Add quotes to avoid a null test expression.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Routines to extract various sized constants out of hppa
76 instructions. */
77
78 /* This assumes that no garbage lies outside of the lower bits of
79 value. */
80
81 int
82 hppa_sign_extend (unsigned val, unsigned bits)
83 {
84 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
85 }
86
87 /* For many immediate values the sign bit is the low bit! */
88
89 int
90 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
91 {
92 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
93 }
94
95 /* Extract the bits at positions between FROM and TO, using HP's numbering
96 (MSB = 0). */
97
98 int
99 hppa_get_field (unsigned word, int from, int to)
100 {
101 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
102 }
103
104 /* extract the immediate field from a ld{bhw}s instruction */
105
106 int
107 hppa_extract_5_load (unsigned word)
108 {
109 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
110 }
111
112 /* extract the immediate field from a break instruction */
113
114 unsigned
115 hppa_extract_5r_store (unsigned word)
116 {
117 return (word & MASK_5);
118 }
119
120 /* extract the immediate field from a {sr}sm instruction */
121
122 unsigned
123 hppa_extract_5R_store (unsigned word)
124 {
125 return (word >> 16 & MASK_5);
126 }
127
128 /* extract a 14 bit immediate field */
129
130 int
131 hppa_extract_14 (unsigned word)
132 {
133 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
134 }
135
136 /* extract a 21 bit constant */
137
138 int
139 hppa_extract_21 (unsigned word)
140 {
141 int val;
142
143 word &= MASK_21;
144 word <<= 11;
145 val = hppa_get_field (word, 20, 20);
146 val <<= 11;
147 val |= hppa_get_field (word, 9, 19);
148 val <<= 2;
149 val |= hppa_get_field (word, 5, 6);
150 val <<= 5;
151 val |= hppa_get_field (word, 0, 4);
152 val <<= 2;
153 val |= hppa_get_field (word, 7, 8);
154 return hppa_sign_extend (val, 21) << 11;
155 }
156
157 /* extract a 17 bit constant from branch instructions, returning the
158 19 bit signed value. */
159
160 int
161 hppa_extract_17 (unsigned word)
162 {
163 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
164 hppa_get_field (word, 29, 29) << 10 |
165 hppa_get_field (word, 11, 15) << 11 |
166 (word & 0x1) << 16, 17) << 2;
167 }
168
169 CORE_ADDR
170 hppa_symbol_address(const char *sym)
171 {
172 struct minimal_symbol *minsym;
173
174 minsym = lookup_minimal_symbol (sym, NULL, NULL);
175 if (minsym)
176 return SYMBOL_VALUE_ADDRESS (minsym);
177 else
178 return (CORE_ADDR)-1;
179 }
180
181 struct hppa_objfile_private *
182 hppa_init_objfile_priv_data (struct objfile *objfile)
183 {
184 struct hppa_objfile_private *priv;
185
186 priv = (struct hppa_objfile_private *)
187 obstack_alloc (&objfile->objfile_obstack,
188 sizeof (struct hppa_objfile_private));
189 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
190 memset (priv, 0, sizeof (*priv));
191
192 return priv;
193 }
194 \f
195
196 /* Compare the start address for two unwind entries returning 1 if
197 the first address is larger than the second, -1 if the second is
198 larger than the first, and zero if they are equal. */
199
200 static int
201 compare_unwind_entries (const void *arg1, const void *arg2)
202 {
203 const struct unwind_table_entry *a = arg1;
204 const struct unwind_table_entry *b = arg2;
205
206 if (a->region_start > b->region_start)
207 return 1;
208 else if (a->region_start < b->region_start)
209 return -1;
210 else
211 return 0;
212 }
213
214 static void
215 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
216 {
217 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
218 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
219 {
220 bfd_vma value = section->vma - section->filepos;
221 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
222
223 if (value < *low_text_segment_address)
224 *low_text_segment_address = value;
225 }
226 }
227
228 static void
229 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
230 asection *section, unsigned int entries, unsigned int size,
231 CORE_ADDR text_offset)
232 {
233 /* We will read the unwind entries into temporary memory, then
234 fill in the actual unwind table. */
235
236 if (size > 0)
237 {
238 unsigned long tmp;
239 unsigned i;
240 char *buf = alloca (size);
241 CORE_ADDR low_text_segment_address;
242
243 /* For ELF targets, then unwinds are supposed to
244 be segment relative offsets instead of absolute addresses.
245
246 Note that when loading a shared library (text_offset != 0) the
247 unwinds are already relative to the text_offset that will be
248 passed in. */
249 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
250 {
251 low_text_segment_address = -1;
252
253 bfd_map_over_sections (objfile->obfd,
254 record_text_segment_lowaddr,
255 &low_text_segment_address);
256
257 text_offset = low_text_segment_address;
258 }
259 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
260 {
261 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
262 }
263
264 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
265
266 /* Now internalize the information being careful to handle host/target
267 endian issues. */
268 for (i = 0; i < entries; i++)
269 {
270 table[i].region_start = bfd_get_32 (objfile->obfd,
271 (bfd_byte *) buf);
272 table[i].region_start += text_offset;
273 buf += 4;
274 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
275 table[i].region_end += text_offset;
276 buf += 4;
277 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
278 buf += 4;
279 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
280 table[i].Millicode = (tmp >> 30) & 0x1;
281 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
282 table[i].Region_description = (tmp >> 27) & 0x3;
283 table[i].reserved1 = (tmp >> 26) & 0x1;
284 table[i].Entry_SR = (tmp >> 25) & 0x1;
285 table[i].Entry_FR = (tmp >> 21) & 0xf;
286 table[i].Entry_GR = (tmp >> 16) & 0x1f;
287 table[i].Args_stored = (tmp >> 15) & 0x1;
288 table[i].Variable_Frame = (tmp >> 14) & 0x1;
289 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
290 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
291 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
292 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
293 table[i].Ada_Region = (tmp >> 9) & 0x1;
294 table[i].cxx_info = (tmp >> 8) & 0x1;
295 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
296 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
297 table[i].reserved2 = (tmp >> 5) & 0x1;
298 table[i].Save_SP = (tmp >> 4) & 0x1;
299 table[i].Save_RP = (tmp >> 3) & 0x1;
300 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
301 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
302 table[i].Cleanup_defined = tmp & 0x1;
303 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
304 buf += 4;
305 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
306 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
307 table[i].Large_frame = (tmp >> 29) & 0x1;
308 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
309 table[i].reserved4 = (tmp >> 27) & 0x1;
310 table[i].Total_frame_size = tmp & 0x7ffffff;
311
312 /* Stub unwinds are handled elsewhere. */
313 table[i].stub_unwind.stub_type = 0;
314 table[i].stub_unwind.padding = 0;
315 }
316 }
317 }
318
319 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
320 the object file. This info is used mainly by find_unwind_entry() to find
321 out the stack frame size and frame pointer used by procedures. We put
322 everything on the psymbol obstack in the objfile so that it automatically
323 gets freed when the objfile is destroyed. */
324
325 static void
326 read_unwind_info (struct objfile *objfile)
327 {
328 asection *unwind_sec, *stub_unwind_sec;
329 unsigned unwind_size, stub_unwind_size, total_size;
330 unsigned index, unwind_entries;
331 unsigned stub_entries, total_entries;
332 CORE_ADDR text_offset;
333 struct hppa_unwind_info *ui;
334 struct hppa_objfile_private *obj_private;
335
336 text_offset = ANOFFSET (objfile->section_offsets, 0);
337 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
338 sizeof (struct hppa_unwind_info));
339
340 ui->table = NULL;
341 ui->cache = NULL;
342 ui->last = -1;
343
344 /* For reasons unknown the HP PA64 tools generate multiple unwinder
345 sections in a single executable. So we just iterate over every
346 section in the BFD looking for unwinder sections intead of trying
347 to do a lookup with bfd_get_section_by_name.
348
349 First determine the total size of the unwind tables so that we
350 can allocate memory in a nice big hunk. */
351 total_entries = 0;
352 for (unwind_sec = objfile->obfd->sections;
353 unwind_sec;
354 unwind_sec = unwind_sec->next)
355 {
356 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
357 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
358 {
359 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
360 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
361
362 total_entries += unwind_entries;
363 }
364 }
365
366 /* Now compute the size of the stub unwinds. Note the ELF tools do not
367 use stub unwinds at the curren time. */
368 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
369
370 if (stub_unwind_sec)
371 {
372 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
373 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
374 }
375 else
376 {
377 stub_unwind_size = 0;
378 stub_entries = 0;
379 }
380
381 /* Compute total number of unwind entries and their total size. */
382 total_entries += stub_entries;
383 total_size = total_entries * sizeof (struct unwind_table_entry);
384
385 /* Allocate memory for the unwind table. */
386 ui->table = (struct unwind_table_entry *)
387 obstack_alloc (&objfile->objfile_obstack, total_size);
388 ui->last = total_entries - 1;
389
390 /* Now read in each unwind section and internalize the standard unwind
391 entries. */
392 index = 0;
393 for (unwind_sec = objfile->obfd->sections;
394 unwind_sec;
395 unwind_sec = unwind_sec->next)
396 {
397 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
398 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
399 {
400 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
401 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
402
403 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
404 unwind_entries, unwind_size, text_offset);
405 index += unwind_entries;
406 }
407 }
408
409 /* Now read in and internalize the stub unwind entries. */
410 if (stub_unwind_size > 0)
411 {
412 unsigned int i;
413 char *buf = alloca (stub_unwind_size);
414
415 /* Read in the stub unwind entries. */
416 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
417 0, stub_unwind_size);
418
419 /* Now convert them into regular unwind entries. */
420 for (i = 0; i < stub_entries; i++, index++)
421 {
422 /* Clear out the next unwind entry. */
423 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
424
425 /* Convert offset & size into region_start and region_end.
426 Stuff away the stub type into "reserved" fields. */
427 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
428 (bfd_byte *) buf);
429 ui->table[index].region_start += text_offset;
430 buf += 4;
431 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
432 (bfd_byte *) buf);
433 buf += 2;
434 ui->table[index].region_end
435 = ui->table[index].region_start + 4 *
436 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
437 buf += 2;
438 }
439
440 }
441
442 /* Unwind table needs to be kept sorted. */
443 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
444 compare_unwind_entries);
445
446 /* Keep a pointer to the unwind information. */
447 obj_private = (struct hppa_objfile_private *)
448 objfile_data (objfile, hppa_objfile_priv_data);
449 if (obj_private == NULL)
450 obj_private = hppa_init_objfile_priv_data (objfile);
451
452 obj_private->unwind_info = ui;
453 }
454
455 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
456 of the objfiles seeking the unwind table entry for this PC. Each objfile
457 contains a sorted list of struct unwind_table_entry. Since we do a binary
458 search of the unwind tables, we depend upon them to be sorted. */
459
460 struct unwind_table_entry *
461 find_unwind_entry (CORE_ADDR pc)
462 {
463 int first, middle, last;
464 struct objfile *objfile;
465 struct hppa_objfile_private *priv;
466
467 if (hppa_debug)
468 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
469 paddr_nz (pc));
470
471 /* A function at address 0? Not in HP-UX! */
472 if (pc == (CORE_ADDR) 0)
473 {
474 if (hppa_debug)
475 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
476 return NULL;
477 }
478
479 ALL_OBJFILES (objfile)
480 {
481 struct hppa_unwind_info *ui;
482 ui = NULL;
483 priv = objfile_data (objfile, hppa_objfile_priv_data);
484 if (priv)
485 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
486
487 if (!ui)
488 {
489 read_unwind_info (objfile);
490 priv = objfile_data (objfile, hppa_objfile_priv_data);
491 if (priv == NULL)
492 error (_("Internal error reading unwind information."));
493 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
494 }
495
496 /* First, check the cache */
497
498 if (ui->cache
499 && pc >= ui->cache->region_start
500 && pc <= ui->cache->region_end)
501 {
502 if (hppa_debug)
503 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
504 paddr_nz ((CORE_ADDR) ui->cache));
505 return ui->cache;
506 }
507
508 /* Not in the cache, do a binary search */
509
510 first = 0;
511 last = ui->last;
512
513 while (first <= last)
514 {
515 middle = (first + last) / 2;
516 if (pc >= ui->table[middle].region_start
517 && pc <= ui->table[middle].region_end)
518 {
519 ui->cache = &ui->table[middle];
520 if (hppa_debug)
521 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
522 paddr_nz ((CORE_ADDR) ui->cache));
523 return &ui->table[middle];
524 }
525
526 if (pc < ui->table[middle].region_start)
527 last = middle - 1;
528 else
529 first = middle + 1;
530 }
531 } /* ALL_OBJFILES() */
532
533 if (hppa_debug)
534 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
535
536 return NULL;
537 }
538
539 /* The epilogue is defined here as the area either on the `bv' instruction
540 itself or an instruction which destroys the function's stack frame.
541
542 We do not assume that the epilogue is at the end of a function as we can
543 also have return sequences in the middle of a function. */
544 static int
545 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
546 {
547 unsigned long status;
548 unsigned int inst;
549 char buf[4];
550 int off;
551
552 status = deprecated_read_memory_nobpt (pc, buf, 4);
553 if (status != 0)
554 return 0;
555
556 inst = extract_unsigned_integer (buf, 4);
557
558 /* The most common way to perform a stack adjustment ldo X(sp),sp
559 We are destroying a stack frame if the offset is negative. */
560 if ((inst & 0xffffc000) == 0x37de0000
561 && hppa_extract_14 (inst) < 0)
562 return 1;
563
564 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
565 if (((inst & 0x0fc010e0) == 0x0fc010e0
566 || (inst & 0x0fc010e0) == 0x0fc010e0)
567 && hppa_extract_14 (inst) < 0)
568 return 1;
569
570 /* bv %r0(%rp) or bv,n %r0(%rp) */
571 if (inst == 0xe840c000 || inst == 0xe840c002)
572 return 1;
573
574 return 0;
575 }
576
577 static const unsigned char *
578 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
579 {
580 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
581 (*len) = sizeof (breakpoint);
582 return breakpoint;
583 }
584
585 /* Return the name of a register. */
586
587 static const char *
588 hppa32_register_name (int i)
589 {
590 static char *names[] = {
591 "flags", "r1", "rp", "r3",
592 "r4", "r5", "r6", "r7",
593 "r8", "r9", "r10", "r11",
594 "r12", "r13", "r14", "r15",
595 "r16", "r17", "r18", "r19",
596 "r20", "r21", "r22", "r23",
597 "r24", "r25", "r26", "dp",
598 "ret0", "ret1", "sp", "r31",
599 "sar", "pcoqh", "pcsqh", "pcoqt",
600 "pcsqt", "eiem", "iir", "isr",
601 "ior", "ipsw", "goto", "sr4",
602 "sr0", "sr1", "sr2", "sr3",
603 "sr5", "sr6", "sr7", "cr0",
604 "cr8", "cr9", "ccr", "cr12",
605 "cr13", "cr24", "cr25", "cr26",
606 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
607 "fpsr", "fpe1", "fpe2", "fpe3",
608 "fpe4", "fpe5", "fpe6", "fpe7",
609 "fr4", "fr4R", "fr5", "fr5R",
610 "fr6", "fr6R", "fr7", "fr7R",
611 "fr8", "fr8R", "fr9", "fr9R",
612 "fr10", "fr10R", "fr11", "fr11R",
613 "fr12", "fr12R", "fr13", "fr13R",
614 "fr14", "fr14R", "fr15", "fr15R",
615 "fr16", "fr16R", "fr17", "fr17R",
616 "fr18", "fr18R", "fr19", "fr19R",
617 "fr20", "fr20R", "fr21", "fr21R",
618 "fr22", "fr22R", "fr23", "fr23R",
619 "fr24", "fr24R", "fr25", "fr25R",
620 "fr26", "fr26R", "fr27", "fr27R",
621 "fr28", "fr28R", "fr29", "fr29R",
622 "fr30", "fr30R", "fr31", "fr31R"
623 };
624 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
625 return NULL;
626 else
627 return names[i];
628 }
629
630 static const char *
631 hppa64_register_name (int i)
632 {
633 static char *names[] = {
634 "flags", "r1", "rp", "r3",
635 "r4", "r5", "r6", "r7",
636 "r8", "r9", "r10", "r11",
637 "r12", "r13", "r14", "r15",
638 "r16", "r17", "r18", "r19",
639 "r20", "r21", "r22", "r23",
640 "r24", "r25", "r26", "dp",
641 "ret0", "ret1", "sp", "r31",
642 "sar", "pcoqh", "pcsqh", "pcoqt",
643 "pcsqt", "eiem", "iir", "isr",
644 "ior", "ipsw", "goto", "sr4",
645 "sr0", "sr1", "sr2", "sr3",
646 "sr5", "sr6", "sr7", "cr0",
647 "cr8", "cr9", "ccr", "cr12",
648 "cr13", "cr24", "cr25", "cr26",
649 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
650 "fpsr", "fpe1", "fpe2", "fpe3",
651 "fr4", "fr5", "fr6", "fr7",
652 "fr8", "fr9", "fr10", "fr11",
653 "fr12", "fr13", "fr14", "fr15",
654 "fr16", "fr17", "fr18", "fr19",
655 "fr20", "fr21", "fr22", "fr23",
656 "fr24", "fr25", "fr26", "fr27",
657 "fr28", "fr29", "fr30", "fr31"
658 };
659 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
660 return NULL;
661 else
662 return names[i];
663 }
664
665 /* This function pushes a stack frame with arguments as part of the
666 inferior function calling mechanism.
667
668 This is the version of the function for the 32-bit PA machines, in
669 which later arguments appear at lower addresses. (The stack always
670 grows towards higher addresses.)
671
672 We simply allocate the appropriate amount of stack space and put
673 arguments into their proper slots. */
674
675 static CORE_ADDR
676 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
677 struct regcache *regcache, CORE_ADDR bp_addr,
678 int nargs, struct value **args, CORE_ADDR sp,
679 int struct_return, CORE_ADDR struct_addr)
680 {
681 /* Stack base address at which any pass-by-reference parameters are
682 stored. */
683 CORE_ADDR struct_end = 0;
684 /* Stack base address at which the first parameter is stored. */
685 CORE_ADDR param_end = 0;
686
687 /* The inner most end of the stack after all the parameters have
688 been pushed. */
689 CORE_ADDR new_sp = 0;
690
691 /* Two passes. First pass computes the location of everything,
692 second pass writes the bytes out. */
693 int write_pass;
694
695 /* Global pointer (r19) of the function we are trying to call. */
696 CORE_ADDR gp;
697
698 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
699
700 for (write_pass = 0; write_pass < 2; write_pass++)
701 {
702 CORE_ADDR struct_ptr = 0;
703 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
704 struct_ptr is adjusted for each argument below, so the first
705 argument will end up at sp-36. */
706 CORE_ADDR param_ptr = 32;
707 int i;
708 int small_struct = 0;
709
710 for (i = 0; i < nargs; i++)
711 {
712 struct value *arg = args[i];
713 struct type *type = check_typedef (value_type (arg));
714 /* The corresponding parameter that is pushed onto the
715 stack, and [possibly] passed in a register. */
716 char param_val[8];
717 int param_len;
718 memset (param_val, 0, sizeof param_val);
719 if (TYPE_LENGTH (type) > 8)
720 {
721 /* Large parameter, pass by reference. Store the value
722 in "struct" area and then pass its address. */
723 param_len = 4;
724 struct_ptr += align_up (TYPE_LENGTH (type), 8);
725 if (write_pass)
726 write_memory (struct_end - struct_ptr, value_contents (arg),
727 TYPE_LENGTH (type));
728 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
729 }
730 else if (TYPE_CODE (type) == TYPE_CODE_INT
731 || TYPE_CODE (type) == TYPE_CODE_ENUM)
732 {
733 /* Integer value store, right aligned. "unpack_long"
734 takes care of any sign-extension problems. */
735 param_len = align_up (TYPE_LENGTH (type), 4);
736 store_unsigned_integer (param_val, param_len,
737 unpack_long (type,
738 value_contents (arg)));
739 }
740 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
741 {
742 /* Floating point value store, right aligned. */
743 param_len = align_up (TYPE_LENGTH (type), 4);
744 memcpy (param_val, value_contents (arg), param_len);
745 }
746 else
747 {
748 param_len = align_up (TYPE_LENGTH (type), 4);
749
750 /* Small struct value are stored right-aligned. */
751 memcpy (param_val + param_len - TYPE_LENGTH (type),
752 value_contents (arg), TYPE_LENGTH (type));
753
754 /* Structures of size 5, 6 and 7 bytes are special in that
755 the higher-ordered word is stored in the lower-ordered
756 argument, and even though it is a 8-byte quantity the
757 registers need not be 8-byte aligned. */
758 if (param_len > 4 && param_len < 8)
759 small_struct = 1;
760 }
761
762 param_ptr += param_len;
763 if (param_len == 8 && !small_struct)
764 param_ptr = align_up (param_ptr, 8);
765
766 /* First 4 non-FP arguments are passed in gr26-gr23.
767 First 4 32-bit FP arguments are passed in fr4L-fr7L.
768 First 2 64-bit FP arguments are passed in fr5 and fr7.
769
770 The rest go on the stack, starting at sp-36, towards lower
771 addresses. 8-byte arguments must be aligned to a 8-byte
772 stack boundary. */
773 if (write_pass)
774 {
775 write_memory (param_end - param_ptr, param_val, param_len);
776
777 /* There are some cases when we don't know the type
778 expected by the callee (e.g. for variadic functions), so
779 pass the parameters in both general and fp regs. */
780 if (param_ptr <= 48)
781 {
782 int grreg = 26 - (param_ptr - 36) / 4;
783 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
784 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
785
786 regcache_cooked_write (regcache, grreg, param_val);
787 regcache_cooked_write (regcache, fpLreg, param_val);
788
789 if (param_len > 4)
790 {
791 regcache_cooked_write (regcache, grreg + 1,
792 param_val + 4);
793
794 regcache_cooked_write (regcache, fpreg, param_val);
795 regcache_cooked_write (regcache, fpreg + 1,
796 param_val + 4);
797 }
798 }
799 }
800 }
801
802 /* Update the various stack pointers. */
803 if (!write_pass)
804 {
805 struct_end = sp + align_up (struct_ptr, 64);
806 /* PARAM_PTR already accounts for all the arguments passed
807 by the user. However, the ABI mandates minimum stack
808 space allocations for outgoing arguments. The ABI also
809 mandates minimum stack alignments which we must
810 preserve. */
811 param_end = struct_end + align_up (param_ptr, 64);
812 }
813 }
814
815 /* If a structure has to be returned, set up register 28 to hold its
816 address */
817 if (struct_return)
818 write_register (28, struct_addr);
819
820 gp = tdep->find_global_pointer (function);
821
822 if (gp != 0)
823 write_register (19, gp);
824
825 /* Set the return address. */
826 if (!gdbarch_push_dummy_code_p (gdbarch))
827 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
828
829 /* Update the Stack Pointer. */
830 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
831
832 return param_end;
833 }
834
835 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
836 Runtime Architecture for PA-RISC 2.0", which is distributed as part
837 as of the HP-UX Software Transition Kit (STK). This implementation
838 is based on version 3.3, dated October 6, 1997. */
839
840 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
841
842 static int
843 hppa64_integral_or_pointer_p (const struct type *type)
844 {
845 switch (TYPE_CODE (type))
846 {
847 case TYPE_CODE_INT:
848 case TYPE_CODE_BOOL:
849 case TYPE_CODE_CHAR:
850 case TYPE_CODE_ENUM:
851 case TYPE_CODE_RANGE:
852 {
853 int len = TYPE_LENGTH (type);
854 return (len == 1 || len == 2 || len == 4 || len == 8);
855 }
856 case TYPE_CODE_PTR:
857 case TYPE_CODE_REF:
858 return (TYPE_LENGTH (type) == 8);
859 default:
860 break;
861 }
862
863 return 0;
864 }
865
866 /* Check whether TYPE is a "Floating Scalar Type". */
867
868 static int
869 hppa64_floating_p (const struct type *type)
870 {
871 switch (TYPE_CODE (type))
872 {
873 case TYPE_CODE_FLT:
874 {
875 int len = TYPE_LENGTH (type);
876 return (len == 4 || len == 8 || len == 16);
877 }
878 default:
879 break;
880 }
881
882 return 0;
883 }
884
885 static CORE_ADDR
886 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
887 struct regcache *regcache, CORE_ADDR bp_addr,
888 int nargs, struct value **args, CORE_ADDR sp,
889 int struct_return, CORE_ADDR struct_addr)
890 {
891 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
892 int i, offset = 0;
893 CORE_ADDR gp;
894
895 /* "The outgoing parameter area [...] must be aligned at a 16-byte
896 boundary." */
897 sp = align_up (sp, 16);
898
899 for (i = 0; i < nargs; i++)
900 {
901 struct value *arg = args[i];
902 struct type *type = value_type (arg);
903 int len = TYPE_LENGTH (type);
904 const bfd_byte *valbuf;
905 int regnum;
906
907 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
908 offset = align_up (offset, 8);
909
910 if (hppa64_integral_or_pointer_p (type))
911 {
912 /* "Integral scalar parameters smaller than 64 bits are
913 padded on the left (i.e., the value is in the
914 least-significant bits of the 64-bit storage unit, and
915 the high-order bits are undefined)." Therefore we can
916 safely sign-extend them. */
917 if (len < 8)
918 {
919 arg = value_cast (builtin_type_int64, arg);
920 len = 8;
921 }
922 }
923 else if (hppa64_floating_p (type))
924 {
925 if (len > 8)
926 {
927 /* "Quad-precision (128-bit) floating-point scalar
928 parameters are aligned on a 16-byte boundary." */
929 offset = align_up (offset, 16);
930
931 /* "Double-extended- and quad-precision floating-point
932 parameters within the first 64 bytes of the parameter
933 list are always passed in general registers." */
934 }
935 else
936 {
937 if (len == 4)
938 {
939 /* "Single-precision (32-bit) floating-point scalar
940 parameters are padded on the left with 32 bits of
941 garbage (i.e., the floating-point value is in the
942 least-significant 32 bits of a 64-bit storage
943 unit)." */
944 offset += 4;
945 }
946
947 /* "Single- and double-precision floating-point
948 parameters in this area are passed according to the
949 available formal parameter information in a function
950 prototype. [...] If no prototype is in scope,
951 floating-point parameters must be passed both in the
952 corresponding general registers and in the
953 corresponding floating-point registers." */
954 regnum = HPPA64_FP4_REGNUM + offset / 8;
955
956 if (regnum < HPPA64_FP4_REGNUM + 8)
957 {
958 /* "Single-precision floating-point parameters, when
959 passed in floating-point registers, are passed in
960 the right halves of the floating point registers;
961 the left halves are unused." */
962 regcache_cooked_write_part (regcache, regnum, offset % 8,
963 len, value_contents (arg));
964 }
965 }
966 }
967 else
968 {
969 if (len > 8)
970 {
971 /* "Aggregates larger than 8 bytes are aligned on a
972 16-byte boundary, possibly leaving an unused argument
973 slot, which is filled with garbage. If necessary,
974 they are padded on the right (with garbage), to a
975 multiple of 8 bytes." */
976 offset = align_up (offset, 16);
977 }
978 }
979
980 /* Always store the argument in memory. */
981 write_memory (sp + offset, value_contents (arg), len);
982
983 valbuf = value_contents (arg);
984 regnum = HPPA_ARG0_REGNUM - offset / 8;
985 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
986 {
987 regcache_cooked_write_part (regcache, regnum,
988 offset % 8, min (len, 8), valbuf);
989 offset += min (len, 8);
990 valbuf += min (len, 8);
991 len -= min (len, 8);
992 regnum--;
993 }
994
995 offset += len;
996 }
997
998 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
999 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1000
1001 /* Allocate the outgoing parameter area. Make sure the outgoing
1002 parameter area is multiple of 16 bytes in length. */
1003 sp += max (align_up (offset, 16), 64);
1004
1005 /* Allocate 32-bytes of scratch space. The documentation doesn't
1006 mention this, but it seems to be needed. */
1007 sp += 32;
1008
1009 /* Allocate the frame marker area. */
1010 sp += 16;
1011
1012 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1013 its address. */
1014 if (struct_return)
1015 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1016
1017 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1018 gp = tdep->find_global_pointer (function);
1019 if (gp != 0)
1020 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1021
1022 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1023 if (!gdbarch_push_dummy_code_p (gdbarch))
1024 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1025
1026 /* Set up GR30 to hold the stack pointer (sp). */
1027 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1028
1029 return sp;
1030 }
1031 \f
1032
1033 /* Handle 32/64-bit struct return conventions. */
1034
1035 static enum return_value_convention
1036 hppa32_return_value (struct gdbarch *gdbarch,
1037 struct type *type, struct regcache *regcache,
1038 gdb_byte *readbuf, const gdb_byte *writebuf)
1039 {
1040 if (TYPE_LENGTH (type) <= 2 * 4)
1041 {
1042 /* The value always lives in the right hand end of the register
1043 (or register pair)? */
1044 int b;
1045 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1046 int part = TYPE_LENGTH (type) % 4;
1047 /* The left hand register contains only part of the value,
1048 transfer that first so that the rest can be xfered as entire
1049 4-byte registers. */
1050 if (part > 0)
1051 {
1052 if (readbuf != NULL)
1053 regcache_cooked_read_part (regcache, reg, 4 - part,
1054 part, readbuf);
1055 if (writebuf != NULL)
1056 regcache_cooked_write_part (regcache, reg, 4 - part,
1057 part, writebuf);
1058 reg++;
1059 }
1060 /* Now transfer the remaining register values. */
1061 for (b = part; b < TYPE_LENGTH (type); b += 4)
1062 {
1063 if (readbuf != NULL)
1064 regcache_cooked_read (regcache, reg, readbuf + b);
1065 if (writebuf != NULL)
1066 regcache_cooked_write (regcache, reg, writebuf + b);
1067 reg++;
1068 }
1069 return RETURN_VALUE_REGISTER_CONVENTION;
1070 }
1071 else
1072 return RETURN_VALUE_STRUCT_CONVENTION;
1073 }
1074
1075 static enum return_value_convention
1076 hppa64_return_value (struct gdbarch *gdbarch,
1077 struct type *type, struct regcache *regcache,
1078 gdb_byte *readbuf, const gdb_byte *writebuf)
1079 {
1080 int len = TYPE_LENGTH (type);
1081 int regnum, offset;
1082
1083 if (len > 16)
1084 {
1085 /* All return values larget than 128 bits must be aggregate
1086 return values. */
1087 gdb_assert (!hppa64_integral_or_pointer_p (type));
1088 gdb_assert (!hppa64_floating_p (type));
1089
1090 /* "Aggregate return values larger than 128 bits are returned in
1091 a buffer allocated by the caller. The address of the buffer
1092 must be passed in GR 28." */
1093 return RETURN_VALUE_STRUCT_CONVENTION;
1094 }
1095
1096 if (hppa64_integral_or_pointer_p (type))
1097 {
1098 /* "Integral return values are returned in GR 28. Values
1099 smaller than 64 bits are padded on the left (with garbage)." */
1100 regnum = HPPA_RET0_REGNUM;
1101 offset = 8 - len;
1102 }
1103 else if (hppa64_floating_p (type))
1104 {
1105 if (len > 8)
1106 {
1107 /* "Double-extended- and quad-precision floating-point
1108 values are returned in GRs 28 and 29. The sign,
1109 exponent, and most-significant bits of the mantissa are
1110 returned in GR 28; the least-significant bits of the
1111 mantissa are passed in GR 29. For double-extended
1112 precision values, GR 29 is padded on the right with 48
1113 bits of garbage." */
1114 regnum = HPPA_RET0_REGNUM;
1115 offset = 0;
1116 }
1117 else
1118 {
1119 /* "Single-precision and double-precision floating-point
1120 return values are returned in FR 4R (single precision) or
1121 FR 4 (double-precision)." */
1122 regnum = HPPA64_FP4_REGNUM;
1123 offset = 8 - len;
1124 }
1125 }
1126 else
1127 {
1128 /* "Aggregate return values up to 64 bits in size are returned
1129 in GR 28. Aggregates smaller than 64 bits are left aligned
1130 in the register; the pad bits on the right are undefined."
1131
1132 "Aggregate return values between 65 and 128 bits are returned
1133 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1134 the remaining bits are placed, left aligned, in GR 29. The
1135 pad bits on the right of GR 29 (if any) are undefined." */
1136 regnum = HPPA_RET0_REGNUM;
1137 offset = 0;
1138 }
1139
1140 if (readbuf)
1141 {
1142 while (len > 0)
1143 {
1144 regcache_cooked_read_part (regcache, regnum, offset,
1145 min (len, 8), readbuf);
1146 readbuf += min (len, 8);
1147 len -= min (len, 8);
1148 regnum++;
1149 }
1150 }
1151
1152 if (writebuf)
1153 {
1154 while (len > 0)
1155 {
1156 regcache_cooked_write_part (regcache, regnum, offset,
1157 min (len, 8), writebuf);
1158 writebuf += min (len, 8);
1159 len -= min (len, 8);
1160 regnum++;
1161 }
1162 }
1163
1164 return RETURN_VALUE_REGISTER_CONVENTION;
1165 }
1166 \f
1167
1168 static CORE_ADDR
1169 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1170 CORE_ADDR addr,
1171 struct target_ops *targ)
1172 {
1173 if (addr & 2)
1174 {
1175 CORE_ADDR plabel;
1176
1177 plabel = addr & ~3;
1178 target_read_memory(plabel, (char *)&addr, 4);
1179 }
1180
1181 return addr;
1182 }
1183
1184 static CORE_ADDR
1185 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1186 {
1187 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1188 and not _bit_)! */
1189 return align_up (addr, 64);
1190 }
1191
1192 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1193
1194 static CORE_ADDR
1195 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1196 {
1197 /* Just always 16-byte align. */
1198 return align_up (addr, 16);
1199 }
1200
1201 CORE_ADDR
1202 hppa_read_pc (ptid_t ptid)
1203 {
1204 ULONGEST ipsw;
1205 CORE_ADDR pc;
1206
1207 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1208 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1209
1210 /* If the current instruction is nullified, then we are effectively
1211 still executing the previous instruction. Pretend we are still
1212 there. This is needed when single stepping; if the nullified
1213 instruction is on a different line, we don't want GDB to think
1214 we've stepped onto that line. */
1215 if (ipsw & 0x00200000)
1216 pc -= 4;
1217
1218 return pc & ~0x3;
1219 }
1220
1221 void
1222 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1223 {
1224 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1225 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1226 }
1227
1228 /* return the alignment of a type in bytes. Structures have the maximum
1229 alignment required by their fields. */
1230
1231 static int
1232 hppa_alignof (struct type *type)
1233 {
1234 int max_align, align, i;
1235 CHECK_TYPEDEF (type);
1236 switch (TYPE_CODE (type))
1237 {
1238 case TYPE_CODE_PTR:
1239 case TYPE_CODE_INT:
1240 case TYPE_CODE_FLT:
1241 return TYPE_LENGTH (type);
1242 case TYPE_CODE_ARRAY:
1243 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1244 case TYPE_CODE_STRUCT:
1245 case TYPE_CODE_UNION:
1246 max_align = 1;
1247 for (i = 0; i < TYPE_NFIELDS (type); i++)
1248 {
1249 /* Bit fields have no real alignment. */
1250 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1251 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1252 {
1253 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1254 max_align = max (max_align, align);
1255 }
1256 }
1257 return max_align;
1258 default:
1259 return 4;
1260 }
1261 }
1262
1263 /* For the given instruction (INST), return any adjustment it makes
1264 to the stack pointer or zero for no adjustment.
1265
1266 This only handles instructions commonly found in prologues. */
1267
1268 static int
1269 prologue_inst_adjust_sp (unsigned long inst)
1270 {
1271 /* This must persist across calls. */
1272 static int save_high21;
1273
1274 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1275 if ((inst & 0xffffc000) == 0x37de0000)
1276 return hppa_extract_14 (inst);
1277
1278 /* stwm X,D(sp) */
1279 if ((inst & 0xffe00000) == 0x6fc00000)
1280 return hppa_extract_14 (inst);
1281
1282 /* std,ma X,D(sp) */
1283 if ((inst & 0xffe00008) == 0x73c00008)
1284 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1285
1286 /* addil high21,%r30; ldo low11,(%r1),%r30)
1287 save high bits in save_high21 for later use. */
1288 if ((inst & 0xffe00000) == 0x2bc00000)
1289 {
1290 save_high21 = hppa_extract_21 (inst);
1291 return 0;
1292 }
1293
1294 if ((inst & 0xffff0000) == 0x343e0000)
1295 return save_high21 + hppa_extract_14 (inst);
1296
1297 /* fstws as used by the HP compilers. */
1298 if ((inst & 0xffffffe0) == 0x2fd01220)
1299 return hppa_extract_5_load (inst);
1300
1301 /* No adjustment. */
1302 return 0;
1303 }
1304
1305 /* Return nonzero if INST is a branch of some kind, else return zero. */
1306
1307 static int
1308 is_branch (unsigned long inst)
1309 {
1310 switch (inst >> 26)
1311 {
1312 case 0x20:
1313 case 0x21:
1314 case 0x22:
1315 case 0x23:
1316 case 0x27:
1317 case 0x28:
1318 case 0x29:
1319 case 0x2a:
1320 case 0x2b:
1321 case 0x2f:
1322 case 0x30:
1323 case 0x31:
1324 case 0x32:
1325 case 0x33:
1326 case 0x38:
1327 case 0x39:
1328 case 0x3a:
1329 case 0x3b:
1330 return 1;
1331
1332 default:
1333 return 0;
1334 }
1335 }
1336
1337 /* Return the register number for a GR which is saved by INST or
1338 zero it INST does not save a GR. */
1339
1340 static int
1341 inst_saves_gr (unsigned long inst)
1342 {
1343 /* Does it look like a stw? */
1344 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1345 || (inst >> 26) == 0x1f
1346 || ((inst >> 26) == 0x1f
1347 && ((inst >> 6) == 0xa)))
1348 return hppa_extract_5R_store (inst);
1349
1350 /* Does it look like a std? */
1351 if ((inst >> 26) == 0x1c
1352 || ((inst >> 26) == 0x03
1353 && ((inst >> 6) & 0xf) == 0xb))
1354 return hppa_extract_5R_store (inst);
1355
1356 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1357 if ((inst >> 26) == 0x1b)
1358 return hppa_extract_5R_store (inst);
1359
1360 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1361 too. */
1362 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1363 || ((inst >> 26) == 0x3
1364 && (((inst >> 6) & 0xf) == 0x8
1365 || (inst >> 6) & 0xf) == 0x9))
1366 return hppa_extract_5R_store (inst);
1367
1368 return 0;
1369 }
1370
1371 /* Return the register number for a FR which is saved by INST or
1372 zero it INST does not save a FR.
1373
1374 Note we only care about full 64bit register stores (that's the only
1375 kind of stores the prologue will use).
1376
1377 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1378
1379 static int
1380 inst_saves_fr (unsigned long inst)
1381 {
1382 /* is this an FSTD ? */
1383 if ((inst & 0xfc00dfc0) == 0x2c001200)
1384 return hppa_extract_5r_store (inst);
1385 if ((inst & 0xfc000002) == 0x70000002)
1386 return hppa_extract_5R_store (inst);
1387 /* is this an FSTW ? */
1388 if ((inst & 0xfc00df80) == 0x24001200)
1389 return hppa_extract_5r_store (inst);
1390 if ((inst & 0xfc000002) == 0x7c000000)
1391 return hppa_extract_5R_store (inst);
1392 return 0;
1393 }
1394
1395 /* Advance PC across any function entry prologue instructions
1396 to reach some "real" code.
1397
1398 Use information in the unwind table to determine what exactly should
1399 be in the prologue. */
1400
1401
1402 static CORE_ADDR
1403 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1404 {
1405 char buf[4];
1406 CORE_ADDR orig_pc = pc;
1407 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1408 unsigned long args_stored, status, i, restart_gr, restart_fr;
1409 struct unwind_table_entry *u;
1410 int final_iteration;
1411
1412 restart_gr = 0;
1413 restart_fr = 0;
1414
1415 restart:
1416 u = find_unwind_entry (pc);
1417 if (!u)
1418 return pc;
1419
1420 /* If we are not at the beginning of a function, then return now. */
1421 if ((pc & ~0x3) != u->region_start)
1422 return pc;
1423
1424 /* This is how much of a frame adjustment we need to account for. */
1425 stack_remaining = u->Total_frame_size << 3;
1426
1427 /* Magic register saves we want to know about. */
1428 save_rp = u->Save_RP;
1429 save_sp = u->Save_SP;
1430
1431 /* An indication that args may be stored into the stack. Unfortunately
1432 the HPUX compilers tend to set this in cases where no args were
1433 stored too!. */
1434 args_stored = 1;
1435
1436 /* Turn the Entry_GR field into a bitmask. */
1437 save_gr = 0;
1438 for (i = 3; i < u->Entry_GR + 3; i++)
1439 {
1440 /* Frame pointer gets saved into a special location. */
1441 if (u->Save_SP && i == HPPA_FP_REGNUM)
1442 continue;
1443
1444 save_gr |= (1 << i);
1445 }
1446 save_gr &= ~restart_gr;
1447
1448 /* Turn the Entry_FR field into a bitmask too. */
1449 save_fr = 0;
1450 for (i = 12; i < u->Entry_FR + 12; i++)
1451 save_fr |= (1 << i);
1452 save_fr &= ~restart_fr;
1453
1454 final_iteration = 0;
1455
1456 /* Loop until we find everything of interest or hit a branch.
1457
1458 For unoptimized GCC code and for any HP CC code this will never ever
1459 examine any user instructions.
1460
1461 For optimzied GCC code we're faced with problems. GCC will schedule
1462 its prologue and make prologue instructions available for delay slot
1463 filling. The end result is user code gets mixed in with the prologue
1464 and a prologue instruction may be in the delay slot of the first branch
1465 or call.
1466
1467 Some unexpected things are expected with debugging optimized code, so
1468 we allow this routine to walk past user instructions in optimized
1469 GCC code. */
1470 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1471 || args_stored)
1472 {
1473 unsigned int reg_num;
1474 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1475 unsigned long old_save_rp, old_save_sp, next_inst;
1476
1477 /* Save copies of all the triggers so we can compare them later
1478 (only for HPC). */
1479 old_save_gr = save_gr;
1480 old_save_fr = save_fr;
1481 old_save_rp = save_rp;
1482 old_save_sp = save_sp;
1483 old_stack_remaining = stack_remaining;
1484
1485 status = deprecated_read_memory_nobpt (pc, buf, 4);
1486 inst = extract_unsigned_integer (buf, 4);
1487
1488 /* Yow! */
1489 if (status != 0)
1490 return pc;
1491
1492 /* Note the interesting effects of this instruction. */
1493 stack_remaining -= prologue_inst_adjust_sp (inst);
1494
1495 /* There are limited ways to store the return pointer into the
1496 stack. */
1497 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1498 save_rp = 0;
1499
1500 /* These are the only ways we save SP into the stack. At this time
1501 the HP compilers never bother to save SP into the stack. */
1502 if ((inst & 0xffffc000) == 0x6fc10000
1503 || (inst & 0xffffc00c) == 0x73c10008)
1504 save_sp = 0;
1505
1506 /* Are we loading some register with an offset from the argument
1507 pointer? */
1508 if ((inst & 0xffe00000) == 0x37a00000
1509 || (inst & 0xffffffe0) == 0x081d0240)
1510 {
1511 pc += 4;
1512 continue;
1513 }
1514
1515 /* Account for general and floating-point register saves. */
1516 reg_num = inst_saves_gr (inst);
1517 save_gr &= ~(1 << reg_num);
1518
1519 /* Ugh. Also account for argument stores into the stack.
1520 Unfortunately args_stored only tells us that some arguments
1521 where stored into the stack. Not how many or what kind!
1522
1523 This is a kludge as on the HP compiler sets this bit and it
1524 never does prologue scheduling. So once we see one, skip past
1525 all of them. We have similar code for the fp arg stores below.
1526
1527 FIXME. Can still die if we have a mix of GR and FR argument
1528 stores! */
1529 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1530 {
1531 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1532 {
1533 pc += 4;
1534 status = deprecated_read_memory_nobpt (pc, buf, 4);
1535 inst = extract_unsigned_integer (buf, 4);
1536 if (status != 0)
1537 return pc;
1538 reg_num = inst_saves_gr (inst);
1539 }
1540 args_stored = 0;
1541 continue;
1542 }
1543
1544 reg_num = inst_saves_fr (inst);
1545 save_fr &= ~(1 << reg_num);
1546
1547 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1548 next_inst = extract_unsigned_integer (buf, 4);
1549
1550 /* Yow! */
1551 if (status != 0)
1552 return pc;
1553
1554 /* We've got to be read to handle the ldo before the fp register
1555 save. */
1556 if ((inst & 0xfc000000) == 0x34000000
1557 && inst_saves_fr (next_inst) >= 4
1558 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1559 {
1560 /* So we drop into the code below in a reasonable state. */
1561 reg_num = inst_saves_fr (next_inst);
1562 pc -= 4;
1563 }
1564
1565 /* Ugh. Also account for argument stores into the stack.
1566 This is a kludge as on the HP compiler sets this bit and it
1567 never does prologue scheduling. So once we see one, skip past
1568 all of them. */
1569 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1570 {
1571 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1572 {
1573 pc += 8;
1574 status = deprecated_read_memory_nobpt (pc, buf, 4);
1575 inst = extract_unsigned_integer (buf, 4);
1576 if (status != 0)
1577 return pc;
1578 if ((inst & 0xfc000000) != 0x34000000)
1579 break;
1580 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1581 next_inst = extract_unsigned_integer (buf, 4);
1582 if (status != 0)
1583 return pc;
1584 reg_num = inst_saves_fr (next_inst);
1585 }
1586 args_stored = 0;
1587 continue;
1588 }
1589
1590 /* Quit if we hit any kind of branch. This can happen if a prologue
1591 instruction is in the delay slot of the first call/branch. */
1592 if (is_branch (inst) && stop_before_branch)
1593 break;
1594
1595 /* What a crock. The HP compilers set args_stored even if no
1596 arguments were stored into the stack (boo hiss). This could
1597 cause this code to then skip a bunch of user insns (up to the
1598 first branch).
1599
1600 To combat this we try to identify when args_stored was bogusly
1601 set and clear it. We only do this when args_stored is nonzero,
1602 all other resources are accounted for, and nothing changed on
1603 this pass. */
1604 if (args_stored
1605 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1606 && old_save_gr == save_gr && old_save_fr == save_fr
1607 && old_save_rp == save_rp && old_save_sp == save_sp
1608 && old_stack_remaining == stack_remaining)
1609 break;
1610
1611 /* Bump the PC. */
1612 pc += 4;
1613
1614 /* !stop_before_branch, so also look at the insn in the delay slot
1615 of the branch. */
1616 if (final_iteration)
1617 break;
1618 if (is_branch (inst))
1619 final_iteration = 1;
1620 }
1621
1622 /* We've got a tenative location for the end of the prologue. However
1623 because of limitations in the unwind descriptor mechanism we may
1624 have went too far into user code looking for the save of a register
1625 that does not exist. So, if there registers we expected to be saved
1626 but never were, mask them out and restart.
1627
1628 This should only happen in optimized code, and should be very rare. */
1629 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1630 {
1631 pc = orig_pc;
1632 restart_gr = save_gr;
1633 restart_fr = save_fr;
1634 goto restart;
1635 }
1636
1637 return pc;
1638 }
1639
1640
1641 /* Return the address of the PC after the last prologue instruction if
1642 we can determine it from the debug symbols. Else return zero. */
1643
1644 static CORE_ADDR
1645 after_prologue (CORE_ADDR pc)
1646 {
1647 struct symtab_and_line sal;
1648 CORE_ADDR func_addr, func_end;
1649 struct symbol *f;
1650
1651 /* If we can not find the symbol in the partial symbol table, then
1652 there is no hope we can determine the function's start address
1653 with this code. */
1654 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1655 return 0;
1656
1657 /* Get the line associated with FUNC_ADDR. */
1658 sal = find_pc_line (func_addr, 0);
1659
1660 /* There are only two cases to consider. First, the end of the source line
1661 is within the function bounds. In that case we return the end of the
1662 source line. Second is the end of the source line extends beyond the
1663 bounds of the current function. We need to use the slow code to
1664 examine instructions in that case.
1665
1666 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1667 the wrong thing to do. In fact, it should be entirely possible for this
1668 function to always return zero since the slow instruction scanning code
1669 is supposed to *always* work. If it does not, then it is a bug. */
1670 if (sal.end < func_end)
1671 return sal.end;
1672 else
1673 return 0;
1674 }
1675
1676 /* To skip prologues, I use this predicate. Returns either PC itself
1677 if the code at PC does not look like a function prologue; otherwise
1678 returns an address that (if we're lucky) follows the prologue.
1679
1680 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1681 It doesn't necessarily skips all the insns in the prologue. In fact
1682 we might not want to skip all the insns because a prologue insn may
1683 appear in the delay slot of the first branch, and we don't want to
1684 skip over the branch in that case. */
1685
1686 static CORE_ADDR
1687 hppa_skip_prologue (CORE_ADDR pc)
1688 {
1689 unsigned long inst;
1690 int offset;
1691 CORE_ADDR post_prologue_pc;
1692 char buf[4];
1693
1694 /* See if we can determine the end of the prologue via the symbol table.
1695 If so, then return either PC, or the PC after the prologue, whichever
1696 is greater. */
1697
1698 post_prologue_pc = after_prologue (pc);
1699
1700 /* If after_prologue returned a useful address, then use it. Else
1701 fall back on the instruction skipping code.
1702
1703 Some folks have claimed this causes problems because the breakpoint
1704 may be the first instruction of the prologue. If that happens, then
1705 the instruction skipping code has a bug that needs to be fixed. */
1706 if (post_prologue_pc != 0)
1707 return max (pc, post_prologue_pc);
1708 else
1709 return (skip_prologue_hard_way (pc, 1));
1710 }
1711
1712 struct hppa_frame_cache
1713 {
1714 CORE_ADDR base;
1715 struct trad_frame_saved_reg *saved_regs;
1716 };
1717
1718 static struct hppa_frame_cache *
1719 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1720 {
1721 struct hppa_frame_cache *cache;
1722 long saved_gr_mask;
1723 long saved_fr_mask;
1724 CORE_ADDR this_sp;
1725 long frame_size;
1726 struct unwind_table_entry *u;
1727 CORE_ADDR prologue_end;
1728 int fp_in_r1 = 0;
1729 int i;
1730
1731 if (hppa_debug)
1732 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1733 frame_relative_level(next_frame));
1734
1735 if ((*this_cache) != NULL)
1736 {
1737 if (hppa_debug)
1738 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1739 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1740 return (*this_cache);
1741 }
1742 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1743 (*this_cache) = cache;
1744 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1745
1746 /* Yow! */
1747 u = find_unwind_entry (frame_pc_unwind (next_frame));
1748 if (!u)
1749 {
1750 if (hppa_debug)
1751 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1752 return (*this_cache);
1753 }
1754
1755 /* Turn the Entry_GR field into a bitmask. */
1756 saved_gr_mask = 0;
1757 for (i = 3; i < u->Entry_GR + 3; i++)
1758 {
1759 /* Frame pointer gets saved into a special location. */
1760 if (u->Save_SP && i == HPPA_FP_REGNUM)
1761 continue;
1762
1763 saved_gr_mask |= (1 << i);
1764 }
1765
1766 /* Turn the Entry_FR field into a bitmask too. */
1767 saved_fr_mask = 0;
1768 for (i = 12; i < u->Entry_FR + 12; i++)
1769 saved_fr_mask |= (1 << i);
1770
1771 /* Loop until we find everything of interest or hit a branch.
1772
1773 For unoptimized GCC code and for any HP CC code this will never ever
1774 examine any user instructions.
1775
1776 For optimized GCC code we're faced with problems. GCC will schedule
1777 its prologue and make prologue instructions available for delay slot
1778 filling. The end result is user code gets mixed in with the prologue
1779 and a prologue instruction may be in the delay slot of the first branch
1780 or call.
1781
1782 Some unexpected things are expected with debugging optimized code, so
1783 we allow this routine to walk past user instructions in optimized
1784 GCC code. */
1785 {
1786 int final_iteration = 0;
1787 CORE_ADDR pc, end_pc;
1788 int looking_for_sp = u->Save_SP;
1789 int looking_for_rp = u->Save_RP;
1790 int fp_loc = -1;
1791
1792 /* We have to use skip_prologue_hard_way instead of just
1793 skip_prologue_using_sal, in case we stepped into a function without
1794 symbol information. hppa_skip_prologue also bounds the returned
1795 pc by the passed in pc, so it will not return a pc in the next
1796 function.
1797
1798 We used to call hppa_skip_prologue to find the end of the prologue,
1799 but if some non-prologue instructions get scheduled into the prologue,
1800 and the program is compiled with debug information, the "easy" way
1801 in hppa_skip_prologue will return a prologue end that is too early
1802 for us to notice any potential frame adjustments. */
1803
1804 /* We used to use frame_func_unwind () to locate the beginning of the
1805 function to pass to skip_prologue (). However, when objects are
1806 compiled without debug symbols, frame_func_unwind can return the wrong
1807 function (or 0). We can do better than that by using unwind records. */
1808
1809 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1810 end_pc = frame_pc_unwind (next_frame);
1811
1812 if (prologue_end != 0 && end_pc > prologue_end)
1813 end_pc = prologue_end;
1814
1815 frame_size = 0;
1816
1817 for (pc = u->region_start;
1818 ((saved_gr_mask || saved_fr_mask
1819 || looking_for_sp || looking_for_rp
1820 || frame_size < (u->Total_frame_size << 3))
1821 && pc < end_pc);
1822 pc += 4)
1823 {
1824 int reg;
1825 char buf4[4];
1826 long inst;
1827
1828 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1829 sizeof buf4))
1830 {
1831 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1832 return (*this_cache);
1833 }
1834
1835 inst = extract_unsigned_integer (buf4, sizeof buf4);
1836
1837 /* Note the interesting effects of this instruction. */
1838 frame_size += prologue_inst_adjust_sp (inst);
1839
1840 /* There are limited ways to store the return pointer into the
1841 stack. */
1842 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1843 {
1844 looking_for_rp = 0;
1845 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1846 }
1847 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1848 {
1849 looking_for_rp = 0;
1850 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1851 }
1852 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1853 {
1854 looking_for_rp = 0;
1855 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1856 }
1857
1858 /* Check to see if we saved SP into the stack. This also
1859 happens to indicate the location of the saved frame
1860 pointer. */
1861 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1862 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1863 {
1864 looking_for_sp = 0;
1865 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1866 }
1867 else if (inst == 0x08030241) /* copy %r3, %r1 */
1868 {
1869 fp_in_r1 = 1;
1870 }
1871
1872 /* Account for general and floating-point register saves. */
1873 reg = inst_saves_gr (inst);
1874 if (reg >= 3 && reg <= 18
1875 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1876 {
1877 saved_gr_mask &= ~(1 << reg);
1878 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1879 /* stwm with a positive displacement is a _post_
1880 _modify_. */
1881 cache->saved_regs[reg].addr = 0;
1882 else if ((inst & 0xfc00000c) == 0x70000008)
1883 /* A std has explicit post_modify forms. */
1884 cache->saved_regs[reg].addr = 0;
1885 else
1886 {
1887 CORE_ADDR offset;
1888
1889 if ((inst >> 26) == 0x1c)
1890 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1891 else if ((inst >> 26) == 0x03)
1892 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1893 else
1894 offset = hppa_extract_14 (inst);
1895
1896 /* Handle code with and without frame pointers. */
1897 if (u->Save_SP)
1898 cache->saved_regs[reg].addr = offset;
1899 else
1900 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1901 }
1902 }
1903
1904 /* GCC handles callee saved FP regs a little differently.
1905
1906 It emits an instruction to put the value of the start of
1907 the FP store area into %r1. It then uses fstds,ma with a
1908 basereg of %r1 for the stores.
1909
1910 HP CC emits them at the current stack pointer modifying the
1911 stack pointer as it stores each register. */
1912
1913 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1914 if ((inst & 0xffffc000) == 0x34610000
1915 || (inst & 0xffffc000) == 0x37c10000)
1916 fp_loc = hppa_extract_14 (inst);
1917
1918 reg = inst_saves_fr (inst);
1919 if (reg >= 12 && reg <= 21)
1920 {
1921 /* Note +4 braindamage below is necessary because the FP
1922 status registers are internally 8 registers rather than
1923 the expected 4 registers. */
1924 saved_fr_mask &= ~(1 << reg);
1925 if (fp_loc == -1)
1926 {
1927 /* 1st HP CC FP register store. After this
1928 instruction we've set enough state that the GCC and
1929 HPCC code are both handled in the same manner. */
1930 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1931 fp_loc = 8;
1932 }
1933 else
1934 {
1935 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1936 fp_loc += 8;
1937 }
1938 }
1939
1940 /* Quit if we hit any kind of branch the previous iteration. */
1941 if (final_iteration)
1942 break;
1943 /* We want to look precisely one instruction beyond the branch
1944 if we have not found everything yet. */
1945 if (is_branch (inst))
1946 final_iteration = 1;
1947 }
1948 }
1949
1950 {
1951 /* The frame base always represents the value of %sp at entry to
1952 the current function (and is thus equivalent to the "saved"
1953 stack pointer. */
1954 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1955 CORE_ADDR fp;
1956
1957 if (hppa_debug)
1958 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1959 "prologue_end=0x%s) ",
1960 paddr_nz (this_sp),
1961 paddr_nz (frame_pc_unwind (next_frame)),
1962 paddr_nz (prologue_end));
1963
1964 /* Check to see if a frame pointer is available, and use it for
1965 frame unwinding if it is.
1966
1967 There are some situations where we need to rely on the frame
1968 pointer to do stack unwinding. For example, if a function calls
1969 alloca (), the stack pointer can get adjusted inside the body of
1970 the function. In this case, the ABI requires that the compiler
1971 maintain a frame pointer for the function.
1972
1973 The unwind record has a flag (alloca_frame) that indicates that
1974 a function has a variable frame; unfortunately, gcc/binutils
1975 does not set this flag. Instead, whenever a frame pointer is used
1976 and saved on the stack, the Save_SP flag is set. We use this to
1977 decide whether to use the frame pointer for unwinding.
1978
1979 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1980 instead of Save_SP. */
1981
1982 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1983
1984 if (frame_pc_unwind (next_frame) >= prologue_end
1985 && u->Save_SP && fp != 0)
1986 {
1987 cache->base = fp;
1988
1989 if (hppa_debug)
1990 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1991 paddr_nz (cache->base));
1992 }
1993 else if (u->Save_SP
1994 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1995 {
1996 /* Both we're expecting the SP to be saved and the SP has been
1997 saved. The entry SP value is saved at this frame's SP
1998 address. */
1999 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
2000
2001 if (hppa_debug)
2002 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
2003 paddr_nz (cache->base));
2004 }
2005 else
2006 {
2007 /* The prologue has been slowly allocating stack space. Adjust
2008 the SP back. */
2009 cache->base = this_sp - frame_size;
2010 if (hppa_debug)
2011 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
2012 paddr_nz (cache->base));
2013
2014 }
2015 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2016 }
2017
2018 /* The PC is found in the "return register", "Millicode" uses "r31"
2019 as the return register while normal code uses "rp". */
2020 if (u->Millicode)
2021 {
2022 if (trad_frame_addr_p (cache->saved_regs, 31))
2023 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2024 else
2025 {
2026 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2027 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2028 }
2029 }
2030 else
2031 {
2032 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2033 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2034 else
2035 {
2036 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2037 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2038 }
2039 }
2040
2041 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2042 frame. However, there is a one-insn window where we haven't saved it
2043 yet, but we've already clobbered it. Detect this case and fix it up.
2044
2045 The prologue sequence for frame-pointer functions is:
2046 0: stw %rp, -20(%sp)
2047 4: copy %r3, %r1
2048 8: copy %sp, %r3
2049 c: stw,ma %r1, XX(%sp)
2050
2051 So if we are at offset c, the r3 value that we want is not yet saved
2052 on the stack, but it's been overwritten. The prologue analyzer will
2053 set fp_in_r1 when it sees the copy insn so we know to get the value
2054 from r1 instead. */
2055 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2056 && fp_in_r1)
2057 {
2058 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2059 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2060 }
2061
2062 {
2063 /* Convert all the offsets into addresses. */
2064 int reg;
2065 for (reg = 0; reg < NUM_REGS; reg++)
2066 {
2067 if (trad_frame_addr_p (cache->saved_regs, reg))
2068 cache->saved_regs[reg].addr += cache->base;
2069 }
2070 }
2071
2072 {
2073 struct gdbarch *gdbarch;
2074 struct gdbarch_tdep *tdep;
2075
2076 gdbarch = get_frame_arch (next_frame);
2077 tdep = gdbarch_tdep (gdbarch);
2078
2079 if (tdep->unwind_adjust_stub)
2080 {
2081 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2082 }
2083 }
2084
2085 if (hppa_debug)
2086 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2087 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2088 return (*this_cache);
2089 }
2090
2091 static void
2092 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2093 struct frame_id *this_id)
2094 {
2095 struct hppa_frame_cache *info;
2096 CORE_ADDR pc = frame_pc_unwind (next_frame);
2097 struct unwind_table_entry *u;
2098
2099 info = hppa_frame_cache (next_frame, this_cache);
2100 u = find_unwind_entry (pc);
2101
2102 (*this_id) = frame_id_build (info->base, u->region_start);
2103 }
2104
2105 static void
2106 hppa_frame_prev_register (struct frame_info *next_frame,
2107 void **this_cache,
2108 int regnum, int *optimizedp,
2109 enum lval_type *lvalp, CORE_ADDR *addrp,
2110 int *realnump, gdb_byte *valuep)
2111 {
2112 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2113 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2114 optimizedp, lvalp, addrp, realnump, valuep);
2115 }
2116
2117 static const struct frame_unwind hppa_frame_unwind =
2118 {
2119 NORMAL_FRAME,
2120 hppa_frame_this_id,
2121 hppa_frame_prev_register
2122 };
2123
2124 static const struct frame_unwind *
2125 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2126 {
2127 CORE_ADDR pc = frame_pc_unwind (next_frame);
2128
2129 if (find_unwind_entry (pc))
2130 return &hppa_frame_unwind;
2131
2132 return NULL;
2133 }
2134
2135 /* This is a generic fallback frame unwinder that kicks in if we fail all
2136 the other ones. Normally we would expect the stub and regular unwinder
2137 to work, but in some cases we might hit a function that just doesn't
2138 have any unwind information available. In this case we try to do
2139 unwinding solely based on code reading. This is obviously going to be
2140 slow, so only use this as a last resort. Currently this will only
2141 identify the stack and pc for the frame. */
2142
2143 static struct hppa_frame_cache *
2144 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2145 {
2146 struct hppa_frame_cache *cache;
2147 unsigned int frame_size;
2148 int found_rp;
2149 CORE_ADDR pc, start_pc, end_pc, cur_pc;
2150
2151 if (hppa_debug)
2152 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
2153 frame_relative_level(next_frame));
2154
2155 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2156 (*this_cache) = cache;
2157 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2158
2159 pc = frame_func_unwind (next_frame);
2160 cur_pc = frame_pc_unwind (next_frame);
2161 frame_size = 0;
2162 found_rp = 0;
2163
2164 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2165
2166 if (start_pc == 0 || end_pc == 0)
2167 {
2168 error (_("Cannot find bounds of current function (@0x%s), unwinding will "
2169 "fail."), paddr_nz (pc));
2170 return cache;
2171 }
2172
2173 if (end_pc > cur_pc)
2174 end_pc = cur_pc;
2175
2176 for (pc = start_pc; pc < end_pc; pc += 4)
2177 {
2178 unsigned int insn;
2179
2180 insn = read_memory_unsigned_integer (pc, 4);
2181
2182 frame_size += prologue_inst_adjust_sp (insn);
2183
2184 /* There are limited ways to store the return pointer into the
2185 stack. */
2186 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2187 {
2188 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2189 found_rp = 1;
2190 }
2191 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2192 {
2193 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2194 found_rp = 1;
2195 }
2196 }
2197
2198 if (hppa_debug)
2199 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2200 frame_size, found_rp);
2201
2202 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2203 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2204
2205 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2206 {
2207 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2208 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2209 }
2210 else
2211 {
2212 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2213 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2214 }
2215
2216 return cache;
2217 }
2218
2219 static void
2220 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2221 struct frame_id *this_id)
2222 {
2223 struct hppa_frame_cache *info =
2224 hppa_fallback_frame_cache (next_frame, this_cache);
2225 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2226 }
2227
2228 static void
2229 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2230 void **this_cache,
2231 int regnum, int *optimizedp,
2232 enum lval_type *lvalp, CORE_ADDR *addrp,
2233 int *realnump, gdb_byte *valuep)
2234 {
2235 struct hppa_frame_cache *info =
2236 hppa_fallback_frame_cache (next_frame, this_cache);
2237 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2238 optimizedp, lvalp, addrp, realnump, valuep);
2239 }
2240
2241 static const struct frame_unwind hppa_fallback_frame_unwind =
2242 {
2243 NORMAL_FRAME,
2244 hppa_fallback_frame_this_id,
2245 hppa_fallback_frame_prev_register
2246 };
2247
2248 static const struct frame_unwind *
2249 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2250 {
2251 return &hppa_fallback_frame_unwind;
2252 }
2253
2254 /* Stub frames, used for all kinds of call stubs. */
2255 struct hppa_stub_unwind_cache
2256 {
2257 CORE_ADDR base;
2258 struct trad_frame_saved_reg *saved_regs;
2259 };
2260
2261 static struct hppa_stub_unwind_cache *
2262 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2263 void **this_cache)
2264 {
2265 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2266 struct hppa_stub_unwind_cache *info;
2267 struct unwind_table_entry *u;
2268
2269 if (*this_cache)
2270 return *this_cache;
2271
2272 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2273 *this_cache = info;
2274 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2275
2276 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2277
2278 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2279 {
2280 /* HPUX uses export stubs in function calls; the export stub clobbers
2281 the return value of the caller, and, later restores it from the
2282 stack. */
2283 u = find_unwind_entry (frame_pc_unwind (next_frame));
2284
2285 if (u && u->stub_unwind.stub_type == EXPORT)
2286 {
2287 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2288
2289 return info;
2290 }
2291 }
2292
2293 /* By default we assume that stubs do not change the rp. */
2294 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2295
2296 return info;
2297 }
2298
2299 static void
2300 hppa_stub_frame_this_id (struct frame_info *next_frame,
2301 void **this_prologue_cache,
2302 struct frame_id *this_id)
2303 {
2304 struct hppa_stub_unwind_cache *info
2305 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2306
2307 if (info)
2308 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2309 else
2310 *this_id = null_frame_id;
2311 }
2312
2313 static void
2314 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2315 void **this_prologue_cache,
2316 int regnum, int *optimizedp,
2317 enum lval_type *lvalp, CORE_ADDR *addrp,
2318 int *realnump, gdb_byte *valuep)
2319 {
2320 struct hppa_stub_unwind_cache *info
2321 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2322
2323 if (info)
2324 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2325 optimizedp, lvalp, addrp, realnump,
2326 valuep);
2327 else
2328 error (_("Requesting registers from null frame."));
2329 }
2330
2331 static const struct frame_unwind hppa_stub_frame_unwind = {
2332 NORMAL_FRAME,
2333 hppa_stub_frame_this_id,
2334 hppa_stub_frame_prev_register
2335 };
2336
2337 static const struct frame_unwind *
2338 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2339 {
2340 CORE_ADDR pc = frame_pc_unwind (next_frame);
2341 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2342 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2343
2344 if (pc == 0
2345 || (tdep->in_solib_call_trampoline != NULL
2346 && tdep->in_solib_call_trampoline (pc, NULL))
2347 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2348 return &hppa_stub_frame_unwind;
2349 return NULL;
2350 }
2351
2352 static struct frame_id
2353 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2354 {
2355 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2356 HPPA_SP_REGNUM),
2357 frame_pc_unwind (next_frame));
2358 }
2359
2360 CORE_ADDR
2361 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2362 {
2363 ULONGEST ipsw;
2364 CORE_ADDR pc;
2365
2366 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2367 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2368
2369 /* If the current instruction is nullified, then we are effectively
2370 still executing the previous instruction. Pretend we are still
2371 there. This is needed when single stepping; if the nullified
2372 instruction is on a different line, we don't want GDB to think
2373 we've stepped onto that line. */
2374 if (ipsw & 0x00200000)
2375 pc -= 4;
2376
2377 return pc & ~0x3;
2378 }
2379
2380 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2381 Return NULL if no such symbol was found. */
2382
2383 struct minimal_symbol *
2384 hppa_lookup_stub_minimal_symbol (const char *name,
2385 enum unwind_stub_types stub_type)
2386 {
2387 struct objfile *objfile;
2388 struct minimal_symbol *msym;
2389
2390 ALL_MSYMBOLS (objfile, msym)
2391 {
2392 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2393 {
2394 struct unwind_table_entry *u;
2395
2396 u = find_unwind_entry (SYMBOL_VALUE (msym));
2397 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2398 return msym;
2399 }
2400 }
2401
2402 return NULL;
2403 }
2404
2405 /* Instead of this nasty cast, add a method pvoid() that prints out a
2406 host VOID data type (remember %p isn't portable). */
2407
2408 static CORE_ADDR
2409 hppa_pointer_to_address_hack (void *ptr)
2410 {
2411 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2412 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2413 }
2414
2415 static void
2416 unwind_command (char *exp, int from_tty)
2417 {
2418 CORE_ADDR address;
2419 struct unwind_table_entry *u;
2420
2421 /* If we have an expression, evaluate it and use it as the address. */
2422
2423 if (exp != 0 && *exp != 0)
2424 address = parse_and_eval_address (exp);
2425 else
2426 return;
2427
2428 u = find_unwind_entry (address);
2429
2430 if (!u)
2431 {
2432 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2433 return;
2434 }
2435
2436 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2437 paddr_nz (hppa_pointer_to_address_hack (u)));
2438
2439 printf_unfiltered ("\tregion_start = ");
2440 print_address (u->region_start, gdb_stdout);
2441 gdb_flush (gdb_stdout);
2442
2443 printf_unfiltered ("\n\tregion_end = ");
2444 print_address (u->region_end, gdb_stdout);
2445 gdb_flush (gdb_stdout);
2446
2447 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2448
2449 printf_unfiltered ("\n\tflags =");
2450 pif (Cannot_unwind);
2451 pif (Millicode);
2452 pif (Millicode_save_sr0);
2453 pif (Entry_SR);
2454 pif (Args_stored);
2455 pif (Variable_Frame);
2456 pif (Separate_Package_Body);
2457 pif (Frame_Extension_Millicode);
2458 pif (Stack_Overflow_Check);
2459 pif (Two_Instruction_SP_Increment);
2460 pif (Ada_Region);
2461 pif (Save_SP);
2462 pif (Save_RP);
2463 pif (Save_MRP_in_frame);
2464 pif (extn_ptr_defined);
2465 pif (Cleanup_defined);
2466 pif (MPE_XL_interrupt_marker);
2467 pif (HP_UX_interrupt_marker);
2468 pif (Large_frame);
2469
2470 putchar_unfiltered ('\n');
2471
2472 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2473
2474 pin (Region_description);
2475 pin (Entry_FR);
2476 pin (Entry_GR);
2477 pin (Total_frame_size);
2478
2479 if (u->stub_unwind.stub_type)
2480 {
2481 printf_unfiltered ("\tstub type = ");
2482 switch (u->stub_unwind.stub_type)
2483 {
2484 case LONG_BRANCH:
2485 printf_unfiltered ("long branch\n");
2486 break;
2487 case PARAMETER_RELOCATION:
2488 printf_unfiltered ("parameter relocation\n");
2489 break;
2490 case EXPORT:
2491 printf_unfiltered ("export\n");
2492 break;
2493 case IMPORT:
2494 printf_unfiltered ("import\n");
2495 break;
2496 case IMPORT_SHLIB:
2497 printf_unfiltered ("import shlib\n");
2498 break;
2499 default:
2500 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2501 }
2502 }
2503 }
2504
2505 int
2506 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2507 {
2508 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2509
2510 An example of this occurs when an a.out is linked against a foo.sl.
2511 The foo.sl defines a global bar(), and the a.out declares a signature
2512 for bar(). However, the a.out doesn't directly call bar(), but passes
2513 its address in another call.
2514
2515 If you have this scenario and attempt to "break bar" before running,
2516 gdb will find a minimal symbol for bar() in the a.out. But that
2517 symbol's address will be negative. What this appears to denote is
2518 an index backwards from the base of the procedure linkage table (PLT)
2519 into the data linkage table (DLT), the end of which is contiguous
2520 with the start of the PLT. This is clearly not a valid address for
2521 us to set a breakpoint on.
2522
2523 Note that one must be careful in how one checks for a negative address.
2524 0xc0000000 is a legitimate address of something in a shared text
2525 segment, for example. Since I don't know what the possible range
2526 is of these "really, truly negative" addresses that come from the
2527 minimal symbols, I'm resorting to the gross hack of checking the
2528 top byte of the address for all 1's. Sigh. */
2529
2530 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2531 }
2532
2533 /* Return the GDB type object for the "standard" data type of data in
2534 register REGNUM. */
2535
2536 static struct type *
2537 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2538 {
2539 if (regnum < HPPA_FP4_REGNUM)
2540 return builtin_type_uint32;
2541 else
2542 return builtin_type_ieee_single_big;
2543 }
2544
2545 static struct type *
2546 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2547 {
2548 if (regnum < HPPA64_FP4_REGNUM)
2549 return builtin_type_uint64;
2550 else
2551 return builtin_type_ieee_double_big;
2552 }
2553
2554 /* Return non-zero if REGNUM is not a register available to the user
2555 through ptrace/ttrace. */
2556
2557 static int
2558 hppa32_cannot_store_register (int regnum)
2559 {
2560 return (regnum == 0
2561 || regnum == HPPA_PCSQ_HEAD_REGNUM
2562 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2563 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2564 }
2565
2566 static int
2567 hppa64_cannot_store_register (int regnum)
2568 {
2569 return (regnum == 0
2570 || regnum == HPPA_PCSQ_HEAD_REGNUM
2571 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2572 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2573 }
2574
2575 static CORE_ADDR
2576 hppa_smash_text_address (CORE_ADDR addr)
2577 {
2578 /* The low two bits of the PC on the PA contain the privilege level.
2579 Some genius implementing a (non-GCC) compiler apparently decided
2580 this means that "addresses" in a text section therefore include a
2581 privilege level, and thus symbol tables should contain these bits.
2582 This seems like a bonehead thing to do--anyway, it seems to work
2583 for our purposes to just ignore those bits. */
2584
2585 return (addr &= ~0x3);
2586 }
2587
2588 /* Get the ARGIth function argument for the current function. */
2589
2590 static CORE_ADDR
2591 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2592 struct type *type)
2593 {
2594 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2595 }
2596
2597 static void
2598 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2599 int regnum, gdb_byte *buf)
2600 {
2601 ULONGEST tmp;
2602
2603 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2604 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2605 tmp &= ~0x3;
2606 store_unsigned_integer (buf, sizeof tmp, tmp);
2607 }
2608
2609 static CORE_ADDR
2610 hppa_find_global_pointer (struct value *function)
2611 {
2612 return 0;
2613 }
2614
2615 void
2616 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2617 struct trad_frame_saved_reg saved_regs[],
2618 int regnum, int *optimizedp,
2619 enum lval_type *lvalp, CORE_ADDR *addrp,
2620 int *realnump, void *valuep)
2621 {
2622 struct gdbarch *arch = get_frame_arch (next_frame);
2623
2624 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2625 {
2626 if (valuep)
2627 {
2628 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2629 CORE_ADDR pc;
2630
2631 trad_frame_get_prev_register (next_frame, saved_regs,
2632 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2633 lvalp, addrp, realnump, valuep);
2634
2635 pc = extract_unsigned_integer (valuep, size);
2636 store_unsigned_integer (valuep, size, pc + 4);
2637 }
2638
2639 /* It's a computed value. */
2640 *optimizedp = 0;
2641 *lvalp = not_lval;
2642 *addrp = 0;
2643 *realnump = -1;
2644 return;
2645 }
2646
2647 /* Make sure the "flags" register is zero in all unwound frames.
2648 The "flags" registers is a HP-UX specific wart, and only the code
2649 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2650 with it here. This shouldn't affect other systems since those
2651 should provide zero for the "flags" register anyway. */
2652 if (regnum == HPPA_FLAGS_REGNUM)
2653 {
2654 if (valuep)
2655 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2656
2657 /* It's a computed value. */
2658 *optimizedp = 0;
2659 *lvalp = not_lval;
2660 *addrp = 0;
2661 *realnump = -1;
2662 return;
2663 }
2664
2665 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2666 optimizedp, lvalp, addrp, realnump, valuep);
2667 }
2668 \f
2669
2670 /* Here is a table of C type sizes on hppa with various compiles
2671 and options. I measured this on PA 9000/800 with HP-UX 11.11
2672 and these compilers:
2673
2674 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2675 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2676 /opt/aCC/bin/aCC B3910B A.03.45
2677 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2678
2679 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2680 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2681 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2682 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2683 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2684 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2685 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2686 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2687
2688 Each line is:
2689
2690 compiler and options
2691 char, short, int, long, long long
2692 float, double, long double
2693 char *, void (*)()
2694
2695 So all these compilers use either ILP32 or LP64 model.
2696 TODO: gcc has more options so it needs more investigation.
2697
2698 For floating point types, see:
2699
2700 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2701 HP-UX floating-point guide, hpux 11.00
2702
2703 -- chastain 2003-12-18 */
2704
2705 static struct gdbarch *
2706 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2707 {
2708 struct gdbarch_tdep *tdep;
2709 struct gdbarch *gdbarch;
2710
2711 /* Try to determine the ABI of the object we are loading. */
2712 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2713 {
2714 /* If it's a SOM file, assume it's HP/UX SOM. */
2715 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2716 info.osabi = GDB_OSABI_HPUX_SOM;
2717 }
2718
2719 /* find a candidate among the list of pre-declared architectures. */
2720 arches = gdbarch_list_lookup_by_info (arches, &info);
2721 if (arches != NULL)
2722 return (arches->gdbarch);
2723
2724 /* If none found, then allocate and initialize one. */
2725 tdep = XZALLOC (struct gdbarch_tdep);
2726 gdbarch = gdbarch_alloc (&info, tdep);
2727
2728 /* Determine from the bfd_arch_info structure if we are dealing with
2729 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2730 then default to a 32bit machine. */
2731 if (info.bfd_arch_info != NULL)
2732 tdep->bytes_per_address =
2733 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2734 else
2735 tdep->bytes_per_address = 4;
2736
2737 tdep->find_global_pointer = hppa_find_global_pointer;
2738
2739 /* Some parts of the gdbarch vector depend on whether we are running
2740 on a 32 bits or 64 bits target. */
2741 switch (tdep->bytes_per_address)
2742 {
2743 case 4:
2744 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2745 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2746 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2747 set_gdbarch_cannot_store_register (gdbarch,
2748 hppa32_cannot_store_register);
2749 set_gdbarch_cannot_fetch_register (gdbarch,
2750 hppa32_cannot_store_register);
2751 break;
2752 case 8:
2753 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2754 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2755 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2756 set_gdbarch_cannot_store_register (gdbarch,
2757 hppa64_cannot_store_register);
2758 set_gdbarch_cannot_fetch_register (gdbarch,
2759 hppa64_cannot_store_register);
2760 break;
2761 default:
2762 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
2763 tdep->bytes_per_address);
2764 }
2765
2766 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2767 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2768
2769 /* The following gdbarch vector elements are the same in both ILP32
2770 and LP64, but might show differences some day. */
2771 set_gdbarch_long_long_bit (gdbarch, 64);
2772 set_gdbarch_long_double_bit (gdbarch, 128);
2773 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2774
2775 /* The following gdbarch vector elements do not depend on the address
2776 size, or in any other gdbarch element previously set. */
2777 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2778 set_gdbarch_in_function_epilogue_p (gdbarch,
2779 hppa_in_function_epilogue_p);
2780 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2781 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2782 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2783 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2784 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2785 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2786 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2787 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2788
2789 /* Helper for function argument information. */
2790 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2791
2792 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2793
2794 /* When a hardware watchpoint triggers, we'll move the inferior past
2795 it by removing all eventpoints; stepping past the instruction
2796 that caused the trigger; reinserting eventpoints; and checking
2797 whether any watched location changed. */
2798 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2799
2800 /* Inferior function call methods. */
2801 switch (tdep->bytes_per_address)
2802 {
2803 case 4:
2804 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2805 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2806 set_gdbarch_convert_from_func_ptr_addr
2807 (gdbarch, hppa32_convert_from_func_ptr_addr);
2808 break;
2809 case 8:
2810 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2811 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2812 break;
2813 default:
2814 internal_error (__FILE__, __LINE__, _("bad switch"));
2815 }
2816
2817 /* Struct return methods. */
2818 switch (tdep->bytes_per_address)
2819 {
2820 case 4:
2821 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2822 break;
2823 case 8:
2824 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2825 break;
2826 default:
2827 internal_error (__FILE__, __LINE__, _("bad switch"));
2828 }
2829
2830 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2831 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2832
2833 /* Frame unwind methods. */
2834 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2835 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2836
2837 /* Hook in ABI-specific overrides, if they have been registered. */
2838 gdbarch_init_osabi (info, gdbarch);
2839
2840 /* Hook in the default unwinders. */
2841 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2842 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2843 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2844
2845 return gdbarch;
2846 }
2847
2848 static void
2849 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2850 {
2851 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2852
2853 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2854 tdep->bytes_per_address);
2855 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2856 }
2857
2858 void
2859 _initialize_hppa_tdep (void)
2860 {
2861 struct cmd_list_element *c;
2862
2863 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2864
2865 hppa_objfile_priv_data = register_objfile_data ();
2866
2867 add_cmd ("unwind", class_maintenance, unwind_command,
2868 _("Print unwind table entry at given address."),
2869 &maintenanceprintlist);
2870
2871 /* Debug this files internals. */
2872 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
2873 Set whether hppa target specific debugging information should be displayed."),
2874 _("\
2875 Show whether hppa target specific debugging information is displayed."), _("\
2876 This flag controls whether hppa target specific debugging information is\n\
2877 displayed. This information is particularly useful for debugging frame\n\
2878 unwinding problems."),
2879 NULL,
2880 NULL, /* FIXME: i18n: hppa debug flag is %s. */
2881 &setdebuglist, &showdebuglist);
2882 }
This page took 0.090886 seconds and 4 git commands to generate.