2004-12-07 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Handle 32/64-bit struct return conventions. */
76
77 static enum return_value_convention
78 hppa32_return_value (struct gdbarch *gdbarch,
79 struct type *type, struct regcache *regcache,
80 void *readbuf, const void *writebuf)
81 {
82 if (TYPE_LENGTH (type) <= 2 * 4)
83 {
84 /* The value always lives in the right hand end of the register
85 (or register pair)? */
86 int b;
87 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
88 int part = TYPE_LENGTH (type) % 4;
89 /* The left hand register contains only part of the value,
90 transfer that first so that the rest can be xfered as entire
91 4-byte registers. */
92 if (part > 0)
93 {
94 if (readbuf != NULL)
95 regcache_cooked_read_part (regcache, reg, 4 - part,
96 part, readbuf);
97 if (writebuf != NULL)
98 regcache_cooked_write_part (regcache, reg, 4 - part,
99 part, writebuf);
100 reg++;
101 }
102 /* Now transfer the remaining register values. */
103 for (b = part; b < TYPE_LENGTH (type); b += 4)
104 {
105 if (readbuf != NULL)
106 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
107 if (writebuf != NULL)
108 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
109 reg++;
110 }
111 return RETURN_VALUE_REGISTER_CONVENTION;
112 }
113 else
114 return RETURN_VALUE_STRUCT_CONVENTION;
115 }
116
117 static enum return_value_convention
118 hppa64_return_value (struct gdbarch *gdbarch,
119 struct type *type, struct regcache *regcache,
120 void *readbuf, const void *writebuf)
121 {
122 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
123 are in r28, padded on the left. Aggregates less that 65 bits are
124 in r28, right padded. Aggregates upto 128 bits are in r28 and
125 r29, right padded. */
126 if (TYPE_CODE (type) == TYPE_CODE_FLT
127 && TYPE_LENGTH (type) <= 8)
128 {
129 /* Floats are right aligned? */
130 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
131 if (readbuf != NULL)
132 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
133 TYPE_LENGTH (type), readbuf);
134 if (writebuf != NULL)
135 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
136 TYPE_LENGTH (type), writebuf);
137 return RETURN_VALUE_REGISTER_CONVENTION;
138 }
139 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
140 {
141 /* Integrals are right aligned. */
142 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
143 if (readbuf != NULL)
144 regcache_cooked_read_part (regcache, 28, offset,
145 TYPE_LENGTH (type), readbuf);
146 if (writebuf != NULL)
147 regcache_cooked_write_part (regcache, 28, offset,
148 TYPE_LENGTH (type), writebuf);
149 return RETURN_VALUE_REGISTER_CONVENTION;
150 }
151 else if (TYPE_LENGTH (type) <= 2 * 8)
152 {
153 /* Composite values are left aligned. */
154 int b;
155 for (b = 0; b < TYPE_LENGTH (type); b += 8)
156 {
157 int part = min (8, TYPE_LENGTH (type) - b);
158 if (readbuf != NULL)
159 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
160 (char *) readbuf + b);
161 if (writebuf != NULL)
162 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
163 (const char *) writebuf + b);
164 }
165 return RETURN_VALUE_REGISTER_CONVENTION;
166 }
167 else
168 return RETURN_VALUE_STRUCT_CONVENTION;
169 }
170
171 /* Routines to extract various sized constants out of hppa
172 instructions. */
173
174 /* This assumes that no garbage lies outside of the lower bits of
175 value. */
176
177 int
178 hppa_sign_extend (unsigned val, unsigned bits)
179 {
180 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
181 }
182
183 /* For many immediate values the sign bit is the low bit! */
184
185 int
186 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
187 {
188 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
189 }
190
191 /* Extract the bits at positions between FROM and TO, using HP's numbering
192 (MSB = 0). */
193
194 int
195 hppa_get_field (unsigned word, int from, int to)
196 {
197 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
198 }
199
200 /* extract the immediate field from a ld{bhw}s instruction */
201
202 int
203 hppa_extract_5_load (unsigned word)
204 {
205 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
206 }
207
208 /* extract the immediate field from a break instruction */
209
210 unsigned
211 hppa_extract_5r_store (unsigned word)
212 {
213 return (word & MASK_5);
214 }
215
216 /* extract the immediate field from a {sr}sm instruction */
217
218 unsigned
219 hppa_extract_5R_store (unsigned word)
220 {
221 return (word >> 16 & MASK_5);
222 }
223
224 /* extract a 14 bit immediate field */
225
226 int
227 hppa_extract_14 (unsigned word)
228 {
229 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
230 }
231
232 /* extract a 21 bit constant */
233
234 int
235 hppa_extract_21 (unsigned word)
236 {
237 int val;
238
239 word &= MASK_21;
240 word <<= 11;
241 val = hppa_get_field (word, 20, 20);
242 val <<= 11;
243 val |= hppa_get_field (word, 9, 19);
244 val <<= 2;
245 val |= hppa_get_field (word, 5, 6);
246 val <<= 5;
247 val |= hppa_get_field (word, 0, 4);
248 val <<= 2;
249 val |= hppa_get_field (word, 7, 8);
250 return hppa_sign_extend (val, 21) << 11;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 hppa_extract_17 (unsigned word)
258 {
259 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
260 hppa_get_field (word, 29, 29) << 10 |
261 hppa_get_field (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263 }
264
265 CORE_ADDR
266 hppa_symbol_address(const char *sym)
267 {
268 struct minimal_symbol *minsym;
269
270 minsym = lookup_minimal_symbol (sym, NULL, NULL);
271 if (minsym)
272 return SYMBOL_VALUE_ADDRESS (minsym);
273 else
274 return (CORE_ADDR)-1;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static void
297 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
298 {
299 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
300 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 {
302 bfd_vma value = section->vma - section->filepos;
303 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
304
305 if (value < *low_text_segment_address)
306 *low_text_segment_address = value;
307 }
308 }
309
310 static void
311 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
312 asection *section, unsigned int entries, unsigned int size,
313 CORE_ADDR text_offset)
314 {
315 /* We will read the unwind entries into temporary memory, then
316 fill in the actual unwind table. */
317
318 if (size > 0)
319 {
320 unsigned long tmp;
321 unsigned i;
322 char *buf = alloca (size);
323 CORE_ADDR low_text_segment_address;
324
325 /* For ELF targets, then unwinds are supposed to
326 be segment relative offsets instead of absolute addresses.
327
328 Note that when loading a shared library (text_offset != 0) the
329 unwinds are already relative to the text_offset that will be
330 passed in. */
331 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
332 {
333 low_text_segment_address = -1;
334
335 bfd_map_over_sections (objfile->obfd,
336 record_text_segment_lowaddr,
337 &low_text_segment_address);
338
339 text_offset = low_text_segment_address;
340 }
341
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
345 endian issues. */
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
349 (bfd_byte *) buf);
350 table[i].region_start += text_offset;
351 buf += 4;
352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
353 table[i].region_end += text_offset;
354 buf += 4;
355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
390 /* Stub unwinds are handled elsewhere. */
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395 }
396
397 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403 static void
404 read_unwind_info (struct objfile *objfile)
405 {
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
411 struct hppa_unwind_info *ui;
412 struct hppa_objfile_private *obj_private;
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
415 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
416 sizeof (struct hppa_unwind_info));
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
426
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
433 {
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
439
440 total_entries += unwind_entries;
441 }
442 }
443
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
460 total_entries += stub_entries;
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
465 obstack_alloc (&objfile->objfile_obstack, total_size);
466 ui->last = total_entries - 1;
467
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
470 index = 0;
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
510 (bfd_byte *) buf);
511 buf += 2;
512 ui->table[index].region_end
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
525 obj_private = (struct hppa_objfile_private *)
526 objfile_data (objfile, hppa_objfile_priv_data);
527 if (obj_private == NULL)
528 {
529 obj_private = (struct hppa_objfile_private *)
530 obstack_alloc (&objfile->objfile_obstack,
531 sizeof (struct hppa_objfile_private));
532 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
533 obj_private->unwind_info = NULL;
534 obj_private->so_info = NULL;
535 obj_private->dp = 0;
536 }
537 obj_private->unwind_info = ui;
538 }
539
540 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545 struct unwind_table_entry *
546 find_unwind_entry (CORE_ADDR pc)
547 {
548 int first, middle, last;
549 struct objfile *objfile;
550 struct hppa_objfile_private *priv;
551
552 if (hppa_debug)
553 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
554 paddr_nz (pc));
555
556 /* A function at address 0? Not in HP-UX! */
557 if (pc == (CORE_ADDR) 0)
558 {
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
561 return NULL;
562 }
563
564 ALL_OBJFILES (objfile)
565 {
566 struct hppa_unwind_info *ui;
567 ui = NULL;
568 priv = objfile_data (objfile, hppa_objfile_priv_data);
569 if (priv)
570 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
571
572 if (!ui)
573 {
574 read_unwind_info (objfile);
575 priv = objfile_data (objfile, hppa_objfile_priv_data);
576 if (priv == NULL)
577 error ("Internal error reading unwind information.");
578 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
579 }
580
581 /* First, check the cache */
582
583 if (ui->cache
584 && pc >= ui->cache->region_start
585 && pc <= ui->cache->region_end)
586 {
587 if (hppa_debug)
588 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
589 paddr_nz ((CORE_ADDR) ui->cache));
590 return ui->cache;
591 }
592
593 /* Not in the cache, do a binary search */
594
595 first = 0;
596 last = ui->last;
597
598 while (first <= last)
599 {
600 middle = (first + last) / 2;
601 if (pc >= ui->table[middle].region_start
602 && pc <= ui->table[middle].region_end)
603 {
604 ui->cache = &ui->table[middle];
605 if (hppa_debug)
606 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
607 paddr_nz ((CORE_ADDR) ui->cache));
608 return &ui->table[middle];
609 }
610
611 if (pc < ui->table[middle].region_start)
612 last = middle - 1;
613 else
614 first = middle + 1;
615 }
616 } /* ALL_OBJFILES() */
617
618 if (hppa_debug)
619 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
620
621 return NULL;
622 }
623
624 static const unsigned char *
625 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
626 {
627 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
628 (*len) = sizeof (breakpoint);
629 return breakpoint;
630 }
631
632 /* Return the name of a register. */
633
634 static const char *
635 hppa32_register_name (int i)
636 {
637 static char *names[] = {
638 "flags", "r1", "rp", "r3",
639 "r4", "r5", "r6", "r7",
640 "r8", "r9", "r10", "r11",
641 "r12", "r13", "r14", "r15",
642 "r16", "r17", "r18", "r19",
643 "r20", "r21", "r22", "r23",
644 "r24", "r25", "r26", "dp",
645 "ret0", "ret1", "sp", "r31",
646 "sar", "pcoqh", "pcsqh", "pcoqt",
647 "pcsqt", "eiem", "iir", "isr",
648 "ior", "ipsw", "goto", "sr4",
649 "sr0", "sr1", "sr2", "sr3",
650 "sr5", "sr6", "sr7", "cr0",
651 "cr8", "cr9", "ccr", "cr12",
652 "cr13", "cr24", "cr25", "cr26",
653 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
654 "fpsr", "fpe1", "fpe2", "fpe3",
655 "fpe4", "fpe5", "fpe6", "fpe7",
656 "fr4", "fr4R", "fr5", "fr5R",
657 "fr6", "fr6R", "fr7", "fr7R",
658 "fr8", "fr8R", "fr9", "fr9R",
659 "fr10", "fr10R", "fr11", "fr11R",
660 "fr12", "fr12R", "fr13", "fr13R",
661 "fr14", "fr14R", "fr15", "fr15R",
662 "fr16", "fr16R", "fr17", "fr17R",
663 "fr18", "fr18R", "fr19", "fr19R",
664 "fr20", "fr20R", "fr21", "fr21R",
665 "fr22", "fr22R", "fr23", "fr23R",
666 "fr24", "fr24R", "fr25", "fr25R",
667 "fr26", "fr26R", "fr27", "fr27R",
668 "fr28", "fr28R", "fr29", "fr29R",
669 "fr30", "fr30R", "fr31", "fr31R"
670 };
671 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
672 return NULL;
673 else
674 return names[i];
675 }
676
677 static const char *
678 hppa64_register_name (int i)
679 {
680 static char *names[] = {
681 "flags", "r1", "rp", "r3",
682 "r4", "r5", "r6", "r7",
683 "r8", "r9", "r10", "r11",
684 "r12", "r13", "r14", "r15",
685 "r16", "r17", "r18", "r19",
686 "r20", "r21", "r22", "r23",
687 "r24", "r25", "r26", "dp",
688 "ret0", "ret1", "sp", "r31",
689 "sar", "pcoqh", "pcsqh", "pcoqt",
690 "pcsqt", "eiem", "iir", "isr",
691 "ior", "ipsw", "goto", "sr4",
692 "sr0", "sr1", "sr2", "sr3",
693 "sr5", "sr6", "sr7", "cr0",
694 "cr8", "cr9", "ccr", "cr12",
695 "cr13", "cr24", "cr25", "cr26",
696 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
697 "fpsr", "fpe1", "fpe2", "fpe3",
698 "fr4", "fr5", "fr6", "fr7",
699 "fr8", "fr9", "fr10", "fr11",
700 "fr12", "fr13", "fr14", "fr15",
701 "fr16", "fr17", "fr18", "fr19",
702 "fr20", "fr21", "fr22", "fr23",
703 "fr24", "fr25", "fr26", "fr27",
704 "fr28", "fr29", "fr30", "fr31"
705 };
706 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
707 return NULL;
708 else
709 return names[i];
710 }
711
712 /* This function pushes a stack frame with arguments as part of the
713 inferior function calling mechanism.
714
715 This is the version of the function for the 32-bit PA machines, in
716 which later arguments appear at lower addresses. (The stack always
717 grows towards higher addresses.)
718
719 We simply allocate the appropriate amount of stack space and put
720 arguments into their proper slots. */
721
722 static CORE_ADDR
723 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
724 struct regcache *regcache, CORE_ADDR bp_addr,
725 int nargs, struct value **args, CORE_ADDR sp,
726 int struct_return, CORE_ADDR struct_addr)
727 {
728 /* Stack base address at which any pass-by-reference parameters are
729 stored. */
730 CORE_ADDR struct_end = 0;
731 /* Stack base address at which the first parameter is stored. */
732 CORE_ADDR param_end = 0;
733
734 /* The inner most end of the stack after all the parameters have
735 been pushed. */
736 CORE_ADDR new_sp = 0;
737
738 /* Two passes. First pass computes the location of everything,
739 second pass writes the bytes out. */
740 int write_pass;
741
742 /* Global pointer (r19) of the function we are trying to call. */
743 CORE_ADDR gp;
744
745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
746
747 for (write_pass = 0; write_pass < 2; write_pass++)
748 {
749 CORE_ADDR struct_ptr = 0;
750 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
751 struct_ptr is adjusted for each argument below, so the first
752 argument will end up at sp-36. */
753 CORE_ADDR param_ptr = 32;
754 int i;
755 int small_struct = 0;
756
757 for (i = 0; i < nargs; i++)
758 {
759 struct value *arg = args[i];
760 struct type *type = check_typedef (value_type (arg));
761 /* The corresponding parameter that is pushed onto the
762 stack, and [possibly] passed in a register. */
763 char param_val[8];
764 int param_len;
765 memset (param_val, 0, sizeof param_val);
766 if (TYPE_LENGTH (type) > 8)
767 {
768 /* Large parameter, pass by reference. Store the value
769 in "struct" area and then pass its address. */
770 param_len = 4;
771 struct_ptr += align_up (TYPE_LENGTH (type), 8);
772 if (write_pass)
773 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
774 TYPE_LENGTH (type));
775 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
783 store_unsigned_integer (param_val, param_len,
784 unpack_long (type,
785 VALUE_CONTENTS (arg)));
786 }
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
791 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
792 }
793 else
794 {
795 param_len = align_up (TYPE_LENGTH (type), 4);
796
797 /* Small struct value are stored right-aligned. */
798 memcpy (param_val + param_len - TYPE_LENGTH (type),
799 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
805 if (param_len > 4 && param_len < 8)
806 small_struct = 1;
807 }
808
809 param_ptr += param_len;
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
820 if (write_pass)
821 {
822 write_memory (param_end - param_ptr, param_val, param_len);
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
828 {
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
836 if (param_len > 4)
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
852 struct_end = sp + align_up (struct_ptr, 64);
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
858 param_end = struct_end + align_up (param_ptr, 64);
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
863 address */
864 if (struct_return)
865 write_register (28, struct_addr);
866
867 gp = tdep->find_global_pointer (function);
868
869 if (gp != 0)
870 write_register (19, gp);
871
872 /* Set the return address. */
873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
874
875 /* Update the Stack Pointer. */
876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
877
878 return param_end;
879 }
880
881 /* This function pushes a stack frame with arguments as part of the
882 inferior function calling mechanism.
883
884 This is the version for the PA64, in which later arguments appear
885 at higher addresses. (The stack always grows towards higher
886 addresses.)
887
888 We simply allocate the appropriate amount of stack space and put
889 arguments into their proper slots.
890
891 This ABI also requires that the caller provide an argument pointer
892 to the callee, so we do that too. */
893
894 static CORE_ADDR
895 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
896 struct regcache *regcache, CORE_ADDR bp_addr,
897 int nargs, struct value **args, CORE_ADDR sp,
898 int struct_return, CORE_ADDR struct_addr)
899 {
900 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
901 reverse engineering testsuite failures. */
902
903 /* Stack base address at which any pass-by-reference parameters are
904 stored. */
905 CORE_ADDR struct_end = 0;
906 /* Stack base address at which the first parameter is stored. */
907 CORE_ADDR param_end = 0;
908
909 /* The inner most end of the stack after all the parameters have
910 been pushed. */
911 CORE_ADDR new_sp = 0;
912
913 /* Two passes. First pass computes the location of everything,
914 second pass writes the bytes out. */
915 int write_pass;
916 for (write_pass = 0; write_pass < 2; write_pass++)
917 {
918 CORE_ADDR struct_ptr = 0;
919 CORE_ADDR param_ptr = 0;
920 int i;
921 for (i = 0; i < nargs; i++)
922 {
923 struct value *arg = args[i];
924 struct type *type = check_typedef (value_type (arg));
925 if ((TYPE_CODE (type) == TYPE_CODE_INT
926 || TYPE_CODE (type) == TYPE_CODE_ENUM)
927 && TYPE_LENGTH (type) <= 8)
928 {
929 /* Integer value store, right aligned. "unpack_long"
930 takes care of any sign-extension problems. */
931 param_ptr += 8;
932 if (write_pass)
933 {
934 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
935 int reg = 27 - param_ptr / 8;
936 write_memory_unsigned_integer (param_end - param_ptr,
937 val, 8);
938 if (reg >= 19)
939 regcache_cooked_write_unsigned (regcache, reg, val);
940 }
941 }
942 else
943 {
944 /* Small struct value, store left aligned? */
945 int reg;
946 if (TYPE_LENGTH (type) > 8)
947 {
948 param_ptr = align_up (param_ptr, 16);
949 reg = 26 - param_ptr / 8;
950 param_ptr += align_up (TYPE_LENGTH (type), 16);
951 }
952 else
953 {
954 param_ptr = align_up (param_ptr, 8);
955 reg = 26 - param_ptr / 8;
956 param_ptr += align_up (TYPE_LENGTH (type), 8);
957 }
958 if (write_pass)
959 {
960 int byte;
961 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
962 TYPE_LENGTH (type));
963 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
964 {
965 if (reg >= 19)
966 {
967 int len = min (8, TYPE_LENGTH (type) - byte);
968 regcache_cooked_write_part (regcache, reg, 0, len,
969 VALUE_CONTENTS (arg) + byte);
970 }
971 reg--;
972 }
973 }
974 }
975 }
976 /* Update the various stack pointers. */
977 if (!write_pass)
978 {
979 struct_end = sp + struct_ptr;
980 /* PARAM_PTR already accounts for all the arguments passed
981 by the user. However, the ABI mandates minimum stack
982 space allocations for outgoing arguments. The ABI also
983 mandates minimum stack alignments which we must
984 preserve. */
985 param_end = struct_end + max (align_up (param_ptr, 16), 64);
986 }
987 }
988
989 /* If a structure has to be returned, set up register 28 to hold its
990 address */
991 if (struct_return)
992 write_register (28, struct_addr);
993
994 /* Set the return address. */
995 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
996
997 /* Update the Stack Pointer. */
998 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
999
1000 /* The stack will have 32 bytes of additional space for a frame marker. */
1001 return param_end + 64;
1002 }
1003
1004 static CORE_ADDR
1005 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1006 CORE_ADDR addr,
1007 struct target_ops *targ)
1008 {
1009 if (addr & 2)
1010 {
1011 CORE_ADDR plabel;
1012
1013 plabel = addr & ~3;
1014 target_read_memory(plabel, (char *)&addr, 4);
1015 }
1016
1017 return addr;
1018 }
1019
1020 static CORE_ADDR
1021 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1022 {
1023 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1024 and not _bit_)! */
1025 return align_up (addr, 64);
1026 }
1027
1028 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1029
1030 static CORE_ADDR
1031 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1032 {
1033 /* Just always 16-byte align. */
1034 return align_up (addr, 16);
1035 }
1036
1037 CORE_ADDR
1038 hppa_read_pc (ptid_t ptid)
1039 {
1040 ULONGEST ipsw;
1041 CORE_ADDR pc;
1042
1043 ipsw = read_register_pid (HPPA_IPSW_REGNUM, ptid);
1044 pc = read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid);
1045
1046 /* If the current instruction is nullified, then we are effectively
1047 still executing the previous instruction. Pretend we are still
1048 there. This is needed when single stepping; if the nullified
1049 instruction is on a different line, we don't want GDB to think
1050 we've stepped onto that line. */
1051 if (ipsw & 0x00200000)
1052 pc -= 4;
1053
1054 return pc & ~0x3;
1055 }
1056
1057 void
1058 hppa_write_pc (CORE_ADDR pc, ptid_t ptid)
1059 {
1060 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, pc, ptid);
1061 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, pc + 4, ptid);
1062 }
1063
1064 /* return the alignment of a type in bytes. Structures have the maximum
1065 alignment required by their fields. */
1066
1067 static int
1068 hppa_alignof (struct type *type)
1069 {
1070 int max_align, align, i;
1071 CHECK_TYPEDEF (type);
1072 switch (TYPE_CODE (type))
1073 {
1074 case TYPE_CODE_PTR:
1075 case TYPE_CODE_INT:
1076 case TYPE_CODE_FLT:
1077 return TYPE_LENGTH (type);
1078 case TYPE_CODE_ARRAY:
1079 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1080 case TYPE_CODE_STRUCT:
1081 case TYPE_CODE_UNION:
1082 max_align = 1;
1083 for (i = 0; i < TYPE_NFIELDS (type); i++)
1084 {
1085 /* Bit fields have no real alignment. */
1086 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1087 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1088 {
1089 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1090 max_align = max (max_align, align);
1091 }
1092 }
1093 return max_align;
1094 default:
1095 return 4;
1096 }
1097 }
1098
1099 /* For the given instruction (INST), return any adjustment it makes
1100 to the stack pointer or zero for no adjustment.
1101
1102 This only handles instructions commonly found in prologues. */
1103
1104 static int
1105 prologue_inst_adjust_sp (unsigned long inst)
1106 {
1107 /* This must persist across calls. */
1108 static int save_high21;
1109
1110 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1111 if ((inst & 0xffffc000) == 0x37de0000)
1112 return hppa_extract_14 (inst);
1113
1114 /* stwm X,D(sp) */
1115 if ((inst & 0xffe00000) == 0x6fc00000)
1116 return hppa_extract_14 (inst);
1117
1118 /* std,ma X,D(sp) */
1119 if ((inst & 0xffe00008) == 0x73c00008)
1120 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1121
1122 /* addil high21,%r1; ldo low11,(%r1),%r30)
1123 save high bits in save_high21 for later use. */
1124 if ((inst & 0xffe00000) == 0x28200000)
1125 {
1126 save_high21 = hppa_extract_21 (inst);
1127 return 0;
1128 }
1129
1130 if ((inst & 0xffff0000) == 0x343e0000)
1131 return save_high21 + hppa_extract_14 (inst);
1132
1133 /* fstws as used by the HP compilers. */
1134 if ((inst & 0xffffffe0) == 0x2fd01220)
1135 return hppa_extract_5_load (inst);
1136
1137 /* No adjustment. */
1138 return 0;
1139 }
1140
1141 /* Return nonzero if INST is a branch of some kind, else return zero. */
1142
1143 static int
1144 is_branch (unsigned long inst)
1145 {
1146 switch (inst >> 26)
1147 {
1148 case 0x20:
1149 case 0x21:
1150 case 0x22:
1151 case 0x23:
1152 case 0x27:
1153 case 0x28:
1154 case 0x29:
1155 case 0x2a:
1156 case 0x2b:
1157 case 0x2f:
1158 case 0x30:
1159 case 0x31:
1160 case 0x32:
1161 case 0x33:
1162 case 0x38:
1163 case 0x39:
1164 case 0x3a:
1165 case 0x3b:
1166 return 1;
1167
1168 default:
1169 return 0;
1170 }
1171 }
1172
1173 /* Return the register number for a GR which is saved by INST or
1174 zero it INST does not save a GR. */
1175
1176 static int
1177 inst_saves_gr (unsigned long inst)
1178 {
1179 /* Does it look like a stw? */
1180 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1181 || (inst >> 26) == 0x1f
1182 || ((inst >> 26) == 0x1f
1183 && ((inst >> 6) == 0xa)))
1184 return hppa_extract_5R_store (inst);
1185
1186 /* Does it look like a std? */
1187 if ((inst >> 26) == 0x1c
1188 || ((inst >> 26) == 0x03
1189 && ((inst >> 6) & 0xf) == 0xb))
1190 return hppa_extract_5R_store (inst);
1191
1192 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1193 if ((inst >> 26) == 0x1b)
1194 return hppa_extract_5R_store (inst);
1195
1196 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1197 too. */
1198 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1199 || ((inst >> 26) == 0x3
1200 && (((inst >> 6) & 0xf) == 0x8
1201 || (inst >> 6) & 0xf) == 0x9))
1202 return hppa_extract_5R_store (inst);
1203
1204 return 0;
1205 }
1206
1207 /* Return the register number for a FR which is saved by INST or
1208 zero it INST does not save a FR.
1209
1210 Note we only care about full 64bit register stores (that's the only
1211 kind of stores the prologue will use).
1212
1213 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1214
1215 static int
1216 inst_saves_fr (unsigned long inst)
1217 {
1218 /* is this an FSTD ? */
1219 if ((inst & 0xfc00dfc0) == 0x2c001200)
1220 return hppa_extract_5r_store (inst);
1221 if ((inst & 0xfc000002) == 0x70000002)
1222 return hppa_extract_5R_store (inst);
1223 /* is this an FSTW ? */
1224 if ((inst & 0xfc00df80) == 0x24001200)
1225 return hppa_extract_5r_store (inst);
1226 if ((inst & 0xfc000002) == 0x7c000000)
1227 return hppa_extract_5R_store (inst);
1228 return 0;
1229 }
1230
1231 /* Advance PC across any function entry prologue instructions
1232 to reach some "real" code.
1233
1234 Use information in the unwind table to determine what exactly should
1235 be in the prologue. */
1236
1237
1238 static CORE_ADDR
1239 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1240 {
1241 char buf[4];
1242 CORE_ADDR orig_pc = pc;
1243 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1244 unsigned long args_stored, status, i, restart_gr, restart_fr;
1245 struct unwind_table_entry *u;
1246 int final_iteration;
1247
1248 restart_gr = 0;
1249 restart_fr = 0;
1250
1251 restart:
1252 u = find_unwind_entry (pc);
1253 if (!u)
1254 return pc;
1255
1256 /* If we are not at the beginning of a function, then return now. */
1257 if ((pc & ~0x3) != u->region_start)
1258 return pc;
1259
1260 /* This is how much of a frame adjustment we need to account for. */
1261 stack_remaining = u->Total_frame_size << 3;
1262
1263 /* Magic register saves we want to know about. */
1264 save_rp = u->Save_RP;
1265 save_sp = u->Save_SP;
1266
1267 /* An indication that args may be stored into the stack. Unfortunately
1268 the HPUX compilers tend to set this in cases where no args were
1269 stored too!. */
1270 args_stored = 1;
1271
1272 /* Turn the Entry_GR field into a bitmask. */
1273 save_gr = 0;
1274 for (i = 3; i < u->Entry_GR + 3; i++)
1275 {
1276 /* Frame pointer gets saved into a special location. */
1277 if (u->Save_SP && i == HPPA_FP_REGNUM)
1278 continue;
1279
1280 save_gr |= (1 << i);
1281 }
1282 save_gr &= ~restart_gr;
1283
1284 /* Turn the Entry_FR field into a bitmask too. */
1285 save_fr = 0;
1286 for (i = 12; i < u->Entry_FR + 12; i++)
1287 save_fr |= (1 << i);
1288 save_fr &= ~restart_fr;
1289
1290 final_iteration = 0;
1291
1292 /* Loop until we find everything of interest or hit a branch.
1293
1294 For unoptimized GCC code and for any HP CC code this will never ever
1295 examine any user instructions.
1296
1297 For optimzied GCC code we're faced with problems. GCC will schedule
1298 its prologue and make prologue instructions available for delay slot
1299 filling. The end result is user code gets mixed in with the prologue
1300 and a prologue instruction may be in the delay slot of the first branch
1301 or call.
1302
1303 Some unexpected things are expected with debugging optimized code, so
1304 we allow this routine to walk past user instructions in optimized
1305 GCC code. */
1306 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1307 || args_stored)
1308 {
1309 unsigned int reg_num;
1310 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1311 unsigned long old_save_rp, old_save_sp, next_inst;
1312
1313 /* Save copies of all the triggers so we can compare them later
1314 (only for HPC). */
1315 old_save_gr = save_gr;
1316 old_save_fr = save_fr;
1317 old_save_rp = save_rp;
1318 old_save_sp = save_sp;
1319 old_stack_remaining = stack_remaining;
1320
1321 status = deprecated_read_memory_nobpt (pc, buf, 4);
1322 inst = extract_unsigned_integer (buf, 4);
1323
1324 /* Yow! */
1325 if (status != 0)
1326 return pc;
1327
1328 /* Note the interesting effects of this instruction. */
1329 stack_remaining -= prologue_inst_adjust_sp (inst);
1330
1331 /* There are limited ways to store the return pointer into the
1332 stack. */
1333 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1334 save_rp = 0;
1335
1336 /* These are the only ways we save SP into the stack. At this time
1337 the HP compilers never bother to save SP into the stack. */
1338 if ((inst & 0xffffc000) == 0x6fc10000
1339 || (inst & 0xffffc00c) == 0x73c10008)
1340 save_sp = 0;
1341
1342 /* Are we loading some register with an offset from the argument
1343 pointer? */
1344 if ((inst & 0xffe00000) == 0x37a00000
1345 || (inst & 0xffffffe0) == 0x081d0240)
1346 {
1347 pc += 4;
1348 continue;
1349 }
1350
1351 /* Account for general and floating-point register saves. */
1352 reg_num = inst_saves_gr (inst);
1353 save_gr &= ~(1 << reg_num);
1354
1355 /* Ugh. Also account for argument stores into the stack.
1356 Unfortunately args_stored only tells us that some arguments
1357 where stored into the stack. Not how many or what kind!
1358
1359 This is a kludge as on the HP compiler sets this bit and it
1360 never does prologue scheduling. So once we see one, skip past
1361 all of them. We have similar code for the fp arg stores below.
1362
1363 FIXME. Can still die if we have a mix of GR and FR argument
1364 stores! */
1365 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1366 {
1367 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1368 {
1369 pc += 4;
1370 status = deprecated_read_memory_nobpt (pc, buf, 4);
1371 inst = extract_unsigned_integer (buf, 4);
1372 if (status != 0)
1373 return pc;
1374 reg_num = inst_saves_gr (inst);
1375 }
1376 args_stored = 0;
1377 continue;
1378 }
1379
1380 reg_num = inst_saves_fr (inst);
1381 save_fr &= ~(1 << reg_num);
1382
1383 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1384 next_inst = extract_unsigned_integer (buf, 4);
1385
1386 /* Yow! */
1387 if (status != 0)
1388 return pc;
1389
1390 /* We've got to be read to handle the ldo before the fp register
1391 save. */
1392 if ((inst & 0xfc000000) == 0x34000000
1393 && inst_saves_fr (next_inst) >= 4
1394 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1395 {
1396 /* So we drop into the code below in a reasonable state. */
1397 reg_num = inst_saves_fr (next_inst);
1398 pc -= 4;
1399 }
1400
1401 /* Ugh. Also account for argument stores into the stack.
1402 This is a kludge as on the HP compiler sets this bit and it
1403 never does prologue scheduling. So once we see one, skip past
1404 all of them. */
1405 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1406 {
1407 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1408 {
1409 pc += 8;
1410 status = deprecated_read_memory_nobpt (pc, buf, 4);
1411 inst = extract_unsigned_integer (buf, 4);
1412 if (status != 0)
1413 return pc;
1414 if ((inst & 0xfc000000) != 0x34000000)
1415 break;
1416 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1417 next_inst = extract_unsigned_integer (buf, 4);
1418 if (status != 0)
1419 return pc;
1420 reg_num = inst_saves_fr (next_inst);
1421 }
1422 args_stored = 0;
1423 continue;
1424 }
1425
1426 /* Quit if we hit any kind of branch. This can happen if a prologue
1427 instruction is in the delay slot of the first call/branch. */
1428 if (is_branch (inst) && stop_before_branch)
1429 break;
1430
1431 /* What a crock. The HP compilers set args_stored even if no
1432 arguments were stored into the stack (boo hiss). This could
1433 cause this code to then skip a bunch of user insns (up to the
1434 first branch).
1435
1436 To combat this we try to identify when args_stored was bogusly
1437 set and clear it. We only do this when args_stored is nonzero,
1438 all other resources are accounted for, and nothing changed on
1439 this pass. */
1440 if (args_stored
1441 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1442 && old_save_gr == save_gr && old_save_fr == save_fr
1443 && old_save_rp == save_rp && old_save_sp == save_sp
1444 && old_stack_remaining == stack_remaining)
1445 break;
1446
1447 /* Bump the PC. */
1448 pc += 4;
1449
1450 /* !stop_before_branch, so also look at the insn in the delay slot
1451 of the branch. */
1452 if (final_iteration)
1453 break;
1454 if (is_branch (inst))
1455 final_iteration = 1;
1456 }
1457
1458 /* We've got a tenative location for the end of the prologue. However
1459 because of limitations in the unwind descriptor mechanism we may
1460 have went too far into user code looking for the save of a register
1461 that does not exist. So, if there registers we expected to be saved
1462 but never were, mask them out and restart.
1463
1464 This should only happen in optimized code, and should be very rare. */
1465 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1466 {
1467 pc = orig_pc;
1468 restart_gr = save_gr;
1469 restart_fr = save_fr;
1470 goto restart;
1471 }
1472
1473 return pc;
1474 }
1475
1476
1477 /* Return the address of the PC after the last prologue instruction if
1478 we can determine it from the debug symbols. Else return zero. */
1479
1480 static CORE_ADDR
1481 after_prologue (CORE_ADDR pc)
1482 {
1483 struct symtab_and_line sal;
1484 CORE_ADDR func_addr, func_end;
1485 struct symbol *f;
1486
1487 /* If we can not find the symbol in the partial symbol table, then
1488 there is no hope we can determine the function's start address
1489 with this code. */
1490 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1491 return 0;
1492
1493 /* Get the line associated with FUNC_ADDR. */
1494 sal = find_pc_line (func_addr, 0);
1495
1496 /* There are only two cases to consider. First, the end of the source line
1497 is within the function bounds. In that case we return the end of the
1498 source line. Second is the end of the source line extends beyond the
1499 bounds of the current function. We need to use the slow code to
1500 examine instructions in that case.
1501
1502 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1503 the wrong thing to do. In fact, it should be entirely possible for this
1504 function to always return zero since the slow instruction scanning code
1505 is supposed to *always* work. If it does not, then it is a bug. */
1506 if (sal.end < func_end)
1507 return sal.end;
1508 else
1509 return 0;
1510 }
1511
1512 /* To skip prologues, I use this predicate. Returns either PC itself
1513 if the code at PC does not look like a function prologue; otherwise
1514 returns an address that (if we're lucky) follows the prologue.
1515
1516 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1517 It doesn't necessarily skips all the insns in the prologue. In fact
1518 we might not want to skip all the insns because a prologue insn may
1519 appear in the delay slot of the first branch, and we don't want to
1520 skip over the branch in that case. */
1521
1522 static CORE_ADDR
1523 hppa_skip_prologue (CORE_ADDR pc)
1524 {
1525 unsigned long inst;
1526 int offset;
1527 CORE_ADDR post_prologue_pc;
1528 char buf[4];
1529
1530 /* See if we can determine the end of the prologue via the symbol table.
1531 If so, then return either PC, or the PC after the prologue, whichever
1532 is greater. */
1533
1534 post_prologue_pc = after_prologue (pc);
1535
1536 /* If after_prologue returned a useful address, then use it. Else
1537 fall back on the instruction skipping code.
1538
1539 Some folks have claimed this causes problems because the breakpoint
1540 may be the first instruction of the prologue. If that happens, then
1541 the instruction skipping code has a bug that needs to be fixed. */
1542 if (post_prologue_pc != 0)
1543 return max (pc, post_prologue_pc);
1544 else
1545 return (skip_prologue_hard_way (pc, 1));
1546 }
1547
1548 struct hppa_frame_cache
1549 {
1550 CORE_ADDR base;
1551 struct trad_frame_saved_reg *saved_regs;
1552 };
1553
1554 static struct hppa_frame_cache *
1555 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1556 {
1557 struct hppa_frame_cache *cache;
1558 long saved_gr_mask;
1559 long saved_fr_mask;
1560 CORE_ADDR this_sp;
1561 long frame_size;
1562 struct unwind_table_entry *u;
1563 CORE_ADDR prologue_end;
1564 int fp_in_r1 = 0;
1565 int i;
1566
1567 if (hppa_debug)
1568 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1569 frame_relative_level(next_frame));
1570
1571 if ((*this_cache) != NULL)
1572 {
1573 if (hppa_debug)
1574 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1575 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1576 return (*this_cache);
1577 }
1578 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1579 (*this_cache) = cache;
1580 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1581
1582 /* Yow! */
1583 u = find_unwind_entry (frame_pc_unwind (next_frame));
1584 if (!u)
1585 {
1586 if (hppa_debug)
1587 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1588 return (*this_cache);
1589 }
1590
1591 /* Turn the Entry_GR field into a bitmask. */
1592 saved_gr_mask = 0;
1593 for (i = 3; i < u->Entry_GR + 3; i++)
1594 {
1595 /* Frame pointer gets saved into a special location. */
1596 if (u->Save_SP && i == HPPA_FP_REGNUM)
1597 continue;
1598
1599 saved_gr_mask |= (1 << i);
1600 }
1601
1602 /* Turn the Entry_FR field into a bitmask too. */
1603 saved_fr_mask = 0;
1604 for (i = 12; i < u->Entry_FR + 12; i++)
1605 saved_fr_mask |= (1 << i);
1606
1607 /* Loop until we find everything of interest or hit a branch.
1608
1609 For unoptimized GCC code and for any HP CC code this will never ever
1610 examine any user instructions.
1611
1612 For optimized GCC code we're faced with problems. GCC will schedule
1613 its prologue and make prologue instructions available for delay slot
1614 filling. The end result is user code gets mixed in with the prologue
1615 and a prologue instruction may be in the delay slot of the first branch
1616 or call.
1617
1618 Some unexpected things are expected with debugging optimized code, so
1619 we allow this routine to walk past user instructions in optimized
1620 GCC code. */
1621 {
1622 int final_iteration = 0;
1623 CORE_ADDR pc, end_pc;
1624 int looking_for_sp = u->Save_SP;
1625 int looking_for_rp = u->Save_RP;
1626 int fp_loc = -1;
1627
1628 /* We have to use skip_prologue_hard_way instead of just
1629 skip_prologue_using_sal, in case we stepped into a function without
1630 symbol information. hppa_skip_prologue also bounds the returned
1631 pc by the passed in pc, so it will not return a pc in the next
1632 function.
1633
1634 We used to call hppa_skip_prologue to find the end of the prologue,
1635 but if some non-prologue instructions get scheduled into the prologue,
1636 and the program is compiled with debug information, the "easy" way
1637 in hppa_skip_prologue will return a prologue end that is too early
1638 for us to notice any potential frame adjustments. */
1639
1640 /* We used to use frame_func_unwind () to locate the beginning of the
1641 function to pass to skip_prologue (). However, when objects are
1642 compiled without debug symbols, frame_func_unwind can return the wrong
1643 function (or 0). We can do better than that by using unwind records. */
1644
1645 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1646 end_pc = frame_pc_unwind (next_frame);
1647
1648 if (prologue_end != 0 && end_pc > prologue_end)
1649 end_pc = prologue_end;
1650
1651 frame_size = 0;
1652
1653 for (pc = u->region_start;
1654 ((saved_gr_mask || saved_fr_mask
1655 || looking_for_sp || looking_for_rp
1656 || frame_size < (u->Total_frame_size << 3))
1657 && pc < end_pc);
1658 pc += 4)
1659 {
1660 int reg;
1661 char buf4[4];
1662 long inst;
1663
1664 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1665 sizeof buf4))
1666 {
1667 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1668 return (*this_cache);
1669 }
1670
1671 inst = extract_unsigned_integer (buf4, sizeof buf4);
1672
1673 /* Note the interesting effects of this instruction. */
1674 frame_size += prologue_inst_adjust_sp (inst);
1675
1676 /* There are limited ways to store the return pointer into the
1677 stack. */
1678 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1679 {
1680 looking_for_rp = 0;
1681 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1682 }
1683 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1684 {
1685 looking_for_rp = 0;
1686 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1687 }
1688 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1689 {
1690 looking_for_rp = 0;
1691 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1692 }
1693
1694 /* Check to see if we saved SP into the stack. This also
1695 happens to indicate the location of the saved frame
1696 pointer. */
1697 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1698 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1699 {
1700 looking_for_sp = 0;
1701 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1702 }
1703 else if (inst == 0x08030241) /* copy %r3, %r1 */
1704 {
1705 fp_in_r1 = 1;
1706 }
1707
1708 /* Account for general and floating-point register saves. */
1709 reg = inst_saves_gr (inst);
1710 if (reg >= 3 && reg <= 18
1711 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1712 {
1713 saved_gr_mask &= ~(1 << reg);
1714 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1715 /* stwm with a positive displacement is a _post_
1716 _modify_. */
1717 cache->saved_regs[reg].addr = 0;
1718 else if ((inst & 0xfc00000c) == 0x70000008)
1719 /* A std has explicit post_modify forms. */
1720 cache->saved_regs[reg].addr = 0;
1721 else
1722 {
1723 CORE_ADDR offset;
1724
1725 if ((inst >> 26) == 0x1c)
1726 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1727 else if ((inst >> 26) == 0x03)
1728 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1729 else
1730 offset = hppa_extract_14 (inst);
1731
1732 /* Handle code with and without frame pointers. */
1733 if (u->Save_SP)
1734 cache->saved_regs[reg].addr = offset;
1735 else
1736 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1737 }
1738 }
1739
1740 /* GCC handles callee saved FP regs a little differently.
1741
1742 It emits an instruction to put the value of the start of
1743 the FP store area into %r1. It then uses fstds,ma with a
1744 basereg of %r1 for the stores.
1745
1746 HP CC emits them at the current stack pointer modifying the
1747 stack pointer as it stores each register. */
1748
1749 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1750 if ((inst & 0xffffc000) == 0x34610000
1751 || (inst & 0xffffc000) == 0x37c10000)
1752 fp_loc = hppa_extract_14 (inst);
1753
1754 reg = inst_saves_fr (inst);
1755 if (reg >= 12 && reg <= 21)
1756 {
1757 /* Note +4 braindamage below is necessary because the FP
1758 status registers are internally 8 registers rather than
1759 the expected 4 registers. */
1760 saved_fr_mask &= ~(1 << reg);
1761 if (fp_loc == -1)
1762 {
1763 /* 1st HP CC FP register store. After this
1764 instruction we've set enough state that the GCC and
1765 HPCC code are both handled in the same manner. */
1766 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1767 fp_loc = 8;
1768 }
1769 else
1770 {
1771 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1772 fp_loc += 8;
1773 }
1774 }
1775
1776 /* Quit if we hit any kind of branch the previous iteration. */
1777 if (final_iteration)
1778 break;
1779 /* We want to look precisely one instruction beyond the branch
1780 if we have not found everything yet. */
1781 if (is_branch (inst))
1782 final_iteration = 1;
1783 }
1784 }
1785
1786 {
1787 /* The frame base always represents the value of %sp at entry to
1788 the current function (and is thus equivalent to the "saved"
1789 stack pointer. */
1790 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1791 CORE_ADDR fp;
1792
1793 if (hppa_debug)
1794 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1795 "prologue_end=0x%s) ",
1796 paddr_nz (this_sp),
1797 paddr_nz (frame_pc_unwind (next_frame)),
1798 paddr_nz (prologue_end));
1799
1800 /* Check to see if a frame pointer is available, and use it for
1801 frame unwinding if it is.
1802
1803 There are some situations where we need to rely on the frame
1804 pointer to do stack unwinding. For example, if a function calls
1805 alloca (), the stack pointer can get adjusted inside the body of
1806 the function. In this case, the ABI requires that the compiler
1807 maintain a frame pointer for the function.
1808
1809 The unwind record has a flag (alloca_frame) that indicates that
1810 a function has a variable frame; unfortunately, gcc/binutils
1811 does not set this flag. Instead, whenever a frame pointer is used
1812 and saved on the stack, the Save_SP flag is set. We use this to
1813 decide whether to use the frame pointer for unwinding.
1814
1815 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1816 instead of Save_SP. */
1817
1818 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1819
1820 if (frame_pc_unwind (next_frame) >= prologue_end
1821 && u->Save_SP && fp != 0)
1822 {
1823 cache->base = fp;
1824
1825 if (hppa_debug)
1826 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1827 paddr_nz (cache->base));
1828 }
1829 else if (u->Save_SP
1830 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1831 {
1832 /* Both we're expecting the SP to be saved and the SP has been
1833 saved. The entry SP value is saved at this frame's SP
1834 address. */
1835 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1836
1837 if (hppa_debug)
1838 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1839 paddr_nz (cache->base));
1840 }
1841 else
1842 {
1843 /* The prologue has been slowly allocating stack space. Adjust
1844 the SP back. */
1845 cache->base = this_sp - frame_size;
1846 if (hppa_debug)
1847 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1848 paddr_nz (cache->base));
1849
1850 }
1851 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1852 }
1853
1854 /* The PC is found in the "return register", "Millicode" uses "r31"
1855 as the return register while normal code uses "rp". */
1856 if (u->Millicode)
1857 {
1858 if (trad_frame_addr_p (cache->saved_regs, 31))
1859 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1860 else
1861 {
1862 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1863 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1864 }
1865 }
1866 else
1867 {
1868 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1869 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1870 else
1871 {
1872 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1873 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1874 }
1875 }
1876
1877 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1878 frame. However, there is a one-insn window where we haven't saved it
1879 yet, but we've already clobbered it. Detect this case and fix it up.
1880
1881 The prologue sequence for frame-pointer functions is:
1882 0: stw %rp, -20(%sp)
1883 4: copy %r3, %r1
1884 8: copy %sp, %r3
1885 c: stw,ma %r1, XX(%sp)
1886
1887 So if we are at offset c, the r3 value that we want is not yet saved
1888 on the stack, but it's been overwritten. The prologue analyzer will
1889 set fp_in_r1 when it sees the copy insn so we know to get the value
1890 from r1 instead. */
1891 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1892 && fp_in_r1)
1893 {
1894 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1895 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1896 }
1897
1898 {
1899 /* Convert all the offsets into addresses. */
1900 int reg;
1901 for (reg = 0; reg < NUM_REGS; reg++)
1902 {
1903 if (trad_frame_addr_p (cache->saved_regs, reg))
1904 cache->saved_regs[reg].addr += cache->base;
1905 }
1906 }
1907
1908 {
1909 struct gdbarch *gdbarch;
1910 struct gdbarch_tdep *tdep;
1911
1912 gdbarch = get_frame_arch (next_frame);
1913 tdep = gdbarch_tdep (gdbarch);
1914
1915 if (tdep->unwind_adjust_stub)
1916 {
1917 tdep->unwind_adjust_stub (next_frame, cache->base, cache->saved_regs);
1918 }
1919 }
1920
1921 if (hppa_debug)
1922 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1923 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1924 return (*this_cache);
1925 }
1926
1927 static void
1928 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1929 struct frame_id *this_id)
1930 {
1931 struct hppa_frame_cache *info;
1932 CORE_ADDR pc = frame_pc_unwind (next_frame);
1933 struct unwind_table_entry *u;
1934
1935 info = hppa_frame_cache (next_frame, this_cache);
1936 u = find_unwind_entry (pc);
1937
1938 (*this_id) = frame_id_build (info->base, u->region_start);
1939 }
1940
1941 static void
1942 hppa_frame_prev_register (struct frame_info *next_frame,
1943 void **this_cache,
1944 int regnum, int *optimizedp,
1945 enum lval_type *lvalp, CORE_ADDR *addrp,
1946 int *realnump, void *valuep)
1947 {
1948 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1949 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1950 optimizedp, lvalp, addrp, realnump, valuep);
1951 }
1952
1953 static const struct frame_unwind hppa_frame_unwind =
1954 {
1955 NORMAL_FRAME,
1956 hppa_frame_this_id,
1957 hppa_frame_prev_register
1958 };
1959
1960 static const struct frame_unwind *
1961 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1962 {
1963 CORE_ADDR pc = frame_pc_unwind (next_frame);
1964
1965 if (find_unwind_entry (pc))
1966 return &hppa_frame_unwind;
1967
1968 return NULL;
1969 }
1970
1971 /* This is a generic fallback frame unwinder that kicks in if we fail all
1972 the other ones. Normally we would expect the stub and regular unwinder
1973 to work, but in some cases we might hit a function that just doesn't
1974 have any unwind information available. In this case we try to do
1975 unwinding solely based on code reading. This is obviously going to be
1976 slow, so only use this as a last resort. Currently this will only
1977 identify the stack and pc for the frame. */
1978
1979 static struct hppa_frame_cache *
1980 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1981 {
1982 struct hppa_frame_cache *cache;
1983 unsigned int frame_size;
1984 int found_rp;
1985 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1986
1987 if (hppa_debug)
1988 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1989 frame_relative_level(next_frame));
1990
1991 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1992 (*this_cache) = cache;
1993 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1994
1995 pc = frame_func_unwind (next_frame);
1996 cur_pc = frame_pc_unwind (next_frame);
1997 frame_size = 0;
1998 found_rp = 0;
1999
2000 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
2001
2002 if (start_pc == 0 || end_pc == 0)
2003 {
2004 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2005 "fail.", paddr_nz (pc));
2006 return cache;
2007 }
2008
2009 if (end_pc > cur_pc)
2010 end_pc = cur_pc;
2011
2012 for (pc = start_pc; pc < end_pc; pc += 4)
2013 {
2014 unsigned int insn;
2015
2016 insn = read_memory_unsigned_integer (pc, 4);
2017
2018 frame_size += prologue_inst_adjust_sp (insn);
2019
2020 /* There are limited ways to store the return pointer into the
2021 stack. */
2022 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2023 {
2024 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2025 found_rp = 1;
2026 }
2027 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2028 {
2029 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2030 found_rp = 1;
2031 }
2032 }
2033
2034 if (hppa_debug)
2035 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2036 frame_size, found_rp);
2037
2038 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2039 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2040
2041 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2042 {
2043 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2044 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2045 }
2046 else
2047 {
2048 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2049 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2050 }
2051
2052 return cache;
2053 }
2054
2055 static void
2056 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2057 struct frame_id *this_id)
2058 {
2059 struct hppa_frame_cache *info =
2060 hppa_fallback_frame_cache (next_frame, this_cache);
2061 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2062 }
2063
2064 static void
2065 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2066 void **this_cache,
2067 int regnum, int *optimizedp,
2068 enum lval_type *lvalp, CORE_ADDR *addrp,
2069 int *realnump, void *valuep)
2070 {
2071 struct hppa_frame_cache *info =
2072 hppa_fallback_frame_cache (next_frame, this_cache);
2073 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2074 optimizedp, lvalp, addrp, realnump, valuep);
2075 }
2076
2077 static const struct frame_unwind hppa_fallback_frame_unwind =
2078 {
2079 NORMAL_FRAME,
2080 hppa_fallback_frame_this_id,
2081 hppa_fallback_frame_prev_register
2082 };
2083
2084 static const struct frame_unwind *
2085 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2086 {
2087 return &hppa_fallback_frame_unwind;
2088 }
2089
2090 /* Stub frames, used for all kinds of call stubs. */
2091 struct hppa_stub_unwind_cache
2092 {
2093 CORE_ADDR base;
2094 struct trad_frame_saved_reg *saved_regs;
2095 };
2096
2097 static struct hppa_stub_unwind_cache *
2098 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2099 void **this_cache)
2100 {
2101 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2102 struct hppa_stub_unwind_cache *info;
2103 struct unwind_table_entry *u;
2104
2105 if (*this_cache)
2106 return *this_cache;
2107
2108 if (frame_pc_unwind (next_frame) == 0)
2109 return NULL;
2110
2111 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2112 *this_cache = info;
2113 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2114
2115 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2116
2117 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2118 {
2119 /* HPUX uses export stubs in function calls; the export stub clobbers
2120 the return value of the caller, and, later restores it from the
2121 stack. */
2122 u = find_unwind_entry (frame_pc_unwind (next_frame));
2123
2124 if (u && u->stub_unwind.stub_type == EXPORT)
2125 {
2126 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2127
2128 return info;
2129 }
2130 }
2131
2132 /* By default we assume that stubs do not change the rp. */
2133 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2134
2135 return info;
2136 }
2137
2138 static void
2139 hppa_stub_frame_this_id (struct frame_info *next_frame,
2140 void **this_prologue_cache,
2141 struct frame_id *this_id)
2142 {
2143 struct hppa_stub_unwind_cache *info
2144 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2145
2146 if (info)
2147 *this_id = frame_id_build (info->base, frame_func_unwind (next_frame));
2148 else
2149 *this_id = null_frame_id;
2150 }
2151
2152 static void
2153 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2154 void **this_prologue_cache,
2155 int regnum, int *optimizedp,
2156 enum lval_type *lvalp, CORE_ADDR *addrp,
2157 int *realnump, void *valuep)
2158 {
2159 struct hppa_stub_unwind_cache *info
2160 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2161
2162 if (info)
2163 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2164 optimizedp, lvalp, addrp, realnump,
2165 valuep);
2166 else
2167 error ("Requesting registers from null frame.\n");
2168 }
2169
2170 static const struct frame_unwind hppa_stub_frame_unwind = {
2171 NORMAL_FRAME,
2172 hppa_stub_frame_this_id,
2173 hppa_stub_frame_prev_register
2174 };
2175
2176 static const struct frame_unwind *
2177 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2178 {
2179 CORE_ADDR pc = frame_pc_unwind (next_frame);
2180 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2181 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2182
2183 if (pc == 0
2184 || (tdep->in_solib_call_trampoline != NULL
2185 && tdep->in_solib_call_trampoline (pc, NULL))
2186 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2187 return &hppa_stub_frame_unwind;
2188 return NULL;
2189 }
2190
2191 static struct frame_id
2192 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2193 {
2194 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2195 HPPA_SP_REGNUM),
2196 frame_pc_unwind (next_frame));
2197 }
2198
2199 CORE_ADDR
2200 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2201 {
2202 ULONGEST ipsw;
2203 CORE_ADDR pc;
2204
2205 ipsw = frame_unwind_register_unsigned (next_frame, HPPA_IPSW_REGNUM);
2206 pc = frame_unwind_register_unsigned (next_frame, HPPA_PCOQ_HEAD_REGNUM);
2207
2208 /* If the current instruction is nullified, then we are effectively
2209 still executing the previous instruction. Pretend we are still
2210 there. This is needed when single stepping; if the nullified
2211 instruction is on a different line, we don't want GDB to think
2212 we've stepped onto that line. */
2213 if (ipsw & 0x00200000)
2214 pc -= 4;
2215
2216 return pc & ~0x3;
2217 }
2218
2219 /* Instead of this nasty cast, add a method pvoid() that prints out a
2220 host VOID data type (remember %p isn't portable). */
2221
2222 static CORE_ADDR
2223 hppa_pointer_to_address_hack (void *ptr)
2224 {
2225 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2226 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2227 }
2228
2229 static void
2230 unwind_command (char *exp, int from_tty)
2231 {
2232 CORE_ADDR address;
2233 struct unwind_table_entry *u;
2234
2235 /* If we have an expression, evaluate it and use it as the address. */
2236
2237 if (exp != 0 && *exp != 0)
2238 address = parse_and_eval_address (exp);
2239 else
2240 return;
2241
2242 u = find_unwind_entry (address);
2243
2244 if (!u)
2245 {
2246 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2247 return;
2248 }
2249
2250 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2251 paddr_nz (hppa_pointer_to_address_hack (u)));
2252
2253 printf_unfiltered ("\tregion_start = ");
2254 print_address (u->region_start, gdb_stdout);
2255 gdb_flush (gdb_stdout);
2256
2257 printf_unfiltered ("\n\tregion_end = ");
2258 print_address (u->region_end, gdb_stdout);
2259 gdb_flush (gdb_stdout);
2260
2261 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2262
2263 printf_unfiltered ("\n\tflags =");
2264 pif (Cannot_unwind);
2265 pif (Millicode);
2266 pif (Millicode_save_sr0);
2267 pif (Entry_SR);
2268 pif (Args_stored);
2269 pif (Variable_Frame);
2270 pif (Separate_Package_Body);
2271 pif (Frame_Extension_Millicode);
2272 pif (Stack_Overflow_Check);
2273 pif (Two_Instruction_SP_Increment);
2274 pif (Ada_Region);
2275 pif (Save_SP);
2276 pif (Save_RP);
2277 pif (Save_MRP_in_frame);
2278 pif (extn_ptr_defined);
2279 pif (Cleanup_defined);
2280 pif (MPE_XL_interrupt_marker);
2281 pif (HP_UX_interrupt_marker);
2282 pif (Large_frame);
2283
2284 putchar_unfiltered ('\n');
2285
2286 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2287
2288 pin (Region_description);
2289 pin (Entry_FR);
2290 pin (Entry_GR);
2291 pin (Total_frame_size);
2292
2293 if (u->stub_unwind.stub_type)
2294 {
2295 printf_unfiltered ("\tstub type = ");
2296 switch (u->stub_unwind.stub_type)
2297 {
2298 case LONG_BRANCH:
2299 printf_unfiltered ("long branch\n");
2300 break;
2301 case PARAMETER_RELOCATION:
2302 printf_unfiltered ("parameter relocation\n");
2303 break;
2304 case EXPORT:
2305 printf_unfiltered ("export\n");
2306 break;
2307 case IMPORT:
2308 printf_unfiltered ("import\n");
2309 break;
2310 case IMPORT_SHLIB:
2311 printf_unfiltered ("import shlib\n");
2312 break;
2313 default:
2314 printf_unfiltered ("unknown (%d)\n", u->stub_unwind.stub_type);
2315 }
2316 }
2317 }
2318
2319 int
2320 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2321 {
2322 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2323
2324 An example of this occurs when an a.out is linked against a foo.sl.
2325 The foo.sl defines a global bar(), and the a.out declares a signature
2326 for bar(). However, the a.out doesn't directly call bar(), but passes
2327 its address in another call.
2328
2329 If you have this scenario and attempt to "break bar" before running,
2330 gdb will find a minimal symbol for bar() in the a.out. But that
2331 symbol's address will be negative. What this appears to denote is
2332 an index backwards from the base of the procedure linkage table (PLT)
2333 into the data linkage table (DLT), the end of which is contiguous
2334 with the start of the PLT. This is clearly not a valid address for
2335 us to set a breakpoint on.
2336
2337 Note that one must be careful in how one checks for a negative address.
2338 0xc0000000 is a legitimate address of something in a shared text
2339 segment, for example. Since I don't know what the possible range
2340 is of these "really, truly negative" addresses that come from the
2341 minimal symbols, I'm resorting to the gross hack of checking the
2342 top byte of the address for all 1's. Sigh. */
2343
2344 return (!target_has_stack && (pc & 0xFF000000));
2345 }
2346
2347 /* Return the GDB type object for the "standard" data type of data
2348 in register N. */
2349
2350 static struct type *
2351 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2352 {
2353 if (reg_nr < HPPA_FP4_REGNUM)
2354 return builtin_type_uint32;
2355 else
2356 return builtin_type_ieee_single_big;
2357 }
2358
2359 /* Return the GDB type object for the "standard" data type of data
2360 in register N. hppa64 version. */
2361
2362 static struct type *
2363 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2364 {
2365 if (reg_nr < HPPA_FP4_REGNUM)
2366 return builtin_type_uint64;
2367 else
2368 return builtin_type_ieee_double_big;
2369 }
2370
2371 /* Return True if REGNUM is not a register available to the user
2372 through ptrace(). */
2373
2374 static int
2375 hppa_cannot_store_register (int regnum)
2376 {
2377 return (regnum == 0
2378 || regnum == HPPA_PCSQ_HEAD_REGNUM
2379 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2380 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2381
2382 }
2383
2384 static CORE_ADDR
2385 hppa_smash_text_address (CORE_ADDR addr)
2386 {
2387 /* The low two bits of the PC on the PA contain the privilege level.
2388 Some genius implementing a (non-GCC) compiler apparently decided
2389 this means that "addresses" in a text section therefore include a
2390 privilege level, and thus symbol tables should contain these bits.
2391 This seems like a bonehead thing to do--anyway, it seems to work
2392 for our purposes to just ignore those bits. */
2393
2394 return (addr &= ~0x3);
2395 }
2396
2397 /* Get the ith function argument for the current function. */
2398 static CORE_ADDR
2399 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2400 struct type *type)
2401 {
2402 CORE_ADDR addr;
2403 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2404 return addr;
2405 }
2406
2407 static void
2408 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2409 int regnum, void *buf)
2410 {
2411 ULONGEST tmp;
2412
2413 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2414 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2415 tmp &= ~0x3;
2416 store_unsigned_integer (buf, sizeof(tmp), tmp);
2417 }
2418
2419 static CORE_ADDR
2420 hppa_find_global_pointer (struct value *function)
2421 {
2422 return 0;
2423 }
2424
2425 void
2426 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2427 struct trad_frame_saved_reg saved_regs[],
2428 int regnum, int *optimizedp,
2429 enum lval_type *lvalp, CORE_ADDR *addrp,
2430 int *realnump, void *valuep)
2431 {
2432 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2433 {
2434 if (valuep)
2435 {
2436 CORE_ADDR pc;
2437
2438 trad_frame_get_prev_register (next_frame, saved_regs,
2439 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2440 lvalp, addrp, realnump, valuep);
2441
2442 pc = extract_unsigned_integer (valuep, 4);
2443 store_unsigned_integer (valuep, 4, pc + 4);
2444 }
2445
2446 /* It's a computed value. */
2447 *optimizedp = 0;
2448 *lvalp = not_lval;
2449 *addrp = 0;
2450 *realnump = -1;
2451 return;
2452 }
2453
2454 /* Make sure the "flags" register is zero in all unwound frames.
2455 The "flags" registers is a HP-UX specific wart, and only the code
2456 in hppa-hpux-tdep.c depends on it. However, it is easier to deal
2457 with it here. This shouldn't affect other systems since those
2458 should provide zero for the "flags" register anyway. */
2459 if (regnum == HPPA_FLAGS_REGNUM)
2460 {
2461 if (valuep)
2462 store_unsigned_integer (valuep,
2463 register_size (get_frame_arch (next_frame),
2464 regnum),
2465 0);
2466
2467 /* It's a computed value. */
2468 *optimizedp = 0;
2469 *lvalp = not_lval;
2470 *addrp = 0;
2471 *realnump = -1;
2472 return;
2473 }
2474
2475 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2476 optimizedp, lvalp, addrp, realnump, valuep);
2477 }
2478 \f
2479
2480 /* Here is a table of C type sizes on hppa with various compiles
2481 and options. I measured this on PA 9000/800 with HP-UX 11.11
2482 and these compilers:
2483
2484 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2485 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2486 /opt/aCC/bin/aCC B3910B A.03.45
2487 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2488
2489 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2490 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2491 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2492 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2493 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2494 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2495 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2496 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2497
2498 Each line is:
2499
2500 compiler and options
2501 char, short, int, long, long long
2502 float, double, long double
2503 char *, void (*)()
2504
2505 So all these compilers use either ILP32 or LP64 model.
2506 TODO: gcc has more options so it needs more investigation.
2507
2508 For floating point types, see:
2509
2510 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2511 HP-UX floating-point guide, hpux 11.00
2512
2513 -- chastain 2003-12-18 */
2514
2515 static struct gdbarch *
2516 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2517 {
2518 struct gdbarch_tdep *tdep;
2519 struct gdbarch *gdbarch;
2520
2521 /* Try to determine the ABI of the object we are loading. */
2522 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2523 {
2524 /* If it's a SOM file, assume it's HP/UX SOM. */
2525 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2526 info.osabi = GDB_OSABI_HPUX_SOM;
2527 }
2528
2529 /* find a candidate among the list of pre-declared architectures. */
2530 arches = gdbarch_list_lookup_by_info (arches, &info);
2531 if (arches != NULL)
2532 return (arches->gdbarch);
2533
2534 /* If none found, then allocate and initialize one. */
2535 tdep = XZALLOC (struct gdbarch_tdep);
2536 gdbarch = gdbarch_alloc (&info, tdep);
2537
2538 /* Determine from the bfd_arch_info structure if we are dealing with
2539 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2540 then default to a 32bit machine. */
2541 if (info.bfd_arch_info != NULL)
2542 tdep->bytes_per_address =
2543 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2544 else
2545 tdep->bytes_per_address = 4;
2546
2547 tdep->find_global_pointer = hppa_find_global_pointer;
2548
2549 /* Some parts of the gdbarch vector depend on whether we are running
2550 on a 32 bits or 64 bits target. */
2551 switch (tdep->bytes_per_address)
2552 {
2553 case 4:
2554 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2555 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2556 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2557 break;
2558 case 8:
2559 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2560 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2561 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2562 break;
2563 default:
2564 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2565 tdep->bytes_per_address);
2566 }
2567
2568 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2569 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2570
2571 /* The following gdbarch vector elements are the same in both ILP32
2572 and LP64, but might show differences some day. */
2573 set_gdbarch_long_long_bit (gdbarch, 64);
2574 set_gdbarch_long_double_bit (gdbarch, 128);
2575 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2576
2577 /* The following gdbarch vector elements do not depend on the address
2578 size, or in any other gdbarch element previously set. */
2579 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2580 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2581 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2582 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2583 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2584 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2585 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2586 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2587 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2588 set_gdbarch_read_pc (gdbarch, hppa_read_pc);
2589 set_gdbarch_write_pc (gdbarch, hppa_write_pc);
2590
2591 /* Helper for function argument information. */
2592 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2593
2594 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2595
2596 /* When a hardware watchpoint triggers, we'll move the inferior past
2597 it by removing all eventpoints; stepping past the instruction
2598 that caused the trigger; reinserting eventpoints; and checking
2599 whether any watched location changed. */
2600 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2601
2602 /* Inferior function call methods. */
2603 switch (tdep->bytes_per_address)
2604 {
2605 case 4:
2606 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2607 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2608 set_gdbarch_convert_from_func_ptr_addr
2609 (gdbarch, hppa32_convert_from_func_ptr_addr);
2610 break;
2611 case 8:
2612 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2613 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2614 break;
2615 default:
2616 internal_error (__FILE__, __LINE__, "bad switch");
2617 }
2618
2619 /* Struct return methods. */
2620 switch (tdep->bytes_per_address)
2621 {
2622 case 4:
2623 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2624 break;
2625 case 8:
2626 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2627 break;
2628 default:
2629 internal_error (__FILE__, __LINE__, "bad switch");
2630 }
2631
2632 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2633 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2634
2635 /* Frame unwind methods. */
2636 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2637 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2638
2639 /* Hook in ABI-specific overrides, if they have been registered. */
2640 gdbarch_init_osabi (info, gdbarch);
2641
2642 /* Hook in the default unwinders. */
2643 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2644 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2645 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2646
2647 return gdbarch;
2648 }
2649
2650 static void
2651 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2652 {
2653 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2654
2655 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2656 tdep->bytes_per_address);
2657 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2658 }
2659
2660 void
2661 _initialize_hppa_tdep (void)
2662 {
2663 struct cmd_list_element *c;
2664
2665 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2666
2667 hppa_objfile_priv_data = register_objfile_data ();
2668
2669 add_cmd ("unwind", class_maintenance, unwind_command,
2670 "Print unwind table entry at given address.",
2671 &maintenanceprintlist);
2672
2673 /* Debug this files internals. */
2674 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2675 Set whether hppa target specific debugging information should be displayed.", "\
2676 Show whether hppa target specific debugging information is displayed.", "\
2677 This flag controls whether hppa target specific debugging information is\n\
2678 displayed. This information is particularly useful for debugging frame\n\
2679 unwinding problems.", "hppa debug flag is %s.",
2680 NULL, NULL, &setdebuglist, &showdebuglist);
2681 }
This page took 0.084297 seconds and 5 git commands to generate.