2004-11-23 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74
75 /* Handle 32/64-bit struct return conventions. */
76
77 static enum return_value_convention
78 hppa32_return_value (struct gdbarch *gdbarch,
79 struct type *type, struct regcache *regcache,
80 void *readbuf, const void *writebuf)
81 {
82 if (TYPE_LENGTH (type) <= 2 * 4)
83 {
84 /* The value always lives in the right hand end of the register
85 (or register pair)? */
86 int b;
87 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
88 int part = TYPE_LENGTH (type) % 4;
89 /* The left hand register contains only part of the value,
90 transfer that first so that the rest can be xfered as entire
91 4-byte registers. */
92 if (part > 0)
93 {
94 if (readbuf != NULL)
95 regcache_cooked_read_part (regcache, reg, 4 - part,
96 part, readbuf);
97 if (writebuf != NULL)
98 regcache_cooked_write_part (regcache, reg, 4 - part,
99 part, writebuf);
100 reg++;
101 }
102 /* Now transfer the remaining register values. */
103 for (b = part; b < TYPE_LENGTH (type); b += 4)
104 {
105 if (readbuf != NULL)
106 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
107 if (writebuf != NULL)
108 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
109 reg++;
110 }
111 return RETURN_VALUE_REGISTER_CONVENTION;
112 }
113 else
114 return RETURN_VALUE_STRUCT_CONVENTION;
115 }
116
117 static enum return_value_convention
118 hppa64_return_value (struct gdbarch *gdbarch,
119 struct type *type, struct regcache *regcache,
120 void *readbuf, const void *writebuf)
121 {
122 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
123 are in r28, padded on the left. Aggregates less that 65 bits are
124 in r28, right padded. Aggregates upto 128 bits are in r28 and
125 r29, right padded. */
126 if (TYPE_CODE (type) == TYPE_CODE_FLT
127 && TYPE_LENGTH (type) <= 8)
128 {
129 /* Floats are right aligned? */
130 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
131 if (readbuf != NULL)
132 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
133 TYPE_LENGTH (type), readbuf);
134 if (writebuf != NULL)
135 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
136 TYPE_LENGTH (type), writebuf);
137 return RETURN_VALUE_REGISTER_CONVENTION;
138 }
139 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
140 {
141 /* Integrals are right aligned. */
142 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
143 if (readbuf != NULL)
144 regcache_cooked_read_part (regcache, 28, offset,
145 TYPE_LENGTH (type), readbuf);
146 if (writebuf != NULL)
147 regcache_cooked_write_part (regcache, 28, offset,
148 TYPE_LENGTH (type), writebuf);
149 return RETURN_VALUE_REGISTER_CONVENTION;
150 }
151 else if (TYPE_LENGTH (type) <= 2 * 8)
152 {
153 /* Composite values are left aligned. */
154 int b;
155 for (b = 0; b < TYPE_LENGTH (type); b += 8)
156 {
157 int part = min (8, TYPE_LENGTH (type) - b);
158 if (readbuf != NULL)
159 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
160 (char *) readbuf + b);
161 if (writebuf != NULL)
162 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
163 (const char *) writebuf + b);
164 }
165 return RETURN_VALUE_REGISTER_CONVENTION;
166 }
167 else
168 return RETURN_VALUE_STRUCT_CONVENTION;
169 }
170
171 /* Routines to extract various sized constants out of hppa
172 instructions. */
173
174 /* This assumes that no garbage lies outside of the lower bits of
175 value. */
176
177 int
178 hppa_sign_extend (unsigned val, unsigned bits)
179 {
180 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
181 }
182
183 /* For many immediate values the sign bit is the low bit! */
184
185 int
186 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
187 {
188 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
189 }
190
191 /* Extract the bits at positions between FROM and TO, using HP's numbering
192 (MSB = 0). */
193
194 int
195 hppa_get_field (unsigned word, int from, int to)
196 {
197 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
198 }
199
200 /* extract the immediate field from a ld{bhw}s instruction */
201
202 int
203 hppa_extract_5_load (unsigned word)
204 {
205 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
206 }
207
208 /* extract the immediate field from a break instruction */
209
210 unsigned
211 hppa_extract_5r_store (unsigned word)
212 {
213 return (word & MASK_5);
214 }
215
216 /* extract the immediate field from a {sr}sm instruction */
217
218 unsigned
219 hppa_extract_5R_store (unsigned word)
220 {
221 return (word >> 16 & MASK_5);
222 }
223
224 /* extract a 14 bit immediate field */
225
226 int
227 hppa_extract_14 (unsigned word)
228 {
229 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
230 }
231
232 /* extract a 21 bit constant */
233
234 int
235 hppa_extract_21 (unsigned word)
236 {
237 int val;
238
239 word &= MASK_21;
240 word <<= 11;
241 val = hppa_get_field (word, 20, 20);
242 val <<= 11;
243 val |= hppa_get_field (word, 9, 19);
244 val <<= 2;
245 val |= hppa_get_field (word, 5, 6);
246 val <<= 5;
247 val |= hppa_get_field (word, 0, 4);
248 val <<= 2;
249 val |= hppa_get_field (word, 7, 8);
250 return hppa_sign_extend (val, 21) << 11;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 hppa_extract_17 (unsigned word)
258 {
259 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
260 hppa_get_field (word, 29, 29) << 10 |
261 hppa_get_field (word, 11, 15) << 11 |
262 (word & 0x1) << 16, 17) << 2;
263 }
264
265 CORE_ADDR
266 hppa_symbol_address(const char *sym)
267 {
268 struct minimal_symbol *minsym;
269
270 minsym = lookup_minimal_symbol (sym, NULL, NULL);
271 if (minsym)
272 return SYMBOL_VALUE_ADDRESS (minsym);
273 else
274 return (CORE_ADDR)-1;
275 }
276 \f
277
278 /* Compare the start address for two unwind entries returning 1 if
279 the first address is larger than the second, -1 if the second is
280 larger than the first, and zero if they are equal. */
281
282 static int
283 compare_unwind_entries (const void *arg1, const void *arg2)
284 {
285 const struct unwind_table_entry *a = arg1;
286 const struct unwind_table_entry *b = arg2;
287
288 if (a->region_start > b->region_start)
289 return 1;
290 else if (a->region_start < b->region_start)
291 return -1;
292 else
293 return 0;
294 }
295
296 static void
297 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
298 {
299 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
300 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 {
302 bfd_vma value = section->vma - section->filepos;
303 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
304
305 if (value < *low_text_segment_address)
306 *low_text_segment_address = value;
307 }
308 }
309
310 static void
311 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
312 asection *section, unsigned int entries, unsigned int size,
313 CORE_ADDR text_offset)
314 {
315 /* We will read the unwind entries into temporary memory, then
316 fill in the actual unwind table. */
317
318 if (size > 0)
319 {
320 unsigned long tmp;
321 unsigned i;
322 char *buf = alloca (size);
323 CORE_ADDR low_text_segment_address;
324
325 /* For ELF targets, then unwinds are supposed to
326 be segment relative offsets instead of absolute addresses.
327
328 Note that when loading a shared library (text_offset != 0) the
329 unwinds are already relative to the text_offset that will be
330 passed in. */
331 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
332 {
333 low_text_segment_address = -1;
334
335 bfd_map_over_sections (objfile->obfd,
336 record_text_segment_lowaddr,
337 &low_text_segment_address);
338
339 text_offset = low_text_segment_address;
340 }
341
342 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
343
344 /* Now internalize the information being careful to handle host/target
345 endian issues. */
346 for (i = 0; i < entries; i++)
347 {
348 table[i].region_start = bfd_get_32 (objfile->obfd,
349 (bfd_byte *) buf);
350 table[i].region_start += text_offset;
351 buf += 4;
352 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
353 table[i].region_end += text_offset;
354 buf += 4;
355 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
356 buf += 4;
357 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
358 table[i].Millicode = (tmp >> 30) & 0x1;
359 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
360 table[i].Region_description = (tmp >> 27) & 0x3;
361 table[i].reserved1 = (tmp >> 26) & 0x1;
362 table[i].Entry_SR = (tmp >> 25) & 0x1;
363 table[i].Entry_FR = (tmp >> 21) & 0xf;
364 table[i].Entry_GR = (tmp >> 16) & 0x1f;
365 table[i].Args_stored = (tmp >> 15) & 0x1;
366 table[i].Variable_Frame = (tmp >> 14) & 0x1;
367 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
368 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
369 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
370 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
371 table[i].Ada_Region = (tmp >> 9) & 0x1;
372 table[i].cxx_info = (tmp >> 8) & 0x1;
373 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
374 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
375 table[i].reserved2 = (tmp >> 5) & 0x1;
376 table[i].Save_SP = (tmp >> 4) & 0x1;
377 table[i].Save_RP = (tmp >> 3) & 0x1;
378 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
379 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
380 table[i].Cleanup_defined = tmp & 0x1;
381 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
382 buf += 4;
383 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
384 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
385 table[i].Large_frame = (tmp >> 29) & 0x1;
386 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
387 table[i].reserved4 = (tmp >> 27) & 0x1;
388 table[i].Total_frame_size = tmp & 0x7ffffff;
389
390 /* Stub unwinds are handled elsewhere. */
391 table[i].stub_unwind.stub_type = 0;
392 table[i].stub_unwind.padding = 0;
393 }
394 }
395 }
396
397 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
398 the object file. This info is used mainly by find_unwind_entry() to find
399 out the stack frame size and frame pointer used by procedures. We put
400 everything on the psymbol obstack in the objfile so that it automatically
401 gets freed when the objfile is destroyed. */
402
403 static void
404 read_unwind_info (struct objfile *objfile)
405 {
406 asection *unwind_sec, *stub_unwind_sec;
407 unsigned unwind_size, stub_unwind_size, total_size;
408 unsigned index, unwind_entries;
409 unsigned stub_entries, total_entries;
410 CORE_ADDR text_offset;
411 struct hppa_unwind_info *ui;
412 struct hppa_objfile_private *obj_private;
413
414 text_offset = ANOFFSET (objfile->section_offsets, 0);
415 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
416 sizeof (struct hppa_unwind_info));
417
418 ui->table = NULL;
419 ui->cache = NULL;
420 ui->last = -1;
421
422 /* For reasons unknown the HP PA64 tools generate multiple unwinder
423 sections in a single executable. So we just iterate over every
424 section in the BFD looking for unwinder sections intead of trying
425 to do a lookup with bfd_get_section_by_name.
426
427 First determine the total size of the unwind tables so that we
428 can allocate memory in a nice big hunk. */
429 total_entries = 0;
430 for (unwind_sec = objfile->obfd->sections;
431 unwind_sec;
432 unwind_sec = unwind_sec->next)
433 {
434 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
435 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
436 {
437 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
438 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
439
440 total_entries += unwind_entries;
441 }
442 }
443
444 /* Now compute the size of the stub unwinds. Note the ELF tools do not
445 use stub unwinds at the curren time. */
446 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
447
448 if (stub_unwind_sec)
449 {
450 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
451 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
452 }
453 else
454 {
455 stub_unwind_size = 0;
456 stub_entries = 0;
457 }
458
459 /* Compute total number of unwind entries and their total size. */
460 total_entries += stub_entries;
461 total_size = total_entries * sizeof (struct unwind_table_entry);
462
463 /* Allocate memory for the unwind table. */
464 ui->table = (struct unwind_table_entry *)
465 obstack_alloc (&objfile->objfile_obstack, total_size);
466 ui->last = total_entries - 1;
467
468 /* Now read in each unwind section and internalize the standard unwind
469 entries. */
470 index = 0;
471 for (unwind_sec = objfile->obfd->sections;
472 unwind_sec;
473 unwind_sec = unwind_sec->next)
474 {
475 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
476 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
477 {
478 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
479 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
480
481 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
482 unwind_entries, unwind_size, text_offset);
483 index += unwind_entries;
484 }
485 }
486
487 /* Now read in and internalize the stub unwind entries. */
488 if (stub_unwind_size > 0)
489 {
490 unsigned int i;
491 char *buf = alloca (stub_unwind_size);
492
493 /* Read in the stub unwind entries. */
494 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
495 0, stub_unwind_size);
496
497 /* Now convert them into regular unwind entries. */
498 for (i = 0; i < stub_entries; i++, index++)
499 {
500 /* Clear out the next unwind entry. */
501 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
502
503 /* Convert offset & size into region_start and region_end.
504 Stuff away the stub type into "reserved" fields. */
505 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
506 (bfd_byte *) buf);
507 ui->table[index].region_start += text_offset;
508 buf += 4;
509 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
510 (bfd_byte *) buf);
511 buf += 2;
512 ui->table[index].region_end
513 = ui->table[index].region_start + 4 *
514 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
515 buf += 2;
516 }
517
518 }
519
520 /* Unwind table needs to be kept sorted. */
521 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
522 compare_unwind_entries);
523
524 /* Keep a pointer to the unwind information. */
525 obj_private = (struct hppa_objfile_private *)
526 objfile_data (objfile, hppa_objfile_priv_data);
527 if (obj_private == NULL)
528 {
529 obj_private = (struct hppa_objfile_private *)
530 obstack_alloc (&objfile->objfile_obstack,
531 sizeof (struct hppa_objfile_private));
532 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
533 obj_private->unwind_info = NULL;
534 obj_private->so_info = NULL;
535 obj_private->dp = 0;
536 }
537 obj_private->unwind_info = ui;
538 }
539
540 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
541 of the objfiles seeking the unwind table entry for this PC. Each objfile
542 contains a sorted list of struct unwind_table_entry. Since we do a binary
543 search of the unwind tables, we depend upon them to be sorted. */
544
545 struct unwind_table_entry *
546 find_unwind_entry (CORE_ADDR pc)
547 {
548 int first, middle, last;
549 struct objfile *objfile;
550 struct hppa_objfile_private *priv;
551
552 if (hppa_debug)
553 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
554 paddr_nz (pc));
555
556 /* A function at address 0? Not in HP-UX! */
557 if (pc == (CORE_ADDR) 0)
558 {
559 if (hppa_debug)
560 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
561 return NULL;
562 }
563
564 ALL_OBJFILES (objfile)
565 {
566 struct hppa_unwind_info *ui;
567 ui = NULL;
568 priv = objfile_data (objfile, hppa_objfile_priv_data);
569 if (priv)
570 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
571
572 if (!ui)
573 {
574 read_unwind_info (objfile);
575 priv = objfile_data (objfile, hppa_objfile_priv_data);
576 if (priv == NULL)
577 error ("Internal error reading unwind information.");
578 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
579 }
580
581 /* First, check the cache */
582
583 if (ui->cache
584 && pc >= ui->cache->region_start
585 && pc <= ui->cache->region_end)
586 {
587 if (hppa_debug)
588 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
589 paddr_nz ((CORE_ADDR) ui->cache));
590 return ui->cache;
591 }
592
593 /* Not in the cache, do a binary search */
594
595 first = 0;
596 last = ui->last;
597
598 while (first <= last)
599 {
600 middle = (first + last) / 2;
601 if (pc >= ui->table[middle].region_start
602 && pc <= ui->table[middle].region_end)
603 {
604 ui->cache = &ui->table[middle];
605 if (hppa_debug)
606 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
607 paddr_nz ((CORE_ADDR) ui->cache));
608 return &ui->table[middle];
609 }
610
611 if (pc < ui->table[middle].region_start)
612 last = middle - 1;
613 else
614 first = middle + 1;
615 }
616 } /* ALL_OBJFILES() */
617
618 if (hppa_debug)
619 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
620
621 return NULL;
622 }
623
624 static const unsigned char *
625 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
626 {
627 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
628 (*len) = sizeof (breakpoint);
629 return breakpoint;
630 }
631
632 /* Return the name of a register. */
633
634 static const char *
635 hppa32_register_name (int i)
636 {
637 static char *names[] = {
638 "flags", "r1", "rp", "r3",
639 "r4", "r5", "r6", "r7",
640 "r8", "r9", "r10", "r11",
641 "r12", "r13", "r14", "r15",
642 "r16", "r17", "r18", "r19",
643 "r20", "r21", "r22", "r23",
644 "r24", "r25", "r26", "dp",
645 "ret0", "ret1", "sp", "r31",
646 "sar", "pcoqh", "pcsqh", "pcoqt",
647 "pcsqt", "eiem", "iir", "isr",
648 "ior", "ipsw", "goto", "sr4",
649 "sr0", "sr1", "sr2", "sr3",
650 "sr5", "sr6", "sr7", "cr0",
651 "cr8", "cr9", "ccr", "cr12",
652 "cr13", "cr24", "cr25", "cr26",
653 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
654 "fpsr", "fpe1", "fpe2", "fpe3",
655 "fpe4", "fpe5", "fpe6", "fpe7",
656 "fr4", "fr4R", "fr5", "fr5R",
657 "fr6", "fr6R", "fr7", "fr7R",
658 "fr8", "fr8R", "fr9", "fr9R",
659 "fr10", "fr10R", "fr11", "fr11R",
660 "fr12", "fr12R", "fr13", "fr13R",
661 "fr14", "fr14R", "fr15", "fr15R",
662 "fr16", "fr16R", "fr17", "fr17R",
663 "fr18", "fr18R", "fr19", "fr19R",
664 "fr20", "fr20R", "fr21", "fr21R",
665 "fr22", "fr22R", "fr23", "fr23R",
666 "fr24", "fr24R", "fr25", "fr25R",
667 "fr26", "fr26R", "fr27", "fr27R",
668 "fr28", "fr28R", "fr29", "fr29R",
669 "fr30", "fr30R", "fr31", "fr31R"
670 };
671 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
672 return NULL;
673 else
674 return names[i];
675 }
676
677 static const char *
678 hppa64_register_name (int i)
679 {
680 static char *names[] = {
681 "flags", "r1", "rp", "r3",
682 "r4", "r5", "r6", "r7",
683 "r8", "r9", "r10", "r11",
684 "r12", "r13", "r14", "r15",
685 "r16", "r17", "r18", "r19",
686 "r20", "r21", "r22", "r23",
687 "r24", "r25", "r26", "dp",
688 "ret0", "ret1", "sp", "r31",
689 "sar", "pcoqh", "pcsqh", "pcoqt",
690 "pcsqt", "eiem", "iir", "isr",
691 "ior", "ipsw", "goto", "sr4",
692 "sr0", "sr1", "sr2", "sr3",
693 "sr5", "sr6", "sr7", "cr0",
694 "cr8", "cr9", "ccr", "cr12",
695 "cr13", "cr24", "cr25", "cr26",
696 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
697 "fpsr", "fpe1", "fpe2", "fpe3",
698 "fr4", "fr5", "fr6", "fr7",
699 "fr8", "fr9", "fr10", "fr11",
700 "fr12", "fr13", "fr14", "fr15",
701 "fr16", "fr17", "fr18", "fr19",
702 "fr20", "fr21", "fr22", "fr23",
703 "fr24", "fr25", "fr26", "fr27",
704 "fr28", "fr29", "fr30", "fr31"
705 };
706 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
707 return NULL;
708 else
709 return names[i];
710 }
711
712 /* This function pushes a stack frame with arguments as part of the
713 inferior function calling mechanism.
714
715 This is the version of the function for the 32-bit PA machines, in
716 which later arguments appear at lower addresses. (The stack always
717 grows towards higher addresses.)
718
719 We simply allocate the appropriate amount of stack space and put
720 arguments into their proper slots. */
721
722 static CORE_ADDR
723 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
724 struct regcache *regcache, CORE_ADDR bp_addr,
725 int nargs, struct value **args, CORE_ADDR sp,
726 int struct_return, CORE_ADDR struct_addr)
727 {
728 /* Stack base address at which any pass-by-reference parameters are
729 stored. */
730 CORE_ADDR struct_end = 0;
731 /* Stack base address at which the first parameter is stored. */
732 CORE_ADDR param_end = 0;
733
734 /* The inner most end of the stack after all the parameters have
735 been pushed. */
736 CORE_ADDR new_sp = 0;
737
738 /* Two passes. First pass computes the location of everything,
739 second pass writes the bytes out. */
740 int write_pass;
741
742 /* Global pointer (r19) of the function we are trying to call. */
743 CORE_ADDR gp;
744
745 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
746
747 for (write_pass = 0; write_pass < 2; write_pass++)
748 {
749 CORE_ADDR struct_ptr = 0;
750 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
751 struct_ptr is adjusted for each argument below, so the first
752 argument will end up at sp-36. */
753 CORE_ADDR param_ptr = 32;
754 int i;
755 int small_struct = 0;
756
757 for (i = 0; i < nargs; i++)
758 {
759 struct value *arg = args[i];
760 struct type *type = check_typedef (value_type (arg));
761 /* The corresponding parameter that is pushed onto the
762 stack, and [possibly] passed in a register. */
763 char param_val[8];
764 int param_len;
765 memset (param_val, 0, sizeof param_val);
766 if (TYPE_LENGTH (type) > 8)
767 {
768 /* Large parameter, pass by reference. Store the value
769 in "struct" area and then pass its address. */
770 param_len = 4;
771 struct_ptr += align_up (TYPE_LENGTH (type), 8);
772 if (write_pass)
773 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
774 TYPE_LENGTH (type));
775 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
776 }
777 else if (TYPE_CODE (type) == TYPE_CODE_INT
778 || TYPE_CODE (type) == TYPE_CODE_ENUM)
779 {
780 /* Integer value store, right aligned. "unpack_long"
781 takes care of any sign-extension problems. */
782 param_len = align_up (TYPE_LENGTH (type), 4);
783 store_unsigned_integer (param_val, param_len,
784 unpack_long (type,
785 VALUE_CONTENTS (arg)));
786 }
787 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
788 {
789 /* Floating point value store, right aligned. */
790 param_len = align_up (TYPE_LENGTH (type), 4);
791 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
792 }
793 else
794 {
795 param_len = align_up (TYPE_LENGTH (type), 4);
796
797 /* Small struct value are stored right-aligned. */
798 memcpy (param_val + param_len - TYPE_LENGTH (type),
799 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
800
801 /* Structures of size 5, 6 and 7 bytes are special in that
802 the higher-ordered word is stored in the lower-ordered
803 argument, and even though it is a 8-byte quantity the
804 registers need not be 8-byte aligned. */
805 if (param_len > 4 && param_len < 8)
806 small_struct = 1;
807 }
808
809 param_ptr += param_len;
810 if (param_len == 8 && !small_struct)
811 param_ptr = align_up (param_ptr, 8);
812
813 /* First 4 non-FP arguments are passed in gr26-gr23.
814 First 4 32-bit FP arguments are passed in fr4L-fr7L.
815 First 2 64-bit FP arguments are passed in fr5 and fr7.
816
817 The rest go on the stack, starting at sp-36, towards lower
818 addresses. 8-byte arguments must be aligned to a 8-byte
819 stack boundary. */
820 if (write_pass)
821 {
822 write_memory (param_end - param_ptr, param_val, param_len);
823
824 /* There are some cases when we don't know the type
825 expected by the callee (e.g. for variadic functions), so
826 pass the parameters in both general and fp regs. */
827 if (param_ptr <= 48)
828 {
829 int grreg = 26 - (param_ptr - 36) / 4;
830 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
831 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
832
833 regcache_cooked_write (regcache, grreg, param_val);
834 regcache_cooked_write (regcache, fpLreg, param_val);
835
836 if (param_len > 4)
837 {
838 regcache_cooked_write (regcache, grreg + 1,
839 param_val + 4);
840
841 regcache_cooked_write (regcache, fpreg, param_val);
842 regcache_cooked_write (regcache, fpreg + 1,
843 param_val + 4);
844 }
845 }
846 }
847 }
848
849 /* Update the various stack pointers. */
850 if (!write_pass)
851 {
852 struct_end = sp + align_up (struct_ptr, 64);
853 /* PARAM_PTR already accounts for all the arguments passed
854 by the user. However, the ABI mandates minimum stack
855 space allocations for outgoing arguments. The ABI also
856 mandates minimum stack alignments which we must
857 preserve. */
858 param_end = struct_end + align_up (param_ptr, 64);
859 }
860 }
861
862 /* If a structure has to be returned, set up register 28 to hold its
863 address */
864 if (struct_return)
865 write_register (28, struct_addr);
866
867 gp = tdep->find_global_pointer (function);
868
869 if (gp != 0)
870 write_register (19, gp);
871
872 /* Set the return address. */
873 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
874
875 /* Update the Stack Pointer. */
876 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
877
878 return param_end;
879 }
880
881 /* This function pushes a stack frame with arguments as part of the
882 inferior function calling mechanism.
883
884 This is the version for the PA64, in which later arguments appear
885 at higher addresses. (The stack always grows towards higher
886 addresses.)
887
888 We simply allocate the appropriate amount of stack space and put
889 arguments into their proper slots.
890
891 This ABI also requires that the caller provide an argument pointer
892 to the callee, so we do that too. */
893
894 static CORE_ADDR
895 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
896 struct regcache *regcache, CORE_ADDR bp_addr,
897 int nargs, struct value **args, CORE_ADDR sp,
898 int struct_return, CORE_ADDR struct_addr)
899 {
900 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
901 reverse engineering testsuite failures. */
902
903 /* Stack base address at which any pass-by-reference parameters are
904 stored. */
905 CORE_ADDR struct_end = 0;
906 /* Stack base address at which the first parameter is stored. */
907 CORE_ADDR param_end = 0;
908
909 /* The inner most end of the stack after all the parameters have
910 been pushed. */
911 CORE_ADDR new_sp = 0;
912
913 /* Two passes. First pass computes the location of everything,
914 second pass writes the bytes out. */
915 int write_pass;
916 for (write_pass = 0; write_pass < 2; write_pass++)
917 {
918 CORE_ADDR struct_ptr = 0;
919 CORE_ADDR param_ptr = 0;
920 int i;
921 for (i = 0; i < nargs; i++)
922 {
923 struct value *arg = args[i];
924 struct type *type = check_typedef (value_type (arg));
925 if ((TYPE_CODE (type) == TYPE_CODE_INT
926 || TYPE_CODE (type) == TYPE_CODE_ENUM)
927 && TYPE_LENGTH (type) <= 8)
928 {
929 /* Integer value store, right aligned. "unpack_long"
930 takes care of any sign-extension problems. */
931 param_ptr += 8;
932 if (write_pass)
933 {
934 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
935 int reg = 27 - param_ptr / 8;
936 write_memory_unsigned_integer (param_end - param_ptr,
937 val, 8);
938 if (reg >= 19)
939 regcache_cooked_write_unsigned (regcache, reg, val);
940 }
941 }
942 else
943 {
944 /* Small struct value, store left aligned? */
945 int reg;
946 if (TYPE_LENGTH (type) > 8)
947 {
948 param_ptr = align_up (param_ptr, 16);
949 reg = 26 - param_ptr / 8;
950 param_ptr += align_up (TYPE_LENGTH (type), 16);
951 }
952 else
953 {
954 param_ptr = align_up (param_ptr, 8);
955 reg = 26 - param_ptr / 8;
956 param_ptr += align_up (TYPE_LENGTH (type), 8);
957 }
958 if (write_pass)
959 {
960 int byte;
961 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
962 TYPE_LENGTH (type));
963 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
964 {
965 if (reg >= 19)
966 {
967 int len = min (8, TYPE_LENGTH (type) - byte);
968 regcache_cooked_write_part (regcache, reg, 0, len,
969 VALUE_CONTENTS (arg) + byte);
970 }
971 reg--;
972 }
973 }
974 }
975 }
976 /* Update the various stack pointers. */
977 if (!write_pass)
978 {
979 struct_end = sp + struct_ptr;
980 /* PARAM_PTR already accounts for all the arguments passed
981 by the user. However, the ABI mandates minimum stack
982 space allocations for outgoing arguments. The ABI also
983 mandates minimum stack alignments which we must
984 preserve. */
985 param_end = struct_end + max (align_up (param_ptr, 16), 64);
986 }
987 }
988
989 /* If a structure has to be returned, set up register 28 to hold its
990 address */
991 if (struct_return)
992 write_register (28, struct_addr);
993
994 /* Set the return address. */
995 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
996
997 /* Update the Stack Pointer. */
998 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
999
1000 /* The stack will have 32 bytes of additional space for a frame marker. */
1001 return param_end + 64;
1002 }
1003
1004 static CORE_ADDR
1005 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1006 CORE_ADDR addr,
1007 struct target_ops *targ)
1008 {
1009 if (addr & 2)
1010 {
1011 CORE_ADDR plabel;
1012
1013 plabel = addr & ~3;
1014 target_read_memory(plabel, (char *)&addr, 4);
1015 }
1016
1017 return addr;
1018 }
1019
1020 static CORE_ADDR
1021 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1022 {
1023 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1024 and not _bit_)! */
1025 return align_up (addr, 64);
1026 }
1027
1028 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1029
1030 static CORE_ADDR
1031 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1032 {
1033 /* Just always 16-byte align. */
1034 return align_up (addr, 16);
1035 }
1036
1037
1038 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1039 bits. */
1040
1041 static CORE_ADDR
1042 hppa_target_read_pc (ptid_t ptid)
1043 {
1044 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1045
1046 /* The following test does not belong here. It is OS-specific, and belongs
1047 in native code. */
1048 /* Test SS_INSYSCALL */
1049 if (flags & 2)
1050 return read_register_pid (31, ptid) & ~0x3;
1051
1052 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1053 }
1054
1055 /* Write out the PC. If currently in a syscall, then also write the new
1056 PC value into %r31. */
1057
1058 static void
1059 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1060 {
1061 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1062
1063 /* The following test does not belong here. It is OS-specific, and belongs
1064 in native code. */
1065 /* If in a syscall, then set %r31. Also make sure to get the
1066 privilege bits set correctly. */
1067 /* Test SS_INSYSCALL */
1068 if (flags & 2)
1069 write_register_pid (31, v | 0x3, ptid);
1070
1071 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1072 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1073 }
1074
1075 /* return the alignment of a type in bytes. Structures have the maximum
1076 alignment required by their fields. */
1077
1078 static int
1079 hppa_alignof (struct type *type)
1080 {
1081 int max_align, align, i;
1082 CHECK_TYPEDEF (type);
1083 switch (TYPE_CODE (type))
1084 {
1085 case TYPE_CODE_PTR:
1086 case TYPE_CODE_INT:
1087 case TYPE_CODE_FLT:
1088 return TYPE_LENGTH (type);
1089 case TYPE_CODE_ARRAY:
1090 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1091 case TYPE_CODE_STRUCT:
1092 case TYPE_CODE_UNION:
1093 max_align = 1;
1094 for (i = 0; i < TYPE_NFIELDS (type); i++)
1095 {
1096 /* Bit fields have no real alignment. */
1097 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1098 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1099 {
1100 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1101 max_align = max (max_align, align);
1102 }
1103 }
1104 return max_align;
1105 default:
1106 return 4;
1107 }
1108 }
1109
1110 /* For the given instruction (INST), return any adjustment it makes
1111 to the stack pointer or zero for no adjustment.
1112
1113 This only handles instructions commonly found in prologues. */
1114
1115 static int
1116 prologue_inst_adjust_sp (unsigned long inst)
1117 {
1118 /* This must persist across calls. */
1119 static int save_high21;
1120
1121 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1122 if ((inst & 0xffffc000) == 0x37de0000)
1123 return hppa_extract_14 (inst);
1124
1125 /* stwm X,D(sp) */
1126 if ((inst & 0xffe00000) == 0x6fc00000)
1127 return hppa_extract_14 (inst);
1128
1129 /* std,ma X,D(sp) */
1130 if ((inst & 0xffe00008) == 0x73c00008)
1131 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1132
1133 /* addil high21,%r1; ldo low11,(%r1),%r30)
1134 save high bits in save_high21 for later use. */
1135 if ((inst & 0xffe00000) == 0x28200000)
1136 {
1137 save_high21 = hppa_extract_21 (inst);
1138 return 0;
1139 }
1140
1141 if ((inst & 0xffff0000) == 0x343e0000)
1142 return save_high21 + hppa_extract_14 (inst);
1143
1144 /* fstws as used by the HP compilers. */
1145 if ((inst & 0xffffffe0) == 0x2fd01220)
1146 return hppa_extract_5_load (inst);
1147
1148 /* No adjustment. */
1149 return 0;
1150 }
1151
1152 /* Return nonzero if INST is a branch of some kind, else return zero. */
1153
1154 static int
1155 is_branch (unsigned long inst)
1156 {
1157 switch (inst >> 26)
1158 {
1159 case 0x20:
1160 case 0x21:
1161 case 0x22:
1162 case 0x23:
1163 case 0x27:
1164 case 0x28:
1165 case 0x29:
1166 case 0x2a:
1167 case 0x2b:
1168 case 0x2f:
1169 case 0x30:
1170 case 0x31:
1171 case 0x32:
1172 case 0x33:
1173 case 0x38:
1174 case 0x39:
1175 case 0x3a:
1176 case 0x3b:
1177 return 1;
1178
1179 default:
1180 return 0;
1181 }
1182 }
1183
1184 /* Return the register number for a GR which is saved by INST or
1185 zero it INST does not save a GR. */
1186
1187 static int
1188 inst_saves_gr (unsigned long inst)
1189 {
1190 /* Does it look like a stw? */
1191 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1192 || (inst >> 26) == 0x1f
1193 || ((inst >> 26) == 0x1f
1194 && ((inst >> 6) == 0xa)))
1195 return hppa_extract_5R_store (inst);
1196
1197 /* Does it look like a std? */
1198 if ((inst >> 26) == 0x1c
1199 || ((inst >> 26) == 0x03
1200 && ((inst >> 6) & 0xf) == 0xb))
1201 return hppa_extract_5R_store (inst);
1202
1203 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1204 if ((inst >> 26) == 0x1b)
1205 return hppa_extract_5R_store (inst);
1206
1207 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1208 too. */
1209 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1210 || ((inst >> 26) == 0x3
1211 && (((inst >> 6) & 0xf) == 0x8
1212 || (inst >> 6) & 0xf) == 0x9))
1213 return hppa_extract_5R_store (inst);
1214
1215 return 0;
1216 }
1217
1218 /* Return the register number for a FR which is saved by INST or
1219 zero it INST does not save a FR.
1220
1221 Note we only care about full 64bit register stores (that's the only
1222 kind of stores the prologue will use).
1223
1224 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1225
1226 static int
1227 inst_saves_fr (unsigned long inst)
1228 {
1229 /* is this an FSTD ? */
1230 if ((inst & 0xfc00dfc0) == 0x2c001200)
1231 return hppa_extract_5r_store (inst);
1232 if ((inst & 0xfc000002) == 0x70000002)
1233 return hppa_extract_5R_store (inst);
1234 /* is this an FSTW ? */
1235 if ((inst & 0xfc00df80) == 0x24001200)
1236 return hppa_extract_5r_store (inst);
1237 if ((inst & 0xfc000002) == 0x7c000000)
1238 return hppa_extract_5R_store (inst);
1239 return 0;
1240 }
1241
1242 /* Advance PC across any function entry prologue instructions
1243 to reach some "real" code.
1244
1245 Use information in the unwind table to determine what exactly should
1246 be in the prologue. */
1247
1248
1249 static CORE_ADDR
1250 skip_prologue_hard_way (CORE_ADDR pc, int stop_before_branch)
1251 {
1252 char buf[4];
1253 CORE_ADDR orig_pc = pc;
1254 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1255 unsigned long args_stored, status, i, restart_gr, restart_fr;
1256 struct unwind_table_entry *u;
1257 int final_iteration;
1258
1259 restart_gr = 0;
1260 restart_fr = 0;
1261
1262 restart:
1263 u = find_unwind_entry (pc);
1264 if (!u)
1265 return pc;
1266
1267 /* If we are not at the beginning of a function, then return now. */
1268 if ((pc & ~0x3) != u->region_start)
1269 return pc;
1270
1271 /* This is how much of a frame adjustment we need to account for. */
1272 stack_remaining = u->Total_frame_size << 3;
1273
1274 /* Magic register saves we want to know about. */
1275 save_rp = u->Save_RP;
1276 save_sp = u->Save_SP;
1277
1278 /* An indication that args may be stored into the stack. Unfortunately
1279 the HPUX compilers tend to set this in cases where no args were
1280 stored too!. */
1281 args_stored = 1;
1282
1283 /* Turn the Entry_GR field into a bitmask. */
1284 save_gr = 0;
1285 for (i = 3; i < u->Entry_GR + 3; i++)
1286 {
1287 /* Frame pointer gets saved into a special location. */
1288 if (u->Save_SP && i == HPPA_FP_REGNUM)
1289 continue;
1290
1291 save_gr |= (1 << i);
1292 }
1293 save_gr &= ~restart_gr;
1294
1295 /* Turn the Entry_FR field into a bitmask too. */
1296 save_fr = 0;
1297 for (i = 12; i < u->Entry_FR + 12; i++)
1298 save_fr |= (1 << i);
1299 save_fr &= ~restart_fr;
1300
1301 final_iteration = 0;
1302
1303 /* Loop until we find everything of interest or hit a branch.
1304
1305 For unoptimized GCC code and for any HP CC code this will never ever
1306 examine any user instructions.
1307
1308 For optimzied GCC code we're faced with problems. GCC will schedule
1309 its prologue and make prologue instructions available for delay slot
1310 filling. The end result is user code gets mixed in with the prologue
1311 and a prologue instruction may be in the delay slot of the first branch
1312 or call.
1313
1314 Some unexpected things are expected with debugging optimized code, so
1315 we allow this routine to walk past user instructions in optimized
1316 GCC code. */
1317 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1318 || args_stored)
1319 {
1320 unsigned int reg_num;
1321 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1322 unsigned long old_save_rp, old_save_sp, next_inst;
1323
1324 /* Save copies of all the triggers so we can compare them later
1325 (only for HPC). */
1326 old_save_gr = save_gr;
1327 old_save_fr = save_fr;
1328 old_save_rp = save_rp;
1329 old_save_sp = save_sp;
1330 old_stack_remaining = stack_remaining;
1331
1332 status = deprecated_read_memory_nobpt (pc, buf, 4);
1333 inst = extract_unsigned_integer (buf, 4);
1334
1335 /* Yow! */
1336 if (status != 0)
1337 return pc;
1338
1339 /* Note the interesting effects of this instruction. */
1340 stack_remaining -= prologue_inst_adjust_sp (inst);
1341
1342 /* There are limited ways to store the return pointer into the
1343 stack. */
1344 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1345 save_rp = 0;
1346
1347 /* These are the only ways we save SP into the stack. At this time
1348 the HP compilers never bother to save SP into the stack. */
1349 if ((inst & 0xffffc000) == 0x6fc10000
1350 || (inst & 0xffffc00c) == 0x73c10008)
1351 save_sp = 0;
1352
1353 /* Are we loading some register with an offset from the argument
1354 pointer? */
1355 if ((inst & 0xffe00000) == 0x37a00000
1356 || (inst & 0xffffffe0) == 0x081d0240)
1357 {
1358 pc += 4;
1359 continue;
1360 }
1361
1362 /* Account for general and floating-point register saves. */
1363 reg_num = inst_saves_gr (inst);
1364 save_gr &= ~(1 << reg_num);
1365
1366 /* Ugh. Also account for argument stores into the stack.
1367 Unfortunately args_stored only tells us that some arguments
1368 where stored into the stack. Not how many or what kind!
1369
1370 This is a kludge as on the HP compiler sets this bit and it
1371 never does prologue scheduling. So once we see one, skip past
1372 all of them. We have similar code for the fp arg stores below.
1373
1374 FIXME. Can still die if we have a mix of GR and FR argument
1375 stores! */
1376 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1377 {
1378 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1379 {
1380 pc += 4;
1381 status = deprecated_read_memory_nobpt (pc, buf, 4);
1382 inst = extract_unsigned_integer (buf, 4);
1383 if (status != 0)
1384 return pc;
1385 reg_num = inst_saves_gr (inst);
1386 }
1387 args_stored = 0;
1388 continue;
1389 }
1390
1391 reg_num = inst_saves_fr (inst);
1392 save_fr &= ~(1 << reg_num);
1393
1394 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1395 next_inst = extract_unsigned_integer (buf, 4);
1396
1397 /* Yow! */
1398 if (status != 0)
1399 return pc;
1400
1401 /* We've got to be read to handle the ldo before the fp register
1402 save. */
1403 if ((inst & 0xfc000000) == 0x34000000
1404 && inst_saves_fr (next_inst) >= 4
1405 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1406 {
1407 /* So we drop into the code below in a reasonable state. */
1408 reg_num = inst_saves_fr (next_inst);
1409 pc -= 4;
1410 }
1411
1412 /* Ugh. Also account for argument stores into the stack.
1413 This is a kludge as on the HP compiler sets this bit and it
1414 never does prologue scheduling. So once we see one, skip past
1415 all of them. */
1416 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1417 {
1418 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1419 {
1420 pc += 8;
1421 status = deprecated_read_memory_nobpt (pc, buf, 4);
1422 inst = extract_unsigned_integer (buf, 4);
1423 if (status != 0)
1424 return pc;
1425 if ((inst & 0xfc000000) != 0x34000000)
1426 break;
1427 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1428 next_inst = extract_unsigned_integer (buf, 4);
1429 if (status != 0)
1430 return pc;
1431 reg_num = inst_saves_fr (next_inst);
1432 }
1433 args_stored = 0;
1434 continue;
1435 }
1436
1437 /* Quit if we hit any kind of branch. This can happen if a prologue
1438 instruction is in the delay slot of the first call/branch. */
1439 if (is_branch (inst) && stop_before_branch)
1440 break;
1441
1442 /* What a crock. The HP compilers set args_stored even if no
1443 arguments were stored into the stack (boo hiss). This could
1444 cause this code to then skip a bunch of user insns (up to the
1445 first branch).
1446
1447 To combat this we try to identify when args_stored was bogusly
1448 set and clear it. We only do this when args_stored is nonzero,
1449 all other resources are accounted for, and nothing changed on
1450 this pass. */
1451 if (args_stored
1452 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1453 && old_save_gr == save_gr && old_save_fr == save_fr
1454 && old_save_rp == save_rp && old_save_sp == save_sp
1455 && old_stack_remaining == stack_remaining)
1456 break;
1457
1458 /* Bump the PC. */
1459 pc += 4;
1460
1461 /* !stop_before_branch, so also look at the insn in the delay slot
1462 of the branch. */
1463 if (final_iteration)
1464 break;
1465 if (is_branch (inst))
1466 final_iteration = 1;
1467 }
1468
1469 /* We've got a tenative location for the end of the prologue. However
1470 because of limitations in the unwind descriptor mechanism we may
1471 have went too far into user code looking for the save of a register
1472 that does not exist. So, if there registers we expected to be saved
1473 but never were, mask them out and restart.
1474
1475 This should only happen in optimized code, and should be very rare. */
1476 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1477 {
1478 pc = orig_pc;
1479 restart_gr = save_gr;
1480 restart_fr = save_fr;
1481 goto restart;
1482 }
1483
1484 return pc;
1485 }
1486
1487
1488 /* Return the address of the PC after the last prologue instruction if
1489 we can determine it from the debug symbols. Else return zero. */
1490
1491 static CORE_ADDR
1492 after_prologue (CORE_ADDR pc)
1493 {
1494 struct symtab_and_line sal;
1495 CORE_ADDR func_addr, func_end;
1496 struct symbol *f;
1497
1498 /* If we can not find the symbol in the partial symbol table, then
1499 there is no hope we can determine the function's start address
1500 with this code. */
1501 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1502 return 0;
1503
1504 /* Get the line associated with FUNC_ADDR. */
1505 sal = find_pc_line (func_addr, 0);
1506
1507 /* There are only two cases to consider. First, the end of the source line
1508 is within the function bounds. In that case we return the end of the
1509 source line. Second is the end of the source line extends beyond the
1510 bounds of the current function. We need to use the slow code to
1511 examine instructions in that case.
1512
1513 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1514 the wrong thing to do. In fact, it should be entirely possible for this
1515 function to always return zero since the slow instruction scanning code
1516 is supposed to *always* work. If it does not, then it is a bug. */
1517 if (sal.end < func_end)
1518 return sal.end;
1519 else
1520 return 0;
1521 }
1522
1523 /* To skip prologues, I use this predicate. Returns either PC itself
1524 if the code at PC does not look like a function prologue; otherwise
1525 returns an address that (if we're lucky) follows the prologue.
1526
1527 hppa_skip_prologue is called by gdb to place a breakpoint in a function.
1528 It doesn't necessarily skips all the insns in the prologue. In fact
1529 we might not want to skip all the insns because a prologue insn may
1530 appear in the delay slot of the first branch, and we don't want to
1531 skip over the branch in that case. */
1532
1533 static CORE_ADDR
1534 hppa_skip_prologue (CORE_ADDR pc)
1535 {
1536 unsigned long inst;
1537 int offset;
1538 CORE_ADDR post_prologue_pc;
1539 char buf[4];
1540
1541 /* See if we can determine the end of the prologue via the symbol table.
1542 If so, then return either PC, or the PC after the prologue, whichever
1543 is greater. */
1544
1545 post_prologue_pc = after_prologue (pc);
1546
1547 /* If after_prologue returned a useful address, then use it. Else
1548 fall back on the instruction skipping code.
1549
1550 Some folks have claimed this causes problems because the breakpoint
1551 may be the first instruction of the prologue. If that happens, then
1552 the instruction skipping code has a bug that needs to be fixed. */
1553 if (post_prologue_pc != 0)
1554 return max (pc, post_prologue_pc);
1555 else
1556 return (skip_prologue_hard_way (pc, 1));
1557 }
1558
1559 struct hppa_frame_cache
1560 {
1561 CORE_ADDR base;
1562 struct trad_frame_saved_reg *saved_regs;
1563 };
1564
1565 static struct hppa_frame_cache *
1566 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1567 {
1568 struct hppa_frame_cache *cache;
1569 long saved_gr_mask;
1570 long saved_fr_mask;
1571 CORE_ADDR this_sp;
1572 long frame_size;
1573 struct unwind_table_entry *u;
1574 CORE_ADDR prologue_end;
1575 int fp_in_r1 = 0;
1576 int i;
1577
1578 if (hppa_debug)
1579 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1580 frame_relative_level(next_frame));
1581
1582 if ((*this_cache) != NULL)
1583 {
1584 if (hppa_debug)
1585 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1586 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1587 return (*this_cache);
1588 }
1589 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1590 (*this_cache) = cache;
1591 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1592
1593 /* Yow! */
1594 u = find_unwind_entry (frame_pc_unwind (next_frame));
1595 if (!u)
1596 {
1597 if (hppa_debug)
1598 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1599 return (*this_cache);
1600 }
1601
1602 /* Turn the Entry_GR field into a bitmask. */
1603 saved_gr_mask = 0;
1604 for (i = 3; i < u->Entry_GR + 3; i++)
1605 {
1606 /* Frame pointer gets saved into a special location. */
1607 if (u->Save_SP && i == HPPA_FP_REGNUM)
1608 continue;
1609
1610 saved_gr_mask |= (1 << i);
1611 }
1612
1613 /* Turn the Entry_FR field into a bitmask too. */
1614 saved_fr_mask = 0;
1615 for (i = 12; i < u->Entry_FR + 12; i++)
1616 saved_fr_mask |= (1 << i);
1617
1618 /* Loop until we find everything of interest or hit a branch.
1619
1620 For unoptimized GCC code and for any HP CC code this will never ever
1621 examine any user instructions.
1622
1623 For optimized GCC code we're faced with problems. GCC will schedule
1624 its prologue and make prologue instructions available for delay slot
1625 filling. The end result is user code gets mixed in with the prologue
1626 and a prologue instruction may be in the delay slot of the first branch
1627 or call.
1628
1629 Some unexpected things are expected with debugging optimized code, so
1630 we allow this routine to walk past user instructions in optimized
1631 GCC code. */
1632 {
1633 int final_iteration = 0;
1634 CORE_ADDR pc, end_pc;
1635 int looking_for_sp = u->Save_SP;
1636 int looking_for_rp = u->Save_RP;
1637 int fp_loc = -1;
1638
1639 /* We have to use skip_prologue_hard_way instead of just
1640 skip_prologue_using_sal, in case we stepped into a function without
1641 symbol information. hppa_skip_prologue also bounds the returned
1642 pc by the passed in pc, so it will not return a pc in the next
1643 function.
1644
1645 We used to call hppa_skip_prologue to find the end of the prologue,
1646 but if some non-prologue instructions get scheduled into the prologue,
1647 and the program is compiled with debug information, the "easy" way
1648 in hppa_skip_prologue will return a prologue end that is too early
1649 for us to notice any potential frame adjustments. */
1650
1651 /* We used to use frame_func_unwind () to locate the beginning of the
1652 function to pass to skip_prologue (). However, when objects are
1653 compiled without debug symbols, frame_func_unwind can return the wrong
1654 function (or 0). We can do better than that by using unwind records. */
1655
1656 prologue_end = skip_prologue_hard_way (u->region_start, 0);
1657 end_pc = frame_pc_unwind (next_frame);
1658
1659 if (prologue_end != 0 && end_pc > prologue_end)
1660 end_pc = prologue_end;
1661
1662 frame_size = 0;
1663
1664 for (pc = u->region_start;
1665 ((saved_gr_mask || saved_fr_mask
1666 || looking_for_sp || looking_for_rp
1667 || frame_size < (u->Total_frame_size << 3))
1668 && pc < end_pc);
1669 pc += 4)
1670 {
1671 int reg;
1672 char buf4[4];
1673 long inst;
1674
1675 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1676 sizeof buf4))
1677 {
1678 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1679 return (*this_cache);
1680 }
1681
1682 inst = extract_unsigned_integer (buf4, sizeof buf4);
1683
1684 /* Note the interesting effects of this instruction. */
1685 frame_size += prologue_inst_adjust_sp (inst);
1686
1687 /* There are limited ways to store the return pointer into the
1688 stack. */
1689 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1690 {
1691 looking_for_rp = 0;
1692 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1693 }
1694 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1695 {
1696 looking_for_rp = 0;
1697 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1698 }
1699 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1700 {
1701 looking_for_rp = 0;
1702 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1703 }
1704
1705 /* Check to see if we saved SP into the stack. This also
1706 happens to indicate the location of the saved frame
1707 pointer. */
1708 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1709 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1710 {
1711 looking_for_sp = 0;
1712 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1713 }
1714 else if (inst == 0x08030241) /* copy %r3, %r1 */
1715 {
1716 fp_in_r1 = 1;
1717 }
1718
1719 /* Account for general and floating-point register saves. */
1720 reg = inst_saves_gr (inst);
1721 if (reg >= 3 && reg <= 18
1722 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1723 {
1724 saved_gr_mask &= ~(1 << reg);
1725 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1726 /* stwm with a positive displacement is a _post_
1727 _modify_. */
1728 cache->saved_regs[reg].addr = 0;
1729 else if ((inst & 0xfc00000c) == 0x70000008)
1730 /* A std has explicit post_modify forms. */
1731 cache->saved_regs[reg].addr = 0;
1732 else
1733 {
1734 CORE_ADDR offset;
1735
1736 if ((inst >> 26) == 0x1c)
1737 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1738 else if ((inst >> 26) == 0x03)
1739 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1740 else
1741 offset = hppa_extract_14 (inst);
1742
1743 /* Handle code with and without frame pointers. */
1744 if (u->Save_SP)
1745 cache->saved_regs[reg].addr = offset;
1746 else
1747 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1748 }
1749 }
1750
1751 /* GCC handles callee saved FP regs a little differently.
1752
1753 It emits an instruction to put the value of the start of
1754 the FP store area into %r1. It then uses fstds,ma with a
1755 basereg of %r1 for the stores.
1756
1757 HP CC emits them at the current stack pointer modifying the
1758 stack pointer as it stores each register. */
1759
1760 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1761 if ((inst & 0xffffc000) == 0x34610000
1762 || (inst & 0xffffc000) == 0x37c10000)
1763 fp_loc = hppa_extract_14 (inst);
1764
1765 reg = inst_saves_fr (inst);
1766 if (reg >= 12 && reg <= 21)
1767 {
1768 /* Note +4 braindamage below is necessary because the FP
1769 status registers are internally 8 registers rather than
1770 the expected 4 registers. */
1771 saved_fr_mask &= ~(1 << reg);
1772 if (fp_loc == -1)
1773 {
1774 /* 1st HP CC FP register store. After this
1775 instruction we've set enough state that the GCC and
1776 HPCC code are both handled in the same manner. */
1777 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1778 fp_loc = 8;
1779 }
1780 else
1781 {
1782 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1783 fp_loc += 8;
1784 }
1785 }
1786
1787 /* Quit if we hit any kind of branch the previous iteration. */
1788 if (final_iteration)
1789 break;
1790 /* We want to look precisely one instruction beyond the branch
1791 if we have not found everything yet. */
1792 if (is_branch (inst))
1793 final_iteration = 1;
1794 }
1795 }
1796
1797 {
1798 /* The frame base always represents the value of %sp at entry to
1799 the current function (and is thus equivalent to the "saved"
1800 stack pointer. */
1801 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1802 CORE_ADDR fp;
1803
1804 if (hppa_debug)
1805 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1806 "prologue_end=0x%s) ",
1807 paddr_nz (this_sp),
1808 paddr_nz (frame_pc_unwind (next_frame)),
1809 paddr_nz (prologue_end));
1810
1811 /* Check to see if a frame pointer is available, and use it for
1812 frame unwinding if it is.
1813
1814 There are some situations where we need to rely on the frame
1815 pointer to do stack unwinding. For example, if a function calls
1816 alloca (), the stack pointer can get adjusted inside the body of
1817 the function. In this case, the ABI requires that the compiler
1818 maintain a frame pointer for the function.
1819
1820 The unwind record has a flag (alloca_frame) that indicates that
1821 a function has a variable frame; unfortunately, gcc/binutils
1822 does not set this flag. Instead, whenever a frame pointer is used
1823 and saved on the stack, the Save_SP flag is set. We use this to
1824 decide whether to use the frame pointer for unwinding.
1825
1826 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1827 instead of Save_SP. */
1828
1829 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1830
1831 if (frame_pc_unwind (next_frame) >= prologue_end
1832 && u->Save_SP && fp != 0)
1833 {
1834 cache->base = fp;
1835
1836 if (hppa_debug)
1837 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1838 paddr_nz (cache->base));
1839 }
1840 else if (u->Save_SP
1841 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1842 {
1843 /* Both we're expecting the SP to be saved and the SP has been
1844 saved. The entry SP value is saved at this frame's SP
1845 address. */
1846 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1847
1848 if (hppa_debug)
1849 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1850 paddr_nz (cache->base));
1851 }
1852 else
1853 {
1854 /* The prologue has been slowly allocating stack space. Adjust
1855 the SP back. */
1856 cache->base = this_sp - frame_size;
1857 if (hppa_debug)
1858 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1859 paddr_nz (cache->base));
1860
1861 }
1862 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1863 }
1864
1865 /* The PC is found in the "return register", "Millicode" uses "r31"
1866 as the return register while normal code uses "rp". */
1867 if (u->Millicode)
1868 {
1869 if (trad_frame_addr_p (cache->saved_regs, 31))
1870 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1871 else
1872 {
1873 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1874 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1875 }
1876 }
1877 else
1878 {
1879 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1880 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1881 else
1882 {
1883 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1884 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1885 }
1886 }
1887
1888 /* If Save_SP is set, then we expect the frame pointer to be saved in the
1889 frame. However, there is a one-insn window where we haven't saved it
1890 yet, but we've already clobbered it. Detect this case and fix it up.
1891
1892 The prologue sequence for frame-pointer functions is:
1893 0: stw %rp, -20(%sp)
1894 4: copy %r3, %r1
1895 8: copy %sp, %r3
1896 c: stw,ma %r1, XX(%sp)
1897
1898 So if we are at offset c, the r3 value that we want is not yet saved
1899 on the stack, but it's been overwritten. The prologue analyzer will
1900 set fp_in_r1 when it sees the copy insn so we know to get the value
1901 from r1 instead. */
1902 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM)
1903 && fp_in_r1)
1904 {
1905 ULONGEST r1 = frame_unwind_register_unsigned (next_frame, 1);
1906 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, r1);
1907 }
1908
1909 {
1910 /* Convert all the offsets into addresses. */
1911 int reg;
1912 for (reg = 0; reg < NUM_REGS; reg++)
1913 {
1914 if (trad_frame_addr_p (cache->saved_regs, reg))
1915 cache->saved_regs[reg].addr += cache->base;
1916 }
1917 }
1918
1919 if (hppa_debug)
1920 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1921 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1922 return (*this_cache);
1923 }
1924
1925 static void
1926 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1927 struct frame_id *this_id)
1928 {
1929 struct hppa_frame_cache *info;
1930 CORE_ADDR pc = frame_pc_unwind (next_frame);
1931 struct unwind_table_entry *u;
1932
1933 info = hppa_frame_cache (next_frame, this_cache);
1934 u = find_unwind_entry (pc);
1935
1936 (*this_id) = frame_id_build (info->base, u->region_start);
1937 }
1938
1939 static void
1940 hppa_frame_prev_register (struct frame_info *next_frame,
1941 void **this_cache,
1942 int regnum, int *optimizedp,
1943 enum lval_type *lvalp, CORE_ADDR *addrp,
1944 int *realnump, void *valuep)
1945 {
1946 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1947 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1948 optimizedp, lvalp, addrp, realnump, valuep);
1949 }
1950
1951 static const struct frame_unwind hppa_frame_unwind =
1952 {
1953 NORMAL_FRAME,
1954 hppa_frame_this_id,
1955 hppa_frame_prev_register
1956 };
1957
1958 static const struct frame_unwind *
1959 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1960 {
1961 CORE_ADDR pc = frame_pc_unwind (next_frame);
1962
1963 if (find_unwind_entry (pc))
1964 return &hppa_frame_unwind;
1965
1966 return NULL;
1967 }
1968
1969 /* This is a generic fallback frame unwinder that kicks in if we fail all
1970 the other ones. Normally we would expect the stub and regular unwinder
1971 to work, but in some cases we might hit a function that just doesn't
1972 have any unwind information available. In this case we try to do
1973 unwinding solely based on code reading. This is obviously going to be
1974 slow, so only use this as a last resort. Currently this will only
1975 identify the stack and pc for the frame. */
1976
1977 static struct hppa_frame_cache *
1978 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1979 {
1980 struct hppa_frame_cache *cache;
1981 unsigned int frame_size;
1982 int found_rp;
1983 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1984
1985 if (hppa_debug)
1986 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1987 frame_relative_level(next_frame));
1988
1989 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1990 (*this_cache) = cache;
1991 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1992
1993 pc = frame_func_unwind (next_frame);
1994 cur_pc = frame_pc_unwind (next_frame);
1995 frame_size = 0;
1996 found_rp = 0;
1997
1998 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1999
2000 if (start_pc == 0 || end_pc == 0)
2001 {
2002 error ("Cannot find bounds of current function (@0x%s), unwinding will "
2003 "fail.", paddr_nz (pc));
2004 return cache;
2005 }
2006
2007 if (end_pc > cur_pc)
2008 end_pc = cur_pc;
2009
2010 for (pc = start_pc; pc < end_pc; pc += 4)
2011 {
2012 unsigned int insn;
2013
2014 insn = read_memory_unsigned_integer (pc, 4);
2015
2016 frame_size += prologue_inst_adjust_sp (insn);
2017
2018 /* There are limited ways to store the return pointer into the
2019 stack. */
2020 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
2021 {
2022 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
2023 found_rp = 1;
2024 }
2025 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
2026 {
2027 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
2028 found_rp = 1;
2029 }
2030 }
2031
2032 if (hppa_debug)
2033 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2034 frame_size, found_rp);
2035
2036 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2037 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2038
2039 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2040 {
2041 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2042 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2043 }
2044 else
2045 {
2046 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2047 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2048 }
2049
2050 return cache;
2051 }
2052
2053 static void
2054 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2055 struct frame_id *this_id)
2056 {
2057 struct hppa_frame_cache *info =
2058 hppa_fallback_frame_cache (next_frame, this_cache);
2059 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2060 }
2061
2062 static void
2063 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2064 void **this_cache,
2065 int regnum, int *optimizedp,
2066 enum lval_type *lvalp, CORE_ADDR *addrp,
2067 int *realnump, void *valuep)
2068 {
2069 struct hppa_frame_cache *info =
2070 hppa_fallback_frame_cache (next_frame, this_cache);
2071 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2072 optimizedp, lvalp, addrp, realnump, valuep);
2073 }
2074
2075 static const struct frame_unwind hppa_fallback_frame_unwind =
2076 {
2077 NORMAL_FRAME,
2078 hppa_fallback_frame_this_id,
2079 hppa_fallback_frame_prev_register
2080 };
2081
2082 static const struct frame_unwind *
2083 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2084 {
2085 return &hppa_fallback_frame_unwind;
2086 }
2087
2088 /* Stub frames, used for all kinds of call stubs. */
2089 struct hppa_stub_unwind_cache
2090 {
2091 CORE_ADDR base;
2092 struct trad_frame_saved_reg *saved_regs;
2093 };
2094
2095 static struct hppa_stub_unwind_cache *
2096 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2097 void **this_cache)
2098 {
2099 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2100 struct hppa_stub_unwind_cache *info;
2101 struct unwind_table_entry *u;
2102
2103 if (*this_cache)
2104 return *this_cache;
2105
2106 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2107 *this_cache = info;
2108 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2109
2110 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2111
2112 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2113 {
2114 /* HPUX uses export stubs in function calls; the export stub clobbers
2115 the return value of the caller, and, later restores it from the
2116 stack. */
2117 u = find_unwind_entry (frame_pc_unwind (next_frame));
2118
2119 if (u && u->stub_unwind.stub_type == EXPORT)
2120 {
2121 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2122
2123 return info;
2124 }
2125 }
2126
2127 /* By default we assume that stubs do not change the rp. */
2128 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2129
2130 return info;
2131 }
2132
2133 static void
2134 hppa_stub_frame_this_id (struct frame_info *next_frame,
2135 void **this_prologue_cache,
2136 struct frame_id *this_id)
2137 {
2138 struct hppa_stub_unwind_cache *info
2139 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2140 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2141 }
2142
2143 static void
2144 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2145 void **this_prologue_cache,
2146 int regnum, int *optimizedp,
2147 enum lval_type *lvalp, CORE_ADDR *addrp,
2148 int *realnump, void *valuep)
2149 {
2150 struct hppa_stub_unwind_cache *info
2151 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2152 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2153 optimizedp, lvalp, addrp, realnump, valuep);
2154 }
2155
2156 static const struct frame_unwind hppa_stub_frame_unwind = {
2157 NORMAL_FRAME,
2158 hppa_stub_frame_this_id,
2159 hppa_stub_frame_prev_register
2160 };
2161
2162 static const struct frame_unwind *
2163 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2164 {
2165 CORE_ADDR pc = frame_pc_unwind (next_frame);
2166 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2167 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2168
2169 if (pc == 0
2170 || (tdep->in_solib_call_trampoline != NULL
2171 && tdep->in_solib_call_trampoline (pc, NULL))
2172 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2173 return &hppa_stub_frame_unwind;
2174 return NULL;
2175 }
2176
2177 static struct frame_id
2178 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2179 {
2180 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2181 HPPA_SP_REGNUM),
2182 frame_pc_unwind (next_frame));
2183 }
2184
2185 static CORE_ADDR
2186 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2187 {
2188 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2189 }
2190
2191 /* Instead of this nasty cast, add a method pvoid() that prints out a
2192 host VOID data type (remember %p isn't portable). */
2193
2194 static CORE_ADDR
2195 hppa_pointer_to_address_hack (void *ptr)
2196 {
2197 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2198 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2199 }
2200
2201 static void
2202 unwind_command (char *exp, int from_tty)
2203 {
2204 CORE_ADDR address;
2205 struct unwind_table_entry *u;
2206
2207 /* If we have an expression, evaluate it and use it as the address. */
2208
2209 if (exp != 0 && *exp != 0)
2210 address = parse_and_eval_address (exp);
2211 else
2212 return;
2213
2214 u = find_unwind_entry (address);
2215
2216 if (!u)
2217 {
2218 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2219 return;
2220 }
2221
2222 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2223 paddr_nz (hppa_pointer_to_address_hack (u)));
2224
2225 printf_unfiltered ("\tregion_start = ");
2226 print_address (u->region_start, gdb_stdout);
2227 gdb_flush (gdb_stdout);
2228
2229 printf_unfiltered ("\n\tregion_end = ");
2230 print_address (u->region_end, gdb_stdout);
2231 gdb_flush (gdb_stdout);
2232
2233 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2234
2235 printf_unfiltered ("\n\tflags =");
2236 pif (Cannot_unwind);
2237 pif (Millicode);
2238 pif (Millicode_save_sr0);
2239 pif (Entry_SR);
2240 pif (Args_stored);
2241 pif (Variable_Frame);
2242 pif (Separate_Package_Body);
2243 pif (Frame_Extension_Millicode);
2244 pif (Stack_Overflow_Check);
2245 pif (Two_Instruction_SP_Increment);
2246 pif (Ada_Region);
2247 pif (Save_SP);
2248 pif (Save_RP);
2249 pif (Save_MRP_in_frame);
2250 pif (extn_ptr_defined);
2251 pif (Cleanup_defined);
2252 pif (MPE_XL_interrupt_marker);
2253 pif (HP_UX_interrupt_marker);
2254 pif (Large_frame);
2255
2256 putchar_unfiltered ('\n');
2257
2258 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2259
2260 pin (Region_description);
2261 pin (Entry_FR);
2262 pin (Entry_GR);
2263 pin (Total_frame_size);
2264 }
2265
2266 int
2267 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2268 {
2269 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2270
2271 An example of this occurs when an a.out is linked against a foo.sl.
2272 The foo.sl defines a global bar(), and the a.out declares a signature
2273 for bar(). However, the a.out doesn't directly call bar(), but passes
2274 its address in another call.
2275
2276 If you have this scenario and attempt to "break bar" before running,
2277 gdb will find a minimal symbol for bar() in the a.out. But that
2278 symbol's address will be negative. What this appears to denote is
2279 an index backwards from the base of the procedure linkage table (PLT)
2280 into the data linkage table (DLT), the end of which is contiguous
2281 with the start of the PLT. This is clearly not a valid address for
2282 us to set a breakpoint on.
2283
2284 Note that one must be careful in how one checks for a negative address.
2285 0xc0000000 is a legitimate address of something in a shared text
2286 segment, for example. Since I don't know what the possible range
2287 is of these "really, truly negative" addresses that come from the
2288 minimal symbols, I'm resorting to the gross hack of checking the
2289 top byte of the address for all 1's. Sigh. */
2290
2291 return (!target_has_stack && (pc & 0xFF000000));
2292 }
2293
2294 static int
2295 hppa_instruction_nullified (struct gdbarch *gdbarch, struct regcache *regcache)
2296 {
2297 ULONGEST tmp, ipsw, flags;
2298
2299 regcache_cooked_read (regcache, HPPA_IPSW_REGNUM, &tmp);
2300 ipsw = extract_unsigned_integer (&tmp,
2301 register_size (gdbarch, HPPA_IPSW_REGNUM));
2302
2303 regcache_cooked_read (regcache, HPPA_FLAGS_REGNUM, &tmp);
2304 flags = extract_unsigned_integer (&tmp,
2305 register_size (gdbarch, HPPA_FLAGS_REGNUM));
2306
2307 return ((ipsw & 0x00200000) && !(flags & 0x2));
2308 }
2309
2310 /* Return the GDB type object for the "standard" data type of data
2311 in register N. */
2312
2313 static struct type *
2314 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2315 {
2316 if (reg_nr < HPPA_FP4_REGNUM)
2317 return builtin_type_uint32;
2318 else
2319 return builtin_type_ieee_single_big;
2320 }
2321
2322 /* Return the GDB type object for the "standard" data type of data
2323 in register N. hppa64 version. */
2324
2325 static struct type *
2326 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2327 {
2328 if (reg_nr < HPPA_FP4_REGNUM)
2329 return builtin_type_uint64;
2330 else
2331 return builtin_type_ieee_double_big;
2332 }
2333
2334 /* Return True if REGNUM is not a register available to the user
2335 through ptrace(). */
2336
2337 static int
2338 hppa_cannot_store_register (int regnum)
2339 {
2340 return (regnum == 0
2341 || regnum == HPPA_PCSQ_HEAD_REGNUM
2342 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2343 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2344
2345 }
2346
2347 static CORE_ADDR
2348 hppa_smash_text_address (CORE_ADDR addr)
2349 {
2350 /* The low two bits of the PC on the PA contain the privilege level.
2351 Some genius implementing a (non-GCC) compiler apparently decided
2352 this means that "addresses" in a text section therefore include a
2353 privilege level, and thus symbol tables should contain these bits.
2354 This seems like a bonehead thing to do--anyway, it seems to work
2355 for our purposes to just ignore those bits. */
2356
2357 return (addr &= ~0x3);
2358 }
2359
2360 /* Get the ith function argument for the current function. */
2361 static CORE_ADDR
2362 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2363 struct type *type)
2364 {
2365 CORE_ADDR addr;
2366 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2367 return addr;
2368 }
2369
2370 static void
2371 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2372 int regnum, void *buf)
2373 {
2374 ULONGEST tmp;
2375
2376 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2377 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2378 tmp &= ~0x3;
2379 store_unsigned_integer (buf, sizeof(tmp), tmp);
2380 }
2381
2382 static CORE_ADDR
2383 hppa_find_global_pointer (struct value *function)
2384 {
2385 return 0;
2386 }
2387
2388 void
2389 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2390 struct trad_frame_saved_reg saved_regs[],
2391 int regnum, int *optimizedp,
2392 enum lval_type *lvalp, CORE_ADDR *addrp,
2393 int *realnump, void *valuep)
2394 {
2395 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2396 {
2397 if (valuep)
2398 {
2399 CORE_ADDR pc;
2400
2401 trad_frame_get_prev_register (next_frame, saved_regs,
2402 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2403 lvalp, addrp, realnump, valuep);
2404
2405 pc = extract_unsigned_integer (valuep, 4);
2406 store_unsigned_integer (valuep, 4, pc + 4);
2407 }
2408
2409 /* It's a computed value. */
2410 *optimizedp = 0;
2411 *lvalp = not_lval;
2412 *addrp = 0;
2413 *realnump = -1;
2414 return;
2415 }
2416
2417 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2418 optimizedp, lvalp, addrp, realnump, valuep);
2419 }
2420 \f
2421
2422 /* Here is a table of C type sizes on hppa with various compiles
2423 and options. I measured this on PA 9000/800 with HP-UX 11.11
2424 and these compilers:
2425
2426 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2427 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2428 /opt/aCC/bin/aCC B3910B A.03.45
2429 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2430
2431 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2432 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2433 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2434 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2435 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2436 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2437 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2438 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2439
2440 Each line is:
2441
2442 compiler and options
2443 char, short, int, long, long long
2444 float, double, long double
2445 char *, void (*)()
2446
2447 So all these compilers use either ILP32 or LP64 model.
2448 TODO: gcc has more options so it needs more investigation.
2449
2450 For floating point types, see:
2451
2452 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2453 HP-UX floating-point guide, hpux 11.00
2454
2455 -- chastain 2003-12-18 */
2456
2457 static struct gdbarch *
2458 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2459 {
2460 struct gdbarch_tdep *tdep;
2461 struct gdbarch *gdbarch;
2462
2463 /* Try to determine the ABI of the object we are loading. */
2464 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2465 {
2466 /* If it's a SOM file, assume it's HP/UX SOM. */
2467 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2468 info.osabi = GDB_OSABI_HPUX_SOM;
2469 }
2470
2471 /* find a candidate among the list of pre-declared architectures. */
2472 arches = gdbarch_list_lookup_by_info (arches, &info);
2473 if (arches != NULL)
2474 return (arches->gdbarch);
2475
2476 /* If none found, then allocate and initialize one. */
2477 tdep = XZALLOC (struct gdbarch_tdep);
2478 gdbarch = gdbarch_alloc (&info, tdep);
2479
2480 /* Determine from the bfd_arch_info structure if we are dealing with
2481 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2482 then default to a 32bit machine. */
2483 if (info.bfd_arch_info != NULL)
2484 tdep->bytes_per_address =
2485 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2486 else
2487 tdep->bytes_per_address = 4;
2488
2489 tdep->find_global_pointer = hppa_find_global_pointer;
2490
2491 /* Some parts of the gdbarch vector depend on whether we are running
2492 on a 32 bits or 64 bits target. */
2493 switch (tdep->bytes_per_address)
2494 {
2495 case 4:
2496 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2497 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2498 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2499 break;
2500 case 8:
2501 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2502 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2503 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2504 break;
2505 default:
2506 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2507 tdep->bytes_per_address);
2508 }
2509
2510 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2511 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2512
2513 /* The following gdbarch vector elements are the same in both ILP32
2514 and LP64, but might show differences some day. */
2515 set_gdbarch_long_long_bit (gdbarch, 64);
2516 set_gdbarch_long_double_bit (gdbarch, 128);
2517 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2518
2519 /* The following gdbarch vector elements do not depend on the address
2520 size, or in any other gdbarch element previously set. */
2521 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2522 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2523 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2524 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2525 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2526 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2527 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2528 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2529 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2530 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2531 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2532
2533 /* Helper for function argument information. */
2534 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2535
2536 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2537
2538 /* When a hardware watchpoint triggers, we'll move the inferior past
2539 it by removing all eventpoints; stepping past the instruction
2540 that caused the trigger; reinserting eventpoints; and checking
2541 whether any watched location changed. */
2542 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2543
2544 /* Inferior function call methods. */
2545 switch (tdep->bytes_per_address)
2546 {
2547 case 4:
2548 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2549 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2550 set_gdbarch_convert_from_func_ptr_addr
2551 (gdbarch, hppa32_convert_from_func_ptr_addr);
2552 break;
2553 case 8:
2554 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2555 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2556 break;
2557 default:
2558 internal_error (__FILE__, __LINE__, "bad switch");
2559 }
2560
2561 /* Struct return methods. */
2562 switch (tdep->bytes_per_address)
2563 {
2564 case 4:
2565 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2566 break;
2567 case 8:
2568 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2569 break;
2570 default:
2571 internal_error (__FILE__, __LINE__, "bad switch");
2572 }
2573
2574 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2575 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2576 set_gdbarch_instruction_nullified (gdbarch, hppa_instruction_nullified);
2577
2578 /* Frame unwind methods. */
2579 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2580 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2581
2582 /* Hook in ABI-specific overrides, if they have been registered. */
2583 gdbarch_init_osabi (info, gdbarch);
2584
2585 /* Hook in the default unwinders. */
2586 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2587 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2588 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2589
2590 return gdbarch;
2591 }
2592
2593 static void
2594 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2595 {
2596 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2597
2598 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2599 tdep->bytes_per_address);
2600 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2601 }
2602
2603 void
2604 _initialize_hppa_tdep (void)
2605 {
2606 struct cmd_list_element *c;
2607 void break_at_finish_command (char *arg, int from_tty);
2608 void tbreak_at_finish_command (char *arg, int from_tty);
2609 void break_at_finish_at_depth_command (char *arg, int from_tty);
2610
2611 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2612
2613 hppa_objfile_priv_data = register_objfile_data ();
2614
2615 add_cmd ("unwind", class_maintenance, unwind_command,
2616 "Print unwind table entry at given address.",
2617 &maintenanceprintlist);
2618
2619 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2620 break_at_finish_command,
2621 concat ("Set breakpoint at procedure exit. \n\
2622 Argument may be function name, or \"*\" and an address.\n\
2623 If function is specified, break at end of code for that function.\n\
2624 If an address is specified, break at the end of the function that contains \n\
2625 that exact address.\n",
2626 "With no arg, uses current execution address of selected stack frame.\n\
2627 This is useful for breaking on return to a stack frame.\n\
2628 \n\
2629 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2630 \n\
2631 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2632 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2633 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2634 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2635 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2636
2637 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2638 tbreak_at_finish_command,
2639 "Set temporary breakpoint at procedure exit. Either there should\n\
2640 be no argument or the argument must be a depth.\n"), NULL);
2641 set_cmd_completer (c, location_completer);
2642
2643 if (xdb_commands)
2644 deprecate_cmd (add_com ("bx", class_breakpoint,
2645 break_at_finish_at_depth_command,
2646 "Set breakpoint at procedure exit. Either there should\n\
2647 be no argument or the argument must be a depth.\n"), NULL);
2648
2649 /* Debug this files internals. */
2650 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2651 Set whether hppa target specific debugging information should be displayed.", "\
2652 Show whether hppa target specific debugging information is displayed.", "\
2653 This flag controls whether hppa target specific debugging information is\n\
2654 displayed. This information is particularly useful for debugging frame\n\
2655 unwinding problems.", "hppa debug flag is %s.",
2656 NULL, NULL, &setdebuglist, &showdebuglist);
2657 }
This page took 0.085098 seconds and 5 git commands to generate.