* scm-lang.c: Moved Scheme value printing code to ...
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to.
867
868 Don't do this for long branch stubs. Why? For some unknown reason
869 _start is marked as a long branch stub in hpux10. */
870 u = find_unwind_entry (pc);
871 if (u && u->stub_type != 0
872 && u->stub_type != LONG_BRANCH)
873 {
874 unsigned int insn;
875
876 /* If this is a dynamic executable, and we're in a signal handler,
877 then the call chain will eventually point us into the stub for
878 _sigreturn. Unlike most cases, we'll be pointed to the branch
879 to the real sigreturn rather than the code after the real branch!.
880
881 Else, try to dig the address the stub will return to in the normal
882 fashion. */
883 insn = read_memory_integer (pc, 4);
884 if ((insn & 0xfc00e000) == 0xe8000000)
885 return (pc + extract_17 (insn) + 8) & ~0x3;
886 else
887 goto restart;
888 }
889
890 return pc;
891 }
892 \f
893 /* We need to correct the PC and the FP for the outermost frame when we are
894 in a system call. */
895
896 void
897 init_extra_frame_info (fromleaf, frame)
898 int fromleaf;
899 struct frame_info *frame;
900 {
901 int flags;
902 int framesize;
903
904 if (frame->next && !fromleaf)
905 return;
906
907 /* If the next frame represents a frameless function invocation
908 then we have to do some adjustments that are normally done by
909 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
910 if (fromleaf)
911 {
912 /* Find the framesize of *this* frame without peeking at the PC
913 in the current frame structure (it isn't set yet). */
914 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
915
916 /* Now adjust our base frame accordingly. If we have a frame pointer
917 use it, else subtract the size of this frame from the current
918 frame. (we always want frame->frame to point at the lowest address
919 in the frame). */
920 if (framesize == -1)
921 frame->frame = read_register (FP_REGNUM);
922 else
923 frame->frame -= framesize;
924 return;
925 }
926
927 flags = read_register (FLAGS_REGNUM);
928 if (flags & 2) /* In system call? */
929 frame->pc = read_register (31) & ~0x3;
930
931 /* The outermost frame is always derived from PC-framesize
932
933 One might think frameless innermost frames should have
934 a frame->frame that is the same as the parent's frame->frame.
935 That is wrong; frame->frame in that case should be the *high*
936 address of the parent's frame. It's complicated as hell to
937 explain, but the parent *always* creates some stack space for
938 the child. So the child actually does have a frame of some
939 sorts, and its base is the high address in its parent's frame. */
940 framesize = find_proc_framesize(frame->pc);
941 if (framesize == -1)
942 frame->frame = read_register (FP_REGNUM);
943 else
944 frame->frame = read_register (SP_REGNUM) - framesize;
945 }
946 \f
947 /* Given a GDB frame, determine the address of the calling function's frame.
948 This will be used to create a new GDB frame struct, and then
949 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
950
951 This may involve searching through prologues for several functions
952 at boundaries where GCC calls HP C code, or where code which has
953 a frame pointer calls code without a frame pointer. */
954
955 CORE_ADDR
956 frame_chain (frame)
957 struct frame_info *frame;
958 {
959 int my_framesize, caller_framesize;
960 struct unwind_table_entry *u;
961 CORE_ADDR frame_base;
962 struct frame_info *tmp_frame;
963
964 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
965 are easy; at *sp we have a full save state strucutre which we can
966 pull the old stack pointer from. Also see frame_saved_pc for
967 code to dig a saved PC out of the save state structure. */
968 if (pc_in_interrupt_handler (frame->pc))
969 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
970 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
971 else if (frame->signal_handler_caller)
972 {
973 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
974 }
975 #endif
976 else
977 frame_base = frame->frame;
978
979 /* Get frame sizes for the current frame and the frame of the
980 caller. */
981 my_framesize = find_proc_framesize (frame->pc);
982 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
983
984 /* If caller does not have a frame pointer, then its frame
985 can be found at current_frame - caller_framesize. */
986 if (caller_framesize != -1)
987 return frame_base - caller_framesize;
988
989 /* Both caller and callee have frame pointers and are GCC compiled
990 (SAVE_SP bit in unwind descriptor is on for both functions.
991 The previous frame pointer is found at the top of the current frame. */
992 if (caller_framesize == -1 && my_framesize == -1)
993 return read_memory_integer (frame_base, 4);
994
995 /* Caller has a frame pointer, but callee does not. This is a little
996 more difficult as GCC and HP C lay out locals and callee register save
997 areas very differently.
998
999 The previous frame pointer could be in a register, or in one of
1000 several areas on the stack.
1001
1002 Walk from the current frame to the innermost frame examining
1003 unwind descriptors to determine if %r3 ever gets saved into the
1004 stack. If so return whatever value got saved into the stack.
1005 If it was never saved in the stack, then the value in %r3 is still
1006 valid, so use it.
1007
1008 We use information from unwind descriptors to determine if %r3
1009 is saved into the stack (Entry_GR field has this information). */
1010
1011 tmp_frame = frame;
1012 while (tmp_frame)
1013 {
1014 u = find_unwind_entry (tmp_frame->pc);
1015
1016 if (!u)
1017 {
1018 /* We could find this information by examining prologues. I don't
1019 think anyone has actually written any tools (not even "strip")
1020 which leave them out of an executable, so maybe this is a moot
1021 point. */
1022 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1023 return 0;
1024 }
1025
1026 /* Entry_GR specifies the number of callee-saved general registers
1027 saved in the stack. It starts at %r3, so %r3 would be 1. */
1028 if (u->Entry_GR >= 1 || u->Save_SP
1029 || tmp_frame->signal_handler_caller
1030 || pc_in_interrupt_handler (tmp_frame->pc))
1031 break;
1032 else
1033 tmp_frame = tmp_frame->next;
1034 }
1035
1036 if (tmp_frame)
1037 {
1038 /* We may have walked down the chain into a function with a frame
1039 pointer. */
1040 if (u->Save_SP
1041 && !tmp_frame->signal_handler_caller
1042 && !pc_in_interrupt_handler (tmp_frame->pc))
1043 return read_memory_integer (tmp_frame->frame, 4);
1044 /* %r3 was saved somewhere in the stack. Dig it out. */
1045 else
1046 {
1047 struct frame_saved_regs saved_regs;
1048
1049 /* Sick.
1050
1051 For optimization purposes many kernels don't have the
1052 callee saved registers into the save_state structure upon
1053 entry into the kernel for a syscall; the optimization
1054 is usually turned off if the process is being traced so
1055 that the debugger can get full register state for the
1056 process.
1057
1058 This scheme works well except for two cases:
1059
1060 * Attaching to a process when the process is in the
1061 kernel performing a system call (debugger can't get
1062 full register state for the inferior process since
1063 the process wasn't being traced when it entered the
1064 system call).
1065
1066 * Register state is not complete if the system call
1067 causes the process to core dump.
1068
1069
1070 The following heinous code is an attempt to deal with
1071 the lack of register state in a core dump. It will
1072 fail miserably if the function which performs the
1073 system call has a variable sized stack frame. */
1074
1075 get_frame_saved_regs (tmp_frame, &saved_regs);
1076
1077 /* Abominable hack. */
1078 if (current_target.to_has_execution == 0
1079 && saved_regs.regs[FLAGS_REGNUM]
1080 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2))
1081 {
1082 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1083 if (!u)
1084 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1085 else
1086 return frame_base - (u->Total_frame_size << 3);
1087 }
1088
1089 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1090 }
1091 }
1092 else
1093 {
1094 /* The value in %r3 was never saved into the stack (thus %r3 still
1095 holds the value of the previous frame pointer). */
1096 return read_register (FP_REGNUM);
1097 }
1098 }
1099
1100 \f
1101 /* To see if a frame chain is valid, see if the caller looks like it
1102 was compiled with gcc. */
1103
1104 int
1105 frame_chain_valid (chain, thisframe)
1106 CORE_ADDR chain;
1107 struct frame_info *thisframe;
1108 {
1109 struct minimal_symbol *msym_us;
1110 struct minimal_symbol *msym_start;
1111 struct unwind_table_entry *u, *next_u = NULL;
1112 struct frame_info *next;
1113
1114 if (!chain)
1115 return 0;
1116
1117 u = find_unwind_entry (thisframe->pc);
1118
1119 if (u == NULL)
1120 return 1;
1121
1122 /* We can't just check that the same of msym_us is "_start", because
1123 someone idiotically decided that they were going to make a Ltext_end
1124 symbol with the same address. This Ltext_end symbol is totally
1125 indistinguishable (as nearly as I can tell) from the symbol for a function
1126 which is (legitimately, since it is in the user's namespace)
1127 named Ltext_end, so we can't just ignore it. */
1128 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1129 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1130 if (msym_us
1131 && msym_start
1132 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1133 return 0;
1134
1135 /* Grrrr. Some new idiot decided that they don't want _start for the
1136 PRO configurations; $START$ calls main directly.... Deal with it. */
1137 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1138 if (msym_us
1139 && msym_start
1140 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1141 return 0;
1142
1143 next = get_next_frame (thisframe);
1144 if (next)
1145 next_u = find_unwind_entry (next->pc);
1146
1147 /* If this frame does not save SP, has no stack, isn't a stub,
1148 and doesn't "call" an interrupt routine or signal handler caller,
1149 then its not valid. */
1150 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1151 || (thisframe->next && thisframe->next->signal_handler_caller)
1152 || (next_u && next_u->HP_UX_interrupt_marker))
1153 return 1;
1154
1155 if (pc_in_linker_stub (thisframe->pc))
1156 return 1;
1157
1158 return 0;
1159 }
1160
1161 /*
1162 * These functions deal with saving and restoring register state
1163 * around a function call in the inferior. They keep the stack
1164 * double-word aligned; eventually, on an hp700, the stack will have
1165 * to be aligned to a 64-byte boundary.
1166 */
1167
1168 void
1169 push_dummy_frame (inf_status)
1170 struct inferior_status *inf_status;
1171 {
1172 CORE_ADDR sp, pc, pcspace;
1173 register int regnum;
1174 int int_buffer;
1175 double freg_buffer;
1176
1177 /* Oh, what a hack. If we're trying to perform an inferior call
1178 while the inferior is asleep, we have to make sure to clear
1179 the "in system call" bit in the flag register (the call will
1180 start after the syscall returns, so we're no longer in the system
1181 call!) This state is kept in "inf_status", change it there.
1182
1183 We also need a number of horrid hacks to deal with lossage in the
1184 PC queue registers (apparently they're not valid when the in syscall
1185 bit is set). */
1186 pc = target_read_pc (inferior_pid);
1187 int_buffer = read_register (FLAGS_REGNUM);
1188 if (int_buffer & 0x2)
1189 {
1190 unsigned int sid;
1191 int_buffer &= ~0x2;
1192 memcpy (inf_status->registers, &int_buffer, 4);
1193 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1194 pc += 4;
1195 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1196 pc -= 4;
1197 sid = (pc >> 30) & 0x3;
1198 if (sid == 0)
1199 pcspace = read_register (SR4_REGNUM);
1200 else
1201 pcspace = read_register (SR4_REGNUM + 4 + sid);
1202 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1203 &pcspace, 4);
1204 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1205 &pcspace, 4);
1206 }
1207 else
1208 pcspace = read_register (PCSQ_HEAD_REGNUM);
1209
1210 /* Space for "arguments"; the RP goes in here. */
1211 sp = read_register (SP_REGNUM) + 48;
1212 int_buffer = read_register (RP_REGNUM) | 0x3;
1213 write_memory (sp - 20, (char *)&int_buffer, 4);
1214
1215 int_buffer = read_register (FP_REGNUM);
1216 write_memory (sp, (char *)&int_buffer, 4);
1217
1218 write_register (FP_REGNUM, sp);
1219
1220 sp += 8;
1221
1222 for (regnum = 1; regnum < 32; regnum++)
1223 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1224 sp = push_word (sp, read_register (regnum));
1225
1226 sp += 4;
1227
1228 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1229 {
1230 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1231 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1232 }
1233 sp = push_word (sp, read_register (IPSW_REGNUM));
1234 sp = push_word (sp, read_register (SAR_REGNUM));
1235 sp = push_word (sp, pc);
1236 sp = push_word (sp, pcspace);
1237 sp = push_word (sp, pc + 4);
1238 sp = push_word (sp, pcspace);
1239 write_register (SP_REGNUM, sp);
1240 }
1241
1242 void
1243 find_dummy_frame_regs (frame, frame_saved_regs)
1244 struct frame_info *frame;
1245 struct frame_saved_regs *frame_saved_regs;
1246 {
1247 CORE_ADDR fp = frame->frame;
1248 int i;
1249
1250 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1251 frame_saved_regs->regs[FP_REGNUM] = fp;
1252 frame_saved_regs->regs[1] = fp + 8;
1253
1254 for (fp += 12, i = 3; i < 32; i++)
1255 {
1256 if (i != FP_REGNUM)
1257 {
1258 frame_saved_regs->regs[i] = fp;
1259 fp += 4;
1260 }
1261 }
1262
1263 fp += 4;
1264 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1265 frame_saved_regs->regs[i] = fp;
1266
1267 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1268 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1269 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1270 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1271 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1272 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1273 }
1274
1275 void
1276 hppa_pop_frame ()
1277 {
1278 register struct frame_info *frame = get_current_frame ();
1279 register CORE_ADDR fp, npc, target_pc;
1280 register int regnum;
1281 struct frame_saved_regs fsr;
1282 double freg_buffer;
1283
1284 fp = FRAME_FP (frame);
1285 get_frame_saved_regs (frame, &fsr);
1286
1287 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1288 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1289 restore_pc_queue (&fsr);
1290 #endif
1291
1292 for (regnum = 31; regnum > 0; regnum--)
1293 if (fsr.regs[regnum])
1294 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1295
1296 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1297 if (fsr.regs[regnum])
1298 {
1299 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1300 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1301 }
1302
1303 if (fsr.regs[IPSW_REGNUM])
1304 write_register (IPSW_REGNUM,
1305 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1306
1307 if (fsr.regs[SAR_REGNUM])
1308 write_register (SAR_REGNUM,
1309 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1310
1311 /* If the PC was explicitly saved, then just restore it. */
1312 if (fsr.regs[PCOQ_TAIL_REGNUM])
1313 {
1314 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1315 write_register (PCOQ_TAIL_REGNUM, npc);
1316 }
1317 /* Else use the value in %rp to set the new PC. */
1318 else
1319 {
1320 npc = read_register (RP_REGNUM);
1321 target_write_pc (npc, 0);
1322 }
1323
1324 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1325
1326 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1327 write_register (SP_REGNUM, fp - 48);
1328 else
1329 write_register (SP_REGNUM, fp);
1330
1331 /* The PC we just restored may be inside a return trampoline. If so
1332 we want to restart the inferior and run it through the trampoline.
1333
1334 Do this by setting a momentary breakpoint at the location the
1335 trampoline returns to.
1336
1337 Don't skip through the trampoline if we're popping a dummy frame. */
1338 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1339 if (target_pc && !fsr.regs[IPSW_REGNUM])
1340 {
1341 struct symtab_and_line sal;
1342 struct breakpoint *breakpoint;
1343 struct cleanup *old_chain;
1344
1345 /* Set up our breakpoint. Set it to be silent as the MI code
1346 for "return_command" will print the frame we returned to. */
1347 sal = find_pc_line (target_pc, 0);
1348 sal.pc = target_pc;
1349 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1350 breakpoint->silent = 1;
1351
1352 /* So we can clean things up. */
1353 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1354
1355 /* Start up the inferior. */
1356 proceed_to_finish = 1;
1357 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1358
1359 /* Perform our cleanups. */
1360 do_cleanups (old_chain);
1361 }
1362 flush_cached_frames ();
1363 }
1364
1365 /*
1366 * After returning to a dummy on the stack, restore the instruction
1367 * queue space registers. */
1368
1369 static int
1370 restore_pc_queue (fsr)
1371 struct frame_saved_regs *fsr;
1372 {
1373 CORE_ADDR pc = read_pc ();
1374 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1375 struct target_waitstatus w;
1376 int insn_count;
1377
1378 /* Advance past break instruction in the call dummy. */
1379 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1380 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1381
1382 /*
1383 * HPUX doesn't let us set the space registers or the space
1384 * registers of the PC queue through ptrace. Boo, hiss.
1385 * Conveniently, the call dummy has this sequence of instructions
1386 * after the break:
1387 * mtsp r21, sr0
1388 * ble,n 0(sr0, r22)
1389 *
1390 * So, load up the registers and single step until we are in the
1391 * right place.
1392 */
1393
1394 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1395 write_register (22, new_pc);
1396
1397 for (insn_count = 0; insn_count < 3; insn_count++)
1398 {
1399 /* FIXME: What if the inferior gets a signal right now? Want to
1400 merge this into wait_for_inferior (as a special kind of
1401 watchpoint? By setting a breakpoint at the end? Is there
1402 any other choice? Is there *any* way to do this stuff with
1403 ptrace() or some equivalent?). */
1404 resume (1, 0);
1405 target_wait (inferior_pid, &w);
1406
1407 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1408 {
1409 stop_signal = w.value.sig;
1410 terminal_ours_for_output ();
1411 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1412 target_signal_to_name (stop_signal),
1413 target_signal_to_string (stop_signal));
1414 gdb_flush (gdb_stdout);
1415 return 0;
1416 }
1417 }
1418 target_terminal_ours ();
1419 target_fetch_registers (-1);
1420 return 1;
1421 }
1422
1423 CORE_ADDR
1424 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1425 int nargs;
1426 value_ptr *args;
1427 CORE_ADDR sp;
1428 int struct_return;
1429 CORE_ADDR struct_addr;
1430 {
1431 /* array of arguments' offsets */
1432 int *offset = (int *)alloca(nargs * sizeof (int));
1433 int cum = 0;
1434 int i, alignment;
1435
1436 for (i = 0; i < nargs; i++)
1437 {
1438 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1439
1440 /* value must go at proper alignment. Assume alignment is a
1441 power of two.*/
1442 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1443 if (cum % alignment)
1444 cum = (cum + alignment) & -alignment;
1445 offset[i] = -cum;
1446 }
1447 sp += max ((cum + 7) & -8, 16);
1448
1449 for (i = 0; i < nargs; i++)
1450 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1451 TYPE_LENGTH (VALUE_TYPE (args[i])));
1452
1453 if (struct_return)
1454 write_register (28, struct_addr);
1455 return sp + 32;
1456 }
1457
1458 /*
1459 * Insert the specified number of args and function address
1460 * into a call sequence of the above form stored at DUMMYNAME.
1461 *
1462 * On the hppa we need to call the stack dummy through $$dyncall.
1463 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1464 * real_pc, which is the location where gdb should start up the
1465 * inferior to do the function call.
1466 */
1467
1468 CORE_ADDR
1469 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1470 char *dummy;
1471 CORE_ADDR pc;
1472 CORE_ADDR fun;
1473 int nargs;
1474 value_ptr *args;
1475 struct type *type;
1476 int gcc_p;
1477 {
1478 CORE_ADDR dyncall_addr;
1479 struct minimal_symbol *msymbol;
1480 struct minimal_symbol *trampoline;
1481 int flags = read_register (FLAGS_REGNUM);
1482 struct unwind_table_entry *u;
1483
1484 trampoline = NULL;
1485 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1486 if (msymbol == NULL)
1487 error ("Can't find an address for $$dyncall trampoline");
1488
1489 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1490
1491 /* FUN could be a procedure label, in which case we have to get
1492 its real address and the value of its GOT/DP. */
1493 if (fun & 0x2)
1494 {
1495 /* Get the GOT/DP value for the target function. It's
1496 at *(fun+4). Note the call dummy is *NOT* allowed to
1497 trash %r19 before calling the target function. */
1498 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1499
1500 /* Now get the real address for the function we are calling, it's
1501 at *fun. */
1502 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1503 }
1504 else
1505 {
1506
1507 #ifndef GDB_TARGET_IS_PA_ELF
1508 /* FUN could be either an export stub, or the real address of a
1509 function in a shared library. We must call an import stub
1510 rather than the export stub or real function for lazy binding
1511 to work correctly. */
1512 if (som_solib_get_got_by_pc (fun))
1513 {
1514 struct objfile *objfile;
1515 struct minimal_symbol *funsymbol, *stub_symbol;
1516 CORE_ADDR newfun = 0;
1517
1518 funsymbol = lookup_minimal_symbol_by_pc (fun);
1519 if (!funsymbol)
1520 error ("Unable to find minimal symbol for target fucntion.\n");
1521
1522 /* Search all the object files for an import symbol with the
1523 right name. */
1524 ALL_OBJFILES (objfile)
1525 {
1526 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1527 NULL, objfile);
1528 /* Found a symbol with the right name. */
1529 if (stub_symbol)
1530 {
1531 struct unwind_table_entry *u;
1532 /* It must be a shared library trampoline. */
1533 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1534 continue;
1535
1536 /* It must also be an import stub. */
1537 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1538 if (!u || u->stub_type != IMPORT)
1539 continue;
1540
1541 /* OK. Looks like the correct import stub. */
1542 newfun = SYMBOL_VALUE (stub_symbol);
1543 fun = newfun;
1544 }
1545 }
1546 if (newfun == 0)
1547 write_register (19, som_solib_get_got_by_pc (fun));
1548 }
1549 #endif
1550 }
1551
1552 /* If we are calling an import stub (eg calling into a dynamic library)
1553 then have sr4export call the magic __d_plt_call routine which is linked
1554 in from end.o. (You can't use _sr4export to call the import stub as
1555 the value in sp-24 will get fried and you end up returning to the
1556 wrong location. You can't call the import stub directly as the code
1557 to bind the PLT entry to a function can't return to a stack address.) */
1558 u = find_unwind_entry (fun);
1559 if (u && u->stub_type == IMPORT)
1560 {
1561 CORE_ADDR new_fun;
1562
1563 /* Prefer __gcc_plt_call over the HP supplied routine because
1564 __gcc_plt_call works for any number of arguments. */
1565 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1566 if (trampoline == NULL)
1567 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1568
1569 if (trampoline == NULL)
1570 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1571
1572 /* This is where sr4export will jump to. */
1573 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1574
1575 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1576 {
1577 /* We have to store the address of the stub in __shlib_funcptr. */
1578 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1579 (struct objfile *)NULL);
1580 if (msymbol == NULL)
1581 error ("Can't find an address for __shlib_funcptr");
1582
1583 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1584
1585 /* We want sr4export to call __d_plt_call, so we claim it is
1586 the final target. Clear trampoline. */
1587 fun = new_fun;
1588 trampoline = NULL;
1589 }
1590 }
1591
1592 /* Store upper 21 bits of function address into ldil. fun will either be
1593 the final target (most cases) or __d_plt_call when calling into a shared
1594 library and __gcc_plt_call is not available. */
1595 store_unsigned_integer
1596 (&dummy[FUNC_LDIL_OFFSET],
1597 INSTRUCTION_SIZE,
1598 deposit_21 (fun >> 11,
1599 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1600 INSTRUCTION_SIZE)));
1601
1602 /* Store lower 11 bits of function address into ldo */
1603 store_unsigned_integer
1604 (&dummy[FUNC_LDO_OFFSET],
1605 INSTRUCTION_SIZE,
1606 deposit_14 (fun & MASK_11,
1607 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1608 INSTRUCTION_SIZE)));
1609 #ifdef SR4EXPORT_LDIL_OFFSET
1610
1611 {
1612 CORE_ADDR trampoline_addr;
1613
1614 /* We may still need sr4export's address too. */
1615
1616 if (trampoline == NULL)
1617 {
1618 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1619 if (msymbol == NULL)
1620 error ("Can't find an address for _sr4export trampoline");
1621
1622 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1623 }
1624 else
1625 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1626
1627
1628 /* Store upper 21 bits of trampoline's address into ldil */
1629 store_unsigned_integer
1630 (&dummy[SR4EXPORT_LDIL_OFFSET],
1631 INSTRUCTION_SIZE,
1632 deposit_21 (trampoline_addr >> 11,
1633 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1634 INSTRUCTION_SIZE)));
1635
1636 /* Store lower 11 bits of trampoline's address into ldo */
1637 store_unsigned_integer
1638 (&dummy[SR4EXPORT_LDO_OFFSET],
1639 INSTRUCTION_SIZE,
1640 deposit_14 (trampoline_addr & MASK_11,
1641 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1642 INSTRUCTION_SIZE)));
1643 }
1644 #endif
1645
1646 write_register (22, pc);
1647
1648 /* If we are in a syscall, then we should call the stack dummy
1649 directly. $$dyncall is not needed as the kernel sets up the
1650 space id registers properly based on the value in %r31. In
1651 fact calling $$dyncall will not work because the value in %r22
1652 will be clobbered on the syscall exit path.
1653
1654 Similarly if the current PC is in a shared library. Note however,
1655 this scheme won't work if the shared library isn't mapped into
1656 the same space as the stack. */
1657 if (flags & 2)
1658 return pc;
1659 #ifndef GDB_TARGET_IS_PA_ELF
1660 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1661 return pc;
1662 #endif
1663 else
1664 return dyncall_addr;
1665
1666 }
1667
1668 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1669 bits. */
1670
1671 CORE_ADDR
1672 target_read_pc (pid)
1673 int pid;
1674 {
1675 int flags = read_register (FLAGS_REGNUM);
1676
1677 if (flags & 2) {
1678 return read_register (31) & ~0x3;
1679 }
1680 return read_register (PC_REGNUM) & ~0x3;
1681 }
1682
1683 /* Write out the PC. If currently in a syscall, then also write the new
1684 PC value into %r31. */
1685
1686 void
1687 target_write_pc (v, pid)
1688 CORE_ADDR v;
1689 int pid;
1690 {
1691 int flags = read_register (FLAGS_REGNUM);
1692
1693 /* If in a syscall, then set %r31. Also make sure to get the
1694 privilege bits set correctly. */
1695 if (flags & 2)
1696 write_register (31, (long) (v | 0x3));
1697
1698 write_register (PC_REGNUM, (long) v);
1699 write_register (NPC_REGNUM, (long) v + 4);
1700 }
1701
1702 /* return the alignment of a type in bytes. Structures have the maximum
1703 alignment required by their fields. */
1704
1705 static int
1706 hppa_alignof (arg)
1707 struct type *arg;
1708 {
1709 int max_align, align, i;
1710 switch (TYPE_CODE (arg))
1711 {
1712 case TYPE_CODE_PTR:
1713 case TYPE_CODE_INT:
1714 case TYPE_CODE_FLT:
1715 return TYPE_LENGTH (arg);
1716 case TYPE_CODE_ARRAY:
1717 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1718 case TYPE_CODE_STRUCT:
1719 case TYPE_CODE_UNION:
1720 max_align = 2;
1721 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1722 {
1723 /* Bit fields have no real alignment. */
1724 if (!TYPE_FIELD_BITPOS (arg, i))
1725 {
1726 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1727 max_align = max (max_align, align);
1728 }
1729 }
1730 return max_align;
1731 default:
1732 return 4;
1733 }
1734 }
1735
1736 /* Print the register regnum, or all registers if regnum is -1 */
1737
1738 void
1739 pa_do_registers_info (regnum, fpregs)
1740 int regnum;
1741 int fpregs;
1742 {
1743 char raw_regs [REGISTER_BYTES];
1744 int i;
1745
1746 for (i = 0; i < NUM_REGS; i++)
1747 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1748 if (regnum == -1)
1749 pa_print_registers (raw_regs, regnum, fpregs);
1750 else if (regnum < FP0_REGNUM)
1751 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1752 REGISTER_BYTE (regnum)));
1753 else
1754 pa_print_fp_reg (regnum);
1755 }
1756
1757 static void
1758 pa_print_registers (raw_regs, regnum, fpregs)
1759 char *raw_regs;
1760 int regnum;
1761 int fpregs;
1762 {
1763 int i,j;
1764 long val;
1765
1766 for (i = 0; i < 18; i++)
1767 {
1768 for (j = 0; j < 4; j++)
1769 {
1770 val =
1771 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1772 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1773 }
1774 printf_unfiltered ("\n");
1775 }
1776
1777 if (fpregs)
1778 for (i = 72; i < NUM_REGS; i++)
1779 pa_print_fp_reg (i);
1780 }
1781
1782 static void
1783 pa_print_fp_reg (i)
1784 int i;
1785 {
1786 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1787 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1788
1789 /* Get 32bits of data. */
1790 read_relative_register_raw_bytes (i, raw_buffer);
1791
1792 /* Put it in the buffer. No conversions are ever necessary. */
1793 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1794
1795 fputs_filtered (reg_names[i], gdb_stdout);
1796 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1797 fputs_filtered ("(single precision) ", gdb_stdout);
1798
1799 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1800 1, 0, Val_pretty_default);
1801 printf_filtered ("\n");
1802
1803 /* If "i" is even, then this register can also be a double-precision
1804 FP register. Dump it out as such. */
1805 if ((i % 2) == 0)
1806 {
1807 /* Get the data in raw format for the 2nd half. */
1808 read_relative_register_raw_bytes (i + 1, raw_buffer);
1809
1810 /* Copy it into the appropriate part of the virtual buffer. */
1811 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1812 REGISTER_RAW_SIZE (i));
1813
1814 /* Dump it as a double. */
1815 fputs_filtered (reg_names[i], gdb_stdout);
1816 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1817 fputs_filtered ("(double precision) ", gdb_stdout);
1818
1819 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1820 1, 0, Val_pretty_default);
1821 printf_filtered ("\n");
1822 }
1823 }
1824
1825 /* Return one if PC is in the call path of a trampoline, else return zero.
1826
1827 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1828 just shared library trampolines (import, export). */
1829
1830 int
1831 in_solib_call_trampoline (pc, name)
1832 CORE_ADDR pc;
1833 char *name;
1834 {
1835 struct minimal_symbol *minsym;
1836 struct unwind_table_entry *u;
1837 static CORE_ADDR dyncall = 0;
1838 static CORE_ADDR sr4export = 0;
1839
1840 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1841 new exec file */
1842
1843 /* First see if PC is in one of the two C-library trampolines. */
1844 if (!dyncall)
1845 {
1846 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1847 if (minsym)
1848 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1849 else
1850 dyncall = -1;
1851 }
1852
1853 if (!sr4export)
1854 {
1855 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1856 if (minsym)
1857 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1858 else
1859 sr4export = -1;
1860 }
1861
1862 if (pc == dyncall || pc == sr4export)
1863 return 1;
1864
1865 /* Get the unwind descriptor corresponding to PC, return zero
1866 if no unwind was found. */
1867 u = find_unwind_entry (pc);
1868 if (!u)
1869 return 0;
1870
1871 /* If this isn't a linker stub, then return now. */
1872 if (u->stub_type == 0)
1873 return 0;
1874
1875 /* By definition a long-branch stub is a call stub. */
1876 if (u->stub_type == LONG_BRANCH)
1877 return 1;
1878
1879 /* The call and return path execute the same instructions within
1880 an IMPORT stub! So an IMPORT stub is both a call and return
1881 trampoline. */
1882 if (u->stub_type == IMPORT)
1883 return 1;
1884
1885 /* Parameter relocation stubs always have a call path and may have a
1886 return path. */
1887 if (u->stub_type == PARAMETER_RELOCATION
1888 || u->stub_type == EXPORT)
1889 {
1890 CORE_ADDR addr;
1891
1892 /* Search forward from the current PC until we hit a branch
1893 or the end of the stub. */
1894 for (addr = pc; addr <= u->region_end; addr += 4)
1895 {
1896 unsigned long insn;
1897
1898 insn = read_memory_integer (addr, 4);
1899
1900 /* Does it look like a bl? If so then it's the call path, if
1901 we find a bv or be first, then we're on the return path. */
1902 if ((insn & 0xfc00e000) == 0xe8000000)
1903 return 1;
1904 else if ((insn & 0xfc00e001) == 0xe800c000
1905 || (insn & 0xfc000000) == 0xe0000000)
1906 return 0;
1907 }
1908
1909 /* Should never happen. */
1910 warning ("Unable to find branch in parameter relocation stub.\n");
1911 return 0;
1912 }
1913
1914 /* Unknown stub type. For now, just return zero. */
1915 return 0;
1916 }
1917
1918 /* Return one if PC is in the return path of a trampoline, else return zero.
1919
1920 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1921 just shared library trampolines (import, export). */
1922
1923 int
1924 in_solib_return_trampoline (pc, name)
1925 CORE_ADDR pc;
1926 char *name;
1927 {
1928 struct unwind_table_entry *u;
1929
1930 /* Get the unwind descriptor corresponding to PC, return zero
1931 if no unwind was found. */
1932 u = find_unwind_entry (pc);
1933 if (!u)
1934 return 0;
1935
1936 /* If this isn't a linker stub or it's just a long branch stub, then
1937 return zero. */
1938 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1939 return 0;
1940
1941 /* The call and return path execute the same instructions within
1942 an IMPORT stub! So an IMPORT stub is both a call and return
1943 trampoline. */
1944 if (u->stub_type == IMPORT)
1945 return 1;
1946
1947 /* Parameter relocation stubs always have a call path and may have a
1948 return path. */
1949 if (u->stub_type == PARAMETER_RELOCATION
1950 || u->stub_type == EXPORT)
1951 {
1952 CORE_ADDR addr;
1953
1954 /* Search forward from the current PC until we hit a branch
1955 or the end of the stub. */
1956 for (addr = pc; addr <= u->region_end; addr += 4)
1957 {
1958 unsigned long insn;
1959
1960 insn = read_memory_integer (addr, 4);
1961
1962 /* Does it look like a bl? If so then it's the call path, if
1963 we find a bv or be first, then we're on the return path. */
1964 if ((insn & 0xfc00e000) == 0xe8000000)
1965 return 0;
1966 else if ((insn & 0xfc00e001) == 0xe800c000
1967 || (insn & 0xfc000000) == 0xe0000000)
1968 return 1;
1969 }
1970
1971 /* Should never happen. */
1972 warning ("Unable to find branch in parameter relocation stub.\n");
1973 return 0;
1974 }
1975
1976 /* Unknown stub type. For now, just return zero. */
1977 return 0;
1978
1979 }
1980
1981 /* Figure out if PC is in a trampoline, and if so find out where
1982 the trampoline will jump to. If not in a trampoline, return zero.
1983
1984 Simple code examination probably is not a good idea since the code
1985 sequences in trampolines can also appear in user code.
1986
1987 We use unwinds and information from the minimal symbol table to
1988 determine when we're in a trampoline. This won't work for ELF
1989 (yet) since it doesn't create stub unwind entries. Whether or
1990 not ELF will create stub unwinds or normal unwinds for linker
1991 stubs is still being debated.
1992
1993 This should handle simple calls through dyncall or sr4export,
1994 long calls, argument relocation stubs, and dyncall/sr4export
1995 calling an argument relocation stub. It even handles some stubs
1996 used in dynamic executables. */
1997
1998 CORE_ADDR
1999 skip_trampoline_code (pc, name)
2000 CORE_ADDR pc;
2001 char *name;
2002 {
2003 long orig_pc = pc;
2004 long prev_inst, curr_inst, loc;
2005 static CORE_ADDR dyncall = 0;
2006 static CORE_ADDR sr4export = 0;
2007 struct minimal_symbol *msym;
2008 struct unwind_table_entry *u;
2009
2010 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2011 new exec file */
2012
2013 if (!dyncall)
2014 {
2015 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2016 if (msym)
2017 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2018 else
2019 dyncall = -1;
2020 }
2021
2022 if (!sr4export)
2023 {
2024 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2025 if (msym)
2026 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2027 else
2028 sr4export = -1;
2029 }
2030
2031 /* Addresses passed to dyncall may *NOT* be the actual address
2032 of the function. So we may have to do something special. */
2033 if (pc == dyncall)
2034 {
2035 pc = (CORE_ADDR) read_register (22);
2036
2037 /* If bit 30 (counting from the left) is on, then pc is the address of
2038 the PLT entry for this function, not the address of the function
2039 itself. Bit 31 has meaning too, but only for MPE. */
2040 if (pc & 0x2)
2041 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2042 }
2043 else if (pc == sr4export)
2044 pc = (CORE_ADDR) (read_register (22));
2045
2046 /* Get the unwind descriptor corresponding to PC, return zero
2047 if no unwind was found. */
2048 u = find_unwind_entry (pc);
2049 if (!u)
2050 return 0;
2051
2052 /* If this isn't a linker stub, then return now. */
2053 if (u->stub_type == 0)
2054 return orig_pc == pc ? 0 : pc & ~0x3;
2055
2056 /* It's a stub. Search for a branch and figure out where it goes.
2057 Note we have to handle multi insn branch sequences like ldil;ble.
2058 Most (all?) other branches can be determined by examining the contents
2059 of certain registers and the stack. */
2060 loc = pc;
2061 curr_inst = 0;
2062 prev_inst = 0;
2063 while (1)
2064 {
2065 /* Make sure we haven't walked outside the range of this stub. */
2066 if (u != find_unwind_entry (loc))
2067 {
2068 warning ("Unable to find branch in linker stub");
2069 return orig_pc == pc ? 0 : pc & ~0x3;
2070 }
2071
2072 prev_inst = curr_inst;
2073 curr_inst = read_memory_integer (loc, 4);
2074
2075 /* Does it look like a branch external using %r1? Then it's the
2076 branch from the stub to the actual function. */
2077 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2078 {
2079 /* Yup. See if the previous instruction loaded
2080 a value into %r1. If so compute and return the jump address. */
2081 if ((prev_inst & 0xffe00000) == 0x20200000)
2082 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2083 else
2084 {
2085 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2086 return orig_pc == pc ? 0 : pc & ~0x3;
2087 }
2088 }
2089
2090 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2091 import stub to an export stub.
2092
2093 It is impossible to determine the target of the branch via
2094 simple examination of instructions and/or data (consider
2095 that the address in the plabel may be the address of the
2096 bind-on-reference routine in the dynamic loader).
2097
2098 So we have try an alternative approach.
2099
2100 Get the name of the symbol at our current location; it should
2101 be a stub symbol with the same name as the symbol in the
2102 shared library.
2103
2104 Then lookup a minimal symbol with the same name; we should
2105 get the minimal symbol for the target routine in the shared
2106 library as those take precedence of import/export stubs. */
2107 if (curr_inst == 0xe2a00000)
2108 {
2109 struct minimal_symbol *stubsym, *libsym;
2110
2111 stubsym = lookup_minimal_symbol_by_pc (loc);
2112 if (stubsym == NULL)
2113 {
2114 warning ("Unable to find symbol for 0x%x", loc);
2115 return orig_pc == pc ? 0 : pc & ~0x3;
2116 }
2117
2118 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2119 if (libsym == NULL)
2120 {
2121 warning ("Unable to find library symbol for %s\n",
2122 SYMBOL_NAME (stubsym));
2123 return orig_pc == pc ? 0 : pc & ~0x3;
2124 }
2125
2126 return SYMBOL_VALUE (libsym);
2127 }
2128
2129 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2130 branch from the stub to the actual function. */
2131 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2132 || (curr_inst & 0xffe0e000) == 0xe8000000)
2133 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2134
2135 /* Does it look like bv (rp)? Note this depends on the
2136 current stack pointer being the same as the stack
2137 pointer in the stub itself! This is a branch on from the
2138 stub back to the original caller. */
2139 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2140 {
2141 /* Yup. See if the previous instruction loaded
2142 rp from sp - 8. */
2143 if (prev_inst == 0x4bc23ff1)
2144 return (read_memory_integer
2145 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2146 else
2147 {
2148 warning ("Unable to find restore of %%rp before bv (%%rp).");
2149 return orig_pc == pc ? 0 : pc & ~0x3;
2150 }
2151 }
2152
2153 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2154 the original caller from the stub. Used in dynamic executables. */
2155 else if (curr_inst == 0xe0400002)
2156 {
2157 /* The value we jump to is sitting in sp - 24. But that's
2158 loaded several instructions before the be instruction.
2159 I guess we could check for the previous instruction being
2160 mtsp %r1,%sr0 if we want to do sanity checking. */
2161 return (read_memory_integer
2162 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2163 }
2164
2165 /* Haven't found the branch yet, but we're still in the stub.
2166 Keep looking. */
2167 loc += 4;
2168 }
2169 }
2170
2171 /* For the given instruction (INST), return any adjustment it makes
2172 to the stack pointer or zero for no adjustment.
2173
2174 This only handles instructions commonly found in prologues. */
2175
2176 static int
2177 prologue_inst_adjust_sp (inst)
2178 unsigned long inst;
2179 {
2180 /* This must persist across calls. */
2181 static int save_high21;
2182
2183 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2184 if ((inst & 0xffffc000) == 0x37de0000)
2185 return extract_14 (inst);
2186
2187 /* stwm X,D(sp) */
2188 if ((inst & 0xffe00000) == 0x6fc00000)
2189 return extract_14 (inst);
2190
2191 /* addil high21,%r1; ldo low11,(%r1),%r30)
2192 save high bits in save_high21 for later use. */
2193 if ((inst & 0xffe00000) == 0x28200000)
2194 {
2195 save_high21 = extract_21 (inst);
2196 return 0;
2197 }
2198
2199 if ((inst & 0xffff0000) == 0x343e0000)
2200 return save_high21 + extract_14 (inst);
2201
2202 /* fstws as used by the HP compilers. */
2203 if ((inst & 0xffffffe0) == 0x2fd01220)
2204 return extract_5_load (inst);
2205
2206 /* No adjustment. */
2207 return 0;
2208 }
2209
2210 /* Return nonzero if INST is a branch of some kind, else return zero. */
2211
2212 static int
2213 is_branch (inst)
2214 unsigned long inst;
2215 {
2216 switch (inst >> 26)
2217 {
2218 case 0x20:
2219 case 0x21:
2220 case 0x22:
2221 case 0x23:
2222 case 0x28:
2223 case 0x29:
2224 case 0x2a:
2225 case 0x2b:
2226 case 0x30:
2227 case 0x31:
2228 case 0x32:
2229 case 0x33:
2230 case 0x38:
2231 case 0x39:
2232 case 0x3a:
2233 return 1;
2234
2235 default:
2236 return 0;
2237 }
2238 }
2239
2240 /* Return the register number for a GR which is saved by INST or
2241 zero it INST does not save a GR. */
2242
2243 static int
2244 inst_saves_gr (inst)
2245 unsigned long inst;
2246 {
2247 /* Does it look like a stw? */
2248 if ((inst >> 26) == 0x1a)
2249 return extract_5R_store (inst);
2250
2251 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2252 if ((inst >> 26) == 0x1b)
2253 return extract_5R_store (inst);
2254
2255 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2256 too. */
2257 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2258 return extract_5R_store (inst);
2259
2260 return 0;
2261 }
2262
2263 /* Return the register number for a FR which is saved by INST or
2264 zero it INST does not save a FR.
2265
2266 Note we only care about full 64bit register stores (that's the only
2267 kind of stores the prologue will use).
2268
2269 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2270
2271 static int
2272 inst_saves_fr (inst)
2273 unsigned long inst;
2274 {
2275 if ((inst & 0xfc00dfc0) == 0x2c001200)
2276 return extract_5r_store (inst);
2277 return 0;
2278 }
2279
2280 /* Advance PC across any function entry prologue instructions
2281 to reach some "real" code.
2282
2283 Use information in the unwind table to determine what exactly should
2284 be in the prologue. */
2285
2286 CORE_ADDR
2287 skip_prologue (pc)
2288 CORE_ADDR pc;
2289 {
2290 char buf[4];
2291 CORE_ADDR orig_pc = pc;
2292 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2293 unsigned long args_stored, status, i, restart_gr, restart_fr;
2294 struct unwind_table_entry *u;
2295
2296 restart_gr = 0;
2297 restart_fr = 0;
2298
2299 restart:
2300 u = find_unwind_entry (pc);
2301 if (!u)
2302 return pc;
2303
2304 /* If we are not at the beginning of a function, then return now. */
2305 if ((pc & ~0x3) != u->region_start)
2306 return pc;
2307
2308 /* This is how much of a frame adjustment we need to account for. */
2309 stack_remaining = u->Total_frame_size << 3;
2310
2311 /* Magic register saves we want to know about. */
2312 save_rp = u->Save_RP;
2313 save_sp = u->Save_SP;
2314
2315 /* An indication that args may be stored into the stack. Unfortunately
2316 the HPUX compilers tend to set this in cases where no args were
2317 stored too!. */
2318 args_stored = 1;
2319
2320 /* Turn the Entry_GR field into a bitmask. */
2321 save_gr = 0;
2322 for (i = 3; i < u->Entry_GR + 3; i++)
2323 {
2324 /* Frame pointer gets saved into a special location. */
2325 if (u->Save_SP && i == FP_REGNUM)
2326 continue;
2327
2328 save_gr |= (1 << i);
2329 }
2330 save_gr &= ~restart_gr;
2331
2332 /* Turn the Entry_FR field into a bitmask too. */
2333 save_fr = 0;
2334 for (i = 12; i < u->Entry_FR + 12; i++)
2335 save_fr |= (1 << i);
2336 save_fr &= ~restart_fr;
2337
2338 /* Loop until we find everything of interest or hit a branch.
2339
2340 For unoptimized GCC code and for any HP CC code this will never ever
2341 examine any user instructions.
2342
2343 For optimzied GCC code we're faced with problems. GCC will schedule
2344 its prologue and make prologue instructions available for delay slot
2345 filling. The end result is user code gets mixed in with the prologue
2346 and a prologue instruction may be in the delay slot of the first branch
2347 or call.
2348
2349 Some unexpected things are expected with debugging optimized code, so
2350 we allow this routine to walk past user instructions in optimized
2351 GCC code. */
2352 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2353 || args_stored)
2354 {
2355 unsigned int reg_num;
2356 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2357 unsigned long old_save_rp, old_save_sp, next_inst;
2358
2359 /* Save copies of all the triggers so we can compare them later
2360 (only for HPC). */
2361 old_save_gr = save_gr;
2362 old_save_fr = save_fr;
2363 old_save_rp = save_rp;
2364 old_save_sp = save_sp;
2365 old_stack_remaining = stack_remaining;
2366
2367 status = target_read_memory (pc, buf, 4);
2368 inst = extract_unsigned_integer (buf, 4);
2369
2370 /* Yow! */
2371 if (status != 0)
2372 return pc;
2373
2374 /* Note the interesting effects of this instruction. */
2375 stack_remaining -= prologue_inst_adjust_sp (inst);
2376
2377 /* There is only one instruction used for saving RP into the stack. */
2378 if (inst == 0x6bc23fd9)
2379 save_rp = 0;
2380
2381 /* This is the only way we save SP into the stack. At this time
2382 the HP compilers never bother to save SP into the stack. */
2383 if ((inst & 0xffffc000) == 0x6fc10000)
2384 save_sp = 0;
2385
2386 /* Account for general and floating-point register saves. */
2387 reg_num = inst_saves_gr (inst);
2388 save_gr &= ~(1 << reg_num);
2389
2390 /* Ugh. Also account for argument stores into the stack.
2391 Unfortunately args_stored only tells us that some arguments
2392 where stored into the stack. Not how many or what kind!
2393
2394 This is a kludge as on the HP compiler sets this bit and it
2395 never does prologue scheduling. So once we see one, skip past
2396 all of them. We have similar code for the fp arg stores below.
2397
2398 FIXME. Can still die if we have a mix of GR and FR argument
2399 stores! */
2400 if (reg_num >= 23 && reg_num <= 26)
2401 {
2402 while (reg_num >= 23 && reg_num <= 26)
2403 {
2404 pc += 4;
2405 status = target_read_memory (pc, buf, 4);
2406 inst = extract_unsigned_integer (buf, 4);
2407 if (status != 0)
2408 return pc;
2409 reg_num = inst_saves_gr (inst);
2410 }
2411 args_stored = 0;
2412 continue;
2413 }
2414
2415 reg_num = inst_saves_fr (inst);
2416 save_fr &= ~(1 << reg_num);
2417
2418 status = target_read_memory (pc + 4, buf, 4);
2419 next_inst = extract_unsigned_integer (buf, 4);
2420
2421 /* Yow! */
2422 if (status != 0)
2423 return pc;
2424
2425 /* We've got to be read to handle the ldo before the fp register
2426 save. */
2427 if ((inst & 0xfc000000) == 0x34000000
2428 && inst_saves_fr (next_inst) >= 4
2429 && inst_saves_fr (next_inst) <= 7)
2430 {
2431 /* So we drop into the code below in a reasonable state. */
2432 reg_num = inst_saves_fr (next_inst);
2433 pc -= 4;
2434 }
2435
2436 /* Ugh. Also account for argument stores into the stack.
2437 This is a kludge as on the HP compiler sets this bit and it
2438 never does prologue scheduling. So once we see one, skip past
2439 all of them. */
2440 if (reg_num >= 4 && reg_num <= 7)
2441 {
2442 while (reg_num >= 4 && reg_num <= 7)
2443 {
2444 pc += 8;
2445 status = target_read_memory (pc, buf, 4);
2446 inst = extract_unsigned_integer (buf, 4);
2447 if (status != 0)
2448 return pc;
2449 if ((inst & 0xfc000000) != 0x34000000)
2450 break;
2451 status = target_read_memory (pc + 4, buf, 4);
2452 next_inst = extract_unsigned_integer (buf, 4);
2453 if (status != 0)
2454 return pc;
2455 reg_num = inst_saves_fr (next_inst);
2456 }
2457 args_stored = 0;
2458 continue;
2459 }
2460
2461 /* Quit if we hit any kind of branch. This can happen if a prologue
2462 instruction is in the delay slot of the first call/branch. */
2463 if (is_branch (inst))
2464 break;
2465
2466 /* What a crock. The HP compilers set args_stored even if no
2467 arguments were stored into the stack (boo hiss). This could
2468 cause this code to then skip a bunch of user insns (up to the
2469 first branch).
2470
2471 To combat this we try to identify when args_stored was bogusly
2472 set and clear it. We only do this when args_stored is nonzero,
2473 all other resources are accounted for, and nothing changed on
2474 this pass. */
2475 if (args_stored
2476 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2477 && old_save_gr == save_gr && old_save_fr == save_fr
2478 && old_save_rp == save_rp && old_save_sp == save_sp
2479 && old_stack_remaining == stack_remaining)
2480 break;
2481
2482 /* Bump the PC. */
2483 pc += 4;
2484 }
2485
2486 /* We've got a tenative location for the end of the prologue. However
2487 because of limitations in the unwind descriptor mechanism we may
2488 have went too far into user code looking for the save of a register
2489 that does not exist. So, if there registers we expected to be saved
2490 but never were, mask them out and restart.
2491
2492 This should only happen in optimized code, and should be very rare. */
2493 if (save_gr || save_fr
2494 && ! (restart_fr || restart_gr))
2495 {
2496 pc = orig_pc;
2497 restart_gr = save_gr;
2498 restart_fr = save_fr;
2499 goto restart;
2500 }
2501
2502 return pc;
2503 }
2504
2505 /* Put here the code to store, into a struct frame_saved_regs,
2506 the addresses of the saved registers of frame described by FRAME_INFO.
2507 This includes special registers such as pc and fp saved in special
2508 ways in the stack frame. sp is even more special:
2509 the address we return for it IS the sp for the next frame. */
2510
2511 void
2512 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2513 struct frame_info *frame_info;
2514 struct frame_saved_regs *frame_saved_regs;
2515 {
2516 CORE_ADDR pc;
2517 struct unwind_table_entry *u;
2518 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2519 int status, i, reg;
2520 char buf[4];
2521 int fp_loc = -1;
2522
2523 /* Zero out everything. */
2524 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2525
2526 /* Call dummy frames always look the same, so there's no need to
2527 examine the dummy code to determine locations of saved registers;
2528 instead, let find_dummy_frame_regs fill in the correct offsets
2529 for the saved registers. */
2530 if ((frame_info->pc >= frame_info->frame
2531 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2532 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2533 + 6 * 4)))
2534 find_dummy_frame_regs (frame_info, frame_saved_regs);
2535
2536 /* Interrupt handlers are special too. They lay out the register
2537 state in the exact same order as the register numbers in GDB. */
2538 if (pc_in_interrupt_handler (frame_info->pc))
2539 {
2540 for (i = 0; i < NUM_REGS; i++)
2541 {
2542 /* SP is a little special. */
2543 if (i == SP_REGNUM)
2544 frame_saved_regs->regs[SP_REGNUM]
2545 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2546 else
2547 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2548 }
2549 return;
2550 }
2551
2552 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2553 /* Handle signal handler callers. */
2554 if (frame_info->signal_handler_caller)
2555 {
2556 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2557 return;
2558 }
2559 #endif
2560
2561 /* Get the starting address of the function referred to by the PC
2562 saved in frame. */
2563 pc = get_pc_function_start (frame_info->pc);
2564
2565 /* Yow! */
2566 u = find_unwind_entry (pc);
2567 if (!u)
2568 return;
2569
2570 /* This is how much of a frame adjustment we need to account for. */
2571 stack_remaining = u->Total_frame_size << 3;
2572
2573 /* Magic register saves we want to know about. */
2574 save_rp = u->Save_RP;
2575 save_sp = u->Save_SP;
2576
2577 /* Turn the Entry_GR field into a bitmask. */
2578 save_gr = 0;
2579 for (i = 3; i < u->Entry_GR + 3; i++)
2580 {
2581 /* Frame pointer gets saved into a special location. */
2582 if (u->Save_SP && i == FP_REGNUM)
2583 continue;
2584
2585 save_gr |= (1 << i);
2586 }
2587
2588 /* Turn the Entry_FR field into a bitmask too. */
2589 save_fr = 0;
2590 for (i = 12; i < u->Entry_FR + 12; i++)
2591 save_fr |= (1 << i);
2592
2593 /* The frame always represents the value of %sp at entry to the
2594 current function (and is thus equivalent to the "saved" stack
2595 pointer. */
2596 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2597
2598 /* Loop until we find everything of interest or hit a branch.
2599
2600 For unoptimized GCC code and for any HP CC code this will never ever
2601 examine any user instructions.
2602
2603 For optimzied GCC code we're faced with problems. GCC will schedule
2604 its prologue and make prologue instructions available for delay slot
2605 filling. The end result is user code gets mixed in with the prologue
2606 and a prologue instruction may be in the delay slot of the first branch
2607 or call.
2608
2609 Some unexpected things are expected with debugging optimized code, so
2610 we allow this routine to walk past user instructions in optimized
2611 GCC code. */
2612 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2613 {
2614 status = target_read_memory (pc, buf, 4);
2615 inst = extract_unsigned_integer (buf, 4);
2616
2617 /* Yow! */
2618 if (status != 0)
2619 return;
2620
2621 /* Note the interesting effects of this instruction. */
2622 stack_remaining -= prologue_inst_adjust_sp (inst);
2623
2624 /* There is only one instruction used for saving RP into the stack. */
2625 if (inst == 0x6bc23fd9)
2626 {
2627 save_rp = 0;
2628 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2629 }
2630
2631 /* Just note that we found the save of SP into the stack. The
2632 value for frame_saved_regs was computed above. */
2633 if ((inst & 0xffffc000) == 0x6fc10000)
2634 save_sp = 0;
2635
2636 /* Account for general and floating-point register saves. */
2637 reg = inst_saves_gr (inst);
2638 if (reg >= 3 && reg <= 18
2639 && (!u->Save_SP || reg != FP_REGNUM))
2640 {
2641 save_gr &= ~(1 << reg);
2642
2643 /* stwm with a positive displacement is a *post modify*. */
2644 if ((inst >> 26) == 0x1b
2645 && extract_14 (inst) >= 0)
2646 frame_saved_regs->regs[reg] = frame_info->frame;
2647 else
2648 {
2649 /* Handle code with and without frame pointers. */
2650 if (u->Save_SP)
2651 frame_saved_regs->regs[reg]
2652 = frame_info->frame + extract_14 (inst);
2653 else
2654 frame_saved_regs->regs[reg]
2655 = frame_info->frame + (u->Total_frame_size << 3)
2656 + extract_14 (inst);
2657 }
2658 }
2659
2660
2661 /* GCC handles callee saved FP regs a little differently.
2662
2663 It emits an instruction to put the value of the start of
2664 the FP store area into %r1. It then uses fstds,ma with
2665 a basereg of %r1 for the stores.
2666
2667 HP CC emits them at the current stack pointer modifying
2668 the stack pointer as it stores each register. */
2669
2670 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2671 if ((inst & 0xffffc000) == 0x34610000
2672 || (inst & 0xffffc000) == 0x37c10000)
2673 fp_loc = extract_14 (inst);
2674
2675 reg = inst_saves_fr (inst);
2676 if (reg >= 12 && reg <= 21)
2677 {
2678 /* Note +4 braindamage below is necessary because the FP status
2679 registers are internally 8 registers rather than the expected
2680 4 registers. */
2681 save_fr &= ~(1 << reg);
2682 if (fp_loc == -1)
2683 {
2684 /* 1st HP CC FP register store. After this instruction
2685 we've set enough state that the GCC and HPCC code are
2686 both handled in the same manner. */
2687 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2688 fp_loc = 8;
2689 }
2690 else
2691 {
2692 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2693 = frame_info->frame + fp_loc;
2694 fp_loc += 8;
2695 }
2696 }
2697
2698 /* Quit if we hit any kind of branch. This can happen if a prologue
2699 instruction is in the delay slot of the first call/branch. */
2700 if (is_branch (inst))
2701 break;
2702
2703 /* Bump the PC. */
2704 pc += 4;
2705 }
2706 }
2707
2708 #ifdef MAINTENANCE_CMDS
2709
2710 static void
2711 unwind_command (exp, from_tty)
2712 char *exp;
2713 int from_tty;
2714 {
2715 CORE_ADDR address;
2716 struct unwind_table_entry *u;
2717
2718 /* If we have an expression, evaluate it and use it as the address. */
2719
2720 if (exp != 0 && *exp != 0)
2721 address = parse_and_eval_address (exp);
2722 else
2723 return;
2724
2725 u = find_unwind_entry (address);
2726
2727 if (!u)
2728 {
2729 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2730 return;
2731 }
2732
2733 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2734
2735 printf_unfiltered ("\tregion_start = ");
2736 print_address (u->region_start, gdb_stdout);
2737
2738 printf_unfiltered ("\n\tregion_end = ");
2739 print_address (u->region_end, gdb_stdout);
2740
2741 #ifdef __STDC__
2742 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2743 #else
2744 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2745 #endif
2746
2747 printf_unfiltered ("\n\tflags =");
2748 pif (Cannot_unwind);
2749 pif (Millicode);
2750 pif (Millicode_save_sr0);
2751 pif (Entry_SR);
2752 pif (Args_stored);
2753 pif (Variable_Frame);
2754 pif (Separate_Package_Body);
2755 pif (Frame_Extension_Millicode);
2756 pif (Stack_Overflow_Check);
2757 pif (Two_Instruction_SP_Increment);
2758 pif (Ada_Region);
2759 pif (Save_SP);
2760 pif (Save_RP);
2761 pif (Save_MRP_in_frame);
2762 pif (extn_ptr_defined);
2763 pif (Cleanup_defined);
2764 pif (MPE_XL_interrupt_marker);
2765 pif (HP_UX_interrupt_marker);
2766 pif (Large_frame);
2767
2768 putchar_unfiltered ('\n');
2769
2770 #ifdef __STDC__
2771 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2772 #else
2773 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2774 #endif
2775
2776 pin (Region_description);
2777 pin (Entry_FR);
2778 pin (Entry_GR);
2779 pin (Total_frame_size);
2780 }
2781 #endif /* MAINTENANCE_CMDS */
2782
2783 void
2784 _initialize_hppa_tdep ()
2785 {
2786 tm_print_insn = print_insn_hppa;
2787
2788 #ifdef MAINTENANCE_CMDS
2789 add_cmd ("unwind", class_maintenance, unwind_command,
2790 "Print unwind table entry at given address.",
2791 &maintenanceprintlist);
2792 #endif /* MAINTENANCE_CMDS */
2793 }
This page took 0.088038 seconds and 4 git commands to generate.