any function entry prologue instructions
3585 to reach some "real" code.
3586
3587 Use information in the unwind table to determine what exactly should
3588 be in the prologue. */
3589
3590
3591 CORE_ADDR
3592 skip_prologue_hard_way (CORE_ADDR pc)
3593 {
3594 char buf[4];
3595 CORE_ADDR orig_pc = pc;
3596 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3597 unsigned long args_stored, status, i, restart_gr, restart_fr;
3598 struct unwind_table_entry *u;
3599
3600 restart_gr = 0;
3601 restart_fr = 0;
3602
3603 restart:
3604 u = find_unwind_entry (pc);
3605 if (!u)
3606 return pc;
3607
3608 /* If we are not at the beginning of a function, then return now. */
3609 if ((pc & ~0x3) != u->region_start)
3610 return pc;
3611
3612 /* This is how much of a frame adjustment we need to account for. */
3613 stack_remaining = u->Total_frame_size << 3;
3614
3615 /* Magic register saves we want to know about. */
3616 save_rp = u->Save_RP;
3617 save_sp = u->Save_SP;
3618
3619 /* An indication that args may be stored into the stack. Unfortunately
3620 the HPUX compilers tend to set this in cases where no args were
3621 stored too!. */
3622 args_stored = 1;
3623
3624 /* Turn the Entry_GR field into a bitmask. */
3625 save_gr = 0;
3626 for (i = 3; i < u->Entry_GR + 3; i++)
3627 {
3628 /* Frame pointer gets saved into a special location. */
3629 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3630 continue;
3631
3632 save_gr |= (1 << i);
3633 }
3634 save_gr &= ~restart_gr;
3635
3636 /* Turn the Entry_FR field into a bitmask too. */
3637 save_fr = 0;
3638 for (i = 12; i < u->Entry_FR + 12; i++)
3639 save_fr |= (1 << i);
3640 save_fr &= ~restart_fr;
3641
3642 /* Loop until we find everything of interest or hit a branch.
3643
3644 For unoptimized GCC code and for any HP CC code this will never ever
3645 examine any user instructions.
3646
3647 For optimzied GCC code we're faced with problems. GCC will schedule
3648 its prologue and make prologue instructions available for delay slot
3649 filling. The end result is user code gets mixed in with the prologue
3650 and a prologue instruction may be in the delay slot of the first branch
3651 or call.
3652
3653 Some unexpected things are expected with debugging optimized code, so
3654 we allow this routine to walk past user instructions in optimized
3655 GCC code. */
3656 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3657 || args_stored)
3658 {
3659 unsigned int reg_num;
3660 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3661 unsigned long old_save_rp, old_save_sp, next_inst;
3662
3663 /* Save copies of all the triggers so we can compare them later
3664 (only for HPC). */
3665 old_save_gr = save_gr;
3666 old_save_fr = save_fr;
3667 old_save_rp = save_rp;
3668 old_save_sp = save_sp;
3669 old_stack_remaining = stack_remaining;
3670
3671 status = target_read_memory (pc, buf, 4);
3672 inst = extract_unsigned_integer (buf, 4);
3673
3674 /* Yow! */
3675 if (status != 0)
3676 return pc;
3677
3678 /* Note the interesting effects of this instruction. */
3679 stack_remaining -= prologue_inst_adjust_sp (inst);
3680
3681 /* There are limited ways to store the return pointer into the
3682 stack. */
3683 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3684 save_rp = 0;
3685
3686 /* These are the only ways we save SP into the stack. At this time
3687 the HP compilers never bother to save SP into the stack. */
3688 if ((inst & 0xffffc000) == 0x6fc10000
3689 || (inst & 0xffffc00c) == 0x73c10008)
3690 save_sp = 0;
3691
3692 /* Are we loading some register with an offset from the argument
3693 pointer? */
3694 if ((inst & 0xffe00000) == 0x37a00000
3695 || (inst & 0xffffffe0) == 0x081d0240)
3696 {
3697 pc += 4;
3698 continue;
3699 }
3700
3701 /* Account for general and floating-point register saves. */
3702 reg_num = inst_saves_gr (inst);
3703 save_gr &= ~(1 << reg_num);
3704
3705 /* Ugh. Also account for argument stores into the stack.
3706 Unfortunately args_stored only tells us that some arguments
3707 where stored into the stack. Not how many or what kind!
3708
3709 This is a kludge as on the HP compiler sets this bit and it
3710 never does prologue scheduling. So once we see one, skip past
3711 all of them. We have similar code for the fp arg stores below.
3712
3713 FIXME. Can still die if we have a mix of GR and FR argument
3714 stores! */
3715 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3716 {
3717 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3718 {
3719 pc += 4;
3720 status = target_read_memory (pc, buf, 4);
3721 inst = extract_unsigned_integer (buf, 4);
3722 if (status != 0)
3723 return pc;
3724 reg_num = inst_saves_gr (inst);
3725 }
3726 args_stored = 0;
3727 continue;
3728 }
3729
3730 reg_num = inst_saves_fr (inst);
3731 save_fr &= ~(1 << reg_num);
3732
3733 status = target_read_memory (pc + 4, buf, 4);
3734 next_inst = extract_unsigned_integer (buf, 4);
3735
3736 /* Yow! */
3737 if (status != 0)
3738 return pc;
3739
3740 /* We've got to be read to handle the ldo before the fp register
3741 save. */
3742 if ((inst & 0xfc000000) == 0x34000000
3743 && inst_saves_fr (next_inst) >= 4
3744 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3745 {
3746 /* So we drop into the code below in a reasonable state. */
3747 reg_num = inst_saves_fr (next_inst);
3748 pc -= 4;
3749 }
3750
3751 /* Ugh. Also account for argument stores into the stack.
3752 This is a kludge as on the HP compiler sets this bit and it
3753 never does prologue scheduling. So once we see one, skip past
3754 all of them. */
3755 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3756 {
3757 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3758 {
3759 pc += 8;
3760 status = target_read_memory (pc, buf, 4);
3761 inst = extract_unsigned_integer (buf, 4);
3762 if (status != 0)
3763 return pc;
3764 if ((inst & 0xfc000000) != 0x34000000)
3765 break;
3766 status = target_read_memory (pc + 4, buf, 4);
3767 next_inst = extract_unsigned_integer (buf, 4);
3768 if (status != 0)
3769 return pc;
3770 reg_num = inst_saves_fr (next_inst);
3771 }
3772 args_stored = 0;
3773 continue;
3774 }
3775
3776 /* Quit if we hit any kind of branch. This can happen if a prologue
3777 instruction is in the delay slot of the first call/branch. */
3778 if (is_branch (inst))
3779 break;
3780
3781 /* What a crock. The HP compilers set args_stored even if no
3782 arguments were stored into the stack (boo hiss). This could
3783 cause this code to then skip a bunch of user insns (up to the
3784 first branch).
3785
3786 To combat this we try to identify when args_stored was bogusly
3787 set and clear it. We only do this when args_stored is nonzero,
3788 all other resources are accounted for, and nothing changed on
3789 this pass. */
3790 if (args_stored
3791 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3792 && old_save_gr == save_gr && old_save_fr == save_fr
3793 && old_save_rp == save_rp && old_save_sp == save_sp
3794 && old_stack_remaining == stack_remaining)
3795 break;
3796
3797 /* Bump the PC. */
3798 pc += 4;
3799 }
3800
3801 /* We've got a tenative location for the end of the prologue. However
3802 because of limitations in the unwind descriptor mechanism we may
3803 have went too far into user code looking for the save of a register
3804 that does not exist. So, if there registers we expected to be saved
3805 but never were, mask them out and restart.
3806
3807 This should only happen in optimized code, and should be very rare. */
3808 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3809 {
3810 pc = orig_pc;
3811 restart_gr = save_gr;
3812 restart_fr = save_fr;
3813 goto restart;
3814 }
3815
3816 return pc;
3817 }
3818
3819
3820 /* Return the address of the PC after the last prologue instruction if
3821 we can determine it from the debug symbols. Else return zero. */
3822
3823 static CORE_ADDR
3824 after_prologue (CORE_ADDR pc)
3825 {
3826 struct symtab_and_line sal;
3827 CORE_ADDR func_addr, func_end;
3828 struct symbol *f;
3829
3830 /* If we can not find the symbol in the partial symbol table, then
3831 there is no hope we can determine the function's start address
3832 with this code. */
3833 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3834 return 0;
3835
3836 /* Get the line associated with FUNC_ADDR. */
3837 sal = find_pc_line (func_addr, 0);
3838
3839 /* There are only two cases to consider. First, the end of the source line
3840 is within the function bounds. In that case we return the end of the
3841 source line. Second is the end of the source line extends beyond the
3842 bounds of the current function. We need to use the slow code to
3843 examine instructions in that case.
3844
3845 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3846 the wrong thing to do. In fact, it should be entirely possible for this
3847 function to always return zero since the slow instruction scanning code
3848 is supposed to *always* work. If it does not, then it is a bug. */
3849 if (sal.end < func_end)
3850 return sal.end;
3851 else
3852 return 0;
3853 }
3854
3855 /* To skip prologues, I use this predicate. Returns either PC itself
3856 if the code at PC does not look like a function prologue; otherwise
3857 returns an address that (if we're lucky) follows the prologue. If
3858 LENIENT, then we must skip everything which is involved in setting
3859 up the frame (it's OK to skip more, just so long as we don't skip
3860 anything which might clobber the registers which are being saved.
3861 Currently we must not skip more on the alpha, but we might the lenient
3862 stuff some day. */
3863
3864 CORE_ADDR
3865 hppa_skip_prologue (CORE_ADDR pc)
3866 {
3867 unsigned long inst;
3868 int offset;
3869 CORE_ADDR post_prologue_pc;
3870 char buf[4];
3871
3872 /* See if we can determine the end of the prologue via the symbol table.
3873 If so, then return either PC, or the PC after the prologue, whichever
3874 is greater. */
3875
3876 post_prologue_pc = after_prologue (pc);
3877
3878 /* If after_prologue returned a useful address, then use it. Else
3879 fall back on the instruction skipping code.
3880
3881 Some folks have claimed this causes problems because the breakpoint
3882 may be the first instruction of the prologue. If that happens, then
3883 the instruction skipping code has a bug that needs to be fixed. */
3884 if (post_prologue_pc != 0)
3885 return max (pc, post_prologue_pc);
3886 else
3887 return (skip_prologue_hard_way (pc));
3888 }
3889
3890 /* Put here the code to store, into the SAVED_REGS, the addresses of
3891 the saved registers of frame described by FRAME_INFO. This
3892 includes special registers such as pc and fp saved in special ways
3893 in the stack frame. sp is even more special: the address we return
3894 for it IS the sp for the next frame. */
3895
3896 void
3897 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3898 CORE_ADDR frame_saved_regs[])
3899 {
3900 CORE_ADDR pc;
3901 struct unwind_table_entry *u;
3902 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3903 int status, i, reg;
3904 char buf[4];
3905 int fp_loc = -1;
3906 int final_iteration;
3907
3908 /* Zero out everything. */
3909 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
3910
3911 /* Call dummy frames always look the same, so there's no need to
3912 examine the dummy code to determine locations of saved registers;
3913 instead, let find_dummy_frame_regs fill in the correct offsets
3914 for the saved registers. */
3915 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
3916 && (get_frame_pc (frame_info)
3917 <= (get_frame_base (frame_info)
3918 /* A call dummy is sized in words, but it is actually a
3919 series of instructions. Account for that scaling
3920 factor. */
3921 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
3922 * DEPRECATED_CALL_DUMMY_LENGTH)
3923 /* Similarly we have to account for 64bit wide register
3924 saves. */
3925 + (32 * DEPRECATED_REGISTER_SIZE)
3926 /* We always consider FP regs 8 bytes long. */
3927 + (NUM_REGS - FP0_REGNUM) * 8
3928 /* Similarly we have to account for 64bit wide register
3929 saves. */
3930 + (6 * DEPRECATED_REGISTER_SIZE)))))
3931 find_dummy_frame_regs (frame_info, frame_saved_regs);
3932
3933 /* Interrupt handlers are special too. They lay out the register
3934 state in the exact same order as the register numbers in GDB. */
3935 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
3936 {
3937 for (i = 0; i < NUM_REGS; i++)
3938 {
3939 /* SP is a little special. */
3940 if (i == SP_REGNUM)
3941 frame_saved_regs[SP_REGNUM]
3942 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
3943 TARGET_PTR_BIT / 8);
3944 else
3945 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
3946 }
3947 return;
3948 }
3949
3950 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3951 /* Handle signal handler callers. */
3952 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3953 {
3954 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3955 return;
3956 }
3957 #endif
3958
3959 /* Get the starting address of the function referred to by the PC
3960 saved in frame. */
3961 pc = get_frame_func (frame_info);
3962
3963 /* Yow! */
3964 u = find_unwind_entry (pc);
3965 if (!u)
3966 return;
3967
3968 /* This is how much of a frame adjustment we need to account for. */
3969 stack_remaining = u->Total_frame_size << 3;
3970
3971 /* Magic register saves we want to know about. */
3972 save_rp = u->Save_RP;
3973 save_sp = u->Save_SP;
3974
3975 /* Turn the Entry_GR field into a bitmask. */
3976 save_gr = 0;
3977 for (i = 3; i < u->Entry_GR + 3; i++)
3978 {
3979 /* Frame pointer gets saved into a special location. */
3980 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3981 continue;
3982
3983 save_gr |= (1 << i);
3984 }
3985
3986 /* Turn the Entry_FR field into a bitmask too. */
3987 save_fr = 0;
3988 for (i = 12; i < u->Entry_FR + 12; i++)
3989 save_fr |= (1 << i);
3990
3991 /* The frame always represents the value of %sp at entry to the
3992 current function (and is thus equivalent to the "saved" stack
3993 pointer. */
3994 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
3995
3996 /* Loop until we find everything of interest or hit a branch.
3997
3998 For unoptimized GCC code and for any HP CC code this will never ever
3999 examine any user instructions.
4000
4001 For optimized GCC code we're faced with problems. GCC will schedule
4002 its prologue and make prologue instructions available for delay slot
4003 filling. The end result is user code gets mixed in with the prologue
4004 and a prologue instruction may be in the delay slot of the first branch
4005 or call.
4006
4007 Some unexpected things are expected with debugging optimized code, so
4008 we allow this routine to walk past user instructions in optimized
4009 GCC code. */
4010 final_iteration = 0;
4011 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4012 && pc <= get_frame_pc (frame_info))
4013 {
4014 status = target_read_memory (pc, buf, 4);
4015 inst = extract_unsigned_integer (buf, 4);
4016
4017 /* Yow! */
4018 if (status != 0)
4019 return;
4020
4021 /* Note the interesting effects of this instruction. */
4022 stack_remaining -= prologue_inst_adjust_sp (inst);
4023
4024 /* There are limited ways to store the return pointer into the
4025 stack. */
4026 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4027 {
4028 save_rp = 0;
4029 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4030 }
4031 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4032 {
4033 save_rp = 0;
4034 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4035 }
4036
4037 /* Note if we saved SP into the stack. This also happens to indicate
4038 the location of the saved frame pointer. */
4039 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4040 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4041 {
4042 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4043 save_sp = 0;
4044 }
4045
4046 /* Account for general and floating-point register saves. */
4047 reg = inst_saves_gr (inst);
4048 if (reg >= 3 && reg <= 18
4049 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4050 {
4051 save_gr &= ~(1 << reg);
4052
4053 /* stwm with a positive displacement is a *post modify*. */
4054 if ((inst >> 26) == 0x1b
4055 && extract_14 (inst) >= 0)
4056 frame_saved_regs[reg] = get_frame_base (frame_info);
4057 /* A std has explicit post_modify forms. */
4058 else if ((inst & 0xfc00000c0) == 0x70000008)
4059 frame_saved_regs[reg] = get_frame_base (frame_info);
4060 else
4061 {
4062 CORE_ADDR offset;
4063
4064 if ((inst >> 26) == 0x1c)
4065 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4066 else if ((inst >> 26) == 0x03)
4067 offset = low_sign_extend (inst & 0x1f, 5);
4068 else
4069 offset = extract_14 (inst);
4070
4071 /* Handle code with and without frame pointers. */
4072 if (u->Save_SP)
4073 frame_saved_regs[reg]
4074 = get_frame_base (frame_info) + offset;
4075 else
4076 frame_saved_regs[reg]
4077 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4078 + offset);
4079 }
4080 }
4081
4082
4083 /* GCC handles callee saved FP regs a little differently.
4084
4085 It emits an instruction to put the value of the start of
4086 the FP store area into %r1. It then uses fstds,ma with
4087 a basereg of %r1 for the stores.
4088
4089 HP CC emits them at the current stack pointer modifying
4090 the stack pointer as it stores each register. */
4091
4092 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4093 if ((inst & 0xffffc000) == 0x34610000
4094 || (inst & 0xffffc000) == 0x37c10000)
4095 fp_loc = extract_14 (inst);
4096
4097 reg = inst_saves_fr (inst);
4098 if (reg >= 12 && reg <= 21)
4099 {
4100 /* Note +4 braindamage below is necessary because the FP status
4101 registers are internally 8 registers rather than the expected
4102 4 registers. */
4103 save_fr &= ~(1 << reg);
4104 if (fp_loc == -1)
4105 {
4106 /* 1st HP CC FP register store. After this instruction
4107 we've set enough state that the GCC and HPCC code are
4108 both handled in the same manner. */
4109 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4110 fp_loc = 8;
4111 }
4112 else
4113 {
4114 frame_saved_regs[reg + FP0_REGNUM + 4]
4115 = get_frame_base (frame_info) + fp_loc;
4116 fp_loc += 8;
4117 }
4118 }
4119
4120 /* Quit if we hit any kind of branch the previous iteration. */
4121 if (final_iteration)
4122 break;
4123
4124 /* We want to look precisely one instruction beyond the branch
4125 if we have not found everything yet. */
4126 if (is_branch (inst))
4127 final_iteration = 1;
4128
4129 /* Bump the PC. */
4130 pc += 4;
4131 }
4132 }
4133
4134 /* XXX - deprecated. This is a compatibility function for targets
4135 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4136 /* Find the addresses in which registers are saved in FRAME. */
4137
4138 void
4139 hppa_frame_init_saved_regs (struct frame_info *frame)
4140 {
4141 if (get_frame_saved_regs (frame) == NULL)
4142 frame_saved_regs_zalloc (frame);
4143 hppa_frame_find_saved_regs (frame, get_frame_saved_regs (frame));
4144 }
4145
4146 /* Exception handling support for the HP-UX ANSI C++ compiler.
4147 The compiler (aCC) provides a callback for exception events;
4148 GDB can set a breakpoint on this callback and find out what
4149 exception event has occurred. */
4150
4151 /* The name of the hook to be set to point to the callback function */
4152 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4153 /* The name of the function to be used to set the hook value */
4154 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4155 /* The name of the callback function in end.o */
4156 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4157 /* Name of function in end.o on which a break is set (called by above) */
4158 static char HP_ACC_EH_break[] = "__d_eh_break";
4159 /* Name of flag (in end.o) that enables catching throws */
4160 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4161 /* Name of flag (in end.o) that enables catching catching */
4162 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4163 /* The enum used by aCC */
4164 typedef enum
4165 {
4166 __EH_NOTIFY_THROW,
4167 __EH_NOTIFY_CATCH
4168 }
4169 __eh_notification;
4170
4171 /* Is exception-handling support available with this executable? */
4172 static int hp_cxx_exception_support = 0;
4173 /* Has the initialize function been run? */
4174 int hp_cxx_exception_support_initialized = 0;
4175 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4176 extern int exception_support_initialized;
4177 /* Address of __eh_notify_hook */
4178 static CORE_ADDR eh_notify_hook_addr = 0;
4179 /* Address of __d_eh_notify_callback */
4180 static CORE_ADDR eh_notify_callback_addr = 0;
4181 /* Address of __d_eh_break */
4182 static CORE_ADDR eh_break_addr = 0;
4183 /* Address of __d_eh_catch_catch */
4184 static CORE_ADDR eh_catch_catch_addr = 0;
4185 /* Address of __d_eh_catch_throw */
4186 static CORE_ADDR eh_catch_throw_addr = 0;
4187 /* Sal for __d_eh_break */
4188 static struct symtab_and_line *break_callback_sal = 0;
4189
4190 /* Code in end.c expects __d_pid to be set in the inferior,
4191 otherwise __d_eh_notify_callback doesn't bother to call
4192 __d_eh_break! So we poke the pid into this symbol
4193 ourselves.
4194 0 => success
4195 1 => failure */
4196 int
4197 setup_d_pid_in_inferior (void)
4198 {
4199 CORE_ADDR anaddr;
4200 struct minimal_symbol *msymbol;
4201 char buf[4]; /* FIXME 32x64? */
4202
4203 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4204 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4205 if (msymbol == NULL)
4206 {
4207 warning ("Unable to find __d_pid symbol in object file.");
4208 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4209 return 1;
4210 }
4211
4212 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4213 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4214 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4215 {
4216 warning ("Unable to write __d_pid");
4217 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4218 return 1;
4219 }
4220 return 0;
4221 }
4222
4223 /* Initialize exception catchpoint support by looking for the
4224 necessary hooks/callbacks in end.o, etc., and set the hook value to
4225 point to the required debug function
4226
4227 Return 0 => failure
4228 1 => success */
4229
4230 static int
4231 initialize_hp_cxx_exception_support (void)
4232 {
4233 struct symtabs_and_lines sals;
4234 struct cleanup *old_chain;
4235 struct cleanup *canonical_strings_chain = NULL;
4236 int i;
4237 char *addr_start;
4238 char *addr_end = NULL;
4239 char **canonical = (char **) NULL;
4240 int thread = -1;
4241 struct symbol *sym = NULL;
4242 struct minimal_symbol *msym = NULL;
4243 struct objfile *objfile;
4244 asection *shlib_info;
4245
4246 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4247 recursion is a possibility because finding the hook for exception
4248 callbacks involves making a call in the inferior, which means
4249 re-inserting breakpoints which can re-invoke this code */
4250
4251 static int recurse = 0;
4252 if (recurse > 0)
4253 {
4254 hp_cxx_exception_support_initialized = 0;
4255 exception_support_initialized = 0;
4256 return 0;
4257 }
4258
4259 hp_cxx_exception_support = 0;
4260
4261 /* First check if we have seen any HP compiled objects; if not,
4262 it is very unlikely that HP's idiosyncratic callback mechanism
4263 for exception handling debug support will be available!
4264 This will percolate back up to breakpoint.c, where our callers
4265 will decide to try the g++ exception-handling support instead. */
4266 if (!hp_som_som_object_present)
4267 return 0;
4268
4269 /* We have a SOM executable with SOM debug info; find the hooks */
4270
4271 /* First look for the notify hook provided by aCC runtime libs */
4272 /* If we find this symbol, we conclude that the executable must
4273 have HP aCC exception support built in. If this symbol is not
4274 found, even though we're a HP SOM-SOM file, we may have been
4275 built with some other compiler (not aCC). This results percolates
4276 back up to our callers in breakpoint.c which can decide to
4277 try the g++ style of exception support instead.
4278 If this symbol is found but the other symbols we require are
4279 not found, there is something weird going on, and g++ support
4280 should *not* be tried as an alternative.
4281
4282 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4283 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4284
4285 /* libCsup has this hook; it'll usually be non-debuggable */
4286 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4287 if (msym)
4288 {
4289 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4290 hp_cxx_exception_support = 1;
4291 }
4292 else
4293 {
4294 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4295 warning ("Executable may not have been compiled debuggable with HP aCC.");
4296 warning ("GDB will be unable to intercept exception events.");
4297 eh_notify_hook_addr = 0;
4298 hp_cxx_exception_support = 0;
4299 return 0;
4300 }
4301
4302 /* Next look for the notify callback routine in end.o */
4303 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4304 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4305 if (msym)
4306 {
4307 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4308 hp_cxx_exception_support = 1;
4309 }
4310 else
4311 {
4312 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4313 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4314 warning ("GDB will be unable to intercept exception events.");
4315 eh_notify_callback_addr = 0;
4316 return 0;
4317 }
4318
4319 #ifndef GDB_TARGET_IS_HPPA_20W
4320 /* Check whether the executable is dynamically linked or archive bound */
4321 /* With an archive-bound executable we can use the raw addresses we find
4322 for the callback function, etc. without modification. For an executable
4323 with shared libraries, we have to do more work to find the plabel, which
4324 can be the target of a call through $$dyncall from the aCC runtime support
4325 library (libCsup) which is linked shared by default by aCC. */
4326 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4327 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4328 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4329 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4330 {
4331 /* The minsym we have has the local code address, but that's not the
4332 plabel that can be used by an inter-load-module call. */
4333 /* Find solib handle for main image (which has end.o), and use that
4334 and the min sym as arguments to __d_shl_get() (which does the equivalent
4335 of shl_findsym()) to find the plabel. */
4336
4337 args_for_find_stub args;
4338 static char message[] = "Error while finding exception callback hook:\n";
4339
4340 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4341 args.msym = msym;
4342 args.return_val = 0;
4343
4344 recurse++;
4345 catch_errors (cover_find_stub_with_shl_get, &args, message,
4346 RETURN_MASK_ALL);
4347 eh_notify_callback_addr = args.return_val;
4348 recurse--;
4349
4350 exception_catchpoints_are_fragile = 1;
4351
4352 if (!eh_notify_callback_addr)
4353 {
4354 /* We can get here either if there is no plabel in the export list
4355 for the main image, or if something strange happened (?) */
4356 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4357 warning ("GDB will not be able to intercept exception events.");
4358 return 0;
4359 }
4360 }
4361 else
4362 exception_catchpoints_are_fragile = 0;
4363 #endif
4364
4365 /* Now, look for the breakpointable routine in end.o */
4366 /* This should also be available in the SOM symbol dict. if end.o linked in */
4367 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4368 if (msym)
4369 {
4370 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4371 hp_cxx_exception_support = 1;
4372 }
4373 else
4374 {
4375 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4376 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4377 warning ("GDB will be unable to intercept exception events.");
4378 eh_break_addr = 0;
4379 return 0;
4380 }
4381
4382 /* Next look for the catch enable flag provided in end.o */
4383 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4384 VAR_DOMAIN, 0, (struct symtab **) NULL);
4385 if (sym) /* sometimes present in debug info */
4386 {
4387 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4388 hp_cxx_exception_support = 1;
4389 }
4390 else
4391 /* otherwise look in SOM symbol dict. */
4392 {
4393 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4394 if (msym)
4395 {
4396 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4397 hp_cxx_exception_support = 1;
4398 }
4399 else
4400 {
4401 warning ("Unable to enable interception of exception catches.");
4402 warning ("Executable may not have been compiled debuggable with HP aCC.");
4403 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4404 return 0;
4405 }
4406 }
4407
4408 /* Next look for the catch enable flag provided end.o */
4409 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4410 VAR_DOMAIN, 0, (struct symtab **) NULL);
4411 if (sym) /* sometimes present in debug info */
4412 {
4413 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4414 hp_cxx_exception_support = 1;
4415 }
4416 else
4417 /* otherwise look in SOM symbol dict. */
4418 {
4419 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4420 if (msym)
4421 {
4422 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4423 hp_cxx_exception_support = 1;
4424 }
4425 else
4426 {
4427 warning ("Unable to enable interception of exception throws.");
4428 warning ("Executable may not have been compiled debuggable with HP aCC.");
4429 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4430 return 0;
4431 }
4432 }
4433
4434 /* Set the flags */
4435 hp_cxx_exception_support = 2; /* everything worked so far */
4436 hp_cxx_exception_support_initialized = 1;
4437 exception_support_initialized = 1;
4438
4439 return 1;
4440 }
4441
4442 /* Target operation for enabling or disabling interception of
4443 exception events.
4444 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4445 ENABLE is either 0 (disable) or 1 (enable).
4446 Return value is NULL if no support found;
4447 -1 if something went wrong,
4448 or a pointer to a symtab/line struct if the breakpointable
4449 address was found. */
4450
4451 struct symtab_and_line *
4452 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4453 {
4454 char buf[4];
4455
4456 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4457 if (!initialize_hp_cxx_exception_support ())
4458 return NULL;
4459
4460 switch (hp_cxx_exception_support)
4461 {
4462 case 0:
4463 /* Assuming no HP support at all */
4464 return NULL;
4465 case 1:
4466 /* HP support should be present, but something went wrong */
4467 return (struct symtab_and_line *) -1; /* yuck! */
4468 /* there may be other cases in the future */
4469 }
4470
4471 /* Set the EH hook to point to the callback routine */
4472 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4473 /* pai: (temp) FIXME should there be a pack operation first? */
4474 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4475 {
4476 warning ("Could not write to target memory for exception event callback.");
4477 warning ("Interception of exception events may not work.");
4478 return (struct symtab_and_line *) -1;
4479 }
4480 if (enable)
4481 {
4482 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4483 if (PIDGET (inferior_ptid) > 0)
4484 {
4485 if (setup_d_pid_in_inferior ())
4486 return (struct symtab_and_line *) -1;
4487 }
4488 else
4489 {
4490 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4491 return (struct symtab_and_line *) -1;
4492 }
4493 }
4494
4495 switch (kind)
4496 {
4497 case EX_EVENT_THROW:
4498 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4499 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4500 {
4501 warning ("Couldn't enable exception throw interception.");
4502 return (struct symtab_and_line *) -1;
4503 }
4504 break;
4505 case EX_EVENT_CATCH:
4506 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4507 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4508 {
4509 warning ("Couldn't enable exception catch interception.");
4510 return (struct symtab_and_line *) -1;
4511 }
4512 break;
4513 default:
4514 error ("Request to enable unknown or unsupported exception event.");
4515 }
4516
4517 /* Copy break address into new sal struct, malloc'ing if needed. */
4518 if (!break_callback_sal)
4519 {
4520 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4521 }
4522 init_sal (break_callback_sal);
4523 break_callback_sal->symtab = NULL;
4524 break_callback_sal->pc = eh_break_addr;
4525 break_callback_sal->line = 0;
4526 break_callback_sal->end = eh_break_addr;
4527
4528 return break_callback_sal;
4529 }
4530
4531 /* Record some information about the current exception event */
4532 static struct exception_event_record current_ex_event;
4533 /* Convenience struct */
4534 static struct symtab_and_line null_symtab_and_line =
4535 {NULL, 0, 0, 0};
4536
4537 /* Report current exception event. Returns a pointer to a record
4538 that describes the kind of the event, where it was thrown from,
4539 and where it will be caught. More information may be reported
4540 in the future */
4541 struct exception_event_record *
4542 child_get_current_exception_event (void)
4543 {
4544 CORE_ADDR event_kind;
4545 CORE_ADDR throw_addr;
4546 CORE_ADDR catch_addr;
4547 struct frame_info *fi, *curr_frame;
4548 int level = 1;
4549
4550 curr_frame = get_current_frame ();
4551 if (!curr_frame)
4552 return (struct exception_event_record *) NULL;
4553
4554 /* Go up one frame to __d_eh_notify_callback, because at the
4555 point when this code is executed, there's garbage in the
4556 arguments of __d_eh_break. */
4557 fi = find_relative_frame (curr_frame, &level);
4558 if (level != 0)
4559 return (struct exception_event_record *) NULL;
4560
4561 select_frame (fi);
4562
4563 /* Read in the arguments */
4564 /* __d_eh_notify_callback() is called with 3 arguments:
4565 1. event kind catch or throw
4566 2. the target address if known
4567 3. a flag -- not sure what this is. pai/1997-07-17 */
4568 event_kind = read_register (ARG0_REGNUM);
4569 catch_addr = read_register (ARG1_REGNUM);
4570
4571 /* Now go down to a user frame */
4572 /* For a throw, __d_eh_break is called by
4573 __d_eh_notify_callback which is called by
4574 __notify_throw which is called
4575 from user code.
4576 For a catch, __d_eh_break is called by
4577 __d_eh_notify_callback which is called by
4578 <stackwalking stuff> which is called by
4579 __throw__<stuff> or __rethrow_<stuff> which is called
4580 from user code. */
4581 /* FIXME: Don't use such magic numbers; search for the frames */
4582 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4583 fi = find_relative_frame (curr_frame, &level);
4584 if (level != 0)
4585 return (struct exception_event_record *) NULL;
4586
4587 select_frame (fi);
4588 throw_addr = get_frame_pc (fi);
4589
4590 /* Go back to original (top) frame */
4591 select_frame (curr_frame);
4592
4593 current_ex_event.kind = (enum exception_event_kind) event_kind;
4594 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4595 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4596
4597 return &current_ex_event;
4598 }
4599
4600 /* Instead of this nasty cast, add a method pvoid() that prints out a
4601 host VOID data type (remember %p isn't portable). */
4602
4603 static CORE_ADDR
4604 hppa_pointer_to_address_hack (void *ptr)
4605 {
4606 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
4607 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
4608 }
4609
4610 static void
4611 unwind_command (char *exp, int from_tty)
4612 {
4613 CORE_ADDR address;
4614 struct unwind_table_entry *u;
4615
4616 /* If we have an expression, evaluate it and use it as the address. */
4617
4618 if (exp != 0 && *exp != 0)
4619 address = parse_and_eval_address (exp);
4620 else
4621 return;
4622
4623 u = find_unwind_entry (address);
4624
4625 if (!u)
4626 {
4627 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4628 return;
4629 }
4630
4631 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4632 paddr_nz (hppa_pointer_to_address_hack (u)));
4633
4634 printf_unfiltered ("\tregion_start = ");
4635 print_address (u->region_start, gdb_stdout);
4636
4637 printf_unfiltered ("\n\tregion_end = ");
4638 print_address (u->region_end, gdb_stdout);
4639
4640 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4641
4642 printf_unfiltered ("\n\tflags =");
4643 pif (Cannot_unwind);
4644 pif (Millicode);
4645 pif (Millicode_save_sr0);
4646 pif (Entry_SR);
4647 pif (Args_stored);
4648 pif (Variable_Frame);
4649 pif (Separate_Package_Body);
4650 pif (Frame_Extension_Millicode);
4651 pif (Stack_Overflow_Check);
4652 pif (Two_Instruction_SP_Increment);
4653 pif (Ada_Region);
4654 pif (Save_SP);
4655 pif (Save_RP);
4656 pif (Save_MRP_in_frame);
4657 pif (extn_ptr_defined);
4658 pif (Cleanup_defined);
4659 pif (MPE_XL_interrupt_marker);
4660 pif (HP_UX_interrupt_marker);
4661 pif (Large_frame);
4662
4663 putchar_unfiltered ('\n');
4664
4665 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4666
4667 pin (Region_description);
4668 pin (Entry_FR);
4669 pin (Entry_GR);
4670 pin (Total_frame_size);
4671 }
4672
4673 void
4674 hppa_skip_permanent_breakpoint (void)
4675 {
4676 /* To step over a breakpoint instruction on the PA takes some
4677 fiddling with the instruction address queue.
4678
4679 When we stop at a breakpoint, the IA queue front (the instruction
4680 we're executing now) points at the breakpoint instruction, and
4681 the IA queue back (the next instruction to execute) points to
4682 whatever instruction we would execute after the breakpoint, if it
4683 were an ordinary instruction. This is the case even if the
4684 breakpoint is in the delay slot of a branch instruction.
4685
4686 Clearly, to step past the breakpoint, we need to set the queue
4687 front to the back. But what do we put in the back? What
4688 instruction comes after that one? Because of the branch delay
4689 slot, the next insn is always at the back + 4. */
4690 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4691 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4692
4693 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4694 /* We can leave the tail's space the same, since there's no jump. */
4695 }
4696
4697 /* Copy the function value from VALBUF into the proper location
4698 for a function return.
4699
4700 Called only in the context of the "return" command. */
4701
4702 void
4703 hppa_store_return_value (struct type *type, char *valbuf)
4704 {
4705 /* For software floating point, the return value goes into the
4706 integer registers. But we do not have any flag to key this on,
4707 so we always store the value into the integer registers.
4708
4709 If its a float value, then we also store it into the floating
4710 point registers. */
4711 deprecated_write_register_bytes (REGISTER_BYTE (28)
4712 + (TYPE_LENGTH (type) > 4
4713 ? (8 - TYPE_LENGTH (type))
4714 : (4 - TYPE_LENGTH (type))),
4715 valbuf, TYPE_LENGTH (type));
4716 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4717 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4718 valbuf, TYPE_LENGTH (type));
4719 }
4720
4721 /* Copy the function's return value into VALBUF.
4722
4723 This function is called only in the context of "target function calls",
4724 ie. when the debugger forces a function to be called in the child, and
4725 when the debugger forces a fucntion to return prematurely via the
4726 "return" command. */
4727
4728 void
4729 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4730 {
4731 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4732 memcpy (valbuf,
4733 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4734 TYPE_LENGTH (type));
4735 else
4736 memcpy (valbuf,
4737 ((char *)regbuf
4738 + REGISTER_BYTE (28)
4739 + (TYPE_LENGTH (type) > 4
4740 ? (8 - TYPE_LENGTH (type))
4741 : (4 - TYPE_LENGTH (type)))),
4742 TYPE_LENGTH (type));
4743 }
4744
4745 int
4746 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4747 {
4748 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4749 via a pointer regardless of its type or the compiler used. */
4750 return (TYPE_LENGTH (type) > 8);
4751 }
4752
4753 int
4754 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4755 {
4756 /* Stack grows upward */
4757 return (lhs > rhs);
4758 }
4759
4760 CORE_ADDR
4761 hppa_stack_align (CORE_ADDR sp)
4762 {
4763 /* elz: adjust the quantity to the next highest value which is
4764 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4765 On hppa the sp must always be kept 64-bit aligned */
4766 return ((sp % 8) ? (sp + 7) & -8 : sp);
4767 }
4768
4769 int
4770 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4771 {
4772 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4773
4774 An example of this occurs when an a.out is linked against a foo.sl.
4775 The foo.sl defines a global bar(), and the a.out declares a signature
4776 for bar(). However, the a.out doesn't directly call bar(), but passes
4777 its address in another call.
4778
4779 If you have this scenario and attempt to "break bar" before running,
4780 gdb will find a minimal symbol for bar() in the a.out. But that
4781 symbol's address will be negative. What this appears to denote is
4782 an index backwards from the base of the procedure linkage table (PLT)
4783 into the data linkage table (DLT), the end of which is contiguous
4784 with the start of the PLT. This is clearly not a valid address for
4785 us to set a breakpoint on.
4786
4787 Note that one must be careful in how one checks for a negative address.
4788 0xc0000000 is a legitimate address of something in a shared text
4789 segment, for example. Since I don't know what the possible range
4790 is of these "really, truly negative" addresses that come from the
4791 minimal symbols, I'm resorting to the gross hack of checking the
4792 top byte of the address for all 1's. Sigh. */
4793
4794 return (!target_has_stack && (pc & 0xFF000000));
4795 }
4796
4797 int
4798 hppa_instruction_nullified (void)
4799 {
4800 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4801 avoid the type cast. I'm leaving it as is for now as I'm doing
4802 semi-mechanical multiarching-related changes. */
4803 const int ipsw = (int) read_register (IPSW_REGNUM);
4804 const int flags = (int) read_register (FLAGS_REGNUM);
4805
4806 return ((ipsw & 0x00200000) && !(flags & 0x2));
4807 }
4808
4809 int
4810 hppa_register_raw_size (int reg_nr)
4811 {
4812 /* All registers have the same size. */
4813 return DEPRECATED_REGISTER_SIZE;
4814 }
4815
4816 /* Index within the register vector of the first byte of the space i
4817 used for register REG_NR. */
4818
4819 int
4820 hppa_register_byte (int reg_nr)
4821 {
4822 return reg_nr * 4;
4823 }
4824
4825 /* Return the GDB type object for the "standard" data type of data
4826 in register N. */
4827
4828 struct type *
4829 hppa_register_virtual_type (int reg_nr)
4830 {
4831 if (reg_nr < FP4_REGNUM)
4832 return builtin_type_int;
4833 else
4834 return builtin_type_float;
4835 }
4836
4837 /* Store the address of the place in which to copy the structure the
4838 subroutine will return. This is called from call_function. */
4839
4840 void
4841 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4842 {
4843 write_register (28, addr);
4844 }
4845
4846 CORE_ADDR
4847 hppa_extract_struct_value_address (char *regbuf)
4848 {
4849 /* Extract from an array REGBUF containing the (raw) register state
4850 the address in which a function should return its structure value,
4851 as a CORE_ADDR (or an expression that can be used as one). */
4852 /* FIXME: brobecker 2002-12-26.
4853 The current implementation is historical, but we should eventually
4854 implement it in a more robust manner as it relies on the fact that
4855 the address size is equal to the size of an int* _on the host_...
4856 One possible implementation that crossed my mind is to use
4857 extract_address. */
4858 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4859 }
4860
4861 /* Return True if REGNUM is not a register available to the user
4862 through ptrace(). */
4863
4864 int
4865 hppa_cannot_store_register (int regnum)
4866 {
4867 return (regnum == 0
4868 || regnum == PCSQ_HEAD_REGNUM
4869 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4870 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4871
4872 }
4873
4874 CORE_ADDR
4875 hppa_smash_text_address (CORE_ADDR addr)
4876 {
4877 /* The low two bits of the PC on the PA contain the privilege level.
4878 Some genius implementing a (non-GCC) compiler apparently decided
4879 this means that "addresses" in a text section therefore include a
4880 privilege level, and thus symbol tables should contain these bits.
4881 This seems like a bonehead thing to do--anyway, it seems to work
4882 for our purposes to just ignore those bits. */
4883
4884 return (addr &= ~0x3);
4885 }
4886
4887 /* Get the ith function argument for the current function. */
4888 CORE_ADDR
4889 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
4890 struct type *type)
4891 {
4892 CORE_ADDR addr;
4893 frame_read_register (frame, R0_REGNUM + 26 - argi, &addr);
4894 return addr;
4895 }
4896
4897 static struct gdbarch *
4898 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4899 {
4900 struct gdbarch *gdbarch;
4901
4902 /* Try to determine the ABI of the object we are loading. */
4903 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
4904 {
4905 /* If it's a SOM file, assume it's HP/UX SOM. */
4906 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4907 info.osabi = GDB_OSABI_HPUX_SOM;
4908 }
4909
4910 /* find a candidate among the list of pre-declared architectures. */
4911 arches = gdbarch_list_lookup_by_info (arches, &info);
4912 if (arches != NULL)
4913 return (arches->gdbarch);
4914
4915 /* If none found, then allocate and initialize one. */
4916 gdbarch = gdbarch_alloc (&info, NULL);
4917
4918 /* Hook in ABI-specific overrides, if they have been registered. */
4919 gdbarch_init_osabi (info, gdbarch);
4920
4921 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4922 set_gdbarch_function_start_offset (gdbarch, 0);
4923 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4924 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4925 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4926 set_gdbarch_in_solib_return_trampoline (gdbarch,
4927 hppa_in_solib_return_trampoline);
4928 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4929 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4930 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4931 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4932 set_gdbarch_deprecated_register_size (gdbarch, 4);
4933 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4934 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
4935 set_gdbarch_sp_regnum (gdbarch, 30);
4936 set_gdbarch_fp0_regnum (gdbarch, 64);
4937 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4938 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4939 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
4940 set_gdbarch_deprecated_register_bytes (gdbarch, hppa_num_regs * 4);
4941 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
4942 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
4943 set_gdbarch_deprecated_max_register_raw_size (gdbarch, 4);
4944 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
4945 set_gdbarch_deprecated_register_virtual_type (gdbarch, hppa_register_virtual_type);
4946 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
4947 set_gdbarch_deprecated_extract_return_value (gdbarch,
4948 hppa_extract_return_value);
4949 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
4950 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
4951 set_gdbarch_deprecated_extract_struct_value_address
4952 (gdbarch, hppa_extract_struct_value_address);
4953 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
4954 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
4955 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
4956 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
4957 set_gdbarch_frameless_function_invocation
4958 (gdbarch, hppa_frameless_function_invocation);
4959 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
4960 set_gdbarch_frame_args_skip (gdbarch, 0);
4961 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
4962 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
4963 set_gdbarch_deprecated_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
4964 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
4965 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
4966 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
4967 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
4968 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
4969 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
4970 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
4971
4972 /* Helper for function argument information. */
4973 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
4974
4975 return gdbarch;
4976 }
4977
4978 static void
4979 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
4980 {
4981 /* Nothing to print for the moment. */
4982 }
4983
4984 void
4985 _initialize_hppa_tdep (void)
4986 {
4987 struct cmd_list_element *c;
4988 void break_at_finish_command (char *arg, int from_tty);
4989 void tbreak_at_finish_command (char *arg, int from_tty);
4990 void break_at_finish_at_depth_command (char *arg, int from_tty);
4991
4992 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
4993 deprecated_tm_print_insn = print_insn_hppa;
4994
4995 add_cmd ("unwind", class_maintenance, unwind_command,
4996 "Print unwind table entry at given address.",
4997 &maintenanceprintlist);
4998
4999 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5000 break_at_finish_command,
5001 concat ("Set breakpoint at procedure exit. \n\
5002 Argument may be function name, or \"*\" and an address.\n\
5003 If function is specified, break at end of code for that function.\n\
5004 If an address is specified, break at the end of the function that contains \n\
5005 that exact address.\n",
5006 "With no arg, uses current execution address of selected stack frame.\n\
5007 This is useful for breaking on return to a stack frame.\n\
5008 \n\
5009 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5010 \n\
5011 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5012 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5013 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5014 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5015 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5016
5017 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5018 tbreak_at_finish_command,
5019 "Set temporary breakpoint at procedure exit. Either there should\n\
5020 be no argument or the argument must be a depth.\n"), NULL);
5021 set_cmd_completer (c, location_completer);
5022
5023 if (xdb_commands)
5024 deprecate_cmd (add_com ("bx", class_breakpoint,
5025 break_at_finish_at_depth_command,
5026 "Set breakpoint at procedure exit. Either there should\n\
5027 be no argument or the argument must be a depth.\n"), NULL);
5028 }
5029
This page took 0.124012 seconds and 3 git commands to generate.