* configure.in: Add test for "long long" support.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include "gdb_stat.h"
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int extract_5_load PARAMS ((unsigned int));
59
60 static unsigned extract_5R_store PARAMS ((unsigned int));
61
62 static unsigned extract_5r_store PARAMS ((unsigned int));
63
64 static void find_dummy_frame_regs PARAMS ((struct frame_info *,
65 struct frame_saved_regs *));
66
67 static int find_proc_framesize PARAMS ((CORE_ADDR));
68
69 static int find_return_regnum PARAMS ((CORE_ADDR));
70
71 struct unwind_table_entry *find_unwind_entry PARAMS ((CORE_ADDR));
72
73 static int extract_17 PARAMS ((unsigned int));
74
75 static unsigned deposit_21 PARAMS ((unsigned int, unsigned int));
76
77 static int extract_21 PARAMS ((unsigned));
78
79 static unsigned deposit_14 PARAMS ((int, unsigned int));
80
81 static int extract_14 PARAMS ((unsigned));
82
83 static void unwind_command PARAMS ((char *, int));
84
85 static int low_sign_extend PARAMS ((unsigned int, unsigned int));
86
87 static int sign_extend PARAMS ((unsigned int, unsigned int));
88
89 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
90
91 static int hppa_alignof PARAMS ((struct type *));
92
93 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
94
95 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
96
97 static int is_branch PARAMS ((unsigned long));
98
99 static int inst_saves_gr PARAMS ((unsigned long));
100
101 static int inst_saves_fr PARAMS ((unsigned long));
102
103 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
104
105 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
106
107 static int compare_unwind_entries PARAMS ((const void *, const void *));
108
109 static void read_unwind_info PARAMS ((struct objfile *));
110
111 static void internalize_unwinds PARAMS ((struct objfile *,
112 struct unwind_table_entry *,
113 asection *, unsigned int,
114 unsigned int, CORE_ADDR));
115 static void pa_print_registers PARAMS ((char *, int, int));
116 static void pa_print_fp_reg PARAMS ((int));
117
118 \f
119 /* Routines to extract various sized constants out of hppa
120 instructions. */
121
122 /* This assumes that no garbage lies outside of the lower bits of
123 value. */
124
125 static int
126 sign_extend (val, bits)
127 unsigned val, bits;
128 {
129 return (int)(val >> (bits - 1) ? (-1 << bits) | val : val);
130 }
131
132 /* For many immediate values the sign bit is the low bit! */
133
134 static int
135 low_sign_extend (val, bits)
136 unsigned val, bits;
137 {
138 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
139 }
140
141 /* extract the immediate field from a ld{bhw}s instruction */
142
143 #if 0
144
145 unsigned
146 get_field (val, from, to)
147 unsigned val, from, to;
148 {
149 val = val >> 31 - to;
150 return val & ((1 << 32 - from) - 1);
151 }
152
153 unsigned
154 set_field (val, from, to, new_val)
155 unsigned *val, from, to;
156 {
157 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
158 return *val = *val & mask | (new_val << (31 - from));
159 }
160
161 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
162
163 int
164 extract_3 (word)
165 unsigned word;
166 {
167 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
168 }
169
170 #endif
171
172 static int
173 extract_5_load (word)
174 unsigned word;
175 {
176 return low_sign_extend (word >> 16 & MASK_5, 5);
177 }
178
179 #if 0
180
181 /* extract the immediate field from a st{bhw}s instruction */
182
183 int
184 extract_5_store (word)
185 unsigned word;
186 {
187 return low_sign_extend (word & MASK_5, 5);
188 }
189
190 #endif /* 0 */
191
192 /* extract the immediate field from a break instruction */
193
194 static unsigned
195 extract_5r_store (word)
196 unsigned word;
197 {
198 return (word & MASK_5);
199 }
200
201 /* extract the immediate field from a {sr}sm instruction */
202
203 static unsigned
204 extract_5R_store (word)
205 unsigned word;
206 {
207 return (word >> 16 & MASK_5);
208 }
209
210 /* extract an 11 bit immediate field */
211
212 #if 0
213
214 int
215 extract_11 (word)
216 unsigned word;
217 {
218 return low_sign_extend (word & MASK_11, 11);
219 }
220
221 #endif
222
223 /* extract a 14 bit immediate field */
224
225 static int
226 extract_14 (word)
227 unsigned word;
228 {
229 return low_sign_extend (word & MASK_14, 14);
230 }
231
232 /* deposit a 14 bit constant in a word */
233
234 static unsigned
235 deposit_14 (opnd, word)
236 int opnd;
237 unsigned word;
238 {
239 unsigned sign = (opnd < 0 ? 1 : 0);
240
241 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
242 }
243
244 /* extract a 21 bit constant */
245
246 static int
247 extract_21 (word)
248 unsigned word;
249 {
250 int val;
251
252 word &= MASK_21;
253 word <<= 11;
254 val = GET_FIELD (word, 20, 20);
255 val <<= 11;
256 val |= GET_FIELD (word, 9, 19);
257 val <<= 2;
258 val |= GET_FIELD (word, 5, 6);
259 val <<= 5;
260 val |= GET_FIELD (word, 0, 4);
261 val <<= 2;
262 val |= GET_FIELD (word, 7, 8);
263 return sign_extend (val, 21) << 11;
264 }
265
266 /* deposit a 21 bit constant in a word. Although 21 bit constants are
267 usually the top 21 bits of a 32 bit constant, we assume that only
268 the low 21 bits of opnd are relevant */
269
270 static unsigned
271 deposit_21 (opnd, word)
272 unsigned opnd, word;
273 {
274 unsigned val = 0;
275
276 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
277 val <<= 2;
278 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
279 val <<= 2;
280 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
281 val <<= 11;
282 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
283 val <<= 1;
284 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
285 return word | val;
286 }
287
288 /* extract a 12 bit constant from branch instructions */
289
290 #if 0
291
292 int
293 extract_12 (word)
294 unsigned word;
295 {
296 return sign_extend (GET_FIELD (word, 19, 28) |
297 GET_FIELD (word, 29, 29) << 10 |
298 (word & 0x1) << 11, 12) << 2;
299 }
300
301 /* Deposit a 17 bit constant in an instruction (like bl). */
302
303 unsigned int
304 deposit_17 (opnd, word)
305 unsigned opnd, word;
306 {
307 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
308 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
309 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
310 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
311
312 return word;
313 }
314
315 #endif
316
317 /* extract a 17 bit constant from branch instructions, returning the
318 19 bit signed value. */
319
320 static int
321 extract_17 (word)
322 unsigned word;
323 {
324 return sign_extend (GET_FIELD (word, 19, 28) |
325 GET_FIELD (word, 29, 29) << 10 |
326 GET_FIELD (word, 11, 15) << 11 |
327 (word & 0x1) << 16, 17) << 2;
328 }
329 \f
330
331 /* Compare the start address for two unwind entries returning 1 if
332 the first address is larger than the second, -1 if the second is
333 larger than the first, and zero if they are equal. */
334
335 static int
336 compare_unwind_entries (arg1, arg2)
337 const void *arg1;
338 const void *arg2;
339 {
340 const struct unwind_table_entry *a = arg1;
341 const struct unwind_table_entry *b = arg2;
342
343 if (a->region_start > b->region_start)
344 return 1;
345 else if (a->region_start < b->region_start)
346 return -1;
347 else
348 return 0;
349 }
350
351 static void
352 internalize_unwinds (objfile, table, section, entries, size, text_offset)
353 struct objfile *objfile;
354 struct unwind_table_entry *table;
355 asection *section;
356 unsigned int entries, size;
357 CORE_ADDR text_offset;
358 {
359 /* We will read the unwind entries into temporary memory, then
360 fill in the actual unwind table. */
361 if (size > 0)
362 {
363 unsigned long tmp;
364 unsigned i;
365 char *buf = alloca (size);
366
367 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
368
369 /* Now internalize the information being careful to handle host/target
370 endian issues. */
371 for (i = 0; i < entries; i++)
372 {
373 table[i].region_start = bfd_get_32 (objfile->obfd,
374 (bfd_byte *)buf);
375 table[i].region_start += text_offset;
376 buf += 4;
377 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
378 table[i].region_end += text_offset;
379 buf += 4;
380 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
381 buf += 4;
382 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
383 table[i].Millicode = (tmp >> 30) & 0x1;
384 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
385 table[i].Region_description = (tmp >> 27) & 0x3;
386 table[i].reserved1 = (tmp >> 26) & 0x1;
387 table[i].Entry_SR = (tmp >> 25) & 0x1;
388 table[i].Entry_FR = (tmp >> 21) & 0xf;
389 table[i].Entry_GR = (tmp >> 16) & 0x1f;
390 table[i].Args_stored = (tmp >> 15) & 0x1;
391 table[i].Variable_Frame = (tmp >> 14) & 0x1;
392 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
393 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
394 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
395 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
396 table[i].Ada_Region = (tmp >> 9) & 0x1;
397 table[i].reserved2 = (tmp >> 5) & 0xf;
398 table[i].Save_SP = (tmp >> 4) & 0x1;
399 table[i].Save_RP = (tmp >> 3) & 0x1;
400 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
401 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
402 table[i].Cleanup_defined = tmp & 0x1;
403 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
404 buf += 4;
405 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
406 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
407 table[i].Large_frame = (tmp >> 29) & 0x1;
408 table[i].reserved4 = (tmp >> 27) & 0x3;
409 table[i].Total_frame_size = tmp & 0x7ffffff;
410 }
411 }
412 }
413
414 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
415 the object file. This info is used mainly by find_unwind_entry() to find
416 out the stack frame size and frame pointer used by procedures. We put
417 everything on the psymbol obstack in the objfile so that it automatically
418 gets freed when the objfile is destroyed. */
419
420 static void
421 read_unwind_info (objfile)
422 struct objfile *objfile;
423 {
424 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
425 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
426 unsigned index, unwind_entries, elf_unwind_entries;
427 unsigned stub_entries, total_entries;
428 CORE_ADDR text_offset;
429 struct obj_unwind_info *ui;
430
431 text_offset = ANOFFSET (objfile->section_offsets, 0);
432 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
433 sizeof (struct obj_unwind_info));
434
435 ui->table = NULL;
436 ui->cache = NULL;
437 ui->last = -1;
438
439 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
440 section in ELF at the moment. */
441 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
442 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
443 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
444
445 /* Get sizes and unwind counts for all sections. */
446 if (unwind_sec)
447 {
448 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
449 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
450 }
451 else
452 {
453 unwind_size = 0;
454 unwind_entries = 0;
455 }
456
457 if (elf_unwind_sec)
458 {
459 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
460 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
461 }
462 else
463 {
464 elf_unwind_size = 0;
465 elf_unwind_entries = 0;
466 }
467
468 if (stub_unwind_sec)
469 {
470 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
471 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
472 }
473 else
474 {
475 stub_unwind_size = 0;
476 stub_entries = 0;
477 }
478
479 /* Compute total number of unwind entries and their total size. */
480 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
481 total_size = total_entries * sizeof (struct unwind_table_entry);
482
483 /* Allocate memory for the unwind table. */
484 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
485 ui->last = total_entries - 1;
486
487 /* Internalize the standard unwind entries. */
488 index = 0;
489 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
490 unwind_entries, unwind_size, text_offset);
491 index += unwind_entries;
492 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
493 elf_unwind_entries, elf_unwind_size, text_offset);
494 index += elf_unwind_entries;
495
496 /* Now internalize the stub unwind entries. */
497 if (stub_unwind_size > 0)
498 {
499 unsigned int i;
500 char *buf = alloca (stub_unwind_size);
501
502 /* Read in the stub unwind entries. */
503 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
504 0, stub_unwind_size);
505
506 /* Now convert them into regular unwind entries. */
507 for (i = 0; i < stub_entries; i++, index++)
508 {
509 /* Clear out the next unwind entry. */
510 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
511
512 /* Convert offset & size into region_start and region_end.
513 Stuff away the stub type into "reserved" fields. */
514 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
515 (bfd_byte *) buf);
516 ui->table[index].region_start += text_offset;
517 buf += 4;
518 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
519 (bfd_byte *) buf);
520 buf += 2;
521 ui->table[index].region_end
522 = ui->table[index].region_start + 4 *
523 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
524 buf += 2;
525 }
526
527 }
528
529 /* Unwind table needs to be kept sorted. */
530 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
531 compare_unwind_entries);
532
533 /* Keep a pointer to the unwind information. */
534 objfile->obj_private = (PTR) ui;
535 }
536
537 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
538 of the objfiles seeking the unwind table entry for this PC. Each objfile
539 contains a sorted list of struct unwind_table_entry. Since we do a binary
540 search of the unwind tables, we depend upon them to be sorted. */
541
542 struct unwind_table_entry *
543 find_unwind_entry(pc)
544 CORE_ADDR pc;
545 {
546 int first, middle, last;
547 struct objfile *objfile;
548
549 ALL_OBJFILES (objfile)
550 {
551 struct obj_unwind_info *ui;
552
553 ui = OBJ_UNWIND_INFO (objfile);
554
555 if (!ui)
556 {
557 read_unwind_info (objfile);
558 ui = OBJ_UNWIND_INFO (objfile);
559 }
560
561 /* First, check the cache */
562
563 if (ui->cache
564 && pc >= ui->cache->region_start
565 && pc <= ui->cache->region_end)
566 return ui->cache;
567
568 /* Not in the cache, do a binary search */
569
570 first = 0;
571 last = ui->last;
572
573 while (first <= last)
574 {
575 middle = (first + last) / 2;
576 if (pc >= ui->table[middle].region_start
577 && pc <= ui->table[middle].region_end)
578 {
579 ui->cache = &ui->table[middle];
580 return &ui->table[middle];
581 }
582
583 if (pc < ui->table[middle].region_start)
584 last = middle - 1;
585 else
586 first = middle + 1;
587 }
588 } /* ALL_OBJFILES() */
589 return NULL;
590 }
591
592 /* Return the adjustment necessary to make for addresses on the stack
593 as presented by hpread.c.
594
595 This is necessary because of the stack direction on the PA and the
596 bizarre way in which someone (?) decided they wanted to handle
597 frame pointerless code in GDB. */
598 int
599 hpread_adjust_stack_address (func_addr)
600 CORE_ADDR func_addr;
601 {
602 struct unwind_table_entry *u;
603
604 u = find_unwind_entry (func_addr);
605 if (!u)
606 return 0;
607 else
608 return u->Total_frame_size << 3;
609 }
610
611 /* Called to determine if PC is in an interrupt handler of some
612 kind. */
613
614 static int
615 pc_in_interrupt_handler (pc)
616 CORE_ADDR pc;
617 {
618 struct unwind_table_entry *u;
619 struct minimal_symbol *msym_us;
620
621 u = find_unwind_entry (pc);
622 if (!u)
623 return 0;
624
625 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
626 its frame isn't a pure interrupt frame. Deal with this. */
627 msym_us = lookup_minimal_symbol_by_pc (pc);
628
629 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
630 }
631
632 /* Called when no unwind descriptor was found for PC. Returns 1 if it
633 appears that PC is in a linker stub. */
634
635 static int
636 pc_in_linker_stub (pc)
637 CORE_ADDR pc;
638 {
639 int found_magic_instruction = 0;
640 int i;
641 char buf[4];
642
643 /* If unable to read memory, assume pc is not in a linker stub. */
644 if (target_read_memory (pc, buf, 4) != 0)
645 return 0;
646
647 /* We are looking for something like
648
649 ; $$dyncall jams RP into this special spot in the frame (RP')
650 ; before calling the "call stub"
651 ldw -18(sp),rp
652
653 ldsid (rp),r1 ; Get space associated with RP into r1
654 mtsp r1,sp ; Move it into space register 0
655 be,n 0(sr0),rp) ; back to your regularly scheduled program
656 */
657
658 /* Maximum known linker stub size is 4 instructions. Search forward
659 from the given PC, then backward. */
660 for (i = 0; i < 4; i++)
661 {
662 /* If we hit something with an unwind, stop searching this direction. */
663
664 if (find_unwind_entry (pc + i * 4) != 0)
665 break;
666
667 /* Check for ldsid (rp),r1 which is the magic instruction for a
668 return from a cross-space function call. */
669 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
670 {
671 found_magic_instruction = 1;
672 break;
673 }
674 /* Add code to handle long call/branch and argument relocation stubs
675 here. */
676 }
677
678 if (found_magic_instruction != 0)
679 return 1;
680
681 /* Now look backward. */
682 for (i = 0; i < 4; i++)
683 {
684 /* If we hit something with an unwind, stop searching this direction. */
685
686 if (find_unwind_entry (pc - i * 4) != 0)
687 break;
688
689 /* Check for ldsid (rp),r1 which is the magic instruction for a
690 return from a cross-space function call. */
691 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
692 {
693 found_magic_instruction = 1;
694 break;
695 }
696 /* Add code to handle long call/branch and argument relocation stubs
697 here. */
698 }
699 return found_magic_instruction;
700 }
701
702 static int
703 find_return_regnum(pc)
704 CORE_ADDR pc;
705 {
706 struct unwind_table_entry *u;
707
708 u = find_unwind_entry (pc);
709
710 if (!u)
711 return RP_REGNUM;
712
713 if (u->Millicode)
714 return 31;
715
716 return RP_REGNUM;
717 }
718
719 /* Return size of frame, or -1 if we should use a frame pointer. */
720 static int
721 find_proc_framesize (pc)
722 CORE_ADDR pc;
723 {
724 struct unwind_table_entry *u;
725 struct minimal_symbol *msym_us;
726
727 u = find_unwind_entry (pc);
728
729 if (!u)
730 {
731 if (pc_in_linker_stub (pc))
732 /* Linker stubs have a zero size frame. */
733 return 0;
734 else
735 return -1;
736 }
737
738 msym_us = lookup_minimal_symbol_by_pc (pc);
739
740 /* If Save_SP is set, and we're not in an interrupt or signal caller,
741 then we have a frame pointer. Use it. */
742 if (u->Save_SP && !pc_in_interrupt_handler (pc)
743 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
744 return -1;
745
746 return u->Total_frame_size << 3;
747 }
748
749 /* Return offset from sp at which rp is saved, or 0 if not saved. */
750 static int rp_saved PARAMS ((CORE_ADDR));
751
752 static int
753 rp_saved (pc)
754 CORE_ADDR pc;
755 {
756 struct unwind_table_entry *u;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 {
762 if (pc_in_linker_stub (pc))
763 /* This is the so-called RP'. */
764 return -24;
765 else
766 return 0;
767 }
768
769 if (u->Save_RP)
770 return -20;
771 else if (u->stub_type != 0)
772 {
773 switch (u->stub_type)
774 {
775 case EXPORT:
776 case IMPORT:
777 return -24;
778 case PARAMETER_RELOCATION:
779 return -8;
780 default:
781 return 0;
782 }
783 }
784 else
785 return 0;
786 }
787 \f
788 int
789 frameless_function_invocation (frame)
790 struct frame_info *frame;
791 {
792 struct unwind_table_entry *u;
793
794 u = find_unwind_entry (frame->pc);
795
796 if (u == 0)
797 return 0;
798
799 return (u->Total_frame_size == 0 && u->stub_type == 0);
800 }
801
802 CORE_ADDR
803 saved_pc_after_call (frame)
804 struct frame_info *frame;
805 {
806 int ret_regnum;
807 CORE_ADDR pc;
808 struct unwind_table_entry *u;
809
810 ret_regnum = find_return_regnum (get_frame_pc (frame));
811 pc = read_register (ret_regnum) & ~0x3;
812
813 /* If PC is in a linker stub, then we need to dig the address
814 the stub will return to out of the stack. */
815 u = find_unwind_entry (pc);
816 if (u && u->stub_type != 0)
817 return frame_saved_pc (frame);
818 else
819 return pc;
820 }
821 \f
822 CORE_ADDR
823 frame_saved_pc (frame)
824 struct frame_info *frame;
825 {
826 CORE_ADDR pc = get_frame_pc (frame);
827 struct unwind_table_entry *u;
828
829 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
830 at the base of the frame in an interrupt handler. Registers within
831 are saved in the exact same order as GDB numbers registers. How
832 convienent. */
833 if (pc_in_interrupt_handler (pc))
834 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
835
836 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
837 /* Deal with signal handler caller frames too. */
838 if (frame->signal_handler_caller)
839 {
840 CORE_ADDR rp;
841 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
842 return rp & ~0x3;
843 }
844 #endif
845
846 if (frameless_function_invocation (frame))
847 {
848 int ret_regnum;
849
850 ret_regnum = find_return_regnum (pc);
851
852 /* If the next frame is an interrupt frame or a signal
853 handler caller, then we need to look in the saved
854 register area to get the return pointer (the values
855 in the registers may not correspond to anything useful). */
856 if (frame->next
857 && (frame->next->signal_handler_caller
858 || pc_in_interrupt_handler (frame->next->pc)))
859 {
860 struct frame_saved_regs saved_regs;
861
862 get_frame_saved_regs (frame->next, &saved_regs);
863 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
864 {
865 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
866
867 /* Syscalls are really two frames. The syscall stub itself
868 with a return pointer in %rp and the kernel call with
869 a return pointer in %r31. We return the %rp variant
870 if %r31 is the same as frame->pc. */
871 if (pc == frame->pc)
872 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
873 }
874 else
875 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
876 }
877 else
878 pc = read_register (ret_regnum) & ~0x3;
879 }
880 else
881 {
882 int rp_offset;
883
884 restart:
885 rp_offset = rp_saved (pc);
886 /* Similar to code in frameless function case. If the next
887 frame is a signal or interrupt handler, then dig the right
888 information out of the saved register info. */
889 if (rp_offset == 0
890 && frame->next
891 && (frame->next->signal_handler_caller
892 || pc_in_interrupt_handler (frame->next->pc)))
893 {
894 struct frame_saved_regs saved_regs;
895
896 get_frame_saved_regs (frame->next, &saved_regs);
897 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
898 {
899 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
900
901 /* Syscalls are really two frames. The syscall stub itself
902 with a return pointer in %rp and the kernel call with
903 a return pointer in %r31. We return the %rp variant
904 if %r31 is the same as frame->pc. */
905 if (pc == frame->pc)
906 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
907 }
908 else
909 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
910 }
911 else if (rp_offset == 0)
912 pc = read_register (RP_REGNUM) & ~0x3;
913 else
914 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
915 }
916
917 /* If PC is inside a linker stub, then dig out the address the stub
918 will return to.
919
920 Don't do this for long branch stubs. Why? For some unknown reason
921 _start is marked as a long branch stub in hpux10. */
922 u = find_unwind_entry (pc);
923 if (u && u->stub_type != 0
924 && u->stub_type != LONG_BRANCH)
925 {
926 unsigned int insn;
927
928 /* If this is a dynamic executable, and we're in a signal handler,
929 then the call chain will eventually point us into the stub for
930 _sigreturn. Unlike most cases, we'll be pointed to the branch
931 to the real sigreturn rather than the code after the real branch!.
932
933 Else, try to dig the address the stub will return to in the normal
934 fashion. */
935 insn = read_memory_integer (pc, 4);
936 if ((insn & 0xfc00e000) == 0xe8000000)
937 return (pc + extract_17 (insn) + 8) & ~0x3;
938 else
939 goto restart;
940 }
941
942 return pc;
943 }
944 \f
945 /* We need to correct the PC and the FP for the outermost frame when we are
946 in a system call. */
947
948 void
949 init_extra_frame_info (fromleaf, frame)
950 int fromleaf;
951 struct frame_info *frame;
952 {
953 int flags;
954 int framesize;
955
956 if (frame->next && !fromleaf)
957 return;
958
959 /* If the next frame represents a frameless function invocation
960 then we have to do some adjustments that are normally done by
961 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
962 if (fromleaf)
963 {
964 /* Find the framesize of *this* frame without peeking at the PC
965 in the current frame structure (it isn't set yet). */
966 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
967
968 /* Now adjust our base frame accordingly. If we have a frame pointer
969 use it, else subtract the size of this frame from the current
970 frame. (we always want frame->frame to point at the lowest address
971 in the frame). */
972 if (framesize == -1)
973 frame->frame = read_register (FP_REGNUM);
974 else
975 frame->frame -= framesize;
976 return;
977 }
978
979 flags = read_register (FLAGS_REGNUM);
980 if (flags & 2) /* In system call? */
981 frame->pc = read_register (31) & ~0x3;
982
983 /* The outermost frame is always derived from PC-framesize
984
985 One might think frameless innermost frames should have
986 a frame->frame that is the same as the parent's frame->frame.
987 That is wrong; frame->frame in that case should be the *high*
988 address of the parent's frame. It's complicated as hell to
989 explain, but the parent *always* creates some stack space for
990 the child. So the child actually does have a frame of some
991 sorts, and its base is the high address in its parent's frame. */
992 framesize = find_proc_framesize(frame->pc);
993 if (framesize == -1)
994 frame->frame = read_register (FP_REGNUM);
995 else
996 frame->frame = read_register (SP_REGNUM) - framesize;
997 }
998 \f
999 /* Given a GDB frame, determine the address of the calling function's frame.
1000 This will be used to create a new GDB frame struct, and then
1001 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
1002
1003 This may involve searching through prologues for several functions
1004 at boundaries where GCC calls HP C code, or where code which has
1005 a frame pointer calls code without a frame pointer. */
1006
1007 CORE_ADDR
1008 frame_chain (frame)
1009 struct frame_info *frame;
1010 {
1011 int my_framesize, caller_framesize;
1012 struct unwind_table_entry *u;
1013 CORE_ADDR frame_base;
1014 struct frame_info *tmp_frame;
1015
1016 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1017 are easy; at *sp we have a full save state strucutre which we can
1018 pull the old stack pointer from. Also see frame_saved_pc for
1019 code to dig a saved PC out of the save state structure. */
1020 if (pc_in_interrupt_handler (frame->pc))
1021 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
1022 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1023 else if (frame->signal_handler_caller)
1024 {
1025 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1026 }
1027 #endif
1028 else
1029 frame_base = frame->frame;
1030
1031 /* Get frame sizes for the current frame and the frame of the
1032 caller. */
1033 my_framesize = find_proc_framesize (frame->pc);
1034 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
1035
1036 /* If caller does not have a frame pointer, then its frame
1037 can be found at current_frame - caller_framesize. */
1038 if (caller_framesize != -1)
1039 return frame_base - caller_framesize;
1040
1041 /* Both caller and callee have frame pointers and are GCC compiled
1042 (SAVE_SP bit in unwind descriptor is on for both functions.
1043 The previous frame pointer is found at the top of the current frame. */
1044 if (caller_framesize == -1 && my_framesize == -1)
1045 return read_memory_integer (frame_base, 4);
1046
1047 /* Caller has a frame pointer, but callee does not. This is a little
1048 more difficult as GCC and HP C lay out locals and callee register save
1049 areas very differently.
1050
1051 The previous frame pointer could be in a register, or in one of
1052 several areas on the stack.
1053
1054 Walk from the current frame to the innermost frame examining
1055 unwind descriptors to determine if %r3 ever gets saved into the
1056 stack. If so return whatever value got saved into the stack.
1057 If it was never saved in the stack, then the value in %r3 is still
1058 valid, so use it.
1059
1060 We use information from unwind descriptors to determine if %r3
1061 is saved into the stack (Entry_GR field has this information). */
1062
1063 tmp_frame = frame;
1064 while (tmp_frame)
1065 {
1066 u = find_unwind_entry (tmp_frame->pc);
1067
1068 if (!u)
1069 {
1070 /* We could find this information by examining prologues. I don't
1071 think anyone has actually written any tools (not even "strip")
1072 which leave them out of an executable, so maybe this is a moot
1073 point. */
1074 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1075 return 0;
1076 }
1077
1078 /* Entry_GR specifies the number of callee-saved general registers
1079 saved in the stack. It starts at %r3, so %r3 would be 1. */
1080 if (u->Entry_GR >= 1 || u->Save_SP
1081 || tmp_frame->signal_handler_caller
1082 || pc_in_interrupt_handler (tmp_frame->pc))
1083 break;
1084 else
1085 tmp_frame = tmp_frame->next;
1086 }
1087
1088 if (tmp_frame)
1089 {
1090 /* We may have walked down the chain into a function with a frame
1091 pointer. */
1092 if (u->Save_SP
1093 && !tmp_frame->signal_handler_caller
1094 && !pc_in_interrupt_handler (tmp_frame->pc))
1095 return read_memory_integer (tmp_frame->frame, 4);
1096 /* %r3 was saved somewhere in the stack. Dig it out. */
1097 else
1098 {
1099 struct frame_saved_regs saved_regs;
1100
1101 /* Sick.
1102
1103 For optimization purposes many kernels don't have the
1104 callee saved registers into the save_state structure upon
1105 entry into the kernel for a syscall; the optimization
1106 is usually turned off if the process is being traced so
1107 that the debugger can get full register state for the
1108 process.
1109
1110 This scheme works well except for two cases:
1111
1112 * Attaching to a process when the process is in the
1113 kernel performing a system call (debugger can't get
1114 full register state for the inferior process since
1115 the process wasn't being traced when it entered the
1116 system call).
1117
1118 * Register state is not complete if the system call
1119 causes the process to core dump.
1120
1121
1122 The following heinous code is an attempt to deal with
1123 the lack of register state in a core dump. It will
1124 fail miserably if the function which performs the
1125 system call has a variable sized stack frame. */
1126
1127 get_frame_saved_regs (tmp_frame, &saved_regs);
1128
1129 /* Abominable hack. */
1130 if (current_target.to_has_execution == 0
1131 && ((saved_regs.regs[FLAGS_REGNUM]
1132 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1133 & 0x2))
1134 || (saved_regs.regs[FLAGS_REGNUM] == 0
1135 && read_register (FLAGS_REGNUM) & 0x2)))
1136 {
1137 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1138 if (!u)
1139 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1140 else
1141 return frame_base - (u->Total_frame_size << 3);
1142 }
1143
1144 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1145 }
1146 }
1147 else
1148 {
1149 struct frame_saved_regs saved_regs;
1150
1151 /* Get the innermost frame. */
1152 tmp_frame = frame;
1153 while (tmp_frame->next != NULL)
1154 tmp_frame = tmp_frame->next;
1155
1156 get_frame_saved_regs (tmp_frame, &saved_regs);
1157 /* Abominable hack. See above. */
1158 if (current_target.to_has_execution == 0
1159 && ((saved_regs.regs[FLAGS_REGNUM]
1160 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4)
1161 & 0x2))
1162 || (saved_regs.regs[FLAGS_REGNUM] == 0
1163 && read_register (FLAGS_REGNUM) & 0x2)))
1164 {
1165 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1166 if (!u)
1167 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1168 else
1169 return frame_base - (u->Total_frame_size << 3);
1170 }
1171
1172 /* The value in %r3 was never saved into the stack (thus %r3 still
1173 holds the value of the previous frame pointer). */
1174 return read_register (FP_REGNUM);
1175 }
1176 }
1177
1178 \f
1179 /* To see if a frame chain is valid, see if the caller looks like it
1180 was compiled with gcc. */
1181
1182 int
1183 frame_chain_valid (chain, thisframe)
1184 CORE_ADDR chain;
1185 struct frame_info *thisframe;
1186 {
1187 struct minimal_symbol *msym_us;
1188 struct minimal_symbol *msym_start;
1189 struct unwind_table_entry *u, *next_u = NULL;
1190 struct frame_info *next;
1191
1192 if (!chain)
1193 return 0;
1194
1195 u = find_unwind_entry (thisframe->pc);
1196
1197 if (u == NULL)
1198 return 1;
1199
1200 /* We can't just check that the same of msym_us is "_start", because
1201 someone idiotically decided that they were going to make a Ltext_end
1202 symbol with the same address. This Ltext_end symbol is totally
1203 indistinguishable (as nearly as I can tell) from the symbol for a function
1204 which is (legitimately, since it is in the user's namespace)
1205 named Ltext_end, so we can't just ignore it. */
1206 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1207 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1208 if (msym_us
1209 && msym_start
1210 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1211 return 0;
1212
1213 /* Grrrr. Some new idiot decided that they don't want _start for the
1214 PRO configurations; $START$ calls main directly.... Deal with it. */
1215 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1216 if (msym_us
1217 && msym_start
1218 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1219 return 0;
1220
1221 next = get_next_frame (thisframe);
1222 if (next)
1223 next_u = find_unwind_entry (next->pc);
1224
1225 /* If this frame does not save SP, has no stack, isn't a stub,
1226 and doesn't "call" an interrupt routine or signal handler caller,
1227 then its not valid. */
1228 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1229 || (thisframe->next && thisframe->next->signal_handler_caller)
1230 || (next_u && next_u->HP_UX_interrupt_marker))
1231 return 1;
1232
1233 if (pc_in_linker_stub (thisframe->pc))
1234 return 1;
1235
1236 return 0;
1237 }
1238
1239 /*
1240 * These functions deal with saving and restoring register state
1241 * around a function call in the inferior. They keep the stack
1242 * double-word aligned; eventually, on an hp700, the stack will have
1243 * to be aligned to a 64-byte boundary.
1244 */
1245
1246 void
1247 push_dummy_frame (inf_status)
1248 struct inferior_status *inf_status;
1249 {
1250 CORE_ADDR sp, pc, pcspace;
1251 register int regnum;
1252 int int_buffer;
1253 double freg_buffer;
1254
1255 /* Oh, what a hack. If we're trying to perform an inferior call
1256 while the inferior is asleep, we have to make sure to clear
1257 the "in system call" bit in the flag register (the call will
1258 start after the syscall returns, so we're no longer in the system
1259 call!) This state is kept in "inf_status", change it there.
1260
1261 We also need a number of horrid hacks to deal with lossage in the
1262 PC queue registers (apparently they're not valid when the in syscall
1263 bit is set). */
1264 pc = target_read_pc (inferior_pid);
1265 int_buffer = read_register (FLAGS_REGNUM);
1266 if (int_buffer & 0x2)
1267 {
1268 unsigned int sid;
1269 int_buffer &= ~0x2;
1270 memcpy (inf_status->registers, &int_buffer, 4);
1271 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1272 pc += 4;
1273 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1274 pc -= 4;
1275 sid = (pc >> 30) & 0x3;
1276 if (sid == 0)
1277 pcspace = read_register (SR4_REGNUM);
1278 else
1279 pcspace = read_register (SR4_REGNUM + 4 + sid);
1280 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1281 &pcspace, 4);
1282 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1283 &pcspace, 4);
1284 }
1285 else
1286 pcspace = read_register (PCSQ_HEAD_REGNUM);
1287
1288 /* Space for "arguments"; the RP goes in here. */
1289 sp = read_register (SP_REGNUM) + 48;
1290 int_buffer = read_register (RP_REGNUM) | 0x3;
1291 write_memory (sp - 20, (char *)&int_buffer, 4);
1292
1293 int_buffer = read_register (FP_REGNUM);
1294 write_memory (sp, (char *)&int_buffer, 4);
1295
1296 write_register (FP_REGNUM, sp);
1297
1298 sp += 8;
1299
1300 for (regnum = 1; regnum < 32; regnum++)
1301 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1302 sp = push_word (sp, read_register (regnum));
1303
1304 sp += 4;
1305
1306 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1307 {
1308 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1309 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1310 }
1311 sp = push_word (sp, read_register (IPSW_REGNUM));
1312 sp = push_word (sp, read_register (SAR_REGNUM));
1313 sp = push_word (sp, pc);
1314 sp = push_word (sp, pcspace);
1315 sp = push_word (sp, pc + 4);
1316 sp = push_word (sp, pcspace);
1317 write_register (SP_REGNUM, sp);
1318 }
1319
1320 static void
1321 find_dummy_frame_regs (frame, frame_saved_regs)
1322 struct frame_info *frame;
1323 struct frame_saved_regs *frame_saved_regs;
1324 {
1325 CORE_ADDR fp = frame->frame;
1326 int i;
1327
1328 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1329 frame_saved_regs->regs[FP_REGNUM] = fp;
1330 frame_saved_regs->regs[1] = fp + 8;
1331
1332 for (fp += 12, i = 3; i < 32; i++)
1333 {
1334 if (i != FP_REGNUM)
1335 {
1336 frame_saved_regs->regs[i] = fp;
1337 fp += 4;
1338 }
1339 }
1340
1341 fp += 4;
1342 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1343 frame_saved_regs->regs[i] = fp;
1344
1345 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1346 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1347 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1348 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1349 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1350 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1351 }
1352
1353 void
1354 hppa_pop_frame ()
1355 {
1356 register struct frame_info *frame = get_current_frame ();
1357 register CORE_ADDR fp, npc, target_pc;
1358 register int regnum;
1359 struct frame_saved_regs fsr;
1360 double freg_buffer;
1361
1362 fp = FRAME_FP (frame);
1363 get_frame_saved_regs (frame, &fsr);
1364
1365 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1366 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1367 restore_pc_queue (&fsr);
1368 #endif
1369
1370 for (regnum = 31; regnum > 0; regnum--)
1371 if (fsr.regs[regnum])
1372 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1373
1374 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1375 if (fsr.regs[regnum])
1376 {
1377 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1378 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1379 }
1380
1381 if (fsr.regs[IPSW_REGNUM])
1382 write_register (IPSW_REGNUM,
1383 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1384
1385 if (fsr.regs[SAR_REGNUM])
1386 write_register (SAR_REGNUM,
1387 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1388
1389 /* If the PC was explicitly saved, then just restore it. */
1390 if (fsr.regs[PCOQ_TAIL_REGNUM])
1391 {
1392 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1393 write_register (PCOQ_TAIL_REGNUM, npc);
1394 }
1395 /* Else use the value in %rp to set the new PC. */
1396 else
1397 {
1398 npc = read_register (RP_REGNUM);
1399 target_write_pc (npc, 0);
1400 }
1401
1402 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1403
1404 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1405 write_register (SP_REGNUM, fp - 48);
1406 else
1407 write_register (SP_REGNUM, fp);
1408
1409 /* The PC we just restored may be inside a return trampoline. If so
1410 we want to restart the inferior and run it through the trampoline.
1411
1412 Do this by setting a momentary breakpoint at the location the
1413 trampoline returns to.
1414
1415 Don't skip through the trampoline if we're popping a dummy frame. */
1416 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1417 if (target_pc && !fsr.regs[IPSW_REGNUM])
1418 {
1419 struct symtab_and_line sal;
1420 struct breakpoint *breakpoint;
1421 struct cleanup *old_chain;
1422
1423 /* Set up our breakpoint. Set it to be silent as the MI code
1424 for "return_command" will print the frame we returned to. */
1425 sal = find_pc_line (target_pc, 0);
1426 sal.pc = target_pc;
1427 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1428 breakpoint->silent = 1;
1429
1430 /* So we can clean things up. */
1431 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1432
1433 /* Start up the inferior. */
1434 clear_proceed_status ();
1435 proceed_to_finish = 1;
1436 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1437
1438 /* Perform our cleanups. */
1439 do_cleanups (old_chain);
1440 }
1441 flush_cached_frames ();
1442 }
1443
1444 /*
1445 * After returning to a dummy on the stack, restore the instruction
1446 * queue space registers. */
1447
1448 static int
1449 restore_pc_queue (fsr)
1450 struct frame_saved_regs *fsr;
1451 {
1452 CORE_ADDR pc = read_pc ();
1453 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1454 struct target_waitstatus w;
1455 int insn_count;
1456
1457 /* Advance past break instruction in the call dummy. */
1458 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1459 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1460
1461 /*
1462 * HPUX doesn't let us set the space registers or the space
1463 * registers of the PC queue through ptrace. Boo, hiss.
1464 * Conveniently, the call dummy has this sequence of instructions
1465 * after the break:
1466 * mtsp r21, sr0
1467 * ble,n 0(sr0, r22)
1468 *
1469 * So, load up the registers and single step until we are in the
1470 * right place.
1471 */
1472
1473 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1474 write_register (22, new_pc);
1475
1476 for (insn_count = 0; insn_count < 3; insn_count++)
1477 {
1478 /* FIXME: What if the inferior gets a signal right now? Want to
1479 merge this into wait_for_inferior (as a special kind of
1480 watchpoint? By setting a breakpoint at the end? Is there
1481 any other choice? Is there *any* way to do this stuff with
1482 ptrace() or some equivalent?). */
1483 resume (1, 0);
1484 target_wait (inferior_pid, &w);
1485
1486 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1487 {
1488 stop_signal = w.value.sig;
1489 terminal_ours_for_output ();
1490 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1491 target_signal_to_name (stop_signal),
1492 target_signal_to_string (stop_signal));
1493 gdb_flush (gdb_stdout);
1494 return 0;
1495 }
1496 }
1497 target_terminal_ours ();
1498 target_fetch_registers (-1);
1499 return 1;
1500 }
1501
1502 CORE_ADDR
1503 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1504 int nargs;
1505 value_ptr *args;
1506 CORE_ADDR sp;
1507 int struct_return;
1508 CORE_ADDR struct_addr;
1509 {
1510 /* array of arguments' offsets */
1511 int *offset = (int *)alloca(nargs * sizeof (int));
1512 int cum = 0;
1513 int i, alignment;
1514
1515 for (i = 0; i < nargs; i++)
1516 {
1517 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1518
1519 /* value must go at proper alignment. Assume alignment is a
1520 power of two.*/
1521 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1522 if (cum % alignment)
1523 cum = (cum + alignment) & -alignment;
1524 offset[i] = -cum;
1525 }
1526 sp += max ((cum + 7) & -8, 16);
1527
1528 for (i = 0; i < nargs; i++)
1529 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1530 TYPE_LENGTH (VALUE_TYPE (args[i])));
1531
1532 if (struct_return)
1533 write_register (28, struct_addr);
1534 return sp + 32;
1535 }
1536
1537 /*
1538 * Insert the specified number of args and function address
1539 * into a call sequence of the above form stored at DUMMYNAME.
1540 *
1541 * On the hppa we need to call the stack dummy through $$dyncall.
1542 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1543 * real_pc, which is the location where gdb should start up the
1544 * inferior to do the function call.
1545 */
1546
1547 CORE_ADDR
1548 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1549 char *dummy;
1550 CORE_ADDR pc;
1551 CORE_ADDR fun;
1552 int nargs;
1553 value_ptr *args;
1554 struct type *type;
1555 int gcc_p;
1556 {
1557 CORE_ADDR dyncall_addr;
1558 struct minimal_symbol *msymbol;
1559 struct minimal_symbol *trampoline;
1560 int flags = read_register (FLAGS_REGNUM);
1561 struct unwind_table_entry *u;
1562
1563 trampoline = NULL;
1564 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1565 if (msymbol == NULL)
1566 error ("Can't find an address for $$dyncall trampoline");
1567
1568 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1569
1570 /* FUN could be a procedure label, in which case we have to get
1571 its real address and the value of its GOT/DP. */
1572 if (fun & 0x2)
1573 {
1574 /* Get the GOT/DP value for the target function. It's
1575 at *(fun+4). Note the call dummy is *NOT* allowed to
1576 trash %r19 before calling the target function. */
1577 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1578
1579 /* Now get the real address for the function we are calling, it's
1580 at *fun. */
1581 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1582 }
1583 else
1584 {
1585
1586 #ifndef GDB_TARGET_IS_PA_ELF
1587 /* FUN could be either an export stub, or the real address of a
1588 function in a shared library. We must call an import stub
1589 rather than the export stub or real function for lazy binding
1590 to work correctly. */
1591 if (som_solib_get_got_by_pc (fun))
1592 {
1593 struct objfile *objfile;
1594 struct minimal_symbol *funsymbol, *stub_symbol;
1595 CORE_ADDR newfun = 0;
1596
1597 funsymbol = lookup_minimal_symbol_by_pc (fun);
1598 if (!funsymbol)
1599 error ("Unable to find minimal symbol for target fucntion.\n");
1600
1601 /* Search all the object files for an import symbol with the
1602 right name. */
1603 ALL_OBJFILES (objfile)
1604 {
1605 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1606 NULL, objfile);
1607 /* Found a symbol with the right name. */
1608 if (stub_symbol)
1609 {
1610 struct unwind_table_entry *u;
1611 /* It must be a shared library trampoline. */
1612 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1613 continue;
1614
1615 /* It must also be an import stub. */
1616 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1617 if (!u || u->stub_type != IMPORT)
1618 continue;
1619
1620 /* OK. Looks like the correct import stub. */
1621 newfun = SYMBOL_VALUE (stub_symbol);
1622 fun = newfun;
1623 }
1624 }
1625 if (newfun == 0)
1626 write_register (19, som_solib_get_got_by_pc (fun));
1627 }
1628 #endif
1629 }
1630
1631 /* If we are calling an import stub (eg calling into a dynamic library)
1632 then have sr4export call the magic __d_plt_call routine which is linked
1633 in from end.o. (You can't use _sr4export to call the import stub as
1634 the value in sp-24 will get fried and you end up returning to the
1635 wrong location. You can't call the import stub directly as the code
1636 to bind the PLT entry to a function can't return to a stack address.) */
1637 u = find_unwind_entry (fun);
1638 if (u && u->stub_type == IMPORT)
1639 {
1640 CORE_ADDR new_fun;
1641
1642 /* Prefer __gcc_plt_call over the HP supplied routine because
1643 __gcc_plt_call works for any number of arguments. */
1644 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1645 if (trampoline == NULL)
1646 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1647
1648 if (trampoline == NULL)
1649 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1650
1651 /* This is where sr4export will jump to. */
1652 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
1653
1654 if (strcmp (SYMBOL_NAME (trampoline), "__d_plt_call") == 0)
1655 {
1656 /* We have to store the address of the stub in __shlib_funcptr. */
1657 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1658 (struct objfile *)NULL);
1659 if (msymbol == NULL)
1660 error ("Can't find an address for __shlib_funcptr");
1661
1662 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1663
1664 /* We want sr4export to call __d_plt_call, so we claim it is
1665 the final target. Clear trampoline. */
1666 fun = new_fun;
1667 trampoline = NULL;
1668 }
1669 }
1670
1671 /* Store upper 21 bits of function address into ldil. fun will either be
1672 the final target (most cases) or __d_plt_call when calling into a shared
1673 library and __gcc_plt_call is not available. */
1674 store_unsigned_integer
1675 (&dummy[FUNC_LDIL_OFFSET],
1676 INSTRUCTION_SIZE,
1677 deposit_21 (fun >> 11,
1678 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1679 INSTRUCTION_SIZE)));
1680
1681 /* Store lower 11 bits of function address into ldo */
1682 store_unsigned_integer
1683 (&dummy[FUNC_LDO_OFFSET],
1684 INSTRUCTION_SIZE,
1685 deposit_14 (fun & MASK_11,
1686 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1687 INSTRUCTION_SIZE)));
1688 #ifdef SR4EXPORT_LDIL_OFFSET
1689
1690 {
1691 CORE_ADDR trampoline_addr;
1692
1693 /* We may still need sr4export's address too. */
1694
1695 if (trampoline == NULL)
1696 {
1697 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1698 if (msymbol == NULL)
1699 error ("Can't find an address for _sr4export trampoline");
1700
1701 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1702 }
1703 else
1704 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
1705
1706
1707 /* Store upper 21 bits of trampoline's address into ldil */
1708 store_unsigned_integer
1709 (&dummy[SR4EXPORT_LDIL_OFFSET],
1710 INSTRUCTION_SIZE,
1711 deposit_21 (trampoline_addr >> 11,
1712 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1713 INSTRUCTION_SIZE)));
1714
1715 /* Store lower 11 bits of trampoline's address into ldo */
1716 store_unsigned_integer
1717 (&dummy[SR4EXPORT_LDO_OFFSET],
1718 INSTRUCTION_SIZE,
1719 deposit_14 (trampoline_addr & MASK_11,
1720 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1721 INSTRUCTION_SIZE)));
1722 }
1723 #endif
1724
1725 write_register (22, pc);
1726
1727 /* If we are in a syscall, then we should call the stack dummy
1728 directly. $$dyncall is not needed as the kernel sets up the
1729 space id registers properly based on the value in %r31. In
1730 fact calling $$dyncall will not work because the value in %r22
1731 will be clobbered on the syscall exit path.
1732
1733 Similarly if the current PC is in a shared library. Note however,
1734 this scheme won't work if the shared library isn't mapped into
1735 the same space as the stack. */
1736 if (flags & 2)
1737 return pc;
1738 #ifndef GDB_TARGET_IS_PA_ELF
1739 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1740 return pc;
1741 #endif
1742 else
1743 return dyncall_addr;
1744
1745 }
1746
1747 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1748 bits. */
1749
1750 CORE_ADDR
1751 target_read_pc (pid)
1752 int pid;
1753 {
1754 int flags = read_register (FLAGS_REGNUM);
1755
1756 if (flags & 2) {
1757 return read_register (31) & ~0x3;
1758 }
1759 return read_register (PC_REGNUM) & ~0x3;
1760 }
1761
1762 /* Write out the PC. If currently in a syscall, then also write the new
1763 PC value into %r31. */
1764
1765 void
1766 target_write_pc (v, pid)
1767 CORE_ADDR v;
1768 int pid;
1769 {
1770 int flags = read_register (FLAGS_REGNUM);
1771
1772 /* If in a syscall, then set %r31. Also make sure to get the
1773 privilege bits set correctly. */
1774 if (flags & 2)
1775 write_register (31, (long) (v | 0x3));
1776
1777 write_register (PC_REGNUM, (long) v);
1778 write_register (NPC_REGNUM, (long) v + 4);
1779 }
1780
1781 /* return the alignment of a type in bytes. Structures have the maximum
1782 alignment required by their fields. */
1783
1784 static int
1785 hppa_alignof (type)
1786 struct type *type;
1787 {
1788 int max_align, align, i;
1789 CHECK_TYPEDEF (type);
1790 switch (TYPE_CODE (type))
1791 {
1792 case TYPE_CODE_PTR:
1793 case TYPE_CODE_INT:
1794 case TYPE_CODE_FLT:
1795 return TYPE_LENGTH (type);
1796 case TYPE_CODE_ARRAY:
1797 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1798 case TYPE_CODE_STRUCT:
1799 case TYPE_CODE_UNION:
1800 max_align = 2;
1801 for (i = 0; i < TYPE_NFIELDS (type); i++)
1802 {
1803 /* Bit fields have no real alignment. */
1804 if (!TYPE_FIELD_BITPOS (type, i))
1805 {
1806 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1807 max_align = max (max_align, align);
1808 }
1809 }
1810 return max_align;
1811 default:
1812 return 4;
1813 }
1814 }
1815
1816 /* Print the register regnum, or all registers if regnum is -1 */
1817
1818 void
1819 pa_do_registers_info (regnum, fpregs)
1820 int regnum;
1821 int fpregs;
1822 {
1823 char raw_regs [REGISTER_BYTES];
1824 int i;
1825
1826 for (i = 0; i < NUM_REGS; i++)
1827 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1828 if (regnum == -1)
1829 pa_print_registers (raw_regs, regnum, fpregs);
1830 else if (regnum < FP0_REGNUM)
1831 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1832 REGISTER_BYTE (regnum)));
1833 else
1834 pa_print_fp_reg (regnum);
1835 }
1836
1837 static void
1838 pa_print_registers (raw_regs, regnum, fpregs)
1839 char *raw_regs;
1840 int regnum;
1841 int fpregs;
1842 {
1843 int i,j;
1844 long val;
1845
1846 for (i = 0; i < 18; i++)
1847 {
1848 for (j = 0; j < 4; j++)
1849 {
1850 val =
1851 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1852 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1853 }
1854 printf_unfiltered ("\n");
1855 }
1856
1857 if (fpregs)
1858 for (i = 72; i < NUM_REGS; i++)
1859 pa_print_fp_reg (i);
1860 }
1861
1862 static void
1863 pa_print_fp_reg (i)
1864 int i;
1865 {
1866 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1867 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1868
1869 /* Get 32bits of data. */
1870 read_relative_register_raw_bytes (i, raw_buffer);
1871
1872 /* Put it in the buffer. No conversions are ever necessary. */
1873 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1874
1875 fputs_filtered (reg_names[i], gdb_stdout);
1876 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1877 fputs_filtered ("(single precision) ", gdb_stdout);
1878
1879 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1880 1, 0, Val_pretty_default);
1881 printf_filtered ("\n");
1882
1883 /* If "i" is even, then this register can also be a double-precision
1884 FP register. Dump it out as such. */
1885 if ((i % 2) == 0)
1886 {
1887 /* Get the data in raw format for the 2nd half. */
1888 read_relative_register_raw_bytes (i + 1, raw_buffer);
1889
1890 /* Copy it into the appropriate part of the virtual buffer. */
1891 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1892 REGISTER_RAW_SIZE (i));
1893
1894 /* Dump it as a double. */
1895 fputs_filtered (reg_names[i], gdb_stdout);
1896 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1897 fputs_filtered ("(double precision) ", gdb_stdout);
1898
1899 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1900 1, 0, Val_pretty_default);
1901 printf_filtered ("\n");
1902 }
1903 }
1904
1905 /* Return one if PC is in the call path of a trampoline, else return zero.
1906
1907 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1908 just shared library trampolines (import, export). */
1909
1910 int
1911 in_solib_call_trampoline (pc, name)
1912 CORE_ADDR pc;
1913 char *name;
1914 {
1915 struct minimal_symbol *minsym;
1916 struct unwind_table_entry *u;
1917 static CORE_ADDR dyncall = 0;
1918 static CORE_ADDR sr4export = 0;
1919
1920 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1921 new exec file */
1922
1923 /* First see if PC is in one of the two C-library trampolines. */
1924 if (!dyncall)
1925 {
1926 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1927 if (minsym)
1928 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1929 else
1930 dyncall = -1;
1931 }
1932
1933 if (!sr4export)
1934 {
1935 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1936 if (minsym)
1937 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1938 else
1939 sr4export = -1;
1940 }
1941
1942 if (pc == dyncall || pc == sr4export)
1943 return 1;
1944
1945 /* Get the unwind descriptor corresponding to PC, return zero
1946 if no unwind was found. */
1947 u = find_unwind_entry (pc);
1948 if (!u)
1949 return 0;
1950
1951 /* If this isn't a linker stub, then return now. */
1952 if (u->stub_type == 0)
1953 return 0;
1954
1955 /* By definition a long-branch stub is a call stub. */
1956 if (u->stub_type == LONG_BRANCH)
1957 return 1;
1958
1959 /* The call and return path execute the same instructions within
1960 an IMPORT stub! So an IMPORT stub is both a call and return
1961 trampoline. */
1962 if (u->stub_type == IMPORT)
1963 return 1;
1964
1965 /* Parameter relocation stubs always have a call path and may have a
1966 return path. */
1967 if (u->stub_type == PARAMETER_RELOCATION
1968 || u->stub_type == EXPORT)
1969 {
1970 CORE_ADDR addr;
1971
1972 /* Search forward from the current PC until we hit a branch
1973 or the end of the stub. */
1974 for (addr = pc; addr <= u->region_end; addr += 4)
1975 {
1976 unsigned long insn;
1977
1978 insn = read_memory_integer (addr, 4);
1979
1980 /* Does it look like a bl? If so then it's the call path, if
1981 we find a bv or be first, then we're on the return path. */
1982 if ((insn & 0xfc00e000) == 0xe8000000)
1983 return 1;
1984 else if ((insn & 0xfc00e001) == 0xe800c000
1985 || (insn & 0xfc000000) == 0xe0000000)
1986 return 0;
1987 }
1988
1989 /* Should never happen. */
1990 warning ("Unable to find branch in parameter relocation stub.\n");
1991 return 0;
1992 }
1993
1994 /* Unknown stub type. For now, just return zero. */
1995 return 0;
1996 }
1997
1998 /* Return one if PC is in the return path of a trampoline, else return zero.
1999
2000 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2001 just shared library trampolines (import, export). */
2002
2003 int
2004 in_solib_return_trampoline (pc, name)
2005 CORE_ADDR pc;
2006 char *name;
2007 {
2008 struct unwind_table_entry *u;
2009
2010 /* Get the unwind descriptor corresponding to PC, return zero
2011 if no unwind was found. */
2012 u = find_unwind_entry (pc);
2013 if (!u)
2014 return 0;
2015
2016 /* If this isn't a linker stub or it's just a long branch stub, then
2017 return zero. */
2018 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
2019 return 0;
2020
2021 /* The call and return path execute the same instructions within
2022 an IMPORT stub! So an IMPORT stub is both a call and return
2023 trampoline. */
2024 if (u->stub_type == IMPORT)
2025 return 1;
2026
2027 /* Parameter relocation stubs always have a call path and may have a
2028 return path. */
2029 if (u->stub_type == PARAMETER_RELOCATION
2030 || u->stub_type == EXPORT)
2031 {
2032 CORE_ADDR addr;
2033
2034 /* Search forward from the current PC until we hit a branch
2035 or the end of the stub. */
2036 for (addr = pc; addr <= u->region_end; addr += 4)
2037 {
2038 unsigned long insn;
2039
2040 insn = read_memory_integer (addr, 4);
2041
2042 /* Does it look like a bl? If so then it's the call path, if
2043 we find a bv or be first, then we're on the return path. */
2044 if ((insn & 0xfc00e000) == 0xe8000000)
2045 return 0;
2046 else if ((insn & 0xfc00e001) == 0xe800c000
2047 || (insn & 0xfc000000) == 0xe0000000)
2048 return 1;
2049 }
2050
2051 /* Should never happen. */
2052 warning ("Unable to find branch in parameter relocation stub.\n");
2053 return 0;
2054 }
2055
2056 /* Unknown stub type. For now, just return zero. */
2057 return 0;
2058
2059 }
2060
2061 /* Figure out if PC is in a trampoline, and if so find out where
2062 the trampoline will jump to. If not in a trampoline, return zero.
2063
2064 Simple code examination probably is not a good idea since the code
2065 sequences in trampolines can also appear in user code.
2066
2067 We use unwinds and information from the minimal symbol table to
2068 determine when we're in a trampoline. This won't work for ELF
2069 (yet) since it doesn't create stub unwind entries. Whether or
2070 not ELF will create stub unwinds or normal unwinds for linker
2071 stubs is still being debated.
2072
2073 This should handle simple calls through dyncall or sr4export,
2074 long calls, argument relocation stubs, and dyncall/sr4export
2075 calling an argument relocation stub. It even handles some stubs
2076 used in dynamic executables. */
2077
2078 CORE_ADDR
2079 skip_trampoline_code (pc, name)
2080 CORE_ADDR pc;
2081 char *name;
2082 {
2083 long orig_pc = pc;
2084 long prev_inst, curr_inst, loc;
2085 static CORE_ADDR dyncall = 0;
2086 static CORE_ADDR sr4export = 0;
2087 struct minimal_symbol *msym;
2088 struct unwind_table_entry *u;
2089
2090 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2091 new exec file */
2092
2093 if (!dyncall)
2094 {
2095 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2096 if (msym)
2097 dyncall = SYMBOL_VALUE_ADDRESS (msym);
2098 else
2099 dyncall = -1;
2100 }
2101
2102 if (!sr4export)
2103 {
2104 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2105 if (msym)
2106 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2107 else
2108 sr4export = -1;
2109 }
2110
2111 /* Addresses passed to dyncall may *NOT* be the actual address
2112 of the function. So we may have to do something special. */
2113 if (pc == dyncall)
2114 {
2115 pc = (CORE_ADDR) read_register (22);
2116
2117 /* If bit 30 (counting from the left) is on, then pc is the address of
2118 the PLT entry for this function, not the address of the function
2119 itself. Bit 31 has meaning too, but only for MPE. */
2120 if (pc & 0x2)
2121 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2122 }
2123 else if (pc == sr4export)
2124 pc = (CORE_ADDR) (read_register (22));
2125
2126 /* Get the unwind descriptor corresponding to PC, return zero
2127 if no unwind was found. */
2128 u = find_unwind_entry (pc);
2129 if (!u)
2130 return 0;
2131
2132 /* If this isn't a linker stub, then return now. */
2133 if (u->stub_type == 0)
2134 return orig_pc == pc ? 0 : pc & ~0x3;
2135
2136 /* It's a stub. Search for a branch and figure out where it goes.
2137 Note we have to handle multi insn branch sequences like ldil;ble.
2138 Most (all?) other branches can be determined by examining the contents
2139 of certain registers and the stack. */
2140 loc = pc;
2141 curr_inst = 0;
2142 prev_inst = 0;
2143 while (1)
2144 {
2145 /* Make sure we haven't walked outside the range of this stub. */
2146 if (u != find_unwind_entry (loc))
2147 {
2148 warning ("Unable to find branch in linker stub");
2149 return orig_pc == pc ? 0 : pc & ~0x3;
2150 }
2151
2152 prev_inst = curr_inst;
2153 curr_inst = read_memory_integer (loc, 4);
2154
2155 /* Does it look like a branch external using %r1? Then it's the
2156 branch from the stub to the actual function. */
2157 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2158 {
2159 /* Yup. See if the previous instruction loaded
2160 a value into %r1. If so compute and return the jump address. */
2161 if ((prev_inst & 0xffe00000) == 0x20200000)
2162 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2163 else
2164 {
2165 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2166 return orig_pc == pc ? 0 : pc & ~0x3;
2167 }
2168 }
2169
2170 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2171 import stub to an export stub.
2172
2173 It is impossible to determine the target of the branch via
2174 simple examination of instructions and/or data (consider
2175 that the address in the plabel may be the address of the
2176 bind-on-reference routine in the dynamic loader).
2177
2178 So we have try an alternative approach.
2179
2180 Get the name of the symbol at our current location; it should
2181 be a stub symbol with the same name as the symbol in the
2182 shared library.
2183
2184 Then lookup a minimal symbol with the same name; we should
2185 get the minimal symbol for the target routine in the shared
2186 library as those take precedence of import/export stubs. */
2187 if (curr_inst == 0xe2a00000)
2188 {
2189 struct minimal_symbol *stubsym, *libsym;
2190
2191 stubsym = lookup_minimal_symbol_by_pc (loc);
2192 if (stubsym == NULL)
2193 {
2194 warning ("Unable to find symbol for 0x%x", loc);
2195 return orig_pc == pc ? 0 : pc & ~0x3;
2196 }
2197
2198 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2199 if (libsym == NULL)
2200 {
2201 warning ("Unable to find library symbol for %s\n",
2202 SYMBOL_NAME (stubsym));
2203 return orig_pc == pc ? 0 : pc & ~0x3;
2204 }
2205
2206 return SYMBOL_VALUE (libsym);
2207 }
2208
2209 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2210 branch from the stub to the actual function. */
2211 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2212 || (curr_inst & 0xffe0e000) == 0xe8000000)
2213 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2214
2215 /* Does it look like bv (rp)? Note this depends on the
2216 current stack pointer being the same as the stack
2217 pointer in the stub itself! This is a branch on from the
2218 stub back to the original caller. */
2219 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2220 {
2221 /* Yup. See if the previous instruction loaded
2222 rp from sp - 8. */
2223 if (prev_inst == 0x4bc23ff1)
2224 return (read_memory_integer
2225 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2226 else
2227 {
2228 warning ("Unable to find restore of %%rp before bv (%%rp).");
2229 return orig_pc == pc ? 0 : pc & ~0x3;
2230 }
2231 }
2232
2233 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2234 the original caller from the stub. Used in dynamic executables. */
2235 else if (curr_inst == 0xe0400002)
2236 {
2237 /* The value we jump to is sitting in sp - 24. But that's
2238 loaded several instructions before the be instruction.
2239 I guess we could check for the previous instruction being
2240 mtsp %r1,%sr0 if we want to do sanity checking. */
2241 return (read_memory_integer
2242 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2243 }
2244
2245 /* Haven't found the branch yet, but we're still in the stub.
2246 Keep looking. */
2247 loc += 4;
2248 }
2249 }
2250
2251 /* For the given instruction (INST), return any adjustment it makes
2252 to the stack pointer or zero for no adjustment.
2253
2254 This only handles instructions commonly found in prologues. */
2255
2256 static int
2257 prologue_inst_adjust_sp (inst)
2258 unsigned long inst;
2259 {
2260 /* This must persist across calls. */
2261 static int save_high21;
2262
2263 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2264 if ((inst & 0xffffc000) == 0x37de0000)
2265 return extract_14 (inst);
2266
2267 /* stwm X,D(sp) */
2268 if ((inst & 0xffe00000) == 0x6fc00000)
2269 return extract_14 (inst);
2270
2271 /* addil high21,%r1; ldo low11,(%r1),%r30)
2272 save high bits in save_high21 for later use. */
2273 if ((inst & 0xffe00000) == 0x28200000)
2274 {
2275 save_high21 = extract_21 (inst);
2276 return 0;
2277 }
2278
2279 if ((inst & 0xffff0000) == 0x343e0000)
2280 return save_high21 + extract_14 (inst);
2281
2282 /* fstws as used by the HP compilers. */
2283 if ((inst & 0xffffffe0) == 0x2fd01220)
2284 return extract_5_load (inst);
2285
2286 /* No adjustment. */
2287 return 0;
2288 }
2289
2290 /* Return nonzero if INST is a branch of some kind, else return zero. */
2291
2292 static int
2293 is_branch (inst)
2294 unsigned long inst;
2295 {
2296 switch (inst >> 26)
2297 {
2298 case 0x20:
2299 case 0x21:
2300 case 0x22:
2301 case 0x23:
2302 case 0x28:
2303 case 0x29:
2304 case 0x2a:
2305 case 0x2b:
2306 case 0x30:
2307 case 0x31:
2308 case 0x32:
2309 case 0x33:
2310 case 0x38:
2311 case 0x39:
2312 case 0x3a:
2313 return 1;
2314
2315 default:
2316 return 0;
2317 }
2318 }
2319
2320 /* Return the register number for a GR which is saved by INST or
2321 zero it INST does not save a GR. */
2322
2323 static int
2324 inst_saves_gr (inst)
2325 unsigned long inst;
2326 {
2327 /* Does it look like a stw? */
2328 if ((inst >> 26) == 0x1a)
2329 return extract_5R_store (inst);
2330
2331 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2332 if ((inst >> 26) == 0x1b)
2333 return extract_5R_store (inst);
2334
2335 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2336 too. */
2337 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2338 return extract_5R_store (inst);
2339
2340 return 0;
2341 }
2342
2343 /* Return the register number for a FR which is saved by INST or
2344 zero it INST does not save a FR.
2345
2346 Note we only care about full 64bit register stores (that's the only
2347 kind of stores the prologue will use).
2348
2349 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2350
2351 static int
2352 inst_saves_fr (inst)
2353 unsigned long inst;
2354 {
2355 if ((inst & 0xfc00dfc0) == 0x2c001200)
2356 return extract_5r_store (inst);
2357 return 0;
2358 }
2359
2360 /* Advance PC across any function entry prologue instructions
2361 to reach some "real" code.
2362
2363 Use information in the unwind table to determine what exactly should
2364 be in the prologue. */
2365
2366 CORE_ADDR
2367 skip_prologue (pc)
2368 CORE_ADDR pc;
2369 {
2370 char buf[4];
2371 CORE_ADDR orig_pc = pc;
2372 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2373 unsigned long args_stored, status, i, restart_gr, restart_fr;
2374 struct unwind_table_entry *u;
2375
2376 restart_gr = 0;
2377 restart_fr = 0;
2378
2379 restart:
2380 u = find_unwind_entry (pc);
2381 if (!u)
2382 return pc;
2383
2384 /* If we are not at the beginning of a function, then return now. */
2385 if ((pc & ~0x3) != u->region_start)
2386 return pc;
2387
2388 /* This is how much of a frame adjustment we need to account for. */
2389 stack_remaining = u->Total_frame_size << 3;
2390
2391 /* Magic register saves we want to know about. */
2392 save_rp = u->Save_RP;
2393 save_sp = u->Save_SP;
2394
2395 /* An indication that args may be stored into the stack. Unfortunately
2396 the HPUX compilers tend to set this in cases where no args were
2397 stored too!. */
2398 args_stored = 1;
2399
2400 /* Turn the Entry_GR field into a bitmask. */
2401 save_gr = 0;
2402 for (i = 3; i < u->Entry_GR + 3; i++)
2403 {
2404 /* Frame pointer gets saved into a special location. */
2405 if (u->Save_SP && i == FP_REGNUM)
2406 continue;
2407
2408 save_gr |= (1 << i);
2409 }
2410 save_gr &= ~restart_gr;
2411
2412 /* Turn the Entry_FR field into a bitmask too. */
2413 save_fr = 0;
2414 for (i = 12; i < u->Entry_FR + 12; i++)
2415 save_fr |= (1 << i);
2416 save_fr &= ~restart_fr;
2417
2418 /* Loop until we find everything of interest or hit a branch.
2419
2420 For unoptimized GCC code and for any HP CC code this will never ever
2421 examine any user instructions.
2422
2423 For optimzied GCC code we're faced with problems. GCC will schedule
2424 its prologue and make prologue instructions available for delay slot
2425 filling. The end result is user code gets mixed in with the prologue
2426 and a prologue instruction may be in the delay slot of the first branch
2427 or call.
2428
2429 Some unexpected things are expected with debugging optimized code, so
2430 we allow this routine to walk past user instructions in optimized
2431 GCC code. */
2432 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2433 || args_stored)
2434 {
2435 unsigned int reg_num;
2436 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2437 unsigned long old_save_rp, old_save_sp, next_inst;
2438
2439 /* Save copies of all the triggers so we can compare them later
2440 (only for HPC). */
2441 old_save_gr = save_gr;
2442 old_save_fr = save_fr;
2443 old_save_rp = save_rp;
2444 old_save_sp = save_sp;
2445 old_stack_remaining = stack_remaining;
2446
2447 status = target_read_memory (pc, buf, 4);
2448 inst = extract_unsigned_integer (buf, 4);
2449
2450 /* Yow! */
2451 if (status != 0)
2452 return pc;
2453
2454 /* Note the interesting effects of this instruction. */
2455 stack_remaining -= prologue_inst_adjust_sp (inst);
2456
2457 /* There is only one instruction used for saving RP into the stack. */
2458 if (inst == 0x6bc23fd9)
2459 save_rp = 0;
2460
2461 /* This is the only way we save SP into the stack. At this time
2462 the HP compilers never bother to save SP into the stack. */
2463 if ((inst & 0xffffc000) == 0x6fc10000)
2464 save_sp = 0;
2465
2466 /* Account for general and floating-point register saves. */
2467 reg_num = inst_saves_gr (inst);
2468 save_gr &= ~(1 << reg_num);
2469
2470 /* Ugh. Also account for argument stores into the stack.
2471 Unfortunately args_stored only tells us that some arguments
2472 where stored into the stack. Not how many or what kind!
2473
2474 This is a kludge as on the HP compiler sets this bit and it
2475 never does prologue scheduling. So once we see one, skip past
2476 all of them. We have similar code for the fp arg stores below.
2477
2478 FIXME. Can still die if we have a mix of GR and FR argument
2479 stores! */
2480 if (reg_num >= 23 && reg_num <= 26)
2481 {
2482 while (reg_num >= 23 && reg_num <= 26)
2483 {
2484 pc += 4;
2485 status = target_read_memory (pc, buf, 4);
2486 inst = extract_unsigned_integer (buf, 4);
2487 if (status != 0)
2488 return pc;
2489 reg_num = inst_saves_gr (inst);
2490 }
2491 args_stored = 0;
2492 continue;
2493 }
2494
2495 reg_num = inst_saves_fr (inst);
2496 save_fr &= ~(1 << reg_num);
2497
2498 status = target_read_memory (pc + 4, buf, 4);
2499 next_inst = extract_unsigned_integer (buf, 4);
2500
2501 /* Yow! */
2502 if (status != 0)
2503 return pc;
2504
2505 /* We've got to be read to handle the ldo before the fp register
2506 save. */
2507 if ((inst & 0xfc000000) == 0x34000000
2508 && inst_saves_fr (next_inst) >= 4
2509 && inst_saves_fr (next_inst) <= 7)
2510 {
2511 /* So we drop into the code below in a reasonable state. */
2512 reg_num = inst_saves_fr (next_inst);
2513 pc -= 4;
2514 }
2515
2516 /* Ugh. Also account for argument stores into the stack.
2517 This is a kludge as on the HP compiler sets this bit and it
2518 never does prologue scheduling. So once we see one, skip past
2519 all of them. */
2520 if (reg_num >= 4 && reg_num <= 7)
2521 {
2522 while (reg_num >= 4 && reg_num <= 7)
2523 {
2524 pc += 8;
2525 status = target_read_memory (pc, buf, 4);
2526 inst = extract_unsigned_integer (buf, 4);
2527 if (status != 0)
2528 return pc;
2529 if ((inst & 0xfc000000) != 0x34000000)
2530 break;
2531 status = target_read_memory (pc + 4, buf, 4);
2532 next_inst = extract_unsigned_integer (buf, 4);
2533 if (status != 0)
2534 return pc;
2535 reg_num = inst_saves_fr (next_inst);
2536 }
2537 args_stored = 0;
2538 continue;
2539 }
2540
2541 /* Quit if we hit any kind of branch. This can happen if a prologue
2542 instruction is in the delay slot of the first call/branch. */
2543 if (is_branch (inst))
2544 break;
2545
2546 /* What a crock. The HP compilers set args_stored even if no
2547 arguments were stored into the stack (boo hiss). This could
2548 cause this code to then skip a bunch of user insns (up to the
2549 first branch).
2550
2551 To combat this we try to identify when args_stored was bogusly
2552 set and clear it. We only do this when args_stored is nonzero,
2553 all other resources are accounted for, and nothing changed on
2554 this pass. */
2555 if (args_stored
2556 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2557 && old_save_gr == save_gr && old_save_fr == save_fr
2558 && old_save_rp == save_rp && old_save_sp == save_sp
2559 && old_stack_remaining == stack_remaining)
2560 break;
2561
2562 /* Bump the PC. */
2563 pc += 4;
2564 }
2565
2566 /* We've got a tenative location for the end of the prologue. However
2567 because of limitations in the unwind descriptor mechanism we may
2568 have went too far into user code looking for the save of a register
2569 that does not exist. So, if there registers we expected to be saved
2570 but never were, mask them out and restart.
2571
2572 This should only happen in optimized code, and should be very rare. */
2573 if (save_gr || (save_fr && ! (restart_fr || restart_gr)))
2574 {
2575 pc = orig_pc;
2576 restart_gr = save_gr;
2577 restart_fr = save_fr;
2578 goto restart;
2579 }
2580
2581 return pc;
2582 }
2583
2584 /* Put here the code to store, into a struct frame_saved_regs,
2585 the addresses of the saved registers of frame described by FRAME_INFO.
2586 This includes special registers such as pc and fp saved in special
2587 ways in the stack frame. sp is even more special:
2588 the address we return for it IS the sp for the next frame. */
2589
2590 void
2591 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2592 struct frame_info *frame_info;
2593 struct frame_saved_regs *frame_saved_regs;
2594 {
2595 CORE_ADDR pc;
2596 struct unwind_table_entry *u;
2597 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2598 int status, i, reg;
2599 char buf[4];
2600 int fp_loc = -1;
2601
2602 /* Zero out everything. */
2603 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2604
2605 /* Call dummy frames always look the same, so there's no need to
2606 examine the dummy code to determine locations of saved registers;
2607 instead, let find_dummy_frame_regs fill in the correct offsets
2608 for the saved registers. */
2609 if ((frame_info->pc >= frame_info->frame
2610 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2611 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2612 + 6 * 4)))
2613 find_dummy_frame_regs (frame_info, frame_saved_regs);
2614
2615 /* Interrupt handlers are special too. They lay out the register
2616 state in the exact same order as the register numbers in GDB. */
2617 if (pc_in_interrupt_handler (frame_info->pc))
2618 {
2619 for (i = 0; i < NUM_REGS; i++)
2620 {
2621 /* SP is a little special. */
2622 if (i == SP_REGNUM)
2623 frame_saved_regs->regs[SP_REGNUM]
2624 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2625 else
2626 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2627 }
2628 return;
2629 }
2630
2631 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2632 /* Handle signal handler callers. */
2633 if (frame_info->signal_handler_caller)
2634 {
2635 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2636 return;
2637 }
2638 #endif
2639
2640 /* Get the starting address of the function referred to by the PC
2641 saved in frame. */
2642 pc = get_pc_function_start (frame_info->pc);
2643
2644 /* Yow! */
2645 u = find_unwind_entry (pc);
2646 if (!u)
2647 return;
2648
2649 /* This is how much of a frame adjustment we need to account for. */
2650 stack_remaining = u->Total_frame_size << 3;
2651
2652 /* Magic register saves we want to know about. */
2653 save_rp = u->Save_RP;
2654 save_sp = u->Save_SP;
2655
2656 /* Turn the Entry_GR field into a bitmask. */
2657 save_gr = 0;
2658 for (i = 3; i < u->Entry_GR + 3; i++)
2659 {
2660 /* Frame pointer gets saved into a special location. */
2661 if (u->Save_SP && i == FP_REGNUM)
2662 continue;
2663
2664 save_gr |= (1 << i);
2665 }
2666
2667 /* Turn the Entry_FR field into a bitmask too. */
2668 save_fr = 0;
2669 for (i = 12; i < u->Entry_FR + 12; i++)
2670 save_fr |= (1 << i);
2671
2672 /* The frame always represents the value of %sp at entry to the
2673 current function (and is thus equivalent to the "saved" stack
2674 pointer. */
2675 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2676
2677 /* Loop until we find everything of interest or hit a branch.
2678
2679 For unoptimized GCC code and for any HP CC code this will never ever
2680 examine any user instructions.
2681
2682 For optimzied GCC code we're faced with problems. GCC will schedule
2683 its prologue and make prologue instructions available for delay slot
2684 filling. The end result is user code gets mixed in with the prologue
2685 and a prologue instruction may be in the delay slot of the first branch
2686 or call.
2687
2688 Some unexpected things are expected with debugging optimized code, so
2689 we allow this routine to walk past user instructions in optimized
2690 GCC code. */
2691 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2692 {
2693 status = target_read_memory (pc, buf, 4);
2694 inst = extract_unsigned_integer (buf, 4);
2695
2696 /* Yow! */
2697 if (status != 0)
2698 return;
2699
2700 /* Note the interesting effects of this instruction. */
2701 stack_remaining -= prologue_inst_adjust_sp (inst);
2702
2703 /* There is only one instruction used for saving RP into the stack. */
2704 if (inst == 0x6bc23fd9)
2705 {
2706 save_rp = 0;
2707 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2708 }
2709
2710 /* Just note that we found the save of SP into the stack. The
2711 value for frame_saved_regs was computed above. */
2712 if ((inst & 0xffffc000) == 0x6fc10000)
2713 save_sp = 0;
2714
2715 /* Account for general and floating-point register saves. */
2716 reg = inst_saves_gr (inst);
2717 if (reg >= 3 && reg <= 18
2718 && (!u->Save_SP || reg != FP_REGNUM))
2719 {
2720 save_gr &= ~(1 << reg);
2721
2722 /* stwm with a positive displacement is a *post modify*. */
2723 if ((inst >> 26) == 0x1b
2724 && extract_14 (inst) >= 0)
2725 frame_saved_regs->regs[reg] = frame_info->frame;
2726 else
2727 {
2728 /* Handle code with and without frame pointers. */
2729 if (u->Save_SP)
2730 frame_saved_regs->regs[reg]
2731 = frame_info->frame + extract_14 (inst);
2732 else
2733 frame_saved_regs->regs[reg]
2734 = frame_info->frame + (u->Total_frame_size << 3)
2735 + extract_14 (inst);
2736 }
2737 }
2738
2739
2740 /* GCC handles callee saved FP regs a little differently.
2741
2742 It emits an instruction to put the value of the start of
2743 the FP store area into %r1. It then uses fstds,ma with
2744 a basereg of %r1 for the stores.
2745
2746 HP CC emits them at the current stack pointer modifying
2747 the stack pointer as it stores each register. */
2748
2749 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2750 if ((inst & 0xffffc000) == 0x34610000
2751 || (inst & 0xffffc000) == 0x37c10000)
2752 fp_loc = extract_14 (inst);
2753
2754 reg = inst_saves_fr (inst);
2755 if (reg >= 12 && reg <= 21)
2756 {
2757 /* Note +4 braindamage below is necessary because the FP status
2758 registers are internally 8 registers rather than the expected
2759 4 registers. */
2760 save_fr &= ~(1 << reg);
2761 if (fp_loc == -1)
2762 {
2763 /* 1st HP CC FP register store. After this instruction
2764 we've set enough state that the GCC and HPCC code are
2765 both handled in the same manner. */
2766 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2767 fp_loc = 8;
2768 }
2769 else
2770 {
2771 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2772 = frame_info->frame + fp_loc;
2773 fp_loc += 8;
2774 }
2775 }
2776
2777 /* Quit if we hit any kind of branch. This can happen if a prologue
2778 instruction is in the delay slot of the first call/branch. */
2779 if (is_branch (inst))
2780 break;
2781
2782 /* Bump the PC. */
2783 pc += 4;
2784 }
2785 }
2786
2787 #ifdef MAINTENANCE_CMDS
2788
2789 static void
2790 unwind_command (exp, from_tty)
2791 char *exp;
2792 int from_tty;
2793 {
2794 CORE_ADDR address;
2795 struct unwind_table_entry *u;
2796
2797 /* If we have an expression, evaluate it and use it as the address. */
2798
2799 if (exp != 0 && *exp != 0)
2800 address = parse_and_eval_address (exp);
2801 else
2802 return;
2803
2804 u = find_unwind_entry (address);
2805
2806 if (!u)
2807 {
2808 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2809 return;
2810 }
2811
2812 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2813
2814 printf_unfiltered ("\tregion_start = ");
2815 print_address (u->region_start, gdb_stdout);
2816
2817 printf_unfiltered ("\n\tregion_end = ");
2818 print_address (u->region_end, gdb_stdout);
2819
2820 #ifdef __STDC__
2821 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2822 #else
2823 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2824 #endif
2825
2826 printf_unfiltered ("\n\tflags =");
2827 pif (Cannot_unwind);
2828 pif (Millicode);
2829 pif (Millicode_save_sr0);
2830 pif (Entry_SR);
2831 pif (Args_stored);
2832 pif (Variable_Frame);
2833 pif (Separate_Package_Body);
2834 pif (Frame_Extension_Millicode);
2835 pif (Stack_Overflow_Check);
2836 pif (Two_Instruction_SP_Increment);
2837 pif (Ada_Region);
2838 pif (Save_SP);
2839 pif (Save_RP);
2840 pif (Save_MRP_in_frame);
2841 pif (extn_ptr_defined);
2842 pif (Cleanup_defined);
2843 pif (MPE_XL_interrupt_marker);
2844 pif (HP_UX_interrupt_marker);
2845 pif (Large_frame);
2846
2847 putchar_unfiltered ('\n');
2848
2849 #ifdef __STDC__
2850 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2851 #else
2852 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2853 #endif
2854
2855 pin (Region_description);
2856 pin (Entry_FR);
2857 pin (Entry_GR);
2858 pin (Total_frame_size);
2859 }
2860 #endif /* MAINTENANCE_CMDS */
2861
2862 void
2863 _initialize_hppa_tdep ()
2864 {
2865 tm_print_insn = print_insn_hppa;
2866
2867 #ifdef MAINTENANCE_CMDS
2868 add_cmd ("unwind", class_maintenance, unwind_command,
2869 "Print unwind table entry at given address.",
2870 &maintenanceprintlist);
2871 #endif /* MAINTENANCE_CMDS */
2872 }
This page took 0.087272 seconds and 4 git commands to generate.