* hppa-tdep.c (pc_in_linker_stub): New function.
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Machine-dependent code which would otherwise be in inflow.c and core.c,
2 for GDB, the GNU debugger. This code is for the HP PA-RISC cpu.
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39 #include <sys/ioctl.h>
40
41 #ifdef COFF_ENCAPSULATE
42 #include "a.out.encap.h"
43 #else
44 #include <a.out.h>
45 #endif
46 #ifndef N_SET_MAGIC
47 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
48 #endif
49
50 /*#include <sys/user.h> After a.out.h */
51 #include <sys/file.h>
52 #include <sys/stat.h>
53 #include <machine/psl.h>
54 #include "wait.h"
55
56 #include "gdbcore.h"
57 #include "gdbcmd.h"
58 #include "target.h"
59 #include "symfile.h"
60 #include "objfiles.h"
61
62 static int restore_pc_queue PARAMS ((struct frame_saved_regs *fsr));
63 static int hppa_alignof PARAMS ((struct type *arg));
64 CORE_ADDR frame_saved_pc PARAMS ((FRAME frame));
65
66 \f
67 /* Routines to extract various sized constants out of hppa
68 instructions. */
69
70 /* This assumes that no garbage lies outside of the lower bits of
71 value. */
72
73 int
74 sign_extend (val, bits)
75 unsigned val, bits;
76 {
77 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
78 }
79
80 /* For many immediate values the sign bit is the low bit! */
81
82 int
83 low_sign_extend (val, bits)
84 unsigned val, bits;
85 {
86 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
87 }
88 /* extract the immediate field from a ld{bhw}s instruction */
89
90 unsigned
91 get_field (val, from, to)
92 unsigned val, from, to;
93 {
94 val = val >> 31 - to;
95 return val & ((1 << 32 - from) - 1);
96 }
97
98 unsigned
99 set_field (val, from, to, new_val)
100 unsigned *val, from, to;
101 {
102 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
103 return *val = *val & mask | (new_val << (31 - from));
104 }
105
106 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
107
108 extract_3 (word)
109 unsigned word;
110 {
111 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
112 }
113
114 extract_5_load (word)
115 unsigned word;
116 {
117 return low_sign_extend (word >> 16 & MASK_5, 5);
118 }
119
120 /* extract the immediate field from a st{bhw}s instruction */
121
122 int
123 extract_5_store (word)
124 unsigned word;
125 {
126 return low_sign_extend (word & MASK_5, 5);
127 }
128
129 /* extract the immediate field from a break instruction */
130
131 unsigned
132 extract_5r_store (word)
133 unsigned word;
134 {
135 return (word & MASK_5);
136 }
137
138 /* extract the immediate field from a {sr}sm instruction */
139
140 unsigned
141 extract_5R_store (word)
142 unsigned word;
143 {
144 return (word >> 16 & MASK_5);
145 }
146
147 /* extract an 11 bit immediate field */
148
149 int
150 extract_11 (word)
151 unsigned word;
152 {
153 return low_sign_extend (word & MASK_11, 11);
154 }
155
156 /* extract a 14 bit immediate field */
157
158 int
159 extract_14 (word)
160 unsigned word;
161 {
162 return low_sign_extend (word & MASK_14, 14);
163 }
164
165 /* deposit a 14 bit constant in a word */
166
167 unsigned
168 deposit_14 (opnd, word)
169 int opnd;
170 unsigned word;
171 {
172 unsigned sign = (opnd < 0 ? 1 : 0);
173
174 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
175 }
176
177 /* extract a 21 bit constant */
178
179 int
180 extract_21 (word)
181 unsigned word;
182 {
183 int val;
184
185 word &= MASK_21;
186 word <<= 11;
187 val = GET_FIELD (word, 20, 20);
188 val <<= 11;
189 val |= GET_FIELD (word, 9, 19);
190 val <<= 2;
191 val |= GET_FIELD (word, 5, 6);
192 val <<= 5;
193 val |= GET_FIELD (word, 0, 4);
194 val <<= 2;
195 val |= GET_FIELD (word, 7, 8);
196 return sign_extend (val, 21) << 11;
197 }
198
199 /* deposit a 21 bit constant in a word. Although 21 bit constants are
200 usually the top 21 bits of a 32 bit constant, we assume that only
201 the low 21 bits of opnd are relevant */
202
203 unsigned
204 deposit_21 (opnd, word)
205 unsigned opnd, word;
206 {
207 unsigned val = 0;
208
209 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
210 val <<= 2;
211 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
212 val <<= 2;
213 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
214 val <<= 11;
215 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
216 val <<= 1;
217 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
218 return word | val;
219 }
220
221 /* extract a 12 bit constant from branch instructions */
222
223 int
224 extract_12 (word)
225 unsigned word;
226 {
227 return sign_extend (GET_FIELD (word, 19, 28) |
228 GET_FIELD (word, 29, 29) << 10 |
229 (word & 0x1) << 11, 12) << 2;
230 }
231
232 /* extract a 17 bit constant from branch instructions, returning the
233 19 bit signed value. */
234
235 int
236 extract_17 (word)
237 unsigned word;
238 {
239 return sign_extend (GET_FIELD (word, 19, 28) |
240 GET_FIELD (word, 29, 29) << 10 |
241 GET_FIELD (word, 11, 15) << 11 |
242 (word & 0x1) << 16, 17) << 2;
243 }
244 \f
245 static int use_unwind = 0;
246
247 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
248 of the objfiles seeking the unwind table entry for this PC. Each objfile
249 contains a sorted list of struct unwind_table_entry. Since we do a binary
250 search of the unwind tables, we depend upon them to be sorted. */
251
252 static struct unwind_table_entry *
253 find_unwind_entry(pc)
254 CORE_ADDR pc;
255 {
256 int first, middle, last;
257 struct objfile *objfile;
258
259 ALL_OBJFILES (objfile)
260 {
261 struct obj_unwind_info *ui;
262
263 ui = OBJ_UNWIND_INFO (objfile);
264
265 if (!ui)
266 continue;
267
268 /* First, check the cache */
269
270 if (ui->cache
271 && pc >= ui->cache->region_start
272 && pc <= ui->cache->region_end)
273 return ui->cache;
274
275 /* Not in the cache, do a binary search */
276
277 first = 0;
278 last = ui->last;
279
280 while (first <= last)
281 {
282 middle = (first + last) / 2;
283 if (pc >= ui->table[middle].region_start
284 && pc <= ui->table[middle].region_end)
285 {
286 ui->cache = &ui->table[middle];
287 return &ui->table[middle];
288 }
289
290 if (pc < ui->table[middle].region_start)
291 last = middle - 1;
292 else
293 first = middle + 1;
294 }
295 } /* ALL_OBJFILES() */
296 return NULL;
297 }
298
299 /* Called when no unwind descriptor was found for PC. Returns 1 if it
300 appears that PC is in a linker stub. */
301 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
302
303 static int
304 pc_in_linker_stub (pc)
305 CORE_ADDR pc;
306 {
307 int found_magic_instruction = 0;
308 int i;
309
310 /* We are looking for something like
311
312 ; $$dyncall jams RP into this special spot in the frame (RP')
313 ; before calling the "call stub"
314 ldw -18(sp),rp
315
316 ldsid (rp),r1 ; Get space associated with RP into r1
317 mtsp r1,sp ; Move it into space register 0
318 be,n 0(sr0),rp) ; back to your regularly scheduled program
319 */
320
321 /* Maximum known linker stub size is 4 instructions. Search forward
322 from the given PC, then backward. */
323 for (i = 0; i < 4; i++)
324 {
325 /* If we hit something with an unwind, stop searching this direction.
326
327 if (find_unwind_entry (pc + i * 4) != 0)
328 break;
329
330 /* Check for ldsid (rp),r1 which is the magic instruction for a
331 return from a cross-space function call. */
332 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
333 {
334 found_magic_instruction = 1;
335 break;
336 }
337 /* Add code to handle long call/branch and argument relocation stubs
338 here. */
339 }
340
341 if (found_magic_instruction != 0)
342 return 1;
343
344 /* Now look backward. */
345 for (i = 0; i < 4; i++)
346 {
347 /* If we hit something with an unwind, stop searching this direction.
348
349 if (find_unwind_entry (pc - i * 4) != 0)
350 break;
351
352 /* Check for ldsid (rp),r1 which is the magic instruction for a
353 return from a cross-space function call. */
354 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
355 {
356 found_magic_instruction = 1;
357 break;
358 }
359 /* Add code to handle long call/branch and argument relocation stubs
360 here. */
361 }
362 return found_magic_instruction;
363 }
364
365 static int
366 find_return_regnum(pc)
367 CORE_ADDR pc;
368 {
369 struct unwind_table_entry *u;
370
371 u = find_unwind_entry (pc);
372
373 if (!u)
374 return RP_REGNUM;
375
376 if (u->Millicode)
377 return 31;
378
379 return RP_REGNUM;
380 }
381
382 /* Return size of frame, or -1 if we should use a frame pointer. */
383 int
384 find_proc_framesize(pc)
385 CORE_ADDR pc;
386 {
387 struct unwind_table_entry *u;
388
389 if (!use_unwind)
390 return -1;
391
392 u = find_unwind_entry (pc);
393
394 if (!u)
395 {
396 if (pc_in_linker_stub (pc))
397 /* Linker stubs have a zero size frame. */
398 return 0;
399 else
400 return -1;
401 }
402
403 if (u->Save_SP)
404 /* If this bit is set, it means there is a frame pointer and we should
405 use it. */
406 return -1;
407
408 return u->Total_frame_size << 3;
409 }
410
411 /* Return offset from sp at which rp is saved, or 0 if not saved. */
412 static int rp_saved PARAMS ((CORE_ADDR));
413
414 static int
415 rp_saved (pc)
416 CORE_ADDR pc;
417 {
418 struct unwind_table_entry *u;
419
420 u = find_unwind_entry (pc);
421
422 if (!u)
423 {
424 if (pc_in_linker_stub (pc))
425 /* This is the so-called RP'. */
426 return -24;
427 else
428 return 0;
429 }
430
431 if (u->Save_RP)
432 return -20;
433 else
434 return 0;
435 }
436 \f
437 int
438 frameless_function_invocation (frame)
439 FRAME frame;
440 {
441
442 if (use_unwind)
443 {
444 struct unwind_table_entry *u;
445
446 u = find_unwind_entry (frame->pc);
447
448 if (u == 0)
449 return 0;
450
451 return (u->Total_frame_size == 0);
452 }
453 else
454 return frameless_look_for_prologue (frame);
455 }
456
457 CORE_ADDR
458 saved_pc_after_call (frame)
459 FRAME frame;
460 {
461 int ret_regnum;
462
463 ret_regnum = find_return_regnum (get_frame_pc (frame));
464
465 return read_register (ret_regnum) & ~0x3;
466 }
467 \f
468 CORE_ADDR
469 frame_saved_pc (frame)
470 FRAME frame;
471 {
472 CORE_ADDR pc = get_frame_pc (frame);
473
474 if (frameless_function_invocation (frame))
475 {
476 int ret_regnum;
477
478 ret_regnum = find_return_regnum (pc);
479
480 return read_register (ret_regnum) & ~0x3;
481 }
482 else
483 {
484 int rp_offset = rp_saved (pc);
485
486 if (rp_offset == 0)
487 return read_register (RP_REGNUM) & ~0x3;
488 else
489 return read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
490 }
491 }
492 \f
493 /* We need to correct the PC and the FP for the outermost frame when we are
494 in a system call. */
495
496 void
497 init_extra_frame_info (fromleaf, frame)
498 int fromleaf;
499 struct frame_info *frame;
500 {
501 int flags;
502 int framesize;
503
504 if (frame->next) /* Only do this for outermost frame */
505 return;
506
507 flags = read_register (FLAGS_REGNUM);
508 if (flags & 2) /* In system call? */
509 frame->pc = read_register (31) & ~0x3;
510
511 /* The outermost frame is always derived from PC-framesize */
512 framesize = find_proc_framesize(frame->pc);
513 if (framesize == -1)
514 frame->frame = read_register (FP_REGNUM);
515 else
516 frame->frame = read_register (SP_REGNUM) - framesize;
517
518 if (!frameless_function_invocation (frame)) /* Frameless? */
519 return; /* No, quit now */
520
521 /* For frameless functions, we need to look at the caller's frame */
522 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
523 if (framesize != -1)
524 frame->frame -= framesize;
525 }
526 \f
527 FRAME_ADDR
528 frame_chain (frame)
529 struct frame_info *frame;
530 {
531 int framesize;
532
533 framesize = find_proc_framesize(FRAME_SAVED_PC(frame));
534
535 if (framesize != -1)
536 return frame->frame - framesize;
537
538 return read_memory_integer (frame->frame, 4);
539 }
540 \f
541 /* To see if a frame chain is valid, see if the caller looks like it
542 was compiled with gcc. */
543
544 int
545 frame_chain_valid (chain, thisframe)
546 FRAME_ADDR chain;
547 FRAME thisframe;
548 {
549 struct minimal_symbol *msym;
550
551 if (!chain)
552 return 0;
553
554 if (use_unwind)
555 {
556
557 struct unwind_table_entry *u;
558
559 u = find_unwind_entry (thisframe->pc);
560
561 if (u == NULL)
562 /* FIXME, we should probably fall back to some other technique,
563 if we want to deal gracefully with stripped executables or others
564 without unwind info. */
565 return 0;
566
567 if (u->Save_SP || u->Total_frame_size)
568 return 1;
569
570 if (pc_in_linker_stub (thisframe->pc))
571 return 1;
572
573 return 0;
574 }
575 else
576 {
577 msym = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
578
579 if (msym
580 && (strcmp (SYMBOL_NAME (msym), "_start") == 0))
581 return 0;
582 else
583 return 1;
584 }
585 }
586
587 /*
588 * These functions deal with saving and restoring register state
589 * around a function call in the inferior. They keep the stack
590 * double-word aligned; eventually, on an hp700, the stack will have
591 * to be aligned to a 64-byte boundary.
592 */
593
594 int
595 push_dummy_frame ()
596 {
597 register CORE_ADDR sp;
598 register int regnum;
599 int int_buffer;
600 double freg_buffer;
601
602 /* Space for "arguments"; the RP goes in here. */
603 sp = read_register (SP_REGNUM) + 48;
604 int_buffer = read_register (RP_REGNUM) | 0x3;
605 write_memory (sp - 20, (char *)&int_buffer, 4);
606
607 int_buffer = read_register (FP_REGNUM);
608 write_memory (sp, (char *)&int_buffer, 4);
609
610 write_register (FP_REGNUM, sp);
611
612 sp += 8;
613
614 for (regnum = 1; regnum < 32; regnum++)
615 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
616 sp = push_word (sp, read_register (regnum));
617
618 sp += 4;
619
620 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
621 {
622 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
623 sp = push_bytes (sp, (char *)&freg_buffer, 8);
624 }
625 sp = push_word (sp, read_register (IPSW_REGNUM));
626 sp = push_word (sp, read_register (SAR_REGNUM));
627 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
628 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
629 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
630 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
631 write_register (SP_REGNUM, sp);
632 }
633
634 find_dummy_frame_regs (frame, frame_saved_regs)
635 struct frame_info *frame;
636 struct frame_saved_regs *frame_saved_regs;
637 {
638 CORE_ADDR fp = frame->frame;
639 int i;
640
641 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
642 frame_saved_regs->regs[FP_REGNUM] = fp;
643 frame_saved_regs->regs[1] = fp + 8;
644
645 for (fp += 12, i = 3; i < 32; i++)
646 {
647 if (i != FP_REGNUM)
648 {
649 frame_saved_regs->regs[i] = fp;
650 fp += 4;
651 }
652 }
653
654 fp += 4;
655 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
656 frame_saved_regs->regs[i] = fp;
657
658 frame_saved_regs->regs[IPSW_REGNUM] = fp;
659 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
660 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
661 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
662 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
663 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
664 }
665
666 int
667 hppa_pop_frame ()
668 {
669 register FRAME frame = get_current_frame ();
670 register CORE_ADDR fp;
671 register int regnum;
672 struct frame_saved_regs fsr;
673 struct frame_info *fi;
674 double freg_buffer;
675
676 fi = get_frame_info (frame);
677 fp = fi->frame;
678 get_frame_saved_regs (fi, &fsr);
679
680 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
681 restore_pc_queue (&fsr);
682
683 for (regnum = 31; regnum > 0; regnum--)
684 if (fsr.regs[regnum])
685 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
686
687 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
688 if (fsr.regs[regnum])
689 {
690 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
691 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
692 }
693
694 if (fsr.regs[IPSW_REGNUM])
695 write_register (IPSW_REGNUM,
696 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
697
698 if (fsr.regs[SAR_REGNUM])
699 write_register (SAR_REGNUM,
700 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
701
702 if (fsr.regs[PCOQ_TAIL_REGNUM])
703 write_register (PCOQ_TAIL_REGNUM,
704 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
705
706 write_register (FP_REGNUM, read_memory_integer (fp, 4));
707
708 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
709 write_register (SP_REGNUM, fp - 48);
710 else
711 write_register (SP_REGNUM, fp);
712
713 flush_cached_frames ();
714 set_current_frame (create_new_frame (read_register (FP_REGNUM),
715 read_pc ()));
716 }
717
718 /*
719 * After returning to a dummy on the stack, restore the instruction
720 * queue space registers. */
721
722 static int
723 restore_pc_queue (fsr)
724 struct frame_saved_regs *fsr;
725 {
726 CORE_ADDR pc = read_pc ();
727 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
728 int pid;
729 WAITTYPE w;
730 int insn_count;
731
732 /* Advance past break instruction in the call dummy. */
733 write_register (PCOQ_HEAD_REGNUM, pc + 4);
734 write_register (PCOQ_TAIL_REGNUM, pc + 8);
735
736 /*
737 * HPUX doesn't let us set the space registers or the space
738 * registers of the PC queue through ptrace. Boo, hiss.
739 * Conveniently, the call dummy has this sequence of instructions
740 * after the break:
741 * mtsp r21, sr0
742 * ble,n 0(sr0, r22)
743 *
744 * So, load up the registers and single step until we are in the
745 * right place.
746 */
747
748 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
749 write_register (22, new_pc);
750
751 for (insn_count = 0; insn_count < 3; insn_count++)
752 {
753 resume (1, 0);
754 target_wait(&w);
755
756 if (!WIFSTOPPED (w))
757 {
758 stop_signal = WTERMSIG (w);
759 terminal_ours_for_output ();
760 printf ("\nProgram terminated with signal %d, %s\n",
761 stop_signal, safe_strsignal (stop_signal));
762 fflush (stdout);
763 return 0;
764 }
765 }
766 fetch_inferior_registers (-1);
767 return 1;
768 }
769
770 CORE_ADDR
771 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
772 int nargs;
773 value *args;
774 CORE_ADDR sp;
775 int struct_return;
776 CORE_ADDR struct_addr;
777 {
778 /* array of arguments' offsets */
779 int *offset = (int *)alloca(nargs * sizeof (int));
780 int cum = 0;
781 int i, alignment;
782
783 for (i = 0; i < nargs; i++)
784 {
785 /* Coerce chars to int & float to double if necessary */
786 args[i] = value_arg_coerce (args[i]);
787
788 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
789
790 /* value must go at proper alignment. Assume alignment is a
791 power of two.*/
792 alignment = hppa_alignof (VALUE_TYPE (args[i]));
793 if (cum % alignment)
794 cum = (cum + alignment) & -alignment;
795 offset[i] = -cum;
796 }
797 sp += max ((cum + 7) & -8, 16);
798
799 for (i = 0; i < nargs; i++)
800 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
801 TYPE_LENGTH (VALUE_TYPE (args[i])));
802
803 if (struct_return)
804 write_register (28, struct_addr);
805 return sp + 32;
806 }
807
808 /*
809 * Insert the specified number of args and function address
810 * into a call sequence of the above form stored at DUMMYNAME.
811 *
812 * On the hppa we need to call the stack dummy through $$dyncall.
813 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
814 * real_pc, which is the location where gdb should start up the
815 * inferior to do the function call.
816 */
817
818 CORE_ADDR
819 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
820 REGISTER_TYPE *dummy;
821 CORE_ADDR pc;
822 CORE_ADDR fun;
823 int nargs;
824 value *args;
825 struct type *type;
826 int gcc_p;
827 {
828 CORE_ADDR dyncall_addr, sr4export_addr;
829 struct minimal_symbol *msymbol;
830
831 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
832 if (msymbol == NULL)
833 error ("Can't find an address for $$dyncall trampoline");
834
835 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
836
837 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
838 if (msymbol == NULL)
839 error ("Can't find an address for _sr4export trampoline");
840
841 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
842
843 dummy[9] = deposit_21 (fun >> 11, dummy[9]);
844 dummy[10] = deposit_14 (fun & MASK_11, dummy[10]);
845 dummy[12] = deposit_21 (sr4export_addr >> 11, dummy[12]);
846 dummy[13] = deposit_14 (sr4export_addr & MASK_11, dummy[13]);
847
848 write_register (22, pc);
849
850 return dyncall_addr;
851 }
852
853 /* return the alignment of a type in bytes. Structures have the maximum
854 alignment required by their fields. */
855
856 static int
857 hppa_alignof (arg)
858 struct type *arg;
859 {
860 int max_align, align, i;
861 switch (TYPE_CODE (arg))
862 {
863 case TYPE_CODE_PTR:
864 case TYPE_CODE_INT:
865 case TYPE_CODE_FLT:
866 return TYPE_LENGTH (arg);
867 case TYPE_CODE_ARRAY:
868 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
869 case TYPE_CODE_STRUCT:
870 case TYPE_CODE_UNION:
871 max_align = 2;
872 for (i = 0; i < TYPE_NFIELDS (arg); i++)
873 {
874 /* Bit fields have no real alignment. */
875 if (!TYPE_FIELD_BITPOS (arg, i))
876 {
877 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
878 max_align = max (max_align, align);
879 }
880 }
881 return max_align;
882 default:
883 return 4;
884 }
885 }
886
887 /* Print the register regnum, or all registers if regnum is -1 */
888
889 pa_do_registers_info (regnum, fpregs)
890 int regnum;
891 int fpregs;
892 {
893 char raw_regs [REGISTER_BYTES];
894 int i;
895
896 for (i = 0; i < NUM_REGS; i++)
897 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
898 if (regnum == -1)
899 pa_print_registers (raw_regs, regnum, fpregs);
900 else if (regnum < FP0_REGNUM)
901 printf ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
902 REGISTER_BYTE (regnum)));
903 else
904 pa_print_fp_reg (regnum);
905 }
906
907 pa_print_registers (raw_regs, regnum, fpregs)
908 char *raw_regs;
909 int regnum;
910 int fpregs;
911 {
912 int i;
913
914 for (i = 0; i < 18; i++)
915 printf ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
916 reg_names[i],
917 *(int *)(raw_regs + REGISTER_BYTE (i)),
918 reg_names[i + 18],
919 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
920 reg_names[i + 36],
921 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
922 reg_names[i + 54],
923 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
924
925 if (fpregs)
926 for (i = 72; i < NUM_REGS; i++)
927 pa_print_fp_reg (i);
928 }
929
930 pa_print_fp_reg (i)
931 int i;
932 {
933 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
934 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
935 REGISTER_TYPE val;
936
937 /* Get the data in raw format, then convert also to virtual format. */
938 read_relative_register_raw_bytes (i, raw_buffer);
939 REGISTER_CONVERT_TO_VIRTUAL (i, raw_buffer, virtual_buffer);
940
941 fputs_filtered (reg_names[i], stdout);
942 print_spaces_filtered (15 - strlen (reg_names[i]), stdout);
943
944 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, stdout, 0,
945 1, 0, Val_pretty_default);
946 printf_filtered ("\n");
947 }
948
949 /* Function calls that pass into a new compilation unit must pass through a
950 small piece of code that does long format (`external' in HPPA parlance)
951 jumps. We figure out where the trampoline is going to end up, and return
952 the PC of the final destination. If we aren't in a trampoline, we just
953 return NULL.
954
955 For computed calls, we just extract the new PC from r22. */
956
957 CORE_ADDR
958 skip_trampoline_code (pc, name)
959 CORE_ADDR pc;
960 char *name;
961 {
962 long inst0, inst1;
963 static CORE_ADDR dyncall = 0;
964 struct minimal_symbol *msym;
965
966 /* FIXME XXX - dyncall must be initialized whenever we get a new exec file */
967
968 if (!dyncall)
969 {
970 msym = lookup_minimal_symbol ("$$dyncall", NULL);
971 if (msym)
972 dyncall = SYMBOL_VALUE_ADDRESS (msym);
973 else
974 dyncall = -1;
975 }
976
977 if (pc == dyncall)
978 return (CORE_ADDR)(read_register (22) & ~0x3);
979
980 inst0 = read_memory_integer (pc, 4);
981 inst1 = read_memory_integer (pc+4, 4);
982
983 if ( (inst0 & 0xffe00000) == 0x20200000 /* ldil xxx, r1 */
984 && (inst1 & 0xffe0e002) == 0xe0202002) /* be,n yyy(sr4, r1) */
985 pc = extract_21 (inst0) + extract_17 (inst1);
986 else
987 pc = (CORE_ADDR)NULL;
988
989 return pc;
990 }
991
992 /* Advance PC across any function entry prologue instructions
993 to reach some "real" code. */
994
995 /* skip (stw rp, -20(0,sp)); copy 4,1; copy sp, 4; stwm 1,framesize(sp)
996 for gcc, or (stw rp, -20(0,sp); stwm 1, framesize(sp) for hcc */
997
998 CORE_ADDR
999 skip_prologue(pc)
1000 CORE_ADDR pc;
1001 {
1002 char buf[4];
1003 unsigned long inst;
1004 int status;
1005
1006 status = target_read_memory (pc, buf, 4);
1007 inst = extract_unsigned_integer (buf, 4);
1008 if (status != 0)
1009 return pc;
1010
1011 if (inst == 0x6BC23FD9) /* stw rp,-20(sp) */
1012 {
1013 if (read_memory_integer (pc + 4, 4) == 0x8040241) /* copy r4,r1 */
1014 pc += 16;
1015 else if ((read_memory_integer (pc + 4, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1016 pc += 8;
1017 }
1018 else if (read_memory_integer (pc, 4) == 0x8040241) /* copy r4,r1 */
1019 pc += 12;
1020 else if ((read_memory_integer (pc, 4) & ~MASK_14) == 0x68810000) /* stw r1,(r4) */
1021 pc += 4;
1022
1023 return pc;
1024 }
1025
1026 static void
1027 unwind_command (exp, from_tty)
1028 char *exp;
1029 int from_tty;
1030 {
1031 CORE_ADDR address;
1032 union
1033 {
1034 int *foo;
1035 struct unwind_table_entry *u;
1036 } xxx;
1037
1038 /* If we have an expression, evaluate it and use it as the address. */
1039
1040 if (exp != 0 && *exp != 0)
1041 address = parse_and_eval_address (exp);
1042 else
1043 return;
1044
1045 xxx.u = find_unwind_entry (address);
1046
1047 if (!xxx.u)
1048 {
1049 printf ("Can't find unwind table entry for PC 0x%x\n", address);
1050 return;
1051 }
1052
1053 printf ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
1054 xxx.foo[3]);
1055 }
1056
1057 void
1058 _initialize_hppa_tdep ()
1059 {
1060 add_com ("unwind", class_obscure, unwind_command, "Print unwind info\n");
1061 add_show_from_set
1062 (add_set_cmd ("use_unwind", class_obscure, var_boolean,
1063 (char *)&use_unwind,
1064 "Set the usage of unwind info", &setlist),
1065 &showlist);
1066 }
This page took 0.051453 seconds and 5 git commands to generate.