6d70c6d068081a69d40757e51302bc2df44c4b50
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 3 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program. If not, see <http://www.gnu.org/licenses/>. */
24
25 #include "defs.h"
26 #include "bfd.h"
27 #include "inferior.h"
28 #include "regcache.h"
29 #include "completer.h"
30 #include "osabi.h"
31 #include "gdb_assert.h"
32 #include "arch-utils.h"
33 /* For argument passing to the inferior */
34 #include "symtab.h"
35 #include "dis-asm.h"
36 #include "trad-frame.h"
37 #include "frame-unwind.h"
38 #include "frame-base.h"
39
40 #include "gdbcore.h"
41 #include "gdbcmd.h"
42 #include "gdbtypes.h"
43 #include "objfiles.h"
44 #include "hppa-tdep.h"
45
46 static int hppa_debug = 0;
47
48 /* Some local constants. */
49 static const int hppa32_num_regs = 128;
50 static const int hppa64_num_regs = 96;
51
52 /* hppa-specific object data -- unwind and solib info.
53 TODO/maybe: think about splitting this into two parts; the unwind data is
54 common to all hppa targets, but is only used in this file; we can register
55 that separately and make this static. The solib data is probably hpux-
56 specific, so we can create a separate extern objfile_data that is registered
57 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
58 const struct objfile_data *hppa_objfile_priv_data = NULL;
59
60 /* Get at various relevent fields of an instruction word. */
61 #define MASK_5 0x1f
62 #define MASK_11 0x7ff
63 #define MASK_14 0x3fff
64 #define MASK_21 0x1fffff
65
66 /* Sizes (in bytes) of the native unwind entries. */
67 #define UNWIND_ENTRY_SIZE 16
68 #define STUB_UNWIND_ENTRY_SIZE 8
69
70 /* Routines to extract various sized constants out of hppa
71 instructions. */
72
73 /* This assumes that no garbage lies outside of the lower bits of
74 value. */
75
76 static int
77 hppa_sign_extend (unsigned val, unsigned bits)
78 {
79 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
80 }
81
82 /* For many immediate values the sign bit is the low bit! */
83
84 static int
85 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
86 {
87 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
88 }
89
90 /* Extract the bits at positions between FROM and TO, using HP's numbering
91 (MSB = 0). */
92
93 int
94 hppa_get_field (unsigned word, int from, int to)
95 {
96 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
97 }
98
99 /* extract the immediate field from a ld{bhw}s instruction */
100
101 int
102 hppa_extract_5_load (unsigned word)
103 {
104 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
105 }
106
107 /* extract the immediate field from a break instruction */
108
109 unsigned
110 hppa_extract_5r_store (unsigned word)
111 {
112 return (word & MASK_5);
113 }
114
115 /* extract the immediate field from a {sr}sm instruction */
116
117 unsigned
118 hppa_extract_5R_store (unsigned word)
119 {
120 return (word >> 16 & MASK_5);
121 }
122
123 /* extract a 14 bit immediate field */
124
125 int
126 hppa_extract_14 (unsigned word)
127 {
128 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
129 }
130
131 /* extract a 21 bit constant */
132
133 int
134 hppa_extract_21 (unsigned word)
135 {
136 int val;
137
138 word &= MASK_21;
139 word <<= 11;
140 val = hppa_get_field (word, 20, 20);
141 val <<= 11;
142 val |= hppa_get_field (word, 9, 19);
143 val <<= 2;
144 val |= hppa_get_field (word, 5, 6);
145 val <<= 5;
146 val |= hppa_get_field (word, 0, 4);
147 val <<= 2;
148 val |= hppa_get_field (word, 7, 8);
149 return hppa_sign_extend (val, 21) << 11;
150 }
151
152 /* extract a 17 bit constant from branch instructions, returning the
153 19 bit signed value. */
154
155 int
156 hppa_extract_17 (unsigned word)
157 {
158 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
159 hppa_get_field (word, 29, 29) << 10 |
160 hppa_get_field (word, 11, 15) << 11 |
161 (word & 0x1) << 16, 17) << 2;
162 }
163
164 CORE_ADDR
165 hppa_symbol_address(const char *sym)
166 {
167 struct minimal_symbol *minsym;
168
169 minsym = lookup_minimal_symbol (sym, NULL, NULL);
170 if (minsym)
171 return SYMBOL_VALUE_ADDRESS (minsym);
172 else
173 return (CORE_ADDR)-1;
174 }
175
176 struct hppa_objfile_private *
177 hppa_init_objfile_priv_data (struct objfile *objfile)
178 {
179 struct hppa_objfile_private *priv;
180
181 priv = (struct hppa_objfile_private *)
182 obstack_alloc (&objfile->objfile_obstack,
183 sizeof (struct hppa_objfile_private));
184 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
185 memset (priv, 0, sizeof (*priv));
186
187 return priv;
188 }
189 \f
190
191 /* Compare the start address for two unwind entries returning 1 if
192 the first address is larger than the second, -1 if the second is
193 larger than the first, and zero if they are equal. */
194
195 static int
196 compare_unwind_entries (const void *arg1, const void *arg2)
197 {
198 const struct unwind_table_entry *a = arg1;
199 const struct unwind_table_entry *b = arg2;
200
201 if (a->region_start > b->region_start)
202 return 1;
203 else if (a->region_start < b->region_start)
204 return -1;
205 else
206 return 0;
207 }
208
209 static void
210 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
211 {
212 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
213 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
214 {
215 bfd_vma value = section->vma - section->filepos;
216 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
217
218 if (value < *low_text_segment_address)
219 *low_text_segment_address = value;
220 }
221 }
222
223 static void
224 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
225 asection *section, unsigned int entries, unsigned int size,
226 CORE_ADDR text_offset)
227 {
228 /* We will read the unwind entries into temporary memory, then
229 fill in the actual unwind table. */
230
231 if (size > 0)
232 {
233 struct gdbarch *gdbarch = get_objfile_arch (objfile);
234 unsigned long tmp;
235 unsigned i;
236 char *buf = alloca (size);
237 CORE_ADDR low_text_segment_address;
238
239 /* For ELF targets, then unwinds are supposed to
240 be segment relative offsets instead of absolute addresses.
241
242 Note that when loading a shared library (text_offset != 0) the
243 unwinds are already relative to the text_offset that will be
244 passed in. */
245 if (gdbarch_tdep (gdbarch)->is_elf && text_offset == 0)
246 {
247 low_text_segment_address = -1;
248
249 bfd_map_over_sections (objfile->obfd,
250 record_text_segment_lowaddr,
251 &low_text_segment_address);
252
253 text_offset = low_text_segment_address;
254 }
255 else if (gdbarch_tdep (gdbarch)->solib_get_text_base)
256 {
257 text_offset = gdbarch_tdep (gdbarch)->solib_get_text_base (objfile);
258 }
259
260 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
261
262 /* Now internalize the information being careful to handle host/target
263 endian issues. */
264 for (i = 0; i < entries; i++)
265 {
266 table[i].region_start = bfd_get_32 (objfile->obfd,
267 (bfd_byte *) buf);
268 table[i].region_start += text_offset;
269 buf += 4;
270 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
271 table[i].region_end += text_offset;
272 buf += 4;
273 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
274 buf += 4;
275 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
276 table[i].Millicode = (tmp >> 30) & 0x1;
277 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
278 table[i].Region_description = (tmp >> 27) & 0x3;
279 table[i].reserved = (tmp >> 26) & 0x1;
280 table[i].Entry_SR = (tmp >> 25) & 0x1;
281 table[i].Entry_FR = (tmp >> 21) & 0xf;
282 table[i].Entry_GR = (tmp >> 16) & 0x1f;
283 table[i].Args_stored = (tmp >> 15) & 0x1;
284 table[i].Variable_Frame = (tmp >> 14) & 0x1;
285 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
286 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
287 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
288 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
289 table[i].sr4export = (tmp >> 9) & 0x1;
290 table[i].cxx_info = (tmp >> 8) & 0x1;
291 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
292 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
293 table[i].reserved1 = (tmp >> 5) & 0x1;
294 table[i].Save_SP = (tmp >> 4) & 0x1;
295 table[i].Save_RP = (tmp >> 3) & 0x1;
296 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
297 table[i].save_r19 = (tmp >> 1) & 0x1;
298 table[i].Cleanup_defined = tmp & 0x1;
299 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
300 buf += 4;
301 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
302 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
303 table[i].Large_frame = (tmp >> 29) & 0x1;
304 table[i].alloca_frame = (tmp >> 28) & 0x1;
305 table[i].reserved2 = (tmp >> 27) & 0x1;
306 table[i].Total_frame_size = tmp & 0x7ffffff;
307
308 /* Stub unwinds are handled elsewhere. */
309 table[i].stub_unwind.stub_type = 0;
310 table[i].stub_unwind.padding = 0;
311 }
312 }
313 }
314
315 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
316 the object file. This info is used mainly by find_unwind_entry() to find
317 out the stack frame size and frame pointer used by procedures. We put
318 everything on the psymbol obstack in the objfile so that it automatically
319 gets freed when the objfile is destroyed. */
320
321 static void
322 read_unwind_info (struct objfile *objfile)
323 {
324 asection *unwind_sec, *stub_unwind_sec;
325 unsigned unwind_size, stub_unwind_size, total_size;
326 unsigned index, unwind_entries;
327 unsigned stub_entries, total_entries;
328 CORE_ADDR text_offset;
329 struct hppa_unwind_info *ui;
330 struct hppa_objfile_private *obj_private;
331
332 text_offset = ANOFFSET (objfile->section_offsets, 0);
333 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
334 sizeof (struct hppa_unwind_info));
335
336 ui->table = NULL;
337 ui->cache = NULL;
338 ui->last = -1;
339
340 /* For reasons unknown the HP PA64 tools generate multiple unwinder
341 sections in a single executable. So we just iterate over every
342 section in the BFD looking for unwinder sections intead of trying
343 to do a lookup with bfd_get_section_by_name.
344
345 First determine the total size of the unwind tables so that we
346 can allocate memory in a nice big hunk. */
347 total_entries = 0;
348 for (unwind_sec = objfile->obfd->sections;
349 unwind_sec;
350 unwind_sec = unwind_sec->next)
351 {
352 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
353 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
354 {
355 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
356 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
357
358 total_entries += unwind_entries;
359 }
360 }
361
362 /* Now compute the size of the stub unwinds. Note the ELF tools do not
363 use stub unwinds at the current time. */
364 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
365
366 if (stub_unwind_sec)
367 {
368 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
369 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
370 }
371 else
372 {
373 stub_unwind_size = 0;
374 stub_entries = 0;
375 }
376
377 /* Compute total number of unwind entries and their total size. */
378 total_entries += stub_entries;
379 total_size = total_entries * sizeof (struct unwind_table_entry);
380
381 /* Allocate memory for the unwind table. */
382 ui->table = (struct unwind_table_entry *)
383 obstack_alloc (&objfile->objfile_obstack, total_size);
384 ui->last = total_entries - 1;
385
386 /* Now read in each unwind section and internalize the standard unwind
387 entries. */
388 index = 0;
389 for (unwind_sec = objfile->obfd->sections;
390 unwind_sec;
391 unwind_sec = unwind_sec->next)
392 {
393 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
394 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398
399 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
400 unwind_entries, unwind_size, text_offset);
401 index += unwind_entries;
402 }
403 }
404
405 /* Now read in and internalize the stub unwind entries. */
406 if (stub_unwind_size > 0)
407 {
408 unsigned int i;
409 char *buf = alloca (stub_unwind_size);
410
411 /* Read in the stub unwind entries. */
412 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
413 0, stub_unwind_size);
414
415 /* Now convert them into regular unwind entries. */
416 for (i = 0; i < stub_entries; i++, index++)
417 {
418 /* Clear out the next unwind entry. */
419 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
420
421 /* Convert offset & size into region_start and region_end.
422 Stuff away the stub type into "reserved" fields. */
423 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
424 (bfd_byte *) buf);
425 ui->table[index].region_start += text_offset;
426 buf += 4;
427 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
428 (bfd_byte *) buf);
429 buf += 2;
430 ui->table[index].region_end
431 = ui->table[index].region_start + 4 *
432 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
433 buf += 2;
434 }
435
436 }
437
438 /* Unwind table needs to be kept sorted. */
439 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
440 compare_unwind_entries);
441
442 /* Keep a pointer to the unwind information. */
443 obj_private = (struct hppa_objfile_private *)
444 objfile_data (objfile, hppa_objfile_priv_data);
445 if (obj_private == NULL)
446 obj_private = hppa_init_objfile_priv_data (objfile);
447
448 obj_private->unwind_info = ui;
449 }
450
451 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
452 of the objfiles seeking the unwind table entry for this PC. Each objfile
453 contains a sorted list of struct unwind_table_entry. Since we do a binary
454 search of the unwind tables, we depend upon them to be sorted. */
455
456 struct unwind_table_entry *
457 find_unwind_entry (CORE_ADDR pc)
458 {
459 int first, middle, last;
460 struct objfile *objfile;
461 struct hppa_objfile_private *priv;
462
463 if (hppa_debug)
464 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry %s -> ",
465 hex_string (pc));
466
467 /* A function at address 0? Not in HP-UX! */
468 if (pc == (CORE_ADDR) 0)
469 {
470 if (hppa_debug)
471 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
472 return NULL;
473 }
474
475 ALL_OBJFILES (objfile)
476 {
477 struct hppa_unwind_info *ui;
478 ui = NULL;
479 priv = objfile_data (objfile, hppa_objfile_priv_data);
480 if (priv)
481 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
482
483 if (!ui)
484 {
485 read_unwind_info (objfile);
486 priv = objfile_data (objfile, hppa_objfile_priv_data);
487 if (priv == NULL)
488 error (_("Internal error reading unwind information."));
489 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
490 }
491
492 /* First, check the cache */
493
494 if (ui->cache
495 && pc >= ui->cache->region_start
496 && pc <= ui->cache->region_end)
497 {
498 if (hppa_debug)
499 fprintf_unfiltered (gdb_stdlog, "%s (cached) }\n",
500 hex_string ((uintptr_t) ui->cache));
501 return ui->cache;
502 }
503
504 /* Not in the cache, do a binary search */
505
506 first = 0;
507 last = ui->last;
508
509 while (first <= last)
510 {
511 middle = (first + last) / 2;
512 if (pc >= ui->table[middle].region_start
513 && pc <= ui->table[middle].region_end)
514 {
515 ui->cache = &ui->table[middle];
516 if (hppa_debug)
517 fprintf_unfiltered (gdb_stdlog, "%s }\n",
518 hex_string ((uintptr_t) ui->cache));
519 return &ui->table[middle];
520 }
521
522 if (pc < ui->table[middle].region_start)
523 last = middle - 1;
524 else
525 first = middle + 1;
526 }
527 } /* ALL_OBJFILES() */
528
529 if (hppa_debug)
530 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
531
532 return NULL;
533 }
534
535 /* The epilogue is defined here as the area either on the `bv' instruction
536 itself or an instruction which destroys the function's stack frame.
537
538 We do not assume that the epilogue is at the end of a function as we can
539 also have return sequences in the middle of a function. */
540 static int
541 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
542 {
543 unsigned long status;
544 unsigned int inst;
545 char buf[4];
546 int off;
547
548 status = target_read_memory (pc, buf, 4);
549 if (status != 0)
550 return 0;
551
552 inst = extract_unsigned_integer (buf, 4);
553
554 /* The most common way to perform a stack adjustment ldo X(sp),sp
555 We are destroying a stack frame if the offset is negative. */
556 if ((inst & 0xffffc000) == 0x37de0000
557 && hppa_extract_14 (inst) < 0)
558 return 1;
559
560 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
561 if (((inst & 0x0fc010e0) == 0x0fc010e0
562 || (inst & 0x0fc010e0) == 0x0fc010e0)
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* bv %r0(%rp) or bv,n %r0(%rp) */
567 if (inst == 0xe840c000 || inst == 0xe840c002)
568 return 1;
569
570 return 0;
571 }
572
573 static const unsigned char *
574 hppa_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pc, int *len)
575 {
576 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
577 (*len) = sizeof (breakpoint);
578 return breakpoint;
579 }
580
581 /* Return the name of a register. */
582
583 static const char *
584 hppa32_register_name (struct gdbarch *gdbarch, int i)
585 {
586 static char *names[] = {
587 "flags", "r1", "rp", "r3",
588 "r4", "r5", "r6", "r7",
589 "r8", "r9", "r10", "r11",
590 "r12", "r13", "r14", "r15",
591 "r16", "r17", "r18", "r19",
592 "r20", "r21", "r22", "r23",
593 "r24", "r25", "r26", "dp",
594 "ret0", "ret1", "sp", "r31",
595 "sar", "pcoqh", "pcsqh", "pcoqt",
596 "pcsqt", "eiem", "iir", "isr",
597 "ior", "ipsw", "goto", "sr4",
598 "sr0", "sr1", "sr2", "sr3",
599 "sr5", "sr6", "sr7", "cr0",
600 "cr8", "cr9", "ccr", "cr12",
601 "cr13", "cr24", "cr25", "cr26",
602 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
603 "fpsr", "fpe1", "fpe2", "fpe3",
604 "fpe4", "fpe5", "fpe6", "fpe7",
605 "fr4", "fr4R", "fr5", "fr5R",
606 "fr6", "fr6R", "fr7", "fr7R",
607 "fr8", "fr8R", "fr9", "fr9R",
608 "fr10", "fr10R", "fr11", "fr11R",
609 "fr12", "fr12R", "fr13", "fr13R",
610 "fr14", "fr14R", "fr15", "fr15R",
611 "fr16", "fr16R", "fr17", "fr17R",
612 "fr18", "fr18R", "fr19", "fr19R",
613 "fr20", "fr20R", "fr21", "fr21R",
614 "fr22", "fr22R", "fr23", "fr23R",
615 "fr24", "fr24R", "fr25", "fr25R",
616 "fr26", "fr26R", "fr27", "fr27R",
617 "fr28", "fr28R", "fr29", "fr29R",
618 "fr30", "fr30R", "fr31", "fr31R"
619 };
620 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
621 return NULL;
622 else
623 return names[i];
624 }
625
626 static const char *
627 hppa64_register_name (struct gdbarch *gdbarch, int i)
628 {
629 static char *names[] = {
630 "flags", "r1", "rp", "r3",
631 "r4", "r5", "r6", "r7",
632 "r8", "r9", "r10", "r11",
633 "r12", "r13", "r14", "r15",
634 "r16", "r17", "r18", "r19",
635 "r20", "r21", "r22", "r23",
636 "r24", "r25", "r26", "dp",
637 "ret0", "ret1", "sp", "r31",
638 "sar", "pcoqh", "pcsqh", "pcoqt",
639 "pcsqt", "eiem", "iir", "isr",
640 "ior", "ipsw", "goto", "sr4",
641 "sr0", "sr1", "sr2", "sr3",
642 "sr5", "sr6", "sr7", "cr0",
643 "cr8", "cr9", "ccr", "cr12",
644 "cr13", "cr24", "cr25", "cr26",
645 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
646 "fpsr", "fpe1", "fpe2", "fpe3",
647 "fr4", "fr5", "fr6", "fr7",
648 "fr8", "fr9", "fr10", "fr11",
649 "fr12", "fr13", "fr14", "fr15",
650 "fr16", "fr17", "fr18", "fr19",
651 "fr20", "fr21", "fr22", "fr23",
652 "fr24", "fr25", "fr26", "fr27",
653 "fr28", "fr29", "fr30", "fr31"
654 };
655 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
656 return NULL;
657 else
658 return names[i];
659 }
660
661 /* Map dwarf DBX register numbers to GDB register numbers. */
662 static int
663 hppa64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
664 {
665 /* The general registers and the sar are the same in both sets. */
666 if (reg <= 32)
667 return reg;
668
669 /* fr4-fr31 are mapped from 72 in steps of 2. */
670 if (reg >= 72 && reg < 72 + 28 * 2 && !(reg & 1))
671 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
672
673 warning (_("Unmapped DWARF DBX Register #%d encountered."), reg);
674 return -1;
675 }
676
677 /* This function pushes a stack frame with arguments as part of the
678 inferior function calling mechanism.
679
680 This is the version of the function for the 32-bit PA machines, in
681 which later arguments appear at lower addresses. (The stack always
682 grows towards higher addresses.)
683
684 We simply allocate the appropriate amount of stack space and put
685 arguments into their proper slots. */
686
687 static CORE_ADDR
688 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
689 struct regcache *regcache, CORE_ADDR bp_addr,
690 int nargs, struct value **args, CORE_ADDR sp,
691 int struct_return, CORE_ADDR struct_addr)
692 {
693 /* Stack base address at which any pass-by-reference parameters are
694 stored. */
695 CORE_ADDR struct_end = 0;
696 /* Stack base address at which the first parameter is stored. */
697 CORE_ADDR param_end = 0;
698
699 /* The inner most end of the stack after all the parameters have
700 been pushed. */
701 CORE_ADDR new_sp = 0;
702
703 /* Two passes. First pass computes the location of everything,
704 second pass writes the bytes out. */
705 int write_pass;
706
707 /* Global pointer (r19) of the function we are trying to call. */
708 CORE_ADDR gp;
709
710 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
711
712 for (write_pass = 0; write_pass < 2; write_pass++)
713 {
714 CORE_ADDR struct_ptr = 0;
715 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
716 struct_ptr is adjusted for each argument below, so the first
717 argument will end up at sp-36. */
718 CORE_ADDR param_ptr = 32;
719 int i;
720 int small_struct = 0;
721
722 for (i = 0; i < nargs; i++)
723 {
724 struct value *arg = args[i];
725 struct type *type = check_typedef (value_type (arg));
726 /* The corresponding parameter that is pushed onto the
727 stack, and [possibly] passed in a register. */
728 char param_val[8];
729 int param_len;
730 memset (param_val, 0, sizeof param_val);
731 if (TYPE_LENGTH (type) > 8)
732 {
733 /* Large parameter, pass by reference. Store the value
734 in "struct" area and then pass its address. */
735 param_len = 4;
736 struct_ptr += align_up (TYPE_LENGTH (type), 8);
737 if (write_pass)
738 write_memory (struct_end - struct_ptr, value_contents (arg),
739 TYPE_LENGTH (type));
740 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
741 }
742 else if (TYPE_CODE (type) == TYPE_CODE_INT
743 || TYPE_CODE (type) == TYPE_CODE_ENUM)
744 {
745 /* Integer value store, right aligned. "unpack_long"
746 takes care of any sign-extension problems. */
747 param_len = align_up (TYPE_LENGTH (type), 4);
748 store_unsigned_integer (param_val, param_len,
749 unpack_long (type,
750 value_contents (arg)));
751 }
752 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
753 {
754 /* Floating point value store, right aligned. */
755 param_len = align_up (TYPE_LENGTH (type), 4);
756 memcpy (param_val, value_contents (arg), param_len);
757 }
758 else
759 {
760 param_len = align_up (TYPE_LENGTH (type), 4);
761
762 /* Small struct value are stored right-aligned. */
763 memcpy (param_val + param_len - TYPE_LENGTH (type),
764 value_contents (arg), TYPE_LENGTH (type));
765
766 /* Structures of size 5, 6 and 7 bytes are special in that
767 the higher-ordered word is stored in the lower-ordered
768 argument, and even though it is a 8-byte quantity the
769 registers need not be 8-byte aligned. */
770 if (param_len > 4 && param_len < 8)
771 small_struct = 1;
772 }
773
774 param_ptr += param_len;
775 if (param_len == 8 && !small_struct)
776 param_ptr = align_up (param_ptr, 8);
777
778 /* First 4 non-FP arguments are passed in gr26-gr23.
779 First 4 32-bit FP arguments are passed in fr4L-fr7L.
780 First 2 64-bit FP arguments are passed in fr5 and fr7.
781
782 The rest go on the stack, starting at sp-36, towards lower
783 addresses. 8-byte arguments must be aligned to a 8-byte
784 stack boundary. */
785 if (write_pass)
786 {
787 write_memory (param_end - param_ptr, param_val, param_len);
788
789 /* There are some cases when we don't know the type
790 expected by the callee (e.g. for variadic functions), so
791 pass the parameters in both general and fp regs. */
792 if (param_ptr <= 48)
793 {
794 int grreg = 26 - (param_ptr - 36) / 4;
795 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
796 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
797
798 regcache_cooked_write (regcache, grreg, param_val);
799 regcache_cooked_write (regcache, fpLreg, param_val);
800
801 if (param_len > 4)
802 {
803 regcache_cooked_write (regcache, grreg + 1,
804 param_val + 4);
805
806 regcache_cooked_write (regcache, fpreg, param_val);
807 regcache_cooked_write (regcache, fpreg + 1,
808 param_val + 4);
809 }
810 }
811 }
812 }
813
814 /* Update the various stack pointers. */
815 if (!write_pass)
816 {
817 struct_end = sp + align_up (struct_ptr, 64);
818 /* PARAM_PTR already accounts for all the arguments passed
819 by the user. However, the ABI mandates minimum stack
820 space allocations for outgoing arguments. The ABI also
821 mandates minimum stack alignments which we must
822 preserve. */
823 param_end = struct_end + align_up (param_ptr, 64);
824 }
825 }
826
827 /* If a structure has to be returned, set up register 28 to hold its
828 address */
829 if (struct_return)
830 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
831
832 gp = tdep->find_global_pointer (gdbarch, function);
833
834 if (gp != 0)
835 regcache_cooked_write_unsigned (regcache, 19, gp);
836
837 /* Set the return address. */
838 if (!gdbarch_push_dummy_code_p (gdbarch))
839 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
840
841 /* Update the Stack Pointer. */
842 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
843
844 return param_end;
845 }
846
847 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
848 Runtime Architecture for PA-RISC 2.0", which is distributed as part
849 as of the HP-UX Software Transition Kit (STK). This implementation
850 is based on version 3.3, dated October 6, 1997. */
851
852 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
853
854 static int
855 hppa64_integral_or_pointer_p (const struct type *type)
856 {
857 switch (TYPE_CODE (type))
858 {
859 case TYPE_CODE_INT:
860 case TYPE_CODE_BOOL:
861 case TYPE_CODE_CHAR:
862 case TYPE_CODE_ENUM:
863 case TYPE_CODE_RANGE:
864 {
865 int len = TYPE_LENGTH (type);
866 return (len == 1 || len == 2 || len == 4 || len == 8);
867 }
868 case TYPE_CODE_PTR:
869 case TYPE_CODE_REF:
870 return (TYPE_LENGTH (type) == 8);
871 default:
872 break;
873 }
874
875 return 0;
876 }
877
878 /* Check whether TYPE is a "Floating Scalar Type". */
879
880 static int
881 hppa64_floating_p (const struct type *type)
882 {
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_FLT:
886 {
887 int len = TYPE_LENGTH (type);
888 return (len == 4 || len == 8 || len == 16);
889 }
890 default:
891 break;
892 }
893
894 return 0;
895 }
896
897 /* If CODE points to a function entry address, try to look up the corresponding
898 function descriptor and return its address instead. If CODE is not a
899 function entry address, then just return it unchanged. */
900 static CORE_ADDR
901 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
902 {
903 struct obj_section *sec, *opd;
904
905 sec = find_pc_section (code);
906
907 if (!sec)
908 return code;
909
910 /* If CODE is in a data section, assume it's already a fptr. */
911 if (!(sec->the_bfd_section->flags & SEC_CODE))
912 return code;
913
914 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
915 {
916 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
917 break;
918 }
919
920 if (opd < sec->objfile->sections_end)
921 {
922 CORE_ADDR addr;
923
924 for (addr = obj_section_addr (opd);
925 addr < obj_section_endaddr (opd);
926 addr += 2 * 8)
927 {
928 ULONGEST opdaddr;
929 char tmp[8];
930
931 if (target_read_memory (addr, tmp, sizeof (tmp)))
932 break;
933 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
934
935 if (opdaddr == code)
936 return addr - 16;
937 }
938 }
939
940 return code;
941 }
942
943 static CORE_ADDR
944 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
945 struct regcache *regcache, CORE_ADDR bp_addr,
946 int nargs, struct value **args, CORE_ADDR sp,
947 int struct_return, CORE_ADDR struct_addr)
948 {
949 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
950 int i, offset = 0;
951 CORE_ADDR gp;
952
953 /* "The outgoing parameter area [...] must be aligned at a 16-byte
954 boundary." */
955 sp = align_up (sp, 16);
956
957 for (i = 0; i < nargs; i++)
958 {
959 struct value *arg = args[i];
960 struct type *type = value_type (arg);
961 int len = TYPE_LENGTH (type);
962 const bfd_byte *valbuf;
963 bfd_byte fptrbuf[8];
964 int regnum;
965
966 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
967 offset = align_up (offset, 8);
968
969 if (hppa64_integral_or_pointer_p (type))
970 {
971 /* "Integral scalar parameters smaller than 64 bits are
972 padded on the left (i.e., the value is in the
973 least-significant bits of the 64-bit storage unit, and
974 the high-order bits are undefined)." Therefore we can
975 safely sign-extend them. */
976 if (len < 8)
977 {
978 arg = value_cast (builtin_type (gdbarch)->builtin_int64, arg);
979 len = 8;
980 }
981 }
982 else if (hppa64_floating_p (type))
983 {
984 if (len > 8)
985 {
986 /* "Quad-precision (128-bit) floating-point scalar
987 parameters are aligned on a 16-byte boundary." */
988 offset = align_up (offset, 16);
989
990 /* "Double-extended- and quad-precision floating-point
991 parameters within the first 64 bytes of the parameter
992 list are always passed in general registers." */
993 }
994 else
995 {
996 if (len == 4)
997 {
998 /* "Single-precision (32-bit) floating-point scalar
999 parameters are padded on the left with 32 bits of
1000 garbage (i.e., the floating-point value is in the
1001 least-significant 32 bits of a 64-bit storage
1002 unit)." */
1003 offset += 4;
1004 }
1005
1006 /* "Single- and double-precision floating-point
1007 parameters in this area are passed according to the
1008 available formal parameter information in a function
1009 prototype. [...] If no prototype is in scope,
1010 floating-point parameters must be passed both in the
1011 corresponding general registers and in the
1012 corresponding floating-point registers." */
1013 regnum = HPPA64_FP4_REGNUM + offset / 8;
1014
1015 if (regnum < HPPA64_FP4_REGNUM + 8)
1016 {
1017 /* "Single-precision floating-point parameters, when
1018 passed in floating-point registers, are passed in
1019 the right halves of the floating point registers;
1020 the left halves are unused." */
1021 regcache_cooked_write_part (regcache, regnum, offset % 8,
1022 len, value_contents (arg));
1023 }
1024 }
1025 }
1026 else
1027 {
1028 if (len > 8)
1029 {
1030 /* "Aggregates larger than 8 bytes are aligned on a
1031 16-byte boundary, possibly leaving an unused argument
1032 slot, which is filled with garbage. If necessary,
1033 they are padded on the right (with garbage), to a
1034 multiple of 8 bytes." */
1035 offset = align_up (offset, 16);
1036 }
1037 }
1038
1039 /* If we are passing a function pointer, make sure we pass a function
1040 descriptor instead of the function entry address. */
1041 if (TYPE_CODE (type) == TYPE_CODE_PTR
1042 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1043 {
1044 ULONGEST codeptr, fptr;
1045
1046 codeptr = unpack_long (type, value_contents (arg));
1047 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1048 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1049 valbuf = fptrbuf;
1050 }
1051 else
1052 {
1053 valbuf = value_contents (arg);
1054 }
1055
1056 /* Always store the argument in memory. */
1057 write_memory (sp + offset, valbuf, len);
1058
1059 regnum = HPPA_ARG0_REGNUM - offset / 8;
1060 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1061 {
1062 regcache_cooked_write_part (regcache, regnum,
1063 offset % 8, min (len, 8), valbuf);
1064 offset += min (len, 8);
1065 valbuf += min (len, 8);
1066 len -= min (len, 8);
1067 regnum--;
1068 }
1069
1070 offset += len;
1071 }
1072
1073 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1074 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1075
1076 /* Allocate the outgoing parameter area. Make sure the outgoing
1077 parameter area is multiple of 16 bytes in length. */
1078 sp += max (align_up (offset, 16), 64);
1079
1080 /* Allocate 32-bytes of scratch space. The documentation doesn't
1081 mention this, but it seems to be needed. */
1082 sp += 32;
1083
1084 /* Allocate the frame marker area. */
1085 sp += 16;
1086
1087 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1088 its address. */
1089 if (struct_return)
1090 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1091
1092 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1093 gp = tdep->find_global_pointer (gdbarch, function);
1094 if (gp != 0)
1095 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1096
1097 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1098 if (!gdbarch_push_dummy_code_p (gdbarch))
1099 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1100
1101 /* Set up GR30 to hold the stack pointer (sp). */
1102 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1103
1104 return sp;
1105 }
1106 \f
1107
1108 /* Handle 32/64-bit struct return conventions. */
1109
1110 static enum return_value_convention
1111 hppa32_return_value (struct gdbarch *gdbarch, struct type *func_type,
1112 struct type *type, struct regcache *regcache,
1113 gdb_byte *readbuf, const gdb_byte *writebuf)
1114 {
1115 if (TYPE_LENGTH (type) <= 2 * 4)
1116 {
1117 /* The value always lives in the right hand end of the register
1118 (or register pair)? */
1119 int b;
1120 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1121 int part = TYPE_LENGTH (type) % 4;
1122 /* The left hand register contains only part of the value,
1123 transfer that first so that the rest can be xfered as entire
1124 4-byte registers. */
1125 if (part > 0)
1126 {
1127 if (readbuf != NULL)
1128 regcache_cooked_read_part (regcache, reg, 4 - part,
1129 part, readbuf);
1130 if (writebuf != NULL)
1131 regcache_cooked_write_part (regcache, reg, 4 - part,
1132 part, writebuf);
1133 reg++;
1134 }
1135 /* Now transfer the remaining register values. */
1136 for (b = part; b < TYPE_LENGTH (type); b += 4)
1137 {
1138 if (readbuf != NULL)
1139 regcache_cooked_read (regcache, reg, readbuf + b);
1140 if (writebuf != NULL)
1141 regcache_cooked_write (regcache, reg, writebuf + b);
1142 reg++;
1143 }
1144 return RETURN_VALUE_REGISTER_CONVENTION;
1145 }
1146 else
1147 return RETURN_VALUE_STRUCT_CONVENTION;
1148 }
1149
1150 static enum return_value_convention
1151 hppa64_return_value (struct gdbarch *gdbarch, struct type *func_type,
1152 struct type *type, struct regcache *regcache,
1153 gdb_byte *readbuf, const gdb_byte *writebuf)
1154 {
1155 int len = TYPE_LENGTH (type);
1156 int regnum, offset;
1157
1158 if (len > 16)
1159 {
1160 /* All return values larget than 128 bits must be aggregate
1161 return values. */
1162 gdb_assert (!hppa64_integral_or_pointer_p (type));
1163 gdb_assert (!hppa64_floating_p (type));
1164
1165 /* "Aggregate return values larger than 128 bits are returned in
1166 a buffer allocated by the caller. The address of the buffer
1167 must be passed in GR 28." */
1168 return RETURN_VALUE_STRUCT_CONVENTION;
1169 }
1170
1171 if (hppa64_integral_or_pointer_p (type))
1172 {
1173 /* "Integral return values are returned in GR 28. Values
1174 smaller than 64 bits are padded on the left (with garbage)." */
1175 regnum = HPPA_RET0_REGNUM;
1176 offset = 8 - len;
1177 }
1178 else if (hppa64_floating_p (type))
1179 {
1180 if (len > 8)
1181 {
1182 /* "Double-extended- and quad-precision floating-point
1183 values are returned in GRs 28 and 29. The sign,
1184 exponent, and most-significant bits of the mantissa are
1185 returned in GR 28; the least-significant bits of the
1186 mantissa are passed in GR 29. For double-extended
1187 precision values, GR 29 is padded on the right with 48
1188 bits of garbage." */
1189 regnum = HPPA_RET0_REGNUM;
1190 offset = 0;
1191 }
1192 else
1193 {
1194 /* "Single-precision and double-precision floating-point
1195 return values are returned in FR 4R (single precision) or
1196 FR 4 (double-precision)." */
1197 regnum = HPPA64_FP4_REGNUM;
1198 offset = 8 - len;
1199 }
1200 }
1201 else
1202 {
1203 /* "Aggregate return values up to 64 bits in size are returned
1204 in GR 28. Aggregates smaller than 64 bits are left aligned
1205 in the register; the pad bits on the right are undefined."
1206
1207 "Aggregate return values between 65 and 128 bits are returned
1208 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1209 the remaining bits are placed, left aligned, in GR 29. The
1210 pad bits on the right of GR 29 (if any) are undefined." */
1211 regnum = HPPA_RET0_REGNUM;
1212 offset = 0;
1213 }
1214
1215 if (readbuf)
1216 {
1217 while (len > 0)
1218 {
1219 regcache_cooked_read_part (regcache, regnum, offset,
1220 min (len, 8), readbuf);
1221 readbuf += min (len, 8);
1222 len -= min (len, 8);
1223 regnum++;
1224 }
1225 }
1226
1227 if (writebuf)
1228 {
1229 while (len > 0)
1230 {
1231 regcache_cooked_write_part (regcache, regnum, offset,
1232 min (len, 8), writebuf);
1233 writebuf += min (len, 8);
1234 len -= min (len, 8);
1235 regnum++;
1236 }
1237 }
1238
1239 return RETURN_VALUE_REGISTER_CONVENTION;
1240 }
1241 \f
1242
1243 static CORE_ADDR
1244 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1245 struct target_ops *targ)
1246 {
1247 if (addr & 2)
1248 {
1249 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
1250 CORE_ADDR plabel = addr & ~3;
1251 return read_memory_typed_address (plabel, func_ptr_type);
1252 }
1253
1254 return addr;
1255 }
1256
1257 static CORE_ADDR
1258 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1259 {
1260 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1261 and not _bit_)! */
1262 return align_up (addr, 64);
1263 }
1264
1265 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1266
1267 static CORE_ADDR
1268 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1269 {
1270 /* Just always 16-byte align. */
1271 return align_up (addr, 16);
1272 }
1273
1274 CORE_ADDR
1275 hppa_read_pc (struct regcache *regcache)
1276 {
1277 ULONGEST ipsw;
1278 ULONGEST pc;
1279
1280 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1281 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1282
1283 /* If the current instruction is nullified, then we are effectively
1284 still executing the previous instruction. Pretend we are still
1285 there. This is needed when single stepping; if the nullified
1286 instruction is on a different line, we don't want GDB to think
1287 we've stepped onto that line. */
1288 if (ipsw & 0x00200000)
1289 pc -= 4;
1290
1291 return pc & ~0x3;
1292 }
1293
1294 void
1295 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1296 {
1297 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1298 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1299 }
1300
1301 /* return the alignment of a type in bytes. Structures have the maximum
1302 alignment required by their fields. */
1303
1304 static int
1305 hppa_alignof (struct type *type)
1306 {
1307 int max_align, align, i;
1308 CHECK_TYPEDEF (type);
1309 switch (TYPE_CODE (type))
1310 {
1311 case TYPE_CODE_PTR:
1312 case TYPE_CODE_INT:
1313 case TYPE_CODE_FLT:
1314 return TYPE_LENGTH (type);
1315 case TYPE_CODE_ARRAY:
1316 return hppa_alignof (TYPE_INDEX_TYPE (type));
1317 case TYPE_CODE_STRUCT:
1318 case TYPE_CODE_UNION:
1319 max_align = 1;
1320 for (i = 0; i < TYPE_NFIELDS (type); i++)
1321 {
1322 /* Bit fields have no real alignment. */
1323 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1324 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1325 {
1326 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1327 max_align = max (max_align, align);
1328 }
1329 }
1330 return max_align;
1331 default:
1332 return 4;
1333 }
1334 }
1335
1336 /* For the given instruction (INST), return any adjustment it makes
1337 to the stack pointer or zero for no adjustment.
1338
1339 This only handles instructions commonly found in prologues. */
1340
1341 static int
1342 prologue_inst_adjust_sp (unsigned long inst)
1343 {
1344 /* This must persist across calls. */
1345 static int save_high21;
1346
1347 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1348 if ((inst & 0xffffc000) == 0x37de0000)
1349 return hppa_extract_14 (inst);
1350
1351 /* stwm X,D(sp) */
1352 if ((inst & 0xffe00000) == 0x6fc00000)
1353 return hppa_extract_14 (inst);
1354
1355 /* std,ma X,D(sp) */
1356 if ((inst & 0xffe00008) == 0x73c00008)
1357 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1358
1359 /* addil high21,%r30; ldo low11,(%r1),%r30)
1360 save high bits in save_high21 for later use. */
1361 if ((inst & 0xffe00000) == 0x2bc00000)
1362 {
1363 save_high21 = hppa_extract_21 (inst);
1364 return 0;
1365 }
1366
1367 if ((inst & 0xffff0000) == 0x343e0000)
1368 return save_high21 + hppa_extract_14 (inst);
1369
1370 /* fstws as used by the HP compilers. */
1371 if ((inst & 0xffffffe0) == 0x2fd01220)
1372 return hppa_extract_5_load (inst);
1373
1374 /* No adjustment. */
1375 return 0;
1376 }
1377
1378 /* Return nonzero if INST is a branch of some kind, else return zero. */
1379
1380 static int
1381 is_branch (unsigned long inst)
1382 {
1383 switch (inst >> 26)
1384 {
1385 case 0x20:
1386 case 0x21:
1387 case 0x22:
1388 case 0x23:
1389 case 0x27:
1390 case 0x28:
1391 case 0x29:
1392 case 0x2a:
1393 case 0x2b:
1394 case 0x2f:
1395 case 0x30:
1396 case 0x31:
1397 case 0x32:
1398 case 0x33:
1399 case 0x38:
1400 case 0x39:
1401 case 0x3a:
1402 case 0x3b:
1403 return 1;
1404
1405 default:
1406 return 0;
1407 }
1408 }
1409
1410 /* Return the register number for a GR which is saved by INST or
1411 zero it INST does not save a GR. */
1412
1413 static int
1414 inst_saves_gr (unsigned long inst)
1415 {
1416 /* Does it look like a stw? */
1417 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1418 || (inst >> 26) == 0x1f
1419 || ((inst >> 26) == 0x1f
1420 && ((inst >> 6) == 0xa)))
1421 return hppa_extract_5R_store (inst);
1422
1423 /* Does it look like a std? */
1424 if ((inst >> 26) == 0x1c
1425 || ((inst >> 26) == 0x03
1426 && ((inst >> 6) & 0xf) == 0xb))
1427 return hppa_extract_5R_store (inst);
1428
1429 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1430 if ((inst >> 26) == 0x1b)
1431 return hppa_extract_5R_store (inst);
1432
1433 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1434 too. */
1435 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1436 || ((inst >> 26) == 0x3
1437 && (((inst >> 6) & 0xf) == 0x8
1438 || (inst >> 6) & 0xf) == 0x9))
1439 return hppa_extract_5R_store (inst);
1440
1441 return 0;
1442 }
1443
1444 /* Return the register number for a FR which is saved by INST or
1445 zero it INST does not save a FR.
1446
1447 Note we only care about full 64bit register stores (that's the only
1448 kind of stores the prologue will use).
1449
1450 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1451
1452 static int
1453 inst_saves_fr (unsigned long inst)
1454 {
1455 /* is this an FSTD ? */
1456 if ((inst & 0xfc00dfc0) == 0x2c001200)
1457 return hppa_extract_5r_store (inst);
1458 if ((inst & 0xfc000002) == 0x70000002)
1459 return hppa_extract_5R_store (inst);
1460 /* is this an FSTW ? */
1461 if ((inst & 0xfc00df80) == 0x24001200)
1462 return hppa_extract_5r_store (inst);
1463 if ((inst & 0xfc000002) == 0x7c000000)
1464 return hppa_extract_5R_store (inst);
1465 return 0;
1466 }
1467
1468 /* Advance PC across any function entry prologue instructions
1469 to reach some "real" code.
1470
1471 Use information in the unwind table to determine what exactly should
1472 be in the prologue. */
1473
1474
1475 static CORE_ADDR
1476 skip_prologue_hard_way (struct gdbarch *gdbarch, CORE_ADDR pc,
1477 int stop_before_branch)
1478 {
1479 char buf[4];
1480 CORE_ADDR orig_pc = pc;
1481 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1482 unsigned long args_stored, status, i, restart_gr, restart_fr;
1483 struct unwind_table_entry *u;
1484 int final_iteration;
1485
1486 restart_gr = 0;
1487 restart_fr = 0;
1488
1489 restart:
1490 u = find_unwind_entry (pc);
1491 if (!u)
1492 return pc;
1493
1494 /* If we are not at the beginning of a function, then return now. */
1495 if ((pc & ~0x3) != u->region_start)
1496 return pc;
1497
1498 /* This is how much of a frame adjustment we need to account for. */
1499 stack_remaining = u->Total_frame_size << 3;
1500
1501 /* Magic register saves we want to know about. */
1502 save_rp = u->Save_RP;
1503 save_sp = u->Save_SP;
1504
1505 /* An indication that args may be stored into the stack. Unfortunately
1506 the HPUX compilers tend to set this in cases where no args were
1507 stored too!. */
1508 args_stored = 1;
1509
1510 /* Turn the Entry_GR field into a bitmask. */
1511 save_gr = 0;
1512 for (i = 3; i < u->Entry_GR + 3; i++)
1513 {
1514 /* Frame pointer gets saved into a special location. */
1515 if (u->Save_SP && i == HPPA_FP_REGNUM)
1516 continue;
1517
1518 save_gr |= (1 << i);
1519 }
1520 save_gr &= ~restart_gr;
1521
1522 /* Turn the Entry_FR field into a bitmask too. */
1523 save_fr = 0;
1524 for (i = 12; i < u->Entry_FR + 12; i++)
1525 save_fr |= (1 << i);
1526 save_fr &= ~restart_fr;
1527
1528 final_iteration = 0;
1529
1530 /* Loop until we find everything of interest or hit a branch.
1531
1532 For unoptimized GCC code and for any HP CC code this will never ever
1533 examine any user instructions.
1534
1535 For optimzied GCC code we're faced with problems. GCC will schedule
1536 its prologue and make prologue instructions available for delay slot
1537 filling. The end result is user code gets mixed in with the prologue
1538 and a prologue instruction may be in the delay slot of the first branch
1539 or call.
1540
1541 Some unexpected things are expected with debugging optimized code, so
1542 we allow this routine to walk past user instructions in optimized
1543 GCC code. */
1544 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1545 || args_stored)
1546 {
1547 unsigned int reg_num;
1548 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1549 unsigned long old_save_rp, old_save_sp, next_inst;
1550
1551 /* Save copies of all the triggers so we can compare them later
1552 (only for HPC). */
1553 old_save_gr = save_gr;
1554 old_save_fr = save_fr;
1555 old_save_rp = save_rp;
1556 old_save_sp = save_sp;
1557 old_stack_remaining = stack_remaining;
1558
1559 status = target_read_memory (pc, buf, 4);
1560 inst = extract_unsigned_integer (buf, 4);
1561
1562 /* Yow! */
1563 if (status != 0)
1564 return pc;
1565
1566 /* Note the interesting effects of this instruction. */
1567 stack_remaining -= prologue_inst_adjust_sp (inst);
1568
1569 /* There are limited ways to store the return pointer into the
1570 stack. */
1571 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1572 save_rp = 0;
1573
1574 /* These are the only ways we save SP into the stack. At this time
1575 the HP compilers never bother to save SP into the stack. */
1576 if ((inst & 0xffffc000) == 0x6fc10000
1577 || (inst & 0xffffc00c) == 0x73c10008)
1578 save_sp = 0;
1579
1580 /* Are we loading some register with an offset from the argument
1581 pointer? */
1582 if ((inst & 0xffe00000) == 0x37a00000
1583 || (inst & 0xffffffe0) == 0x081d0240)
1584 {
1585 pc += 4;
1586 continue;
1587 }
1588
1589 /* Account for general and floating-point register saves. */
1590 reg_num = inst_saves_gr (inst);
1591 save_gr &= ~(1 << reg_num);
1592
1593 /* Ugh. Also account for argument stores into the stack.
1594 Unfortunately args_stored only tells us that some arguments
1595 where stored into the stack. Not how many or what kind!
1596
1597 This is a kludge as on the HP compiler sets this bit and it
1598 never does prologue scheduling. So once we see one, skip past
1599 all of them. We have similar code for the fp arg stores below.
1600
1601 FIXME. Can still die if we have a mix of GR and FR argument
1602 stores! */
1603 if (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1604 && reg_num <= 26)
1605 {
1606 while (reg_num >= (gdbarch_ptr_bit (gdbarch) == 64 ? 19 : 23)
1607 && reg_num <= 26)
1608 {
1609 pc += 4;
1610 status = target_read_memory (pc, buf, 4);
1611 inst = extract_unsigned_integer (buf, 4);
1612 if (status != 0)
1613 return pc;
1614 reg_num = inst_saves_gr (inst);
1615 }
1616 args_stored = 0;
1617 continue;
1618 }
1619
1620 reg_num = inst_saves_fr (inst);
1621 save_fr &= ~(1 << reg_num);
1622
1623 status = target_read_memory (pc + 4, buf, 4);
1624 next_inst = extract_unsigned_integer (buf, 4);
1625
1626 /* Yow! */
1627 if (status != 0)
1628 return pc;
1629
1630 /* We've got to be read to handle the ldo before the fp register
1631 save. */
1632 if ((inst & 0xfc000000) == 0x34000000
1633 && inst_saves_fr (next_inst) >= 4
1634 && inst_saves_fr (next_inst)
1635 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1636 {
1637 /* So we drop into the code below in a reasonable state. */
1638 reg_num = inst_saves_fr (next_inst);
1639 pc -= 4;
1640 }
1641
1642 /* Ugh. Also account for argument stores into the stack.
1643 This is a kludge as on the HP compiler sets this bit and it
1644 never does prologue scheduling. So once we see one, skip past
1645 all of them. */
1646 if (reg_num >= 4
1647 && reg_num <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1648 {
1649 while (reg_num >= 4
1650 && reg_num
1651 <= (gdbarch_ptr_bit (gdbarch) == 64 ? 11 : 7))
1652 {
1653 pc += 8;
1654 status = target_read_memory (pc, buf, 4);
1655 inst = extract_unsigned_integer (buf, 4);
1656 if (status != 0)
1657 return pc;
1658 if ((inst & 0xfc000000) != 0x34000000)
1659 break;
1660 status = target_read_memory (pc + 4, buf, 4);
1661 next_inst = extract_unsigned_integer (buf, 4);
1662 if (status != 0)
1663 return pc;
1664 reg_num = inst_saves_fr (next_inst);
1665 }
1666 args_stored = 0;
1667 continue;
1668 }
1669
1670 /* Quit if we hit any kind of branch. This can happen if a prologue
1671 instruction is in the delay slot of the first call/branch. */
1672 if (is_branch (inst) && stop_before_branch)
1673 break;
1674
1675 /* What a crock. The HP compilers set args_stored even if no
1676 arguments were stored into the stack (boo hiss). This could
1677 cause this code to then skip a bunch of user insns (up to the
1678 first branch).
1679
1680 To combat this we try to identify when args_stored was bogusly
1681 set and clear it. We only do this when args_stored is nonzero,
1682 all other resources are accounted for, and nothing changed on
1683 this pass. */
1684 if (args_stored
1685 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1686 && old_save_gr == save_gr && old_save_fr == save_fr
1687 && old_save_rp == save_rp && old_save_sp == save_sp
1688 && old_stack_remaining == stack_remaining)
1689 break;
1690
1691 /* Bump the PC. */
1692 pc += 4;
1693
1694 /* !stop_before_branch, so also look at the insn in the delay slot
1695 of the branch. */
1696 if (final_iteration)
1697 break;
1698 if (is_branch (inst))
1699 final_iteration = 1;
1700 }
1701
1702 /* We've got a tenative location for the end of the prologue. However
1703 because of limitations in the unwind descriptor mechanism we may
1704 have went too far into user code looking for the save of a register
1705 that does not exist. So, if there registers we expected to be saved
1706 but never were, mask them out and restart.
1707
1708 This should only happen in optimized code, and should be very rare. */
1709 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1710 {
1711 pc = orig_pc;
1712 restart_gr = save_gr;
1713 restart_fr = save_fr;
1714 goto restart;
1715 }
1716
1717 return pc;
1718 }
1719
1720
1721 /* Return the address of the PC after the last prologue instruction if
1722 we can determine it from the debug symbols. Else return zero. */
1723
1724 static CORE_ADDR
1725 after_prologue (CORE_ADDR pc)
1726 {
1727 struct symtab_and_line sal;
1728 CORE_ADDR func_addr, func_end;
1729 struct symbol *f;
1730
1731 /* If we can not find the symbol in the partial symbol table, then
1732 there is no hope we can determine the function's start address
1733 with this code. */
1734 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1735 return 0;
1736
1737 /* Get the line associated with FUNC_ADDR. */
1738 sal = find_pc_line (func_addr, 0);
1739
1740 /* There are only two cases to consider. First, the end of the source line
1741 is within the function bounds. In that case we return the end of the
1742 source line. Second is the end of the source line extends beyond the
1743 bounds of the current function. We need to use the slow code to
1744 examine instructions in that case.
1745
1746 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1747 the wrong thing to do. In fact, it should be entirely possible for this
1748 function to always return zero since the slow instruction scanning code
1749 is supposed to *always* work. If it does not, then it is a bug. */
1750 if (sal.end < func_end)
1751 return sal.end;
1752 else
1753 return 0;
1754 }
1755
1756 /* To skip prologues, I use this predicate. Returns either PC itself
1757 if the code at PC does not look like a function prologue; otherwise
1758 returns an address that (if we're lucky) follows the prologue.
1759
1760 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1761 It doesn't necessarily skips all the insns in the prologue. In fact
1762 we might not want to skip all the insns because a prologue insn may
1763 appear in the delay slot of the first branch, and we don't want to
1764 skip over the branch in that case. */
1765
1766 static CORE_ADDR
1767 hppa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
1768 {
1769 unsigned long inst;
1770 int offset;
1771 CORE_ADDR post_prologue_pc;
1772 char buf[4];
1773
1774 /* See if we can determine the end of the prologue via the symbol table.
1775 If so, then return either PC, or the PC after the prologue, whichever
1776 is greater. */
1777
1778 post_prologue_pc = after_prologue (pc);
1779
1780 /* If after_prologue returned a useful address, then use it. Else
1781 fall back on the instruction skipping code.
1782
1783 Some folks have claimed this causes problems because the breakpoint
1784 may be the first instruction of the prologue. If that happens, then
1785 the instruction skipping code has a bug that needs to be fixed. */
1786 if (post_prologue_pc != 0)
1787 return max (pc, post_prologue_pc);
1788 else
1789 return (skip_prologue_hard_way (gdbarch, pc, 1));
1790 }
1791
1792 /* Return an unwind entry that falls within the frame's code block. */
1793
1794 static struct unwind_table_entry *
1795 hppa_find_unwind_entry_in_block (struct frame_info *this_frame)
1796 {
1797 CORE_ADDR pc = get_frame_address_in_block (this_frame);
1798
1799 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1800 result of get_frame_address_in_block implies a problem.
1801 The bits should have been removed earlier, before the return
1802 value of gdbarch_unwind_pc. That might be happening already;
1803 if it isn't, it should be fixed. Then this call can be
1804 removed. */
1805 pc = gdbarch_addr_bits_remove (get_frame_arch (this_frame), pc);
1806 return find_unwind_entry (pc);
1807 }
1808
1809 struct hppa_frame_cache
1810 {
1811 CORE_ADDR base;
1812 struct trad_frame_saved_reg *saved_regs;
1813 };
1814
1815 static struct hppa_frame_cache *
1816 hppa_frame_cache (struct frame_info *this_frame, void **this_cache)
1817 {
1818 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1819 struct hppa_frame_cache *cache;
1820 long saved_gr_mask;
1821 long saved_fr_mask;
1822 CORE_ADDR this_sp;
1823 long frame_size;
1824 struct unwind_table_entry *u;
1825 CORE_ADDR prologue_end;
1826 int fp_in_r1 = 0;
1827 int i;
1828
1829 if (hppa_debug)
1830 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1831 frame_relative_level(this_frame));
1832
1833 if ((*this_cache) != NULL)
1834 {
1835 if (hppa_debug)
1836 fprintf_unfiltered (gdb_stdlog, "base=%s (cached) }",
1837 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
1838 return (*this_cache);
1839 }
1840 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1841 (*this_cache) = cache;
1842 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1843
1844 /* Yow! */
1845 u = hppa_find_unwind_entry_in_block (this_frame);
1846 if (!u)
1847 {
1848 if (hppa_debug)
1849 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1850 return (*this_cache);
1851 }
1852
1853 /* Turn the Entry_GR field into a bitmask. */
1854 saved_gr_mask = 0;
1855 for (i = 3; i < u->Entry_GR + 3; i++)
1856 {
1857 /* Frame pointer gets saved into a special location. */
1858 if (u->Save_SP && i == HPPA_FP_REGNUM)
1859 continue;
1860
1861 saved_gr_mask |= (1 << i);
1862 }
1863
1864 /* Turn the Entry_FR field into a bitmask too. */
1865 saved_fr_mask = 0;
1866 for (i = 12; i < u->Entry_FR + 12; i++)
1867 saved_fr_mask |= (1 << i);
1868
1869 /* Loop until we find everything of interest or hit a branch.
1870
1871 For unoptimized GCC code and for any HP CC code this will never ever
1872 examine any user instructions.
1873
1874 For optimized GCC code we're faced with problems. GCC will schedule
1875 its prologue and make prologue instructions available for delay slot
1876 filling. The end result is user code gets mixed in with the prologue
1877 and a prologue instruction may be in the delay slot of the first branch
1878 or call.
1879
1880 Some unexpected things are expected with debugging optimized code, so
1881 we allow this routine to walk past user instructions in optimized
1882 GCC code. */
1883 {
1884 int final_iteration = 0;
1885 CORE_ADDR pc, start_pc, end_pc;
1886 int looking_for_sp = u->Save_SP;
1887 int looking_for_rp = u->Save_RP;
1888 int fp_loc = -1;
1889
1890 /* We have to use skip_prologue_hard_way instead of just
1891 skip_prologue_using_sal, in case we stepped into a function without
1892 symbol information. hppa_skip_prologue also bounds the returned
1893 pc by the passed in pc, so it will not return a pc in the next
1894 function.
1895
1896 We used to call hppa_skip_prologue to find the end of the prologue,
1897 but if some non-prologue instructions get scheduled into the prologue,
1898 and the program is compiled with debug information, the "easy" way
1899 in hppa_skip_prologue will return a prologue end that is too early
1900 for us to notice any potential frame adjustments. */
1901
1902 /* We used to use get_frame_func to locate the beginning of the
1903 function to pass to skip_prologue. However, when objects are
1904 compiled without debug symbols, get_frame_func can return the wrong
1905 function (or 0). We can do better than that by using unwind records.
1906 This only works if the Region_description of the unwind record
1907 indicates that it includes the entry point of the function.
1908 HP compilers sometimes generate unwind records for regions that
1909 do not include the entry or exit point of a function. GNU tools
1910 do not do this. */
1911
1912 if ((u->Region_description & 0x2) == 0)
1913 start_pc = u->region_start;
1914 else
1915 start_pc = get_frame_func (this_frame);
1916
1917 prologue_end = skip_prologue_hard_way (gdbarch, start_pc, 0);
1918 end_pc = get_frame_pc (this_frame);
1919
1920 if (prologue_end != 0 && end_pc > prologue_end)
1921 end_pc = prologue_end;
1922
1923 frame_size = 0;
1924
1925 for (pc = start_pc;
1926 ((saved_gr_mask || saved_fr_mask
1927 || looking_for_sp || looking_for_rp
1928 || frame_size < (u->Total_frame_size << 3))
1929 && pc < end_pc);
1930 pc += 4)
1931 {
1932 int reg;
1933 char buf4[4];
1934 long inst;
1935
1936 if (!safe_frame_unwind_memory (this_frame, pc, buf4, sizeof buf4))
1937 {
1938 error (_("Cannot read instruction at %s."),
1939 paddress (gdbarch, pc));
1940 return (*this_cache);
1941 }
1942
1943 inst = extract_unsigned_integer (buf4, sizeof buf4);
1944
1945 /* Note the interesting effects of this instruction. */
1946 frame_size += prologue_inst_adjust_sp (inst);
1947
1948 /* There are limited ways to store the return pointer into the
1949 stack. */
1950 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1951 {
1952 looking_for_rp = 0;
1953 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1954 }
1955 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1956 {
1957 looking_for_rp = 0;
1958 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1959 }
1960 else if (inst == 0x0fc212c1
1961 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1962 {
1963 looking_for_rp = 0;
1964 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1965 }
1966
1967 /* Check to see if we saved SP into the stack. This also
1968 happens to indicate the location of the saved frame
1969 pointer. */
1970 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1971 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1972 {
1973 looking_for_sp = 0;
1974 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1975 }
1976 else if (inst == 0x08030241) /* copy %r3, %r1 */
1977 {
1978 fp_in_r1 = 1;
1979 }
1980
1981 /* Account for general and floating-point register saves. */
1982 reg = inst_saves_gr (inst);
1983 if (reg >= 3 && reg <= 18
1984 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1985 {
1986 saved_gr_mask &= ~(1 << reg);
1987 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1988 /* stwm with a positive displacement is a _post_
1989 _modify_. */
1990 cache->saved_regs[reg].addr = 0;
1991 else if ((inst & 0xfc00000c) == 0x70000008)
1992 /* A std has explicit post_modify forms. */
1993 cache->saved_regs[reg].addr = 0;
1994 else
1995 {
1996 CORE_ADDR offset;
1997
1998 if ((inst >> 26) == 0x1c)
1999 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
2000 else if ((inst >> 26) == 0x03)
2001 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2002 else
2003 offset = hppa_extract_14 (inst);
2004
2005 /* Handle code with and without frame pointers. */
2006 if (u->Save_SP)
2007 cache->saved_regs[reg].addr = offset;
2008 else
2009 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2010 }
2011 }
2012
2013 /* GCC handles callee saved FP regs a little differently.
2014
2015 It emits an instruction to put the value of the start of
2016 the FP store area into %r1. It then uses fstds,ma with a
2017 basereg of %r1 for the stores.
2018
2019 HP CC emits them at the current stack pointer modifying the
2020 stack pointer as it stores each register. */
2021
2022 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2023 if ((inst & 0xffffc000) == 0x34610000
2024 || (inst & 0xffffc000) == 0x37c10000)
2025 fp_loc = hppa_extract_14 (inst);
2026
2027 reg = inst_saves_fr (inst);
2028 if (reg >= 12 && reg <= 21)
2029 {
2030 /* Note +4 braindamage below is necessary because the FP
2031 status registers are internally 8 registers rather than
2032 the expected 4 registers. */
2033 saved_fr_mask &= ~(1 << reg);
2034 if (fp_loc == -1)
2035 {
2036 /* 1st HP CC FP register store. After this
2037 instruction we've set enough state that the GCC and
2038 HPCC code are both handled in the same manner. */
2039 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2040 fp_loc = 8;
2041 }
2042 else
2043 {
2044 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2045 fp_loc += 8;
2046 }
2047 }
2048
2049 /* Quit if we hit any kind of branch the previous iteration. */
2050 if (final_iteration)
2051 break;
2052 /* We want to look precisely one instruction beyond the branch
2053 if we have not found everything yet. */
2054 if (is_branch (inst))
2055 final_iteration = 1;
2056 }
2057 }
2058
2059 {
2060 /* The frame base always represents the value of %sp at entry to
2061 the current function (and is thus equivalent to the "saved"
2062 stack pointer. */
2063 CORE_ADDR this_sp = get_frame_register_unsigned (this_frame,
2064 HPPA_SP_REGNUM);
2065 CORE_ADDR fp;
2066
2067 if (hppa_debug)
2068 fprintf_unfiltered (gdb_stdlog, " (this_sp=%s, pc=%s, "
2069 "prologue_end=%s) ",
2070 paddress (gdbarch, this_sp),
2071 paddress (gdbarch, get_frame_pc (this_frame)),
2072 paddress (gdbarch, prologue_end));
2073
2074 /* Check to see if a frame pointer is available, and use it for
2075 frame unwinding if it is.
2076
2077 There are some situations where we need to rely on the frame
2078 pointer to do stack unwinding. For example, if a function calls
2079 alloca (), the stack pointer can get adjusted inside the body of
2080 the function. In this case, the ABI requires that the compiler
2081 maintain a frame pointer for the function.
2082
2083 The unwind record has a flag (alloca_frame) that indicates that
2084 a function has a variable frame; unfortunately, gcc/binutils
2085 does not set this flag. Instead, whenever a frame pointer is used
2086 and saved on the stack, the Save_SP flag is set. We use this to
2087 decide whether to use the frame pointer for unwinding.
2088
2089 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2090 instead of Save_SP. */
2091
2092 fp = get_frame_register_unsigned (this_frame, HPPA_FP_REGNUM);
2093
2094 if (u->alloca_frame)
2095 fp -= u->Total_frame_size << 3;
2096
2097 if (get_frame_pc (this_frame) >= prologue_end
2098 && (u->Save_SP || u->alloca_frame) && fp != 0)
2099 {
2100 cache->base = fp;
2101
2102 if (hppa_debug)
2103 fprintf_unfiltered (gdb_stdlog, " (base=%s) [frame pointer]",
2104 paddress (gdbarch, cache->base));
2105 }
2106 else if (u->Save_SP
2107 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2108 {
2109 /* Both we're expecting the SP to be saved and the SP has been
2110 saved. The entry SP value is saved at this frame's SP
2111 address. */
2112 cache->base = read_memory_integer
2113 (this_sp, gdbarch_ptr_bit (gdbarch) / 8);
2114
2115 if (hppa_debug)
2116 fprintf_unfiltered (gdb_stdlog, " (base=%s) [saved]",
2117 paddress (gdbarch, cache->base));
2118 }
2119 else
2120 {
2121 /* The prologue has been slowly allocating stack space. Adjust
2122 the SP back. */
2123 cache->base = this_sp - frame_size;
2124 if (hppa_debug)
2125 fprintf_unfiltered (gdb_stdlog, " (base=%s) [unwind adjust]",
2126 paddress (gdbarch, cache->base));
2127
2128 }
2129 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2130 }
2131
2132 /* The PC is found in the "return register", "Millicode" uses "r31"
2133 as the return register while normal code uses "rp". */
2134 if (u->Millicode)
2135 {
2136 if (trad_frame_addr_p (cache->saved_regs, 31))
2137 {
2138 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2139 if (hppa_debug)
2140 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2141 }
2142 else
2143 {
2144 ULONGEST r31 = get_frame_register_unsigned (this_frame, 31);
2145 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2146 if (hppa_debug)
2147 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2148 }
2149 }
2150 else
2151 {
2152 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2153 {
2154 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2155 cache->saved_regs[HPPA_RP_REGNUM];
2156 if (hppa_debug)
2157 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2158 }
2159 else
2160 {
2161 ULONGEST rp = get_frame_register_unsigned (this_frame,
2162 HPPA_RP_REGNUM);
2163 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2164 if (hppa_debug)
2165 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2166 }
2167 }
2168
2169 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2170 frame. However, there is a one-insn window where we haven't saved it
2171 yet, but we've already clobbered it. Detect this case and fix it up.
2172
2173 The prologue sequence for frame-pointer functions is:
2174 0: stw %rp, -20(%sp)
2175 4: copy %r3, %r1
2176 8: copy %sp, %r3
2177 c: stw,ma %r1, XX(%sp)
2178
2179 So if we are at offset c, the r3 value that we want is not yet saved
2180 on the stack, but it's been overwritten. The prologue analyzer will
2181 set fp_in_r1 when it sees the copy insn so we know to get the value
2182 from r1 instead. */
2183 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2184 && fp_in_r1)
2185 {
2186 ULONGEST r1 = get_frame_register_unsigned (this_frame, 1);
2187 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2188 }
2189
2190 {
2191 /* Convert all the offsets into addresses. */
2192 int reg;
2193 for (reg = 0; reg < gdbarch_num_regs (gdbarch); reg++)
2194 {
2195 if (trad_frame_addr_p (cache->saved_regs, reg))
2196 cache->saved_regs[reg].addr += cache->base;
2197 }
2198 }
2199
2200 {
2201 struct gdbarch_tdep *tdep;
2202
2203 tdep = gdbarch_tdep (gdbarch);
2204
2205 if (tdep->unwind_adjust_stub)
2206 tdep->unwind_adjust_stub (this_frame, cache->base, cache->saved_regs);
2207 }
2208
2209 if (hppa_debug)
2210 fprintf_unfiltered (gdb_stdlog, "base=%s }",
2211 paddress (gdbarch, ((struct hppa_frame_cache *)*this_cache)->base));
2212 return (*this_cache);
2213 }
2214
2215 static void
2216 hppa_frame_this_id (struct frame_info *this_frame, void **this_cache,
2217 struct frame_id *this_id)
2218 {
2219 struct hppa_frame_cache *info;
2220 CORE_ADDR pc = get_frame_pc (this_frame);
2221 struct unwind_table_entry *u;
2222
2223 info = hppa_frame_cache (this_frame, this_cache);
2224 u = hppa_find_unwind_entry_in_block (this_frame);
2225
2226 (*this_id) = frame_id_build (info->base, u->region_start);
2227 }
2228
2229 static struct value *
2230 hppa_frame_prev_register (struct frame_info *this_frame,
2231 void **this_cache, int regnum)
2232 {
2233 struct hppa_frame_cache *info = hppa_frame_cache (this_frame, this_cache);
2234
2235 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2236 }
2237
2238 static int
2239 hppa_frame_unwind_sniffer (const struct frame_unwind *self,
2240 struct frame_info *this_frame, void **this_cache)
2241 {
2242 if (hppa_find_unwind_entry_in_block (this_frame))
2243 return 1;
2244
2245 return 0;
2246 }
2247
2248 static const struct frame_unwind hppa_frame_unwind =
2249 {
2250 NORMAL_FRAME,
2251 hppa_frame_this_id,
2252 hppa_frame_prev_register,
2253 NULL,
2254 hppa_frame_unwind_sniffer
2255 };
2256
2257 /* This is a generic fallback frame unwinder that kicks in if we fail all
2258 the other ones. Normally we would expect the stub and regular unwinder
2259 to work, but in some cases we might hit a function that just doesn't
2260 have any unwind information available. In this case we try to do
2261 unwinding solely based on code reading. This is obviously going to be
2262 slow, so only use this as a last resort. Currently this will only
2263 identify the stack and pc for the frame. */
2264
2265 static struct hppa_frame_cache *
2266 hppa_fallback_frame_cache (struct frame_info *this_frame, void **this_cache)
2267 {
2268 struct hppa_frame_cache *cache;
2269 unsigned int frame_size = 0;
2270 int found_rp = 0;
2271 CORE_ADDR start_pc;
2272
2273 if (hppa_debug)
2274 fprintf_unfiltered (gdb_stdlog,
2275 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2276 frame_relative_level (this_frame));
2277
2278 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2279 (*this_cache) = cache;
2280 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2281
2282 start_pc = get_frame_func (this_frame);
2283 if (start_pc)
2284 {
2285 CORE_ADDR cur_pc = get_frame_pc (this_frame);
2286 CORE_ADDR pc;
2287
2288 for (pc = start_pc; pc < cur_pc; pc += 4)
2289 {
2290 unsigned int insn;
2291
2292 insn = read_memory_unsigned_integer (pc, 4);
2293 frame_size += prologue_inst_adjust_sp (insn);
2294
2295 /* There are limited ways to store the return pointer into the
2296 stack. */
2297 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2298 {
2299 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2300 found_rp = 1;
2301 }
2302 else if (insn == 0x0fc212c1
2303 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2304 {
2305 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2306 found_rp = 1;
2307 }
2308 }
2309 }
2310
2311 if (hppa_debug)
2312 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2313 frame_size, found_rp);
2314
2315 cache->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2316 cache->base -= frame_size;
2317 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2318
2319 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2320 {
2321 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2322 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2323 cache->saved_regs[HPPA_RP_REGNUM];
2324 }
2325 else
2326 {
2327 ULONGEST rp;
2328 rp = get_frame_register_unsigned (this_frame, HPPA_RP_REGNUM);
2329 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2330 }
2331
2332 return cache;
2333 }
2334
2335 static void
2336 hppa_fallback_frame_this_id (struct frame_info *this_frame, void **this_cache,
2337 struct frame_id *this_id)
2338 {
2339 struct hppa_frame_cache *info =
2340 hppa_fallback_frame_cache (this_frame, this_cache);
2341
2342 (*this_id) = frame_id_build (info->base, get_frame_func (this_frame));
2343 }
2344
2345 static struct value *
2346 hppa_fallback_frame_prev_register (struct frame_info *this_frame,
2347 void **this_cache, int regnum)
2348 {
2349 struct hppa_frame_cache *info =
2350 hppa_fallback_frame_cache (this_frame, this_cache);
2351
2352 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2353 }
2354
2355 static const struct frame_unwind hppa_fallback_frame_unwind =
2356 {
2357 NORMAL_FRAME,
2358 hppa_fallback_frame_this_id,
2359 hppa_fallback_frame_prev_register,
2360 NULL,
2361 default_frame_sniffer
2362 };
2363
2364 /* Stub frames, used for all kinds of call stubs. */
2365 struct hppa_stub_unwind_cache
2366 {
2367 CORE_ADDR base;
2368 struct trad_frame_saved_reg *saved_regs;
2369 };
2370
2371 static struct hppa_stub_unwind_cache *
2372 hppa_stub_frame_unwind_cache (struct frame_info *this_frame,
2373 void **this_cache)
2374 {
2375 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2376 struct hppa_stub_unwind_cache *info;
2377 struct unwind_table_entry *u;
2378
2379 if (*this_cache)
2380 return *this_cache;
2381
2382 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2383 *this_cache = info;
2384 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
2385
2386 info->base = get_frame_register_unsigned (this_frame, HPPA_SP_REGNUM);
2387
2388 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2389 {
2390 /* HPUX uses export stubs in function calls; the export stub clobbers
2391 the return value of the caller, and, later restores it from the
2392 stack. */
2393 u = find_unwind_entry (get_frame_pc (this_frame));
2394
2395 if (u && u->stub_unwind.stub_type == EXPORT)
2396 {
2397 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2398
2399 return info;
2400 }
2401 }
2402
2403 /* By default we assume that stubs do not change the rp. */
2404 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2405
2406 return info;
2407 }
2408
2409 static void
2410 hppa_stub_frame_this_id (struct frame_info *this_frame,
2411 void **this_prologue_cache,
2412 struct frame_id *this_id)
2413 {
2414 struct hppa_stub_unwind_cache *info
2415 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2416
2417 if (info)
2418 *this_id = frame_id_build (info->base, get_frame_func (this_frame));
2419 else
2420 *this_id = null_frame_id;
2421 }
2422
2423 static struct value *
2424 hppa_stub_frame_prev_register (struct frame_info *this_frame,
2425 void **this_prologue_cache, int regnum)
2426 {
2427 struct hppa_stub_unwind_cache *info
2428 = hppa_stub_frame_unwind_cache (this_frame, this_prologue_cache);
2429
2430 if (info == NULL)
2431 error (_("Requesting registers from null frame."));
2432
2433 return hppa_frame_prev_register_helper (this_frame, info->saved_regs, regnum);
2434 }
2435
2436 static int
2437 hppa_stub_unwind_sniffer (const struct frame_unwind *self,
2438 struct frame_info *this_frame,
2439 void **this_cache)
2440 {
2441 CORE_ADDR pc = get_frame_address_in_block (this_frame);
2442 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2443 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2444
2445 if (pc == 0
2446 || (tdep->in_solib_call_trampoline != NULL
2447 && tdep->in_solib_call_trampoline (pc, NULL))
2448 || gdbarch_in_solib_return_trampoline (gdbarch, pc, NULL))
2449 return 1;
2450 return 0;
2451 }
2452
2453 static const struct frame_unwind hppa_stub_frame_unwind = {
2454 NORMAL_FRAME,
2455 hppa_stub_frame_this_id,
2456 hppa_stub_frame_prev_register,
2457 NULL,
2458 hppa_stub_unwind_sniffer
2459 };
2460
2461 static struct frame_id
2462 hppa_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2463 {
2464 return frame_id_build (get_frame_register_unsigned (this_frame,
2465 HPPA_SP_REGNUM),
2466 get_frame_pc (this_frame));
2467 }
2468
2469 CORE_ADDR
2470 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2471 {
2472 ULONGEST ipsw;
2473 CORE_ADDR pc;
2474
2475 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2476 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2477
2478 /* If the current instruction is nullified, then we are effectively
2479 still executing the previous instruction. Pretend we are still
2480 there. This is needed when single stepping; if the nullified
2481 instruction is on a different line, we don't want GDB to think
2482 we've stepped onto that line. */
2483 if (ipsw & 0x00200000)
2484 pc -= 4;
2485
2486 return pc & ~0x3;
2487 }
2488
2489 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2490 Return NULL if no such symbol was found. */
2491
2492 struct minimal_symbol *
2493 hppa_lookup_stub_minimal_symbol (const char *name,
2494 enum unwind_stub_types stub_type)
2495 {
2496 struct objfile *objfile;
2497 struct minimal_symbol *msym;
2498
2499 ALL_MSYMBOLS (objfile, msym)
2500 {
2501 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2502 {
2503 struct unwind_table_entry *u;
2504
2505 u = find_unwind_entry (SYMBOL_VALUE (msym));
2506 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2507 return msym;
2508 }
2509 }
2510
2511 return NULL;
2512 }
2513
2514 static void
2515 unwind_command (char *exp, int from_tty)
2516 {
2517 CORE_ADDR address;
2518 struct unwind_table_entry *u;
2519
2520 /* If we have an expression, evaluate it and use it as the address. */
2521
2522 if (exp != 0 && *exp != 0)
2523 address = parse_and_eval_address (exp);
2524 else
2525 return;
2526
2527 u = find_unwind_entry (address);
2528
2529 if (!u)
2530 {
2531 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2532 return;
2533 }
2534
2535 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2536
2537 printf_unfiltered ("\tregion_start = %s\n", hex_string (u->region_start));
2538 gdb_flush (gdb_stdout);
2539
2540 printf_unfiltered ("\tregion_end = %s\n", hex_string (u->region_end));
2541 gdb_flush (gdb_stdout);
2542
2543 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2544
2545 printf_unfiltered ("\n\tflags =");
2546 pif (Cannot_unwind);
2547 pif (Millicode);
2548 pif (Millicode_save_sr0);
2549 pif (Entry_SR);
2550 pif (Args_stored);
2551 pif (Variable_Frame);
2552 pif (Separate_Package_Body);
2553 pif (Frame_Extension_Millicode);
2554 pif (Stack_Overflow_Check);
2555 pif (Two_Instruction_SP_Increment);
2556 pif (sr4export);
2557 pif (cxx_info);
2558 pif (cxx_try_catch);
2559 pif (sched_entry_seq);
2560 pif (Save_SP);
2561 pif (Save_RP);
2562 pif (Save_MRP_in_frame);
2563 pif (save_r19);
2564 pif (Cleanup_defined);
2565 pif (MPE_XL_interrupt_marker);
2566 pif (HP_UX_interrupt_marker);
2567 pif (Large_frame);
2568 pif (alloca_frame);
2569
2570 putchar_unfiltered ('\n');
2571
2572 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2573
2574 pin (Region_description);
2575 pin (Entry_FR);
2576 pin (Entry_GR);
2577 pin (Total_frame_size);
2578
2579 if (u->stub_unwind.stub_type)
2580 {
2581 printf_unfiltered ("\tstub type = ");
2582 switch (u->stub_unwind.stub_type)
2583 {
2584 case LONG_BRANCH:
2585 printf_unfiltered ("long branch\n");
2586 break;
2587 case PARAMETER_RELOCATION:
2588 printf_unfiltered ("parameter relocation\n");
2589 break;
2590 case EXPORT:
2591 printf_unfiltered ("export\n");
2592 break;
2593 case IMPORT:
2594 printf_unfiltered ("import\n");
2595 break;
2596 case IMPORT_SHLIB:
2597 printf_unfiltered ("import shlib\n");
2598 break;
2599 default:
2600 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2601 }
2602 }
2603 }
2604
2605 /* Return the GDB type object for the "standard" data type of data in
2606 register REGNUM. */
2607
2608 static struct type *
2609 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2610 {
2611 if (regnum < HPPA_FP4_REGNUM)
2612 return builtin_type (gdbarch)->builtin_uint32;
2613 else
2614 return builtin_type (gdbarch)->builtin_float;
2615 }
2616
2617 static struct type *
2618 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2619 {
2620 if (regnum < HPPA64_FP4_REGNUM)
2621 return builtin_type (gdbarch)->builtin_uint64;
2622 else
2623 return builtin_type (gdbarch)->builtin_double;
2624 }
2625
2626 /* Return non-zero if REGNUM is not a register available to the user
2627 through ptrace/ttrace. */
2628
2629 static int
2630 hppa32_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2631 {
2632 return (regnum == 0
2633 || regnum == HPPA_PCSQ_HEAD_REGNUM
2634 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2635 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2636 }
2637
2638 static int
2639 hppa32_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2640 {
2641 /* cr26 and cr27 are readable (but not writable) from userspace. */
2642 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2643 return 0;
2644 else
2645 return hppa32_cannot_store_register (gdbarch, regnum);
2646 }
2647
2648 static int
2649 hppa64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
2650 {
2651 return (regnum == 0
2652 || regnum == HPPA_PCSQ_HEAD_REGNUM
2653 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2654 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2655 }
2656
2657 static int
2658 hppa64_cannot_fetch_register (struct gdbarch *gdbarch, int regnum)
2659 {
2660 /* cr26 and cr27 are readable (but not writable) from userspace. */
2661 if (regnum == HPPA_CR26_REGNUM || regnum == HPPA_CR27_REGNUM)
2662 return 0;
2663 else
2664 return hppa64_cannot_store_register (gdbarch, regnum);
2665 }
2666
2667 static CORE_ADDR
2668 hppa_smash_text_address (struct gdbarch *gdbarch, CORE_ADDR addr)
2669 {
2670 /* The low two bits of the PC on the PA contain the privilege level.
2671 Some genius implementing a (non-GCC) compiler apparently decided
2672 this means that "addresses" in a text section therefore include a
2673 privilege level, and thus symbol tables should contain these bits.
2674 This seems like a bonehead thing to do--anyway, it seems to work
2675 for our purposes to just ignore those bits. */
2676
2677 return (addr &= ~0x3);
2678 }
2679
2680 /* Get the ARGIth function argument for the current function. */
2681
2682 static CORE_ADDR
2683 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2684 struct type *type)
2685 {
2686 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2687 }
2688
2689 static void
2690 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2691 int regnum, gdb_byte *buf)
2692 {
2693 ULONGEST tmp;
2694
2695 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2696 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2697 tmp &= ~0x3;
2698 store_unsigned_integer (buf, sizeof tmp, tmp);
2699 }
2700
2701 static CORE_ADDR
2702 hppa_find_global_pointer (struct gdbarch *gdbarch, struct value *function)
2703 {
2704 return 0;
2705 }
2706
2707 struct value *
2708 hppa_frame_prev_register_helper (struct frame_info *this_frame,
2709 struct trad_frame_saved_reg saved_regs[],
2710 int regnum)
2711 {
2712 struct gdbarch *arch = get_frame_arch (this_frame);
2713
2714 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2715 {
2716 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2717 CORE_ADDR pc;
2718 struct value *pcoq_val =
2719 trad_frame_get_prev_register (this_frame, saved_regs,
2720 HPPA_PCOQ_HEAD_REGNUM);
2721
2722 pc = extract_unsigned_integer (value_contents_all (pcoq_val), size);
2723 return frame_unwind_got_constant (this_frame, regnum, pc + 4);
2724 }
2725
2726 /* Make sure the "flags" register is zero in all unwound frames.
2727 The "flags" registers is a HP-UX specific wart, and only the code
2728 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2729 with it here. This shouldn't affect other systems since those
2730 should provide zero for the "flags" register anyway. */
2731 if (regnum == HPPA_FLAGS_REGNUM)
2732 return frame_unwind_got_constant (this_frame, regnum, 0);
2733
2734 return trad_frame_get_prev_register (this_frame, saved_regs, regnum);
2735 }
2736 \f
2737
2738 /* An instruction to match. */
2739 struct insn_pattern
2740 {
2741 unsigned int data; /* See if it matches this.... */
2742 unsigned int mask; /* ... with this mask. */
2743 };
2744
2745 /* See bfd/elf32-hppa.c */
2746 static struct insn_pattern hppa_long_branch_stub[] = {
2747 /* ldil LR'xxx,%r1 */
2748 { 0x20200000, 0xffe00000 },
2749 /* be,n RR'xxx(%sr4,%r1) */
2750 { 0xe0202002, 0xffe02002 },
2751 { 0, 0 }
2752 };
2753
2754 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2755 /* b,l .+8, %r1 */
2756 { 0xe8200000, 0xffe00000 },
2757 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2758 { 0x28200000, 0xffe00000 },
2759 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2760 { 0xe0202002, 0xffe02002 },
2761 { 0, 0 }
2762 };
2763
2764 static struct insn_pattern hppa_import_stub[] = {
2765 /* addil LR'xxx, %dp */
2766 { 0x2b600000, 0xffe00000 },
2767 /* ldw RR'xxx(%r1), %r21 */
2768 { 0x48350000, 0xffffb000 },
2769 /* bv %r0(%r21) */
2770 { 0xeaa0c000, 0xffffffff },
2771 /* ldw RR'xxx+4(%r1), %r19 */
2772 { 0x48330000, 0xffffb000 },
2773 { 0, 0 }
2774 };
2775
2776 static struct insn_pattern hppa_import_pic_stub[] = {
2777 /* addil LR'xxx,%r19 */
2778 { 0x2a600000, 0xffe00000 },
2779 /* ldw RR'xxx(%r1),%r21 */
2780 { 0x48350000, 0xffffb000 },
2781 /* bv %r0(%r21) */
2782 { 0xeaa0c000, 0xffffffff },
2783 /* ldw RR'xxx+4(%r1),%r19 */
2784 { 0x48330000, 0xffffb000 },
2785 { 0, 0 },
2786 };
2787
2788 static struct insn_pattern hppa_plt_stub[] = {
2789 /* b,l 1b, %r20 - 1b is 3 insns before here */
2790 { 0xea9f1fdd, 0xffffffff },
2791 /* depi 0,31,2,%r20 */
2792 { 0xd6801c1e, 0xffffffff },
2793 { 0, 0 }
2794 };
2795
2796 static struct insn_pattern hppa_sigtramp[] = {
2797 /* ldi 0, %r25 or ldi 1, %r25 */
2798 { 0x34190000, 0xfffffffd },
2799 /* ldi __NR_rt_sigreturn, %r20 */
2800 { 0x3414015a, 0xffffffff },
2801 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2802 { 0xe4008200, 0xffffffff },
2803 /* nop */
2804 { 0x08000240, 0xffffffff },
2805 { 0, 0 }
2806 };
2807
2808 /* Maximum number of instructions on the patterns above. */
2809 #define HPPA_MAX_INSN_PATTERN_LEN 4
2810
2811 /* Return non-zero if the instructions at PC match the series
2812 described in PATTERN, or zero otherwise. PATTERN is an array of
2813 'struct insn_pattern' objects, terminated by an entry whose mask is
2814 zero.
2815
2816 When the match is successful, fill INSN[i] with what PATTERN[i]
2817 matched. */
2818
2819 static int
2820 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2821 unsigned int *insn)
2822 {
2823 CORE_ADDR npc = pc;
2824 int i;
2825
2826 for (i = 0; pattern[i].mask; i++)
2827 {
2828 gdb_byte buf[HPPA_INSN_SIZE];
2829
2830 target_read_memory (npc, buf, HPPA_INSN_SIZE);
2831 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2832 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2833 npc += 4;
2834 else
2835 return 0;
2836 }
2837
2838 return 1;
2839 }
2840
2841 /* This relaxed version of the insstruction matcher allows us to match
2842 from somewhere inside the pattern, by looking backwards in the
2843 instruction scheme. */
2844
2845 static int
2846 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2847 unsigned int *insn)
2848 {
2849 int offset, len = 0;
2850
2851 while (pattern[len].mask)
2852 len++;
2853
2854 for (offset = 0; offset < len; offset++)
2855 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2856 return 1;
2857
2858 return 0;
2859 }
2860
2861 static int
2862 hppa_in_dyncall (CORE_ADDR pc)
2863 {
2864 struct unwind_table_entry *u;
2865
2866 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2867 if (!u)
2868 return 0;
2869
2870 return (pc >= u->region_start && pc <= u->region_end);
2871 }
2872
2873 int
2874 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2875 {
2876 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2877 struct unwind_table_entry *u;
2878
2879 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2880 return 1;
2881
2882 /* The GNU toolchain produces linker stubs without unwind
2883 information. Since the pattern matching for linker stubs can be
2884 quite slow, so bail out if we do have an unwind entry. */
2885
2886 u = find_unwind_entry (pc);
2887 if (u != NULL)
2888 return 0;
2889
2890 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2891 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2892 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2893 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2894 }
2895
2896 /* This code skips several kind of "trampolines" used on PA-RISC
2897 systems: $$dyncall, import stubs and PLT stubs. */
2898
2899 CORE_ADDR
2900 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2901 {
2902 struct gdbarch *gdbarch = get_frame_arch (frame);
2903 struct type *func_ptr_type = builtin_type (gdbarch)->builtin_func_ptr;
2904
2905 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2906 int dp_rel;
2907
2908 /* $$dyncall handles both PLABELs and direct addresses. */
2909 if (hppa_in_dyncall (pc))
2910 {
2911 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2912
2913 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2914 if (pc & 0x2)
2915 pc = read_memory_typed_address (pc & ~0x3, func_ptr_type);
2916
2917 return pc;
2918 }
2919
2920 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2921 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2922 {
2923 /* Extract the target address from the addil/ldw sequence. */
2924 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2925
2926 if (dp_rel)
2927 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2928 else
2929 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2930
2931 /* fallthrough */
2932 }
2933
2934 if (in_plt_section (pc, NULL))
2935 {
2936 pc = read_memory_typed_address (pc, func_ptr_type);
2937
2938 /* If the PLT slot has not yet been resolved, the target will be
2939 the PLT stub. */
2940 if (in_plt_section (pc, NULL))
2941 {
2942 /* Sanity check: are we pointing to the PLT stub? */
2943 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2944 {
2945 warning (_("Cannot resolve PLT stub at %s."),
2946 paddress (gdbarch, pc));
2947 return 0;
2948 }
2949
2950 /* This should point to the fixup routine. */
2951 pc = read_memory_typed_address (pc + 8, func_ptr_type);
2952 }
2953 }
2954
2955 return pc;
2956 }
2957 \f
2958
2959 /* Here is a table of C type sizes on hppa with various compiles
2960 and options. I measured this on PA 9000/800 with HP-UX 11.11
2961 and these compilers:
2962
2963 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2964 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2965 /opt/aCC/bin/aCC B3910B A.03.45
2966 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2967
2968 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2969 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2970 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2971 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2972 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2973 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2974 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2975 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2976
2977 Each line is:
2978
2979 compiler and options
2980 char, short, int, long, long long
2981 float, double, long double
2982 char *, void (*)()
2983
2984 So all these compilers use either ILP32 or LP64 model.
2985 TODO: gcc has more options so it needs more investigation.
2986
2987 For floating point types, see:
2988
2989 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2990 HP-UX floating-point guide, hpux 11.00
2991
2992 -- chastain 2003-12-18 */
2993
2994 static struct gdbarch *
2995 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2996 {
2997 struct gdbarch_tdep *tdep;
2998 struct gdbarch *gdbarch;
2999
3000 /* Try to determine the ABI of the object we are loading. */
3001 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3002 {
3003 /* If it's a SOM file, assume it's HP/UX SOM. */
3004 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3005 info.osabi = GDB_OSABI_HPUX_SOM;
3006 }
3007
3008 /* find a candidate among the list of pre-declared architectures. */
3009 arches = gdbarch_list_lookup_by_info (arches, &info);
3010 if (arches != NULL)
3011 return (arches->gdbarch);
3012
3013 /* If none found, then allocate and initialize one. */
3014 tdep = XZALLOC (struct gdbarch_tdep);
3015 gdbarch = gdbarch_alloc (&info, tdep);
3016
3017 /* Determine from the bfd_arch_info structure if we are dealing with
3018 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3019 then default to a 32bit machine. */
3020 if (info.bfd_arch_info != NULL)
3021 tdep->bytes_per_address =
3022 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3023 else
3024 tdep->bytes_per_address = 4;
3025
3026 tdep->find_global_pointer = hppa_find_global_pointer;
3027
3028 /* Some parts of the gdbarch vector depend on whether we are running
3029 on a 32 bits or 64 bits target. */
3030 switch (tdep->bytes_per_address)
3031 {
3032 case 4:
3033 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3034 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3035 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3036 set_gdbarch_cannot_store_register (gdbarch,
3037 hppa32_cannot_store_register);
3038 set_gdbarch_cannot_fetch_register (gdbarch,
3039 hppa32_cannot_fetch_register);
3040 break;
3041 case 8:
3042 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3043 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3044 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3045 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3046 set_gdbarch_cannot_store_register (gdbarch,
3047 hppa64_cannot_store_register);
3048 set_gdbarch_cannot_fetch_register (gdbarch,
3049 hppa64_cannot_fetch_register);
3050 break;
3051 default:
3052 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3053 tdep->bytes_per_address);
3054 }
3055
3056 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3057 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3058
3059 /* The following gdbarch vector elements are the same in both ILP32
3060 and LP64, but might show differences some day. */
3061 set_gdbarch_long_long_bit (gdbarch, 64);
3062 set_gdbarch_long_double_bit (gdbarch, 128);
3063 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3064
3065 /* The following gdbarch vector elements do not depend on the address
3066 size, or in any other gdbarch element previously set. */
3067 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3068 set_gdbarch_in_function_epilogue_p (gdbarch,
3069 hppa_in_function_epilogue_p);
3070 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3071 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3072 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3073 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3074 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3075 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3076 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3077 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3078
3079 /* Helper for function argument information. */
3080 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3081
3082 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3083
3084 /* When a hardware watchpoint triggers, we'll move the inferior past
3085 it by removing all eventpoints; stepping past the instruction
3086 that caused the trigger; reinserting eventpoints; and checking
3087 whether any watched location changed. */
3088 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3089
3090 /* Inferior function call methods. */
3091 switch (tdep->bytes_per_address)
3092 {
3093 case 4:
3094 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3095 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3096 set_gdbarch_convert_from_func_ptr_addr
3097 (gdbarch, hppa32_convert_from_func_ptr_addr);
3098 break;
3099 case 8:
3100 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3101 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3102 break;
3103 default:
3104 internal_error (__FILE__, __LINE__, _("bad switch"));
3105 }
3106
3107 /* Struct return methods. */
3108 switch (tdep->bytes_per_address)
3109 {
3110 case 4:
3111 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3112 break;
3113 case 8:
3114 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3115 break;
3116 default:
3117 internal_error (__FILE__, __LINE__, _("bad switch"));
3118 }
3119
3120 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3121 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3122
3123 /* Frame unwind methods. */
3124 set_gdbarch_dummy_id (gdbarch, hppa_dummy_id);
3125 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3126
3127 /* Hook in ABI-specific overrides, if they have been registered. */
3128 gdbarch_init_osabi (info, gdbarch);
3129
3130 /* Hook in the default unwinders. */
3131 frame_unwind_append_unwinder (gdbarch, &hppa_stub_frame_unwind);
3132 frame_unwind_append_unwinder (gdbarch, &hppa_frame_unwind);
3133 frame_unwind_append_unwinder (gdbarch, &hppa_fallback_frame_unwind);
3134
3135 return gdbarch;
3136 }
3137
3138 static void
3139 hppa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3140 {
3141 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3142
3143 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3144 tdep->bytes_per_address);
3145 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3146 }
3147
3148 /* Provide a prototype to silence -Wmissing-prototypes. */
3149 extern initialize_file_ftype _initialize_hppa_tdep;
3150
3151 void
3152 _initialize_hppa_tdep (void)
3153 {
3154 struct cmd_list_element *c;
3155
3156 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3157
3158 hppa_objfile_priv_data = register_objfile_data ();
3159
3160 add_cmd ("unwind", class_maintenance, unwind_command,
3161 _("Print unwind table entry at given address."),
3162 &maintenanceprintlist);
3163
3164 /* Debug this files internals. */
3165 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3166 Set whether hppa target specific debugging information should be displayed."),
3167 _("\
3168 Show whether hppa target specific debugging information is displayed."), _("\
3169 This flag controls whether hppa target specific debugging information is\n\
3170 displayed. This information is particularly useful for debugging frame\n\
3171 unwinding problems."),
3172 NULL,
3173 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3174 &setdebuglist, &showdebuglist);
3175 }
This page took 0.094874 seconds and 4 git commands to generate.