* inftarg.c (child_thread_alive): New function to see if a
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <signal.h>
38
39 #ifdef COFF_ENCAPSULATE
40 #include "a.out.encap.h"
41 #else
42 #endif
43 #ifndef N_SET_MAGIC
44 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
45 #endif
46
47 /*#include <sys/user.h> After a.out.h */
48 #include <sys/file.h>
49 #include <sys/stat.h>
50 #include "wait.h"
51
52 #include "gdbcore.h"
53 #include "gdbcmd.h"
54 #include "target.h"
55 #include "symfile.h"
56 #include "objfiles.h"
57
58 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
59
60 static int hppa_alignof PARAMS ((struct type *));
61
62 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
63
64 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
65
66 static int is_branch PARAMS ((unsigned long));
67
68 static int inst_saves_gr PARAMS ((unsigned long));
69
70 static int inst_saves_fr PARAMS ((unsigned long));
71
72 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
73
74 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
75
76 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
77 const struct unwind_table_entry *));
78
79 static void read_unwind_info PARAMS ((struct objfile *));
80
81 static void internalize_unwinds PARAMS ((struct objfile *,
82 struct unwind_table_entry *,
83 asection *, unsigned int,
84 unsigned int, CORE_ADDR));
85 static void pa_print_registers PARAMS ((char *, int, int));
86 static void pa_print_fp_reg PARAMS ((int));
87
88 \f
89 /* Routines to extract various sized constants out of hppa
90 instructions. */
91
92 /* This assumes that no garbage lies outside of the lower bits of
93 value. */
94
95 int
96 sign_extend (val, bits)
97 unsigned val, bits;
98 {
99 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
100 }
101
102 /* For many immediate values the sign bit is the low bit! */
103
104 int
105 low_sign_extend (val, bits)
106 unsigned val, bits;
107 {
108 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
109 }
110 /* extract the immediate field from a ld{bhw}s instruction */
111
112 unsigned
113 get_field (val, from, to)
114 unsigned val, from, to;
115 {
116 val = val >> 31 - to;
117 return val & ((1 << 32 - from) - 1);
118 }
119
120 unsigned
121 set_field (val, from, to, new_val)
122 unsigned *val, from, to;
123 {
124 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
125 return *val = *val & mask | (new_val << (31 - from));
126 }
127
128 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
129
130 extract_3 (word)
131 unsigned word;
132 {
133 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
134 }
135
136 extract_5_load (word)
137 unsigned word;
138 {
139 return low_sign_extend (word >> 16 & MASK_5, 5);
140 }
141
142 /* extract the immediate field from a st{bhw}s instruction */
143
144 int
145 extract_5_store (word)
146 unsigned word;
147 {
148 return low_sign_extend (word & MASK_5, 5);
149 }
150
151 /* extract the immediate field from a break instruction */
152
153 unsigned
154 extract_5r_store (word)
155 unsigned word;
156 {
157 return (word & MASK_5);
158 }
159
160 /* extract the immediate field from a {sr}sm instruction */
161
162 unsigned
163 extract_5R_store (word)
164 unsigned word;
165 {
166 return (word >> 16 & MASK_5);
167 }
168
169 /* extract an 11 bit immediate field */
170
171 int
172 extract_11 (word)
173 unsigned word;
174 {
175 return low_sign_extend (word & MASK_11, 11);
176 }
177
178 /* extract a 14 bit immediate field */
179
180 int
181 extract_14 (word)
182 unsigned word;
183 {
184 return low_sign_extend (word & MASK_14, 14);
185 }
186
187 /* deposit a 14 bit constant in a word */
188
189 unsigned
190 deposit_14 (opnd, word)
191 int opnd;
192 unsigned word;
193 {
194 unsigned sign = (opnd < 0 ? 1 : 0);
195
196 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
197 }
198
199 /* extract a 21 bit constant */
200
201 int
202 extract_21 (word)
203 unsigned word;
204 {
205 int val;
206
207 word &= MASK_21;
208 word <<= 11;
209 val = GET_FIELD (word, 20, 20);
210 val <<= 11;
211 val |= GET_FIELD (word, 9, 19);
212 val <<= 2;
213 val |= GET_FIELD (word, 5, 6);
214 val <<= 5;
215 val |= GET_FIELD (word, 0, 4);
216 val <<= 2;
217 val |= GET_FIELD (word, 7, 8);
218 return sign_extend (val, 21) << 11;
219 }
220
221 /* deposit a 21 bit constant in a word. Although 21 bit constants are
222 usually the top 21 bits of a 32 bit constant, we assume that only
223 the low 21 bits of opnd are relevant */
224
225 unsigned
226 deposit_21 (opnd, word)
227 unsigned opnd, word;
228 {
229 unsigned val = 0;
230
231 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
232 val <<= 2;
233 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
234 val <<= 2;
235 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
236 val <<= 11;
237 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
238 val <<= 1;
239 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
240 return word | val;
241 }
242
243 /* extract a 12 bit constant from branch instructions */
244
245 int
246 extract_12 (word)
247 unsigned word;
248 {
249 return sign_extend (GET_FIELD (word, 19, 28) |
250 GET_FIELD (word, 29, 29) << 10 |
251 (word & 0x1) << 11, 12) << 2;
252 }
253
254 /* Deposit a 17 bit constant in an instruction (like bl). */
255
256 unsigned int
257 deposit_17 (opnd, word)
258 unsigned opnd, word;
259 {
260 word |= GET_FIELD (opnd, 15 + 0, 15 + 0); /* w */
261 word |= GET_FIELD (opnd, 15 + 1, 15 + 5) << 16; /* w1 */
262 word |= GET_FIELD (opnd, 15 + 6, 15 + 6) << 2; /* w2[10] */
263 word |= GET_FIELD (opnd, 15 + 7, 15 + 16) << 3; /* w2[0..9] */
264
265 return word;
266 }
267
268 /* extract a 17 bit constant from branch instructions, returning the
269 19 bit signed value. */
270
271 int
272 extract_17 (word)
273 unsigned word;
274 {
275 return sign_extend (GET_FIELD (word, 19, 28) |
276 GET_FIELD (word, 29, 29) << 10 |
277 GET_FIELD (word, 11, 15) << 11 |
278 (word & 0x1) << 16, 17) << 2;
279 }
280 \f
281
282 /* Compare the start address for two unwind entries returning 1 if
283 the first address is larger than the second, -1 if the second is
284 larger than the first, and zero if they are equal. */
285
286 static int
287 compare_unwind_entries (a, b)
288 const struct unwind_table_entry *a;
289 const struct unwind_table_entry *b;
290 {
291 if (a->region_start > b->region_start)
292 return 1;
293 else if (a->region_start < b->region_start)
294 return -1;
295 else
296 return 0;
297 }
298
299 static void
300 internalize_unwinds (objfile, table, section, entries, size, text_offset)
301 struct objfile *objfile;
302 struct unwind_table_entry *table;
303 asection *section;
304 unsigned int entries, size;
305 CORE_ADDR text_offset;
306 {
307 /* We will read the unwind entries into temporary memory, then
308 fill in the actual unwind table. */
309 if (size > 0)
310 {
311 unsigned long tmp;
312 unsigned i;
313 char *buf = alloca (size);
314
315 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
316
317 /* Now internalize the information being careful to handle host/target
318 endian issues. */
319 for (i = 0; i < entries; i++)
320 {
321 table[i].region_start = bfd_get_32 (objfile->obfd,
322 (bfd_byte *)buf);
323 table[i].region_start += text_offset;
324 buf += 4;
325 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
326 table[i].region_end += text_offset;
327 buf += 4;
328 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
329 buf += 4;
330 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
331 table[i].Millicode = (tmp >> 30) & 0x1;
332 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
333 table[i].Region_description = (tmp >> 27) & 0x3;
334 table[i].reserved1 = (tmp >> 26) & 0x1;
335 table[i].Entry_SR = (tmp >> 25) & 0x1;
336 table[i].Entry_FR = (tmp >> 21) & 0xf;
337 table[i].Entry_GR = (tmp >> 16) & 0x1f;
338 table[i].Args_stored = (tmp >> 15) & 0x1;
339 table[i].Variable_Frame = (tmp >> 14) & 0x1;
340 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
341 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
342 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
343 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
344 table[i].Ada_Region = (tmp >> 9) & 0x1;
345 table[i].reserved2 = (tmp >> 5) & 0xf;
346 table[i].Save_SP = (tmp >> 4) & 0x1;
347 table[i].Save_RP = (tmp >> 3) & 0x1;
348 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
349 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
350 table[i].Cleanup_defined = tmp & 0x1;
351 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
352 buf += 4;
353 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
354 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
355 table[i].Large_frame = (tmp >> 29) & 0x1;
356 table[i].reserved4 = (tmp >> 27) & 0x3;
357 table[i].Total_frame_size = tmp & 0x7ffffff;
358 }
359 }
360 }
361
362 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
363 the object file. This info is used mainly by find_unwind_entry() to find
364 out the stack frame size and frame pointer used by procedures. We put
365 everything on the psymbol obstack in the objfile so that it automatically
366 gets freed when the objfile is destroyed. */
367
368 static void
369 read_unwind_info (objfile)
370 struct objfile *objfile;
371 {
372 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
373 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
374 unsigned index, unwind_entries, elf_unwind_entries;
375 unsigned stub_entries, total_entries;
376 CORE_ADDR text_offset;
377 struct obj_unwind_info *ui;
378
379 text_offset = ANOFFSET (objfile->section_offsets, 0);
380 ui = (struct obj_unwind_info *)obstack_alloc (&objfile->psymbol_obstack,
381 sizeof (struct obj_unwind_info));
382
383 ui->table = NULL;
384 ui->cache = NULL;
385 ui->last = -1;
386
387 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
388 section in ELF at the moment. */
389 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
390 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
391 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
392
393 /* Get sizes and unwind counts for all sections. */
394 if (unwind_sec)
395 {
396 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
397 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
398 }
399 else
400 {
401 unwind_size = 0;
402 unwind_entries = 0;
403 }
404
405 if (elf_unwind_sec)
406 {
407 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
408 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
409 }
410 else
411 {
412 elf_unwind_size = 0;
413 elf_unwind_entries = 0;
414 }
415
416 if (stub_unwind_sec)
417 {
418 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
419 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
420 }
421 else
422 {
423 stub_unwind_size = 0;
424 stub_entries = 0;
425 }
426
427 /* Compute total number of unwind entries and their total size. */
428 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
429 total_size = total_entries * sizeof (struct unwind_table_entry);
430
431 /* Allocate memory for the unwind table. */
432 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
433 ui->last = total_entries - 1;
434
435 /* Internalize the standard unwind entries. */
436 index = 0;
437 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
438 unwind_entries, unwind_size, text_offset);
439 index += unwind_entries;
440 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
441 elf_unwind_entries, elf_unwind_size, text_offset);
442 index += elf_unwind_entries;
443
444 /* Now internalize the stub unwind entries. */
445 if (stub_unwind_size > 0)
446 {
447 unsigned int i;
448 char *buf = alloca (stub_unwind_size);
449
450 /* Read in the stub unwind entries. */
451 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
452 0, stub_unwind_size);
453
454 /* Now convert them into regular unwind entries. */
455 for (i = 0; i < stub_entries; i++, index++)
456 {
457 /* Clear out the next unwind entry. */
458 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
459
460 /* Convert offset & size into region_start and region_end.
461 Stuff away the stub type into "reserved" fields. */
462 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
463 (bfd_byte *) buf);
464 ui->table[index].region_start += text_offset;
465 buf += 4;
466 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
467 (bfd_byte *) buf);
468 buf += 2;
469 ui->table[index].region_end
470 = ui->table[index].region_start + 4 *
471 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
472 buf += 2;
473 }
474
475 }
476
477 /* Unwind table needs to be kept sorted. */
478 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
479 compare_unwind_entries);
480
481 /* Keep a pointer to the unwind information. */
482 objfile->obj_private = (PTR) ui;
483 }
484
485 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
486 of the objfiles seeking the unwind table entry for this PC. Each objfile
487 contains a sorted list of struct unwind_table_entry. Since we do a binary
488 search of the unwind tables, we depend upon them to be sorted. */
489
490 static struct unwind_table_entry *
491 find_unwind_entry(pc)
492 CORE_ADDR pc;
493 {
494 int first, middle, last;
495 struct objfile *objfile;
496
497 ALL_OBJFILES (objfile)
498 {
499 struct obj_unwind_info *ui;
500
501 ui = OBJ_UNWIND_INFO (objfile);
502
503 if (!ui)
504 {
505 read_unwind_info (objfile);
506 ui = OBJ_UNWIND_INFO (objfile);
507 }
508
509 /* First, check the cache */
510
511 if (ui->cache
512 && pc >= ui->cache->region_start
513 && pc <= ui->cache->region_end)
514 return ui->cache;
515
516 /* Not in the cache, do a binary search */
517
518 first = 0;
519 last = ui->last;
520
521 while (first <= last)
522 {
523 middle = (first + last) / 2;
524 if (pc >= ui->table[middle].region_start
525 && pc <= ui->table[middle].region_end)
526 {
527 ui->cache = &ui->table[middle];
528 return &ui->table[middle];
529 }
530
531 if (pc < ui->table[middle].region_start)
532 last = middle - 1;
533 else
534 first = middle + 1;
535 }
536 } /* ALL_OBJFILES() */
537 return NULL;
538 }
539
540 /* Return the adjustment necessary to make for addresses on the stack
541 as presented by hpread.c.
542
543 This is necessary because of the stack direction on the PA and the
544 bizarre way in which someone (?) decided they wanted to handle
545 frame pointerless code in GDB. */
546 int
547 hpread_adjust_stack_address (func_addr)
548 CORE_ADDR func_addr;
549 {
550 struct unwind_table_entry *u;
551
552 u = find_unwind_entry (func_addr);
553 if (!u)
554 return 0;
555 else
556 return u->Total_frame_size << 3;
557 }
558
559 /* Called to determine if PC is in an interrupt handler of some
560 kind. */
561
562 static int
563 pc_in_interrupt_handler (pc)
564 CORE_ADDR pc;
565 {
566 struct unwind_table_entry *u;
567 struct minimal_symbol *msym_us;
568
569 u = find_unwind_entry (pc);
570 if (!u)
571 return 0;
572
573 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
574 its frame isn't a pure interrupt frame. Deal with this. */
575 msym_us = lookup_minimal_symbol_by_pc (pc);
576
577 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
578 }
579
580 /* Called when no unwind descriptor was found for PC. Returns 1 if it
581 appears that PC is in a linker stub. */
582
583 static int
584 pc_in_linker_stub (pc)
585 CORE_ADDR pc;
586 {
587 int found_magic_instruction = 0;
588 int i;
589 char buf[4];
590
591 /* If unable to read memory, assume pc is not in a linker stub. */
592 if (target_read_memory (pc, buf, 4) != 0)
593 return 0;
594
595 /* We are looking for something like
596
597 ; $$dyncall jams RP into this special spot in the frame (RP')
598 ; before calling the "call stub"
599 ldw -18(sp),rp
600
601 ldsid (rp),r1 ; Get space associated with RP into r1
602 mtsp r1,sp ; Move it into space register 0
603 be,n 0(sr0),rp) ; back to your regularly scheduled program
604 */
605
606 /* Maximum known linker stub size is 4 instructions. Search forward
607 from the given PC, then backward. */
608 for (i = 0; i < 4; i++)
609 {
610 /* If we hit something with an unwind, stop searching this direction. */
611
612 if (find_unwind_entry (pc + i * 4) != 0)
613 break;
614
615 /* Check for ldsid (rp),r1 which is the magic instruction for a
616 return from a cross-space function call. */
617 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
618 {
619 found_magic_instruction = 1;
620 break;
621 }
622 /* Add code to handle long call/branch and argument relocation stubs
623 here. */
624 }
625
626 if (found_magic_instruction != 0)
627 return 1;
628
629 /* Now look backward. */
630 for (i = 0; i < 4; i++)
631 {
632 /* If we hit something with an unwind, stop searching this direction. */
633
634 if (find_unwind_entry (pc - i * 4) != 0)
635 break;
636
637 /* Check for ldsid (rp),r1 which is the magic instruction for a
638 return from a cross-space function call. */
639 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
640 {
641 found_magic_instruction = 1;
642 break;
643 }
644 /* Add code to handle long call/branch and argument relocation stubs
645 here. */
646 }
647 return found_magic_instruction;
648 }
649
650 static int
651 find_return_regnum(pc)
652 CORE_ADDR pc;
653 {
654 struct unwind_table_entry *u;
655
656 u = find_unwind_entry (pc);
657
658 if (!u)
659 return RP_REGNUM;
660
661 if (u->Millicode)
662 return 31;
663
664 return RP_REGNUM;
665 }
666
667 /* Return size of frame, or -1 if we should use a frame pointer. */
668 int
669 find_proc_framesize (pc)
670 CORE_ADDR pc;
671 {
672 struct unwind_table_entry *u;
673 struct minimal_symbol *msym_us;
674
675 u = find_unwind_entry (pc);
676
677 if (!u)
678 {
679 if (pc_in_linker_stub (pc))
680 /* Linker stubs have a zero size frame. */
681 return 0;
682 else
683 return -1;
684 }
685
686 msym_us = lookup_minimal_symbol_by_pc (pc);
687
688 /* If Save_SP is set, and we're not in an interrupt or signal caller,
689 then we have a frame pointer. Use it. */
690 if (u->Save_SP && !pc_in_interrupt_handler (pc)
691 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
692 return -1;
693
694 return u->Total_frame_size << 3;
695 }
696
697 /* Return offset from sp at which rp is saved, or 0 if not saved. */
698 static int rp_saved PARAMS ((CORE_ADDR));
699
700 static int
701 rp_saved (pc)
702 CORE_ADDR pc;
703 {
704 struct unwind_table_entry *u;
705
706 u = find_unwind_entry (pc);
707
708 if (!u)
709 {
710 if (pc_in_linker_stub (pc))
711 /* This is the so-called RP'. */
712 return -24;
713 else
714 return 0;
715 }
716
717 if (u->Save_RP)
718 return -20;
719 else if (u->stub_type != 0)
720 {
721 switch (u->stub_type)
722 {
723 case EXPORT:
724 case IMPORT:
725 return -24;
726 case PARAMETER_RELOCATION:
727 return -8;
728 default:
729 return 0;
730 }
731 }
732 else
733 return 0;
734 }
735 \f
736 int
737 frameless_function_invocation (frame)
738 struct frame_info *frame;
739 {
740 struct unwind_table_entry *u;
741
742 u = find_unwind_entry (frame->pc);
743
744 if (u == 0)
745 return 0;
746
747 return (u->Total_frame_size == 0 && u->stub_type == 0);
748 }
749
750 CORE_ADDR
751 saved_pc_after_call (frame)
752 struct frame_info *frame;
753 {
754 int ret_regnum;
755 CORE_ADDR pc;
756 struct unwind_table_entry *u;
757
758 ret_regnum = find_return_regnum (get_frame_pc (frame));
759 pc = read_register (ret_regnum) & ~0x3;
760
761 /* If PC is in a linker stub, then we need to dig the address
762 the stub will return to out of the stack. */
763 u = find_unwind_entry (pc);
764 if (u && u->stub_type != 0)
765 return frame_saved_pc (frame);
766 else
767 return pc;
768 }
769 \f
770 CORE_ADDR
771 frame_saved_pc (frame)
772 struct frame_info *frame;
773 {
774 CORE_ADDR pc = get_frame_pc (frame);
775 struct unwind_table_entry *u;
776
777 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
778 at the base of the frame in an interrupt handler. Registers within
779 are saved in the exact same order as GDB numbers registers. How
780 convienent. */
781 if (pc_in_interrupt_handler (pc))
782 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
783
784 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
785 /* Deal with signal handler caller frames too. */
786 if (frame->signal_handler_caller)
787 {
788 CORE_ADDR rp;
789 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
790 return rp & ~0x3;
791 }
792 #endif
793
794 if (frameless_function_invocation (frame))
795 {
796 int ret_regnum;
797
798 ret_regnum = find_return_regnum (pc);
799
800 /* If the next frame is an interrupt frame or a signal
801 handler caller, then we need to look in the saved
802 register area to get the return pointer (the values
803 in the registers may not correspond to anything useful). */
804 if (frame->next
805 && (frame->next->signal_handler_caller
806 || pc_in_interrupt_handler (frame->next->pc)))
807 {
808 struct frame_saved_regs saved_regs;
809
810 get_frame_saved_regs (frame->next, &saved_regs);
811 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
812 {
813 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
814
815 /* Syscalls are really two frames. The syscall stub itself
816 with a return pointer in %rp and the kernel call with
817 a return pointer in %r31. We return the %rp variant
818 if %r31 is the same as frame->pc. */
819 if (pc == frame->pc)
820 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
821 }
822 else
823 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
824 }
825 else
826 pc = read_register (ret_regnum) & ~0x3;
827 }
828 else
829 {
830 int rp_offset;
831
832 restart:
833 rp_offset = rp_saved (pc);
834 /* Similar to code in frameless function case. If the next
835 frame is a signal or interrupt handler, then dig the right
836 information out of the saved register info. */
837 if (rp_offset == 0
838 && frame->next
839 && (frame->next->signal_handler_caller
840 || pc_in_interrupt_handler (frame->next->pc)))
841 {
842 struct frame_saved_regs saved_regs;
843
844 get_frame_saved_regs (frame->next, &saved_regs);
845 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
846 {
847 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
848
849 /* Syscalls are really two frames. The syscall stub itself
850 with a return pointer in %rp and the kernel call with
851 a return pointer in %r31. We return the %rp variant
852 if %r31 is the same as frame->pc. */
853 if (pc == frame->pc)
854 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
855 }
856 else
857 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
858 }
859 else if (rp_offset == 0)
860 pc = read_register (RP_REGNUM) & ~0x3;
861 else
862 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
863 }
864
865 /* If PC is inside a linker stub, then dig out the address the stub
866 will return to. */
867 u = find_unwind_entry (pc);
868 if (u && u->stub_type != 0)
869 {
870 unsigned int insn;
871
872 /* If this is a dynamic executable, and we're in a signal handler,
873 then the call chain will eventually point us into the stub for
874 _sigreturn. Unlike most cases, we'll be pointed to the branch
875 to the real sigreturn rather than the code after the real branch!.
876
877 Else, try to dig the address the stub will return to in the normal
878 fashion. */
879 insn = read_memory_integer (pc, 4);
880 if ((insn & 0xfc00e000) == 0xe8000000)
881 return (pc + extract_17 (insn) + 8) & ~0x3;
882 else
883 goto restart;
884 }
885
886 return pc;
887 }
888 \f
889 /* We need to correct the PC and the FP for the outermost frame when we are
890 in a system call. */
891
892 void
893 init_extra_frame_info (fromleaf, frame)
894 int fromleaf;
895 struct frame_info *frame;
896 {
897 int flags;
898 int framesize;
899
900 if (frame->next && !fromleaf)
901 return;
902
903 /* If the next frame represents a frameless function invocation
904 then we have to do some adjustments that are normally done by
905 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
906 if (fromleaf)
907 {
908 /* Find the framesize of *this* frame without peeking at the PC
909 in the current frame structure (it isn't set yet). */
910 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
911
912 /* Now adjust our base frame accordingly. If we have a frame pointer
913 use it, else subtract the size of this frame from the current
914 frame. (we always want frame->frame to point at the lowest address
915 in the frame). */
916 if (framesize == -1)
917 frame->frame = read_register (FP_REGNUM);
918 else
919 frame->frame -= framesize;
920 return;
921 }
922
923 flags = read_register (FLAGS_REGNUM);
924 if (flags & 2) /* In system call? */
925 frame->pc = read_register (31) & ~0x3;
926
927 /* The outermost frame is always derived from PC-framesize
928
929 One might think frameless innermost frames should have
930 a frame->frame that is the same as the parent's frame->frame.
931 That is wrong; frame->frame in that case should be the *high*
932 address of the parent's frame. It's complicated as hell to
933 explain, but the parent *always* creates some stack space for
934 the child. So the child actually does have a frame of some
935 sorts, and its base is the high address in its parent's frame. */
936 framesize = find_proc_framesize(frame->pc);
937 if (framesize == -1)
938 frame->frame = read_register (FP_REGNUM);
939 else
940 frame->frame = read_register (SP_REGNUM) - framesize;
941 }
942 \f
943 /* Given a GDB frame, determine the address of the calling function's frame.
944 This will be used to create a new GDB frame struct, and then
945 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
946
947 This may involve searching through prologues for several functions
948 at boundaries where GCC calls HP C code, or where code which has
949 a frame pointer calls code without a frame pointer. */
950
951 CORE_ADDR
952 frame_chain (frame)
953 struct frame_info *frame;
954 {
955 int my_framesize, caller_framesize;
956 struct unwind_table_entry *u;
957 CORE_ADDR frame_base;
958 struct frame_info *tmp_frame;
959
960 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
961 are easy; at *sp we have a full save state strucutre which we can
962 pull the old stack pointer from. Also see frame_saved_pc for
963 code to dig a saved PC out of the save state structure. */
964 if (pc_in_interrupt_handler (frame->pc))
965 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
966 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
967 else if (frame->signal_handler_caller)
968 {
969 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
970 }
971 #endif
972 else
973 frame_base = frame->frame;
974
975 /* Get frame sizes for the current frame and the frame of the
976 caller. */
977 my_framesize = find_proc_framesize (frame->pc);
978 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
979
980 /* If caller does not have a frame pointer, then its frame
981 can be found at current_frame - caller_framesize. */
982 if (caller_framesize != -1)
983 return frame_base - caller_framesize;
984
985 /* Both caller and callee have frame pointers and are GCC compiled
986 (SAVE_SP bit in unwind descriptor is on for both functions.
987 The previous frame pointer is found at the top of the current frame. */
988 if (caller_framesize == -1 && my_framesize == -1)
989 return read_memory_integer (frame_base, 4);
990
991 /* Caller has a frame pointer, but callee does not. This is a little
992 more difficult as GCC and HP C lay out locals and callee register save
993 areas very differently.
994
995 The previous frame pointer could be in a register, or in one of
996 several areas on the stack.
997
998 Walk from the current frame to the innermost frame examining
999 unwind descriptors to determine if %r3 ever gets saved into the
1000 stack. If so return whatever value got saved into the stack.
1001 If it was never saved in the stack, then the value in %r3 is still
1002 valid, so use it.
1003
1004 We use information from unwind descriptors to determine if %r3
1005 is saved into the stack (Entry_GR field has this information). */
1006
1007 tmp_frame = frame;
1008 while (tmp_frame)
1009 {
1010 u = find_unwind_entry (tmp_frame->pc);
1011
1012 if (!u)
1013 {
1014 /* We could find this information by examining prologues. I don't
1015 think anyone has actually written any tools (not even "strip")
1016 which leave them out of an executable, so maybe this is a moot
1017 point. */
1018 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1019 return 0;
1020 }
1021
1022 /* Entry_GR specifies the number of callee-saved general registers
1023 saved in the stack. It starts at %r3, so %r3 would be 1. */
1024 if (u->Entry_GR >= 1 || u->Save_SP
1025 || tmp_frame->signal_handler_caller
1026 || pc_in_interrupt_handler (tmp_frame->pc))
1027 break;
1028 else
1029 tmp_frame = tmp_frame->next;
1030 }
1031
1032 if (tmp_frame)
1033 {
1034 /* We may have walked down the chain into a function with a frame
1035 pointer. */
1036 if (u->Save_SP
1037 && !tmp_frame->signal_handler_caller
1038 && !pc_in_interrupt_handler (tmp_frame->pc))
1039 return read_memory_integer (tmp_frame->frame, 4);
1040 /* %r3 was saved somewhere in the stack. Dig it out. */
1041 else
1042 {
1043 struct frame_saved_regs saved_regs;
1044
1045 /* Sick.
1046
1047 For optimization purposes many kernels don't have the
1048 callee saved registers into the save_state structure upon
1049 entry into the kernel for a syscall; the optimization
1050 is usually turned off if the process is being traced so
1051 that the debugger can get full register state for the
1052 process.
1053
1054 This scheme works well except for two cases:
1055
1056 * Attaching to a process when the process is in the
1057 kernel performing a system call (debugger can't get
1058 full register state for the inferior process since
1059 the process wasn't being traced when it entered the
1060 system call).
1061
1062 * Register state is not complete if the system call
1063 causes the process to core dump.
1064
1065
1066 The following heinous code is an attempt to deal with
1067 the lack of register state in a core dump. It will
1068 fail miserably if the function which performs the
1069 system call has a variable sized stack frame. */
1070
1071 get_frame_saved_regs (tmp_frame, &saved_regs);
1072
1073 /* Abominable hack. */
1074 if (current_target.to_has_execution == 0
1075 && saved_regs.regs[FLAGS_REGNUM]
1076 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2))
1077 {
1078 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1079 if (!u)
1080 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1081 else
1082 return frame_base - (u->Total_frame_size << 3);
1083 }
1084
1085 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1086 }
1087 }
1088 else
1089 {
1090 /* The value in %r3 was never saved into the stack (thus %r3 still
1091 holds the value of the previous frame pointer). */
1092 return read_register (FP_REGNUM);
1093 }
1094 }
1095
1096 \f
1097 /* To see if a frame chain is valid, see if the caller looks like it
1098 was compiled with gcc. */
1099
1100 int
1101 frame_chain_valid (chain, thisframe)
1102 CORE_ADDR chain;
1103 struct frame_info *thisframe;
1104 {
1105 struct minimal_symbol *msym_us;
1106 struct minimal_symbol *msym_start;
1107 struct unwind_table_entry *u, *next_u = NULL;
1108 struct frame_info *next;
1109
1110 if (!chain)
1111 return 0;
1112
1113 u = find_unwind_entry (thisframe->pc);
1114
1115 if (u == NULL)
1116 return 1;
1117
1118 /* We can't just check that the same of msym_us is "_start", because
1119 someone idiotically decided that they were going to make a Ltext_end
1120 symbol with the same address. This Ltext_end symbol is totally
1121 indistinguishable (as nearly as I can tell) from the symbol for a function
1122 which is (legitimately, since it is in the user's namespace)
1123 named Ltext_end, so we can't just ignore it. */
1124 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1125 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1126 if (msym_us
1127 && msym_start
1128 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1129 return 0;
1130
1131 next = get_next_frame (thisframe);
1132 if (next)
1133 next_u = find_unwind_entry (next->pc);
1134
1135 /* If this frame does not save SP, has no stack, isn't a stub,
1136 and doesn't "call" an interrupt routine or signal handler caller,
1137 then its not valid. */
1138 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1139 || (thisframe->next && thisframe->next->signal_handler_caller)
1140 || (next_u && next_u->HP_UX_interrupt_marker))
1141 return 1;
1142
1143 if (pc_in_linker_stub (thisframe->pc))
1144 return 1;
1145
1146 return 0;
1147 }
1148
1149 /*
1150 * These functions deal with saving and restoring register state
1151 * around a function call in the inferior. They keep the stack
1152 * double-word aligned; eventually, on an hp700, the stack will have
1153 * to be aligned to a 64-byte boundary.
1154 */
1155
1156 void
1157 push_dummy_frame (inf_status)
1158 struct inferior_status *inf_status;
1159 {
1160 CORE_ADDR sp, pc, pcspace;
1161 register int regnum;
1162 int int_buffer;
1163 double freg_buffer;
1164
1165 /* Oh, what a hack. If we're trying to perform an inferior call
1166 while the inferior is asleep, we have to make sure to clear
1167 the "in system call" bit in the flag register (the call will
1168 start after the syscall returns, so we're no longer in the system
1169 call!) This state is kept in "inf_status", change it there.
1170
1171 We also need a number of horrid hacks to deal with lossage in the
1172 PC queue registers (apparently they're not valid when the in syscall
1173 bit is set). */
1174 pc = target_read_pc (inferior_pid);
1175 int_buffer = read_register (FLAGS_REGNUM);
1176 if (int_buffer & 0x2)
1177 {
1178 unsigned int sid;
1179 int_buffer &= ~0x2;
1180 memcpy (inf_status->registers, &int_buffer, 4);
1181 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_HEAD_REGNUM), &pc, 4);
1182 pc += 4;
1183 memcpy (inf_status->registers + REGISTER_BYTE (PCOQ_TAIL_REGNUM), &pc, 4);
1184 pc -= 4;
1185 sid = (pc >> 30) & 0x3;
1186 if (sid == 0)
1187 pcspace = read_register (SR4_REGNUM);
1188 else
1189 pcspace = read_register (SR4_REGNUM + 4 + sid);
1190 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_HEAD_REGNUM),
1191 &pcspace, 4);
1192 memcpy (inf_status->registers + REGISTER_BYTE (PCSQ_TAIL_REGNUM),
1193 &pcspace, 4);
1194 }
1195 else
1196 pcspace = read_register (PCSQ_HEAD_REGNUM);
1197
1198 /* Space for "arguments"; the RP goes in here. */
1199 sp = read_register (SP_REGNUM) + 48;
1200 int_buffer = read_register (RP_REGNUM) | 0x3;
1201 write_memory (sp - 20, (char *)&int_buffer, 4);
1202
1203 int_buffer = read_register (FP_REGNUM);
1204 write_memory (sp, (char *)&int_buffer, 4);
1205
1206 write_register (FP_REGNUM, sp);
1207
1208 sp += 8;
1209
1210 for (regnum = 1; regnum < 32; regnum++)
1211 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1212 sp = push_word (sp, read_register (regnum));
1213
1214 sp += 4;
1215
1216 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1217 {
1218 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1219 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1220 }
1221 sp = push_word (sp, read_register (IPSW_REGNUM));
1222 sp = push_word (sp, read_register (SAR_REGNUM));
1223 sp = push_word (sp, pc);
1224 sp = push_word (sp, pcspace);
1225 sp = push_word (sp, pc + 4);
1226 sp = push_word (sp, pcspace);
1227 write_register (SP_REGNUM, sp);
1228 }
1229
1230 void
1231 find_dummy_frame_regs (frame, frame_saved_regs)
1232 struct frame_info *frame;
1233 struct frame_saved_regs *frame_saved_regs;
1234 {
1235 CORE_ADDR fp = frame->frame;
1236 int i;
1237
1238 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1239 frame_saved_regs->regs[FP_REGNUM] = fp;
1240 frame_saved_regs->regs[1] = fp + 8;
1241
1242 for (fp += 12, i = 3; i < 32; i++)
1243 {
1244 if (i != FP_REGNUM)
1245 {
1246 frame_saved_regs->regs[i] = fp;
1247 fp += 4;
1248 }
1249 }
1250
1251 fp += 4;
1252 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1253 frame_saved_regs->regs[i] = fp;
1254
1255 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1256 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1257 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1258 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1259 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1260 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1261 }
1262
1263 void
1264 hppa_pop_frame ()
1265 {
1266 register struct frame_info *frame = get_current_frame ();
1267 register CORE_ADDR fp, npc, target_pc;
1268 register int regnum;
1269 struct frame_saved_regs fsr;
1270 double freg_buffer;
1271
1272 fp = FRAME_FP (frame);
1273 get_frame_saved_regs (frame, &fsr);
1274
1275 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1276 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1277 restore_pc_queue (&fsr);
1278 #endif
1279
1280 for (regnum = 31; regnum > 0; regnum--)
1281 if (fsr.regs[regnum])
1282 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1283
1284 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1285 if (fsr.regs[regnum])
1286 {
1287 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1288 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1289 }
1290
1291 if (fsr.regs[IPSW_REGNUM])
1292 write_register (IPSW_REGNUM,
1293 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1294
1295 if (fsr.regs[SAR_REGNUM])
1296 write_register (SAR_REGNUM,
1297 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1298
1299 /* If the PC was explicitly saved, then just restore it. */
1300 if (fsr.regs[PCOQ_TAIL_REGNUM])
1301 {
1302 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4);
1303 write_register (PCOQ_TAIL_REGNUM, npc);
1304 }
1305 /* Else use the value in %rp to set the new PC. */
1306 else
1307 {
1308 npc = read_register (RP_REGNUM);
1309 target_write_pc (npc, 0);
1310 }
1311
1312 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1313
1314 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1315 write_register (SP_REGNUM, fp - 48);
1316 else
1317 write_register (SP_REGNUM, fp);
1318
1319 /* The PC we just restored may be inside a return trampoline. If so
1320 we want to restart the inferior and run it through the trampoline.
1321
1322 Do this by setting a momentary breakpoint at the location the
1323 trampoline returns to.
1324
1325 Don't skip through the trampoline if we're popping a dummy frame. */
1326 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1327 if (target_pc && !fsr.regs[IPSW_REGNUM])
1328 {
1329 struct symtab_and_line sal;
1330 struct breakpoint *breakpoint;
1331 struct cleanup *old_chain;
1332
1333 /* Set up our breakpoint. Set it to be silent as the MI code
1334 for "return_command" will print the frame we returned to. */
1335 sal = find_pc_line (target_pc, 0);
1336 sal.pc = target_pc;
1337 breakpoint = set_momentary_breakpoint (sal, NULL, bp_finish);
1338 breakpoint->silent = 1;
1339
1340 /* So we can clean things up. */
1341 old_chain = make_cleanup (delete_breakpoint, breakpoint);
1342
1343 /* Start up the inferior. */
1344 proceed_to_finish = 1;
1345 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1346
1347 /* Perform our cleanups. */
1348 do_cleanups (old_chain);
1349 }
1350 flush_cached_frames ();
1351 }
1352
1353 /*
1354 * After returning to a dummy on the stack, restore the instruction
1355 * queue space registers. */
1356
1357 static int
1358 restore_pc_queue (fsr)
1359 struct frame_saved_regs *fsr;
1360 {
1361 CORE_ADDR pc = read_pc ();
1362 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1363 struct target_waitstatus w;
1364 int insn_count;
1365
1366 /* Advance past break instruction in the call dummy. */
1367 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1368 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1369
1370 /*
1371 * HPUX doesn't let us set the space registers or the space
1372 * registers of the PC queue through ptrace. Boo, hiss.
1373 * Conveniently, the call dummy has this sequence of instructions
1374 * after the break:
1375 * mtsp r21, sr0
1376 * ble,n 0(sr0, r22)
1377 *
1378 * So, load up the registers and single step until we are in the
1379 * right place.
1380 */
1381
1382 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1383 write_register (22, new_pc);
1384
1385 for (insn_count = 0; insn_count < 3; insn_count++)
1386 {
1387 /* FIXME: What if the inferior gets a signal right now? Want to
1388 merge this into wait_for_inferior (as a special kind of
1389 watchpoint? By setting a breakpoint at the end? Is there
1390 any other choice? Is there *any* way to do this stuff with
1391 ptrace() or some equivalent?). */
1392 resume (1, 0);
1393 target_wait (inferior_pid, &w);
1394
1395 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1396 {
1397 stop_signal = w.value.sig;
1398 terminal_ours_for_output ();
1399 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1400 target_signal_to_name (stop_signal),
1401 target_signal_to_string (stop_signal));
1402 gdb_flush (gdb_stdout);
1403 return 0;
1404 }
1405 }
1406 target_terminal_ours ();
1407 target_fetch_registers (-1);
1408 return 1;
1409 }
1410
1411 CORE_ADDR
1412 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1413 int nargs;
1414 value_ptr *args;
1415 CORE_ADDR sp;
1416 int struct_return;
1417 CORE_ADDR struct_addr;
1418 {
1419 /* array of arguments' offsets */
1420 int *offset = (int *)alloca(nargs * sizeof (int));
1421 int cum = 0;
1422 int i, alignment;
1423
1424 for (i = 0; i < nargs; i++)
1425 {
1426 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1427
1428 /* value must go at proper alignment. Assume alignment is a
1429 power of two.*/
1430 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1431 if (cum % alignment)
1432 cum = (cum + alignment) & -alignment;
1433 offset[i] = -cum;
1434 }
1435 sp += max ((cum + 7) & -8, 16);
1436
1437 for (i = 0; i < nargs; i++)
1438 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1439 TYPE_LENGTH (VALUE_TYPE (args[i])));
1440
1441 if (struct_return)
1442 write_register (28, struct_addr);
1443 return sp + 32;
1444 }
1445
1446 /*
1447 * Insert the specified number of args and function address
1448 * into a call sequence of the above form stored at DUMMYNAME.
1449 *
1450 * On the hppa we need to call the stack dummy through $$dyncall.
1451 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1452 * real_pc, which is the location where gdb should start up the
1453 * inferior to do the function call.
1454 */
1455
1456 CORE_ADDR
1457 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1458 char *dummy;
1459 CORE_ADDR pc;
1460 CORE_ADDR fun;
1461 int nargs;
1462 value_ptr *args;
1463 struct type *type;
1464 int gcc_p;
1465 {
1466 CORE_ADDR dyncall_addr;
1467 struct minimal_symbol *msymbol;
1468 int flags = read_register (FLAGS_REGNUM);
1469 struct unwind_table_entry *u;
1470
1471 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1472 if (msymbol == NULL)
1473 error ("Can't find an address for $$dyncall trampoline");
1474
1475 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1476
1477 /* FUN could be a procedure label, in which case we have to get
1478 its real address and the value of its GOT/DP. */
1479 if (fun & 0x2)
1480 {
1481 /* Get the GOT/DP value for the target function. It's
1482 at *(fun+4). Note the call dummy is *NOT* allowed to
1483 trash %r19 before calling the target function. */
1484 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1485
1486 /* Now get the real address for the function we are calling, it's
1487 at *fun. */
1488 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1489 }
1490 else
1491 {
1492
1493 #ifndef GDB_TARGET_IS_PA_ELF
1494 /* FUN could be either an export stub, or the real address of a
1495 function in a shared library. We must call an import stub
1496 rather than the export stub or real function for lazy binding
1497 to work correctly. */
1498 if (som_solib_get_got_by_pc (fun))
1499 {
1500 struct objfile *objfile;
1501 struct minimal_symbol *funsymbol, *stub_symbol;
1502 CORE_ADDR newfun = 0;
1503
1504 funsymbol = lookup_minimal_symbol_by_pc (fun);
1505 if (!funsymbol)
1506 error ("Unable to find minimal symbol for target fucntion.\n");
1507
1508 /* Search all the object files for an import symbol with the
1509 right name. */
1510 ALL_OBJFILES (objfile)
1511 {
1512 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
1513 NULL, objfile);
1514 /* Found a symbol with the right name. */
1515 if (stub_symbol)
1516 {
1517 struct unwind_table_entry *u;
1518 /* It must be a shared library trampoline. */
1519 if (SYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
1520 continue;
1521
1522 /* It must also be an import stub. */
1523 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
1524 if (!u || u->stub_type != IMPORT)
1525 continue;
1526
1527 /* OK. Looks like the correct import stub. */
1528 newfun = SYMBOL_VALUE (stub_symbol);
1529 fun = newfun;
1530 }
1531 }
1532 if (newfun == 0)
1533 write_register (19, som_solib_get_got_by_pc (fun));
1534 }
1535 #endif
1536 }
1537
1538 /* If we are calling an import stub (eg calling into a dynamic library)
1539 then have sr4export call the magic __d_plt_call routine which is linked
1540 in from end.o. (You can't use _sr4export to call the import stub as
1541 the value in sp-24 will get fried and you end up returning to the
1542 wrong location. You can't call the import stub directly as the code
1543 to bind the PLT entry to a function can't return to a stack address.) */
1544 u = find_unwind_entry (fun);
1545 if (u && u->stub_type == IMPORT)
1546 {
1547 CORE_ADDR new_fun;
1548 msymbol = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
1549 if (msymbol == NULL)
1550 msymbol = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
1551
1552 if (msymbol == NULL)
1553 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline");
1554
1555 /* This is where sr4export will jump to. */
1556 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1557
1558 if (strcmp (SYMBOL_NAME (msymbol), "__d_plt_call"))
1559 write_register (22, fun);
1560 else
1561 {
1562 /* We have to store the address of the stub in __shlib_funcptr. */
1563 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
1564 (struct objfile *)NULL);
1565 if (msymbol == NULL)
1566 error ("Can't find an address for __shlib_funcptr");
1567
1568 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1569 }
1570 fun = new_fun;
1571 }
1572
1573 /* Store upper 21 bits of function address into ldil */
1574
1575 store_unsigned_integer
1576 (&dummy[FUNC_LDIL_OFFSET],
1577 INSTRUCTION_SIZE,
1578 deposit_21 (fun >> 11,
1579 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
1580 INSTRUCTION_SIZE)));
1581
1582 /* Store lower 11 bits of function address into ldo */
1583
1584 store_unsigned_integer
1585 (&dummy[FUNC_LDO_OFFSET],
1586 INSTRUCTION_SIZE,
1587 deposit_14 (fun & MASK_11,
1588 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
1589 INSTRUCTION_SIZE)));
1590 #ifdef SR4EXPORT_LDIL_OFFSET
1591
1592 {
1593 CORE_ADDR sr4export_addr;
1594
1595 /* We still need sr4export's address too. */
1596
1597 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1598 if (msymbol == NULL)
1599 error ("Can't find an address for _sr4export trampoline");
1600
1601 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1602
1603 /* Store upper 21 bits of sr4export's address into ldil */
1604
1605 store_unsigned_integer
1606 (&dummy[SR4EXPORT_LDIL_OFFSET],
1607 INSTRUCTION_SIZE,
1608 deposit_21 (sr4export_addr >> 11,
1609 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
1610 INSTRUCTION_SIZE)));
1611 /* Store lower 11 bits of sr4export's address into ldo */
1612
1613 store_unsigned_integer
1614 (&dummy[SR4EXPORT_LDO_OFFSET],
1615 INSTRUCTION_SIZE,
1616 deposit_14 (sr4export_addr & MASK_11,
1617 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
1618 INSTRUCTION_SIZE)));
1619 }
1620 #endif
1621
1622 write_register (22, pc);
1623
1624 /* If we are in a syscall, then we should call the stack dummy
1625 directly. $$dyncall is not needed as the kernel sets up the
1626 space id registers properly based on the value in %r31. In
1627 fact calling $$dyncall will not work because the value in %r22
1628 will be clobbered on the syscall exit path.
1629
1630 Similarly if the current PC is in a shared library. Note however,
1631 this scheme won't work if the shared library isn't mapped into
1632 the same space as the stack. */
1633 if (flags & 2)
1634 return pc;
1635 #ifndef GDB_TARGET_IS_PA_ELF
1636 else if (som_solib_get_got_by_pc (target_read_pc (inferior_pid)))
1637 return pc;
1638 #endif
1639 else
1640 return dyncall_addr;
1641
1642 }
1643
1644 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1645 bits. */
1646
1647 CORE_ADDR
1648 target_read_pc (pid)
1649 int pid;
1650 {
1651 int flags = read_register (FLAGS_REGNUM);
1652
1653 if (flags & 2) {
1654 return read_register (31) & ~0x3;
1655 }
1656 return read_register (PC_REGNUM) & ~0x3;
1657 }
1658
1659 /* Write out the PC. If currently in a syscall, then also write the new
1660 PC value into %r31. */
1661
1662 void
1663 target_write_pc (v, pid)
1664 CORE_ADDR v;
1665 int pid;
1666 {
1667 int flags = read_register (FLAGS_REGNUM);
1668
1669 /* If in a syscall, then set %r31. Also make sure to get the
1670 privilege bits set correctly. */
1671 if (flags & 2)
1672 write_register (31, (long) (v | 0x3));
1673
1674 write_register (PC_REGNUM, (long) v);
1675 write_register (NPC_REGNUM, (long) v + 4);
1676 }
1677
1678 /* return the alignment of a type in bytes. Structures have the maximum
1679 alignment required by their fields. */
1680
1681 static int
1682 hppa_alignof (arg)
1683 struct type *arg;
1684 {
1685 int max_align, align, i;
1686 switch (TYPE_CODE (arg))
1687 {
1688 case TYPE_CODE_PTR:
1689 case TYPE_CODE_INT:
1690 case TYPE_CODE_FLT:
1691 return TYPE_LENGTH (arg);
1692 case TYPE_CODE_ARRAY:
1693 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1694 case TYPE_CODE_STRUCT:
1695 case TYPE_CODE_UNION:
1696 max_align = 2;
1697 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1698 {
1699 /* Bit fields have no real alignment. */
1700 if (!TYPE_FIELD_BITPOS (arg, i))
1701 {
1702 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1703 max_align = max (max_align, align);
1704 }
1705 }
1706 return max_align;
1707 default:
1708 return 4;
1709 }
1710 }
1711
1712 /* Print the register regnum, or all registers if regnum is -1 */
1713
1714 void
1715 pa_do_registers_info (regnum, fpregs)
1716 int regnum;
1717 int fpregs;
1718 {
1719 char raw_regs [REGISTER_BYTES];
1720 int i;
1721
1722 for (i = 0; i < NUM_REGS; i++)
1723 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1724 if (regnum == -1)
1725 pa_print_registers (raw_regs, regnum, fpregs);
1726 else if (regnum < FP0_REGNUM)
1727 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1728 REGISTER_BYTE (regnum)));
1729 else
1730 pa_print_fp_reg (regnum);
1731 }
1732
1733 static void
1734 pa_print_registers (raw_regs, regnum, fpregs)
1735 char *raw_regs;
1736 int regnum;
1737 int fpregs;
1738 {
1739 int i,j;
1740 long val;
1741
1742 for (i = 0; i < 18; i++)
1743 {
1744 for (j = 0; j < 4; j++)
1745 {
1746 val =
1747 extract_signed_integer (raw_regs + REGISTER_BYTE (i+(j*18)), 4);
1748 printf_unfiltered ("%8.8s: %8x ", reg_names[i+(j*18)], val);
1749 }
1750 printf_unfiltered ("\n");
1751 }
1752
1753 if (fpregs)
1754 for (i = 72; i < NUM_REGS; i++)
1755 pa_print_fp_reg (i);
1756 }
1757
1758 static void
1759 pa_print_fp_reg (i)
1760 int i;
1761 {
1762 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1763 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1764
1765 /* Get 32bits of data. */
1766 read_relative_register_raw_bytes (i, raw_buffer);
1767
1768 /* Put it in the buffer. No conversions are ever necessary. */
1769 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1770
1771 fputs_filtered (reg_names[i], gdb_stdout);
1772 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1773 fputs_filtered ("(single precision) ", gdb_stdout);
1774
1775 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1776 1, 0, Val_pretty_default);
1777 printf_filtered ("\n");
1778
1779 /* If "i" is even, then this register can also be a double-precision
1780 FP register. Dump it out as such. */
1781 if ((i % 2) == 0)
1782 {
1783 /* Get the data in raw format for the 2nd half. */
1784 read_relative_register_raw_bytes (i + 1, raw_buffer);
1785
1786 /* Copy it into the appropriate part of the virtual buffer. */
1787 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1788 REGISTER_RAW_SIZE (i));
1789
1790 /* Dump it as a double. */
1791 fputs_filtered (reg_names[i], gdb_stdout);
1792 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1793 fputs_filtered ("(double precision) ", gdb_stdout);
1794
1795 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1796 1, 0, Val_pretty_default);
1797 printf_filtered ("\n");
1798 }
1799 }
1800
1801 /* Return one if PC is in the call path of a trampoline, else return zero.
1802
1803 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1804 just shared library trampolines (import, export). */
1805
1806 int
1807 in_solib_call_trampoline (pc, name)
1808 CORE_ADDR pc;
1809 char *name;
1810 {
1811 struct minimal_symbol *minsym;
1812 struct unwind_table_entry *u;
1813 static CORE_ADDR dyncall = 0;
1814 static CORE_ADDR sr4export = 0;
1815
1816 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1817 new exec file */
1818
1819 /* First see if PC is in one of the two C-library trampolines. */
1820 if (!dyncall)
1821 {
1822 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1823 if (minsym)
1824 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
1825 else
1826 dyncall = -1;
1827 }
1828
1829 if (!sr4export)
1830 {
1831 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
1832 if (minsym)
1833 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
1834 else
1835 sr4export = -1;
1836 }
1837
1838 if (pc == dyncall || pc == sr4export)
1839 return 1;
1840
1841 /* Get the unwind descriptor corresponding to PC, return zero
1842 if no unwind was found. */
1843 u = find_unwind_entry (pc);
1844 if (!u)
1845 return 0;
1846
1847 /* If this isn't a linker stub, then return now. */
1848 if (u->stub_type == 0)
1849 return 0;
1850
1851 /* By definition a long-branch stub is a call stub. */
1852 if (u->stub_type == LONG_BRANCH)
1853 return 1;
1854
1855 /* The call and return path execute the same instructions within
1856 an IMPORT stub! So an IMPORT stub is both a call and return
1857 trampoline. */
1858 if (u->stub_type == IMPORT)
1859 return 1;
1860
1861 /* Parameter relocation stubs always have a call path and may have a
1862 return path. */
1863 if (u->stub_type == PARAMETER_RELOCATION
1864 || u->stub_type == EXPORT)
1865 {
1866 CORE_ADDR addr;
1867
1868 /* Search forward from the current PC until we hit a branch
1869 or the end of the stub. */
1870 for (addr = pc; addr <= u->region_end; addr += 4)
1871 {
1872 unsigned long insn;
1873
1874 insn = read_memory_integer (addr, 4);
1875
1876 /* Does it look like a bl? If so then it's the call path, if
1877 we find a bv or be first, then we're on the return path. */
1878 if ((insn & 0xfc00e000) == 0xe8000000)
1879 return 1;
1880 else if ((insn & 0xfc00e001) == 0xe800c000
1881 || (insn & 0xfc000000) == 0xe0000000)
1882 return 0;
1883 }
1884
1885 /* Should never happen. */
1886 warning ("Unable to find branch in parameter relocation stub.\n");
1887 return 0;
1888 }
1889
1890 /* Unknown stub type. For now, just return zero. */
1891 return 0;
1892 }
1893
1894 /* Return one if PC is in the return path of a trampoline, else return zero.
1895
1896 Note we return one for *any* call trampoline (long-call, arg-reloc), not
1897 just shared library trampolines (import, export). */
1898
1899 int
1900 in_solib_return_trampoline (pc, name)
1901 CORE_ADDR pc;
1902 char *name;
1903 {
1904 struct unwind_table_entry *u;
1905
1906 /* Get the unwind descriptor corresponding to PC, return zero
1907 if no unwind was found. */
1908 u = find_unwind_entry (pc);
1909 if (!u)
1910 return 0;
1911
1912 /* If this isn't a linker stub or it's just a long branch stub, then
1913 return zero. */
1914 if (u->stub_type == 0 || u->stub_type == LONG_BRANCH)
1915 return 0;
1916
1917 /* The call and return path execute the same instructions within
1918 an IMPORT stub! So an IMPORT stub is both a call and return
1919 trampoline. */
1920 if (u->stub_type == IMPORT)
1921 return 1;
1922
1923 /* Parameter relocation stubs always have a call path and may have a
1924 return path. */
1925 if (u->stub_type == PARAMETER_RELOCATION
1926 || u->stub_type == EXPORT)
1927 {
1928 CORE_ADDR addr;
1929
1930 /* Search forward from the current PC until we hit a branch
1931 or the end of the stub. */
1932 for (addr = pc; addr <= u->region_end; addr += 4)
1933 {
1934 unsigned long insn;
1935
1936 insn = read_memory_integer (addr, 4);
1937
1938 /* Does it look like a bl? If so then it's the call path, if
1939 we find a bv or be first, then we're on the return path. */
1940 if ((insn & 0xfc00e000) == 0xe8000000)
1941 return 0;
1942 else if ((insn & 0xfc00e001) == 0xe800c000
1943 || (insn & 0xfc000000) == 0xe0000000)
1944 return 1;
1945 }
1946
1947 /* Should never happen. */
1948 warning ("Unable to find branch in parameter relocation stub.\n");
1949 return 0;
1950 }
1951
1952 /* Unknown stub type. For now, just return zero. */
1953 return 0;
1954
1955 }
1956
1957 /* Figure out if PC is in a trampoline, and if so find out where
1958 the trampoline will jump to. If not in a trampoline, return zero.
1959
1960 Simple code examination probably is not a good idea since the code
1961 sequences in trampolines can also appear in user code.
1962
1963 We use unwinds and information from the minimal symbol table to
1964 determine when we're in a trampoline. This won't work for ELF
1965 (yet) since it doesn't create stub unwind entries. Whether or
1966 not ELF will create stub unwinds or normal unwinds for linker
1967 stubs is still being debated.
1968
1969 This should handle simple calls through dyncall or sr4export,
1970 long calls, argument relocation stubs, and dyncall/sr4export
1971 calling an argument relocation stub. It even handles some stubs
1972 used in dynamic executables. */
1973
1974 CORE_ADDR
1975 skip_trampoline_code (pc, name)
1976 CORE_ADDR pc;
1977 char *name;
1978 {
1979 long orig_pc = pc;
1980 long prev_inst, curr_inst, loc;
1981 static CORE_ADDR dyncall = 0;
1982 static CORE_ADDR sr4export = 0;
1983 struct minimal_symbol *msym;
1984 struct unwind_table_entry *u;
1985
1986 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1987 new exec file */
1988
1989 if (!dyncall)
1990 {
1991 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
1992 if (msym)
1993 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1994 else
1995 dyncall = -1;
1996 }
1997
1998 if (!sr4export)
1999 {
2000 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2001 if (msym)
2002 sr4export = SYMBOL_VALUE_ADDRESS (msym);
2003 else
2004 sr4export = -1;
2005 }
2006
2007 /* Addresses passed to dyncall may *NOT* be the actual address
2008 of the function. So we may have to do something special. */
2009 if (pc == dyncall)
2010 {
2011 pc = (CORE_ADDR) read_register (22);
2012
2013 /* If bit 30 (counting from the left) is on, then pc is the address of
2014 the PLT entry for this function, not the address of the function
2015 itself. Bit 31 has meaning too, but only for MPE. */
2016 if (pc & 0x2)
2017 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
2018 }
2019 else if (pc == sr4export)
2020 pc = (CORE_ADDR) (read_register (22));
2021
2022 /* Get the unwind descriptor corresponding to PC, return zero
2023 if no unwind was found. */
2024 u = find_unwind_entry (pc);
2025 if (!u)
2026 return 0;
2027
2028 /* If this isn't a linker stub, then return now. */
2029 if (u->stub_type == 0)
2030 return orig_pc == pc ? 0 : pc & ~0x3;
2031
2032 /* It's a stub. Search for a branch and figure out where it goes.
2033 Note we have to handle multi insn branch sequences like ldil;ble.
2034 Most (all?) other branches can be determined by examining the contents
2035 of certain registers and the stack. */
2036 loc = pc;
2037 curr_inst = 0;
2038 prev_inst = 0;
2039 while (1)
2040 {
2041 /* Make sure we haven't walked outside the range of this stub. */
2042 if (u != find_unwind_entry (loc))
2043 {
2044 warning ("Unable to find branch in linker stub");
2045 return orig_pc == pc ? 0 : pc & ~0x3;
2046 }
2047
2048 prev_inst = curr_inst;
2049 curr_inst = read_memory_integer (loc, 4);
2050
2051 /* Does it look like a branch external using %r1? Then it's the
2052 branch from the stub to the actual function. */
2053 if ((curr_inst & 0xffe0e000) == 0xe0202000)
2054 {
2055 /* Yup. See if the previous instruction loaded
2056 a value into %r1. If so compute and return the jump address. */
2057 if ((prev_inst & 0xffe00000) == 0x20200000)
2058 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
2059 else
2060 {
2061 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
2062 return orig_pc == pc ? 0 : pc & ~0x3;
2063 }
2064 }
2065
2066 /* Does it look like a be 0(sr0,%r21)? That's the branch from an
2067 import stub to an export stub.
2068
2069 It is impossible to determine the target of the branch via
2070 simple examination of instructions and/or data (consider
2071 that the address in the plabel may be the address of the
2072 bind-on-reference routine in the dynamic loader).
2073
2074 So we have try an alternative approach.
2075
2076 Get the name of the symbol at our current location; it should
2077 be a stub symbol with the same name as the symbol in the
2078 shared library.
2079
2080 Then lookup a minimal symbol with the same name; we should
2081 get the minimal symbol for the target routine in the shared
2082 library as those take precedence of import/export stubs. */
2083 if (curr_inst == 0xe2a00000)
2084 {
2085 struct minimal_symbol *stubsym, *libsym;
2086
2087 stubsym = lookup_minimal_symbol_by_pc (loc);
2088 if (stubsym == NULL)
2089 {
2090 warning ("Unable to find symbol for 0x%x", loc);
2091 return orig_pc == pc ? 0 : pc & ~0x3;
2092 }
2093
2094 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
2095 if (libsym == NULL)
2096 {
2097 warning ("Unable to find library symbol for %s\n",
2098 SYMBOL_NAME (stubsym));
2099 return orig_pc == pc ? 0 : pc & ~0x3;
2100 }
2101
2102 return SYMBOL_VALUE (libsym);
2103 }
2104
2105 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
2106 branch from the stub to the actual function. */
2107 else if ((curr_inst & 0xffe0e000) == 0xe8400000
2108 || (curr_inst & 0xffe0e000) == 0xe8000000)
2109 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
2110
2111 /* Does it look like bv (rp)? Note this depends on the
2112 current stack pointer being the same as the stack
2113 pointer in the stub itself! This is a branch on from the
2114 stub back to the original caller. */
2115 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
2116 {
2117 /* Yup. See if the previous instruction loaded
2118 rp from sp - 8. */
2119 if (prev_inst == 0x4bc23ff1)
2120 return (read_memory_integer
2121 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
2122 else
2123 {
2124 warning ("Unable to find restore of %%rp before bv (%%rp).");
2125 return orig_pc == pc ? 0 : pc & ~0x3;
2126 }
2127 }
2128
2129 /* What about be,n 0(sr0,%rp)? It's just another way we return to
2130 the original caller from the stub. Used in dynamic executables. */
2131 else if (curr_inst == 0xe0400002)
2132 {
2133 /* The value we jump to is sitting in sp - 24. But that's
2134 loaded several instructions before the be instruction.
2135 I guess we could check for the previous instruction being
2136 mtsp %r1,%sr0 if we want to do sanity checking. */
2137 return (read_memory_integer
2138 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
2139 }
2140
2141 /* Haven't found the branch yet, but we're still in the stub.
2142 Keep looking. */
2143 loc += 4;
2144 }
2145 }
2146
2147 /* For the given instruction (INST), return any adjustment it makes
2148 to the stack pointer or zero for no adjustment.
2149
2150 This only handles instructions commonly found in prologues. */
2151
2152 static int
2153 prologue_inst_adjust_sp (inst)
2154 unsigned long inst;
2155 {
2156 /* This must persist across calls. */
2157 static int save_high21;
2158
2159 /* The most common way to perform a stack adjustment ldo X(sp),sp */
2160 if ((inst & 0xffffc000) == 0x37de0000)
2161 return extract_14 (inst);
2162
2163 /* stwm X,D(sp) */
2164 if ((inst & 0xffe00000) == 0x6fc00000)
2165 return extract_14 (inst);
2166
2167 /* addil high21,%r1; ldo low11,(%r1),%r30)
2168 save high bits in save_high21 for later use. */
2169 if ((inst & 0xffe00000) == 0x28200000)
2170 {
2171 save_high21 = extract_21 (inst);
2172 return 0;
2173 }
2174
2175 if ((inst & 0xffff0000) == 0x343e0000)
2176 return save_high21 + extract_14 (inst);
2177
2178 /* fstws as used by the HP compilers. */
2179 if ((inst & 0xffffffe0) == 0x2fd01220)
2180 return extract_5_load (inst);
2181
2182 /* No adjustment. */
2183 return 0;
2184 }
2185
2186 /* Return nonzero if INST is a branch of some kind, else return zero. */
2187
2188 static int
2189 is_branch (inst)
2190 unsigned long inst;
2191 {
2192 switch (inst >> 26)
2193 {
2194 case 0x20:
2195 case 0x21:
2196 case 0x22:
2197 case 0x23:
2198 case 0x28:
2199 case 0x29:
2200 case 0x2a:
2201 case 0x2b:
2202 case 0x30:
2203 case 0x31:
2204 case 0x32:
2205 case 0x33:
2206 case 0x38:
2207 case 0x39:
2208 case 0x3a:
2209 return 1;
2210
2211 default:
2212 return 0;
2213 }
2214 }
2215
2216 /* Return the register number for a GR which is saved by INST or
2217 zero it INST does not save a GR. */
2218
2219 static int
2220 inst_saves_gr (inst)
2221 unsigned long inst;
2222 {
2223 /* Does it look like a stw? */
2224 if ((inst >> 26) == 0x1a)
2225 return extract_5R_store (inst);
2226
2227 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
2228 if ((inst >> 26) == 0x1b)
2229 return extract_5R_store (inst);
2230
2231 /* Does it look like sth or stb? HPC versions 9.0 and later use these
2232 too. */
2233 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
2234 return extract_5R_store (inst);
2235
2236 return 0;
2237 }
2238
2239 /* Return the register number for a FR which is saved by INST or
2240 zero it INST does not save a FR.
2241
2242 Note we only care about full 64bit register stores (that's the only
2243 kind of stores the prologue will use).
2244
2245 FIXME: What about argument stores with the HP compiler in ANSI mode? */
2246
2247 static int
2248 inst_saves_fr (inst)
2249 unsigned long inst;
2250 {
2251 if ((inst & 0xfc00dfc0) == 0x2c001200)
2252 return extract_5r_store (inst);
2253 return 0;
2254 }
2255
2256 /* Advance PC across any function entry prologue instructions
2257 to reach some "real" code.
2258
2259 Use information in the unwind table to determine what exactly should
2260 be in the prologue. */
2261
2262 CORE_ADDR
2263 skip_prologue (pc)
2264 CORE_ADDR pc;
2265 {
2266 char buf[4];
2267 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2268 unsigned long args_stored, status, i;
2269 struct unwind_table_entry *u;
2270
2271 u = find_unwind_entry (pc);
2272 if (!u)
2273 return pc;
2274
2275 /* If we are not at the beginning of a function, then return now. */
2276 if ((pc & ~0x3) != u->region_start)
2277 return pc;
2278
2279 /* This is how much of a frame adjustment we need to account for. */
2280 stack_remaining = u->Total_frame_size << 3;
2281
2282 /* Magic register saves we want to know about. */
2283 save_rp = u->Save_RP;
2284 save_sp = u->Save_SP;
2285
2286 /* An indication that args may be stored into the stack. Unfortunately
2287 the HPUX compilers tend to set this in cases where no args were
2288 stored too!. */
2289 args_stored = u->Args_stored;
2290
2291 /* Turn the Entry_GR field into a bitmask. */
2292 save_gr = 0;
2293 for (i = 3; i < u->Entry_GR + 3; i++)
2294 {
2295 /* Frame pointer gets saved into a special location. */
2296 if (u->Save_SP && i == FP_REGNUM)
2297 continue;
2298
2299 save_gr |= (1 << i);
2300 }
2301
2302 /* Turn the Entry_FR field into a bitmask too. */
2303 save_fr = 0;
2304 for (i = 12; i < u->Entry_FR + 12; i++)
2305 save_fr |= (1 << i);
2306
2307 /* Loop until we find everything of interest or hit a branch.
2308
2309 For unoptimized GCC code and for any HP CC code this will never ever
2310 examine any user instructions.
2311
2312 For optimzied GCC code we're faced with problems. GCC will schedule
2313 its prologue and make prologue instructions available for delay slot
2314 filling. The end result is user code gets mixed in with the prologue
2315 and a prologue instruction may be in the delay slot of the first branch
2316 or call.
2317
2318 Some unexpected things are expected with debugging optimized code, so
2319 we allow this routine to walk past user instructions in optimized
2320 GCC code. */
2321 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
2322 || args_stored)
2323 {
2324 unsigned int reg_num;
2325 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
2326 unsigned long old_save_rp, old_save_sp, next_inst;
2327
2328 /* Save copies of all the triggers so we can compare them later
2329 (only for HPC). */
2330 old_save_gr = save_gr;
2331 old_save_fr = save_fr;
2332 old_save_rp = save_rp;
2333 old_save_sp = save_sp;
2334 old_stack_remaining = stack_remaining;
2335
2336 status = target_read_memory (pc, buf, 4);
2337 inst = extract_unsigned_integer (buf, 4);
2338
2339 /* Yow! */
2340 if (status != 0)
2341 return pc;
2342
2343 /* Note the interesting effects of this instruction. */
2344 stack_remaining -= prologue_inst_adjust_sp (inst);
2345
2346 /* There is only one instruction used for saving RP into the stack. */
2347 if (inst == 0x6bc23fd9)
2348 save_rp = 0;
2349
2350 /* This is the only way we save SP into the stack. At this time
2351 the HP compilers never bother to save SP into the stack. */
2352 if ((inst & 0xffffc000) == 0x6fc10000)
2353 save_sp = 0;
2354
2355 /* Account for general and floating-point register saves. */
2356 reg_num = inst_saves_gr (inst);
2357 save_gr &= ~(1 << reg_num);
2358
2359 /* Ugh. Also account for argument stores into the stack.
2360 Unfortunately args_stored only tells us that some arguments
2361 where stored into the stack. Not how many or what kind!
2362
2363 This is a kludge as on the HP compiler sets this bit and it
2364 never does prologue scheduling. So once we see one, skip past
2365 all of them. We have similar code for the fp arg stores below.
2366
2367 FIXME. Can still die if we have a mix of GR and FR argument
2368 stores! */
2369 if (reg_num >= 23 && reg_num <= 26)
2370 {
2371 while (reg_num >= 23 && reg_num <= 26)
2372 {
2373 pc += 4;
2374 status = target_read_memory (pc, buf, 4);
2375 inst = extract_unsigned_integer (buf, 4);
2376 if (status != 0)
2377 return pc;
2378 reg_num = inst_saves_gr (inst);
2379 }
2380 args_stored = 0;
2381 continue;
2382 }
2383
2384 reg_num = inst_saves_fr (inst);
2385 save_fr &= ~(1 << reg_num);
2386
2387 status = target_read_memory (pc + 4, buf, 4);
2388 next_inst = extract_unsigned_integer (buf, 4);
2389
2390 /* Yow! */
2391 if (status != 0)
2392 return pc;
2393
2394 /* We've got to be read to handle the ldo before the fp register
2395 save. */
2396 if ((inst & 0xfc000000) == 0x34000000
2397 && inst_saves_fr (next_inst) >= 4
2398 && inst_saves_fr (next_inst) <= 7)
2399 {
2400 /* So we drop into the code below in a reasonable state. */
2401 reg_num = inst_saves_fr (next_inst);
2402 pc -= 4;
2403 }
2404
2405 /* Ugh. Also account for argument stores into the stack.
2406 This is a kludge as on the HP compiler sets this bit and it
2407 never does prologue scheduling. So once we see one, skip past
2408 all of them. */
2409 if (reg_num >= 4 && reg_num <= 7)
2410 {
2411 while (reg_num >= 4 && reg_num <= 7)
2412 {
2413 pc += 8;
2414 status = target_read_memory (pc, buf, 4);
2415 inst = extract_unsigned_integer (buf, 4);
2416 if (status != 0)
2417 return pc;
2418 if ((inst & 0xfc000000) != 0x34000000)
2419 break;
2420 status = target_read_memory (pc + 4, buf, 4);
2421 next_inst = extract_unsigned_integer (buf, 4);
2422 if (status != 0)
2423 return pc;
2424 reg_num = inst_saves_fr (next_inst);
2425 }
2426 args_stored = 0;
2427 continue;
2428 }
2429
2430 /* Quit if we hit any kind of branch. This can happen if a prologue
2431 instruction is in the delay slot of the first call/branch. */
2432 if (is_branch (inst))
2433 break;
2434
2435 /* What a crock. The HP compilers set args_stored even if no
2436 arguments were stored into the stack (boo hiss). This could
2437 cause this code to then skip a bunch of user insns (up to the
2438 first branch).
2439
2440 To combat this we try to identify when args_stored was bogusly
2441 set and clear it. We only do this when args_stored is nonzero,
2442 all other resources are accounted for, and nothing changed on
2443 this pass. */
2444 if (args_stored
2445 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2446 && old_save_gr == save_gr && old_save_fr == save_fr
2447 && old_save_rp == save_rp && old_save_sp == save_sp
2448 && old_stack_remaining == stack_remaining)
2449 break;
2450
2451 /* Bump the PC. */
2452 pc += 4;
2453 }
2454
2455 return pc;
2456 }
2457
2458 /* Put here the code to store, into a struct frame_saved_regs,
2459 the addresses of the saved registers of frame described by FRAME_INFO.
2460 This includes special registers such as pc and fp saved in special
2461 ways in the stack frame. sp is even more special:
2462 the address we return for it IS the sp for the next frame. */
2463
2464 void
2465 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2466 struct frame_info *frame_info;
2467 struct frame_saved_regs *frame_saved_regs;
2468 {
2469 CORE_ADDR pc;
2470 struct unwind_table_entry *u;
2471 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2472 int status, i, reg;
2473 char buf[4];
2474 int fp_loc = -1;
2475
2476 /* Zero out everything. */
2477 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2478
2479 /* Call dummy frames always look the same, so there's no need to
2480 examine the dummy code to determine locations of saved registers;
2481 instead, let find_dummy_frame_regs fill in the correct offsets
2482 for the saved registers. */
2483 if ((frame_info->pc >= frame_info->frame
2484 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2485 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2486 + 6 * 4)))
2487 find_dummy_frame_regs (frame_info, frame_saved_regs);
2488
2489 /* Interrupt handlers are special too. They lay out the register
2490 state in the exact same order as the register numbers in GDB. */
2491 if (pc_in_interrupt_handler (frame_info->pc))
2492 {
2493 for (i = 0; i < NUM_REGS; i++)
2494 {
2495 /* SP is a little special. */
2496 if (i == SP_REGNUM)
2497 frame_saved_regs->regs[SP_REGNUM]
2498 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2499 else
2500 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2501 }
2502 return;
2503 }
2504
2505 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
2506 /* Handle signal handler callers. */
2507 if (frame_info->signal_handler_caller)
2508 {
2509 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2510 return;
2511 }
2512 #endif
2513
2514 /* Get the starting address of the function referred to by the PC
2515 saved in frame. */
2516 pc = get_pc_function_start (frame_info->pc);
2517
2518 /* Yow! */
2519 u = find_unwind_entry (pc);
2520 if (!u)
2521 return;
2522
2523 /* This is how much of a frame adjustment we need to account for. */
2524 stack_remaining = u->Total_frame_size << 3;
2525
2526 /* Magic register saves we want to know about. */
2527 save_rp = u->Save_RP;
2528 save_sp = u->Save_SP;
2529
2530 /* Turn the Entry_GR field into a bitmask. */
2531 save_gr = 0;
2532 for (i = 3; i < u->Entry_GR + 3; i++)
2533 {
2534 /* Frame pointer gets saved into a special location. */
2535 if (u->Save_SP && i == FP_REGNUM)
2536 continue;
2537
2538 save_gr |= (1 << i);
2539 }
2540
2541 /* Turn the Entry_FR field into a bitmask too. */
2542 save_fr = 0;
2543 for (i = 12; i < u->Entry_FR + 12; i++)
2544 save_fr |= (1 << i);
2545
2546 /* The frame always represents the value of %sp at entry to the
2547 current function (and is thus equivalent to the "saved" stack
2548 pointer. */
2549 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2550
2551 /* Loop until we find everything of interest or hit a branch.
2552
2553 For unoptimized GCC code and for any HP CC code this will never ever
2554 examine any user instructions.
2555
2556 For optimzied GCC code we're faced with problems. GCC will schedule
2557 its prologue and make prologue instructions available for delay slot
2558 filling. The end result is user code gets mixed in with the prologue
2559 and a prologue instruction may be in the delay slot of the first branch
2560 or call.
2561
2562 Some unexpected things are expected with debugging optimized code, so
2563 we allow this routine to walk past user instructions in optimized
2564 GCC code. */
2565 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2566 {
2567 status = target_read_memory (pc, buf, 4);
2568 inst = extract_unsigned_integer (buf, 4);
2569
2570 /* Yow! */
2571 if (status != 0)
2572 return;
2573
2574 /* Note the interesting effects of this instruction. */
2575 stack_remaining -= prologue_inst_adjust_sp (inst);
2576
2577 /* There is only one instruction used for saving RP into the stack. */
2578 if (inst == 0x6bc23fd9)
2579 {
2580 save_rp = 0;
2581 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2582 }
2583
2584 /* Just note that we found the save of SP into the stack. The
2585 value for frame_saved_regs was computed above. */
2586 if ((inst & 0xffffc000) == 0x6fc10000)
2587 save_sp = 0;
2588
2589 /* Account for general and floating-point register saves. */
2590 reg = inst_saves_gr (inst);
2591 if (reg >= 3 && reg <= 18
2592 && (!u->Save_SP || reg != FP_REGNUM))
2593 {
2594 save_gr &= ~(1 << reg);
2595
2596 /* stwm with a positive displacement is a *post modify*. */
2597 if ((inst >> 26) == 0x1b
2598 && extract_14 (inst) >= 0)
2599 frame_saved_regs->regs[reg] = frame_info->frame;
2600 else
2601 {
2602 /* Handle code with and without frame pointers. */
2603 if (u->Save_SP)
2604 frame_saved_regs->regs[reg]
2605 = frame_info->frame + extract_14 (inst);
2606 else
2607 frame_saved_regs->regs[reg]
2608 = frame_info->frame + (u->Total_frame_size << 3)
2609 + extract_14 (inst);
2610 }
2611 }
2612
2613
2614 /* GCC handles callee saved FP regs a little differently.
2615
2616 It emits an instruction to put the value of the start of
2617 the FP store area into %r1. It then uses fstds,ma with
2618 a basereg of %r1 for the stores.
2619
2620 HP CC emits them at the current stack pointer modifying
2621 the stack pointer as it stores each register. */
2622
2623 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2624 if ((inst & 0xffffc000) == 0x34610000
2625 || (inst & 0xffffc000) == 0x37c10000)
2626 fp_loc = extract_14 (inst);
2627
2628 reg = inst_saves_fr (inst);
2629 if (reg >= 12 && reg <= 21)
2630 {
2631 /* Note +4 braindamage below is necessary because the FP status
2632 registers are internally 8 registers rather than the expected
2633 4 registers. */
2634 save_fr &= ~(1 << reg);
2635 if (fp_loc == -1)
2636 {
2637 /* 1st HP CC FP register store. After this instruction
2638 we've set enough state that the GCC and HPCC code are
2639 both handled in the same manner. */
2640 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2641 fp_loc = 8;
2642 }
2643 else
2644 {
2645 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2646 = frame_info->frame + fp_loc;
2647 fp_loc += 8;
2648 }
2649 }
2650
2651 /* Quit if we hit any kind of branch. This can happen if a prologue
2652 instruction is in the delay slot of the first call/branch. */
2653 if (is_branch (inst))
2654 break;
2655
2656 /* Bump the PC. */
2657 pc += 4;
2658 }
2659 }
2660
2661 #ifdef MAINTENANCE_CMDS
2662
2663 static void
2664 unwind_command (exp, from_tty)
2665 char *exp;
2666 int from_tty;
2667 {
2668 CORE_ADDR address;
2669 struct unwind_table_entry *u;
2670
2671 /* If we have an expression, evaluate it and use it as the address. */
2672
2673 if (exp != 0 && *exp != 0)
2674 address = parse_and_eval_address (exp);
2675 else
2676 return;
2677
2678 u = find_unwind_entry (address);
2679
2680 if (!u)
2681 {
2682 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2683 return;
2684 }
2685
2686 printf_unfiltered ("unwind_table_entry (0x%x):\n", u);
2687
2688 printf_unfiltered ("\tregion_start = ");
2689 print_address (u->region_start, gdb_stdout);
2690
2691 printf_unfiltered ("\n\tregion_end = ");
2692 print_address (u->region_end, gdb_stdout);
2693
2694 #ifdef __STDC__
2695 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2696 #else
2697 #define pif(FLD) if (u->FLD) printf_unfiltered (" FLD");
2698 #endif
2699
2700 printf_unfiltered ("\n\tflags =");
2701 pif (Cannot_unwind);
2702 pif (Millicode);
2703 pif (Millicode_save_sr0);
2704 pif (Entry_SR);
2705 pif (Args_stored);
2706 pif (Variable_Frame);
2707 pif (Separate_Package_Body);
2708 pif (Frame_Extension_Millicode);
2709 pif (Stack_Overflow_Check);
2710 pif (Two_Instruction_SP_Increment);
2711 pif (Ada_Region);
2712 pif (Save_SP);
2713 pif (Save_RP);
2714 pif (Save_MRP_in_frame);
2715 pif (extn_ptr_defined);
2716 pif (Cleanup_defined);
2717 pif (MPE_XL_interrupt_marker);
2718 pif (HP_UX_interrupt_marker);
2719 pif (Large_frame);
2720
2721 putchar_unfiltered ('\n');
2722
2723 #ifdef __STDC__
2724 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2725 #else
2726 #define pin(FLD) printf_unfiltered ("\tFLD = 0x%x\n", u->FLD);
2727 #endif
2728
2729 pin (Region_description);
2730 pin (Entry_FR);
2731 pin (Entry_GR);
2732 pin (Total_frame_size);
2733 }
2734 #endif /* MAINTENANCE_CMDS */
2735
2736 void
2737 _initialize_hppa_tdep ()
2738 {
2739 tm_print_insn = print_insn_hppa;
2740
2741 #ifdef MAINTENANCE_CMDS
2742 add_cmd ("unwind", class_maintenance, unwind_command,
2743 "Print unwind table entry at given address.",
2744 &maintenanceprintlist);
2745 #endif /* MAINTENANCE_CMDS */
2746 }
This page took 0.086308 seconds and 4 git commands to generate.