gdb/
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
5
6 Contributed by the Center for Software Science at the
7 University of Utah (pa-gdb-bugs@cs.utah.edu).
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 #include "defs.h"
27 #include "frame.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "value.h"
31 #include "regcache.h"
32 #include "completer.h"
33 #include "language.h"
34 #include "osabi.h"
35
36 /* For argument passing to the inferior */
37 #include "symtab.h"
38
39 #ifdef USG
40 #include <sys/types.h>
41 #endif
42
43 #include <dl.h>
44 #include <sys/param.h>
45 #include <signal.h>
46
47 #include <sys/ptrace.h>
48 #include <machine/save_state.h>
49
50 #ifdef COFF_ENCAPSULATE
51 #include "a.out.encap.h"
52 #else
53 #endif
54
55 /*#include <sys/user.h> After a.out.h */
56 #include <sys/file.h>
57 #include "gdb_stat.h"
58 #include "gdb_wait.h"
59
60 #include "gdbcore.h"
61 #include "gdbcmd.h"
62 #include "target.h"
63 #include "symfile.h"
64 #include "objfiles.h"
65
66 /* Some local constants. */
67 static const int hppa_num_regs = 128;
68
69 /* To support detection of the pseudo-initial frame
70 that threads have. */
71 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
72 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
73
74 static int extract_5_load (unsigned int);
75
76 static unsigned extract_5R_store (unsigned int);
77
78 static unsigned extract_5r_store (unsigned int);
79
80 static void find_dummy_frame_regs (struct frame_info *,
81 struct frame_saved_regs *);
82
83 static int find_proc_framesize (CORE_ADDR);
84
85 static int find_return_regnum (CORE_ADDR);
86
87 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
88
89 static int extract_17 (unsigned int);
90
91 static unsigned deposit_21 (unsigned int, unsigned int);
92
93 static int extract_21 (unsigned);
94
95 static unsigned deposit_14 (int, unsigned int);
96
97 static int extract_14 (unsigned);
98
99 static void unwind_command (char *, int);
100
101 static int low_sign_extend (unsigned int, unsigned int);
102
103 static int sign_extend (unsigned int, unsigned int);
104
105 static int restore_pc_queue (struct frame_saved_regs *);
106
107 static int hppa_alignof (struct type *);
108
109 /* To support multi-threading and stepping. */
110 int hppa_prepare_to_proceed ();
111
112 static int prologue_inst_adjust_sp (unsigned long);
113
114 static int is_branch (unsigned long);
115
116 static int inst_saves_gr (unsigned long);
117
118 static int inst_saves_fr (unsigned long);
119
120 static int pc_in_interrupt_handler (CORE_ADDR);
121
122 static int pc_in_linker_stub (CORE_ADDR);
123
124 static int compare_unwind_entries (const void *, const void *);
125
126 static void read_unwind_info (struct objfile *);
127
128 static void internalize_unwinds (struct objfile *,
129 struct unwind_table_entry *,
130 asection *, unsigned int,
131 unsigned int, CORE_ADDR);
132 static void pa_print_registers (char *, int, int);
133 static void pa_strcat_registers (char *, int, int, struct ui_file *);
134 static void pa_register_look_aside (char *, int, long *);
135 static void pa_print_fp_reg (int);
136 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
137 static void record_text_segment_lowaddr (bfd *, asection *, void *);
138 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
139 following functions static, once we hppa is partially multiarched. */
140 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
141 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
142 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
143 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
144 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
145 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
146 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
147 CORE_ADDR hppa_stack_align (CORE_ADDR sp);
148 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
149 int hppa_instruction_nullified (void);
150 int hppa_register_raw_size (int reg_nr);
151 int hppa_register_byte (int reg_nr);
152 struct type * hppa_register_virtual_type (int reg_nr);
153 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
154 void hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf);
155 int hppa_use_struct_convention (int gcc_p, struct type *type);
156 void hppa_store_return_value (struct type *type, char *valbuf);
157 CORE_ADDR hppa_extract_struct_value_address (char *regbuf);
158 int hppa_cannot_store_register (int regnum);
159 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
160 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
161 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
162 int hppa_frameless_function_invocation (struct frame_info *frame);
163 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
164 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
165 CORE_ADDR hppa_frame_locals_address (struct frame_info *fi);
166 int hppa_frame_num_args (struct frame_info *frame);
167 void hppa_push_dummy_frame (struct inferior_status *inf_status);
168 void hppa_pop_frame (void);
169 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
170 int nargs, struct value **args,
171 struct type *type, int gcc_p);
172 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
173 int struct_return, CORE_ADDR struct_addr);
174 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
175 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
176 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
177 CORE_ADDR hppa_target_read_fp (void);
178
179 typedef struct
180 {
181 struct minimal_symbol *msym;
182 CORE_ADDR solib_handle;
183 CORE_ADDR return_val;
184 }
185 args_for_find_stub;
186
187 static int cover_find_stub_with_shl_get (PTR);
188
189 static int is_pa_2 = 0; /* False */
190
191 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
192 extern int hp_som_som_object_present;
193
194 /* In breakpoint.c */
195 extern int exception_catchpoints_are_fragile;
196
197 /* Should call_function allocate stack space for a struct return? */
198
199 int
200 hppa_use_struct_convention (int gcc_p, struct type *type)
201 {
202 return (TYPE_LENGTH (type) > 2 * REGISTER_SIZE);
203 }
204 \f
205
206 /* Routines to extract various sized constants out of hppa
207 instructions. */
208
209 /* This assumes that no garbage lies outside of the lower bits of
210 value. */
211
212 static int
213 sign_extend (unsigned val, unsigned bits)
214 {
215 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
216 }
217
218 /* For many immediate values the sign bit is the low bit! */
219
220 static int
221 low_sign_extend (unsigned val, unsigned bits)
222 {
223 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
224 }
225
226 /* extract the immediate field from a ld{bhw}s instruction */
227
228 static int
229 extract_5_load (unsigned word)
230 {
231 return low_sign_extend (word >> 16 & MASK_5, 5);
232 }
233
234 /* extract the immediate field from a break instruction */
235
236 static unsigned
237 extract_5r_store (unsigned word)
238 {
239 return (word & MASK_5);
240 }
241
242 /* extract the immediate field from a {sr}sm instruction */
243
244 static unsigned
245 extract_5R_store (unsigned word)
246 {
247 return (word >> 16 & MASK_5);
248 }
249
250 /* extract a 14 bit immediate field */
251
252 static int
253 extract_14 (unsigned word)
254 {
255 return low_sign_extend (word & MASK_14, 14);
256 }
257
258 /* deposit a 14 bit constant in a word */
259
260 static unsigned
261 deposit_14 (int opnd, unsigned word)
262 {
263 unsigned sign = (opnd < 0 ? 1 : 0);
264
265 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
266 }
267
268 /* extract a 21 bit constant */
269
270 static int
271 extract_21 (unsigned word)
272 {
273 int val;
274
275 word &= MASK_21;
276 word <<= 11;
277 val = GET_FIELD (word, 20, 20);
278 val <<= 11;
279 val |= GET_FIELD (word, 9, 19);
280 val <<= 2;
281 val |= GET_FIELD (word, 5, 6);
282 val <<= 5;
283 val |= GET_FIELD (word, 0, 4);
284 val <<= 2;
285 val |= GET_FIELD (word, 7, 8);
286 return sign_extend (val, 21) << 11;
287 }
288
289 /* deposit a 21 bit constant in a word. Although 21 bit constants are
290 usually the top 21 bits of a 32 bit constant, we assume that only
291 the low 21 bits of opnd are relevant */
292
293 static unsigned
294 deposit_21 (unsigned opnd, unsigned word)
295 {
296 unsigned val = 0;
297
298 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
299 val <<= 2;
300 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
301 val <<= 2;
302 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
303 val <<= 11;
304 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
305 val <<= 1;
306 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
307 return word | val;
308 }
309
310 /* extract a 17 bit constant from branch instructions, returning the
311 19 bit signed value. */
312
313 static int
314 extract_17 (unsigned word)
315 {
316 return sign_extend (GET_FIELD (word, 19, 28) |
317 GET_FIELD (word, 29, 29) << 10 |
318 GET_FIELD (word, 11, 15) << 11 |
319 (word & 0x1) << 16, 17) << 2;
320 }
321 \f
322
323 /* Compare the start address for two unwind entries returning 1 if
324 the first address is larger than the second, -1 if the second is
325 larger than the first, and zero if they are equal. */
326
327 static int
328 compare_unwind_entries (const void *arg1, const void *arg2)
329 {
330 const struct unwind_table_entry *a = arg1;
331 const struct unwind_table_entry *b = arg2;
332
333 if (a->region_start > b->region_start)
334 return 1;
335 else if (a->region_start < b->region_start)
336 return -1;
337 else
338 return 0;
339 }
340
341 static CORE_ADDR low_text_segment_address;
342
343 static void
344 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
345 {
346 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
347 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
348 && section->vma < low_text_segment_address)
349 low_text_segment_address = section->vma;
350 }
351
352 static void
353 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
354 asection *section, unsigned int entries, unsigned int size,
355 CORE_ADDR text_offset)
356 {
357 /* We will read the unwind entries into temporary memory, then
358 fill in the actual unwind table. */
359 if (size > 0)
360 {
361 unsigned long tmp;
362 unsigned i;
363 char *buf = alloca (size);
364
365 low_text_segment_address = -1;
366
367 /* If addresses are 64 bits wide, then unwinds are supposed to
368 be segment relative offsets instead of absolute addresses.
369
370 Note that when loading a shared library (text_offset != 0) the
371 unwinds are already relative to the text_offset that will be
372 passed in. */
373 if (TARGET_PTR_BIT == 64 && text_offset == 0)
374 {
375 bfd_map_over_sections (objfile->obfd,
376 record_text_segment_lowaddr, (PTR) NULL);
377
378 /* ?!? Mask off some low bits. Should this instead subtract
379 out the lowest section's filepos or something like that?
380 This looks very hokey to me. */
381 low_text_segment_address &= ~0xfff;
382 text_offset += low_text_segment_address;
383 }
384
385 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
386
387 /* Now internalize the information being careful to handle host/target
388 endian issues. */
389 for (i = 0; i < entries; i++)
390 {
391 table[i].region_start = bfd_get_32 (objfile->obfd,
392 (bfd_byte *) buf);
393 table[i].region_start += text_offset;
394 buf += 4;
395 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
396 table[i].region_end += text_offset;
397 buf += 4;
398 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
399 buf += 4;
400 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
401 table[i].Millicode = (tmp >> 30) & 0x1;
402 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
403 table[i].Region_description = (tmp >> 27) & 0x3;
404 table[i].reserved1 = (tmp >> 26) & 0x1;
405 table[i].Entry_SR = (tmp >> 25) & 0x1;
406 table[i].Entry_FR = (tmp >> 21) & 0xf;
407 table[i].Entry_GR = (tmp >> 16) & 0x1f;
408 table[i].Args_stored = (tmp >> 15) & 0x1;
409 table[i].Variable_Frame = (tmp >> 14) & 0x1;
410 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
411 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
412 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
413 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
414 table[i].Ada_Region = (tmp >> 9) & 0x1;
415 table[i].cxx_info = (tmp >> 8) & 0x1;
416 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
417 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
418 table[i].reserved2 = (tmp >> 5) & 0x1;
419 table[i].Save_SP = (tmp >> 4) & 0x1;
420 table[i].Save_RP = (tmp >> 3) & 0x1;
421 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
422 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
423 table[i].Cleanup_defined = tmp & 0x1;
424 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
425 buf += 4;
426 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
427 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
428 table[i].Large_frame = (tmp >> 29) & 0x1;
429 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
430 table[i].reserved4 = (tmp >> 27) & 0x1;
431 table[i].Total_frame_size = tmp & 0x7ffffff;
432
433 /* Stub unwinds are handled elsewhere. */
434 table[i].stub_unwind.stub_type = 0;
435 table[i].stub_unwind.padding = 0;
436 }
437 }
438 }
439
440 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
441 the object file. This info is used mainly by find_unwind_entry() to find
442 out the stack frame size and frame pointer used by procedures. We put
443 everything on the psymbol obstack in the objfile so that it automatically
444 gets freed when the objfile is destroyed. */
445
446 static void
447 read_unwind_info (struct objfile *objfile)
448 {
449 asection *unwind_sec, *stub_unwind_sec;
450 unsigned unwind_size, stub_unwind_size, total_size;
451 unsigned index, unwind_entries;
452 unsigned stub_entries, total_entries;
453 CORE_ADDR text_offset;
454 struct obj_unwind_info *ui;
455 obj_private_data_t *obj_private;
456
457 text_offset = ANOFFSET (objfile->section_offsets, 0);
458 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->psymbol_obstack,
459 sizeof (struct obj_unwind_info));
460
461 ui->table = NULL;
462 ui->cache = NULL;
463 ui->last = -1;
464
465 /* For reasons unknown the HP PA64 tools generate multiple unwinder
466 sections in a single executable. So we just iterate over every
467 section in the BFD looking for unwinder sections intead of trying
468 to do a lookup with bfd_get_section_by_name.
469
470 First determine the total size of the unwind tables so that we
471 can allocate memory in a nice big hunk. */
472 total_entries = 0;
473 for (unwind_sec = objfile->obfd->sections;
474 unwind_sec;
475 unwind_sec = unwind_sec->next)
476 {
477 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
478 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
479 {
480 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
481 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
482
483 total_entries += unwind_entries;
484 }
485 }
486
487 /* Now compute the size of the stub unwinds. Note the ELF tools do not
488 use stub unwinds at the curren time. */
489 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
490
491 if (stub_unwind_sec)
492 {
493 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
494 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
495 }
496 else
497 {
498 stub_unwind_size = 0;
499 stub_entries = 0;
500 }
501
502 /* Compute total number of unwind entries and their total size. */
503 total_entries += stub_entries;
504 total_size = total_entries * sizeof (struct unwind_table_entry);
505
506 /* Allocate memory for the unwind table. */
507 ui->table = (struct unwind_table_entry *)
508 obstack_alloc (&objfile->psymbol_obstack, total_size);
509 ui->last = total_entries - 1;
510
511 /* Now read in each unwind section and internalize the standard unwind
512 entries. */
513 index = 0;
514 for (unwind_sec = objfile->obfd->sections;
515 unwind_sec;
516 unwind_sec = unwind_sec->next)
517 {
518 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
519 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
520 {
521 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
522 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
523
524 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
525 unwind_entries, unwind_size, text_offset);
526 index += unwind_entries;
527 }
528 }
529
530 /* Now read in and internalize the stub unwind entries. */
531 if (stub_unwind_size > 0)
532 {
533 unsigned int i;
534 char *buf = alloca (stub_unwind_size);
535
536 /* Read in the stub unwind entries. */
537 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
538 0, stub_unwind_size);
539
540 /* Now convert them into regular unwind entries. */
541 for (i = 0; i < stub_entries; i++, index++)
542 {
543 /* Clear out the next unwind entry. */
544 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
545
546 /* Convert offset & size into region_start and region_end.
547 Stuff away the stub type into "reserved" fields. */
548 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
549 (bfd_byte *) buf);
550 ui->table[index].region_start += text_offset;
551 buf += 4;
552 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
553 (bfd_byte *) buf);
554 buf += 2;
555 ui->table[index].region_end
556 = ui->table[index].region_start + 4 *
557 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
558 buf += 2;
559 }
560
561 }
562
563 /* Unwind table needs to be kept sorted. */
564 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
565 compare_unwind_entries);
566
567 /* Keep a pointer to the unwind information. */
568 if (objfile->obj_private == NULL)
569 {
570 obj_private = (obj_private_data_t *)
571 obstack_alloc (&objfile->psymbol_obstack,
572 sizeof (obj_private_data_t));
573 obj_private->unwind_info = NULL;
574 obj_private->so_info = NULL;
575 obj_private->dp = 0;
576
577 objfile->obj_private = (PTR) obj_private;
578 }
579 obj_private = (obj_private_data_t *) objfile->obj_private;
580 obj_private->unwind_info = ui;
581 }
582
583 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
584 of the objfiles seeking the unwind table entry for this PC. Each objfile
585 contains a sorted list of struct unwind_table_entry. Since we do a binary
586 search of the unwind tables, we depend upon them to be sorted. */
587
588 struct unwind_table_entry *
589 find_unwind_entry (CORE_ADDR pc)
590 {
591 int first, middle, last;
592 struct objfile *objfile;
593
594 /* A function at address 0? Not in HP-UX! */
595 if (pc == (CORE_ADDR) 0)
596 return NULL;
597
598 ALL_OBJFILES (objfile)
599 {
600 struct obj_unwind_info *ui;
601 ui = NULL;
602 if (objfile->obj_private)
603 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
604
605 if (!ui)
606 {
607 read_unwind_info (objfile);
608 if (objfile->obj_private == NULL)
609 error ("Internal error reading unwind information.");
610 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
611 }
612
613 /* First, check the cache */
614
615 if (ui->cache
616 && pc >= ui->cache->region_start
617 && pc <= ui->cache->region_end)
618 return ui->cache;
619
620 /* Not in the cache, do a binary search */
621
622 first = 0;
623 last = ui->last;
624
625 while (first <= last)
626 {
627 middle = (first + last) / 2;
628 if (pc >= ui->table[middle].region_start
629 && pc <= ui->table[middle].region_end)
630 {
631 ui->cache = &ui->table[middle];
632 return &ui->table[middle];
633 }
634
635 if (pc < ui->table[middle].region_start)
636 last = middle - 1;
637 else
638 first = middle + 1;
639 }
640 } /* ALL_OBJFILES() */
641 return NULL;
642 }
643
644 /* Return the adjustment necessary to make for addresses on the stack
645 as presented by hpread.c.
646
647 This is necessary because of the stack direction on the PA and the
648 bizarre way in which someone (?) decided they wanted to handle
649 frame pointerless code in GDB. */
650 int
651 hpread_adjust_stack_address (CORE_ADDR func_addr)
652 {
653 struct unwind_table_entry *u;
654
655 u = find_unwind_entry (func_addr);
656 if (!u)
657 return 0;
658 else
659 return u->Total_frame_size << 3;
660 }
661
662 /* Called to determine if PC is in an interrupt handler of some
663 kind. */
664
665 static int
666 pc_in_interrupt_handler (CORE_ADDR pc)
667 {
668 struct unwind_table_entry *u;
669 struct minimal_symbol *msym_us;
670
671 u = find_unwind_entry (pc);
672 if (!u)
673 return 0;
674
675 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
676 its frame isn't a pure interrupt frame. Deal with this. */
677 msym_us = lookup_minimal_symbol_by_pc (pc);
678
679 return (u->HP_UX_interrupt_marker
680 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)));
681 }
682
683 /* Called when no unwind descriptor was found for PC. Returns 1 if it
684 appears that PC is in a linker stub.
685
686 ?!? Need to handle stubs which appear in PA64 code. */
687
688 static int
689 pc_in_linker_stub (CORE_ADDR pc)
690 {
691 int found_magic_instruction = 0;
692 int i;
693 char buf[4];
694
695 /* If unable to read memory, assume pc is not in a linker stub. */
696 if (target_read_memory (pc, buf, 4) != 0)
697 return 0;
698
699 /* We are looking for something like
700
701 ; $$dyncall jams RP into this special spot in the frame (RP')
702 ; before calling the "call stub"
703 ldw -18(sp),rp
704
705 ldsid (rp),r1 ; Get space associated with RP into r1
706 mtsp r1,sp ; Move it into space register 0
707 be,n 0(sr0),rp) ; back to your regularly scheduled program */
708
709 /* Maximum known linker stub size is 4 instructions. Search forward
710 from the given PC, then backward. */
711 for (i = 0; i < 4; i++)
712 {
713 /* If we hit something with an unwind, stop searching this direction. */
714
715 if (find_unwind_entry (pc + i * 4) != 0)
716 break;
717
718 /* Check for ldsid (rp),r1 which is the magic instruction for a
719 return from a cross-space function call. */
720 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
721 {
722 found_magic_instruction = 1;
723 break;
724 }
725 /* Add code to handle long call/branch and argument relocation stubs
726 here. */
727 }
728
729 if (found_magic_instruction != 0)
730 return 1;
731
732 /* Now look backward. */
733 for (i = 0; i < 4; i++)
734 {
735 /* If we hit something with an unwind, stop searching this direction. */
736
737 if (find_unwind_entry (pc - i * 4) != 0)
738 break;
739
740 /* Check for ldsid (rp),r1 which is the magic instruction for a
741 return from a cross-space function call. */
742 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
743 {
744 found_magic_instruction = 1;
745 break;
746 }
747 /* Add code to handle long call/branch and argument relocation stubs
748 here. */
749 }
750 return found_magic_instruction;
751 }
752
753 static int
754 find_return_regnum (CORE_ADDR pc)
755 {
756 struct unwind_table_entry *u;
757
758 u = find_unwind_entry (pc);
759
760 if (!u)
761 return RP_REGNUM;
762
763 if (u->Millicode)
764 return 31;
765
766 return RP_REGNUM;
767 }
768
769 /* Return size of frame, or -1 if we should use a frame pointer. */
770 static int
771 find_proc_framesize (CORE_ADDR pc)
772 {
773 struct unwind_table_entry *u;
774 struct minimal_symbol *msym_us;
775
776 /* This may indicate a bug in our callers... */
777 if (pc == (CORE_ADDR) 0)
778 return -1;
779
780 u = find_unwind_entry (pc);
781
782 if (!u)
783 {
784 if (pc_in_linker_stub (pc))
785 /* Linker stubs have a zero size frame. */
786 return 0;
787 else
788 return -1;
789 }
790
791 msym_us = lookup_minimal_symbol_by_pc (pc);
792
793 /* If Save_SP is set, and we're not in an interrupt or signal caller,
794 then we have a frame pointer. Use it. */
795 if (u->Save_SP
796 && !pc_in_interrupt_handler (pc)
797 && msym_us
798 && !PC_IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
799 return -1;
800
801 return u->Total_frame_size << 3;
802 }
803
804 /* Return offset from sp at which rp is saved, or 0 if not saved. */
805 static int rp_saved (CORE_ADDR);
806
807 static int
808 rp_saved (CORE_ADDR pc)
809 {
810 struct unwind_table_entry *u;
811
812 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
813 if (pc == (CORE_ADDR) 0)
814 return 0;
815
816 u = find_unwind_entry (pc);
817
818 if (!u)
819 {
820 if (pc_in_linker_stub (pc))
821 /* This is the so-called RP'. */
822 return -24;
823 else
824 return 0;
825 }
826
827 if (u->Save_RP)
828 return (TARGET_PTR_BIT == 64 ? -16 : -20);
829 else if (u->stub_unwind.stub_type != 0)
830 {
831 switch (u->stub_unwind.stub_type)
832 {
833 case EXPORT:
834 case IMPORT:
835 return -24;
836 case PARAMETER_RELOCATION:
837 return -8;
838 default:
839 return 0;
840 }
841 }
842 else
843 return 0;
844 }
845 \f
846 int
847 hppa_frameless_function_invocation (struct frame_info *frame)
848 {
849 struct unwind_table_entry *u;
850
851 u = find_unwind_entry (frame->pc);
852
853 if (u == 0)
854 return 0;
855
856 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
857 }
858
859 /* Immediately after a function call, return the saved pc.
860 Can't go through the frames for this because on some machines
861 the new frame is not set up until the new function executes
862 some instructions. */
863
864 CORE_ADDR
865 hppa_saved_pc_after_call (struct frame_info *frame)
866 {
867 int ret_regnum;
868 CORE_ADDR pc;
869 struct unwind_table_entry *u;
870
871 ret_regnum = find_return_regnum (get_frame_pc (frame));
872 pc = read_register (ret_regnum) & ~0x3;
873
874 /* If PC is in a linker stub, then we need to dig the address
875 the stub will return to out of the stack. */
876 u = find_unwind_entry (pc);
877 if (u && u->stub_unwind.stub_type != 0)
878 return FRAME_SAVED_PC (frame);
879 else
880 return pc;
881 }
882 \f
883 CORE_ADDR
884 hppa_frame_saved_pc (struct frame_info *frame)
885 {
886 CORE_ADDR pc = get_frame_pc (frame);
887 struct unwind_table_entry *u;
888 CORE_ADDR old_pc;
889 int spun_around_loop = 0;
890 int rp_offset = 0;
891
892 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
893 at the base of the frame in an interrupt handler. Registers within
894 are saved in the exact same order as GDB numbers registers. How
895 convienent. */
896 if (pc_in_interrupt_handler (pc))
897 return read_memory_integer (frame->frame + PC_REGNUM * 4,
898 TARGET_PTR_BIT / 8) & ~0x3;
899
900 if ((frame->pc >= frame->frame
901 && frame->pc <= (frame->frame
902 /* A call dummy is sized in words, but it is
903 actually a series of instructions. Account
904 for that scaling factor. */
905 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
906 * CALL_DUMMY_LENGTH)
907 /* Similarly we have to account for 64bit
908 wide register saves. */
909 + (32 * REGISTER_SIZE)
910 /* We always consider FP regs 8 bytes long. */
911 + (NUM_REGS - FP0_REGNUM) * 8
912 /* Similarly we have to account for 64bit
913 wide register saves. */
914 + (6 * REGISTER_SIZE))))
915 {
916 return read_memory_integer ((frame->frame
917 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
918 TARGET_PTR_BIT / 8) & ~0x3;
919 }
920
921 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
922 /* Deal with signal handler caller frames too. */
923 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
924 {
925 CORE_ADDR rp;
926 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
927 return rp & ~0x3;
928 }
929 #endif
930
931 if (hppa_frameless_function_invocation (frame))
932 {
933 int ret_regnum;
934
935 ret_regnum = find_return_regnum (pc);
936
937 /* If the next frame is an interrupt frame or a signal
938 handler caller, then we need to look in the saved
939 register area to get the return pointer (the values
940 in the registers may not correspond to anything useful). */
941 if (frame->next
942 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
943 || pc_in_interrupt_handler (frame->next->pc)))
944 {
945 struct frame_saved_regs saved_regs;
946
947 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
948 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
949 TARGET_PTR_BIT / 8) & 0x2)
950 {
951 pc = read_memory_integer (saved_regs.regs[31],
952 TARGET_PTR_BIT / 8) & ~0x3;
953
954 /* Syscalls are really two frames. The syscall stub itself
955 with a return pointer in %rp and the kernel call with
956 a return pointer in %r31. We return the %rp variant
957 if %r31 is the same as frame->pc. */
958 if (pc == frame->pc)
959 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
960 TARGET_PTR_BIT / 8) & ~0x3;
961 }
962 else
963 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
964 TARGET_PTR_BIT / 8) & ~0x3;
965 }
966 else
967 pc = read_register (ret_regnum) & ~0x3;
968 }
969 else
970 {
971 spun_around_loop = 0;
972 old_pc = pc;
973
974 restart:
975 rp_offset = rp_saved (pc);
976
977 /* Similar to code in frameless function case. If the next
978 frame is a signal or interrupt handler, then dig the right
979 information out of the saved register info. */
980 if (rp_offset == 0
981 && frame->next
982 && ((get_frame_type (frame->next) == SIGTRAMP_FRAME)
983 || pc_in_interrupt_handler (frame->next->pc)))
984 {
985 struct frame_saved_regs saved_regs;
986
987 deprecated_get_frame_saved_regs (frame->next, &saved_regs);
988 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
989 TARGET_PTR_BIT / 8) & 0x2)
990 {
991 pc = read_memory_integer (saved_regs.regs[31],
992 TARGET_PTR_BIT / 8) & ~0x3;
993
994 /* Syscalls are really two frames. The syscall stub itself
995 with a return pointer in %rp and the kernel call with
996 a return pointer in %r31. We return the %rp variant
997 if %r31 is the same as frame->pc. */
998 if (pc == frame->pc)
999 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
1000 TARGET_PTR_BIT / 8) & ~0x3;
1001 }
1002 else
1003 pc = read_memory_integer (saved_regs.regs[RP_REGNUM],
1004 TARGET_PTR_BIT / 8) & ~0x3;
1005 }
1006 else if (rp_offset == 0)
1007 {
1008 old_pc = pc;
1009 pc = read_register (RP_REGNUM) & ~0x3;
1010 }
1011 else
1012 {
1013 old_pc = pc;
1014 pc = read_memory_integer (frame->frame + rp_offset,
1015 TARGET_PTR_BIT / 8) & ~0x3;
1016 }
1017 }
1018
1019 /* If PC is inside a linker stub, then dig out the address the stub
1020 will return to.
1021
1022 Don't do this for long branch stubs. Why? For some unknown reason
1023 _start is marked as a long branch stub in hpux10. */
1024 u = find_unwind_entry (pc);
1025 if (u && u->stub_unwind.stub_type != 0
1026 && u->stub_unwind.stub_type != LONG_BRANCH)
1027 {
1028 unsigned int insn;
1029
1030 /* If this is a dynamic executable, and we're in a signal handler,
1031 then the call chain will eventually point us into the stub for
1032 _sigreturn. Unlike most cases, we'll be pointed to the branch
1033 to the real sigreturn rather than the code after the real branch!.
1034
1035 Else, try to dig the address the stub will return to in the normal
1036 fashion. */
1037 insn = read_memory_integer (pc, 4);
1038 if ((insn & 0xfc00e000) == 0xe8000000)
1039 return (pc + extract_17 (insn) + 8) & ~0x3;
1040 else
1041 {
1042 if (old_pc == pc)
1043 spun_around_loop++;
1044
1045 if (spun_around_loop > 1)
1046 {
1047 /* We're just about to go around the loop again with
1048 no more hope of success. Die. */
1049 error ("Unable to find return pc for this frame");
1050 }
1051 else
1052 goto restart;
1053 }
1054 }
1055
1056 return pc;
1057 }
1058 \f
1059 /* We need to correct the PC and the FP for the outermost frame when we are
1060 in a system call. */
1061
1062 void
1063 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1064 {
1065 int flags;
1066 int framesize;
1067
1068 if (frame->next && !fromleaf)
1069 return;
1070
1071 /* If the next frame represents a frameless function invocation
1072 then we have to do some adjustments that are normally done by
1073 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
1074 if (fromleaf)
1075 {
1076 /* Find the framesize of *this* frame without peeking at the PC
1077 in the current frame structure (it isn't set yet). */
1078 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
1079
1080 /* Now adjust our base frame accordingly. If we have a frame pointer
1081 use it, else subtract the size of this frame from the current
1082 frame. (we always want frame->frame to point at the lowest address
1083 in the frame). */
1084 if (framesize == -1)
1085 frame->frame = TARGET_READ_FP ();
1086 else
1087 frame->frame -= framesize;
1088 return;
1089 }
1090
1091 flags = read_register (FLAGS_REGNUM);
1092 if (flags & 2) /* In system call? */
1093 frame->pc = read_register (31) & ~0x3;
1094
1095 /* The outermost frame is always derived from PC-framesize
1096
1097 One might think frameless innermost frames should have
1098 a frame->frame that is the same as the parent's frame->frame.
1099 That is wrong; frame->frame in that case should be the *high*
1100 address of the parent's frame. It's complicated as hell to
1101 explain, but the parent *always* creates some stack space for
1102 the child. So the child actually does have a frame of some
1103 sorts, and its base is the high address in its parent's frame. */
1104 framesize = find_proc_framesize (frame->pc);
1105 if (framesize == -1)
1106 frame->frame = TARGET_READ_FP ();
1107 else
1108 frame->frame = read_register (SP_REGNUM) - framesize;
1109 }
1110 \f
1111 /* Given a GDB frame, determine the address of the calling function's
1112 frame. This will be used to create a new GDB frame struct, and
1113 then INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC will be
1114 called for the new frame.
1115
1116 This may involve searching through prologues for several functions
1117 at boundaries where GCC calls HP C code, or where code which has
1118 a frame pointer calls code without a frame pointer. */
1119
1120 CORE_ADDR
1121 hppa_frame_chain (struct frame_info *frame)
1122 {
1123 int my_framesize, caller_framesize;
1124 struct unwind_table_entry *u;
1125 CORE_ADDR frame_base;
1126 struct frame_info *tmp_frame;
1127
1128 /* A frame in the current frame list, or zero. */
1129 struct frame_info *saved_regs_frame = 0;
1130 /* Where the registers were saved in saved_regs_frame.
1131 If saved_regs_frame is zero, this is garbage. */
1132 struct frame_saved_regs saved_regs;
1133
1134 CORE_ADDR caller_pc;
1135
1136 struct minimal_symbol *min_frame_symbol;
1137 struct symbol *frame_symbol;
1138 char *frame_symbol_name;
1139
1140 /* If this is a threaded application, and we see the
1141 routine "__pthread_exit", treat it as the stack root
1142 for this thread. */
1143 min_frame_symbol = lookup_minimal_symbol_by_pc (frame->pc);
1144 frame_symbol = find_pc_function (frame->pc);
1145
1146 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1147 {
1148 /* The test above for "no user function name" would defend
1149 against the slim likelihood that a user might define a
1150 routine named "__pthread_exit" and then try to debug it.
1151
1152 If it weren't commented out, and you tried to debug the
1153 pthread library itself, you'd get errors.
1154
1155 So for today, we don't make that check. */
1156 frame_symbol_name = SYMBOL_NAME (min_frame_symbol);
1157 if (frame_symbol_name != 0)
1158 {
1159 if (0 == strncmp (frame_symbol_name,
1160 THREAD_INITIAL_FRAME_SYMBOL,
1161 THREAD_INITIAL_FRAME_SYM_LEN))
1162 {
1163 /* Pretend we've reached the bottom of the stack. */
1164 return (CORE_ADDR) 0;
1165 }
1166 }
1167 } /* End of hacky code for threads. */
1168
1169 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1170 are easy; at *sp we have a full save state strucutre which we can
1171 pull the old stack pointer from. Also see frame_saved_pc for
1172 code to dig a saved PC out of the save state structure. */
1173 if (pc_in_interrupt_handler (frame->pc))
1174 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4,
1175 TARGET_PTR_BIT / 8);
1176 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1177 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1178 {
1179 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1180 }
1181 #endif
1182 else
1183 frame_base = frame->frame;
1184
1185 /* Get frame sizes for the current frame and the frame of the
1186 caller. */
1187 my_framesize = find_proc_framesize (frame->pc);
1188 caller_pc = FRAME_SAVED_PC (frame);
1189
1190 /* If we can't determine the caller's PC, then it's not likely we can
1191 really determine anything meaningful about its frame. We'll consider
1192 this to be stack bottom. */
1193 if (caller_pc == (CORE_ADDR) 0)
1194 return (CORE_ADDR) 0;
1195
1196 caller_framesize = find_proc_framesize (FRAME_SAVED_PC (frame));
1197
1198 /* If caller does not have a frame pointer, then its frame
1199 can be found at current_frame - caller_framesize. */
1200 if (caller_framesize != -1)
1201 {
1202 return frame_base - caller_framesize;
1203 }
1204 /* Both caller and callee have frame pointers and are GCC compiled
1205 (SAVE_SP bit in unwind descriptor is on for both functions.
1206 The previous frame pointer is found at the top of the current frame. */
1207 if (caller_framesize == -1 && my_framesize == -1)
1208 {
1209 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1210 }
1211 /* Caller has a frame pointer, but callee does not. This is a little
1212 more difficult as GCC and HP C lay out locals and callee register save
1213 areas very differently.
1214
1215 The previous frame pointer could be in a register, or in one of
1216 several areas on the stack.
1217
1218 Walk from the current frame to the innermost frame examining
1219 unwind descriptors to determine if %r3 ever gets saved into the
1220 stack. If so return whatever value got saved into the stack.
1221 If it was never saved in the stack, then the value in %r3 is still
1222 valid, so use it.
1223
1224 We use information from unwind descriptors to determine if %r3
1225 is saved into the stack (Entry_GR field has this information). */
1226
1227 for (tmp_frame = frame; tmp_frame; tmp_frame = tmp_frame->next)
1228 {
1229 u = find_unwind_entry (tmp_frame->pc);
1230
1231 if (!u)
1232 {
1233 /* We could find this information by examining prologues. I don't
1234 think anyone has actually written any tools (not even "strip")
1235 which leave them out of an executable, so maybe this is a moot
1236 point. */
1237 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1238 code that doesn't have unwind entries. For example, stepping into
1239 the dynamic linker will give you a PC that has none. Thus, I've
1240 disabled this warning. */
1241 #if 0
1242 warning ("Unable to find unwind for PC 0x%x -- Help!", tmp_frame->pc);
1243 #endif
1244 return (CORE_ADDR) 0;
1245 }
1246
1247 if (u->Save_SP
1248 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1249 || pc_in_interrupt_handler (tmp_frame->pc))
1250 break;
1251
1252 /* Entry_GR specifies the number of callee-saved general registers
1253 saved in the stack. It starts at %r3, so %r3 would be 1. */
1254 if (u->Entry_GR >= 1)
1255 {
1256 /* The unwind entry claims that r3 is saved here. However,
1257 in optimized code, GCC often doesn't actually save r3.
1258 We'll discover this if we look at the prologue. */
1259 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
1260 saved_regs_frame = tmp_frame;
1261
1262 /* If we have an address for r3, that's good. */
1263 if (saved_regs.regs[FP_REGNUM])
1264 break;
1265 }
1266 }
1267
1268 if (tmp_frame)
1269 {
1270 /* We may have walked down the chain into a function with a frame
1271 pointer. */
1272 if (u->Save_SP
1273 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1274 && !pc_in_interrupt_handler (tmp_frame->pc))
1275 {
1276 return read_memory_integer (tmp_frame->frame, TARGET_PTR_BIT / 8);
1277 }
1278 /* %r3 was saved somewhere in the stack. Dig it out. */
1279 else
1280 {
1281 /* Sick.
1282
1283 For optimization purposes many kernels don't have the
1284 callee saved registers into the save_state structure upon
1285 entry into the kernel for a syscall; the optimization
1286 is usually turned off if the process is being traced so
1287 that the debugger can get full register state for the
1288 process.
1289
1290 This scheme works well except for two cases:
1291
1292 * Attaching to a process when the process is in the
1293 kernel performing a system call (debugger can't get
1294 full register state for the inferior process since
1295 the process wasn't being traced when it entered the
1296 system call).
1297
1298 * Register state is not complete if the system call
1299 causes the process to core dump.
1300
1301
1302 The following heinous code is an attempt to deal with
1303 the lack of register state in a core dump. It will
1304 fail miserably if the function which performs the
1305 system call has a variable sized stack frame. */
1306
1307 if (tmp_frame != saved_regs_frame)
1308 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
1309
1310 /* Abominable hack. */
1311 if (current_target.to_has_execution == 0
1312 && ((saved_regs.regs[FLAGS_REGNUM]
1313 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1314 TARGET_PTR_BIT / 8)
1315 & 0x2))
1316 || (saved_regs.regs[FLAGS_REGNUM] == 0
1317 && read_register (FLAGS_REGNUM) & 0x2)))
1318 {
1319 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1320 if (!u)
1321 {
1322 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1323 TARGET_PTR_BIT / 8);
1324 }
1325 else
1326 {
1327 return frame_base - (u->Total_frame_size << 3);
1328 }
1329 }
1330
1331 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1332 TARGET_PTR_BIT / 8);
1333 }
1334 }
1335 else
1336 {
1337 /* Get the innermost frame. */
1338 tmp_frame = frame;
1339 while (tmp_frame->next != NULL)
1340 tmp_frame = tmp_frame->next;
1341
1342 if (tmp_frame != saved_regs_frame)
1343 deprecated_get_frame_saved_regs (tmp_frame, &saved_regs);
1344
1345 /* Abominable hack. See above. */
1346 if (current_target.to_has_execution == 0
1347 && ((saved_regs.regs[FLAGS_REGNUM]
1348 && (read_memory_integer (saved_regs.regs[FLAGS_REGNUM],
1349 TARGET_PTR_BIT / 8)
1350 & 0x2))
1351 || (saved_regs.regs[FLAGS_REGNUM] == 0
1352 && read_register (FLAGS_REGNUM) & 0x2)))
1353 {
1354 u = find_unwind_entry (FRAME_SAVED_PC (frame));
1355 if (!u)
1356 {
1357 return read_memory_integer (saved_regs.regs[FP_REGNUM],
1358 TARGET_PTR_BIT / 8);
1359 }
1360 else
1361 {
1362 return frame_base - (u->Total_frame_size << 3);
1363 }
1364 }
1365
1366 /* The value in %r3 was never saved into the stack (thus %r3 still
1367 holds the value of the previous frame pointer). */
1368 return TARGET_READ_FP ();
1369 }
1370 }
1371 \f
1372
1373 /* To see if a frame chain is valid, see if the caller looks like it
1374 was compiled with gcc. */
1375
1376 int
1377 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1378 {
1379 struct minimal_symbol *msym_us;
1380 struct minimal_symbol *msym_start;
1381 struct unwind_table_entry *u, *next_u = NULL;
1382 struct frame_info *next;
1383
1384 if (!chain)
1385 return 0;
1386
1387 u = find_unwind_entry (thisframe->pc);
1388
1389 if (u == NULL)
1390 return 1;
1391
1392 /* We can't just check that the same of msym_us is "_start", because
1393 someone idiotically decided that they were going to make a Ltext_end
1394 symbol with the same address. This Ltext_end symbol is totally
1395 indistinguishable (as nearly as I can tell) from the symbol for a function
1396 which is (legitimately, since it is in the user's namespace)
1397 named Ltext_end, so we can't just ignore it. */
1398 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1399 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1400 if (msym_us
1401 && msym_start
1402 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1403 return 0;
1404
1405 /* Grrrr. Some new idiot decided that they don't want _start for the
1406 PRO configurations; $START$ calls main directly.... Deal with it. */
1407 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1408 if (msym_us
1409 && msym_start
1410 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1411 return 0;
1412
1413 next = get_next_frame (thisframe);
1414 if (next)
1415 next_u = find_unwind_entry (next->pc);
1416
1417 /* If this frame does not save SP, has no stack, isn't a stub,
1418 and doesn't "call" an interrupt routine or signal handler caller,
1419 then its not valid. */
1420 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1421 || (thisframe->next && (get_frame_type (thisframe->next) == SIGTRAMP_FRAME))
1422 || (next_u && next_u->HP_UX_interrupt_marker))
1423 return 1;
1424
1425 if (pc_in_linker_stub (thisframe->pc))
1426 return 1;
1427
1428 return 0;
1429 }
1430
1431 /*
1432 These functions deal with saving and restoring register state
1433 around a function call in the inferior. They keep the stack
1434 double-word aligned; eventually, on an hp700, the stack will have
1435 to be aligned to a 64-byte boundary. */
1436
1437 void
1438 hppa_push_dummy_frame (struct inferior_status *inf_status)
1439 {
1440 CORE_ADDR sp, pc, pcspace;
1441 register int regnum;
1442 CORE_ADDR int_buffer;
1443 double freg_buffer;
1444
1445 /* Oh, what a hack. If we're trying to perform an inferior call
1446 while the inferior is asleep, we have to make sure to clear
1447 the "in system call" bit in the flag register (the call will
1448 start after the syscall returns, so we're no longer in the system
1449 call!) This state is kept in "inf_status", change it there.
1450
1451 We also need a number of horrid hacks to deal with lossage in the
1452 PC queue registers (apparently they're not valid when the in syscall
1453 bit is set). */
1454 pc = hppa_target_read_pc (inferior_ptid);
1455 int_buffer = read_register (FLAGS_REGNUM);
1456 if (int_buffer & 0x2)
1457 {
1458 unsigned int sid;
1459 int_buffer &= ~0x2;
1460 write_inferior_status_register (inf_status, 0, int_buffer);
1461 write_inferior_status_register (inf_status, PCOQ_HEAD_REGNUM, pc + 0);
1462 write_inferior_status_register (inf_status, PCOQ_TAIL_REGNUM, pc + 4);
1463 sid = (pc >> 30) & 0x3;
1464 if (sid == 0)
1465 pcspace = read_register (SR4_REGNUM);
1466 else
1467 pcspace = read_register (SR4_REGNUM + 4 + sid);
1468 write_inferior_status_register (inf_status, PCSQ_HEAD_REGNUM, pcspace);
1469 write_inferior_status_register (inf_status, PCSQ_TAIL_REGNUM, pcspace);
1470 }
1471 else
1472 pcspace = read_register (PCSQ_HEAD_REGNUM);
1473
1474 /* Space for "arguments"; the RP goes in here. */
1475 sp = read_register (SP_REGNUM) + 48;
1476 int_buffer = read_register (RP_REGNUM) | 0x3;
1477
1478 /* The 32bit and 64bit ABIs save the return pointer into different
1479 stack slots. */
1480 if (REGISTER_SIZE == 8)
1481 write_memory (sp - 16, (char *) &int_buffer, REGISTER_SIZE);
1482 else
1483 write_memory (sp - 20, (char *) &int_buffer, REGISTER_SIZE);
1484
1485 int_buffer = TARGET_READ_FP ();
1486 write_memory (sp, (char *) &int_buffer, REGISTER_SIZE);
1487
1488 write_register (FP_REGNUM, sp);
1489
1490 sp += 2 * REGISTER_SIZE;
1491
1492 for (regnum = 1; regnum < 32; regnum++)
1493 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1494 sp = push_word (sp, read_register (regnum));
1495
1496 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1497 if (REGISTER_SIZE != 8)
1498 sp += 4;
1499
1500 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1501 {
1502 deprecated_read_register_bytes (REGISTER_BYTE (regnum),
1503 (char *) &freg_buffer, 8);
1504 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1505 }
1506 sp = push_word (sp, read_register (IPSW_REGNUM));
1507 sp = push_word (sp, read_register (SAR_REGNUM));
1508 sp = push_word (sp, pc);
1509 sp = push_word (sp, pcspace);
1510 sp = push_word (sp, pc + 4);
1511 sp = push_word (sp, pcspace);
1512 write_register (SP_REGNUM, sp);
1513 }
1514
1515 static void
1516 find_dummy_frame_regs (struct frame_info *frame,
1517 struct frame_saved_regs *frame_saved_regs)
1518 {
1519 CORE_ADDR fp = frame->frame;
1520 int i;
1521
1522 /* The 32bit and 64bit ABIs save RP into different locations. */
1523 if (REGISTER_SIZE == 8)
1524 frame_saved_regs->regs[RP_REGNUM] = (fp - 16) & ~0x3;
1525 else
1526 frame_saved_regs->regs[RP_REGNUM] = (fp - 20) & ~0x3;
1527
1528 frame_saved_regs->regs[FP_REGNUM] = fp;
1529
1530 frame_saved_regs->regs[1] = fp + (2 * REGISTER_SIZE);
1531
1532 for (fp += 3 * REGISTER_SIZE, i = 3; i < 32; i++)
1533 {
1534 if (i != FP_REGNUM)
1535 {
1536 frame_saved_regs->regs[i] = fp;
1537 fp += REGISTER_SIZE;
1538 }
1539 }
1540
1541 /* This is not necessary or desirable for the 64bit ABI. */
1542 if (REGISTER_SIZE != 8)
1543 fp += 4;
1544
1545 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1546 frame_saved_regs->regs[i] = fp;
1547
1548 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1549 frame_saved_regs->regs[SAR_REGNUM] = fp + REGISTER_SIZE;
1550 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 2 * REGISTER_SIZE;
1551 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 3 * REGISTER_SIZE;
1552 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 4 * REGISTER_SIZE;
1553 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 5 * REGISTER_SIZE;
1554 }
1555
1556 void
1557 hppa_pop_frame (void)
1558 {
1559 register struct frame_info *frame = get_current_frame ();
1560 register CORE_ADDR fp, npc, target_pc;
1561 register int regnum;
1562 struct frame_saved_regs fsr;
1563 double freg_buffer;
1564
1565 fp = get_frame_base (frame);
1566 deprecated_get_frame_saved_regs (frame, &fsr);
1567
1568 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1569 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1570 restore_pc_queue (&fsr);
1571 #endif
1572
1573 for (regnum = 31; regnum > 0; regnum--)
1574 if (fsr.regs[regnum])
1575 write_register (regnum, read_memory_integer (fsr.regs[regnum],
1576 REGISTER_SIZE));
1577
1578 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1579 if (fsr.regs[regnum])
1580 {
1581 read_memory (fsr.regs[regnum], (char *) &freg_buffer, 8);
1582 deprecated_write_register_bytes (REGISTER_BYTE (regnum),
1583 (char *) &freg_buffer, 8);
1584 }
1585
1586 if (fsr.regs[IPSW_REGNUM])
1587 write_register (IPSW_REGNUM,
1588 read_memory_integer (fsr.regs[IPSW_REGNUM],
1589 REGISTER_SIZE));
1590
1591 if (fsr.regs[SAR_REGNUM])
1592 write_register (SAR_REGNUM,
1593 read_memory_integer (fsr.regs[SAR_REGNUM],
1594 REGISTER_SIZE));
1595
1596 /* If the PC was explicitly saved, then just restore it. */
1597 if (fsr.regs[PCOQ_TAIL_REGNUM])
1598 {
1599 npc = read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM],
1600 REGISTER_SIZE);
1601 write_register (PCOQ_TAIL_REGNUM, npc);
1602 }
1603 /* Else use the value in %rp to set the new PC. */
1604 else
1605 {
1606 npc = read_register (RP_REGNUM);
1607 write_pc (npc);
1608 }
1609
1610 write_register (FP_REGNUM, read_memory_integer (fp, REGISTER_SIZE));
1611
1612 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1613 write_register (SP_REGNUM, fp - 48);
1614 else
1615 write_register (SP_REGNUM, fp);
1616
1617 /* The PC we just restored may be inside a return trampoline. If so
1618 we want to restart the inferior and run it through the trampoline.
1619
1620 Do this by setting a momentary breakpoint at the location the
1621 trampoline returns to.
1622
1623 Don't skip through the trampoline if we're popping a dummy frame. */
1624 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1625 if (target_pc && !fsr.regs[IPSW_REGNUM])
1626 {
1627 struct symtab_and_line sal;
1628 struct breakpoint *breakpoint;
1629 struct cleanup *old_chain;
1630
1631 /* Set up our breakpoint. Set it to be silent as the MI code
1632 for "return_command" will print the frame we returned to. */
1633 sal = find_pc_line (target_pc, 0);
1634 sal.pc = target_pc;
1635 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1636 breakpoint->silent = 1;
1637
1638 /* So we can clean things up. */
1639 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1640
1641 /* Start up the inferior. */
1642 clear_proceed_status ();
1643 proceed_to_finish = 1;
1644 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1645
1646 /* Perform our cleanups. */
1647 do_cleanups (old_chain);
1648 }
1649 flush_cached_frames ();
1650 }
1651
1652 /* After returning to a dummy on the stack, restore the instruction
1653 queue space registers. */
1654
1655 static int
1656 restore_pc_queue (struct frame_saved_regs *fsr)
1657 {
1658 CORE_ADDR pc = read_pc ();
1659 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM],
1660 TARGET_PTR_BIT / 8);
1661 struct target_waitstatus w;
1662 int insn_count;
1663
1664 /* Advance past break instruction in the call dummy. */
1665 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1666 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1667
1668 /* HPUX doesn't let us set the space registers or the space
1669 registers of the PC queue through ptrace. Boo, hiss.
1670 Conveniently, the call dummy has this sequence of instructions
1671 after the break:
1672 mtsp r21, sr0
1673 ble,n 0(sr0, r22)
1674
1675 So, load up the registers and single step until we are in the
1676 right place. */
1677
1678 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM],
1679 REGISTER_SIZE));
1680 write_register (22, new_pc);
1681
1682 for (insn_count = 0; insn_count < 3; insn_count++)
1683 {
1684 /* FIXME: What if the inferior gets a signal right now? Want to
1685 merge this into wait_for_inferior (as a special kind of
1686 watchpoint? By setting a breakpoint at the end? Is there
1687 any other choice? Is there *any* way to do this stuff with
1688 ptrace() or some equivalent?). */
1689 resume (1, 0);
1690 target_wait (inferior_ptid, &w);
1691
1692 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1693 {
1694 stop_signal = w.value.sig;
1695 terminal_ours_for_output ();
1696 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1697 target_signal_to_name (stop_signal),
1698 target_signal_to_string (stop_signal));
1699 gdb_flush (gdb_stdout);
1700 return 0;
1701 }
1702 }
1703 target_terminal_ours ();
1704 target_fetch_registers (-1);
1705 return 1;
1706 }
1707
1708
1709 #ifdef PA20W_CALLING_CONVENTIONS
1710
1711 /* This function pushes a stack frame with arguments as part of the
1712 inferior function calling mechanism.
1713
1714 This is the version for the PA64, in which later arguments appear
1715 at higher addresses. (The stack always grows towards higher
1716 addresses.)
1717
1718 We simply allocate the appropriate amount of stack space and put
1719 arguments into their proper slots. The call dummy code will copy
1720 arguments into registers as needed by the ABI.
1721
1722 This ABI also requires that the caller provide an argument pointer
1723 to the callee, so we do that too. */
1724
1725 CORE_ADDR
1726 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1727 int struct_return, CORE_ADDR struct_addr)
1728 {
1729 /* array of arguments' offsets */
1730 int *offset = (int *) alloca (nargs * sizeof (int));
1731
1732 /* array of arguments' lengths: real lengths in bytes, not aligned to
1733 word size */
1734 int *lengths = (int *) alloca (nargs * sizeof (int));
1735
1736 /* The value of SP as it was passed into this function after
1737 aligning. */
1738 CORE_ADDR orig_sp = STACK_ALIGN (sp);
1739
1740 /* The number of stack bytes occupied by the current argument. */
1741 int bytes_reserved;
1742
1743 /* The total number of bytes reserved for the arguments. */
1744 int cum_bytes_reserved = 0;
1745
1746 /* Similarly, but aligned. */
1747 int cum_bytes_aligned = 0;
1748 int i;
1749
1750 /* Iterate over each argument provided by the user. */
1751 for (i = 0; i < nargs; i++)
1752 {
1753 struct type *arg_type = VALUE_TYPE (args[i]);
1754
1755 /* Integral scalar values smaller than a register are padded on
1756 the left. We do this by promoting them to full-width,
1757 although the ABI says to pad them with garbage. */
1758 if (is_integral_type (arg_type)
1759 && TYPE_LENGTH (arg_type) < REGISTER_SIZE)
1760 {
1761 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1762 ? builtin_type_unsigned_long
1763 : builtin_type_long),
1764 args[i]);
1765 arg_type = VALUE_TYPE (args[i]);
1766 }
1767
1768 lengths[i] = TYPE_LENGTH (arg_type);
1769
1770 /* Align the size of the argument to the word size for this
1771 target. */
1772 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1773
1774 offset[i] = cum_bytes_reserved;
1775
1776 /* Aggregates larger than eight bytes (the only types larger
1777 than eight bytes we have) are aligned on a 16-byte boundary,
1778 possibly padded on the right with garbage. This may leave an
1779 empty word on the stack, and thus an unused register, as per
1780 the ABI. */
1781 if (bytes_reserved > 8)
1782 {
1783 /* Round up the offset to a multiple of two slots. */
1784 int new_offset = ((offset[i] + 2*REGISTER_SIZE-1)
1785 & -(2*REGISTER_SIZE));
1786
1787 /* Note the space we've wasted, if any. */
1788 bytes_reserved += new_offset - offset[i];
1789 offset[i] = new_offset;
1790 }
1791
1792 cum_bytes_reserved += bytes_reserved;
1793 }
1794
1795 /* CUM_BYTES_RESERVED already accounts for all the arguments
1796 passed by the user. However, the ABIs mandate minimum stack space
1797 allocations for outgoing arguments.
1798
1799 The ABIs also mandate minimum stack alignments which we must
1800 preserve. */
1801 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1802 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1803
1804 /* Now write each of the args at the proper offset down the stack. */
1805 for (i = 0; i < nargs; i++)
1806 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1807
1808 /* If a structure has to be returned, set up register 28 to hold its
1809 address */
1810 if (struct_return)
1811 write_register (28, struct_addr);
1812
1813 /* For the PA64 we must pass a pointer to the outgoing argument list.
1814 The ABI mandates that the pointer should point to the first byte of
1815 storage beyond the register flushback area.
1816
1817 However, the call dummy expects the outgoing argument pointer to
1818 be passed in register %r4. */
1819 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
1820
1821 /* ?!? This needs further work. We need to set up the global data
1822 pointer for this procedure. This assumes the same global pointer
1823 for every procedure. The call dummy expects the dp value to
1824 be passed in register %r6. */
1825 write_register (6, read_register (27));
1826
1827 /* The stack will have 64 bytes of additional space for a frame marker. */
1828 return sp + 64;
1829 }
1830
1831 #else
1832
1833 /* This function pushes a stack frame with arguments as part of the
1834 inferior function calling mechanism.
1835
1836 This is the version of the function for the 32-bit PA machines, in
1837 which later arguments appear at lower addresses. (The stack always
1838 grows towards higher addresses.)
1839
1840 We simply allocate the appropriate amount of stack space and put
1841 arguments into their proper slots. The call dummy code will copy
1842 arguments into registers as needed by the ABI. */
1843
1844 CORE_ADDR
1845 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1846 int struct_return, CORE_ADDR struct_addr)
1847 {
1848 /* array of arguments' offsets */
1849 int *offset = (int *) alloca (nargs * sizeof (int));
1850
1851 /* array of arguments' lengths: real lengths in bytes, not aligned to
1852 word size */
1853 int *lengths = (int *) alloca (nargs * sizeof (int));
1854
1855 /* The number of stack bytes occupied by the current argument. */
1856 int bytes_reserved;
1857
1858 /* The total number of bytes reserved for the arguments. */
1859 int cum_bytes_reserved = 0;
1860
1861 /* Similarly, but aligned. */
1862 int cum_bytes_aligned = 0;
1863 int i;
1864
1865 /* Iterate over each argument provided by the user. */
1866 for (i = 0; i < nargs; i++)
1867 {
1868 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
1869
1870 /* Align the size of the argument to the word size for this
1871 target. */
1872 bytes_reserved = (lengths[i] + REGISTER_SIZE - 1) & -REGISTER_SIZE;
1873
1874 offset[i] = (cum_bytes_reserved
1875 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
1876
1877 /* If the argument is a double word argument, then it needs to be
1878 double word aligned. */
1879 if ((bytes_reserved == 2 * REGISTER_SIZE)
1880 && (offset[i] % 2 * REGISTER_SIZE))
1881 {
1882 int new_offset = 0;
1883 /* BYTES_RESERVED is already aligned to the word, so we put
1884 the argument at one word more down the stack.
1885
1886 This will leave one empty word on the stack, and one unused
1887 register as mandated by the ABI. */
1888 new_offset = ((offset[i] + 2 * REGISTER_SIZE - 1)
1889 & -(2 * REGISTER_SIZE));
1890
1891 if ((new_offset - offset[i]) >= 2 * REGISTER_SIZE)
1892 {
1893 bytes_reserved += REGISTER_SIZE;
1894 offset[i] += REGISTER_SIZE;
1895 }
1896 }
1897
1898 cum_bytes_reserved += bytes_reserved;
1899
1900 }
1901
1902 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
1903 by the user. However, the ABI mandates minimum stack space
1904 allocations for outgoing arguments.
1905
1906 The ABI also mandates minimum stack alignments which we must
1907 preserve. */
1908 cum_bytes_aligned = STACK_ALIGN (cum_bytes_reserved);
1909 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
1910
1911 /* Now write each of the args at the proper offset down the stack.
1912 ?!? We need to promote values to a full register instead of skipping
1913 words in the stack. */
1914 for (i = 0; i < nargs; i++)
1915 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
1916
1917 /* If a structure has to be returned, set up register 28 to hold its
1918 address */
1919 if (struct_return)
1920 write_register (28, struct_addr);
1921
1922 /* The stack will have 32 bytes of additional space for a frame marker. */
1923 return sp + 32;
1924 }
1925
1926 #endif
1927
1928 /* elz: this function returns a value which is built looking at the given address.
1929 It is called from call_function_by_hand, in case we need to return a
1930 value which is larger than 64 bits, and it is stored in the stack rather than
1931 in the registers r28 and r29 or fr4.
1932 This function does the same stuff as value_being_returned in values.c, but
1933 gets the value from the stack rather than from the buffer where all the
1934 registers were saved when the function called completed. */
1935 struct value *
1936 hppa_value_returned_from_stack (register struct type *valtype, CORE_ADDR addr)
1937 {
1938 register struct value *val;
1939
1940 val = allocate_value (valtype);
1941 CHECK_TYPEDEF (valtype);
1942 target_read_memory (addr, VALUE_CONTENTS_RAW (val), TYPE_LENGTH (valtype));
1943
1944 return val;
1945 }
1946
1947
1948
1949 /* elz: Used to lookup a symbol in the shared libraries.
1950 This function calls shl_findsym, indirectly through a
1951 call to __d_shl_get. __d_shl_get is in end.c, which is always
1952 linked in by the hp compilers/linkers.
1953 The call to shl_findsym cannot be made directly because it needs
1954 to be active in target address space.
1955 inputs: - minimal symbol pointer for the function we want to look up
1956 - address in target space of the descriptor for the library
1957 where we want to look the symbol up.
1958 This address is retrieved using the
1959 som_solib_get_solib_by_pc function (somsolib.c).
1960 output: - real address in the library of the function.
1961 note: the handle can be null, in which case shl_findsym will look for
1962 the symbol in all the loaded shared libraries.
1963 files to look at if you need reference on this stuff:
1964 dld.c, dld_shl_findsym.c
1965 end.c
1966 man entry for shl_findsym */
1967
1968 CORE_ADDR
1969 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
1970 {
1971 struct symbol *get_sym, *symbol2;
1972 struct minimal_symbol *buff_minsym, *msymbol;
1973 struct type *ftype;
1974 struct value **args;
1975 struct value *funcval;
1976 struct value *val;
1977
1978 int x, namelen, err_value, tmp = -1;
1979 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
1980 CORE_ADDR stub_addr;
1981
1982
1983 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
1984 funcval = find_function_in_inferior ("__d_shl_get");
1985 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_NAMESPACE, NULL, NULL);
1986 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
1987 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
1988 symbol2 = lookup_symbol ("__shldp", NULL, VAR_NAMESPACE, NULL, NULL);
1989 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
1990 namelen = strlen (SYMBOL_NAME (function));
1991 value_return_addr = endo_buff_addr + namelen;
1992 ftype = check_typedef (SYMBOL_TYPE (get_sym));
1993
1994 /* do alignment */
1995 if ((x = value_return_addr % 64) != 0)
1996 value_return_addr = value_return_addr + 64 - x;
1997
1998 errno_return_addr = value_return_addr + 64;
1999
2000
2001 /* set up stuff needed by __d_shl_get in buffer in end.o */
2002
2003 target_write_memory (endo_buff_addr, SYMBOL_NAME (function), namelen);
2004
2005 target_write_memory (value_return_addr, (char *) &tmp, 4);
2006
2007 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2008
2009 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2010 (char *) &handle, 4);
2011
2012 /* now prepare the arguments for the call */
2013
2014 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2015 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2016 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2017 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2018 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2019 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2020
2021 /* now call the function */
2022
2023 val = call_function_by_hand (funcval, 6, args);
2024
2025 /* now get the results */
2026
2027 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2028
2029 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2030 if (stub_addr <= 0)
2031 error ("call to __d_shl_get failed, error code is %d", err_value);
2032
2033 return (stub_addr);
2034 }
2035
2036 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2037 static int
2038 cover_find_stub_with_shl_get (PTR args_untyped)
2039 {
2040 args_for_find_stub *args = args_untyped;
2041 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2042 return 0;
2043 }
2044
2045 /* Insert the specified number of args and function address
2046 into a call sequence of the above form stored at DUMMYNAME.
2047
2048 On the hppa we need to call the stack dummy through $$dyncall.
2049 Therefore our version of FIX_CALL_DUMMY takes an extra argument,
2050 real_pc, which is the location where gdb should start up the
2051 inferior to do the function call.
2052
2053 This has to work across several versions of hpux, bsd, osf1. It has to
2054 work regardless of what compiler was used to build the inferior program.
2055 It should work regardless of whether or not end.o is available. It has
2056 to work even if gdb can not call into the dynamic loader in the inferior
2057 to query it for symbol names and addresses.
2058
2059 Yes, all those cases should work. Luckily code exists to handle most
2060 of them. The complexity is in selecting exactly what scheme should
2061 be used to perform the inferior call.
2062
2063 At the current time this routine is known not to handle cases where
2064 the program was linked with HP's compiler without including end.o.
2065
2066 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2067
2068 CORE_ADDR
2069 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2070 struct value **args, struct type *type, int gcc_p)
2071 {
2072 CORE_ADDR dyncall_addr;
2073 struct minimal_symbol *msymbol;
2074 struct minimal_symbol *trampoline;
2075 int flags = read_register (FLAGS_REGNUM);
2076 struct unwind_table_entry *u = NULL;
2077 CORE_ADDR new_stub = 0;
2078 CORE_ADDR solib_handle = 0;
2079
2080 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2081 passed an import stub, not a PLABEL. It is also necessary to set %r19
2082 (the PIC register) before performing the call.
2083
2084 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2085 are calling the target directly. When using __d_plt_call we want to
2086 use a PLABEL instead of an import stub. */
2087 int using_gcc_plt_call = 1;
2088
2089 #ifdef GDB_TARGET_IS_HPPA_20W
2090 /* We currently use completely different code for the PA2.0W inferior
2091 function call sequences. This needs to be cleaned up. */
2092 {
2093 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2094 struct target_waitstatus w;
2095 int inst1, inst2;
2096 char buf[4];
2097 int status;
2098 struct objfile *objfile;
2099
2100 /* We can not modify the PC space queues directly, so we start
2101 up the inferior and execute a couple instructions to set the
2102 space queues so that they point to the call dummy in the stack. */
2103 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2104 sr5 = read_register (SR5_REGNUM);
2105 if (1)
2106 {
2107 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2108 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2109 if (target_read_memory (pcoqh, buf, 4) != 0)
2110 error ("Couldn't modify space queue\n");
2111 inst1 = extract_unsigned_integer (buf, 4);
2112
2113 if (target_read_memory (pcoqt, buf, 4) != 0)
2114 error ("Couldn't modify space queue\n");
2115 inst2 = extract_unsigned_integer (buf, 4);
2116
2117 /* BVE (r1) */
2118 *((int *) buf) = 0xe820d000;
2119 if (target_write_memory (pcoqh, buf, 4) != 0)
2120 error ("Couldn't modify space queue\n");
2121
2122 /* NOP */
2123 *((int *) buf) = 0x08000240;
2124 if (target_write_memory (pcoqt, buf, 4) != 0)
2125 {
2126 *((int *) buf) = inst1;
2127 target_write_memory (pcoqh, buf, 4);
2128 error ("Couldn't modify space queue\n");
2129 }
2130
2131 write_register (1, pc);
2132
2133 /* Single step twice, the BVE instruction will set the space queue
2134 such that it points to the PC value written immediately above
2135 (ie the call dummy). */
2136 resume (1, 0);
2137 target_wait (inferior_ptid, &w);
2138 resume (1, 0);
2139 target_wait (inferior_ptid, &w);
2140
2141 /* Restore the two instructions at the old PC locations. */
2142 *((int *) buf) = inst1;
2143 target_write_memory (pcoqh, buf, 4);
2144 *((int *) buf) = inst2;
2145 target_write_memory (pcoqt, buf, 4);
2146 }
2147
2148 /* The call dummy wants the ultimate destination address initially
2149 in register %r5. */
2150 write_register (5, fun);
2151
2152 /* We need to see if this objfile has a different DP value than our
2153 own (it could be a shared library for example). */
2154 ALL_OBJFILES (objfile)
2155 {
2156 struct obj_section *s;
2157 obj_private_data_t *obj_private;
2158
2159 /* See if FUN is in any section within this shared library. */
2160 for (s = objfile->sections; s < objfile->sections_end; s++)
2161 if (s->addr <= fun && fun < s->endaddr)
2162 break;
2163
2164 if (s >= objfile->sections_end)
2165 continue;
2166
2167 obj_private = (obj_private_data_t *) objfile->obj_private;
2168
2169 /* The DP value may be different for each objfile. But within an
2170 objfile each function uses the same dp value. Thus we do not need
2171 to grope around the opd section looking for dp values.
2172
2173 ?!? This is not strictly correct since we may be in a shared library
2174 and want to call back into the main program. To make that case
2175 work correctly we need to set obj_private->dp for the main program's
2176 objfile, then remove this conditional. */
2177 if (obj_private->dp)
2178 write_register (27, obj_private->dp);
2179 break;
2180 }
2181 return pc;
2182 }
2183 #endif
2184
2185 #ifndef GDB_TARGET_IS_HPPA_20W
2186 /* Prefer __gcc_plt_call over the HP supplied routine because
2187 __gcc_plt_call works for any number of arguments. */
2188 trampoline = NULL;
2189 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2190 using_gcc_plt_call = 0;
2191
2192 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2193 if (msymbol == NULL)
2194 error ("Can't find an address for $$dyncall trampoline");
2195
2196 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2197
2198 /* FUN could be a procedure label, in which case we have to get
2199 its real address and the value of its GOT/DP if we plan to
2200 call the routine via gcc_plt_call. */
2201 if ((fun & 0x2) && using_gcc_plt_call)
2202 {
2203 /* Get the GOT/DP value for the target function. It's
2204 at *(fun+4). Note the call dummy is *NOT* allowed to
2205 trash %r19 before calling the target function. */
2206 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2207 REGISTER_SIZE));
2208
2209 /* Now get the real address for the function we are calling, it's
2210 at *fun. */
2211 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2212 TARGET_PTR_BIT / 8);
2213 }
2214 else
2215 {
2216
2217 #ifndef GDB_TARGET_IS_PA_ELF
2218 /* FUN could be an export stub, the real address of a function, or
2219 a PLABEL. When using gcc's PLT call routine we must call an import
2220 stub rather than the export stub or real function for lazy binding
2221 to work correctly
2222
2223 If we are using the gcc PLT call routine, then we need to
2224 get the import stub for the target function. */
2225 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2226 {
2227 struct objfile *objfile;
2228 struct minimal_symbol *funsymbol, *stub_symbol;
2229 CORE_ADDR newfun = 0;
2230
2231 funsymbol = lookup_minimal_symbol_by_pc (fun);
2232 if (!funsymbol)
2233 error ("Unable to find minimal symbol for target function.\n");
2234
2235 /* Search all the object files for an import symbol with the
2236 right name. */
2237 ALL_OBJFILES (objfile)
2238 {
2239 stub_symbol
2240 = lookup_minimal_symbol_solib_trampoline
2241 (SYMBOL_NAME (funsymbol), NULL, objfile);
2242
2243 if (!stub_symbol)
2244 stub_symbol = lookup_minimal_symbol (SYMBOL_NAME (funsymbol),
2245 NULL, objfile);
2246
2247 /* Found a symbol with the right name. */
2248 if (stub_symbol)
2249 {
2250 struct unwind_table_entry *u;
2251 /* It must be a shared library trampoline. */
2252 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2253 continue;
2254
2255 /* It must also be an import stub. */
2256 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2257 if (u == NULL
2258 || (u->stub_unwind.stub_type != IMPORT
2259 #ifdef GDB_NATIVE_HPUX_11
2260 /* Sigh. The hpux 10.20 dynamic linker will blow
2261 chunks if we perform a call to an unbound function
2262 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2263 linker will blow chunks if we do not call the
2264 unbound function via the IMPORT_SHLIB stub.
2265
2266 We currently have no way to select bevahior on just
2267 the target. However, we only support HPUX/SOM in
2268 native mode. So we conditinalize on a native
2269 #ifdef. Ugly. Ugly. Ugly */
2270 && u->stub_unwind.stub_type != IMPORT_SHLIB
2271 #endif
2272 ))
2273 continue;
2274
2275 /* OK. Looks like the correct import stub. */
2276 newfun = SYMBOL_VALUE (stub_symbol);
2277 fun = newfun;
2278
2279 /* If we found an IMPORT stub, then we want to stop
2280 searching now. If we found an IMPORT_SHLIB, we want
2281 to continue the search in the hopes that we will find
2282 an IMPORT stub. */
2283 if (u->stub_unwind.stub_type == IMPORT)
2284 break;
2285 }
2286 }
2287
2288 /* Ouch. We did not find an import stub. Make an attempt to
2289 do the right thing instead of just croaking. Most of the
2290 time this will actually work. */
2291 if (newfun == 0)
2292 write_register (19, som_solib_get_got_by_pc (fun));
2293
2294 u = find_unwind_entry (fun);
2295 if (u
2296 && (u->stub_unwind.stub_type == IMPORT
2297 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2298 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2299
2300 /* If we found the import stub in the shared library, then we have
2301 to set %r19 before we call the stub. */
2302 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2303 write_register (19, som_solib_get_got_by_pc (fun));
2304 }
2305 #endif
2306 }
2307
2308 /* If we are calling into another load module then have sr4export call the
2309 magic __d_plt_call routine which is linked in from end.o.
2310
2311 You can't use _sr4export to make the call as the value in sp-24 will get
2312 fried and you end up returning to the wrong location. You can't call the
2313 target as the code to bind the PLT entry to a function can't return to a
2314 stack address.
2315
2316 Also, query the dynamic linker in the inferior to provide a suitable
2317 PLABEL for the target function. */
2318 if (!using_gcc_plt_call)
2319 {
2320 CORE_ADDR new_fun;
2321
2322 /* Get a handle for the shared library containing FUN. Given the
2323 handle we can query the shared library for a PLABEL. */
2324 solib_handle = som_solib_get_solib_by_pc (fun);
2325
2326 if (solib_handle)
2327 {
2328 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2329
2330 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2331
2332 if (trampoline == NULL)
2333 {
2334 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2335 }
2336
2337 /* This is where sr4export will jump to. */
2338 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2339
2340 /* If the function is in a shared library, then call __d_shl_get to
2341 get a PLABEL for the target function. */
2342 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2343
2344 if (new_stub == 0)
2345 error ("Can't find an import stub for %s", SYMBOL_NAME (fmsymbol));
2346
2347 /* We have to store the address of the stub in __shlib_funcptr. */
2348 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2349 (struct objfile *) NULL);
2350
2351 if (msymbol == NULL)
2352 error ("Can't find an address for __shlib_funcptr");
2353 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2354 (char *) &new_stub, 4);
2355
2356 /* We want sr4export to call __d_plt_call, so we claim it is
2357 the final target. Clear trampoline. */
2358 fun = new_fun;
2359 trampoline = NULL;
2360 }
2361 }
2362
2363 /* Store upper 21 bits of function address into ldil. fun will either be
2364 the final target (most cases) or __d_plt_call when calling into a shared
2365 library and __gcc_plt_call is not available. */
2366 store_unsigned_integer
2367 (&dummy[FUNC_LDIL_OFFSET],
2368 INSTRUCTION_SIZE,
2369 deposit_21 (fun >> 11,
2370 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2371 INSTRUCTION_SIZE)));
2372
2373 /* Store lower 11 bits of function address into ldo */
2374 store_unsigned_integer
2375 (&dummy[FUNC_LDO_OFFSET],
2376 INSTRUCTION_SIZE,
2377 deposit_14 (fun & MASK_11,
2378 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2379 INSTRUCTION_SIZE)));
2380 #ifdef SR4EXPORT_LDIL_OFFSET
2381
2382 {
2383 CORE_ADDR trampoline_addr;
2384
2385 /* We may still need sr4export's address too. */
2386
2387 if (trampoline == NULL)
2388 {
2389 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2390 if (msymbol == NULL)
2391 error ("Can't find an address for _sr4export trampoline");
2392
2393 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2394 }
2395 else
2396 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2397
2398
2399 /* Store upper 21 bits of trampoline's address into ldil */
2400 store_unsigned_integer
2401 (&dummy[SR4EXPORT_LDIL_OFFSET],
2402 INSTRUCTION_SIZE,
2403 deposit_21 (trampoline_addr >> 11,
2404 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2405 INSTRUCTION_SIZE)));
2406
2407 /* Store lower 11 bits of trampoline's address into ldo */
2408 store_unsigned_integer
2409 (&dummy[SR4EXPORT_LDO_OFFSET],
2410 INSTRUCTION_SIZE,
2411 deposit_14 (trampoline_addr & MASK_11,
2412 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2413 INSTRUCTION_SIZE)));
2414 }
2415 #endif
2416
2417 write_register (22, pc);
2418
2419 /* If we are in a syscall, then we should call the stack dummy
2420 directly. $$dyncall is not needed as the kernel sets up the
2421 space id registers properly based on the value in %r31. In
2422 fact calling $$dyncall will not work because the value in %r22
2423 will be clobbered on the syscall exit path.
2424
2425 Similarly if the current PC is in a shared library. Note however,
2426 this scheme won't work if the shared library isn't mapped into
2427 the same space as the stack. */
2428 if (flags & 2)
2429 return pc;
2430 #ifndef GDB_TARGET_IS_PA_ELF
2431 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2432 return pc;
2433 #endif
2434 else
2435 return dyncall_addr;
2436 #endif
2437 }
2438
2439 /* If the pid is in a syscall, then the FP register is not readable.
2440 We'll return zero in that case, rather than attempting to read it
2441 and cause a warning. */
2442
2443 CORE_ADDR
2444 hppa_read_fp (int pid)
2445 {
2446 int flags = read_register (FLAGS_REGNUM);
2447
2448 if (flags & 2)
2449 {
2450 return (CORE_ADDR) 0;
2451 }
2452
2453 /* This is the only site that may directly read_register () the FP
2454 register. All others must use TARGET_READ_FP (). */
2455 return read_register (FP_REGNUM);
2456 }
2457
2458 CORE_ADDR
2459 hppa_target_read_fp (void)
2460 {
2461 return hppa_read_fp (PIDGET (inferior_ptid));
2462 }
2463
2464 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2465 bits. */
2466
2467 CORE_ADDR
2468 hppa_target_read_pc (ptid_t ptid)
2469 {
2470 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2471
2472 /* The following test does not belong here. It is OS-specific, and belongs
2473 in native code. */
2474 /* Test SS_INSYSCALL */
2475 if (flags & 2)
2476 return read_register_pid (31, ptid) & ~0x3;
2477
2478 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2479 }
2480
2481 /* Write out the PC. If currently in a syscall, then also write the new
2482 PC value into %r31. */
2483
2484 void
2485 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2486 {
2487 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2488
2489 /* The following test does not belong here. It is OS-specific, and belongs
2490 in native code. */
2491 /* If in a syscall, then set %r31. Also make sure to get the
2492 privilege bits set correctly. */
2493 /* Test SS_INSYSCALL */
2494 if (flags & 2)
2495 write_register_pid (31, v | 0x3, ptid);
2496
2497 write_register_pid (PC_REGNUM, v, ptid);
2498 write_register_pid (NPC_REGNUM, v + 4, ptid);
2499 }
2500
2501 /* return the alignment of a type in bytes. Structures have the maximum
2502 alignment required by their fields. */
2503
2504 static int
2505 hppa_alignof (struct type *type)
2506 {
2507 int max_align, align, i;
2508 CHECK_TYPEDEF (type);
2509 switch (TYPE_CODE (type))
2510 {
2511 case TYPE_CODE_PTR:
2512 case TYPE_CODE_INT:
2513 case TYPE_CODE_FLT:
2514 return TYPE_LENGTH (type);
2515 case TYPE_CODE_ARRAY:
2516 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2517 case TYPE_CODE_STRUCT:
2518 case TYPE_CODE_UNION:
2519 max_align = 1;
2520 for (i = 0; i < TYPE_NFIELDS (type); i++)
2521 {
2522 /* Bit fields have no real alignment. */
2523 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2524 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2525 {
2526 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2527 max_align = max (max_align, align);
2528 }
2529 }
2530 return max_align;
2531 default:
2532 return 4;
2533 }
2534 }
2535
2536 /* Print the register regnum, or all registers if regnum is -1 */
2537
2538 void
2539 pa_do_registers_info (int regnum, int fpregs)
2540 {
2541 char raw_regs[REGISTER_BYTES];
2542 int i;
2543
2544 /* Make a copy of gdb's save area (may cause actual
2545 reads from the target). */
2546 for (i = 0; i < NUM_REGS; i++)
2547 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2548
2549 if (regnum == -1)
2550 pa_print_registers (raw_regs, regnum, fpregs);
2551 else if (regnum < FP4_REGNUM)
2552 {
2553 long reg_val[2];
2554
2555 /* Why is the value not passed through "extract_signed_integer"
2556 as in "pa_print_registers" below? */
2557 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2558
2559 if (!is_pa_2)
2560 {
2561 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2562 }
2563 else
2564 {
2565 /* Fancy % formats to prevent leading zeros. */
2566 if (reg_val[0] == 0)
2567 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2568 else
2569 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2570 reg_val[0], reg_val[1]);
2571 }
2572 }
2573 else
2574 /* Note that real floating point values only start at
2575 FP4_REGNUM. FP0 and up are just status and error
2576 registers, which have integral (bit) values. */
2577 pa_print_fp_reg (regnum);
2578 }
2579
2580 /********** new function ********************/
2581 void
2582 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2583 enum precision_type precision)
2584 {
2585 char raw_regs[REGISTER_BYTES];
2586 int i;
2587
2588 /* Make a copy of gdb's save area (may cause actual
2589 reads from the target). */
2590 for (i = 0; i < NUM_REGS; i++)
2591 frame_register_read (deprecated_selected_frame, i, raw_regs + REGISTER_BYTE (i));
2592
2593 if (regnum == -1)
2594 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2595
2596 else if (regnum < FP4_REGNUM)
2597 {
2598 long reg_val[2];
2599
2600 /* Why is the value not passed through "extract_signed_integer"
2601 as in "pa_print_registers" below? */
2602 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2603
2604 if (!is_pa_2)
2605 {
2606 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2607 }
2608 else
2609 {
2610 /* Fancy % formats to prevent leading zeros. */
2611 if (reg_val[0] == 0)
2612 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2613 reg_val[1]);
2614 else
2615 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2616 reg_val[0], reg_val[1]);
2617 }
2618 }
2619 else
2620 /* Note that real floating point values only start at
2621 FP4_REGNUM. FP0 and up are just status and error
2622 registers, which have integral (bit) values. */
2623 pa_strcat_fp_reg (regnum, stream, precision);
2624 }
2625
2626 /* If this is a PA2.0 machine, fetch the real 64-bit register
2627 value. Otherwise use the info from gdb's saved register area.
2628
2629 Note that reg_val is really expected to be an array of longs,
2630 with two elements. */
2631 static void
2632 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2633 {
2634 static int know_which = 0; /* False */
2635
2636 int regaddr;
2637 unsigned int offset;
2638 register int i;
2639 int start;
2640
2641
2642 char buf[MAX_REGISTER_RAW_SIZE];
2643 long long reg_val;
2644
2645 if (!know_which)
2646 {
2647 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2648 {
2649 is_pa_2 = (1 == 1);
2650 }
2651
2652 know_which = 1; /* True */
2653 }
2654
2655 raw_val[0] = 0;
2656 raw_val[1] = 0;
2657
2658 if (!is_pa_2)
2659 {
2660 raw_val[1] = *(long *) (raw_regs + REGISTER_BYTE (regnum));
2661 return;
2662 }
2663
2664 /* Code below copied from hppah-nat.c, with fixes for wide
2665 registers, using different area of save_state, etc. */
2666 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2667 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2668 {
2669 /* Use narrow regs area of save_state and default macro. */
2670 offset = U_REGS_OFFSET;
2671 regaddr = register_addr (regnum, offset);
2672 start = 1;
2673 }
2674 else
2675 {
2676 /* Use wide regs area, and calculate registers as 8 bytes wide.
2677
2678 We'd like to do this, but current version of "C" doesn't
2679 permit "offsetof":
2680
2681 offset = offsetof(save_state_t, ss_wide);
2682
2683 Note that to avoid "C" doing typed pointer arithmetic, we
2684 have to cast away the type in our offset calculation:
2685 otherwise we get an offset of 1! */
2686
2687 /* NB: save_state_t is not available before HPUX 9.
2688 The ss_wide field is not available previous to HPUX 10.20,
2689 so to avoid compile-time warnings, we only compile this for
2690 PA 2.0 processors. This control path should only be followed
2691 if we're debugging a PA 2.0 processor, so this should not cause
2692 problems. */
2693
2694 /* #if the following code out so that this file can still be
2695 compiled on older HPUX boxes (< 10.20) which don't have
2696 this structure/structure member. */
2697 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2698 save_state_t temp;
2699
2700 offset = ((int) &temp.ss_wide) - ((int) &temp);
2701 regaddr = offset + regnum * 8;
2702 start = 0;
2703 #endif
2704 }
2705
2706 for (i = start; i < 2; i++)
2707 {
2708 errno = 0;
2709 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2710 (PTRACE_ARG3_TYPE) regaddr, 0);
2711 if (errno != 0)
2712 {
2713 /* Warning, not error, in case we are attached; sometimes the
2714 kernel doesn't let us at the registers. */
2715 char *err = safe_strerror (errno);
2716 char *msg = alloca (strlen (err) + 128);
2717 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2718 warning (msg);
2719 goto error_exit;
2720 }
2721
2722 regaddr += sizeof (long);
2723 }
2724
2725 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2726 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2727
2728 error_exit:
2729 ;
2730 }
2731
2732 /* "Info all-reg" command */
2733
2734 static void
2735 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2736 {
2737 int i, j;
2738 /* Alas, we are compiled so that "long long" is 32 bits */
2739 long raw_val[2];
2740 long long_val;
2741 int rows = 48, columns = 2;
2742
2743 for (i = 0; i < rows; i++)
2744 {
2745 for (j = 0; j < columns; j++)
2746 {
2747 /* We display registers in column-major order. */
2748 int regnum = i + j * rows;
2749
2750 /* Q: Why is the value passed through "extract_signed_integer",
2751 while above, in "pa_do_registers_info" it isn't?
2752 A: ? */
2753 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2754
2755 /* Even fancier % formats to prevent leading zeros
2756 and still maintain the output in columns. */
2757 if (!is_pa_2)
2758 {
2759 /* Being big-endian, on this machine the low bits
2760 (the ones we want to look at) are in the second longword. */
2761 long_val = extract_signed_integer (&raw_val[1], 4);
2762 printf_filtered ("%10.10s: %8lx ",
2763 REGISTER_NAME (regnum), long_val);
2764 }
2765 else
2766 {
2767 /* raw_val = extract_signed_integer(&raw_val, 8); */
2768 if (raw_val[0] == 0)
2769 printf_filtered ("%10.10s: %8lx ",
2770 REGISTER_NAME (regnum), raw_val[1]);
2771 else
2772 printf_filtered ("%10.10s: %8lx%8.8lx ",
2773 REGISTER_NAME (regnum),
2774 raw_val[0], raw_val[1]);
2775 }
2776 }
2777 printf_unfiltered ("\n");
2778 }
2779
2780 if (fpregs)
2781 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2782 pa_print_fp_reg (i);
2783 }
2784
2785 /************* new function ******************/
2786 static void
2787 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
2788 struct ui_file *stream)
2789 {
2790 int i, j;
2791 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
2792 long long_val;
2793 enum precision_type precision;
2794
2795 precision = unspecified_precision;
2796
2797 for (i = 0; i < 18; i++)
2798 {
2799 for (j = 0; j < 4; j++)
2800 {
2801 /* Q: Why is the value passed through "extract_signed_integer",
2802 while above, in "pa_do_registers_info" it isn't?
2803 A: ? */
2804 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
2805
2806 /* Even fancier % formats to prevent leading zeros
2807 and still maintain the output in columns. */
2808 if (!is_pa_2)
2809 {
2810 /* Being big-endian, on this machine the low bits
2811 (the ones we want to look at) are in the second longword. */
2812 long_val = extract_signed_integer (&raw_val[1], 4);
2813 fprintf_filtered (stream, "%8.8s: %8lx ",
2814 REGISTER_NAME (i + (j * 18)), long_val);
2815 }
2816 else
2817 {
2818 /* raw_val = extract_signed_integer(&raw_val, 8); */
2819 if (raw_val[0] == 0)
2820 fprintf_filtered (stream, "%8.8s: %8lx ",
2821 REGISTER_NAME (i + (j * 18)), raw_val[1]);
2822 else
2823 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
2824 REGISTER_NAME (i + (j * 18)), raw_val[0],
2825 raw_val[1]);
2826 }
2827 }
2828 fprintf_unfiltered (stream, "\n");
2829 }
2830
2831 if (fpregs)
2832 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
2833 pa_strcat_fp_reg (i, stream, precision);
2834 }
2835
2836 static void
2837 pa_print_fp_reg (int i)
2838 {
2839 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2840 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2841
2842 /* Get 32bits of data. */
2843 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2844
2845 /* Put it in the buffer. No conversions are ever necessary. */
2846 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2847
2848 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2849 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2850 fputs_filtered ("(single precision) ", gdb_stdout);
2851
2852 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
2853 1, 0, Val_pretty_default);
2854 printf_filtered ("\n");
2855
2856 /* If "i" is even, then this register can also be a double-precision
2857 FP register. Dump it out as such. */
2858 if ((i % 2) == 0)
2859 {
2860 /* Get the data in raw format for the 2nd half. */
2861 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
2862
2863 /* Copy it into the appropriate part of the virtual buffer. */
2864 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
2865 REGISTER_RAW_SIZE (i));
2866
2867 /* Dump it as a double. */
2868 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
2869 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
2870 fputs_filtered ("(double precision) ", gdb_stdout);
2871
2872 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
2873 1, 0, Val_pretty_default);
2874 printf_filtered ("\n");
2875 }
2876 }
2877
2878 /*************** new function ***********************/
2879 static void
2880 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
2881 {
2882 char raw_buffer[MAX_REGISTER_RAW_SIZE];
2883 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
2884
2885 fputs_filtered (REGISTER_NAME (i), stream);
2886 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
2887
2888 /* Get 32bits of data. */
2889 frame_register_read (deprecated_selected_frame, i, raw_buffer);
2890
2891 /* Put it in the buffer. No conversions are ever necessary. */
2892 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
2893
2894 if (precision == double_precision && (i % 2) == 0)
2895 {
2896
2897 char raw_buf[MAX_REGISTER_RAW_SIZE];
2898
2899 /* Get the data in raw format for the 2nd half. */
2900 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
2901
2902 /* Copy it into the appropriate part of the virtual buffer. */
2903 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buf, REGISTER_RAW_SIZE (i));
2904
2905 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
2906 1, 0, Val_pretty_default);
2907
2908 }
2909 else
2910 {
2911 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
2912 1, 0, Val_pretty_default);
2913 }
2914
2915 }
2916
2917 /* Return one if PC is in the call path of a trampoline, else return zero.
2918
2919 Note we return one for *any* call trampoline (long-call, arg-reloc), not
2920 just shared library trampolines (import, export). */
2921
2922 int
2923 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
2924 {
2925 struct minimal_symbol *minsym;
2926 struct unwind_table_entry *u;
2927 static CORE_ADDR dyncall = 0;
2928 static CORE_ADDR sr4export = 0;
2929
2930 #ifdef GDB_TARGET_IS_HPPA_20W
2931 /* PA64 has a completely different stub/trampoline scheme. Is it
2932 better? Maybe. It's certainly harder to determine with any
2933 certainty that we are in a stub because we can not refer to the
2934 unwinders to help.
2935
2936 The heuristic is simple. Try to lookup the current PC value in th
2937 minimal symbol table. If that fails, then assume we are not in a
2938 stub and return.
2939
2940 Then see if the PC value falls within the section bounds for the
2941 section containing the minimal symbol we found in the first
2942 step. If it does, then assume we are not in a stub and return.
2943
2944 Finally peek at the instructions to see if they look like a stub. */
2945 {
2946 struct minimal_symbol *minsym;
2947 asection *sec;
2948 CORE_ADDR addr;
2949 int insn, i;
2950
2951 minsym = lookup_minimal_symbol_by_pc (pc);
2952 if (! minsym)
2953 return 0;
2954
2955 sec = SYMBOL_BFD_SECTION (minsym);
2956
2957 if (sec->vma <= pc
2958 && sec->vma + sec->_cooked_size < pc)
2959 return 0;
2960
2961 /* We might be in a stub. Peek at the instructions. Stubs are 3
2962 instructions long. */
2963 insn = read_memory_integer (pc, 4);
2964
2965 /* Find out where we think we are within the stub. */
2966 if ((insn & 0xffffc00e) == 0x53610000)
2967 addr = pc;
2968 else if ((insn & 0xffffffff) == 0xe820d000)
2969 addr = pc - 4;
2970 else if ((insn & 0xffffc00e) == 0x537b0000)
2971 addr = pc - 8;
2972 else
2973 return 0;
2974
2975 /* Now verify each insn in the range looks like a stub instruction. */
2976 insn = read_memory_integer (addr, 4);
2977 if ((insn & 0xffffc00e) != 0x53610000)
2978 return 0;
2979
2980 /* Now verify each insn in the range looks like a stub instruction. */
2981 insn = read_memory_integer (addr + 4, 4);
2982 if ((insn & 0xffffffff) != 0xe820d000)
2983 return 0;
2984
2985 /* Now verify each insn in the range looks like a stub instruction. */
2986 insn = read_memory_integer (addr + 8, 4);
2987 if ((insn & 0xffffc00e) != 0x537b0000)
2988 return 0;
2989
2990 /* Looks like a stub. */
2991 return 1;
2992 }
2993 #endif
2994
2995 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
2996 new exec file */
2997
2998 /* First see if PC is in one of the two C-library trampolines. */
2999 if (!dyncall)
3000 {
3001 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3002 if (minsym)
3003 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3004 else
3005 dyncall = -1;
3006 }
3007
3008 if (!sr4export)
3009 {
3010 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3011 if (minsym)
3012 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3013 else
3014 sr4export = -1;
3015 }
3016
3017 if (pc == dyncall || pc == sr4export)
3018 return 1;
3019
3020 minsym = lookup_minimal_symbol_by_pc (pc);
3021 if (minsym && strcmp (SYMBOL_NAME (minsym), ".stub") == 0)
3022 return 1;
3023
3024 /* Get the unwind descriptor corresponding to PC, return zero
3025 if no unwind was found. */
3026 u = find_unwind_entry (pc);
3027 if (!u)
3028 return 0;
3029
3030 /* If this isn't a linker stub, then return now. */
3031 if (u->stub_unwind.stub_type == 0)
3032 return 0;
3033
3034 /* By definition a long-branch stub is a call stub. */
3035 if (u->stub_unwind.stub_type == LONG_BRANCH)
3036 return 1;
3037
3038 /* The call and return path execute the same instructions within
3039 an IMPORT stub! So an IMPORT stub is both a call and return
3040 trampoline. */
3041 if (u->stub_unwind.stub_type == IMPORT)
3042 return 1;
3043
3044 /* Parameter relocation stubs always have a call path and may have a
3045 return path. */
3046 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3047 || u->stub_unwind.stub_type == EXPORT)
3048 {
3049 CORE_ADDR addr;
3050
3051 /* Search forward from the current PC until we hit a branch
3052 or the end of the stub. */
3053 for (addr = pc; addr <= u->region_end; addr += 4)
3054 {
3055 unsigned long insn;
3056
3057 insn = read_memory_integer (addr, 4);
3058
3059 /* Does it look like a bl? If so then it's the call path, if
3060 we find a bv or be first, then we're on the return path. */
3061 if ((insn & 0xfc00e000) == 0xe8000000)
3062 return 1;
3063 else if ((insn & 0xfc00e001) == 0xe800c000
3064 || (insn & 0xfc000000) == 0xe0000000)
3065 return 0;
3066 }
3067
3068 /* Should never happen. */
3069 warning ("Unable to find branch in parameter relocation stub.\n");
3070 return 0;
3071 }
3072
3073 /* Unknown stub type. For now, just return zero. */
3074 return 0;
3075 }
3076
3077 /* Return one if PC is in the return path of a trampoline, else return zero.
3078
3079 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3080 just shared library trampolines (import, export). */
3081
3082 int
3083 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3084 {
3085 struct unwind_table_entry *u;
3086
3087 /* Get the unwind descriptor corresponding to PC, return zero
3088 if no unwind was found. */
3089 u = find_unwind_entry (pc);
3090 if (!u)
3091 return 0;
3092
3093 /* If this isn't a linker stub or it's just a long branch stub, then
3094 return zero. */
3095 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3096 return 0;
3097
3098 /* The call and return path execute the same instructions within
3099 an IMPORT stub! So an IMPORT stub is both a call and return
3100 trampoline. */
3101 if (u->stub_unwind.stub_type == IMPORT)
3102 return 1;
3103
3104 /* Parameter relocation stubs always have a call path and may have a
3105 return path. */
3106 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3107 || u->stub_unwind.stub_type == EXPORT)
3108 {
3109 CORE_ADDR addr;
3110
3111 /* Search forward from the current PC until we hit a branch
3112 or the end of the stub. */
3113 for (addr = pc; addr <= u->region_end; addr += 4)
3114 {
3115 unsigned long insn;
3116
3117 insn = read_memory_integer (addr, 4);
3118
3119 /* Does it look like a bl? If so then it's the call path, if
3120 we find a bv or be first, then we're on the return path. */
3121 if ((insn & 0xfc00e000) == 0xe8000000)
3122 return 0;
3123 else if ((insn & 0xfc00e001) == 0xe800c000
3124 || (insn & 0xfc000000) == 0xe0000000)
3125 return 1;
3126 }
3127
3128 /* Should never happen. */
3129 warning ("Unable to find branch in parameter relocation stub.\n");
3130 return 0;
3131 }
3132
3133 /* Unknown stub type. For now, just return zero. */
3134 return 0;
3135
3136 }
3137
3138 /* Figure out if PC is in a trampoline, and if so find out where
3139 the trampoline will jump to. If not in a trampoline, return zero.
3140
3141 Simple code examination probably is not a good idea since the code
3142 sequences in trampolines can also appear in user code.
3143
3144 We use unwinds and information from the minimal symbol table to
3145 determine when we're in a trampoline. This won't work for ELF
3146 (yet) since it doesn't create stub unwind entries. Whether or
3147 not ELF will create stub unwinds or normal unwinds for linker
3148 stubs is still being debated.
3149
3150 This should handle simple calls through dyncall or sr4export,
3151 long calls, argument relocation stubs, and dyncall/sr4export
3152 calling an argument relocation stub. It even handles some stubs
3153 used in dynamic executables. */
3154
3155 CORE_ADDR
3156 hppa_skip_trampoline_code (CORE_ADDR pc)
3157 {
3158 long orig_pc = pc;
3159 long prev_inst, curr_inst, loc;
3160 static CORE_ADDR dyncall = 0;
3161 static CORE_ADDR dyncall_external = 0;
3162 static CORE_ADDR sr4export = 0;
3163 struct minimal_symbol *msym;
3164 struct unwind_table_entry *u;
3165
3166 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3167 new exec file */
3168
3169 if (!dyncall)
3170 {
3171 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3172 if (msym)
3173 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3174 else
3175 dyncall = -1;
3176 }
3177
3178 if (!dyncall_external)
3179 {
3180 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3181 if (msym)
3182 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3183 else
3184 dyncall_external = -1;
3185 }
3186
3187 if (!sr4export)
3188 {
3189 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3190 if (msym)
3191 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3192 else
3193 sr4export = -1;
3194 }
3195
3196 /* Addresses passed to dyncall may *NOT* be the actual address
3197 of the function. So we may have to do something special. */
3198 if (pc == dyncall)
3199 {
3200 pc = (CORE_ADDR) read_register (22);
3201
3202 /* If bit 30 (counting from the left) is on, then pc is the address of
3203 the PLT entry for this function, not the address of the function
3204 itself. Bit 31 has meaning too, but only for MPE. */
3205 if (pc & 0x2)
3206 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3207 }
3208 if (pc == dyncall_external)
3209 {
3210 pc = (CORE_ADDR) read_register (22);
3211 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3212 }
3213 else if (pc == sr4export)
3214 pc = (CORE_ADDR) (read_register (22));
3215
3216 /* Get the unwind descriptor corresponding to PC, return zero
3217 if no unwind was found. */
3218 u = find_unwind_entry (pc);
3219 if (!u)
3220 return 0;
3221
3222 /* If this isn't a linker stub, then return now. */
3223 /* elz: attention here! (FIXME) because of a compiler/linker
3224 error, some stubs which should have a non zero stub_unwind.stub_type
3225 have unfortunately a value of zero. So this function would return here
3226 as if we were not in a trampoline. To fix this, we go look at the partial
3227 symbol information, which reports this guy as a stub.
3228 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3229 partial symbol information is also wrong sometimes. This is because
3230 when it is entered (somread.c::som_symtab_read()) it can happen that
3231 if the type of the symbol (from the som) is Entry, and the symbol is
3232 in a shared library, then it can also be a trampoline. This would
3233 be OK, except that I believe the way they decide if we are ina shared library
3234 does not work. SOOOO..., even if we have a regular function w/o trampolines
3235 its minimal symbol can be assigned type mst_solib_trampoline.
3236 Also, if we find that the symbol is a real stub, then we fix the unwind
3237 descriptor, and define the stub type to be EXPORT.
3238 Hopefully this is correct most of the times. */
3239 if (u->stub_unwind.stub_type == 0)
3240 {
3241
3242 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3243 we can delete all the code which appears between the lines */
3244 /*--------------------------------------------------------------------------*/
3245 msym = lookup_minimal_symbol_by_pc (pc);
3246
3247 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3248 return orig_pc == pc ? 0 : pc & ~0x3;
3249
3250 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3251 {
3252 struct objfile *objfile;
3253 struct minimal_symbol *msymbol;
3254 int function_found = 0;
3255
3256 /* go look if there is another minimal symbol with the same name as
3257 this one, but with type mst_text. This would happen if the msym
3258 is an actual trampoline, in which case there would be another
3259 symbol with the same name corresponding to the real function */
3260
3261 ALL_MSYMBOLS (objfile, msymbol)
3262 {
3263 if (MSYMBOL_TYPE (msymbol) == mst_text
3264 && STREQ (SYMBOL_NAME (msymbol), SYMBOL_NAME (msym)))
3265 {
3266 function_found = 1;
3267 break;
3268 }
3269 }
3270
3271 if (function_found)
3272 /* the type of msym is correct (mst_solib_trampoline), but
3273 the unwind info is wrong, so set it to the correct value */
3274 u->stub_unwind.stub_type = EXPORT;
3275 else
3276 /* the stub type info in the unwind is correct (this is not a
3277 trampoline), but the msym type information is wrong, it
3278 should be mst_text. So we need to fix the msym, and also
3279 get out of this function */
3280 {
3281 MSYMBOL_TYPE (msym) = mst_text;
3282 return orig_pc == pc ? 0 : pc & ~0x3;
3283 }
3284 }
3285
3286 /*--------------------------------------------------------------------------*/
3287 }
3288
3289 /* It's a stub. Search for a branch and figure out where it goes.
3290 Note we have to handle multi insn branch sequences like ldil;ble.
3291 Most (all?) other branches can be determined by examining the contents
3292 of certain registers and the stack. */
3293
3294 loc = pc;
3295 curr_inst = 0;
3296 prev_inst = 0;
3297 while (1)
3298 {
3299 /* Make sure we haven't walked outside the range of this stub. */
3300 if (u != find_unwind_entry (loc))
3301 {
3302 warning ("Unable to find branch in linker stub");
3303 return orig_pc == pc ? 0 : pc & ~0x3;
3304 }
3305
3306 prev_inst = curr_inst;
3307 curr_inst = read_memory_integer (loc, 4);
3308
3309 /* Does it look like a branch external using %r1? Then it's the
3310 branch from the stub to the actual function. */
3311 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3312 {
3313 /* Yup. See if the previous instruction loaded
3314 a value into %r1. If so compute and return the jump address. */
3315 if ((prev_inst & 0xffe00000) == 0x20200000)
3316 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3317 else
3318 {
3319 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3320 return orig_pc == pc ? 0 : pc & ~0x3;
3321 }
3322 }
3323
3324 /* Does it look like a be 0(sr0,%r21)? OR
3325 Does it look like a be, n 0(sr0,%r21)? OR
3326 Does it look like a bve (r21)? (this is on PA2.0)
3327 Does it look like a bve, n(r21)? (this is also on PA2.0)
3328 That's the branch from an
3329 import stub to an export stub.
3330
3331 It is impossible to determine the target of the branch via
3332 simple examination of instructions and/or data (consider
3333 that the address in the plabel may be the address of the
3334 bind-on-reference routine in the dynamic loader).
3335
3336 So we have try an alternative approach.
3337
3338 Get the name of the symbol at our current location; it should
3339 be a stub symbol with the same name as the symbol in the
3340 shared library.
3341
3342 Then lookup a minimal symbol with the same name; we should
3343 get the minimal symbol for the target routine in the shared
3344 library as those take precedence of import/export stubs. */
3345 if ((curr_inst == 0xe2a00000) ||
3346 (curr_inst == 0xe2a00002) ||
3347 (curr_inst == 0xeaa0d000) ||
3348 (curr_inst == 0xeaa0d002))
3349 {
3350 struct minimal_symbol *stubsym, *libsym;
3351
3352 stubsym = lookup_minimal_symbol_by_pc (loc);
3353 if (stubsym == NULL)
3354 {
3355 warning ("Unable to find symbol for 0x%lx", loc);
3356 return orig_pc == pc ? 0 : pc & ~0x3;
3357 }
3358
3359 libsym = lookup_minimal_symbol (SYMBOL_NAME (stubsym), NULL, NULL);
3360 if (libsym == NULL)
3361 {
3362 warning ("Unable to find library symbol for %s\n",
3363 SYMBOL_NAME (stubsym));
3364 return orig_pc == pc ? 0 : pc & ~0x3;
3365 }
3366
3367 return SYMBOL_VALUE (libsym);
3368 }
3369
3370 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3371 branch from the stub to the actual function. */
3372 /*elz */
3373 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3374 || (curr_inst & 0xffe0e000) == 0xe8000000
3375 || (curr_inst & 0xffe0e000) == 0xe800A000)
3376 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3377
3378 /* Does it look like bv (rp)? Note this depends on the
3379 current stack pointer being the same as the stack
3380 pointer in the stub itself! This is a branch on from the
3381 stub back to the original caller. */
3382 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3383 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3384 {
3385 /* Yup. See if the previous instruction loaded
3386 rp from sp - 8. */
3387 if (prev_inst == 0x4bc23ff1)
3388 return (read_memory_integer
3389 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3390 else
3391 {
3392 warning ("Unable to find restore of %%rp before bv (%%rp).");
3393 return orig_pc == pc ? 0 : pc & ~0x3;
3394 }
3395 }
3396
3397 /* elz: added this case to capture the new instruction
3398 at the end of the return part of an export stub used by
3399 the PA2.0: BVE, n (rp) */
3400 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3401 {
3402 return (read_memory_integer
3403 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3404 }
3405
3406 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3407 the original caller from the stub. Used in dynamic executables. */
3408 else if (curr_inst == 0xe0400002)
3409 {
3410 /* The value we jump to is sitting in sp - 24. But that's
3411 loaded several instructions before the be instruction.
3412 I guess we could check for the previous instruction being
3413 mtsp %r1,%sr0 if we want to do sanity checking. */
3414 return (read_memory_integer
3415 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3416 }
3417
3418 /* Haven't found the branch yet, but we're still in the stub.
3419 Keep looking. */
3420 loc += 4;
3421 }
3422 }
3423
3424
3425 /* For the given instruction (INST), return any adjustment it makes
3426 to the stack pointer or zero for no adjustment.
3427
3428 This only handles instructions commonly found in prologues. */
3429
3430 static int
3431 prologue_inst_adjust_sp (unsigned long inst)
3432 {
3433 /* This must persist across calls. */
3434 static int save_high21;
3435
3436 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3437 if ((inst & 0xffffc000) == 0x37de0000)
3438 return extract_14 (inst);
3439
3440 /* stwm X,D(sp) */
3441 if ((inst & 0xffe00000) == 0x6fc00000)
3442 return extract_14 (inst);
3443
3444 /* std,ma X,D(sp) */
3445 if ((inst & 0xffe00008) == 0x73c00008)
3446 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3447
3448 /* addil high21,%r1; ldo low11,(%r1),%r30)
3449 save high bits in save_high21 for later use. */
3450 if ((inst & 0xffe00000) == 0x28200000)
3451 {
3452 save_high21 = extract_21 (inst);
3453 return 0;
3454 }
3455
3456 if ((inst & 0xffff0000) == 0x343e0000)
3457 return save_high21 + extract_14 (inst);
3458
3459 /* fstws as used by the HP compilers. */
3460 if ((inst & 0xffffffe0) == 0x2fd01220)
3461 return extract_5_load (inst);
3462
3463 /* No adjustment. */
3464 return 0;
3465 }
3466
3467 /* Return nonzero if INST is a branch of some kind, else return zero. */
3468
3469 static int
3470 is_branch (unsigned long inst)
3471 {
3472 switch (inst >> 26)
3473 {
3474 case 0x20:
3475 case 0x21:
3476 case 0x22:
3477 case 0x23:
3478 case 0x27:
3479 case 0x28:
3480 case 0x29:
3481 case 0x2a:
3482 case 0x2b:
3483 case 0x2f:
3484 case 0x30:
3485 case 0x31:
3486 case 0x32:
3487 case 0x33:
3488 case 0x38:
3489 case 0x39:
3490 case 0x3a:
3491 case 0x3b:
3492 return 1;
3493
3494 default:
3495 return 0;
3496 }
3497 }
3498
3499 /* Return the register number for a GR which is saved by INST or
3500 zero it INST does not save a GR. */
3501
3502 static int
3503 inst_saves_gr (unsigned long inst)
3504 {
3505 /* Does it look like a stw? */
3506 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3507 || (inst >> 26) == 0x1f
3508 || ((inst >> 26) == 0x1f
3509 && ((inst >> 6) == 0xa)))
3510 return extract_5R_store (inst);
3511
3512 /* Does it look like a std? */
3513 if ((inst >> 26) == 0x1c
3514 || ((inst >> 26) == 0x03
3515 && ((inst >> 6) & 0xf) == 0xb))
3516 return extract_5R_store (inst);
3517
3518 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3519 if ((inst >> 26) == 0x1b)
3520 return extract_5R_store (inst);
3521
3522 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3523 too. */
3524 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3525 || ((inst >> 26) == 0x3
3526 && (((inst >> 6) & 0xf) == 0x8
3527 || (inst >> 6) & 0xf) == 0x9))
3528 return extract_5R_store (inst);
3529
3530 return 0;
3531 }
3532
3533 /* Return the register number for a FR which is saved by INST or
3534 zero it INST does not save a FR.
3535
3536 Note we only care about full 64bit register stores (that's the only
3537 kind of stores the prologue will use).
3538
3539 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3540
3541 static int
3542 inst_saves_fr (unsigned long inst)
3543 {
3544 /* is this an FSTD ? */
3545 if ((inst & 0xfc00dfc0) == 0x2c001200)
3546 return extract_5r_store (inst);
3547 if ((inst & 0xfc000002) == 0x70000002)
3548 return extract_5R_store (inst);
3549 /* is this an FSTW ? */
3550 if ((inst & 0xfc00df80) == 0x24001200)
3551 return extract_5r_store (inst);
3552 if ((inst & 0xfc000002) == 0x7c000000)
3553 return extract_5R_store (inst);
3554 return 0;
3555 }
3556
3557 /* Advance PC across any function entry prologue instructions
3558 to reach some "real" code.
3559
3560 Use information in the unwind table to determine what exactly should
3561 be in the prologue. */
3562
3563
3564 CORE_ADDR
3565 skip_prologue_hard_way (CORE_ADDR pc)
3566 {
3567 char buf[4];
3568 CORE_ADDR orig_pc = pc;
3569 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3570 unsigned long args_stored, status, i, restart_gr, restart_fr;
3571 struct unwind_table_entry *u;
3572
3573 restart_gr = 0;
3574 restart_fr = 0;
3575
3576 restart:
3577 u = find_unwind_entry (pc);
3578 if (!u)
3579 return pc;
3580
3581 /* If we are not at the beginning of a function, then return now. */
3582 if ((pc & ~0x3) != u->region_start)
3583 return pc;
3584
3585 /* This is how much of a frame adjustment we need to account for. */
3586 stack_remaining = u->Total_frame_size << 3;
3587
3588 /* Magic register saves we want to know about. */
3589 save_rp = u->Save_RP;
3590 save_sp = u->Save_SP;
3591
3592 /* An indication that args may be stored into the stack. Unfortunately
3593 the HPUX compilers tend to set this in cases where no args were
3594 stored too!. */
3595 args_stored = 1;
3596
3597 /* Turn the Entry_GR field into a bitmask. */
3598 save_gr = 0;
3599 for (i = 3; i < u->Entry_GR + 3; i++)
3600 {
3601 /* Frame pointer gets saved into a special location. */
3602 if (u->Save_SP && i == FP_REGNUM)
3603 continue;
3604
3605 save_gr |= (1 << i);
3606 }
3607 save_gr &= ~restart_gr;
3608
3609 /* Turn the Entry_FR field into a bitmask too. */
3610 save_fr = 0;
3611 for (i = 12; i < u->Entry_FR + 12; i++)
3612 save_fr |= (1 << i);
3613 save_fr &= ~restart_fr;
3614
3615 /* Loop until we find everything of interest or hit a branch.
3616
3617 For unoptimized GCC code and for any HP CC code this will never ever
3618 examine any user instructions.
3619
3620 For optimzied GCC code we're faced with problems. GCC will schedule
3621 its prologue and make prologue instructions available for delay slot
3622 filling. The end result is user code gets mixed in with the prologue
3623 and a prologue instruction may be in the delay slot of the first branch
3624 or call.
3625
3626 Some unexpected things are expected with debugging optimized code, so
3627 we allow this routine to walk past user instructions in optimized
3628 GCC code. */
3629 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3630 || args_stored)
3631 {
3632 unsigned int reg_num;
3633 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3634 unsigned long old_save_rp, old_save_sp, next_inst;
3635
3636 /* Save copies of all the triggers so we can compare them later
3637 (only for HPC). */
3638 old_save_gr = save_gr;
3639 old_save_fr = save_fr;
3640 old_save_rp = save_rp;
3641 old_save_sp = save_sp;
3642 old_stack_remaining = stack_remaining;
3643
3644 status = target_read_memory (pc, buf, 4);
3645 inst = extract_unsigned_integer (buf, 4);
3646
3647 /* Yow! */
3648 if (status != 0)
3649 return pc;
3650
3651 /* Note the interesting effects of this instruction. */
3652 stack_remaining -= prologue_inst_adjust_sp (inst);
3653
3654 /* There are limited ways to store the return pointer into the
3655 stack. */
3656 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3657 save_rp = 0;
3658
3659 /* These are the only ways we save SP into the stack. At this time
3660 the HP compilers never bother to save SP into the stack. */
3661 if ((inst & 0xffffc000) == 0x6fc10000
3662 || (inst & 0xffffc00c) == 0x73c10008)
3663 save_sp = 0;
3664
3665 /* Are we loading some register with an offset from the argument
3666 pointer? */
3667 if ((inst & 0xffe00000) == 0x37a00000
3668 || (inst & 0xffffffe0) == 0x081d0240)
3669 {
3670 pc += 4;
3671 continue;
3672 }
3673
3674 /* Account for general and floating-point register saves. */
3675 reg_num = inst_saves_gr (inst);
3676 save_gr &= ~(1 << reg_num);
3677
3678 /* Ugh. Also account for argument stores into the stack.
3679 Unfortunately args_stored only tells us that some arguments
3680 where stored into the stack. Not how many or what kind!
3681
3682 This is a kludge as on the HP compiler sets this bit and it
3683 never does prologue scheduling. So once we see one, skip past
3684 all of them. We have similar code for the fp arg stores below.
3685
3686 FIXME. Can still die if we have a mix of GR and FR argument
3687 stores! */
3688 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3689 {
3690 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3691 {
3692 pc += 4;
3693 status = target_read_memory (pc, buf, 4);
3694 inst = extract_unsigned_integer (buf, 4);
3695 if (status != 0)
3696 return pc;
3697 reg_num = inst_saves_gr (inst);
3698 }
3699 args_stored = 0;
3700 continue;
3701 }
3702
3703 reg_num = inst_saves_fr (inst);
3704 save_fr &= ~(1 << reg_num);
3705
3706 status = target_read_memory (pc + 4, buf, 4);
3707 next_inst = extract_unsigned_integer (buf, 4);
3708
3709 /* Yow! */
3710 if (status != 0)
3711 return pc;
3712
3713 /* We've got to be read to handle the ldo before the fp register
3714 save. */
3715 if ((inst & 0xfc000000) == 0x34000000
3716 && inst_saves_fr (next_inst) >= 4
3717 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3718 {
3719 /* So we drop into the code below in a reasonable state. */
3720 reg_num = inst_saves_fr (next_inst);
3721 pc -= 4;
3722 }
3723
3724 /* Ugh. Also account for argument stores into the stack.
3725 This is a kludge as on the HP compiler sets this bit and it
3726 never does prologue scheduling. So once we see one, skip past
3727 all of them. */
3728 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3729 {
3730 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3731 {
3732 pc += 8;
3733 status = target_read_memory (pc, buf, 4);
3734 inst = extract_unsigned_integer (buf, 4);
3735 if (status != 0)
3736 return pc;
3737 if ((inst & 0xfc000000) != 0x34000000)
3738 break;
3739 status = target_read_memory (pc + 4, buf, 4);
3740 next_inst = extract_unsigned_integer (buf, 4);
3741 if (status != 0)
3742 return pc;
3743 reg_num = inst_saves_fr (next_inst);
3744 }
3745 args_stored = 0;
3746 continue;
3747 }
3748
3749 /* Quit if we hit any kind of branch. This can happen if a prologue
3750 instruction is in the delay slot of the first call/branch. */
3751 if (is_branch (inst))
3752 break;
3753
3754 /* What a crock. The HP compilers set args_stored even if no
3755 arguments were stored into the stack (boo hiss). This could
3756 cause this code to then skip a bunch of user insns (up to the
3757 first branch).
3758
3759 To combat this we try to identify when args_stored was bogusly
3760 set and clear it. We only do this when args_stored is nonzero,
3761 all other resources are accounted for, and nothing changed on
3762 this pass. */
3763 if (args_stored
3764 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3765 && old_save_gr == save_gr && old_save_fr == save_fr
3766 && old_save_rp == save_rp && old_save_sp == save_sp
3767 && old_stack_remaining == stack_remaining)
3768 break;
3769
3770 /* Bump the PC. */
3771 pc += 4;
3772 }
3773
3774 /* We've got a tenative location for the end of the prologue. However
3775 because of limitations in the unwind descriptor mechanism we may
3776 have went too far into user code looking for the save of a register
3777 that does not exist. So, if there registers we expected to be saved
3778 but never were, mask them out and restart.
3779
3780 This should only happen in optimized code, and should be very rare. */
3781 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
3782 {
3783 pc = orig_pc;
3784 restart_gr = save_gr;
3785 restart_fr = save_fr;
3786 goto restart;
3787 }
3788
3789 return pc;
3790 }
3791
3792
3793 /* Return the address of the PC after the last prologue instruction if
3794 we can determine it from the debug symbols. Else return zero. */
3795
3796 static CORE_ADDR
3797 after_prologue (CORE_ADDR pc)
3798 {
3799 struct symtab_and_line sal;
3800 CORE_ADDR func_addr, func_end;
3801 struct symbol *f;
3802
3803 /* If we can not find the symbol in the partial symbol table, then
3804 there is no hope we can determine the function's start address
3805 with this code. */
3806 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
3807 return 0;
3808
3809 /* Get the line associated with FUNC_ADDR. */
3810 sal = find_pc_line (func_addr, 0);
3811
3812 /* There are only two cases to consider. First, the end of the source line
3813 is within the function bounds. In that case we return the end of the
3814 source line. Second is the end of the source line extends beyond the
3815 bounds of the current function. We need to use the slow code to
3816 examine instructions in that case.
3817
3818 Anything else is simply a bug elsewhere. Fixing it here is absolutely
3819 the wrong thing to do. In fact, it should be entirely possible for this
3820 function to always return zero since the slow instruction scanning code
3821 is supposed to *always* work. If it does not, then it is a bug. */
3822 if (sal.end < func_end)
3823 return sal.end;
3824 else
3825 return 0;
3826 }
3827
3828 /* To skip prologues, I use this predicate. Returns either PC itself
3829 if the code at PC does not look like a function prologue; otherwise
3830 returns an address that (if we're lucky) follows the prologue. If
3831 LENIENT, then we must skip everything which is involved in setting
3832 up the frame (it's OK to skip more, just so long as we don't skip
3833 anything which might clobber the registers which are being saved.
3834 Currently we must not skip more on the alpha, but we might the lenient
3835 stuff some day. */
3836
3837 CORE_ADDR
3838 hppa_skip_prologue (CORE_ADDR pc)
3839 {
3840 unsigned long inst;
3841 int offset;
3842 CORE_ADDR post_prologue_pc;
3843 char buf[4];
3844
3845 /* See if we can determine the end of the prologue via the symbol table.
3846 If so, then return either PC, or the PC after the prologue, whichever
3847 is greater. */
3848
3849 post_prologue_pc = after_prologue (pc);
3850
3851 /* If after_prologue returned a useful address, then use it. Else
3852 fall back on the instruction skipping code.
3853
3854 Some folks have claimed this causes problems because the breakpoint
3855 may be the first instruction of the prologue. If that happens, then
3856 the instruction skipping code has a bug that needs to be fixed. */
3857 if (post_prologue_pc != 0)
3858 return max (pc, post_prologue_pc);
3859 else
3860 return (skip_prologue_hard_way (pc));
3861 }
3862
3863 /* Put here the code to store, into a struct frame_saved_regs,
3864 the addresses of the saved registers of frame described by FRAME_INFO.
3865 This includes special registers such as pc and fp saved in special
3866 ways in the stack frame. sp is even more special:
3867 the address we return for it IS the sp for the next frame. */
3868
3869 void
3870 hppa_frame_find_saved_regs (struct frame_info *frame_info,
3871 struct frame_saved_regs *frame_saved_regs)
3872 {
3873 CORE_ADDR pc;
3874 struct unwind_table_entry *u;
3875 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3876 int status, i, reg;
3877 char buf[4];
3878 int fp_loc = -1;
3879 int final_iteration;
3880
3881 /* Zero out everything. */
3882 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
3883
3884 /* Call dummy frames always look the same, so there's no need to
3885 examine the dummy code to determine locations of saved registers;
3886 instead, let find_dummy_frame_regs fill in the correct offsets
3887 for the saved registers. */
3888 if ((frame_info->pc >= frame_info->frame
3889 && frame_info->pc <= (frame_info->frame
3890 /* A call dummy is sized in words, but it is
3891 actually a series of instructions. Account
3892 for that scaling factor. */
3893 + ((REGISTER_SIZE / INSTRUCTION_SIZE)
3894 * CALL_DUMMY_LENGTH)
3895 /* Similarly we have to account for 64bit
3896 wide register saves. */
3897 + (32 * REGISTER_SIZE)
3898 /* We always consider FP regs 8 bytes long. */
3899 + (NUM_REGS - FP0_REGNUM) * 8
3900 /* Similarly we have to account for 64bit
3901 wide register saves. */
3902 + (6 * REGISTER_SIZE))))
3903 find_dummy_frame_regs (frame_info, frame_saved_regs);
3904
3905 /* Interrupt handlers are special too. They lay out the register
3906 state in the exact same order as the register numbers in GDB. */
3907 if (pc_in_interrupt_handler (frame_info->pc))
3908 {
3909 for (i = 0; i < NUM_REGS; i++)
3910 {
3911 /* SP is a little special. */
3912 if (i == SP_REGNUM)
3913 frame_saved_regs->regs[SP_REGNUM]
3914 = read_memory_integer (frame_info->frame + SP_REGNUM * 4,
3915 TARGET_PTR_BIT / 8);
3916 else
3917 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
3918 }
3919 return;
3920 }
3921
3922 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
3923 /* Handle signal handler callers. */
3924 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
3925 {
3926 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
3927 return;
3928 }
3929 #endif
3930
3931 /* Get the starting address of the function referred to by the PC
3932 saved in frame. */
3933 pc = get_pc_function_start (frame_info->pc);
3934
3935 /* Yow! */
3936 u = find_unwind_entry (pc);
3937 if (!u)
3938 return;
3939
3940 /* This is how much of a frame adjustment we need to account for. */
3941 stack_remaining = u->Total_frame_size << 3;
3942
3943 /* Magic register saves we want to know about. */
3944 save_rp = u->Save_RP;
3945 save_sp = u->Save_SP;
3946
3947 /* Turn the Entry_GR field into a bitmask. */
3948 save_gr = 0;
3949 for (i = 3; i < u->Entry_GR + 3; i++)
3950 {
3951 /* Frame pointer gets saved into a special location. */
3952 if (u->Save_SP && i == FP_REGNUM)
3953 continue;
3954
3955 save_gr |= (1 << i);
3956 }
3957
3958 /* Turn the Entry_FR field into a bitmask too. */
3959 save_fr = 0;
3960 for (i = 12; i < u->Entry_FR + 12; i++)
3961 save_fr |= (1 << i);
3962
3963 /* The frame always represents the value of %sp at entry to the
3964 current function (and is thus equivalent to the "saved" stack
3965 pointer. */
3966 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
3967
3968 /* Loop until we find everything of interest or hit a branch.
3969
3970 For unoptimized GCC code and for any HP CC code this will never ever
3971 examine any user instructions.
3972
3973 For optimized GCC code we're faced with problems. GCC will schedule
3974 its prologue and make prologue instructions available for delay slot
3975 filling. The end result is user code gets mixed in with the prologue
3976 and a prologue instruction may be in the delay slot of the first branch
3977 or call.
3978
3979 Some unexpected things are expected with debugging optimized code, so
3980 we allow this routine to walk past user instructions in optimized
3981 GCC code. */
3982 final_iteration = 0;
3983 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3984 && pc <= frame_info->pc)
3985 {
3986 status = target_read_memory (pc, buf, 4);
3987 inst = extract_unsigned_integer (buf, 4);
3988
3989 /* Yow! */
3990 if (status != 0)
3991 return;
3992
3993 /* Note the interesting effects of this instruction. */
3994 stack_remaining -= prologue_inst_adjust_sp (inst);
3995
3996 /* There are limited ways to store the return pointer into the
3997 stack. */
3998 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
3999 {
4000 save_rp = 0;
4001 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
4002 }
4003 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4004 {
4005 save_rp = 0;
4006 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 16;
4007 }
4008
4009 /* Note if we saved SP into the stack. This also happens to indicate
4010 the location of the saved frame pointer. */
4011 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4012 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4013 {
4014 frame_saved_regs->regs[FP_REGNUM] = frame_info->frame;
4015 save_sp = 0;
4016 }
4017
4018 /* Account for general and floating-point register saves. */
4019 reg = inst_saves_gr (inst);
4020 if (reg >= 3 && reg <= 18
4021 && (!u->Save_SP || reg != FP_REGNUM))
4022 {
4023 save_gr &= ~(1 << reg);
4024
4025 /* stwm with a positive displacement is a *post modify*. */
4026 if ((inst >> 26) == 0x1b
4027 && extract_14 (inst) >= 0)
4028 frame_saved_regs->regs[reg] = frame_info->frame;
4029 /* A std has explicit post_modify forms. */
4030 else if ((inst & 0xfc00000c0) == 0x70000008)
4031 frame_saved_regs->regs[reg] = frame_info->frame;
4032 else
4033 {
4034 CORE_ADDR offset;
4035
4036 if ((inst >> 26) == 0x1c)
4037 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4038 else if ((inst >> 26) == 0x03)
4039 offset = low_sign_extend (inst & 0x1f, 5);
4040 else
4041 offset = extract_14 (inst);
4042
4043 /* Handle code with and without frame pointers. */
4044 if (u->Save_SP)
4045 frame_saved_regs->regs[reg]
4046 = frame_info->frame + offset;
4047 else
4048 frame_saved_regs->regs[reg]
4049 = (frame_info->frame + (u->Total_frame_size << 3)
4050 + offset);
4051 }
4052 }
4053
4054
4055 /* GCC handles callee saved FP regs a little differently.
4056
4057 It emits an instruction to put the value of the start of
4058 the FP store area into %r1. It then uses fstds,ma with
4059 a basereg of %r1 for the stores.
4060
4061 HP CC emits them at the current stack pointer modifying
4062 the stack pointer as it stores each register. */
4063
4064 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4065 if ((inst & 0xffffc000) == 0x34610000
4066 || (inst & 0xffffc000) == 0x37c10000)
4067 fp_loc = extract_14 (inst);
4068
4069 reg = inst_saves_fr (inst);
4070 if (reg >= 12 && reg <= 21)
4071 {
4072 /* Note +4 braindamage below is necessary because the FP status
4073 registers are internally 8 registers rather than the expected
4074 4 registers. */
4075 save_fr &= ~(1 << reg);
4076 if (fp_loc == -1)
4077 {
4078 /* 1st HP CC FP register store. After this instruction
4079 we've set enough state that the GCC and HPCC code are
4080 both handled in the same manner. */
4081 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
4082 fp_loc = 8;
4083 }
4084 else
4085 {
4086 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
4087 = frame_info->frame + fp_loc;
4088 fp_loc += 8;
4089 }
4090 }
4091
4092 /* Quit if we hit any kind of branch the previous iteration. */
4093 if (final_iteration)
4094 break;
4095
4096 /* We want to look precisely one instruction beyond the branch
4097 if we have not found everything yet. */
4098 if (is_branch (inst))
4099 final_iteration = 1;
4100
4101 /* Bump the PC. */
4102 pc += 4;
4103 }
4104 }
4105
4106
4107 /* Exception handling support for the HP-UX ANSI C++ compiler.
4108 The compiler (aCC) provides a callback for exception events;
4109 GDB can set a breakpoint on this callback and find out what
4110 exception event has occurred. */
4111
4112 /* The name of the hook to be set to point to the callback function */
4113 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4114 /* The name of the function to be used to set the hook value */
4115 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4116 /* The name of the callback function in end.o */
4117 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4118 /* Name of function in end.o on which a break is set (called by above) */
4119 static char HP_ACC_EH_break[] = "__d_eh_break";
4120 /* Name of flag (in end.o) that enables catching throws */
4121 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4122 /* Name of flag (in end.o) that enables catching catching */
4123 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4124 /* The enum used by aCC */
4125 typedef enum
4126 {
4127 __EH_NOTIFY_THROW,
4128 __EH_NOTIFY_CATCH
4129 }
4130 __eh_notification;
4131
4132 /* Is exception-handling support available with this executable? */
4133 static int hp_cxx_exception_support = 0;
4134 /* Has the initialize function been run? */
4135 int hp_cxx_exception_support_initialized = 0;
4136 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4137 extern int exception_support_initialized;
4138 /* Address of __eh_notify_hook */
4139 static CORE_ADDR eh_notify_hook_addr = 0;
4140 /* Address of __d_eh_notify_callback */
4141 static CORE_ADDR eh_notify_callback_addr = 0;
4142 /* Address of __d_eh_break */
4143 static CORE_ADDR eh_break_addr = 0;
4144 /* Address of __d_eh_catch_catch */
4145 static CORE_ADDR eh_catch_catch_addr = 0;
4146 /* Address of __d_eh_catch_throw */
4147 static CORE_ADDR eh_catch_throw_addr = 0;
4148 /* Sal for __d_eh_break */
4149 static struct symtab_and_line *break_callback_sal = 0;
4150
4151 /* Code in end.c expects __d_pid to be set in the inferior,
4152 otherwise __d_eh_notify_callback doesn't bother to call
4153 __d_eh_break! So we poke the pid into this symbol
4154 ourselves.
4155 0 => success
4156 1 => failure */
4157 int
4158 setup_d_pid_in_inferior (void)
4159 {
4160 CORE_ADDR anaddr;
4161 struct minimal_symbol *msymbol;
4162 char buf[4]; /* FIXME 32x64? */
4163
4164 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4165 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4166 if (msymbol == NULL)
4167 {
4168 warning ("Unable to find __d_pid symbol in object file.");
4169 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4170 return 1;
4171 }
4172
4173 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4174 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4175 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4176 {
4177 warning ("Unable to write __d_pid");
4178 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4179 return 1;
4180 }
4181 return 0;
4182 }
4183
4184 /* Initialize exception catchpoint support by looking for the
4185 necessary hooks/callbacks in end.o, etc., and set the hook value to
4186 point to the required debug function
4187
4188 Return 0 => failure
4189 1 => success */
4190
4191 static int
4192 initialize_hp_cxx_exception_support (void)
4193 {
4194 struct symtabs_and_lines sals;
4195 struct cleanup *old_chain;
4196 struct cleanup *canonical_strings_chain = NULL;
4197 int i;
4198 char *addr_start;
4199 char *addr_end = NULL;
4200 char **canonical = (char **) NULL;
4201 int thread = -1;
4202 struct symbol *sym = NULL;
4203 struct minimal_symbol *msym = NULL;
4204 struct objfile *objfile;
4205 asection *shlib_info;
4206
4207 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4208 recursion is a possibility because finding the hook for exception
4209 callbacks involves making a call in the inferior, which means
4210 re-inserting breakpoints which can re-invoke this code */
4211
4212 static int recurse = 0;
4213 if (recurse > 0)
4214 {
4215 hp_cxx_exception_support_initialized = 0;
4216 exception_support_initialized = 0;
4217 return 0;
4218 }
4219
4220 hp_cxx_exception_support = 0;
4221
4222 /* First check if we have seen any HP compiled objects; if not,
4223 it is very unlikely that HP's idiosyncratic callback mechanism
4224 for exception handling debug support will be available!
4225 This will percolate back up to breakpoint.c, where our callers
4226 will decide to try the g++ exception-handling support instead. */
4227 if (!hp_som_som_object_present)
4228 return 0;
4229
4230 /* We have a SOM executable with SOM debug info; find the hooks */
4231
4232 /* First look for the notify hook provided by aCC runtime libs */
4233 /* If we find this symbol, we conclude that the executable must
4234 have HP aCC exception support built in. If this symbol is not
4235 found, even though we're a HP SOM-SOM file, we may have been
4236 built with some other compiler (not aCC). This results percolates
4237 back up to our callers in breakpoint.c which can decide to
4238 try the g++ style of exception support instead.
4239 If this symbol is found but the other symbols we require are
4240 not found, there is something weird going on, and g++ support
4241 should *not* be tried as an alternative.
4242
4243 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4244 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4245
4246 /* libCsup has this hook; it'll usually be non-debuggable */
4247 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4248 if (msym)
4249 {
4250 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4251 hp_cxx_exception_support = 1;
4252 }
4253 else
4254 {
4255 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4256 warning ("Executable may not have been compiled debuggable with HP aCC.");
4257 warning ("GDB will be unable to intercept exception events.");
4258 eh_notify_hook_addr = 0;
4259 hp_cxx_exception_support = 0;
4260 return 0;
4261 }
4262
4263 /* Next look for the notify callback routine in end.o */
4264 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4265 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4266 if (msym)
4267 {
4268 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4269 hp_cxx_exception_support = 1;
4270 }
4271 else
4272 {
4273 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4274 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4275 warning ("GDB will be unable to intercept exception events.");
4276 eh_notify_callback_addr = 0;
4277 return 0;
4278 }
4279
4280 #ifndef GDB_TARGET_IS_HPPA_20W
4281 /* Check whether the executable is dynamically linked or archive bound */
4282 /* With an archive-bound executable we can use the raw addresses we find
4283 for the callback function, etc. without modification. For an executable
4284 with shared libraries, we have to do more work to find the plabel, which
4285 can be the target of a call through $$dyncall from the aCC runtime support
4286 library (libCsup) which is linked shared by default by aCC. */
4287 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4288 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4289 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4290 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4291 {
4292 /* The minsym we have has the local code address, but that's not the
4293 plabel that can be used by an inter-load-module call. */
4294 /* Find solib handle for main image (which has end.o), and use that
4295 and the min sym as arguments to __d_shl_get() (which does the equivalent
4296 of shl_findsym()) to find the plabel. */
4297
4298 args_for_find_stub args;
4299 static char message[] = "Error while finding exception callback hook:\n";
4300
4301 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4302 args.msym = msym;
4303 args.return_val = 0;
4304
4305 recurse++;
4306 catch_errors (cover_find_stub_with_shl_get, (PTR) &args, message,
4307 RETURN_MASK_ALL);
4308 eh_notify_callback_addr = args.return_val;
4309 recurse--;
4310
4311 exception_catchpoints_are_fragile = 1;
4312
4313 if (!eh_notify_callback_addr)
4314 {
4315 /* We can get here either if there is no plabel in the export list
4316 for the main image, or if something strange happened (?) */
4317 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4318 warning ("GDB will not be able to intercept exception events.");
4319 return 0;
4320 }
4321 }
4322 else
4323 exception_catchpoints_are_fragile = 0;
4324 #endif
4325
4326 /* Now, look for the breakpointable routine in end.o */
4327 /* This should also be available in the SOM symbol dict. if end.o linked in */
4328 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4329 if (msym)
4330 {
4331 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4332 hp_cxx_exception_support = 1;
4333 }
4334 else
4335 {
4336 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4337 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4338 warning ("GDB will be unable to intercept exception events.");
4339 eh_break_addr = 0;
4340 return 0;
4341 }
4342
4343 /* Next look for the catch enable flag provided in end.o */
4344 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4345 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4346 if (sym) /* sometimes present in debug info */
4347 {
4348 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4349 hp_cxx_exception_support = 1;
4350 }
4351 else
4352 /* otherwise look in SOM symbol dict. */
4353 {
4354 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4355 if (msym)
4356 {
4357 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4358 hp_cxx_exception_support = 1;
4359 }
4360 else
4361 {
4362 warning ("Unable to enable interception of exception catches.");
4363 warning ("Executable may not have been compiled debuggable with HP aCC.");
4364 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4365 return 0;
4366 }
4367 }
4368
4369 /* Next look for the catch enable flag provided end.o */
4370 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4371 VAR_NAMESPACE, 0, (struct symtab **) NULL);
4372 if (sym) /* sometimes present in debug info */
4373 {
4374 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4375 hp_cxx_exception_support = 1;
4376 }
4377 else
4378 /* otherwise look in SOM symbol dict. */
4379 {
4380 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4381 if (msym)
4382 {
4383 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4384 hp_cxx_exception_support = 1;
4385 }
4386 else
4387 {
4388 warning ("Unable to enable interception of exception throws.");
4389 warning ("Executable may not have been compiled debuggable with HP aCC.");
4390 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4391 return 0;
4392 }
4393 }
4394
4395 /* Set the flags */
4396 hp_cxx_exception_support = 2; /* everything worked so far */
4397 hp_cxx_exception_support_initialized = 1;
4398 exception_support_initialized = 1;
4399
4400 return 1;
4401 }
4402
4403 /* Target operation for enabling or disabling interception of
4404 exception events.
4405 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4406 ENABLE is either 0 (disable) or 1 (enable).
4407 Return value is NULL if no support found;
4408 -1 if something went wrong,
4409 or a pointer to a symtab/line struct if the breakpointable
4410 address was found. */
4411
4412 struct symtab_and_line *
4413 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4414 {
4415 char buf[4];
4416
4417 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4418 if (!initialize_hp_cxx_exception_support ())
4419 return NULL;
4420
4421 switch (hp_cxx_exception_support)
4422 {
4423 case 0:
4424 /* Assuming no HP support at all */
4425 return NULL;
4426 case 1:
4427 /* HP support should be present, but something went wrong */
4428 return (struct symtab_and_line *) -1; /* yuck! */
4429 /* there may be other cases in the future */
4430 }
4431
4432 /* Set the EH hook to point to the callback routine */
4433 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4434 /* pai: (temp) FIXME should there be a pack operation first? */
4435 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4436 {
4437 warning ("Could not write to target memory for exception event callback.");
4438 warning ("Interception of exception events may not work.");
4439 return (struct symtab_and_line *) -1;
4440 }
4441 if (enable)
4442 {
4443 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4444 if (PIDGET (inferior_ptid) > 0)
4445 {
4446 if (setup_d_pid_in_inferior ())
4447 return (struct symtab_and_line *) -1;
4448 }
4449 else
4450 {
4451 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4452 return (struct symtab_and_line *) -1;
4453 }
4454 }
4455
4456 switch (kind)
4457 {
4458 case EX_EVENT_THROW:
4459 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4460 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4461 {
4462 warning ("Couldn't enable exception throw interception.");
4463 return (struct symtab_and_line *) -1;
4464 }
4465 break;
4466 case EX_EVENT_CATCH:
4467 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4468 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
4469 {
4470 warning ("Couldn't enable exception catch interception.");
4471 return (struct symtab_and_line *) -1;
4472 }
4473 break;
4474 default:
4475 error ("Request to enable unknown or unsupported exception event.");
4476 }
4477
4478 /* Copy break address into new sal struct, malloc'ing if needed. */
4479 if (!break_callback_sal)
4480 {
4481 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
4482 }
4483 init_sal (break_callback_sal);
4484 break_callback_sal->symtab = NULL;
4485 break_callback_sal->pc = eh_break_addr;
4486 break_callback_sal->line = 0;
4487 break_callback_sal->end = eh_break_addr;
4488
4489 return break_callback_sal;
4490 }
4491
4492 /* Record some information about the current exception event */
4493 static struct exception_event_record current_ex_event;
4494 /* Convenience struct */
4495 static struct symtab_and_line null_symtab_and_line =
4496 {NULL, 0, 0, 0};
4497
4498 /* Report current exception event. Returns a pointer to a record
4499 that describes the kind of the event, where it was thrown from,
4500 and where it will be caught. More information may be reported
4501 in the future */
4502 struct exception_event_record *
4503 child_get_current_exception_event (void)
4504 {
4505 CORE_ADDR event_kind;
4506 CORE_ADDR throw_addr;
4507 CORE_ADDR catch_addr;
4508 struct frame_info *fi, *curr_frame;
4509 int level = 1;
4510
4511 curr_frame = get_current_frame ();
4512 if (!curr_frame)
4513 return (struct exception_event_record *) NULL;
4514
4515 /* Go up one frame to __d_eh_notify_callback, because at the
4516 point when this code is executed, there's garbage in the
4517 arguments of __d_eh_break. */
4518 fi = find_relative_frame (curr_frame, &level);
4519 if (level != 0)
4520 return (struct exception_event_record *) NULL;
4521
4522 select_frame (fi);
4523
4524 /* Read in the arguments */
4525 /* __d_eh_notify_callback() is called with 3 arguments:
4526 1. event kind catch or throw
4527 2. the target address if known
4528 3. a flag -- not sure what this is. pai/1997-07-17 */
4529 event_kind = read_register (ARG0_REGNUM);
4530 catch_addr = read_register (ARG1_REGNUM);
4531
4532 /* Now go down to a user frame */
4533 /* For a throw, __d_eh_break is called by
4534 __d_eh_notify_callback which is called by
4535 __notify_throw which is called
4536 from user code.
4537 For a catch, __d_eh_break is called by
4538 __d_eh_notify_callback which is called by
4539 <stackwalking stuff> which is called by
4540 __throw__<stuff> or __rethrow_<stuff> which is called
4541 from user code. */
4542 /* FIXME: Don't use such magic numbers; search for the frames */
4543 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
4544 fi = find_relative_frame (curr_frame, &level);
4545 if (level != 0)
4546 return (struct exception_event_record *) NULL;
4547
4548 select_frame (fi);
4549 throw_addr = fi->pc;
4550
4551 /* Go back to original (top) frame */
4552 select_frame (curr_frame);
4553
4554 current_ex_event.kind = (enum exception_event_kind) event_kind;
4555 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
4556 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
4557
4558 return &current_ex_event;
4559 }
4560
4561 static void
4562 unwind_command (char *exp, int from_tty)
4563 {
4564 CORE_ADDR address;
4565 struct unwind_table_entry *u;
4566
4567 /* If we have an expression, evaluate it and use it as the address. */
4568
4569 if (exp != 0 && *exp != 0)
4570 address = parse_and_eval_address (exp);
4571 else
4572 return;
4573
4574 u = find_unwind_entry (address);
4575
4576 if (!u)
4577 {
4578 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
4579 return;
4580 }
4581
4582 printf_unfiltered ("unwind_table_entry (0x%s):\n",
4583 paddr_nz (host_pointer_to_address (u)));
4584
4585 printf_unfiltered ("\tregion_start = ");
4586 print_address (u->region_start, gdb_stdout);
4587
4588 printf_unfiltered ("\n\tregion_end = ");
4589 print_address (u->region_end, gdb_stdout);
4590
4591 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
4592
4593 printf_unfiltered ("\n\tflags =");
4594 pif (Cannot_unwind);
4595 pif (Millicode);
4596 pif (Millicode_save_sr0);
4597 pif (Entry_SR);
4598 pif (Args_stored);
4599 pif (Variable_Frame);
4600 pif (Separate_Package_Body);
4601 pif (Frame_Extension_Millicode);
4602 pif (Stack_Overflow_Check);
4603 pif (Two_Instruction_SP_Increment);
4604 pif (Ada_Region);
4605 pif (Save_SP);
4606 pif (Save_RP);
4607 pif (Save_MRP_in_frame);
4608 pif (extn_ptr_defined);
4609 pif (Cleanup_defined);
4610 pif (MPE_XL_interrupt_marker);
4611 pif (HP_UX_interrupt_marker);
4612 pif (Large_frame);
4613
4614 putchar_unfiltered ('\n');
4615
4616 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
4617
4618 pin (Region_description);
4619 pin (Entry_FR);
4620 pin (Entry_GR);
4621 pin (Total_frame_size);
4622 }
4623
4624 #ifdef PREPARE_TO_PROCEED
4625
4626 /* If the user has switched threads, and there is a breakpoint
4627 at the old thread's pc location, then switch to that thread
4628 and return TRUE, else return FALSE and don't do a thread
4629 switch (or rather, don't seem to have done a thread switch).
4630
4631 Ptrace-based gdb will always return FALSE to the thread-switch
4632 query, and thus also to PREPARE_TO_PROCEED.
4633
4634 The important thing is whether there is a BPT instruction,
4635 not how many user breakpoints there are. So we have to worry
4636 about things like these:
4637
4638 o Non-bp stop -- NO
4639
4640 o User hits bp, no switch -- NO
4641
4642 o User hits bp, switches threads -- YES
4643
4644 o User hits bp, deletes bp, switches threads -- NO
4645
4646 o User hits bp, deletes one of two or more bps
4647 at that PC, user switches threads -- YES
4648
4649 o Plus, since we're buffering events, the user may have hit a
4650 breakpoint, deleted the breakpoint and then gotten another
4651 hit on that same breakpoint on another thread which
4652 actually hit before the delete. (FIXME in breakpoint.c
4653 so that "dead" breakpoints are ignored?) -- NO
4654
4655 For these reasons, we have to violate information hiding and
4656 call "breakpoint_here_p". If core gdb thinks there is a bpt
4657 here, that's what counts, as core gdb is the one which is
4658 putting the BPT instruction in and taking it out.
4659
4660 Note that this implementation is potentially redundant now that
4661 default_prepare_to_proceed() has been added.
4662
4663 FIXME This may not support switching threads after Ctrl-C
4664 correctly. The default implementation does support this. */
4665 int
4666 hppa_prepare_to_proceed (void)
4667 {
4668 pid_t old_thread;
4669 pid_t current_thread;
4670
4671 old_thread = hppa_switched_threads (PIDGET (inferior_ptid));
4672 if (old_thread != 0)
4673 {
4674 /* Switched over from "old_thread". Try to do
4675 as little work as possible, 'cause mostly
4676 we're going to switch back. */
4677 CORE_ADDR new_pc;
4678 CORE_ADDR old_pc = read_pc ();
4679
4680 /* Yuk, shouldn't use global to specify current
4681 thread. But that's how gdb does it. */
4682 current_thread = PIDGET (inferior_ptid);
4683 inferior_ptid = pid_to_ptid (old_thread);
4684
4685 new_pc = read_pc ();
4686 if (new_pc != old_pc /* If at same pc, no need */
4687 && breakpoint_here_p (new_pc))
4688 {
4689 /* User hasn't deleted the BP.
4690 Return TRUE, finishing switch to "old_thread". */
4691 flush_cached_frames ();
4692 registers_changed ();
4693 #if 0
4694 printf ("---> PREPARE_TO_PROCEED (was %d, now %d)!\n",
4695 current_thread, PIDGET (inferior_ptid));
4696 #endif
4697
4698 return 1;
4699 }
4700
4701 /* Otherwise switch back to the user-chosen thread. */
4702 inferior_ptid = pid_to_ptid (current_thread);
4703 new_pc = read_pc (); /* Re-prime register cache */
4704 }
4705
4706 return 0;
4707 }
4708 #endif /* PREPARE_TO_PROCEED */
4709
4710 void
4711 hppa_skip_permanent_breakpoint (void)
4712 {
4713 /* To step over a breakpoint instruction on the PA takes some
4714 fiddling with the instruction address queue.
4715
4716 When we stop at a breakpoint, the IA queue front (the instruction
4717 we're executing now) points at the breakpoint instruction, and
4718 the IA queue back (the next instruction to execute) points to
4719 whatever instruction we would execute after the breakpoint, if it
4720 were an ordinary instruction. This is the case even if the
4721 breakpoint is in the delay slot of a branch instruction.
4722
4723 Clearly, to step past the breakpoint, we need to set the queue
4724 front to the back. But what do we put in the back? What
4725 instruction comes after that one? Because of the branch delay
4726 slot, the next insn is always at the back + 4. */
4727 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
4728 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
4729
4730 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
4731 /* We can leave the tail's space the same, since there's no jump. */
4732 }
4733
4734 /* Copy the function value from VALBUF into the proper location
4735 for a function return.
4736
4737 Called only in the context of the "return" command. */
4738
4739 void
4740 hppa_store_return_value (struct type *type, char *valbuf)
4741 {
4742 /* For software floating point, the return value goes into the
4743 integer registers. But we do not have any flag to key this on,
4744 so we always store the value into the integer registers.
4745
4746 If its a float value, then we also store it into the floating
4747 point registers. */
4748 deprecated_write_register_bytes (REGISTER_BYTE (28)
4749 + (TYPE_LENGTH (type) > 4
4750 ? (8 - TYPE_LENGTH (type))
4751 : (4 - TYPE_LENGTH (type))),
4752 valbuf, TYPE_LENGTH (type));
4753 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4754 deprecated_write_register_bytes (REGISTER_BYTE (FP4_REGNUM),
4755 valbuf, TYPE_LENGTH (type));
4756 }
4757
4758 /* Copy the function's return value into VALBUF.
4759
4760 This function is called only in the context of "target function calls",
4761 ie. when the debugger forces a function to be called in the child, and
4762 when the debugger forces a fucntion to return prematurely via the
4763 "return" command. */
4764
4765 void
4766 hppa_extract_return_value (struct type *type, char *regbuf, char *valbuf)
4767 {
4768 if (! SOFT_FLOAT && TYPE_CODE (type) == TYPE_CODE_FLT)
4769 memcpy (valbuf,
4770 (char *)regbuf + REGISTER_BYTE (FP4_REGNUM),
4771 TYPE_LENGTH (type));
4772 else
4773 memcpy (valbuf,
4774 ((char *)regbuf
4775 + REGISTER_BYTE (28)
4776 + (TYPE_LENGTH (type) > 4
4777 ? (8 - TYPE_LENGTH (type))
4778 : (4 - TYPE_LENGTH (type)))),
4779 TYPE_LENGTH (type));
4780 }
4781
4782 int
4783 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
4784 {
4785 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
4786 via a pointer regardless of its type or the compiler used. */
4787 return (TYPE_LENGTH (type) > 8);
4788 }
4789
4790 int
4791 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
4792 {
4793 /* Stack grows upward */
4794 return (lhs > rhs);
4795 }
4796
4797 CORE_ADDR
4798 hppa_stack_align (CORE_ADDR sp)
4799 {
4800 /* elz: adjust the quantity to the next highest value which is
4801 64-bit aligned. This is used in valops.c, when the sp is adjusted.
4802 On hppa the sp must always be kept 64-bit aligned */
4803 return ((sp % 8) ? (sp + 7) & -8 : sp);
4804 }
4805
4806 int
4807 hppa_pc_requires_run_before_use (CORE_ADDR pc)
4808 {
4809 /* Sometimes we may pluck out a minimal symbol that has a negative address.
4810
4811 An example of this occurs when an a.out is linked against a foo.sl.
4812 The foo.sl defines a global bar(), and the a.out declares a signature
4813 for bar(). However, the a.out doesn't directly call bar(), but passes
4814 its address in another call.
4815
4816 If you have this scenario and attempt to "break bar" before running,
4817 gdb will find a minimal symbol for bar() in the a.out. But that
4818 symbol's address will be negative. What this appears to denote is
4819 an index backwards from the base of the procedure linkage table (PLT)
4820 into the data linkage table (DLT), the end of which is contiguous
4821 with the start of the PLT. This is clearly not a valid address for
4822 us to set a breakpoint on.
4823
4824 Note that one must be careful in how one checks for a negative address.
4825 0xc0000000 is a legitimate address of something in a shared text
4826 segment, for example. Since I don't know what the possible range
4827 is of these "really, truly negative" addresses that come from the
4828 minimal symbols, I'm resorting to the gross hack of checking the
4829 top byte of the address for all 1's. Sigh. */
4830
4831 return (!target_has_stack && (pc & 0xFF000000));
4832 }
4833
4834 int
4835 hppa_instruction_nullified (void)
4836 {
4837 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
4838 avoid the type cast. I'm leaving it as is for now as I'm doing
4839 semi-mechanical multiarching-related changes. */
4840 const int ipsw = (int) read_register (IPSW_REGNUM);
4841 const int flags = (int) read_register (FLAGS_REGNUM);
4842
4843 return ((ipsw & 0x00200000) && !(flags & 0x2));
4844 }
4845
4846 int
4847 hppa_register_raw_size (int reg_nr)
4848 {
4849 /* All registers have the same size. */
4850 return REGISTER_SIZE;
4851 }
4852
4853 /* Index within the register vector of the first byte of the space i
4854 used for register REG_NR. */
4855
4856 int
4857 hppa_register_byte (int reg_nr)
4858 {
4859 return reg_nr * 4;
4860 }
4861
4862 /* Return the GDB type object for the "standard" data type of data
4863 in register N. */
4864
4865 struct type *
4866 hppa_register_virtual_type (int reg_nr)
4867 {
4868 if (reg_nr < FP4_REGNUM)
4869 return builtin_type_int;
4870 else
4871 return builtin_type_float;
4872 }
4873
4874 /* Store the address of the place in which to copy the structure the
4875 subroutine will return. This is called from call_function. */
4876
4877 void
4878 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
4879 {
4880 write_register (28, addr);
4881 }
4882
4883 CORE_ADDR
4884 hppa_extract_struct_value_address (char *regbuf)
4885 {
4886 /* Extract from an array REGBUF containing the (raw) register state
4887 the address in which a function should return its structure value,
4888 as a CORE_ADDR (or an expression that can be used as one). */
4889 /* FIXME: brobecker 2002-12-26.
4890 The current implementation is historical, but we should eventually
4891 implement it in a more robust manner as it relies on the fact that
4892 the address size is equal to the size of an int* _on the host_...
4893 One possible implementation that crossed my mind is to use
4894 extract_address. */
4895 return (*(int *)(regbuf + REGISTER_BYTE (28)));
4896 }
4897
4898 /* Return True if REGNUM is not a register available to the user
4899 through ptrace(). */
4900
4901 int
4902 hppa_cannot_store_register (int regnum)
4903 {
4904 return (regnum == 0
4905 || regnum == PCSQ_HEAD_REGNUM
4906 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
4907 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
4908
4909 }
4910
4911 CORE_ADDR
4912 hppa_frame_args_address (struct frame_info *fi)
4913 {
4914 return fi->frame;
4915 }
4916
4917 CORE_ADDR
4918 hppa_frame_locals_address (struct frame_info *fi)
4919 {
4920 return fi->frame;
4921 }
4922
4923 int
4924 hppa_frame_num_args (struct frame_info *frame)
4925 {
4926 /* We can't tell how many args there are now that the C compiler delays
4927 popping them. */
4928 return -1;
4929 }
4930
4931 CORE_ADDR
4932 hppa_smash_text_address (CORE_ADDR addr)
4933 {
4934 /* The low two bits of the PC on the PA contain the privilege level.
4935 Some genius implementing a (non-GCC) compiler apparently decided
4936 this means that "addresses" in a text section therefore include a
4937 privilege level, and thus symbol tables should contain these bits.
4938 This seems like a bonehead thing to do--anyway, it seems to work
4939 for our purposes to just ignore those bits. */
4940
4941 return (addr &= ~0x3);
4942 }
4943
4944 static struct gdbarch *
4945 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4946 {
4947 struct gdbarch *gdbarch;
4948 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
4949
4950 /* Try to determine the ABI of the object we are loading. */
4951
4952 if (info.abfd != NULL)
4953 {
4954 osabi = gdbarch_lookup_osabi (info.abfd);
4955 if (osabi == GDB_OSABI_UNKNOWN)
4956 {
4957 /* If it's a SOM file, assume it's HP/UX SOM. */
4958 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
4959 osabi = GDB_OSABI_HPUX_SOM;
4960 }
4961 }
4962
4963 /* find a candidate among the list of pre-declared architectures. */
4964 arches = gdbarch_list_lookup_by_info (arches, &info);
4965 if (arches != NULL)
4966 return (arches->gdbarch);
4967
4968 /* If none found, then allocate and initialize one. */
4969 gdbarch = gdbarch_alloc (&info, NULL);
4970
4971 /* Hook in ABI-specific overrides, if they have been registered. */
4972 gdbarch_init_osabi (info, gdbarch, osabi);
4973
4974 set_gdbarch_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
4975 set_gdbarch_function_start_offset (gdbarch, 0);
4976 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
4977 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
4978 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
4979 set_gdbarch_in_solib_return_trampoline (gdbarch,
4980 hppa_in_solib_return_trampoline);
4981 set_gdbarch_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
4982 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
4983 set_gdbarch_stack_align (gdbarch, hppa_stack_align);
4984 set_gdbarch_extra_stack_alignment_needed (gdbarch, 0);
4985 set_gdbarch_decr_pc_after_break (gdbarch, 0);
4986 set_gdbarch_register_size (gdbarch, 4);
4987 set_gdbarch_num_regs (gdbarch, hppa_num_regs);
4988 set_gdbarch_fp_regnum (gdbarch, 3);
4989 set_gdbarch_sp_regnum (gdbarch, 30);
4990 set_gdbarch_fp0_regnum (gdbarch, 64);
4991 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
4992 set_gdbarch_npc_regnum (gdbarch, PCOQ_TAIL_REGNUM);
4993 set_gdbarch_register_raw_size (gdbarch, hppa_register_raw_size);
4994 set_gdbarch_register_bytes (gdbarch, hppa_num_regs * 4);
4995 set_gdbarch_register_byte (gdbarch, hppa_register_byte);
4996 set_gdbarch_register_virtual_size (gdbarch, hppa_register_raw_size);
4997 set_gdbarch_max_register_raw_size (gdbarch, 4);
4998 set_gdbarch_max_register_virtual_size (gdbarch, 8);
4999 set_gdbarch_register_virtual_type (gdbarch, hppa_register_virtual_type);
5000 set_gdbarch_store_struct_return (gdbarch, hppa_store_struct_return);
5001 set_gdbarch_deprecated_extract_return_value (gdbarch,
5002 hppa_extract_return_value);
5003 set_gdbarch_use_struct_convention (gdbarch, hppa_use_struct_convention);
5004 set_gdbarch_deprecated_store_return_value (gdbarch, hppa_store_return_value);
5005 set_gdbarch_deprecated_extract_struct_value_address
5006 (gdbarch, hppa_extract_struct_value_address);
5007 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5008 set_gdbarch_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5009 set_gdbarch_frame_chain (gdbarch, hppa_frame_chain);
5010 set_gdbarch_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5011 set_gdbarch_frameless_function_invocation
5012 (gdbarch, hppa_frameless_function_invocation);
5013 set_gdbarch_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5014 set_gdbarch_frame_args_address (gdbarch, hppa_frame_args_address);
5015 set_gdbarch_frame_locals_address (gdbarch, hppa_frame_locals_address);
5016 set_gdbarch_frame_num_args (gdbarch, hppa_frame_num_args);
5017 set_gdbarch_frame_args_skip (gdbarch, 0);
5018 /* set_gdbarch_push_dummy_frame (gdbarch, hppa_push_dummy_frame); */
5019 set_gdbarch_pop_frame (gdbarch, hppa_pop_frame);
5020 set_gdbarch_call_dummy_length (gdbarch, INSTRUCTION_SIZE * 28);
5021 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
5022 /* set_gdbarch_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5023 set_gdbarch_push_arguments (gdbarch, hppa_push_arguments);
5024 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5025 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5026 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5027 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5028 set_gdbarch_read_fp (gdbarch, hppa_target_read_fp);
5029
5030 return gdbarch;
5031 }
5032
5033 static void
5034 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5035 {
5036 /* Nothing to print for the moment. */
5037 }
5038
5039 void
5040 _initialize_hppa_tdep (void)
5041 {
5042 struct cmd_list_element *c;
5043 void break_at_finish_command (char *arg, int from_tty);
5044 void tbreak_at_finish_command (char *arg, int from_tty);
5045 void break_at_finish_at_depth_command (char *arg, int from_tty);
5046
5047 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5048 tm_print_insn = print_insn_hppa;
5049
5050 add_cmd ("unwind", class_maintenance, unwind_command,
5051 "Print unwind table entry at given address.",
5052 &maintenanceprintlist);
5053
5054 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5055 break_at_finish_command,
5056 concat ("Set breakpoint at procedure exit. \n\
5057 Argument may be function name, or \"*\" and an address.\n\
5058 If function is specified, break at end of code for that function.\n\
5059 If an address is specified, break at the end of the function that contains \n\
5060 that exact address.\n",
5061 "With no arg, uses current execution address of selected stack frame.\n\
5062 This is useful for breaking on return to a stack frame.\n\
5063 \n\
5064 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5065 \n\
5066 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5067 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5068 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5069 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5070 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5071
5072 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5073 tbreak_at_finish_command,
5074 "Set temporary breakpoint at procedure exit. Either there should\n\
5075 be no argument or the argument must be a depth.\n"), NULL);
5076 set_cmd_completer (c, location_completer);
5077
5078 if (xdb_commands)
5079 deprecate_cmd (add_com ("bx", class_breakpoint,
5080 break_at_finish_at_depth_command,
5081 "Set breakpoint at procedure exit. Either there should\n\
5082 be no argument or the argument must be a depth.\n"), NULL);
5083 }
5084
This page took 0.236717 seconds and 5 git commands to generate.