* infrun.c (adjust_pc_after_break): Do not assume software single-step
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA-RISC architecture.
2
3 Copyright (C) 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007
5 Free Software Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 51 Franklin Street, Fifth Floor,
25 Boston, MA 02110-1301, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "gdb_stdint.h"
35 #include "arch-utils.h"
36 /* For argument passing to the inferior */
37 #include "symtab.h"
38 #include "dis-asm.h"
39 #include "trad-frame.h"
40 #include "frame-unwind.h"
41 #include "frame-base.h"
42
43 #include "gdbcore.h"
44 #include "gdbcmd.h"
45 #include "gdbtypes.h"
46 #include "objfiles.h"
47 #include "hppa-tdep.h"
48
49 static int hppa_debug = 0;
50
51 /* Some local constants. */
52 static const int hppa32_num_regs = 128;
53 static const int hppa64_num_regs = 96;
54
55 /* hppa-specific object data -- unwind and solib info.
56 TODO/maybe: think about splitting this into two parts; the unwind data is
57 common to all hppa targets, but is only used in this file; we can register
58 that separately and make this static. The solib data is probably hpux-
59 specific, so we can create a separate extern objfile_data that is registered
60 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
61 const struct objfile_data *hppa_objfile_priv_data = NULL;
62
63 /* Get at various relevent fields of an instruction word. */
64 #define MASK_5 0x1f
65 #define MASK_11 0x7ff
66 #define MASK_14 0x3fff
67 #define MASK_21 0x1fffff
68
69 /* Sizes (in bytes) of the native unwind entries. */
70 #define UNWIND_ENTRY_SIZE 16
71 #define STUB_UNWIND_ENTRY_SIZE 8
72
73 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
74 following functions static, once we hppa is partially multiarched. */
75 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
76
77 /* Routines to extract various sized constants out of hppa
78 instructions. */
79
80 /* This assumes that no garbage lies outside of the lower bits of
81 value. */
82
83 int
84 hppa_sign_extend (unsigned val, unsigned bits)
85 {
86 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
87 }
88
89 /* For many immediate values the sign bit is the low bit! */
90
91 int
92 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
93 {
94 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
95 }
96
97 /* Extract the bits at positions between FROM and TO, using HP's numbering
98 (MSB = 0). */
99
100 int
101 hppa_get_field (unsigned word, int from, int to)
102 {
103 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
104 }
105
106 /* extract the immediate field from a ld{bhw}s instruction */
107
108 int
109 hppa_extract_5_load (unsigned word)
110 {
111 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
112 }
113
114 /* extract the immediate field from a break instruction */
115
116 unsigned
117 hppa_extract_5r_store (unsigned word)
118 {
119 return (word & MASK_5);
120 }
121
122 /* extract the immediate field from a {sr}sm instruction */
123
124 unsigned
125 hppa_extract_5R_store (unsigned word)
126 {
127 return (word >> 16 & MASK_5);
128 }
129
130 /* extract a 14 bit immediate field */
131
132 int
133 hppa_extract_14 (unsigned word)
134 {
135 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
136 }
137
138 /* extract a 21 bit constant */
139
140 int
141 hppa_extract_21 (unsigned word)
142 {
143 int val;
144
145 word &= MASK_21;
146 word <<= 11;
147 val = hppa_get_field (word, 20, 20);
148 val <<= 11;
149 val |= hppa_get_field (word, 9, 19);
150 val <<= 2;
151 val |= hppa_get_field (word, 5, 6);
152 val <<= 5;
153 val |= hppa_get_field (word, 0, 4);
154 val <<= 2;
155 val |= hppa_get_field (word, 7, 8);
156 return hppa_sign_extend (val, 21) << 11;
157 }
158
159 /* extract a 17 bit constant from branch instructions, returning the
160 19 bit signed value. */
161
162 int
163 hppa_extract_17 (unsigned word)
164 {
165 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
166 hppa_get_field (word, 29, 29) << 10 |
167 hppa_get_field (word, 11, 15) << 11 |
168 (word & 0x1) << 16, 17) << 2;
169 }
170
171 CORE_ADDR
172 hppa_symbol_address(const char *sym)
173 {
174 struct minimal_symbol *minsym;
175
176 minsym = lookup_minimal_symbol (sym, NULL, NULL);
177 if (minsym)
178 return SYMBOL_VALUE_ADDRESS (minsym);
179 else
180 return (CORE_ADDR)-1;
181 }
182
183 struct hppa_objfile_private *
184 hppa_init_objfile_priv_data (struct objfile *objfile)
185 {
186 struct hppa_objfile_private *priv;
187
188 priv = (struct hppa_objfile_private *)
189 obstack_alloc (&objfile->objfile_obstack,
190 sizeof (struct hppa_objfile_private));
191 set_objfile_data (objfile, hppa_objfile_priv_data, priv);
192 memset (priv, 0, sizeof (*priv));
193
194 return priv;
195 }
196 \f
197
198 /* Compare the start address for two unwind entries returning 1 if
199 the first address is larger than the second, -1 if the second is
200 larger than the first, and zero if they are equal. */
201
202 static int
203 compare_unwind_entries (const void *arg1, const void *arg2)
204 {
205 const struct unwind_table_entry *a = arg1;
206 const struct unwind_table_entry *b = arg2;
207
208 if (a->region_start > b->region_start)
209 return 1;
210 else if (a->region_start < b->region_start)
211 return -1;
212 else
213 return 0;
214 }
215
216 static void
217 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
218 {
219 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
220 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
221 {
222 bfd_vma value = section->vma - section->filepos;
223 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
224
225 if (value < *low_text_segment_address)
226 *low_text_segment_address = value;
227 }
228 }
229
230 static void
231 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
232 asection *section, unsigned int entries, unsigned int size,
233 CORE_ADDR text_offset)
234 {
235 /* We will read the unwind entries into temporary memory, then
236 fill in the actual unwind table. */
237
238 if (size > 0)
239 {
240 unsigned long tmp;
241 unsigned i;
242 char *buf = alloca (size);
243 CORE_ADDR low_text_segment_address;
244
245 /* For ELF targets, then unwinds are supposed to
246 be segment relative offsets instead of absolute addresses.
247
248 Note that when loading a shared library (text_offset != 0) the
249 unwinds are already relative to the text_offset that will be
250 passed in. */
251 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
252 {
253 low_text_segment_address = -1;
254
255 bfd_map_over_sections (objfile->obfd,
256 record_text_segment_lowaddr,
257 &low_text_segment_address);
258
259 text_offset = low_text_segment_address;
260 }
261 else if (gdbarch_tdep (current_gdbarch)->solib_get_text_base)
262 {
263 text_offset = gdbarch_tdep (current_gdbarch)->solib_get_text_base (objfile);
264 }
265
266 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
267
268 /* Now internalize the information being careful to handle host/target
269 endian issues. */
270 for (i = 0; i < entries; i++)
271 {
272 table[i].region_start = bfd_get_32 (objfile->obfd,
273 (bfd_byte *) buf);
274 table[i].region_start += text_offset;
275 buf += 4;
276 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
277 table[i].region_end += text_offset;
278 buf += 4;
279 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
280 buf += 4;
281 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
282 table[i].Millicode = (tmp >> 30) & 0x1;
283 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
284 table[i].Region_description = (tmp >> 27) & 0x3;
285 table[i].reserved = (tmp >> 26) & 0x1;
286 table[i].Entry_SR = (tmp >> 25) & 0x1;
287 table[i].Entry_FR = (tmp >> 21) & 0xf;
288 table[i].Entry_GR = (tmp >> 16) & 0x1f;
289 table[i].Args_stored = (tmp >> 15) & 0x1;
290 table[i].Variable_Frame = (tmp >> 14) & 0x1;
291 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
292 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
293 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
294 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
295 table[i].sr4export = (tmp >> 9) & 0x1;
296 table[i].cxx_info = (tmp >> 8) & 0x1;
297 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
298 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
299 table[i].reserved1 = (tmp >> 5) & 0x1;
300 table[i].Save_SP = (tmp >> 4) & 0x1;
301 table[i].Save_RP = (tmp >> 3) & 0x1;
302 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
303 table[i].save_r19 = (tmp >> 1) & 0x1;
304 table[i].Cleanup_defined = tmp & 0x1;
305 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
306 buf += 4;
307 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
308 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
309 table[i].Large_frame = (tmp >> 29) & 0x1;
310 table[i].alloca_frame = (tmp >> 28) & 0x1;
311 table[i].reserved2 = (tmp >> 27) & 0x1;
312 table[i].Total_frame_size = tmp & 0x7ffffff;
313
314 /* Stub unwinds are handled elsewhere. */
315 table[i].stub_unwind.stub_type = 0;
316 table[i].stub_unwind.padding = 0;
317 }
318 }
319 }
320
321 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
322 the object file. This info is used mainly by find_unwind_entry() to find
323 out the stack frame size and frame pointer used by procedures. We put
324 everything on the psymbol obstack in the objfile so that it automatically
325 gets freed when the objfile is destroyed. */
326
327 static void
328 read_unwind_info (struct objfile *objfile)
329 {
330 asection *unwind_sec, *stub_unwind_sec;
331 unsigned unwind_size, stub_unwind_size, total_size;
332 unsigned index, unwind_entries;
333 unsigned stub_entries, total_entries;
334 CORE_ADDR text_offset;
335 struct hppa_unwind_info *ui;
336 struct hppa_objfile_private *obj_private;
337
338 text_offset = ANOFFSET (objfile->section_offsets, 0);
339 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
340 sizeof (struct hppa_unwind_info));
341
342 ui->table = NULL;
343 ui->cache = NULL;
344 ui->last = -1;
345
346 /* For reasons unknown the HP PA64 tools generate multiple unwinder
347 sections in a single executable. So we just iterate over every
348 section in the BFD looking for unwinder sections intead of trying
349 to do a lookup with bfd_get_section_by_name.
350
351 First determine the total size of the unwind tables so that we
352 can allocate memory in a nice big hunk. */
353 total_entries = 0;
354 for (unwind_sec = objfile->obfd->sections;
355 unwind_sec;
356 unwind_sec = unwind_sec->next)
357 {
358 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
359 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
360 {
361 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
362 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
363
364 total_entries += unwind_entries;
365 }
366 }
367
368 /* Now compute the size of the stub unwinds. Note the ELF tools do not
369 use stub unwinds at the current time. */
370 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
371
372 if (stub_unwind_sec)
373 {
374 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
375 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
376 }
377 else
378 {
379 stub_unwind_size = 0;
380 stub_entries = 0;
381 }
382
383 /* Compute total number of unwind entries and their total size. */
384 total_entries += stub_entries;
385 total_size = total_entries * sizeof (struct unwind_table_entry);
386
387 /* Allocate memory for the unwind table. */
388 ui->table = (struct unwind_table_entry *)
389 obstack_alloc (&objfile->objfile_obstack, total_size);
390 ui->last = total_entries - 1;
391
392 /* Now read in each unwind section and internalize the standard unwind
393 entries. */
394 index = 0;
395 for (unwind_sec = objfile->obfd->sections;
396 unwind_sec;
397 unwind_sec = unwind_sec->next)
398 {
399 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
400 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
401 {
402 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
403 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
404
405 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
406 unwind_entries, unwind_size, text_offset);
407 index += unwind_entries;
408 }
409 }
410
411 /* Now read in and internalize the stub unwind entries. */
412 if (stub_unwind_size > 0)
413 {
414 unsigned int i;
415 char *buf = alloca (stub_unwind_size);
416
417 /* Read in the stub unwind entries. */
418 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
419 0, stub_unwind_size);
420
421 /* Now convert them into regular unwind entries. */
422 for (i = 0; i < stub_entries; i++, index++)
423 {
424 /* Clear out the next unwind entry. */
425 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
426
427 /* Convert offset & size into region_start and region_end.
428 Stuff away the stub type into "reserved" fields. */
429 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
430 (bfd_byte *) buf);
431 ui->table[index].region_start += text_offset;
432 buf += 4;
433 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
434 (bfd_byte *) buf);
435 buf += 2;
436 ui->table[index].region_end
437 = ui->table[index].region_start + 4 *
438 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
439 buf += 2;
440 }
441
442 }
443
444 /* Unwind table needs to be kept sorted. */
445 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
446 compare_unwind_entries);
447
448 /* Keep a pointer to the unwind information. */
449 obj_private = (struct hppa_objfile_private *)
450 objfile_data (objfile, hppa_objfile_priv_data);
451 if (obj_private == NULL)
452 obj_private = hppa_init_objfile_priv_data (objfile);
453
454 obj_private->unwind_info = ui;
455 }
456
457 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
458 of the objfiles seeking the unwind table entry for this PC. Each objfile
459 contains a sorted list of struct unwind_table_entry. Since we do a binary
460 search of the unwind tables, we depend upon them to be sorted. */
461
462 struct unwind_table_entry *
463 find_unwind_entry (CORE_ADDR pc)
464 {
465 int first, middle, last;
466 struct objfile *objfile;
467 struct hppa_objfile_private *priv;
468
469 if (hppa_debug)
470 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
471 paddr_nz (pc));
472
473 /* A function at address 0? Not in HP-UX! */
474 if (pc == (CORE_ADDR) 0)
475 {
476 if (hppa_debug)
477 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
478 return NULL;
479 }
480
481 ALL_OBJFILES (objfile)
482 {
483 struct hppa_unwind_info *ui;
484 ui = NULL;
485 priv = objfile_data (objfile, hppa_objfile_priv_data);
486 if (priv)
487 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
488
489 if (!ui)
490 {
491 read_unwind_info (objfile);
492 priv = objfile_data (objfile, hppa_objfile_priv_data);
493 if (priv == NULL)
494 error (_("Internal error reading unwind information."));
495 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
496 }
497
498 /* First, check the cache */
499
500 if (ui->cache
501 && pc >= ui->cache->region_start
502 && pc <= ui->cache->region_end)
503 {
504 if (hppa_debug)
505 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
506 paddr_nz ((uintptr_t) ui->cache));
507 return ui->cache;
508 }
509
510 /* Not in the cache, do a binary search */
511
512 first = 0;
513 last = ui->last;
514
515 while (first <= last)
516 {
517 middle = (first + last) / 2;
518 if (pc >= ui->table[middle].region_start
519 && pc <= ui->table[middle].region_end)
520 {
521 ui->cache = &ui->table[middle];
522 if (hppa_debug)
523 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
524 paddr_nz ((uintptr_t) ui->cache));
525 return &ui->table[middle];
526 }
527
528 if (pc < ui->table[middle].region_start)
529 last = middle - 1;
530 else
531 first = middle + 1;
532 }
533 } /* ALL_OBJFILES() */
534
535 if (hppa_debug)
536 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
537
538 return NULL;
539 }
540
541 /* The epilogue is defined here as the area either on the `bv' instruction
542 itself or an instruction which destroys the function's stack frame.
543
544 We do not assume that the epilogue is at the end of a function as we can
545 also have return sequences in the middle of a function. */
546 static int
547 hppa_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
548 {
549 unsigned long status;
550 unsigned int inst;
551 char buf[4];
552 int off;
553
554 status = read_memory_nobpt (pc, buf, 4);
555 if (status != 0)
556 return 0;
557
558 inst = extract_unsigned_integer (buf, 4);
559
560 /* The most common way to perform a stack adjustment ldo X(sp),sp
561 We are destroying a stack frame if the offset is negative. */
562 if ((inst & 0xffffc000) == 0x37de0000
563 && hppa_extract_14 (inst) < 0)
564 return 1;
565
566 /* ldw,mb D(sp),X or ldd,mb D(sp),X */
567 if (((inst & 0x0fc010e0) == 0x0fc010e0
568 || (inst & 0x0fc010e0) == 0x0fc010e0)
569 && hppa_extract_14 (inst) < 0)
570 return 1;
571
572 /* bv %r0(%rp) or bv,n %r0(%rp) */
573 if (inst == 0xe840c000 || inst == 0xe840c002)
574 return 1;
575
576 return 0;
577 }
578
579 static const unsigned char *
580 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
581 {
582 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
583 (*len) = sizeof (breakpoint);
584 return breakpoint;
585 }
586
587 /* Return the name of a register. */
588
589 static const char *
590 hppa32_register_name (int i)
591 {
592 static char *names[] = {
593 "flags", "r1", "rp", "r3",
594 "r4", "r5", "r6", "r7",
595 "r8", "r9", "r10", "r11",
596 "r12", "r13", "r14", "r15",
597 "r16", "r17", "r18", "r19",
598 "r20", "r21", "r22", "r23",
599 "r24", "r25", "r26", "dp",
600 "ret0", "ret1", "sp", "r31",
601 "sar", "pcoqh", "pcsqh", "pcoqt",
602 "pcsqt", "eiem", "iir", "isr",
603 "ior", "ipsw", "goto", "sr4",
604 "sr0", "sr1", "sr2", "sr3",
605 "sr5", "sr6", "sr7", "cr0",
606 "cr8", "cr9", "ccr", "cr12",
607 "cr13", "cr24", "cr25", "cr26",
608 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
609 "fpsr", "fpe1", "fpe2", "fpe3",
610 "fpe4", "fpe5", "fpe6", "fpe7",
611 "fr4", "fr4R", "fr5", "fr5R",
612 "fr6", "fr6R", "fr7", "fr7R",
613 "fr8", "fr8R", "fr9", "fr9R",
614 "fr10", "fr10R", "fr11", "fr11R",
615 "fr12", "fr12R", "fr13", "fr13R",
616 "fr14", "fr14R", "fr15", "fr15R",
617 "fr16", "fr16R", "fr17", "fr17R",
618 "fr18", "fr18R", "fr19", "fr19R",
619 "fr20", "fr20R", "fr21", "fr21R",
620 "fr22", "fr22R", "fr23", "fr23R",
621 "fr24", "fr24R", "fr25", "fr25R",
622 "fr26", "fr26R", "fr27", "fr27R",
623 "fr28", "fr28R", "fr29", "fr29R",
624 "fr30", "fr30R", "fr31", "fr31R"
625 };
626 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
627 return NULL;
628 else
629 return names[i];
630 }
631
632 static const char *
633 hppa64_register_name (int i)
634 {
635 static char *names[] = {
636 "flags", "r1", "rp", "r3",
637 "r4", "r5", "r6", "r7",
638 "r8", "r9", "r10", "r11",
639 "r12", "r13", "r14", "r15",
640 "r16", "r17", "r18", "r19",
641 "r20", "r21", "r22", "r23",
642 "r24", "r25", "r26", "dp",
643 "ret0", "ret1", "sp", "r31",
644 "sar", "pcoqh", "pcsqh", "pcoqt",
645 "pcsqt", "eiem", "iir", "isr",
646 "ior", "ipsw", "goto", "sr4",
647 "sr0", "sr1", "sr2", "sr3",
648 "sr5", "sr6", "sr7", "cr0",
649 "cr8", "cr9", "ccr", "cr12",
650 "cr13", "cr24", "cr25", "cr26",
651 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
652 "fpsr", "fpe1", "fpe2", "fpe3",
653 "fr4", "fr5", "fr6", "fr7",
654 "fr8", "fr9", "fr10", "fr11",
655 "fr12", "fr13", "fr14", "fr15",
656 "fr16", "fr17", "fr18", "fr19",
657 "fr20", "fr21", "fr22", "fr23",
658 "fr24", "fr25", "fr26", "fr27",
659 "fr28", "fr29", "fr30", "fr31"
660 };
661 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
662 return NULL;
663 else
664 return names[i];
665 }
666
667 static int
668 hppa64_dwarf_reg_to_regnum (int reg)
669 {
670 /* r0-r31 and sar map one-to-one. */
671 if (reg <= 32)
672 return reg;
673
674 /* fr4-fr31 are mapped from 72 in steps of 2. */
675 if (reg >= 72 || reg < 72 + 28 * 2)
676 return HPPA64_FP4_REGNUM + (reg - 72) / 2;
677
678 error ("Invalid DWARF register num %d.", reg);
679 return -1;
680 }
681
682 /* This function pushes a stack frame with arguments as part of the
683 inferior function calling mechanism.
684
685 This is the version of the function for the 32-bit PA machines, in
686 which later arguments appear at lower addresses. (The stack always
687 grows towards higher addresses.)
688
689 We simply allocate the appropriate amount of stack space and put
690 arguments into their proper slots. */
691
692 static CORE_ADDR
693 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
694 struct regcache *regcache, CORE_ADDR bp_addr,
695 int nargs, struct value **args, CORE_ADDR sp,
696 int struct_return, CORE_ADDR struct_addr)
697 {
698 /* Stack base address at which any pass-by-reference parameters are
699 stored. */
700 CORE_ADDR struct_end = 0;
701 /* Stack base address at which the first parameter is stored. */
702 CORE_ADDR param_end = 0;
703
704 /* The inner most end of the stack after all the parameters have
705 been pushed. */
706 CORE_ADDR new_sp = 0;
707
708 /* Two passes. First pass computes the location of everything,
709 second pass writes the bytes out. */
710 int write_pass;
711
712 /* Global pointer (r19) of the function we are trying to call. */
713 CORE_ADDR gp;
714
715 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
716
717 for (write_pass = 0; write_pass < 2; write_pass++)
718 {
719 CORE_ADDR struct_ptr = 0;
720 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
721 struct_ptr is adjusted for each argument below, so the first
722 argument will end up at sp-36. */
723 CORE_ADDR param_ptr = 32;
724 int i;
725 int small_struct = 0;
726
727 for (i = 0; i < nargs; i++)
728 {
729 struct value *arg = args[i];
730 struct type *type = check_typedef (value_type (arg));
731 /* The corresponding parameter that is pushed onto the
732 stack, and [possibly] passed in a register. */
733 char param_val[8];
734 int param_len;
735 memset (param_val, 0, sizeof param_val);
736 if (TYPE_LENGTH (type) > 8)
737 {
738 /* Large parameter, pass by reference. Store the value
739 in "struct" area and then pass its address. */
740 param_len = 4;
741 struct_ptr += align_up (TYPE_LENGTH (type), 8);
742 if (write_pass)
743 write_memory (struct_end - struct_ptr, value_contents (arg),
744 TYPE_LENGTH (type));
745 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
746 }
747 else if (TYPE_CODE (type) == TYPE_CODE_INT
748 || TYPE_CODE (type) == TYPE_CODE_ENUM)
749 {
750 /* Integer value store, right aligned. "unpack_long"
751 takes care of any sign-extension problems. */
752 param_len = align_up (TYPE_LENGTH (type), 4);
753 store_unsigned_integer (param_val, param_len,
754 unpack_long (type,
755 value_contents (arg)));
756 }
757 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
758 {
759 /* Floating point value store, right aligned. */
760 param_len = align_up (TYPE_LENGTH (type), 4);
761 memcpy (param_val, value_contents (arg), param_len);
762 }
763 else
764 {
765 param_len = align_up (TYPE_LENGTH (type), 4);
766
767 /* Small struct value are stored right-aligned. */
768 memcpy (param_val + param_len - TYPE_LENGTH (type),
769 value_contents (arg), TYPE_LENGTH (type));
770
771 /* Structures of size 5, 6 and 7 bytes are special in that
772 the higher-ordered word is stored in the lower-ordered
773 argument, and even though it is a 8-byte quantity the
774 registers need not be 8-byte aligned. */
775 if (param_len > 4 && param_len < 8)
776 small_struct = 1;
777 }
778
779 param_ptr += param_len;
780 if (param_len == 8 && !small_struct)
781 param_ptr = align_up (param_ptr, 8);
782
783 /* First 4 non-FP arguments are passed in gr26-gr23.
784 First 4 32-bit FP arguments are passed in fr4L-fr7L.
785 First 2 64-bit FP arguments are passed in fr5 and fr7.
786
787 The rest go on the stack, starting at sp-36, towards lower
788 addresses. 8-byte arguments must be aligned to a 8-byte
789 stack boundary. */
790 if (write_pass)
791 {
792 write_memory (param_end - param_ptr, param_val, param_len);
793
794 /* There are some cases when we don't know the type
795 expected by the callee (e.g. for variadic functions), so
796 pass the parameters in both general and fp regs. */
797 if (param_ptr <= 48)
798 {
799 int grreg = 26 - (param_ptr - 36) / 4;
800 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
801 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
802
803 regcache_cooked_write (regcache, grreg, param_val);
804 regcache_cooked_write (regcache, fpLreg, param_val);
805
806 if (param_len > 4)
807 {
808 regcache_cooked_write (regcache, grreg + 1,
809 param_val + 4);
810
811 regcache_cooked_write (regcache, fpreg, param_val);
812 regcache_cooked_write (regcache, fpreg + 1,
813 param_val + 4);
814 }
815 }
816 }
817 }
818
819 /* Update the various stack pointers. */
820 if (!write_pass)
821 {
822 struct_end = sp + align_up (struct_ptr, 64);
823 /* PARAM_PTR already accounts for all the arguments passed
824 by the user. However, the ABI mandates minimum stack
825 space allocations for outgoing arguments. The ABI also
826 mandates minimum stack alignments which we must
827 preserve. */
828 param_end = struct_end + align_up (param_ptr, 64);
829 }
830 }
831
832 /* If a structure has to be returned, set up register 28 to hold its
833 address */
834 if (struct_return)
835 regcache_cooked_write_unsigned (regcache, 28, struct_addr);
836
837 gp = tdep->find_global_pointer (function);
838
839 if (gp != 0)
840 regcache_cooked_write_unsigned (regcache, 19, gp);
841
842 /* Set the return address. */
843 if (!gdbarch_push_dummy_code_p (gdbarch))
844 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
845
846 /* Update the Stack Pointer. */
847 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
848
849 return param_end;
850 }
851
852 /* The 64-bit PA-RISC calling conventions are documented in "64-Bit
853 Runtime Architecture for PA-RISC 2.0", which is distributed as part
854 as of the HP-UX Software Transition Kit (STK). This implementation
855 is based on version 3.3, dated October 6, 1997. */
856
857 /* Check whether TYPE is an "Integral or Pointer Scalar Type". */
858
859 static int
860 hppa64_integral_or_pointer_p (const struct type *type)
861 {
862 switch (TYPE_CODE (type))
863 {
864 case TYPE_CODE_INT:
865 case TYPE_CODE_BOOL:
866 case TYPE_CODE_CHAR:
867 case TYPE_CODE_ENUM:
868 case TYPE_CODE_RANGE:
869 {
870 int len = TYPE_LENGTH (type);
871 return (len == 1 || len == 2 || len == 4 || len == 8);
872 }
873 case TYPE_CODE_PTR:
874 case TYPE_CODE_REF:
875 return (TYPE_LENGTH (type) == 8);
876 default:
877 break;
878 }
879
880 return 0;
881 }
882
883 /* Check whether TYPE is a "Floating Scalar Type". */
884
885 static int
886 hppa64_floating_p (const struct type *type)
887 {
888 switch (TYPE_CODE (type))
889 {
890 case TYPE_CODE_FLT:
891 {
892 int len = TYPE_LENGTH (type);
893 return (len == 4 || len == 8 || len == 16);
894 }
895 default:
896 break;
897 }
898
899 return 0;
900 }
901
902 /* If CODE points to a function entry address, try to look up the corresponding
903 function descriptor and return its address instead. If CODE is not a
904 function entry address, then just return it unchanged. */
905 static CORE_ADDR
906 hppa64_convert_code_addr_to_fptr (CORE_ADDR code)
907 {
908 struct obj_section *sec, *opd;
909
910 sec = find_pc_section (code);
911
912 if (!sec)
913 return code;
914
915 /* If CODE is in a data section, assume it's already a fptr. */
916 if (!(sec->the_bfd_section->flags & SEC_CODE))
917 return code;
918
919 ALL_OBJFILE_OSECTIONS (sec->objfile, opd)
920 {
921 if (strcmp (opd->the_bfd_section->name, ".opd") == 0)
922 break;
923 }
924
925 if (opd < sec->objfile->sections_end)
926 {
927 CORE_ADDR addr;
928
929 for (addr = opd->addr; addr < opd->endaddr; addr += 2 * 8)
930 {
931 ULONGEST opdaddr;
932 char tmp[8];
933
934 if (target_read_memory (addr, tmp, sizeof (tmp)))
935 break;
936 opdaddr = extract_unsigned_integer (tmp, sizeof (tmp));
937
938 if (opdaddr == code)
939 return addr - 16;
940 }
941 }
942
943 return code;
944 }
945
946 static CORE_ADDR
947 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
948 struct regcache *regcache, CORE_ADDR bp_addr,
949 int nargs, struct value **args, CORE_ADDR sp,
950 int struct_return, CORE_ADDR struct_addr)
951 {
952 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
953 int i, offset = 0;
954 CORE_ADDR gp;
955
956 /* "The outgoing parameter area [...] must be aligned at a 16-byte
957 boundary." */
958 sp = align_up (sp, 16);
959
960 for (i = 0; i < nargs; i++)
961 {
962 struct value *arg = args[i];
963 struct type *type = value_type (arg);
964 int len = TYPE_LENGTH (type);
965 const bfd_byte *valbuf;
966 bfd_byte fptrbuf[8];
967 int regnum;
968
969 /* "Each parameter begins on a 64-bit (8-byte) boundary." */
970 offset = align_up (offset, 8);
971
972 if (hppa64_integral_or_pointer_p (type))
973 {
974 /* "Integral scalar parameters smaller than 64 bits are
975 padded on the left (i.e., the value is in the
976 least-significant bits of the 64-bit storage unit, and
977 the high-order bits are undefined)." Therefore we can
978 safely sign-extend them. */
979 if (len < 8)
980 {
981 arg = value_cast (builtin_type_int64, arg);
982 len = 8;
983 }
984 }
985 else if (hppa64_floating_p (type))
986 {
987 if (len > 8)
988 {
989 /* "Quad-precision (128-bit) floating-point scalar
990 parameters are aligned on a 16-byte boundary." */
991 offset = align_up (offset, 16);
992
993 /* "Double-extended- and quad-precision floating-point
994 parameters within the first 64 bytes of the parameter
995 list are always passed in general registers." */
996 }
997 else
998 {
999 if (len == 4)
1000 {
1001 /* "Single-precision (32-bit) floating-point scalar
1002 parameters are padded on the left with 32 bits of
1003 garbage (i.e., the floating-point value is in the
1004 least-significant 32 bits of a 64-bit storage
1005 unit)." */
1006 offset += 4;
1007 }
1008
1009 /* "Single- and double-precision floating-point
1010 parameters in this area are passed according to the
1011 available formal parameter information in a function
1012 prototype. [...] If no prototype is in scope,
1013 floating-point parameters must be passed both in the
1014 corresponding general registers and in the
1015 corresponding floating-point registers." */
1016 regnum = HPPA64_FP4_REGNUM + offset / 8;
1017
1018 if (regnum < HPPA64_FP4_REGNUM + 8)
1019 {
1020 /* "Single-precision floating-point parameters, when
1021 passed in floating-point registers, are passed in
1022 the right halves of the floating point registers;
1023 the left halves are unused." */
1024 regcache_cooked_write_part (regcache, regnum, offset % 8,
1025 len, value_contents (arg));
1026 }
1027 }
1028 }
1029 else
1030 {
1031 if (len > 8)
1032 {
1033 /* "Aggregates larger than 8 bytes are aligned on a
1034 16-byte boundary, possibly leaving an unused argument
1035 slot, which is filled with garbage. If necessary,
1036 they are padded on the right (with garbage), to a
1037 multiple of 8 bytes." */
1038 offset = align_up (offset, 16);
1039 }
1040 }
1041
1042 /* If we are passing a function pointer, make sure we pass a function
1043 descriptor instead of the function entry address. */
1044 if (TYPE_CODE (type) == TYPE_CODE_PTR
1045 && TYPE_CODE (TYPE_TARGET_TYPE (type)) == TYPE_CODE_FUNC)
1046 {
1047 ULONGEST codeptr, fptr;
1048
1049 codeptr = unpack_long (type, value_contents (arg));
1050 fptr = hppa64_convert_code_addr_to_fptr (codeptr);
1051 store_unsigned_integer (fptrbuf, TYPE_LENGTH (type), fptr);
1052 valbuf = fptrbuf;
1053 }
1054 else
1055 {
1056 valbuf = value_contents (arg);
1057 }
1058
1059 /* Always store the argument in memory. */
1060 write_memory (sp + offset, valbuf, len);
1061
1062 regnum = HPPA_ARG0_REGNUM - offset / 8;
1063 while (regnum > HPPA_ARG0_REGNUM - 8 && len > 0)
1064 {
1065 regcache_cooked_write_part (regcache, regnum,
1066 offset % 8, min (len, 8), valbuf);
1067 offset += min (len, 8);
1068 valbuf += min (len, 8);
1069 len -= min (len, 8);
1070 regnum--;
1071 }
1072
1073 offset += len;
1074 }
1075
1076 /* Set up GR29 (%ret1) to hold the argument pointer (ap). */
1077 regcache_cooked_write_unsigned (regcache, HPPA_RET1_REGNUM, sp + 64);
1078
1079 /* Allocate the outgoing parameter area. Make sure the outgoing
1080 parameter area is multiple of 16 bytes in length. */
1081 sp += max (align_up (offset, 16), 64);
1082
1083 /* Allocate 32-bytes of scratch space. The documentation doesn't
1084 mention this, but it seems to be needed. */
1085 sp += 32;
1086
1087 /* Allocate the frame marker area. */
1088 sp += 16;
1089
1090 /* If a structure has to be returned, set up GR 28 (%ret0) to hold
1091 its address. */
1092 if (struct_return)
1093 regcache_cooked_write_unsigned (regcache, HPPA_RET0_REGNUM, struct_addr);
1094
1095 /* Set up GR27 (%dp) to hold the global pointer (gp). */
1096 gp = tdep->find_global_pointer (function);
1097 if (gp != 0)
1098 regcache_cooked_write_unsigned (regcache, HPPA_DP_REGNUM, gp);
1099
1100 /* Set up GR2 (%rp) to hold the return pointer (rp). */
1101 if (!gdbarch_push_dummy_code_p (gdbarch))
1102 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
1103
1104 /* Set up GR30 to hold the stack pointer (sp). */
1105 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, sp);
1106
1107 return sp;
1108 }
1109 \f
1110
1111 /* Handle 32/64-bit struct return conventions. */
1112
1113 static enum return_value_convention
1114 hppa32_return_value (struct gdbarch *gdbarch,
1115 struct type *type, struct regcache *regcache,
1116 gdb_byte *readbuf, const gdb_byte *writebuf)
1117 {
1118 if (TYPE_LENGTH (type) <= 2 * 4)
1119 {
1120 /* The value always lives in the right hand end of the register
1121 (or register pair)? */
1122 int b;
1123 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
1124 int part = TYPE_LENGTH (type) % 4;
1125 /* The left hand register contains only part of the value,
1126 transfer that first so that the rest can be xfered as entire
1127 4-byte registers. */
1128 if (part > 0)
1129 {
1130 if (readbuf != NULL)
1131 regcache_cooked_read_part (regcache, reg, 4 - part,
1132 part, readbuf);
1133 if (writebuf != NULL)
1134 regcache_cooked_write_part (regcache, reg, 4 - part,
1135 part, writebuf);
1136 reg++;
1137 }
1138 /* Now transfer the remaining register values. */
1139 for (b = part; b < TYPE_LENGTH (type); b += 4)
1140 {
1141 if (readbuf != NULL)
1142 regcache_cooked_read (regcache, reg, readbuf + b);
1143 if (writebuf != NULL)
1144 regcache_cooked_write (regcache, reg, writebuf + b);
1145 reg++;
1146 }
1147 return RETURN_VALUE_REGISTER_CONVENTION;
1148 }
1149 else
1150 return RETURN_VALUE_STRUCT_CONVENTION;
1151 }
1152
1153 static enum return_value_convention
1154 hppa64_return_value (struct gdbarch *gdbarch,
1155 struct type *type, struct regcache *regcache,
1156 gdb_byte *readbuf, const gdb_byte *writebuf)
1157 {
1158 int len = TYPE_LENGTH (type);
1159 int regnum, offset;
1160
1161 if (len > 16)
1162 {
1163 /* All return values larget than 128 bits must be aggregate
1164 return values. */
1165 gdb_assert (!hppa64_integral_or_pointer_p (type));
1166 gdb_assert (!hppa64_floating_p (type));
1167
1168 /* "Aggregate return values larger than 128 bits are returned in
1169 a buffer allocated by the caller. The address of the buffer
1170 must be passed in GR 28." */
1171 return RETURN_VALUE_STRUCT_CONVENTION;
1172 }
1173
1174 if (hppa64_integral_or_pointer_p (type))
1175 {
1176 /* "Integral return values are returned in GR 28. Values
1177 smaller than 64 bits are padded on the left (with garbage)." */
1178 regnum = HPPA_RET0_REGNUM;
1179 offset = 8 - len;
1180 }
1181 else if (hppa64_floating_p (type))
1182 {
1183 if (len > 8)
1184 {
1185 /* "Double-extended- and quad-precision floating-point
1186 values are returned in GRs 28 and 29. The sign,
1187 exponent, and most-significant bits of the mantissa are
1188 returned in GR 28; the least-significant bits of the
1189 mantissa are passed in GR 29. For double-extended
1190 precision values, GR 29 is padded on the right with 48
1191 bits of garbage." */
1192 regnum = HPPA_RET0_REGNUM;
1193 offset = 0;
1194 }
1195 else
1196 {
1197 /* "Single-precision and double-precision floating-point
1198 return values are returned in FR 4R (single precision) or
1199 FR 4 (double-precision)." */
1200 regnum = HPPA64_FP4_REGNUM;
1201 offset = 8 - len;
1202 }
1203 }
1204 else
1205 {
1206 /* "Aggregate return values up to 64 bits in size are returned
1207 in GR 28. Aggregates smaller than 64 bits are left aligned
1208 in the register; the pad bits on the right are undefined."
1209
1210 "Aggregate return values between 65 and 128 bits are returned
1211 in GRs 28 and 29. The first 64 bits are placed in GR 28, and
1212 the remaining bits are placed, left aligned, in GR 29. The
1213 pad bits on the right of GR 29 (if any) are undefined." */
1214 regnum = HPPA_RET0_REGNUM;
1215 offset = 0;
1216 }
1217
1218 if (readbuf)
1219 {
1220 while (len > 0)
1221 {
1222 regcache_cooked_read_part (regcache, regnum, offset,
1223 min (len, 8), readbuf);
1224 readbuf += min (len, 8);
1225 len -= min (len, 8);
1226 regnum++;
1227 }
1228 }
1229
1230 if (writebuf)
1231 {
1232 while (len > 0)
1233 {
1234 regcache_cooked_write_part (regcache, regnum, offset,
1235 min (len, 8), writebuf);
1236 writebuf += min (len, 8);
1237 len -= min (len, 8);
1238 regnum++;
1239 }
1240 }
1241
1242 return RETURN_VALUE_REGISTER_CONVENTION;
1243 }
1244 \f
1245
1246 static CORE_ADDR
1247 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch, CORE_ADDR addr,
1248 struct target_ops *targ)
1249 {
1250 if (addr & 2)
1251 {
1252 CORE_ADDR plabel = addr & ~3;
1253 return read_memory_typed_address (plabel, builtin_type_void_func_ptr);
1254 }
1255
1256 return addr;
1257 }
1258
1259 static CORE_ADDR
1260 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1261 {
1262 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1263 and not _bit_)! */
1264 return align_up (addr, 64);
1265 }
1266
1267 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1268
1269 static CORE_ADDR
1270 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1271 {
1272 /* Just always 16-byte align. */
1273 return align_up (addr, 16);
1274 }
1275
1276 CORE_ADDR
1277 hppa_read_pc (struct regcache *regcache)
1278 {
1279 ULONGEST ipsw;
1280 ULONGEST pc;
1281
1282 regcache_cooked_read_unsigned (regcache, HPPA_IPSW_REGNUM, &ipsw);
1283 regcache_cooked_read_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, &pc);
1284
1285 /* If the current instruction is nullified, then we are effectively
1286 still executing the previous instruction. Pretend we are still
1287 there. This is needed when single stepping; if the nullified
1288 instruction is on a different line, we don't want GDB to think
1289 we've stepped onto that line. */
1290 if (ipsw & 0x00200000)
1291 pc -= 4;
1292
1293 return pc & ~0x3;
1294 }
1295
1296 void
1297 hppa_write_pc (struct regcache *regcache, CORE_ADDR pc)
1298 {
1299 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_HEAD_REGNUM, pc);
1300 regcache_cooked_write_unsigned (regcache, HPPA_PCOQ_TAIL_REGNUM, pc + 4);
1301 }
1302
1303 /* return the alignment of a type in bytes. Structures have the maximum
1304 alignment required by their fields. */
1305
1306 static int
1307 hppa_alignof (struct type *type)
1308 {
1309 int max_align, align, i;
1310 CHECK_TYPEDEF (type);
1311 switch (TYPE_CODE (type))
1312 {
1313 case TYPE_CODE_PTR:
1314 case TYPE_CODE_INT:
1315 case TYPE_CODE_FLT:
1316 return TYPE_LENGTH (type);
1317 case TYPE_CODE_ARRAY:
1318 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1319 case TYPE_CODE_STRUCT:
1320 case TYPE_CODE_UNION:
1321 max_align = 1;
1322 for (i = 0; i < TYPE_NFIELDS (type); i++)
1323 {
1324 /* Bit fields have no real alignment. */
1325 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1326 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1327 {
1328 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1329 max_align = max (max_align, align);
1330 }
1331 }
1332 return max_align;
1333 default:
1334 return 4;
1335 }
1336 }
1337
1338 /* For the given instruction (INST), return any adjustment it makes
1339 to the stack pointer or zero for no adjustment.
1340
1341 This only handles instructions commonly found in prologues. */
1342
1343 static int
1344 prologue_inst_adjust_sp (unsigned long inst)
1345 {
1346 /* This must persist across calls. */
1347 static int save_high21;
1348
1349 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1350 if ((inst & 0xffffc000) == 0x37de0000)
1351 return hppa_extract_14 (inst);
1352
1353 /* stwm X,D(sp) */
1354 if ((inst & 0xffe00000) == 0x6fc00000)
1355 return hppa_extract_14 (inst);
1356
1357 /* std,ma X,D(sp) */
1358 if ((inst & 0xffe00008) == 0x73c00008)
1359 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1360
1361 /* addil high21,%r30; ldo low11,(%r1),%r30)
1362 save high bits in save_high21 for later use. */
1363 if ((inst & 0xffe00000) == 0x2bc00000)
1364 {
1365 save_high21 = hppa_extract_21 (inst);
1366 return 0;
1367 }
1368
1369 if ((inst & 0xffff0000) == 0x343e0000)
1370 return save_high21 + hppa_extract_14 (inst);
1371
1372 /* fstws as used by the HP compilers. */
1373 if ((inst & 0xffffffe0) == 0x2fd01220)
1374 return hppa_extract_5_load (inst);
1375
1376 /* No adjustment. */
1377 return 0;
1378 }
1379
1380 /* Return nonzero if INST is a branch of some kind, else return zero. */
1381
1382 static int
1383 is_branch (unsigned long inst)
1384 {
1385 switch (inst >> 26)
1386 {
1387 case 0x20:
1388 case 0x21:
1389 case 0x22:
1390 case 0x23:
1391 case 0x27:
1392 case 0x28:
1393 case 0x29:
1394 case 0x2a:
1395 case 0x2b:
1396 case 0x2f:
1397 case 0x30:
1398 case 0x31:
1399 case 0x32:
1400 case 0x33:
1401 case 0x38:
1402 case 0x39:
1403 case 0x3a:
1404 case 0x3b:
1405 return 1;
1406
1407 default:
1408 return 0;
1409 }
1410 }
1411
1412 /* Return the register number for a GR which is saved by INST or
1413 zero it INST does not save a GR. */
1414
1415 static int
1416 inst_saves_gr (unsigned long inst)
1417 {
1418 /* Does it look like a stw? */
1419 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1420 || (inst >> 26) == 0x1f
1421 || ((inst >> 26) == 0x1f
1422 && ((inst >> 6) == 0xa)))
1423 return hppa_extract_5R_store (inst);
1424
1425 /* Does it look like a std? */
1426 if ((inst >> 26) == 0x1c
1427 || ((inst >> 26) == 0x03
1428 && ((inst >> 6) & 0xf) == 0xb))
1429 return hppa_extract_5R_store (inst);
1430
1431 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1432 if ((inst >> 26) == 0x1b)
1433 return hppa_extract_5R_store (inst);
1434
1435 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1436 too. */
1437 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1438 || ((inst >> 26) == 0x3
1439 && (((inst >> 6) & 0xf) == 0x8
1440 || (inst >> 6) & 0xf) == 0x9))
1441 return hppa_extract_5R_store (inst);
1442
1443 return 0;
1444 }
1445
1446 /* Return the register number for a FR which is saved by INST or
1447 zero it INST does not save a FR.
1448
1449 Note we only care about full 64bit register stores (that's the only
1450 kind of stores the prologue will use).
1451
1452 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1453
1454 static int
1455 inst_saves_fr (unsigned long inst)
1456 {
1457 /* is this an FSTD ? */
1458 if ((inst & 0xfc00dfc0) == 0x2c001200)
1459 return hppa_extract_5r_store (inst);
1460 if ((inst & 0xfc000002) == 0x70000002)
1461 return hppa_extract_5R_store (inst);
1462 /* is this an FSTW ? */
1463 if ((inst & 0xfc00df80) == 0x24001200)
1464 return hppa_extract_5r_store (inst);
1465 if ((inst & 0xfc000002) == 0x7c000000)
1466 return hppa_extract_5R_store (inst);
1467 return 0;
1468 }
1469
1470 /* Advance PC across any function entry prologue instructions
1471 to reach some "real" code.
1472
1473 Use information in the unwind table to determine what exactly should
1474 be in the prologue. */
1475
1476
1477 static CORE_ADDR
1478 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1479 {
1480 char buf[4];
1481 CORE_ADDR orig_pc = pc;
1482 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1483 unsigned long args_stored, status, i, restart_gr, restart_fr;
1484 struct unwind_table_entry *u;
1485 int final_iteration;
1486
1487 restart_gr = 0;
1488 restart_fr = 0;
1489
1490 restart:
1491 u = find_unwind_entry (pc);
1492 if (!u)
1493 return pc;
1494
1495 /* If we are not at the beginning of a function, then return now. */
1496 if ((pc & ~0x3) != u->region_start)
1497 return pc;
1498
1499 /* This is how much of a frame adjustment we need to account for. */
1500 stack_remaining = u->Total_frame_size << 3;
1501
1502 /* Magic register saves we want to know about. */
1503 save_rp = u->Save_RP;
1504 save_sp = u->Save_SP;
1505
1506 /* An indication that args may be stored into the stack. Unfortunately
1507 the HPUX compilers tend to set this in cases where no args were
1508 stored too!. */
1509 args_stored = 1;
1510
1511 /* Turn the Entry_GR field into a bitmask. */
1512 save_gr = 0;
1513 for (i = 3; i < u->Entry_GR + 3; i++)
1514 {
1515 /* Frame pointer gets saved into a special location. */
1516 if (u->Save_SP && i == HPPA_FP_REGNUM)
1517 continue;
1518
1519 save_gr |= (1 << i);
1520 }
1521 save_gr &= ~restart_gr;
1522
1523 /* Turn the Entry_FR field into a bitmask too. */
1524 save_fr = 0;
1525 for (i = 12; i < u->Entry_FR + 12; i++)
1526 save_fr |= (1 << i);
1527 save_fr &= ~restart_fr;
1528
1529 final_iteration = 0;
1530
1531 /* Loop until we find everything of interest or hit a branch.
1532
1533 For unoptimized GCC code and for any HP CC code this will never ever
1534 examine any user instructions.
1535
1536 For optimzied GCC code we're faced with problems. GCC will schedule
1537 its prologue and make prologue instructions available for delay slot
1538 filling. The end result is user code gets mixed in with the prologue
1539 and a prologue instruction may be in the delay slot of the first branch
1540 or call.
1541
1542 Some unexpected things are expected with debugging optimized code, so
1543 we allow this routine to walk past user instructions in optimized
1544 GCC code. */
1545 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1546 || args_stored)
1547 {
1548 unsigned int reg_num;
1549 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1550 unsigned long old_save_rp, old_save_sp, next_inst;
1551
1552 /* Save copies of all the triggers so we can compare them later
1553 (only for HPC). */
1554 old_save_gr = save_gr;
1555 old_save_fr = save_fr;
1556 old_save_rp = save_rp;
1557 old_save_sp = save_sp;
1558 old_stack_remaining = stack_remaining;
1559
1560 status = read_memory_nobpt (pc, buf, 4);
1561 inst = extract_unsigned_integer (buf, 4);
1562
1563 /* Yow! */
1564 if (status != 0)
1565 return pc;
1566
1567 /* Note the interesting effects of this instruction. */
1568 stack_remaining -= prologue_inst_adjust_sp (inst);
1569
1570 /* There are limited ways to store the return pointer into the
1571 stack. */
1572 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1 || inst == 0x73c23fe1)
1573 save_rp = 0;
1574
1575 /* These are the only ways we save SP into the stack. At this time
1576 the HP compilers never bother to save SP into the stack. */
1577 if ((inst & 0xffffc000) == 0x6fc10000
1578 || (inst & 0xffffc00c) == 0x73c10008)
1579 save_sp = 0;
1580
1581 /* Are we loading some register with an offset from the argument
1582 pointer? */
1583 if ((inst & 0xffe00000) == 0x37a00000
1584 || (inst & 0xffffffe0) == 0x081d0240)
1585 {
1586 pc += 4;
1587 continue;
1588 }
1589
1590 /* Account for general and floating-point register saves. */
1591 reg_num = inst_saves_gr (inst);
1592 save_gr &= ~(1 << reg_num);
1593
1594 /* Ugh. Also account for argument stores into the stack.
1595 Unfortunately args_stored only tells us that some arguments
1596 where stored into the stack. Not how many or what kind!
1597
1598 This is a kludge as on the HP compiler sets this bit and it
1599 never does prologue scheduling. So once we see one, skip past
1600 all of them. We have similar code for the fp arg stores below.
1601
1602 FIXME. Can still die if we have a mix of GR and FR argument
1603 stores! */
1604 if (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1605 && reg_num <= 26)
1606 {
1607 while (reg_num >= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 19 : 23)
1608 && reg_num <= 26)
1609 {
1610 pc += 4;
1611 status = read_memory_nobpt (pc, buf, 4);
1612 inst = extract_unsigned_integer (buf, 4);
1613 if (status != 0)
1614 return pc;
1615 reg_num = inst_saves_gr (inst);
1616 }
1617 args_stored = 0;
1618 continue;
1619 }
1620
1621 reg_num = inst_saves_fr (inst);
1622 save_fr &= ~(1 << reg_num);
1623
1624 status = read_memory_nobpt (pc + 4, buf, 4);
1625 next_inst = extract_unsigned_integer (buf, 4);
1626
1627 /* Yow! */
1628 if (status != 0)
1629 return pc;
1630
1631 /* We've got to be read to handle the ldo before the fp register
1632 save. */
1633 if ((inst & 0xfc000000) == 0x34000000
1634 && inst_saves_fr (next_inst) >= 4
1635 && inst_saves_fr (next_inst)
1636 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1637 {
1638 /* So we drop into the code below in a reasonable state. */
1639 reg_num = inst_saves_fr (next_inst);
1640 pc -= 4;
1641 }
1642
1643 /* Ugh. Also account for argument stores into the stack.
1644 This is a kludge as on the HP compiler sets this bit and it
1645 never does prologue scheduling. So once we see one, skip past
1646 all of them. */
1647 if (reg_num >= 4
1648 && reg_num <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1649 {
1650 while (reg_num >= 4
1651 && reg_num
1652 <= (gdbarch_ptr_bit (current_gdbarch) == 64 ? 11 : 7))
1653 {
1654 pc += 8;
1655 status = read_memory_nobpt (pc, buf, 4);
1656 inst = extract_unsigned_integer (buf, 4);
1657 if (status != 0)
1658 return pc;
1659 if ((inst & 0xfc000000) != 0x34000000)
1660 break;
1661 status = read_memory_nobpt (pc + 4, buf, 4);
1662 next_inst = extract_unsigned_integer (buf, 4);
1663 if (status != 0)
1664 return pc;
1665 reg_num = inst_saves_fr (next_inst);
1666 }
1667 args_stored = 0;
1668 continue;
1669 }
1670
1671 /* Quit if we hit any kind of branch. This can happen if a prologue
1672 instruction is in the delay slot of the first call/branch. */
1673 if (is_branch (inst) && stop_before_branch)
1674 break;
1675
1676 /* What a crock. The HP compilers set args_stored even if no
1677 arguments were stored into the stack (boo hiss). This could
1678 cause this code to then skip a bunch of user insns (up to the
1679 first branch).
1680
1681 To combat this we try to identify when args_stored was bogusly
1682 set and clear it. We only do this when args_stored is nonzero,
1683 all other resources are accounted for, and nothing changed on
1684 this pass. */
1685 if (args_stored
1686 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1687 && old_save_gr == save_gr && old_save_fr == save_fr
1688 && old_save_rp == save_rp && old_save_sp == save_sp
1689 && old_stack_remaining == stack_remaining)
1690 break;
1691
1692 /* Bump the PC. */
1693 pc += 4;
1694
1695 /* !stop_before_branch, so also look at the insn in the delay slot
1696 of the branch. */
1697 if (final_iteration)
1698 break;
1699 if (is_branch (inst))
1700 final_iteration = 1;
1701 }
1702
1703 /* We've got a tenative location for the end of the prologue. However
1704 because of limitations in the unwind descriptor mechanism we may
1705 have went too far into user code looking for the save of a register
1706 that does not exist. So, if there registers we expected to be saved
1707 but never were, mask them out and restart.
1708
1709 This should only happen in optimized code, and should be very rare. */
1710 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1711 {
1712 pc = orig_pc;
1713 restart_gr = save_gr;
1714 restart_fr = save_fr;
1715 goto restart;
1716 }
1717
1718 return pc;
1719 }
1720
1721
1722 /* Return the address of the PC after the last prologue instruction if
1723 we can determine it from the debug symbols. Else return zero. */
1724
1725 static CORE_ADDR
1726 after_prologue (CORE_ADDR pc)
1727 {
1728 struct symtab_and_line sal;
1729 CORE_ADDR func_addr, func_end;
1730 struct symbol *f;
1731
1732 /* If we can not find the symbol in the partial symbol table, then
1733 there is no hope we can determine the function's start address
1734 with this code. */
1735 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1736 return 0;
1737
1738 /* Get the line associated with FUNC_ADDR. */
1739 sal = find_pc_line (func_addr, 0);
1740
1741 /* There are only two cases to consider. First, the end of the source line
1742 is within the function bounds. In that case we return the end of the
1743 source line. Second is the end of the source line extends beyond the
1744 bounds of the current function. We need to use the slow code to
1745 examine instructions in that case.
1746
1747 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1748 the wrong thing to do. In fact, it should be entirely possible for this
1749 function to always return zero since the slow instruction scanning code
1750 is supposed to *always* work. If it does not, then it is a bug. */
1751 if (sal.end < func_end)
1752 return sal.end;
1753 else
1754 return 0;
1755 }
1756
1757 /* To skip prologues, I use this predicate. Returns either PC itself
1758 if the code at PC does not look like a function prologue; otherwise
1759 returns an address that (if we're lucky) follows the prologue.
1760
1761 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1762 It doesn't necessarily skips all the insns in the prologue. In fact
1763 we might not want to skip all the insns because a prologue insn may
1764 appear in the delay slot of the first branch, and we don't want to
1765 skip over the branch in that case. */
1766
1767 static CORE_ADDR
1768 hppa_skip_prologue (CORE_ADDR pc)
1769 {
1770 unsigned long inst;
1771 int offset;
1772 CORE_ADDR post_prologue_pc;
1773 char buf[4];
1774
1775 /* See if we can determine the end of the prologue via the symbol table.
1776 If so, then return either PC, or the PC after the prologue, whichever
1777 is greater. */
1778
1779 post_prologue_pc = after_prologue (pc);
1780
1781 /* If after_prologue returned a useful address, then use it. Else
1782 fall back on the instruction skipping code.
1783
1784 Some folks have claimed this causes problems because the breakpoint
1785 may be the first instruction of the prologue. If that happens, then
1786 the instruction skipping code has a bug that needs to be fixed. */
1787 if (post_prologue_pc != 0)
1788 return max (pc, post_prologue_pc);
1789 else
1790 return (skip_prologue_hard_way (pc, 1));
1791 }
1792
1793 /* Return an unwind entry that falls within the frame's code block. */
1794 static struct unwind_table_entry *
1795 hppa_find_unwind_entry_in_block (struct frame_info *f)
1796 {
1797 CORE_ADDR pc = frame_unwind_address_in_block (f, NORMAL_FRAME);
1798
1799 /* FIXME drow/20070101: Calling gdbarch_addr_bits_remove on the
1800 result of frame_unwind_address_in_block implies a problem.
1801 The bits should have been removed earlier, before the return
1802 value of frame_pc_unwind. That might be happening already;
1803 if it isn't, it should be fixed. Then this call can be
1804 removed. */
1805 pc = gdbarch_addr_bits_remove (get_frame_arch (f), pc);
1806 return find_unwind_entry (pc);
1807 }
1808
1809 struct hppa_frame_cache
1810 {
1811 CORE_ADDR base;
1812 struct trad_frame_saved_reg *saved_regs;
1813 };
1814
1815 static struct hppa_frame_cache *
1816 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1817 {
1818 struct hppa_frame_cache *cache;
1819 long saved_gr_mask;
1820 long saved_fr_mask;
1821 CORE_ADDR this_sp;
1822 long frame_size;
1823 struct unwind_table_entry *u;
1824 CORE_ADDR prologue_end;
1825 int fp_in_r1 = 0;
1826 int i;
1827
1828 if (hppa_debug)
1829 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1830 frame_relative_level(next_frame));
1831
1832 if ((*this_cache) != NULL)
1833 {
1834 if (hppa_debug)
1835 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1836 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1837 return (*this_cache);
1838 }
1839 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1840 (*this_cache) = cache;
1841 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1842
1843 /* Yow! */
1844 u = hppa_find_unwind_entry_in_block (next_frame);
1845 if (!u)
1846 {
1847 if (hppa_debug)
1848 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1849 return (*this_cache);
1850 }
1851
1852 /* Turn the Entry_GR field into a bitmask. */
1853 saved_gr_mask = 0;
1854 for (i = 3; i < u->Entry_GR + 3; i++)
1855 {
1856 /* Frame pointer gets saved into a special location. */
1857 if (u->Save_SP && i == HPPA_FP_REGNUM)
1858 continue;
1859
1860 saved_gr_mask |= (1 << i);
1861 }
1862
1863 /* Turn the Entry_FR field into a bitmask too. */
1864 saved_fr_mask = 0;
1865 for (i = 12; i < u->Entry_FR + 12; i++)
1866 saved_fr_mask |= (1 << i);
1867
1868 /* Loop until we find everything of interest or hit a branch.
1869
1870 For unoptimized GCC code and for any HP CC code this will never ever
1871 examine any user instructions.
1872
1873 For optimized GCC code we're faced with problems. GCC will schedule
1874 its prologue and make prologue instructions available for delay slot
1875 filling. The end result is user code gets mixed in with the prologue
1876 and a prologue instruction may be in the delay slot of the first branch
1877 or call.
1878
1879 Some unexpected things are expected with debugging optimized code, so
1880 we allow this routine to walk past user instructions in optimized
1881 GCC code. */
1882 {
1883 int final_iteration = 0;
1884 CORE_ADDR pc, start_pc, end_pc;
1885 int looking_for_sp = u->Save_SP;
1886 int looking_for_rp = u->Save_RP;
1887 int fp_loc = -1;
1888
1889 /* We have to use skip_prologue_hard_way instead of just
1890 skip_prologue_using_sal, in case we stepped into a function without
1891 symbol information. hppa_skip_prologue also bounds the returned
1892 pc by the passed in pc, so it will not return a pc in the next
1893 function.
1894
1895 We used to call hppa_skip_prologue to find the end of the prologue,
1896 but if some non-prologue instructions get scheduled into the prologue,
1897 and the program is compiled with debug information, the "easy" way
1898 in hppa_skip_prologue will return a prologue end that is too early
1899 for us to notice any potential frame adjustments. */
1900
1901 /* We used to use frame_func_unwind () to locate the beginning of the
1902 function to pass to skip_prologue (). However, when objects are
1903 compiled without debug symbols, frame_func_unwind can return the wrong
1904 function (or 0). We can do better than that by using unwind records.
1905 This only works if the Region_description of the unwind record
1906 indicates that it includes the entry point of the function.
1907 HP compilers sometimes generate unwind records for regions that
1908 do not include the entry or exit point of a function. GNU tools
1909 do not do this. */
1910
1911 if ((u->Region_description & 0x2) == 0)
1912 start_pc = u->region_start;
1913 else
1914 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
1915
1916 prologue_end = skip_prologue_hard_way (start_pc, 0);
1917 end_pc = frame_pc_unwind (next_frame);
1918
1919 if (prologue_end != 0 && end_pc > prologue_end)
1920 end_pc = prologue_end;
1921
1922 frame_size = 0;
1923
1924 for (pc = start_pc;
1925 ((saved_gr_mask || saved_fr_mask
1926 || looking_for_sp || looking_for_rp
1927 || frame_size < (u->Total_frame_size << 3))
1928 && pc < end_pc);
1929 pc += 4)
1930 {
1931 int reg;
1932 char buf4[4];
1933 long inst;
1934
1935 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1936 sizeof buf4))
1937 {
1938 error (_("Cannot read instruction at 0x%s."), paddr_nz (pc));
1939 return (*this_cache);
1940 }
1941
1942 inst = extract_unsigned_integer (buf4, sizeof buf4);
1943
1944 /* Note the interesting effects of this instruction. */
1945 frame_size += prologue_inst_adjust_sp (inst);
1946
1947 /* There are limited ways to store the return pointer into the
1948 stack. */
1949 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1950 {
1951 looking_for_rp = 0;
1952 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1953 }
1954 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1955 {
1956 looking_for_rp = 0;
1957 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1958 }
1959 else if (inst == 0x0fc212c1
1960 || inst == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
1961 {
1962 looking_for_rp = 0;
1963 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1964 }
1965
1966 /* Check to see if we saved SP into the stack. This also
1967 happens to indicate the location of the saved frame
1968 pointer. */
1969 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1970 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1971 {
1972 looking_for_sp = 0;
1973 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1974 }
1975 else if (inst == 0x08030241) /* copy %r3, %r1 */
1976 {
1977 fp_in_r1 = 1;
1978 }
1979
1980 /* Account for general and floating-point register saves. */
1981 reg = inst_saves_gr (inst);
1982 if (reg >= 3 && reg <= 18
1983 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1984 {
1985 saved_gr_mask &= ~(1 << reg);
1986 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1987 /* stwm with a positive displacement is a _post_
1988 _modify_. */
1989 cache->saved_regs[reg].addr = 0;
1990 else if ((inst & 0xfc00000c) == 0x70000008)
1991 /* A std has explicit post_modify forms. */
1992 cache->saved_regs[reg].addr = 0;
1993 else
1994 {
1995 CORE_ADDR offset;
1996
1997 if ((inst >> 26) == 0x1c)
1998 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1999 else if ((inst >> 26) == 0x03)
2000 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
2001 else
2002 offset = hppa_extract_14 (inst);
2003
2004 /* Handle code with and without frame pointers. */
2005 if (u->Save_SP)
2006 cache->saved_regs[reg].addr = offset;
2007 else
2008 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
2009 }
2010 }
2011
2012 /* GCC handles callee saved FP regs a little differently.
2013
2014 It emits an instruction to put the value of the start of
2015 the FP store area into %r1. It then uses fstds,ma with a
2016 basereg of %r1 for the stores.
2017
2018 HP CC emits them at the current stack pointer modifying the
2019 stack pointer as it stores each register. */
2020
2021 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2022 if ((inst & 0xffffc000) == 0x34610000
2023 || (inst & 0xffffc000) == 0x37c10000)
2024 fp_loc = hppa_extract_14 (inst);
2025
2026 reg = inst_saves_fr (inst);
2027 if (reg >= 12 && reg <= 21)
2028 {
2029 /* Note +4 braindamage below is necessary because the FP
2030 status registers are internally 8 registers rather than
2031 the expected 4 registers. */
2032 saved_fr_mask &= ~(1 << reg);
2033 if (fp_loc == -1)
2034 {
2035 /* 1st HP CC FP register store. After this
2036 instruction we've set enough state that the GCC and
2037 HPCC code are both handled in the same manner. */
2038 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
2039 fp_loc = 8;
2040 }
2041 else
2042 {
2043 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
2044 fp_loc += 8;
2045 }
2046 }
2047
2048 /* Quit if we hit any kind of branch the previous iteration. */
2049 if (final_iteration)
2050 break;
2051 /* We want to look precisely one instruction beyond the branch
2052 if we have not found everything yet. */
2053 if (is_branch (inst))
2054 final_iteration = 1;
2055 }
2056 }
2057
2058 {
2059 /* The frame base always represents the value of %sp at entry to
2060 the current function (and is thus equivalent to the "saved"
2061 stack pointer. */
2062 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2063 CORE_ADDR fp;
2064
2065 if (hppa_debug)
2066 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
2067 "prologue_end=0x%s) ",
2068 paddr_nz (this_sp),
2069 paddr_nz (frame_pc_unwind (next_frame)),
2070 paddr_nz (prologue_end));
2071
2072 /* Check to see if a frame pointer is available, and use it for
2073 frame unwinding if it is.
2074
2075 There are some situations where we need to rely on the frame
2076 pointer to do stack unwinding. For example, if a function calls
2077 alloca (), the stack pointer can get adjusted inside the body of
2078 the function. In this case, the ABI requires that the compiler
2079 maintain a frame pointer for the function.
2080
2081 The unwind record has a flag (alloca_frame) that indicates that
2082 a function has a variable frame; unfortunately, gcc/binutils
2083 does not set this flag. Instead, whenever a frame pointer is used
2084 and saved on the stack, the Save_SP flag is set. We use this to
2085 decide whether to use the frame pointer for unwinding.
2086
2087 TODO: For the HP compiler, maybe we should use the alloca_frame flag
2088 instead of Save_SP. */
2089
2090 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
2091
2092 if (u->alloca_frame)
2093 fp -= u->Total_frame_size << 3;
2094
2095 if (frame_pc_unwind (next_frame) >= prologue_end
2096 && (u->Save_SP || u->alloca_frame) && fp != 0)
2097 {
2098 cache->base = fp;
2099
2100 if (hppa_debug)
2101 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer]",
2102 paddr_nz (cache->base));
2103 }
2104 else if (u->Save_SP
2105 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
2106 {
2107 /* Both we're expecting the SP to be saved and the SP has been
2108 saved. The entry SP value is saved at this frame's SP
2109 address. */
2110 cache->base = read_memory_integer
2111 (this_sp, gdbarch_ptr_bit (current_gdbarch) / 8);
2112
2113 if (hppa_debug)
2114 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved]",
2115 paddr_nz (cache->base));
2116 }
2117 else
2118 {
2119 /* The prologue has been slowly allocating stack space. Adjust
2120 the SP back. */
2121 cache->base = this_sp - frame_size;
2122 if (hppa_debug)
2123 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust]",
2124 paddr_nz (cache->base));
2125
2126 }
2127 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2128 }
2129
2130 /* The PC is found in the "return register", "Millicode" uses "r31"
2131 as the return register while normal code uses "rp". */
2132 if (u->Millicode)
2133 {
2134 if (trad_frame_addr_p (cache->saved_regs, 31))
2135 {
2136 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
2137 if (hppa_debug)
2138 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [stack] } ");
2139 }
2140 else
2141 {
2142 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
2143 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
2144 if (hppa_debug)
2145 fprintf_unfiltered (gdb_stdlog, " (pc=r31) [frame] } ");
2146 }
2147 }
2148 else
2149 {
2150 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2151 {
2152 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2153 cache->saved_regs[HPPA_RP_REGNUM];
2154 if (hppa_debug)
2155 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [stack] } ");
2156 }
2157 else
2158 {
2159 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2160 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2161 if (hppa_debug)
2162 fprintf_unfiltered (gdb_stdlog, " (pc=rp) [frame] } ");
2163 }
2164 }
2165
2166 /* If Save_SP is set, then we expect the frame pointer to be saved in the
2167 frame. However, there is a one-insn window where we haven't saved it
2168 yet, but we've already clobbered it. Detect this case and fix it up.
2169
2170 The prologue sequence for frame-pointer functions is:
2171 0: stw %rp, -20(%sp)
2172 4: copy %r3, %r1
2173 8: copy %sp, %r3
2174 c: stw,ma %r1, XX(%sp)
2175
2176 So if we are at offset c, the r3 value that we want is not yet saved
2177 on the stack, but it's been overwritten. The prologue analyzer will
2178 set fp_in_r1 when it sees the copy insn so we know to get the value
2179 from r1 instead. */
2180 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
2181 && fp_in_r1)
2182 {
2183 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
2184 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
2185 }
2186
2187 {
2188 /* Convert all the offsets into addresses. */
2189 int reg;
2190 for (reg = 0; reg < gdbarch_num_regs (current_gdbarch); reg++)
2191 {
2192 if (trad_frame_addr_p (cache->saved_regs, reg))
2193 cache->saved_regs[reg].addr += cache->base;
2194 }
2195 }
2196
2197 {
2198 struct gdbarch *gdbarch;
2199 struct gdbarch_tdep *tdep;
2200
2201 gdbarch = get_frame_arch (next_frame);
2202 tdep = gdbarch_tdep (gdbarch);
2203
2204 if (tdep->unwind_adjust_stub)
2205 {
2206 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
2207 }
2208 }
2209
2210 if (hppa_debug)
2211 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
2212 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
2213 return (*this_cache);
2214 }
2215
2216 static void
2217 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
2218 struct frame_id *this_id)
2219 {
2220 struct hppa_frame_cache *info;
2221 CORE_ADDR pc = frame_pc_unwind (next_frame);
2222 struct unwind_table_entry *u;
2223
2224 info = hppa_frame_cache (next_frame, this_cache);
2225 u = hppa_find_unwind_entry_in_block (next_frame);
2226
2227 (*this_id) = frame_id_build (info->base, u->region_start);
2228 }
2229
2230 static void
2231 hppa_frame_prev_register (struct frame_info *next_frame,
2232 void **this_cache,
2233 int regnum, int *optimizedp,
2234 enum lval_type *lvalp, CORE_ADDR *addrp,
2235 int *realnump, gdb_byte *valuep)
2236 {
2237 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
2238 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2239 optimizedp, lvalp, addrp, realnump, valuep);
2240 }
2241
2242 static const struct frame_unwind hppa_frame_unwind =
2243 {
2244 NORMAL_FRAME,
2245 hppa_frame_this_id,
2246 hppa_frame_prev_register
2247 };
2248
2249 static const struct frame_unwind *
2250 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
2251 {
2252 if (hppa_find_unwind_entry_in_block (next_frame))
2253 return &hppa_frame_unwind;
2254
2255 return NULL;
2256 }
2257
2258 /* This is a generic fallback frame unwinder that kicks in if we fail all
2259 the other ones. Normally we would expect the stub and regular unwinder
2260 to work, but in some cases we might hit a function that just doesn't
2261 have any unwind information available. In this case we try to do
2262 unwinding solely based on code reading. This is obviously going to be
2263 slow, so only use this as a last resort. Currently this will only
2264 identify the stack and pc for the frame. */
2265
2266 static struct hppa_frame_cache *
2267 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
2268 {
2269 struct hppa_frame_cache *cache;
2270 unsigned int frame_size = 0;
2271 int found_rp = 0;
2272 CORE_ADDR start_pc;
2273
2274 if (hppa_debug)
2275 fprintf_unfiltered (gdb_stdlog,
2276 "{ hppa_fallback_frame_cache (frame=%d) -> ",
2277 frame_relative_level (next_frame));
2278
2279 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
2280 (*this_cache) = cache;
2281 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2282
2283 start_pc = frame_func_unwind (next_frame, NORMAL_FRAME);
2284 if (start_pc)
2285 {
2286 CORE_ADDR cur_pc = frame_pc_unwind (next_frame);
2287 CORE_ADDR pc;
2288
2289 for (pc = start_pc; pc < cur_pc; pc += 4)
2290 {
2291 unsigned int insn;
2292
2293 insn = read_memory_unsigned_integer (pc, 4);
2294 frame_size += prologue_inst_adjust_sp (insn);
2295
2296 /* There are limited ways to store the return pointer into the
2297 stack. */
2298 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2299 {
2300 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2301 found_rp = 1;
2302 }
2303 else if (insn == 0x0fc212c1
2304 || insn == 0x73c23fe1) /* std rp,-0x10(sr0,sp) */
2305 {
2306 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2307 found_rp = 1;
2308 }
2309 }
2310 }
2311
2312 if (hppa_debug)
2313 fprintf_unfiltered (gdb_stdlog, " frame_size=%d, found_rp=%d }\n",
2314 frame_size, found_rp);
2315
2316 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2317 cache->base -= frame_size;
2318 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2319
2320 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2321 {
2322 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2323 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] =
2324 cache->saved_regs[HPPA_RP_REGNUM];
2325 }
2326 else
2327 {
2328 ULONGEST rp;
2329 rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2330 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2331 }
2332
2333 return cache;
2334 }
2335
2336 static void
2337 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2338 struct frame_id *this_id)
2339 {
2340 struct hppa_frame_cache *info =
2341 hppa_fallback_frame_cache (next_frame, this_cache);
2342 (*this_id) = frame_id_build (info->base,
2343 frame_func_unwind (next_frame, NORMAL_FRAME));
2344 }
2345
2346 static void
2347 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2348 void **this_cache,
2349 int regnum, int *optimizedp,
2350 enum lval_type *lvalp, CORE_ADDR *addrp,
2351 int *realnump, gdb_byte *valuep)
2352 {
2353 struct hppa_frame_cache *info =
2354 hppa_fallback_frame_cache (next_frame, this_cache);
2355 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2356 optimizedp, lvalp, addrp, realnump, valuep);
2357 }
2358
2359 static const struct frame_unwind hppa_fallback_frame_unwind =
2360 {
2361 NORMAL_FRAME,
2362 hppa_fallback_frame_this_id,
2363 hppa_fallback_frame_prev_register
2364 };
2365
2366 static const struct frame_unwind *
2367 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2368 {
2369 return &hppa_fallback_frame_unwind;
2370 }
2371
2372 /* Stub frames, used for all kinds of call stubs. */
2373 struct hppa_stub_unwind_cache
2374 {
2375 CORE_ADDR base;
2376 struct trad_frame_saved_reg *saved_regs;
2377 };
2378
2379 static struct hppa_stub_unwind_cache *
2380 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2381 void **this_cache)
2382 {
2383 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2384 struct hppa_stub_unwind_cache *info;
2385 struct unwind_table_entry *u;
2386
2387 if (*this_cache)
2388 return *this_cache;
2389
2390 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2391 *this_cache = info;
2392 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2393
2394 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2395
2396 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2397 {
2398 /* HPUX uses export stubs in function calls; the export stub clobbers
2399 the return value of the caller, and, later restores it from the
2400 stack. */
2401 u = find_unwind_entry (frame_pc_unwind (next_frame));
2402
2403 if (u && u->stub_unwind.stub_type == EXPORT)
2404 {
2405 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2406
2407 return info;
2408 }
2409 }
2410
2411 /* By default we assume that stubs do not change the rp. */
2412 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2413
2414 return info;
2415 }
2416
2417 static void
2418 hppa_stub_frame_this_id (struct frame_info *next_frame,
2419 void **this_prologue_cache,
2420 struct frame_id *this_id)
2421 {
2422 struct hppa_stub_unwind_cache *info
2423 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2424
2425 if (info)
2426 *this_id = frame_id_build (info->base,
2427 frame_func_unwind (next_frame, NORMAL_FRAME));
2428 else
2429 *this_id = null_frame_id;
2430 }
2431
2432 static void
2433 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2434 void **this_prologue_cache,
2435 int regnum, int *optimizedp,
2436 enum lval_type *lvalp, CORE_ADDR *addrp,
2437 int *realnump, gdb_byte *valuep)
2438 {
2439 struct hppa_stub_unwind_cache *info
2440 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2441
2442 if (info)
2443 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2444 optimizedp, lvalp, addrp, realnump,
2445 valuep);
2446 else
2447 error (_("Requesting registers from null frame."));
2448 }
2449
2450 static const struct frame_unwind hppa_stub_frame_unwind = {
2451 NORMAL_FRAME,
2452 hppa_stub_frame_this_id,
2453 hppa_stub_frame_prev_register
2454 };
2455
2456 static const struct frame_unwind *
2457 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2458 {
2459 CORE_ADDR pc = frame_unwind_address_in_block (next_frame, NORMAL_FRAME);
2460 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2461 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2462
2463 if (pc == 0
2464 || (tdep->in_solib_call_trampoline != NULL
2465 && tdep->in_solib_call_trampoline (pc, NULL))
2466 || gdbarch_in_solib_return_trampoline (current_gdbarch, pc, NULL))
2467 return &hppa_stub_frame_unwind;
2468 return NULL;
2469 }
2470
2471 static struct frame_id
2472 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2473 {
2474 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2475 HPPA_SP_REGNUM),
2476 frame_pc_unwind (next_frame));
2477 }
2478
2479 CORE_ADDR
2480 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2481 {
2482 ULONGEST ipsw;
2483 CORE_ADDR pc;
2484
2485 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2486 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2487
2488 /* If the current instruction is nullified, then we are effectively
2489 still executing the previous instruction. Pretend we are still
2490 there. This is needed when single stepping; if the nullified
2491 instruction is on a different line, we don't want GDB to think
2492 we've stepped onto that line. */
2493 if (ipsw & 0x00200000)
2494 pc -= 4;
2495
2496 return pc & ~0x3;
2497 }
2498
2499 /* Return the minimal symbol whose name is NAME and stub type is STUB_TYPE.
2500 Return NULL if no such symbol was found. */
2501
2502 struct minimal_symbol *
2503 hppa_lookup_stub_minimal_symbol (const char *name,
2504 enum unwind_stub_types stub_type)
2505 {
2506 struct objfile *objfile;
2507 struct minimal_symbol *msym;
2508
2509 ALL_MSYMBOLS (objfile, msym)
2510 {
2511 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
2512 {
2513 struct unwind_table_entry *u;
2514
2515 u = find_unwind_entry (SYMBOL_VALUE (msym));
2516 if (u != NULL && u->stub_unwind.stub_type == stub_type)
2517 return msym;
2518 }
2519 }
2520
2521 return NULL;
2522 }
2523
2524 static void
2525 unwind_command (char *exp, int from_tty)
2526 {
2527 CORE_ADDR address;
2528 struct unwind_table_entry *u;
2529
2530 /* If we have an expression, evaluate it and use it as the address. */
2531
2532 if (exp != 0 && *exp != 0)
2533 address = parse_and_eval_address (exp);
2534 else
2535 return;
2536
2537 u = find_unwind_entry (address);
2538
2539 if (!u)
2540 {
2541 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2542 return;
2543 }
2544
2545 printf_unfiltered ("unwind_table_entry (0x%lx):\n", (unsigned long)u);
2546
2547 printf_unfiltered ("\tregion_start = ");
2548 print_address (u->region_start, gdb_stdout);
2549 gdb_flush (gdb_stdout);
2550
2551 printf_unfiltered ("\n\tregion_end = ");
2552 print_address (u->region_end, gdb_stdout);
2553 gdb_flush (gdb_stdout);
2554
2555 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2556
2557 printf_unfiltered ("\n\tflags =");
2558 pif (Cannot_unwind);
2559 pif (Millicode);
2560 pif (Millicode_save_sr0);
2561 pif (Entry_SR);
2562 pif (Args_stored);
2563 pif (Variable_Frame);
2564 pif (Separate_Package_Body);
2565 pif (Frame_Extension_Millicode);
2566 pif (Stack_Overflow_Check);
2567 pif (Two_Instruction_SP_Increment);
2568 pif (sr4export);
2569 pif (cxx_info);
2570 pif (cxx_try_catch);
2571 pif (sched_entry_seq);
2572 pif (Save_SP);
2573 pif (Save_RP);
2574 pif (Save_MRP_in_frame);
2575 pif (save_r19);
2576 pif (Cleanup_defined);
2577 pif (MPE_XL_interrupt_marker);
2578 pif (HP_UX_interrupt_marker);
2579 pif (Large_frame);
2580 pif (alloca_frame);
2581
2582 putchar_unfiltered ('\n');
2583
2584 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2585
2586 pin (Region_description);
2587 pin (Entry_FR);
2588 pin (Entry_GR);
2589 pin (Total_frame_size);
2590
2591 if (u->stub_unwind.stub_type)
2592 {
2593 printf_unfiltered ("\tstub type = ");
2594 switch (u->stub_unwind.stub_type)
2595 {
2596 case LONG_BRANCH:
2597 printf_unfiltered ("long branch\n");
2598 break;
2599 case PARAMETER_RELOCATION:
2600 printf_unfiltered ("parameter relocation\n");
2601 break;
2602 case EXPORT:
2603 printf_unfiltered ("export\n");
2604 break;
2605 case IMPORT:
2606 printf_unfiltered ("import\n");
2607 break;
2608 case IMPORT_SHLIB:
2609 printf_unfiltered ("import shlib\n");
2610 break;
2611 default:
2612 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2613 }
2614 }
2615 }
2616
2617 int
2618 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2619 {
2620 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2621
2622 An example of this occurs when an a.out is linked against a foo.sl.
2623 The foo.sl defines a global bar(), and the a.out declares a signature
2624 for bar(). However, the a.out doesn't directly call bar(), but passes
2625 its address in another call.
2626
2627 If you have this scenario and attempt to "break bar" before running,
2628 gdb will find a minimal symbol for bar() in the a.out. But that
2629 symbol's address will be negative. What this appears to denote is
2630 an index backwards from the base of the procedure linkage table (PLT)
2631 into the data linkage table (DLT), the end of which is contiguous
2632 with the start of the PLT. This is clearly not a valid address for
2633 us to set a breakpoint on.
2634
2635 Note that one must be careful in how one checks for a negative address.
2636 0xc0000000 is a legitimate address of something in a shared text
2637 segment, for example. Since I don't know what the possible range
2638 is of these "really, truly negative" addresses that come from the
2639 minimal symbols, I'm resorting to the gross hack of checking the
2640 top byte of the address for all 1's. Sigh. */
2641
2642 return (!target_has_stack && (pc & 0xFF000000) == 0xFF000000);
2643 }
2644
2645 /* Return the GDB type object for the "standard" data type of data in
2646 register REGNUM. */
2647
2648 static struct type *
2649 hppa32_register_type (struct gdbarch *gdbarch, int regnum)
2650 {
2651 if (regnum < HPPA_FP4_REGNUM)
2652 return builtin_type_uint32;
2653 else
2654 return builtin_type_ieee_single;
2655 }
2656
2657 static struct type *
2658 hppa64_register_type (struct gdbarch *gdbarch, int regnum)
2659 {
2660 if (regnum < HPPA64_FP4_REGNUM)
2661 return builtin_type_uint64;
2662 else
2663 return builtin_type_ieee_double;
2664 }
2665
2666 /* Return non-zero if REGNUM is not a register available to the user
2667 through ptrace/ttrace. */
2668
2669 static int
2670 hppa32_cannot_store_register (int regnum)
2671 {
2672 return (regnum == 0
2673 || regnum == HPPA_PCSQ_HEAD_REGNUM
2674 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2675 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2676 }
2677
2678 static int
2679 hppa64_cannot_store_register (int regnum)
2680 {
2681 return (regnum == 0
2682 || regnum == HPPA_PCSQ_HEAD_REGNUM
2683 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2684 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA64_FP4_REGNUM));
2685 }
2686
2687 static CORE_ADDR
2688 hppa_smash_text_address (CORE_ADDR addr)
2689 {
2690 /* The low two bits of the PC on the PA contain the privilege level.
2691 Some genius implementing a (non-GCC) compiler apparently decided
2692 this means that "addresses" in a text section therefore include a
2693 privilege level, and thus symbol tables should contain these bits.
2694 This seems like a bonehead thing to do--anyway, it seems to work
2695 for our purposes to just ignore those bits. */
2696
2697 return (addr &= ~0x3);
2698 }
2699
2700 /* Get the ARGIth function argument for the current function. */
2701
2702 static CORE_ADDR
2703 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2704 struct type *type)
2705 {
2706 return get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 26 - argi);
2707 }
2708
2709 static void
2710 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2711 int regnum, gdb_byte *buf)
2712 {
2713 ULONGEST tmp;
2714
2715 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2716 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2717 tmp &= ~0x3;
2718 store_unsigned_integer (buf, sizeof tmp, tmp);
2719 }
2720
2721 static CORE_ADDR
2722 hppa_find_global_pointer (struct value *function)
2723 {
2724 return 0;
2725 }
2726
2727 void
2728 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2729 struct trad_frame_saved_reg saved_regs[],
2730 int regnum, int *optimizedp,
2731 enum lval_type *lvalp, CORE_ADDR *addrp,
2732 int *realnump, gdb_byte *valuep)
2733 {
2734 struct gdbarch *arch = get_frame_arch (next_frame);
2735
2736 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2737 {
2738 if (valuep)
2739 {
2740 int size = register_size (arch, HPPA_PCOQ_HEAD_REGNUM);
2741 CORE_ADDR pc;
2742
2743 trad_frame_get_prev_register (next_frame, saved_regs,
2744 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2745 lvalp, addrp, realnump, valuep);
2746
2747 pc = extract_unsigned_integer (valuep, size);
2748 store_unsigned_integer (valuep, size, pc + 4);
2749 }
2750
2751 /* It's a computed value. */
2752 *optimizedp = 0;
2753 *lvalp = not_lval;
2754 *addrp = 0;
2755 *realnump = -1;
2756 return;
2757 }
2758
2759 /* Make sure the "flags" register is zero in all unwound frames.
2760 The "flags" registers is a HP-UX specific wart, and only the code
2761 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2762 with it here. This shouldn't affect other systems since those
2763 should provide zero for the "flags" register anyway. */
2764 if (regnum == HPPA_FLAGS_REGNUM)
2765 {
2766 if (valuep)
2767 store_unsigned_integer (valuep, register_size (arch, regnum), 0);
2768
2769 /* It's a computed value. */
2770 *optimizedp = 0;
2771 *lvalp = not_lval;
2772 *addrp = 0;
2773 *realnump = -1;
2774 return;
2775 }
2776
2777 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2778 optimizedp, lvalp, addrp, realnump, valuep);
2779 }
2780 \f
2781
2782 /* An instruction to match. */
2783 struct insn_pattern
2784 {
2785 unsigned int data; /* See if it matches this.... */
2786 unsigned int mask; /* ... with this mask. */
2787 };
2788
2789 /* See bfd/elf32-hppa.c */
2790 static struct insn_pattern hppa_long_branch_stub[] = {
2791 /* ldil LR'xxx,%r1 */
2792 { 0x20200000, 0xffe00000 },
2793 /* be,n RR'xxx(%sr4,%r1) */
2794 { 0xe0202002, 0xffe02002 },
2795 { 0, 0 }
2796 };
2797
2798 static struct insn_pattern hppa_long_branch_pic_stub[] = {
2799 /* b,l .+8, %r1 */
2800 { 0xe8200000, 0xffe00000 },
2801 /* addil LR'xxx - ($PIC_pcrel$0 - 4), %r1 */
2802 { 0x28200000, 0xffe00000 },
2803 /* be,n RR'xxxx - ($PIC_pcrel$0 - 8)(%sr4, %r1) */
2804 { 0xe0202002, 0xffe02002 },
2805 { 0, 0 }
2806 };
2807
2808 static struct insn_pattern hppa_import_stub[] = {
2809 /* addil LR'xxx, %dp */
2810 { 0x2b600000, 0xffe00000 },
2811 /* ldw RR'xxx(%r1), %r21 */
2812 { 0x48350000, 0xffffb000 },
2813 /* bv %r0(%r21) */
2814 { 0xeaa0c000, 0xffffffff },
2815 /* ldw RR'xxx+4(%r1), %r19 */
2816 { 0x48330000, 0xffffb000 },
2817 { 0, 0 }
2818 };
2819
2820 static struct insn_pattern hppa_import_pic_stub[] = {
2821 /* addil LR'xxx,%r19 */
2822 { 0x2a600000, 0xffe00000 },
2823 /* ldw RR'xxx(%r1),%r21 */
2824 { 0x48350000, 0xffffb000 },
2825 /* bv %r0(%r21) */
2826 { 0xeaa0c000, 0xffffffff },
2827 /* ldw RR'xxx+4(%r1),%r19 */
2828 { 0x48330000, 0xffffb000 },
2829 { 0, 0 },
2830 };
2831
2832 static struct insn_pattern hppa_plt_stub[] = {
2833 /* b,l 1b, %r20 - 1b is 3 insns before here */
2834 { 0xea9f1fdd, 0xffffffff },
2835 /* depi 0,31,2,%r20 */
2836 { 0xd6801c1e, 0xffffffff },
2837 { 0, 0 }
2838 };
2839
2840 static struct insn_pattern hppa_sigtramp[] = {
2841 /* ldi 0, %r25 or ldi 1, %r25 */
2842 { 0x34190000, 0xfffffffd },
2843 /* ldi __NR_rt_sigreturn, %r20 */
2844 { 0x3414015a, 0xffffffff },
2845 /* be,l 0x100(%sr2, %r0), %sr0, %r31 */
2846 { 0xe4008200, 0xffffffff },
2847 /* nop */
2848 { 0x08000240, 0xffffffff },
2849 { 0, 0 }
2850 };
2851
2852 /* Maximum number of instructions on the patterns above. */
2853 #define HPPA_MAX_INSN_PATTERN_LEN 4
2854
2855 /* Return non-zero if the instructions at PC match the series
2856 described in PATTERN, or zero otherwise. PATTERN is an array of
2857 'struct insn_pattern' objects, terminated by an entry whose mask is
2858 zero.
2859
2860 When the match is successful, fill INSN[i] with what PATTERN[i]
2861 matched. */
2862
2863 static int
2864 hppa_match_insns (CORE_ADDR pc, struct insn_pattern *pattern,
2865 unsigned int *insn)
2866 {
2867 CORE_ADDR npc = pc;
2868 int i;
2869
2870 for (i = 0; pattern[i].mask; i++)
2871 {
2872 gdb_byte buf[HPPA_INSN_SIZE];
2873
2874 read_memory_nobpt (npc, buf, HPPA_INSN_SIZE);
2875 insn[i] = extract_unsigned_integer (buf, HPPA_INSN_SIZE);
2876 if ((insn[i] & pattern[i].mask) == pattern[i].data)
2877 npc += 4;
2878 else
2879 return 0;
2880 }
2881
2882 return 1;
2883 }
2884
2885 /* This relaxed version of the insstruction matcher allows us to match
2886 from somewhere inside the pattern, by looking backwards in the
2887 instruction scheme. */
2888
2889 static int
2890 hppa_match_insns_relaxed (CORE_ADDR pc, struct insn_pattern *pattern,
2891 unsigned int *insn)
2892 {
2893 int offset, len = 0;
2894
2895 while (pattern[len].mask)
2896 len++;
2897
2898 for (offset = 0; offset < len; offset++)
2899 if (hppa_match_insns (pc - offset * HPPA_INSN_SIZE, pattern, insn))
2900 return 1;
2901
2902 return 0;
2903 }
2904
2905 static int
2906 hppa_in_dyncall (CORE_ADDR pc)
2907 {
2908 struct unwind_table_entry *u;
2909
2910 u = find_unwind_entry (hppa_symbol_address ("$$dyncall"));
2911 if (!u)
2912 return 0;
2913
2914 return (pc >= u->region_start && pc <= u->region_end);
2915 }
2916
2917 int
2918 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2919 {
2920 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2921 struct unwind_table_entry *u;
2922
2923 if (in_plt_section (pc, name) || hppa_in_dyncall (pc))
2924 return 1;
2925
2926 /* The GNU toolchain produces linker stubs without unwind
2927 information. Since the pattern matching for linker stubs can be
2928 quite slow, so bail out if we do have an unwind entry. */
2929
2930 u = find_unwind_entry (pc);
2931 if (u != NULL)
2932 return 0;
2933
2934 return (hppa_match_insns_relaxed (pc, hppa_import_stub, insn)
2935 || hppa_match_insns_relaxed (pc, hppa_import_pic_stub, insn)
2936 || hppa_match_insns_relaxed (pc, hppa_long_branch_stub, insn)
2937 || hppa_match_insns_relaxed (pc, hppa_long_branch_pic_stub, insn));
2938 }
2939
2940 /* This code skips several kind of "trampolines" used on PA-RISC
2941 systems: $$dyncall, import stubs and PLT stubs. */
2942
2943 CORE_ADDR
2944 hppa_skip_trampoline_code (struct frame_info *frame, CORE_ADDR pc)
2945 {
2946 unsigned int insn[HPPA_MAX_INSN_PATTERN_LEN];
2947 int dp_rel;
2948
2949 /* $$dyncall handles both PLABELs and direct addresses. */
2950 if (hppa_in_dyncall (pc))
2951 {
2952 pc = get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 22);
2953
2954 /* PLABELs have bit 30 set; if it's a PLABEL, then dereference it. */
2955 if (pc & 0x2)
2956 pc = read_memory_typed_address (pc & ~0x3, builtin_type_void_func_ptr);
2957
2958 return pc;
2959 }
2960
2961 dp_rel = hppa_match_insns (pc, hppa_import_stub, insn);
2962 if (dp_rel || hppa_match_insns (pc, hppa_import_pic_stub, insn))
2963 {
2964 /* Extract the target address from the addil/ldw sequence. */
2965 pc = hppa_extract_21 (insn[0]) + hppa_extract_14 (insn[1]);
2966
2967 if (dp_rel)
2968 pc += get_frame_register_unsigned (frame, HPPA_DP_REGNUM);
2969 else
2970 pc += get_frame_register_unsigned (frame, HPPA_R0_REGNUM + 19);
2971
2972 /* fallthrough */
2973 }
2974
2975 if (in_plt_section (pc, NULL))
2976 {
2977 pc = read_memory_typed_address (pc, builtin_type_void_func_ptr);
2978
2979 /* If the PLT slot has not yet been resolved, the target will be
2980 the PLT stub. */
2981 if (in_plt_section (pc, NULL))
2982 {
2983 /* Sanity check: are we pointing to the PLT stub? */
2984 if (!hppa_match_insns (pc, hppa_plt_stub, insn))
2985 {
2986 warning (_("Cannot resolve PLT stub at 0x%s."), paddr_nz (pc));
2987 return 0;
2988 }
2989
2990 /* This should point to the fixup routine. */
2991 pc = read_memory_typed_address (pc + 8, builtin_type_void_func_ptr);
2992 }
2993 }
2994
2995 return pc;
2996 }
2997 \f
2998
2999 /* Here is a table of C type sizes on hppa with various compiles
3000 and options. I measured this on PA 9000/800 with HP-UX 11.11
3001 and these compilers:
3002
3003 /usr/ccs/bin/cc HP92453-01 A.11.01.21
3004 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
3005 /opt/aCC/bin/aCC B3910B A.03.45
3006 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
3007
3008 cc : 1 2 4 4 8 : 4 8 -- : 4 4
3009 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3010 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3011 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3012 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
3013 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
3014 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
3015 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
3016
3017 Each line is:
3018
3019 compiler and options
3020 char, short, int, long, long long
3021 float, double, long double
3022 char *, void (*)()
3023
3024 So all these compilers use either ILP32 or LP64 model.
3025 TODO: gcc has more options so it needs more investigation.
3026
3027 For floating point types, see:
3028
3029 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
3030 HP-UX floating-point guide, hpux 11.00
3031
3032 -- chastain 2003-12-18 */
3033
3034 static struct gdbarch *
3035 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3036 {
3037 struct gdbarch_tdep *tdep;
3038 struct gdbarch *gdbarch;
3039
3040 /* Try to determine the ABI of the object we are loading. */
3041 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
3042 {
3043 /* If it's a SOM file, assume it's HP/UX SOM. */
3044 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
3045 info.osabi = GDB_OSABI_HPUX_SOM;
3046 }
3047
3048 /* find a candidate among the list of pre-declared architectures. */
3049 arches = gdbarch_list_lookup_by_info (arches, &info);
3050 if (arches != NULL)
3051 return (arches->gdbarch);
3052
3053 /* If none found, then allocate and initialize one. */
3054 tdep = XZALLOC (struct gdbarch_tdep);
3055 gdbarch = gdbarch_alloc (&info, tdep);
3056
3057 /* Determine from the bfd_arch_info structure if we are dealing with
3058 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
3059 then default to a 32bit machine. */
3060 if (info.bfd_arch_info != NULL)
3061 tdep->bytes_per_address =
3062 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
3063 else
3064 tdep->bytes_per_address = 4;
3065
3066 tdep->find_global_pointer = hppa_find_global_pointer;
3067
3068 /* Some parts of the gdbarch vector depend on whether we are running
3069 on a 32 bits or 64 bits target. */
3070 switch (tdep->bytes_per_address)
3071 {
3072 case 4:
3073 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
3074 set_gdbarch_register_name (gdbarch, hppa32_register_name);
3075 set_gdbarch_register_type (gdbarch, hppa32_register_type);
3076 set_gdbarch_cannot_store_register (gdbarch,
3077 hppa32_cannot_store_register);
3078 set_gdbarch_cannot_fetch_register (gdbarch,
3079 hppa32_cannot_store_register);
3080 break;
3081 case 8:
3082 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
3083 set_gdbarch_register_name (gdbarch, hppa64_register_name);
3084 set_gdbarch_register_type (gdbarch, hppa64_register_type);
3085 set_gdbarch_dwarf_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3086 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, hppa64_dwarf_reg_to_regnum);
3087 set_gdbarch_cannot_store_register (gdbarch,
3088 hppa64_cannot_store_register);
3089 set_gdbarch_cannot_fetch_register (gdbarch,
3090 hppa64_cannot_store_register);
3091 break;
3092 default:
3093 internal_error (__FILE__, __LINE__, _("Unsupported address size: %d"),
3094 tdep->bytes_per_address);
3095 }
3096
3097 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3098 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
3099
3100 /* The following gdbarch vector elements are the same in both ILP32
3101 and LP64, but might show differences some day. */
3102 set_gdbarch_long_long_bit (gdbarch, 64);
3103 set_gdbarch_long_double_bit (gdbarch, 128);
3104 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3105
3106 /* The following gdbarch vector elements do not depend on the address
3107 size, or in any other gdbarch element previously set. */
3108 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
3109 set_gdbarch_in_function_epilogue_p (gdbarch,
3110 hppa_in_function_epilogue_p);
3111 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
3112 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
3113 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
3114 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
3115 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
3116 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3117 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
3118 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
3119
3120 /* Helper for function argument information. */
3121 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
3122
3123 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
3124
3125 /* When a hardware watchpoint triggers, we'll move the inferior past
3126 it by removing all eventpoints; stepping past the instruction
3127 that caused the trigger; reinserting eventpoints; and checking
3128 whether any watched location changed. */
3129 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3130
3131 /* Inferior function call methods. */
3132 switch (tdep->bytes_per_address)
3133 {
3134 case 4:
3135 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
3136 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
3137 set_gdbarch_convert_from_func_ptr_addr
3138 (gdbarch, hppa32_convert_from_func_ptr_addr);
3139 break;
3140 case 8:
3141 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
3142 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
3143 break;
3144 default:
3145 internal_error (__FILE__, __LINE__, _("bad switch"));
3146 }
3147
3148 /* Struct return methods. */
3149 switch (tdep->bytes_per_address)
3150 {
3151 case 4:
3152 set_gdbarch_return_value (gdbarch, hppa32_return_value);
3153 break;
3154 case 8:
3155 set_gdbarch_return_value (gdbarch, hppa64_return_value);
3156 break;
3157 default:
3158 internal_error (__FILE__, __LINE__, _("bad switch"));
3159 }
3160
3161 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
3162 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
3163
3164 /* Frame unwind methods. */
3165 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
3166 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
3167
3168 /* Hook in ABI-specific overrides, if they have been registered. */
3169 gdbarch_init_osabi (info, gdbarch);
3170
3171 /* Hook in the default unwinders. */
3172 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
3173 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
3174 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
3175
3176 return gdbarch;
3177 }
3178
3179 static void
3180 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3181 {
3182 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3183
3184 fprintf_unfiltered (file, "bytes_per_address = %d\n",
3185 tdep->bytes_per_address);
3186 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
3187 }
3188
3189 void
3190 _initialize_hppa_tdep (void)
3191 {
3192 struct cmd_list_element *c;
3193
3194 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
3195
3196 hppa_objfile_priv_data = register_objfile_data ();
3197
3198 add_cmd ("unwind", class_maintenance, unwind_command,
3199 _("Print unwind table entry at given address."),
3200 &maintenanceprintlist);
3201
3202 /* Debug this files internals. */
3203 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, _("\
3204 Set whether hppa target specific debugging information should be displayed."),
3205 _("\
3206 Show whether hppa target specific debugging information is displayed."), _("\
3207 This flag controls whether hppa target specific debugging information is\n\
3208 displayed. This information is particularly useful for debugging frame\n\
3209 unwinding problems."),
3210 NULL,
3211 NULL, /* FIXME: i18n: hppa debug flag is %s. */
3212 &setdebuglist, &showdebuglist);
3213 }
This page took 0.143428 seconds and 4 git commands to generate.