2004-11-10 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
75
76 /* Handle 32/64-bit struct return conventions. */
77
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82 {
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116 }
117
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122 {
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
129 {
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
132 if (readbuf != NULL)
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
158 int part = min (8, TYPE_LENGTH (type) - b);
159 if (readbuf != NULL)
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
165 }
166 return RETURN_VALUE_REGISTER_CONVENTION;
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170 }
171
172 /* Routines to extract various sized constants out of hppa
173 instructions. */
174
175 /* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
178 int
179 hppa_sign_extend (unsigned val, unsigned bits)
180 {
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
182 }
183
184 /* For many immediate values the sign bit is the low bit! */
185
186 int
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
188 {
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
190 }
191
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
195 int
196 hppa_get_field (unsigned word, int from, int to)
197 {
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199 }
200
201 /* extract the immediate field from a ld{bhw}s instruction */
202
203 int
204 hppa_extract_5_load (unsigned word)
205 {
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
207 }
208
209 /* extract the immediate field from a break instruction */
210
211 unsigned
212 hppa_extract_5r_store (unsigned word)
213 {
214 return (word & MASK_5);
215 }
216
217 /* extract the immediate field from a {sr}sm instruction */
218
219 unsigned
220 hppa_extract_5R_store (unsigned word)
221 {
222 return (word >> 16 & MASK_5);
223 }
224
225 /* extract a 14 bit immediate field */
226
227 int
228 hppa_extract_14 (unsigned word)
229 {
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
231 }
232
233 /* extract a 21 bit constant */
234
235 int
236 hppa_extract_21 (unsigned word)
237 {
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
242 val = hppa_get_field (word, 20, 20);
243 val <<= 11;
244 val |= hppa_get_field (word, 9, 19);
245 val <<= 2;
246 val |= hppa_get_field (word, 5, 6);
247 val <<= 5;
248 val |= hppa_get_field (word, 0, 4);
249 val <<= 2;
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 hppa_extract_17 (unsigned word)
259 {
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265
266 CORE_ADDR
267 hppa_symbol_address(const char *sym)
268 {
269 struct minimal_symbol *minsym;
270
271 minsym = lookup_minimal_symbol (sym, NULL, NULL);
272 if (minsym)
273 return SYMBOL_VALUE_ADDRESS (minsym);
274 else
275 return (CORE_ADDR)-1;
276 }
277 \f
278
279 /* Compare the start address for two unwind entries returning 1 if
280 the first address is larger than the second, -1 if the second is
281 larger than the first, and zero if they are equal. */
282
283 static int
284 compare_unwind_entries (const void *arg1, const void *arg2)
285 {
286 const struct unwind_table_entry *a = arg1;
287 const struct unwind_table_entry *b = arg2;
288
289 if (a->region_start > b->region_start)
290 return 1;
291 else if (a->region_start < b->region_start)
292 return -1;
293 else
294 return 0;
295 }
296
297 static void
298 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
299 {
300 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
301 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
302 {
303 bfd_vma value = section->vma - section->filepos;
304 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
305
306 if (value < *low_text_segment_address)
307 *low_text_segment_address = value;
308 }
309 }
310
311 static void
312 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
313 asection *section, unsigned int entries, unsigned int size,
314 CORE_ADDR text_offset)
315 {
316 /* We will read the unwind entries into temporary memory, then
317 fill in the actual unwind table. */
318
319 if (size > 0)
320 {
321 unsigned long tmp;
322 unsigned i;
323 char *buf = alloca (size);
324 CORE_ADDR low_text_segment_address;
325
326 /* For ELF targets, then unwinds are supposed to
327 be segment relative offsets instead of absolute addresses.
328
329 Note that when loading a shared library (text_offset != 0) the
330 unwinds are already relative to the text_offset that will be
331 passed in. */
332 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
333 {
334 low_text_segment_address = -1;
335
336 bfd_map_over_sections (objfile->obfd,
337 record_text_segment_lowaddr,
338 &low_text_segment_address);
339
340 text_offset = low_text_segment_address;
341 }
342
343 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
344
345 /* Now internalize the information being careful to handle host/target
346 endian issues. */
347 for (i = 0; i < entries; i++)
348 {
349 table[i].region_start = bfd_get_32 (objfile->obfd,
350 (bfd_byte *) buf);
351 table[i].region_start += text_offset;
352 buf += 4;
353 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
354 table[i].region_end += text_offset;
355 buf += 4;
356 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
357 buf += 4;
358 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
359 table[i].Millicode = (tmp >> 30) & 0x1;
360 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
361 table[i].Region_description = (tmp >> 27) & 0x3;
362 table[i].reserved1 = (tmp >> 26) & 0x1;
363 table[i].Entry_SR = (tmp >> 25) & 0x1;
364 table[i].Entry_FR = (tmp >> 21) & 0xf;
365 table[i].Entry_GR = (tmp >> 16) & 0x1f;
366 table[i].Args_stored = (tmp >> 15) & 0x1;
367 table[i].Variable_Frame = (tmp >> 14) & 0x1;
368 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
369 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
370 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
371 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
372 table[i].Ada_Region = (tmp >> 9) & 0x1;
373 table[i].cxx_info = (tmp >> 8) & 0x1;
374 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
375 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
376 table[i].reserved2 = (tmp >> 5) & 0x1;
377 table[i].Save_SP = (tmp >> 4) & 0x1;
378 table[i].Save_RP = (tmp >> 3) & 0x1;
379 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
380 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
381 table[i].Cleanup_defined = tmp & 0x1;
382 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
383 buf += 4;
384 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
385 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
386 table[i].Large_frame = (tmp >> 29) & 0x1;
387 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
388 table[i].reserved4 = (tmp >> 27) & 0x1;
389 table[i].Total_frame_size = tmp & 0x7ffffff;
390
391 /* Stub unwinds are handled elsewhere. */
392 table[i].stub_unwind.stub_type = 0;
393 table[i].stub_unwind.padding = 0;
394 }
395 }
396 }
397
398 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
399 the object file. This info is used mainly by find_unwind_entry() to find
400 out the stack frame size and frame pointer used by procedures. We put
401 everything on the psymbol obstack in the objfile so that it automatically
402 gets freed when the objfile is destroyed. */
403
404 static void
405 read_unwind_info (struct objfile *objfile)
406 {
407 asection *unwind_sec, *stub_unwind_sec;
408 unsigned unwind_size, stub_unwind_size, total_size;
409 unsigned index, unwind_entries;
410 unsigned stub_entries, total_entries;
411 CORE_ADDR text_offset;
412 struct hppa_unwind_info *ui;
413 struct hppa_objfile_private *obj_private;
414
415 text_offset = ANOFFSET (objfile->section_offsets, 0);
416 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
417 sizeof (struct hppa_unwind_info));
418
419 ui->table = NULL;
420 ui->cache = NULL;
421 ui->last = -1;
422
423 /* For reasons unknown the HP PA64 tools generate multiple unwinder
424 sections in a single executable. So we just iterate over every
425 section in the BFD looking for unwinder sections intead of trying
426 to do a lookup with bfd_get_section_by_name.
427
428 First determine the total size of the unwind tables so that we
429 can allocate memory in a nice big hunk. */
430 total_entries = 0;
431 for (unwind_sec = objfile->obfd->sections;
432 unwind_sec;
433 unwind_sec = unwind_sec->next)
434 {
435 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
436 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
437 {
438 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
439 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
440
441 total_entries += unwind_entries;
442 }
443 }
444
445 /* Now compute the size of the stub unwinds. Note the ELF tools do not
446 use stub unwinds at the curren time. */
447 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
448
449 if (stub_unwind_sec)
450 {
451 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
452 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
453 }
454 else
455 {
456 stub_unwind_size = 0;
457 stub_entries = 0;
458 }
459
460 /* Compute total number of unwind entries and their total size. */
461 total_entries += stub_entries;
462 total_size = total_entries * sizeof (struct unwind_table_entry);
463
464 /* Allocate memory for the unwind table. */
465 ui->table = (struct unwind_table_entry *)
466 obstack_alloc (&objfile->objfile_obstack, total_size);
467 ui->last = total_entries - 1;
468
469 /* Now read in each unwind section and internalize the standard unwind
470 entries. */
471 index = 0;
472 for (unwind_sec = objfile->obfd->sections;
473 unwind_sec;
474 unwind_sec = unwind_sec->next)
475 {
476 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
477 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
478 {
479 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
480 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
481
482 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
483 unwind_entries, unwind_size, text_offset);
484 index += unwind_entries;
485 }
486 }
487
488 /* Now read in and internalize the stub unwind entries. */
489 if (stub_unwind_size > 0)
490 {
491 unsigned int i;
492 char *buf = alloca (stub_unwind_size);
493
494 /* Read in the stub unwind entries. */
495 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
496 0, stub_unwind_size);
497
498 /* Now convert them into regular unwind entries. */
499 for (i = 0; i < stub_entries; i++, index++)
500 {
501 /* Clear out the next unwind entry. */
502 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
503
504 /* Convert offset & size into region_start and region_end.
505 Stuff away the stub type into "reserved" fields. */
506 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
507 (bfd_byte *) buf);
508 ui->table[index].region_start += text_offset;
509 buf += 4;
510 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
511 (bfd_byte *) buf);
512 buf += 2;
513 ui->table[index].region_end
514 = ui->table[index].region_start + 4 *
515 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
516 buf += 2;
517 }
518
519 }
520
521 /* Unwind table needs to be kept sorted. */
522 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
523 compare_unwind_entries);
524
525 /* Keep a pointer to the unwind information. */
526 obj_private = (struct hppa_objfile_private *)
527 objfile_data (objfile, hppa_objfile_priv_data);
528 if (obj_private == NULL)
529 {
530 obj_private = (struct hppa_objfile_private *)
531 obstack_alloc (&objfile->objfile_obstack,
532 sizeof (struct hppa_objfile_private));
533 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
534 obj_private->unwind_info = NULL;
535 obj_private->so_info = NULL;
536 obj_private->dp = 0;
537 }
538 obj_private->unwind_info = ui;
539 }
540
541 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
542 of the objfiles seeking the unwind table entry for this PC. Each objfile
543 contains a sorted list of struct unwind_table_entry. Since we do a binary
544 search of the unwind tables, we depend upon them to be sorted. */
545
546 struct unwind_table_entry *
547 find_unwind_entry (CORE_ADDR pc)
548 {
549 int first, middle, last;
550 struct objfile *objfile;
551 struct hppa_objfile_private *priv;
552
553 if (hppa_debug)
554 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
555 paddr_nz (pc));
556
557 /* A function at address 0? Not in HP-UX! */
558 if (pc == (CORE_ADDR) 0)
559 {
560 if (hppa_debug)
561 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
562 return NULL;
563 }
564
565 ALL_OBJFILES (objfile)
566 {
567 struct hppa_unwind_info *ui;
568 ui = NULL;
569 priv = objfile_data (objfile, hppa_objfile_priv_data);
570 if (priv)
571 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
572
573 if (!ui)
574 {
575 read_unwind_info (objfile);
576 priv = objfile_data (objfile, hppa_objfile_priv_data);
577 if (priv == NULL)
578 error ("Internal error reading unwind information.");
579 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
580 }
581
582 /* First, check the cache */
583
584 if (ui->cache
585 && pc >= ui->cache->region_start
586 && pc <= ui->cache->region_end)
587 {
588 if (hppa_debug)
589 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
590 paddr_nz ((CORE_ADDR) ui->cache));
591 return ui->cache;
592 }
593
594 /* Not in the cache, do a binary search */
595
596 first = 0;
597 last = ui->last;
598
599 while (first <= last)
600 {
601 middle = (first + last) / 2;
602 if (pc >= ui->table[middle].region_start
603 && pc <= ui->table[middle].region_end)
604 {
605 ui->cache = &ui->table[middle];
606 if (hppa_debug)
607 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
608 paddr_nz ((CORE_ADDR) ui->cache));
609 return &ui->table[middle];
610 }
611
612 if (pc < ui->table[middle].region_start)
613 last = middle - 1;
614 else
615 first = middle + 1;
616 }
617 } /* ALL_OBJFILES() */
618
619 if (hppa_debug)
620 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
621
622 return NULL;
623 }
624
625 static const unsigned char *
626 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
627 {
628 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
629 (*len) = sizeof (breakpoint);
630 return breakpoint;
631 }
632
633 /* Return the name of a register. */
634
635 static const char *
636 hppa32_register_name (int i)
637 {
638 static char *names[] = {
639 "flags", "r1", "rp", "r3",
640 "r4", "r5", "r6", "r7",
641 "r8", "r9", "r10", "r11",
642 "r12", "r13", "r14", "r15",
643 "r16", "r17", "r18", "r19",
644 "r20", "r21", "r22", "r23",
645 "r24", "r25", "r26", "dp",
646 "ret0", "ret1", "sp", "r31",
647 "sar", "pcoqh", "pcsqh", "pcoqt",
648 "pcsqt", "eiem", "iir", "isr",
649 "ior", "ipsw", "goto", "sr4",
650 "sr0", "sr1", "sr2", "sr3",
651 "sr5", "sr6", "sr7", "cr0",
652 "cr8", "cr9", "ccr", "cr12",
653 "cr13", "cr24", "cr25", "cr26",
654 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
655 "fpsr", "fpe1", "fpe2", "fpe3",
656 "fpe4", "fpe5", "fpe6", "fpe7",
657 "fr4", "fr4R", "fr5", "fr5R",
658 "fr6", "fr6R", "fr7", "fr7R",
659 "fr8", "fr8R", "fr9", "fr9R",
660 "fr10", "fr10R", "fr11", "fr11R",
661 "fr12", "fr12R", "fr13", "fr13R",
662 "fr14", "fr14R", "fr15", "fr15R",
663 "fr16", "fr16R", "fr17", "fr17R",
664 "fr18", "fr18R", "fr19", "fr19R",
665 "fr20", "fr20R", "fr21", "fr21R",
666 "fr22", "fr22R", "fr23", "fr23R",
667 "fr24", "fr24R", "fr25", "fr25R",
668 "fr26", "fr26R", "fr27", "fr27R",
669 "fr28", "fr28R", "fr29", "fr29R",
670 "fr30", "fr30R", "fr31", "fr31R"
671 };
672 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
673 return NULL;
674 else
675 return names[i];
676 }
677
678 static const char *
679 hppa64_register_name (int i)
680 {
681 static char *names[] = {
682 "flags", "r1", "rp", "r3",
683 "r4", "r5", "r6", "r7",
684 "r8", "r9", "r10", "r11",
685 "r12", "r13", "r14", "r15",
686 "r16", "r17", "r18", "r19",
687 "r20", "r21", "r22", "r23",
688 "r24", "r25", "r26", "dp",
689 "ret0", "ret1", "sp", "r31",
690 "sar", "pcoqh", "pcsqh", "pcoqt",
691 "pcsqt", "eiem", "iir", "isr",
692 "ior", "ipsw", "goto", "sr4",
693 "sr0", "sr1", "sr2", "sr3",
694 "sr5", "sr6", "sr7", "cr0",
695 "cr8", "cr9", "ccr", "cr12",
696 "cr13", "cr24", "cr25", "cr26",
697 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
698 "fpsr", "fpe1", "fpe2", "fpe3",
699 "fr4", "fr5", "fr6", "fr7",
700 "fr8", "fr9", "fr10", "fr11",
701 "fr12", "fr13", "fr14", "fr15",
702 "fr16", "fr17", "fr18", "fr19",
703 "fr20", "fr21", "fr22", "fr23",
704 "fr24", "fr25", "fr26", "fr27",
705 "fr28", "fr29", "fr30", "fr31"
706 };
707 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
708 return NULL;
709 else
710 return names[i];
711 }
712
713 /* This function pushes a stack frame with arguments as part of the
714 inferior function calling mechanism.
715
716 This is the version of the function for the 32-bit PA machines, in
717 which later arguments appear at lower addresses. (The stack always
718 grows towards higher addresses.)
719
720 We simply allocate the appropriate amount of stack space and put
721 arguments into their proper slots. */
722
723 static CORE_ADDR
724 hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
725 struct regcache *regcache, CORE_ADDR bp_addr,
726 int nargs, struct value **args, CORE_ADDR sp,
727 int struct_return, CORE_ADDR struct_addr)
728 {
729 /* Stack base address at which any pass-by-reference parameters are
730 stored. */
731 CORE_ADDR struct_end = 0;
732 /* Stack base address at which the first parameter is stored. */
733 CORE_ADDR param_end = 0;
734
735 /* The inner most end of the stack after all the parameters have
736 been pushed. */
737 CORE_ADDR new_sp = 0;
738
739 /* Two passes. First pass computes the location of everything,
740 second pass writes the bytes out. */
741 int write_pass;
742
743 /* Global pointer (r19) of the function we are trying to call. */
744 CORE_ADDR gp;
745
746 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
747
748 for (write_pass = 0; write_pass < 2; write_pass++)
749 {
750 CORE_ADDR struct_ptr = 0;
751 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
752 struct_ptr is adjusted for each argument below, so the first
753 argument will end up at sp-36. */
754 CORE_ADDR param_ptr = 32;
755 int i;
756 int small_struct = 0;
757
758 for (i = 0; i < nargs; i++)
759 {
760 struct value *arg = args[i];
761 struct type *type = check_typedef (VALUE_TYPE (arg));
762 /* The corresponding parameter that is pushed onto the
763 stack, and [possibly] passed in a register. */
764 char param_val[8];
765 int param_len;
766 memset (param_val, 0, sizeof param_val);
767 if (TYPE_LENGTH (type) > 8)
768 {
769 /* Large parameter, pass by reference. Store the value
770 in "struct" area and then pass its address. */
771 param_len = 4;
772 struct_ptr += align_up (TYPE_LENGTH (type), 8);
773 if (write_pass)
774 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
775 TYPE_LENGTH (type));
776 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
777 }
778 else if (TYPE_CODE (type) == TYPE_CODE_INT
779 || TYPE_CODE (type) == TYPE_CODE_ENUM)
780 {
781 /* Integer value store, right aligned. "unpack_long"
782 takes care of any sign-extension problems. */
783 param_len = align_up (TYPE_LENGTH (type), 4);
784 store_unsigned_integer (param_val, param_len,
785 unpack_long (type,
786 VALUE_CONTENTS (arg)));
787 }
788 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
789 {
790 /* Floating point value store, right aligned. */
791 param_len = align_up (TYPE_LENGTH (type), 4);
792 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
793 }
794 else
795 {
796 param_len = align_up (TYPE_LENGTH (type), 4);
797
798 /* Small struct value are stored right-aligned. */
799 memcpy (param_val + param_len - TYPE_LENGTH (type),
800 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
801
802 /* Structures of size 5, 6 and 7 bytes are special in that
803 the higher-ordered word is stored in the lower-ordered
804 argument, and even though it is a 8-byte quantity the
805 registers need not be 8-byte aligned. */
806 if (param_len > 4 && param_len < 8)
807 small_struct = 1;
808 }
809
810 param_ptr += param_len;
811 if (param_len == 8 && !small_struct)
812 param_ptr = align_up (param_ptr, 8);
813
814 /* First 4 non-FP arguments are passed in gr26-gr23.
815 First 4 32-bit FP arguments are passed in fr4L-fr7L.
816 First 2 64-bit FP arguments are passed in fr5 and fr7.
817
818 The rest go on the stack, starting at sp-36, towards lower
819 addresses. 8-byte arguments must be aligned to a 8-byte
820 stack boundary. */
821 if (write_pass)
822 {
823 write_memory (param_end - param_ptr, param_val, param_len);
824
825 /* There are some cases when we don't know the type
826 expected by the callee (e.g. for variadic functions), so
827 pass the parameters in both general and fp regs. */
828 if (param_ptr <= 48)
829 {
830 int grreg = 26 - (param_ptr - 36) / 4;
831 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
832 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
833
834 regcache_cooked_write (regcache, grreg, param_val);
835 regcache_cooked_write (regcache, fpLreg, param_val);
836
837 if (param_len > 4)
838 {
839 regcache_cooked_write (regcache, grreg + 1,
840 param_val + 4);
841
842 regcache_cooked_write (regcache, fpreg, param_val);
843 regcache_cooked_write (regcache, fpreg + 1,
844 param_val + 4);
845 }
846 }
847 }
848 }
849
850 /* Update the various stack pointers. */
851 if (!write_pass)
852 {
853 struct_end = sp + align_up (struct_ptr, 64);
854 /* PARAM_PTR already accounts for all the arguments passed
855 by the user. However, the ABI mandates minimum stack
856 space allocations for outgoing arguments. The ABI also
857 mandates minimum stack alignments which we must
858 preserve. */
859 param_end = struct_end + align_up (param_ptr, 64);
860 }
861 }
862
863 /* If a structure has to be returned, set up register 28 to hold its
864 address */
865 if (struct_return)
866 write_register (28, struct_addr);
867
868 gp = tdep->find_global_pointer (function);
869
870 if (gp != 0)
871 write_register (19, gp);
872
873 /* Set the return address. */
874 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
875
876 /* Update the Stack Pointer. */
877 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
878
879 return param_end;
880 }
881
882 /* This function pushes a stack frame with arguments as part of the
883 inferior function calling mechanism.
884
885 This is the version for the PA64, in which later arguments appear
886 at higher addresses. (The stack always grows towards higher
887 addresses.)
888
889 We simply allocate the appropriate amount of stack space and put
890 arguments into their proper slots.
891
892 This ABI also requires that the caller provide an argument pointer
893 to the callee, so we do that too. */
894
895 static CORE_ADDR
896 hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
897 struct regcache *regcache, CORE_ADDR bp_addr,
898 int nargs, struct value **args, CORE_ADDR sp,
899 int struct_return, CORE_ADDR struct_addr)
900 {
901 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
902 reverse engineering testsuite failures. */
903
904 /* Stack base address at which any pass-by-reference parameters are
905 stored. */
906 CORE_ADDR struct_end = 0;
907 /* Stack base address at which the first parameter is stored. */
908 CORE_ADDR param_end = 0;
909
910 /* The inner most end of the stack after all the parameters have
911 been pushed. */
912 CORE_ADDR new_sp = 0;
913
914 /* Two passes. First pass computes the location of everything,
915 second pass writes the bytes out. */
916 int write_pass;
917 for (write_pass = 0; write_pass < 2; write_pass++)
918 {
919 CORE_ADDR struct_ptr = 0;
920 CORE_ADDR param_ptr = 0;
921 int i;
922 for (i = 0; i < nargs; i++)
923 {
924 struct value *arg = args[i];
925 struct type *type = check_typedef (VALUE_TYPE (arg));
926 if ((TYPE_CODE (type) == TYPE_CODE_INT
927 || TYPE_CODE (type) == TYPE_CODE_ENUM)
928 && TYPE_LENGTH (type) <= 8)
929 {
930 /* Integer value store, right aligned. "unpack_long"
931 takes care of any sign-extension problems. */
932 param_ptr += 8;
933 if (write_pass)
934 {
935 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
936 int reg = 27 - param_ptr / 8;
937 write_memory_unsigned_integer (param_end - param_ptr,
938 val, 8);
939 if (reg >= 19)
940 regcache_cooked_write_unsigned (regcache, reg, val);
941 }
942 }
943 else
944 {
945 /* Small struct value, store left aligned? */
946 int reg;
947 if (TYPE_LENGTH (type) > 8)
948 {
949 param_ptr = align_up (param_ptr, 16);
950 reg = 26 - param_ptr / 8;
951 param_ptr += align_up (TYPE_LENGTH (type), 16);
952 }
953 else
954 {
955 param_ptr = align_up (param_ptr, 8);
956 reg = 26 - param_ptr / 8;
957 param_ptr += align_up (TYPE_LENGTH (type), 8);
958 }
959 if (write_pass)
960 {
961 int byte;
962 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
963 TYPE_LENGTH (type));
964 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
965 {
966 if (reg >= 19)
967 {
968 int len = min (8, TYPE_LENGTH (type) - byte);
969 regcache_cooked_write_part (regcache, reg, 0, len,
970 VALUE_CONTENTS (arg) + byte);
971 }
972 reg--;
973 }
974 }
975 }
976 }
977 /* Update the various stack pointers. */
978 if (!write_pass)
979 {
980 struct_end = sp + struct_ptr;
981 /* PARAM_PTR already accounts for all the arguments passed
982 by the user. However, the ABI mandates minimum stack
983 space allocations for outgoing arguments. The ABI also
984 mandates minimum stack alignments which we must
985 preserve. */
986 param_end = struct_end + max (align_up (param_ptr, 16), 64);
987 }
988 }
989
990 /* If a structure has to be returned, set up register 28 to hold its
991 address */
992 if (struct_return)
993 write_register (28, struct_addr);
994
995 /* Set the return address. */
996 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
997
998 /* Update the Stack Pointer. */
999 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
1000
1001 /* The stack will have 32 bytes of additional space for a frame marker. */
1002 return param_end + 64;
1003 }
1004
1005 static CORE_ADDR
1006 hppa32_convert_from_func_ptr_addr (struct gdbarch *gdbarch,
1007 CORE_ADDR addr,
1008 struct target_ops *targ)
1009 {
1010 if (addr & 2)
1011 {
1012 CORE_ADDR plabel;
1013
1014 plabel = addr & ~3;
1015 target_read_memory(plabel, (char *)&addr, 4);
1016 }
1017
1018 return addr;
1019 }
1020
1021 static CORE_ADDR
1022 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1023 {
1024 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
1025 and not _bit_)! */
1026 return align_up (addr, 64);
1027 }
1028
1029 /* Force all frames to 16-byte alignment. Better safe than sorry. */
1030
1031 static CORE_ADDR
1032 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
1033 {
1034 /* Just always 16-byte align. */
1035 return align_up (addr, 16);
1036 }
1037
1038
1039 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1040 bits. */
1041
1042 static CORE_ADDR
1043 hppa_target_read_pc (ptid_t ptid)
1044 {
1045 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1046
1047 /* The following test does not belong here. It is OS-specific, and belongs
1048 in native code. */
1049 /* Test SS_INSYSCALL */
1050 if (flags & 2)
1051 return read_register_pid (31, ptid) & ~0x3;
1052
1053 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1054 }
1055
1056 /* Write out the PC. If currently in a syscall, then also write the new
1057 PC value into %r31. */
1058
1059 static void
1060 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1061 {
1062 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1063
1064 /* The following test does not belong here. It is OS-specific, and belongs
1065 in native code. */
1066 /* If in a syscall, then set %r31. Also make sure to get the
1067 privilege bits set correctly. */
1068 /* Test SS_INSYSCALL */
1069 if (flags & 2)
1070 write_register_pid (31, v | 0x3, ptid);
1071
1072 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1073 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1074 }
1075
1076 /* return the alignment of a type in bytes. Structures have the maximum
1077 alignment required by their fields. */
1078
1079 static int
1080 hppa_alignof (struct type *type)
1081 {
1082 int max_align, align, i;
1083 CHECK_TYPEDEF (type);
1084 switch (TYPE_CODE (type))
1085 {
1086 case TYPE_CODE_PTR:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_FLT:
1089 return TYPE_LENGTH (type);
1090 case TYPE_CODE_ARRAY:
1091 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1092 case TYPE_CODE_STRUCT:
1093 case TYPE_CODE_UNION:
1094 max_align = 1;
1095 for (i = 0; i < TYPE_NFIELDS (type); i++)
1096 {
1097 /* Bit fields have no real alignment. */
1098 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1099 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1100 {
1101 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1102 max_align = max (max_align, align);
1103 }
1104 }
1105 return max_align;
1106 default:
1107 return 4;
1108 }
1109 }
1110
1111 /* For the given instruction (INST), return any adjustment it makes
1112 to the stack pointer or zero for no adjustment.
1113
1114 This only handles instructions commonly found in prologues. */
1115
1116 static int
1117 prologue_inst_adjust_sp (unsigned long inst)
1118 {
1119 /* This must persist across calls. */
1120 static int save_high21;
1121
1122 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1123 if ((inst & 0xffffc000) == 0x37de0000)
1124 return hppa_extract_14 (inst);
1125
1126 /* stwm X,D(sp) */
1127 if ((inst & 0xffe00000) == 0x6fc00000)
1128 return hppa_extract_14 (inst);
1129
1130 /* std,ma X,D(sp) */
1131 if ((inst & 0xffe00008) == 0x73c00008)
1132 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1133
1134 /* addil high21,%r1; ldo low11,(%r1),%r30)
1135 save high bits in save_high21 for later use. */
1136 if ((inst & 0xffe00000) == 0x28200000)
1137 {
1138 save_high21 = hppa_extract_21 (inst);
1139 return 0;
1140 }
1141
1142 if ((inst & 0xffff0000) == 0x343e0000)
1143 return save_high21 + hppa_extract_14 (inst);
1144
1145 /* fstws as used by the HP compilers. */
1146 if ((inst & 0xffffffe0) == 0x2fd01220)
1147 return hppa_extract_5_load (inst);
1148
1149 /* No adjustment. */
1150 return 0;
1151 }
1152
1153 /* Return nonzero if INST is a branch of some kind, else return zero. */
1154
1155 static int
1156 is_branch (unsigned long inst)
1157 {
1158 switch (inst >> 26)
1159 {
1160 case 0x20:
1161 case 0x21:
1162 case 0x22:
1163 case 0x23:
1164 case 0x27:
1165 case 0x28:
1166 case 0x29:
1167 case 0x2a:
1168 case 0x2b:
1169 case 0x2f:
1170 case 0x30:
1171 case 0x31:
1172 case 0x32:
1173 case 0x33:
1174 case 0x38:
1175 case 0x39:
1176 case 0x3a:
1177 case 0x3b:
1178 return 1;
1179
1180 default:
1181 return 0;
1182 }
1183 }
1184
1185 /* Return the register number for a GR which is saved by INST or
1186 zero it INST does not save a GR. */
1187
1188 static int
1189 inst_saves_gr (unsigned long inst)
1190 {
1191 /* Does it look like a stw? */
1192 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1193 || (inst >> 26) == 0x1f
1194 || ((inst >> 26) == 0x1f
1195 && ((inst >> 6) == 0xa)))
1196 return hppa_extract_5R_store (inst);
1197
1198 /* Does it look like a std? */
1199 if ((inst >> 26) == 0x1c
1200 || ((inst >> 26) == 0x03
1201 && ((inst >> 6) & 0xf) == 0xb))
1202 return hppa_extract_5R_store (inst);
1203
1204 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1205 if ((inst >> 26) == 0x1b)
1206 return hppa_extract_5R_store (inst);
1207
1208 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1209 too. */
1210 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1211 || ((inst >> 26) == 0x3
1212 && (((inst >> 6) & 0xf) == 0x8
1213 || (inst >> 6) & 0xf) == 0x9))
1214 return hppa_extract_5R_store (inst);
1215
1216 return 0;
1217 }
1218
1219 /* Return the register number for a FR which is saved by INST or
1220 zero it INST does not save a FR.
1221
1222 Note we only care about full 64bit register stores (that's the only
1223 kind of stores the prologue will use).
1224
1225 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1226
1227 static int
1228 inst_saves_fr (unsigned long inst)
1229 {
1230 /* is this an FSTD ? */
1231 if ((inst & 0xfc00dfc0) == 0x2c001200)
1232 return hppa_extract_5r_store (inst);
1233 if ((inst & 0xfc000002) == 0x70000002)
1234 return hppa_extract_5R_store (inst);
1235 /* is this an FSTW ? */
1236 if ((inst & 0xfc00df80) == 0x24001200)
1237 return hppa_extract_5r_store (inst);
1238 if ((inst & 0xfc000002) == 0x7c000000)
1239 return hppa_extract_5R_store (inst);
1240 return 0;
1241 }
1242
1243 /* Advance PC across any function entry prologue instructions
1244 to reach some "real" code.
1245
1246 Use information in the unwind table to determine what exactly should
1247 be in the prologue. */
1248
1249
1250 CORE_ADDR
1251 skip_prologue_hard_way (CORE_ADDR pc)
1252 {
1253 char buf[4];
1254 CORE_ADDR orig_pc = pc;
1255 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1256 unsigned long args_stored, status, i, restart_gr, restart_fr;
1257 struct unwind_table_entry *u;
1258
1259 restart_gr = 0;
1260 restart_fr = 0;
1261
1262 restart:
1263 u = find_unwind_entry (pc);
1264 if (!u)
1265 return pc;
1266
1267 /* If we are not at the beginning of a function, then return now. */
1268 if ((pc & ~0x3) != u->region_start)
1269 return pc;
1270
1271 /* This is how much of a frame adjustment we need to account for. */
1272 stack_remaining = u->Total_frame_size << 3;
1273
1274 /* Magic register saves we want to know about. */
1275 save_rp = u->Save_RP;
1276 save_sp = u->Save_SP;
1277
1278 /* An indication that args may be stored into the stack. Unfortunately
1279 the HPUX compilers tend to set this in cases where no args were
1280 stored too!. */
1281 args_stored = 1;
1282
1283 /* Turn the Entry_GR field into a bitmask. */
1284 save_gr = 0;
1285 for (i = 3; i < u->Entry_GR + 3; i++)
1286 {
1287 /* Frame pointer gets saved into a special location. */
1288 if (u->Save_SP && i == HPPA_FP_REGNUM)
1289 continue;
1290
1291 save_gr |= (1 << i);
1292 }
1293 save_gr &= ~restart_gr;
1294
1295 /* Turn the Entry_FR field into a bitmask too. */
1296 save_fr = 0;
1297 for (i = 12; i < u->Entry_FR + 12; i++)
1298 save_fr |= (1 << i);
1299 save_fr &= ~restart_fr;
1300
1301 /* Loop until we find everything of interest or hit a branch.
1302
1303 For unoptimized GCC code and for any HP CC code this will never ever
1304 examine any user instructions.
1305
1306 For optimzied GCC code we're faced with problems. GCC will schedule
1307 its prologue and make prologue instructions available for delay slot
1308 filling. The end result is user code gets mixed in with the prologue
1309 and a prologue instruction may be in the delay slot of the first branch
1310 or call.
1311
1312 Some unexpected things are expected with debugging optimized code, so
1313 we allow this routine to walk past user instructions in optimized
1314 GCC code. */
1315 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1316 || args_stored)
1317 {
1318 unsigned int reg_num;
1319 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1320 unsigned long old_save_rp, old_save_sp, next_inst;
1321
1322 /* Save copies of all the triggers so we can compare them later
1323 (only for HPC). */
1324 old_save_gr = save_gr;
1325 old_save_fr = save_fr;
1326 old_save_rp = save_rp;
1327 old_save_sp = save_sp;
1328 old_stack_remaining = stack_remaining;
1329
1330 status = deprecated_read_memory_nobpt (pc, buf, 4);
1331 inst = extract_unsigned_integer (buf, 4);
1332
1333 /* Yow! */
1334 if (status != 0)
1335 return pc;
1336
1337 /* Note the interesting effects of this instruction. */
1338 stack_remaining -= prologue_inst_adjust_sp (inst);
1339
1340 /* There are limited ways to store the return pointer into the
1341 stack. */
1342 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1343 save_rp = 0;
1344
1345 /* These are the only ways we save SP into the stack. At this time
1346 the HP compilers never bother to save SP into the stack. */
1347 if ((inst & 0xffffc000) == 0x6fc10000
1348 || (inst & 0xffffc00c) == 0x73c10008)
1349 save_sp = 0;
1350
1351 /* Are we loading some register with an offset from the argument
1352 pointer? */
1353 if ((inst & 0xffe00000) == 0x37a00000
1354 || (inst & 0xffffffe0) == 0x081d0240)
1355 {
1356 pc += 4;
1357 continue;
1358 }
1359
1360 /* Account for general and floating-point register saves. */
1361 reg_num = inst_saves_gr (inst);
1362 save_gr &= ~(1 << reg_num);
1363
1364 /* Ugh. Also account for argument stores into the stack.
1365 Unfortunately args_stored only tells us that some arguments
1366 where stored into the stack. Not how many or what kind!
1367
1368 This is a kludge as on the HP compiler sets this bit and it
1369 never does prologue scheduling. So once we see one, skip past
1370 all of them. We have similar code for the fp arg stores below.
1371
1372 FIXME. Can still die if we have a mix of GR and FR argument
1373 stores! */
1374 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1375 {
1376 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1377 {
1378 pc += 4;
1379 status = deprecated_read_memory_nobpt (pc, buf, 4);
1380 inst = extract_unsigned_integer (buf, 4);
1381 if (status != 0)
1382 return pc;
1383 reg_num = inst_saves_gr (inst);
1384 }
1385 args_stored = 0;
1386 continue;
1387 }
1388
1389 reg_num = inst_saves_fr (inst);
1390 save_fr &= ~(1 << reg_num);
1391
1392 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1393 next_inst = extract_unsigned_integer (buf, 4);
1394
1395 /* Yow! */
1396 if (status != 0)
1397 return pc;
1398
1399 /* We've got to be read to handle the ldo before the fp register
1400 save. */
1401 if ((inst & 0xfc000000) == 0x34000000
1402 && inst_saves_fr (next_inst) >= 4
1403 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1404 {
1405 /* So we drop into the code below in a reasonable state. */
1406 reg_num = inst_saves_fr (next_inst);
1407 pc -= 4;
1408 }
1409
1410 /* Ugh. Also account for argument stores into the stack.
1411 This is a kludge as on the HP compiler sets this bit and it
1412 never does prologue scheduling. So once we see one, skip past
1413 all of them. */
1414 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1415 {
1416 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1417 {
1418 pc += 8;
1419 status = deprecated_read_memory_nobpt (pc, buf, 4);
1420 inst = extract_unsigned_integer (buf, 4);
1421 if (status != 0)
1422 return pc;
1423 if ((inst & 0xfc000000) != 0x34000000)
1424 break;
1425 status = deprecated_read_memory_nobpt (pc + 4, buf, 4);
1426 next_inst = extract_unsigned_integer (buf, 4);
1427 if (status != 0)
1428 return pc;
1429 reg_num = inst_saves_fr (next_inst);
1430 }
1431 args_stored = 0;
1432 continue;
1433 }
1434
1435 /* Quit if we hit any kind of branch. This can happen if a prologue
1436 instruction is in the delay slot of the first call/branch. */
1437 if (is_branch (inst))
1438 break;
1439
1440 /* What a crock. The HP compilers set args_stored even if no
1441 arguments were stored into the stack (boo hiss). This could
1442 cause this code to then skip a bunch of user insns (up to the
1443 first branch).
1444
1445 To combat this we try to identify when args_stored was bogusly
1446 set and clear it. We only do this when args_stored is nonzero,
1447 all other resources are accounted for, and nothing changed on
1448 this pass. */
1449 if (args_stored
1450 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1451 && old_save_gr == save_gr && old_save_fr == save_fr
1452 && old_save_rp == save_rp && old_save_sp == save_sp
1453 && old_stack_remaining == stack_remaining)
1454 break;
1455
1456 /* Bump the PC. */
1457 pc += 4;
1458 }
1459
1460 /* We've got a tenative location for the end of the prologue. However
1461 because of limitations in the unwind descriptor mechanism we may
1462 have went too far into user code looking for the save of a register
1463 that does not exist. So, if there registers we expected to be saved
1464 but never were, mask them out and restart.
1465
1466 This should only happen in optimized code, and should be very rare. */
1467 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1468 {
1469 pc = orig_pc;
1470 restart_gr = save_gr;
1471 restart_fr = save_fr;
1472 goto restart;
1473 }
1474
1475 return pc;
1476 }
1477
1478
1479 /* Return the address of the PC after the last prologue instruction if
1480 we can determine it from the debug symbols. Else return zero. */
1481
1482 static CORE_ADDR
1483 after_prologue (CORE_ADDR pc)
1484 {
1485 struct symtab_and_line sal;
1486 CORE_ADDR func_addr, func_end;
1487 struct symbol *f;
1488
1489 /* If we can not find the symbol in the partial symbol table, then
1490 there is no hope we can determine the function's start address
1491 with this code. */
1492 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1493 return 0;
1494
1495 /* Get the line associated with FUNC_ADDR. */
1496 sal = find_pc_line (func_addr, 0);
1497
1498 /* There are only two cases to consider. First, the end of the source line
1499 is within the function bounds. In that case we return the end of the
1500 source line. Second is the end of the source line extends beyond the
1501 bounds of the current function. We need to use the slow code to
1502 examine instructions in that case.
1503
1504 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1505 the wrong thing to do. In fact, it should be entirely possible for this
1506 function to always return zero since the slow instruction scanning code
1507 is supposed to *always* work. If it does not, then it is a bug. */
1508 if (sal.end < func_end)
1509 return sal.end;
1510 else
1511 return 0;
1512 }
1513
1514 /* To skip prologues, I use this predicate. Returns either PC itself
1515 if the code at PC does not look like a function prologue; otherwise
1516 returns an address that (if we're lucky) follows the prologue. If
1517 LENIENT, then we must skip everything which is involved in setting
1518 up the frame (it's OK to skip more, just so long as we don't skip
1519 anything which might clobber the registers which are being saved.
1520 Currently we must not skip more on the alpha, but we might the lenient
1521 stuff some day. */
1522
1523 static CORE_ADDR
1524 hppa_skip_prologue (CORE_ADDR pc)
1525 {
1526 unsigned long inst;
1527 int offset;
1528 CORE_ADDR post_prologue_pc;
1529 char buf[4];
1530
1531 /* See if we can determine the end of the prologue via the symbol table.
1532 If so, then return either PC, or the PC after the prologue, whichever
1533 is greater. */
1534
1535 post_prologue_pc = after_prologue (pc);
1536
1537 /* If after_prologue returned a useful address, then use it. Else
1538 fall back on the instruction skipping code.
1539
1540 Some folks have claimed this causes problems because the breakpoint
1541 may be the first instruction of the prologue. If that happens, then
1542 the instruction skipping code has a bug that needs to be fixed. */
1543 if (post_prologue_pc != 0)
1544 return max (pc, post_prologue_pc);
1545 else
1546 return (skip_prologue_hard_way (pc));
1547 }
1548
1549 struct hppa_frame_cache
1550 {
1551 CORE_ADDR base;
1552 struct trad_frame_saved_reg *saved_regs;
1553 };
1554
1555 static struct hppa_frame_cache *
1556 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1557 {
1558 struct hppa_frame_cache *cache;
1559 long saved_gr_mask;
1560 long saved_fr_mask;
1561 CORE_ADDR this_sp;
1562 long frame_size;
1563 struct unwind_table_entry *u;
1564 CORE_ADDR prologue_end;
1565 int i;
1566
1567 if (hppa_debug)
1568 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1569 frame_relative_level(next_frame));
1570
1571 if ((*this_cache) != NULL)
1572 {
1573 if (hppa_debug)
1574 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1575 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1576 return (*this_cache);
1577 }
1578 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1579 (*this_cache) = cache;
1580 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1581
1582 /* Yow! */
1583 u = find_unwind_entry (frame_pc_unwind (next_frame));
1584 if (!u)
1585 {
1586 if (hppa_debug)
1587 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1588 return (*this_cache);
1589 }
1590
1591 /* Turn the Entry_GR field into a bitmask. */
1592 saved_gr_mask = 0;
1593 for (i = 3; i < u->Entry_GR + 3; i++)
1594 {
1595 /* Frame pointer gets saved into a special location. */
1596 if (u->Save_SP && i == HPPA_FP_REGNUM)
1597 continue;
1598
1599 saved_gr_mask |= (1 << i);
1600 }
1601
1602 /* Turn the Entry_FR field into a bitmask too. */
1603 saved_fr_mask = 0;
1604 for (i = 12; i < u->Entry_FR + 12; i++)
1605 saved_fr_mask |= (1 << i);
1606
1607 /* Loop until we find everything of interest or hit a branch.
1608
1609 For unoptimized GCC code and for any HP CC code this will never ever
1610 examine any user instructions.
1611
1612 For optimized GCC code we're faced with problems. GCC will schedule
1613 its prologue and make prologue instructions available for delay slot
1614 filling. The end result is user code gets mixed in with the prologue
1615 and a prologue instruction may be in the delay slot of the first branch
1616 or call.
1617
1618 Some unexpected things are expected with debugging optimized code, so
1619 we allow this routine to walk past user instructions in optimized
1620 GCC code. */
1621 {
1622 int final_iteration = 0;
1623 CORE_ADDR pc, end_pc;
1624 int looking_for_sp = u->Save_SP;
1625 int looking_for_rp = u->Save_RP;
1626 int fp_loc = -1;
1627
1628 /* We have to use hppa_skip_prologue instead of just
1629 skip_prologue_using_sal, in case we stepped into a function without
1630 symbol information. hppa_skip_prologue also bounds the returned
1631 pc by the passed in pc, so it will not return a pc in the next
1632 function. */
1633
1634 /* We used to use frame_func_unwind () to locate the beginning of the
1635 function to pass to skip_prologue (). However, when objects are
1636 compiled without debug symbols, frame_func_unwind can return the wrong
1637 function (or 0). We can do better than that by using unwind records. */
1638
1639 prologue_end = hppa_skip_prologue (u->region_start);
1640 end_pc = frame_pc_unwind (next_frame);
1641
1642 if (prologue_end != 0 && end_pc > prologue_end)
1643 end_pc = prologue_end;
1644
1645 frame_size = 0;
1646
1647 for (pc = u->region_start;
1648 ((saved_gr_mask || saved_fr_mask
1649 || looking_for_sp || looking_for_rp
1650 || frame_size < (u->Total_frame_size << 3))
1651 && pc < end_pc);
1652 pc += 4)
1653 {
1654 int reg;
1655 char buf4[4];
1656 long inst;
1657
1658 if (!safe_frame_unwind_memory (next_frame, pc, buf4,
1659 sizeof buf4))
1660 {
1661 error ("Cannot read instruction at 0x%s\n", paddr_nz (pc));
1662 return (*this_cache);
1663 }
1664
1665 inst = extract_unsigned_integer (buf4, sizeof buf4);
1666
1667 /* Note the interesting effects of this instruction. */
1668 frame_size += prologue_inst_adjust_sp (inst);
1669
1670 /* There are limited ways to store the return pointer into the
1671 stack. */
1672 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1673 {
1674 looking_for_rp = 0;
1675 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1676 }
1677 else if (inst == 0x6bc23fd1) /* stw rp,-0x18(sr0,sp) */
1678 {
1679 looking_for_rp = 0;
1680 cache->saved_regs[HPPA_RP_REGNUM].addr = -24;
1681 }
1682 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1683 {
1684 looking_for_rp = 0;
1685 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1686 }
1687
1688 /* Check to see if we saved SP into the stack. This also
1689 happens to indicate the location of the saved frame
1690 pointer. */
1691 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1692 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1693 {
1694 looking_for_sp = 0;
1695 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1696 }
1697
1698 /* Account for general and floating-point register saves. */
1699 reg = inst_saves_gr (inst);
1700 if (reg >= 3 && reg <= 18
1701 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1702 {
1703 saved_gr_mask &= ~(1 << reg);
1704 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1705 /* stwm with a positive displacement is a _post_
1706 _modify_. */
1707 cache->saved_regs[reg].addr = 0;
1708 else if ((inst & 0xfc00000c) == 0x70000008)
1709 /* A std has explicit post_modify forms. */
1710 cache->saved_regs[reg].addr = 0;
1711 else
1712 {
1713 CORE_ADDR offset;
1714
1715 if ((inst >> 26) == 0x1c)
1716 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1717 else if ((inst >> 26) == 0x03)
1718 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1719 else
1720 offset = hppa_extract_14 (inst);
1721
1722 /* Handle code with and without frame pointers. */
1723 if (u->Save_SP)
1724 cache->saved_regs[reg].addr = offset;
1725 else
1726 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1727 }
1728 }
1729
1730 /* GCC handles callee saved FP regs a little differently.
1731
1732 It emits an instruction to put the value of the start of
1733 the FP store area into %r1. It then uses fstds,ma with a
1734 basereg of %r1 for the stores.
1735
1736 HP CC emits them at the current stack pointer modifying the
1737 stack pointer as it stores each register. */
1738
1739 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1740 if ((inst & 0xffffc000) == 0x34610000
1741 || (inst & 0xffffc000) == 0x37c10000)
1742 fp_loc = hppa_extract_14 (inst);
1743
1744 reg = inst_saves_fr (inst);
1745 if (reg >= 12 && reg <= 21)
1746 {
1747 /* Note +4 braindamage below is necessary because the FP
1748 status registers are internally 8 registers rather than
1749 the expected 4 registers. */
1750 saved_fr_mask &= ~(1 << reg);
1751 if (fp_loc == -1)
1752 {
1753 /* 1st HP CC FP register store. After this
1754 instruction we've set enough state that the GCC and
1755 HPCC code are both handled in the same manner. */
1756 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1757 fp_loc = 8;
1758 }
1759 else
1760 {
1761 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1762 fp_loc += 8;
1763 }
1764 }
1765
1766 /* Quit if we hit any kind of branch the previous iteration. */
1767 if (final_iteration)
1768 break;
1769 /* We want to look precisely one instruction beyond the branch
1770 if we have not found everything yet. */
1771 if (is_branch (inst))
1772 final_iteration = 1;
1773 }
1774 }
1775
1776 {
1777 /* The frame base always represents the value of %sp at entry to
1778 the current function (and is thus equivalent to the "saved"
1779 stack pointer. */
1780 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1781 CORE_ADDR fp;
1782
1783 if (hppa_debug)
1784 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1785 "prologue_end=0x%s) ",
1786 paddr_nz (this_sp),
1787 paddr_nz (frame_pc_unwind (next_frame)),
1788 paddr_nz (prologue_end));
1789
1790 /* Check to see if a frame pointer is available, and use it for
1791 frame unwinding if it is.
1792
1793 There are some situations where we need to rely on the frame
1794 pointer to do stack unwinding. For example, if a function calls
1795 alloca (), the stack pointer can get adjusted inside the body of
1796 the function. In this case, the ABI requires that the compiler
1797 maintain a frame pointer for the function.
1798
1799 The unwind record has a flag (alloca_frame) that indicates that
1800 a function has a variable frame; unfortunately, gcc/binutils
1801 does not set this flag. Instead, whenever a frame pointer is used
1802 and saved on the stack, the Save_SP flag is set. We use this to
1803 decide whether to use the frame pointer for unwinding.
1804
1805 fp may be zero if it is not available in an inner frame because
1806 it has been modified by not yet saved.
1807
1808 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1809 instead of Save_SP. */
1810
1811 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1812
1813 if (frame_pc_unwind (next_frame) >= prologue_end
1814 && u->Save_SP && fp != 0)
1815 {
1816 cache->base = fp;
1817
1818 if (hppa_debug)
1819 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1820 paddr_nz (cache->base));
1821 }
1822 else if (u->Save_SP
1823 && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1824 {
1825 /* Both we're expecting the SP to be saved and the SP has been
1826 saved. The entry SP value is saved at this frame's SP
1827 address. */
1828 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1829
1830 if (hppa_debug)
1831 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1832 paddr_nz (cache->base));
1833 }
1834 else
1835 {
1836 /* The prologue has been slowly allocating stack space. Adjust
1837 the SP back. */
1838 cache->base = this_sp - frame_size;
1839 if (hppa_debug)
1840 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1841 paddr_nz (cache->base));
1842
1843 }
1844 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1845 }
1846
1847 /* The PC is found in the "return register", "Millicode" uses "r31"
1848 as the return register while normal code uses "rp". */
1849 if (u->Millicode)
1850 {
1851 if (trad_frame_addr_p (cache->saved_regs, 31))
1852 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1853 else
1854 {
1855 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1856 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1857 }
1858 }
1859 else
1860 {
1861 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1862 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1863 else
1864 {
1865 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1866 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1867 }
1868 }
1869
1870 /* If the frame pointer was not saved in this frame, but we should be saving
1871 it, set it to an invalid value so that another frame will not pick up the
1872 wrong frame pointer. This can happen if we start unwinding after the
1873 frame pointer has been modified, but before we've saved it to the
1874 stack. */
1875 if (u->Save_SP && !trad_frame_addr_p (cache->saved_regs, HPPA_FP_REGNUM))
1876 trad_frame_set_value (cache->saved_regs, HPPA_FP_REGNUM, 0);
1877
1878 {
1879 /* Convert all the offsets into addresses. */
1880 int reg;
1881 for (reg = 0; reg < NUM_REGS; reg++)
1882 {
1883 if (trad_frame_addr_p (cache->saved_regs, reg))
1884 cache->saved_regs[reg].addr += cache->base;
1885 }
1886 }
1887
1888 if (hppa_debug)
1889 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1890 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1891 return (*this_cache);
1892 }
1893
1894 static void
1895 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1896 struct frame_id *this_id)
1897 {
1898 struct hppa_frame_cache *info;
1899 CORE_ADDR pc = frame_pc_unwind (next_frame);
1900 struct unwind_table_entry *u;
1901
1902 info = hppa_frame_cache (next_frame, this_cache);
1903 u = find_unwind_entry (pc);
1904
1905 (*this_id) = frame_id_build (info->base, u->region_start);
1906 }
1907
1908 static void
1909 hppa_frame_prev_register (struct frame_info *next_frame,
1910 void **this_cache,
1911 int regnum, int *optimizedp,
1912 enum lval_type *lvalp, CORE_ADDR *addrp,
1913 int *realnump, void *valuep)
1914 {
1915 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1916 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1917 optimizedp, lvalp, addrp, realnump, valuep);
1918 }
1919
1920 static const struct frame_unwind hppa_frame_unwind =
1921 {
1922 NORMAL_FRAME,
1923 hppa_frame_this_id,
1924 hppa_frame_prev_register
1925 };
1926
1927 static const struct frame_unwind *
1928 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1929 {
1930 CORE_ADDR pc = frame_pc_unwind (next_frame);
1931
1932 if (find_unwind_entry (pc))
1933 return &hppa_frame_unwind;
1934
1935 return NULL;
1936 }
1937
1938 /* This is a generic fallback frame unwinder that kicks in if we fail all
1939 the other ones. Normally we would expect the stub and regular unwinder
1940 to work, but in some cases we might hit a function that just doesn't
1941 have any unwind information available. In this case we try to do
1942 unwinding solely based on code reading. This is obviously going to be
1943 slow, so only use this as a last resort. Currently this will only
1944 identify the stack and pc for the frame. */
1945
1946 static struct hppa_frame_cache *
1947 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1948 {
1949 struct hppa_frame_cache *cache;
1950 unsigned int frame_size;
1951 int found_rp;
1952 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1953
1954 if (hppa_debug)
1955 fprintf_unfiltered (gdb_stdlog, "{ hppa_fallback_frame_cache (frame=%d)-> ",
1956 frame_relative_level(next_frame));
1957
1958 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1959 (*this_cache) = cache;
1960 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1961
1962 pc = frame_func_unwind (next_frame);
1963 cur_pc = frame_pc_unwind (next_frame);
1964 frame_size = 0;
1965 found_rp = 0;
1966
1967 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1968
1969 if (start_pc == 0 || end_pc == 0)
1970 {
1971 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1972 "fail.", paddr_nz (pc));
1973 return cache;
1974 }
1975
1976 if (end_pc > cur_pc)
1977 end_pc = cur_pc;
1978
1979 for (pc = start_pc; pc < end_pc; pc += 4)
1980 {
1981 unsigned int insn;
1982
1983 insn = read_memory_unsigned_integer (pc, 4);
1984
1985 frame_size += prologue_inst_adjust_sp (insn);
1986
1987 /* There are limited ways to store the return pointer into the
1988 stack. */
1989 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1990 {
1991 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1992 found_rp = 1;
1993 }
1994 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1995 {
1996 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1997 found_rp = 1;
1998 }
1999 }
2000
2001 if (hppa_debug)
2002 fprintf_unfiltered (gdb_stdlog, " frame_size = %d, found_rp = %d }\n",
2003 frame_size, found_rp);
2004
2005 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM) - frame_size;
2006 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
2007
2008 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
2009 {
2010 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
2011 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
2012 }
2013 else
2014 {
2015 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
2016 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
2017 }
2018
2019 return cache;
2020 }
2021
2022 static void
2023 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
2024 struct frame_id *this_id)
2025 {
2026 struct hppa_frame_cache *info =
2027 hppa_fallback_frame_cache (next_frame, this_cache);
2028 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
2029 }
2030
2031 static void
2032 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
2033 void **this_cache,
2034 int regnum, int *optimizedp,
2035 enum lval_type *lvalp, CORE_ADDR *addrp,
2036 int *realnump, void *valuep)
2037 {
2038 struct hppa_frame_cache *info =
2039 hppa_fallback_frame_cache (next_frame, this_cache);
2040 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2041 optimizedp, lvalp, addrp, realnump, valuep);
2042 }
2043
2044 static const struct frame_unwind hppa_fallback_frame_unwind =
2045 {
2046 NORMAL_FRAME,
2047 hppa_fallback_frame_this_id,
2048 hppa_fallback_frame_prev_register
2049 };
2050
2051 static const struct frame_unwind *
2052 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
2053 {
2054 return &hppa_fallback_frame_unwind;
2055 }
2056
2057 /* Stub frames, used for all kinds of call stubs. */
2058 struct hppa_stub_unwind_cache
2059 {
2060 CORE_ADDR base;
2061 struct trad_frame_saved_reg *saved_regs;
2062 };
2063
2064 static struct hppa_stub_unwind_cache *
2065 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2066 void **this_cache)
2067 {
2068 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2069 struct hppa_stub_unwind_cache *info;
2070 struct unwind_table_entry *u;
2071
2072 if (*this_cache)
2073 return *this_cache;
2074
2075 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2076 *this_cache = info;
2077 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2078
2079 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2080
2081 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2082 {
2083 /* HPUX uses export stubs in function calls; the export stub clobbers
2084 the return value of the caller, and, later restores it from the
2085 stack. */
2086 u = find_unwind_entry (frame_pc_unwind (next_frame));
2087
2088 if (u && u->stub_unwind.stub_type == EXPORT)
2089 {
2090 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2091
2092 return info;
2093 }
2094 }
2095
2096 /* By default we assume that stubs do not change the rp. */
2097 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2098
2099 return info;
2100 }
2101
2102 static void
2103 hppa_stub_frame_this_id (struct frame_info *next_frame,
2104 void **this_prologue_cache,
2105 struct frame_id *this_id)
2106 {
2107 struct hppa_stub_unwind_cache *info
2108 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2109 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2110 }
2111
2112 static void
2113 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2114 void **this_prologue_cache,
2115 int regnum, int *optimizedp,
2116 enum lval_type *lvalp, CORE_ADDR *addrp,
2117 int *realnump, void *valuep)
2118 {
2119 struct hppa_stub_unwind_cache *info
2120 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2121 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2122 optimizedp, lvalp, addrp, realnump, valuep);
2123 }
2124
2125 static const struct frame_unwind hppa_stub_frame_unwind = {
2126 NORMAL_FRAME,
2127 hppa_stub_frame_this_id,
2128 hppa_stub_frame_prev_register
2129 };
2130
2131 static const struct frame_unwind *
2132 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2133 {
2134 CORE_ADDR pc = frame_pc_unwind (next_frame);
2135 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2136 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2137
2138 if (pc == 0
2139 || (tdep->in_solib_call_trampoline != NULL
2140 && tdep->in_solib_call_trampoline (pc, NULL))
2141 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2142 return &hppa_stub_frame_unwind;
2143 return NULL;
2144 }
2145
2146 static struct frame_id
2147 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2148 {
2149 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2150 HPPA_SP_REGNUM),
2151 frame_pc_unwind (next_frame));
2152 }
2153
2154 static CORE_ADDR
2155 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2156 {
2157 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2158 }
2159
2160 /* Instead of this nasty cast, add a method pvoid() that prints out a
2161 host VOID data type (remember %p isn't portable). */
2162
2163 static CORE_ADDR
2164 hppa_pointer_to_address_hack (void *ptr)
2165 {
2166 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2167 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2168 }
2169
2170 static void
2171 unwind_command (char *exp, int from_tty)
2172 {
2173 CORE_ADDR address;
2174 struct unwind_table_entry *u;
2175
2176 /* If we have an expression, evaluate it and use it as the address. */
2177
2178 if (exp != 0 && *exp != 0)
2179 address = parse_and_eval_address (exp);
2180 else
2181 return;
2182
2183 u = find_unwind_entry (address);
2184
2185 if (!u)
2186 {
2187 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2188 return;
2189 }
2190
2191 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2192 paddr_nz (hppa_pointer_to_address_hack (u)));
2193
2194 printf_unfiltered ("\tregion_start = ");
2195 print_address (u->region_start, gdb_stdout);
2196 gdb_flush (gdb_stdout);
2197
2198 printf_unfiltered ("\n\tregion_end = ");
2199 print_address (u->region_end, gdb_stdout);
2200 gdb_flush (gdb_stdout);
2201
2202 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2203
2204 printf_unfiltered ("\n\tflags =");
2205 pif (Cannot_unwind);
2206 pif (Millicode);
2207 pif (Millicode_save_sr0);
2208 pif (Entry_SR);
2209 pif (Args_stored);
2210 pif (Variable_Frame);
2211 pif (Separate_Package_Body);
2212 pif (Frame_Extension_Millicode);
2213 pif (Stack_Overflow_Check);
2214 pif (Two_Instruction_SP_Increment);
2215 pif (Ada_Region);
2216 pif (Save_SP);
2217 pif (Save_RP);
2218 pif (Save_MRP_in_frame);
2219 pif (extn_ptr_defined);
2220 pif (Cleanup_defined);
2221 pif (MPE_XL_interrupt_marker);
2222 pif (HP_UX_interrupt_marker);
2223 pif (Large_frame);
2224
2225 putchar_unfiltered ('\n');
2226
2227 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2228
2229 pin (Region_description);
2230 pin (Entry_FR);
2231 pin (Entry_GR);
2232 pin (Total_frame_size);
2233 }
2234
2235 void
2236 hppa_skip_permanent_breakpoint (void)
2237 {
2238 /* To step over a breakpoint instruction on the PA takes some
2239 fiddling with the instruction address queue.
2240
2241 When we stop at a breakpoint, the IA queue front (the instruction
2242 we're executing now) points at the breakpoint instruction, and
2243 the IA queue back (the next instruction to execute) points to
2244 whatever instruction we would execute after the breakpoint, if it
2245 were an ordinary instruction. This is the case even if the
2246 breakpoint is in the delay slot of a branch instruction.
2247
2248 Clearly, to step past the breakpoint, we need to set the queue
2249 front to the back. But what do we put in the back? What
2250 instruction comes after that one? Because of the branch delay
2251 slot, the next insn is always at the back + 4. */
2252 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2253 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2254
2255 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2256 /* We can leave the tail's space the same, since there's no jump. */
2257 }
2258
2259 int
2260 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2261 {
2262 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2263
2264 An example of this occurs when an a.out is linked against a foo.sl.
2265 The foo.sl defines a global bar(), and the a.out declares a signature
2266 for bar(). However, the a.out doesn't directly call bar(), but passes
2267 its address in another call.
2268
2269 If you have this scenario and attempt to "break bar" before running,
2270 gdb will find a minimal symbol for bar() in the a.out. But that
2271 symbol's address will be negative. What this appears to denote is
2272 an index backwards from the base of the procedure linkage table (PLT)
2273 into the data linkage table (DLT), the end of which is contiguous
2274 with the start of the PLT. This is clearly not a valid address for
2275 us to set a breakpoint on.
2276
2277 Note that one must be careful in how one checks for a negative address.
2278 0xc0000000 is a legitimate address of something in a shared text
2279 segment, for example. Since I don't know what the possible range
2280 is of these "really, truly negative" addresses that come from the
2281 minimal symbols, I'm resorting to the gross hack of checking the
2282 top byte of the address for all 1's. Sigh. */
2283
2284 return (!target_has_stack && (pc & 0xFF000000));
2285 }
2286
2287 int
2288 hppa_instruction_nullified (void)
2289 {
2290 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2291 avoid the type cast. I'm leaving it as is for now as I'm doing
2292 semi-mechanical multiarching-related changes. */
2293 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2294 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2295
2296 return ((ipsw & 0x00200000) && !(flags & 0x2));
2297 }
2298
2299 /* Return the GDB type object for the "standard" data type of data
2300 in register N. */
2301
2302 static struct type *
2303 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2304 {
2305 if (reg_nr < HPPA_FP4_REGNUM)
2306 return builtin_type_uint32;
2307 else
2308 return builtin_type_ieee_single_big;
2309 }
2310
2311 /* Return the GDB type object for the "standard" data type of data
2312 in register N. hppa64 version. */
2313
2314 static struct type *
2315 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2316 {
2317 if (reg_nr < HPPA_FP4_REGNUM)
2318 return builtin_type_uint64;
2319 else
2320 return builtin_type_ieee_double_big;
2321 }
2322
2323 /* Return True if REGNUM is not a register available to the user
2324 through ptrace(). */
2325
2326 static int
2327 hppa_cannot_store_register (int regnum)
2328 {
2329 return (regnum == 0
2330 || regnum == HPPA_PCSQ_HEAD_REGNUM
2331 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2332 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2333
2334 }
2335
2336 static CORE_ADDR
2337 hppa_smash_text_address (CORE_ADDR addr)
2338 {
2339 /* The low two bits of the PC on the PA contain the privilege level.
2340 Some genius implementing a (non-GCC) compiler apparently decided
2341 this means that "addresses" in a text section therefore include a
2342 privilege level, and thus symbol tables should contain these bits.
2343 This seems like a bonehead thing to do--anyway, it seems to work
2344 for our purposes to just ignore those bits. */
2345
2346 return (addr &= ~0x3);
2347 }
2348
2349 /* Get the ith function argument for the current function. */
2350 static CORE_ADDR
2351 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2352 struct type *type)
2353 {
2354 CORE_ADDR addr;
2355 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2356 return addr;
2357 }
2358
2359 static void
2360 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2361 int regnum, void *buf)
2362 {
2363 ULONGEST tmp;
2364
2365 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2366 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2367 tmp &= ~0x3;
2368 store_unsigned_integer (buf, sizeof(tmp), tmp);
2369 }
2370
2371 static CORE_ADDR
2372 hppa_find_global_pointer (struct value *function)
2373 {
2374 return 0;
2375 }
2376
2377 void
2378 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2379 struct trad_frame_saved_reg saved_regs[],
2380 int regnum, int *optimizedp,
2381 enum lval_type *lvalp, CORE_ADDR *addrp,
2382 int *realnump, void *valuep)
2383 {
2384 if (regnum == HPPA_PCOQ_TAIL_REGNUM)
2385 {
2386 if (valuep)
2387 {
2388 CORE_ADDR pc;
2389
2390 trad_frame_get_prev_register (next_frame, saved_regs,
2391 HPPA_PCOQ_HEAD_REGNUM, optimizedp,
2392 lvalp, addrp, realnump, valuep);
2393
2394 pc = extract_unsigned_integer (valuep, 4);
2395 store_unsigned_integer (valuep, 4, pc + 4);
2396 }
2397
2398 /* It's a computed value. */
2399 *optimizedp = 0;
2400 *lvalp = not_lval;
2401 *addrp = 0;
2402 *realnump = -1;
2403 return;
2404 }
2405
2406 trad_frame_get_prev_register (next_frame, saved_regs, regnum,
2407 optimizedp, lvalp, addrp, realnump, valuep);
2408 }
2409 \f
2410
2411 /* Here is a table of C type sizes on hppa with various compiles
2412 and options. I measured this on PA 9000/800 with HP-UX 11.11
2413 and these compilers:
2414
2415 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2416 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2417 /opt/aCC/bin/aCC B3910B A.03.45
2418 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2419
2420 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2421 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2422 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2423 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2424 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2425 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2426 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2427 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2428
2429 Each line is:
2430
2431 compiler and options
2432 char, short, int, long, long long
2433 float, double, long double
2434 char *, void (*)()
2435
2436 So all these compilers use either ILP32 or LP64 model.
2437 TODO: gcc has more options so it needs more investigation.
2438
2439 For floating point types, see:
2440
2441 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2442 HP-UX floating-point guide, hpux 11.00
2443
2444 -- chastain 2003-12-18 */
2445
2446 static struct gdbarch *
2447 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2448 {
2449 struct gdbarch_tdep *tdep;
2450 struct gdbarch *gdbarch;
2451
2452 /* Try to determine the ABI of the object we are loading. */
2453 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2454 {
2455 /* If it's a SOM file, assume it's HP/UX SOM. */
2456 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2457 info.osabi = GDB_OSABI_HPUX_SOM;
2458 }
2459
2460 /* find a candidate among the list of pre-declared architectures. */
2461 arches = gdbarch_list_lookup_by_info (arches, &info);
2462 if (arches != NULL)
2463 return (arches->gdbarch);
2464
2465 /* If none found, then allocate and initialize one. */
2466 tdep = XZALLOC (struct gdbarch_tdep);
2467 gdbarch = gdbarch_alloc (&info, tdep);
2468
2469 /* Determine from the bfd_arch_info structure if we are dealing with
2470 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2471 then default to a 32bit machine. */
2472 if (info.bfd_arch_info != NULL)
2473 tdep->bytes_per_address =
2474 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2475 else
2476 tdep->bytes_per_address = 4;
2477
2478 tdep->find_global_pointer = hppa_find_global_pointer;
2479
2480 /* Some parts of the gdbarch vector depend on whether we are running
2481 on a 32 bits or 64 bits target. */
2482 switch (tdep->bytes_per_address)
2483 {
2484 case 4:
2485 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2486 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2487 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2488 break;
2489 case 8:
2490 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2491 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2492 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2493 break;
2494 default:
2495 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2496 tdep->bytes_per_address);
2497 }
2498
2499 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2500 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2501
2502 /* The following gdbarch vector elements are the same in both ILP32
2503 and LP64, but might show differences some day. */
2504 set_gdbarch_long_long_bit (gdbarch, 64);
2505 set_gdbarch_long_double_bit (gdbarch, 128);
2506 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2507
2508 /* The following gdbarch vector elements do not depend on the address
2509 size, or in any other gdbarch element previously set. */
2510 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2511 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2512 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2513 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2514 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2515 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2516 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2517 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2518 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2519 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2520 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2521
2522 /* Helper for function argument information. */
2523 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2524
2525 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2526
2527 /* When a hardware watchpoint triggers, we'll move the inferior past
2528 it by removing all eventpoints; stepping past the instruction
2529 that caused the trigger; reinserting eventpoints; and checking
2530 whether any watched location changed. */
2531 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2532
2533 /* Inferior function call methods. */
2534 switch (tdep->bytes_per_address)
2535 {
2536 case 4:
2537 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2538 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2539 set_gdbarch_convert_from_func_ptr_addr
2540 (gdbarch, hppa32_convert_from_func_ptr_addr);
2541 break;
2542 case 8:
2543 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2544 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2545 break;
2546 default:
2547 internal_error (__FILE__, __LINE__, "bad switch");
2548 }
2549
2550 /* Struct return methods. */
2551 switch (tdep->bytes_per_address)
2552 {
2553 case 4:
2554 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2555 break;
2556 case 8:
2557 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2558 break;
2559 default:
2560 internal_error (__FILE__, __LINE__, "bad switch");
2561 }
2562
2563 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2564 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2565
2566 /* Frame unwind methods. */
2567 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2568 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2569
2570 /* Hook in ABI-specific overrides, if they have been registered. */
2571 gdbarch_init_osabi (info, gdbarch);
2572
2573 /* Hook in the default unwinders. */
2574 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2575 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2576 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2577
2578 return gdbarch;
2579 }
2580
2581 static void
2582 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2583 {
2584 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2585
2586 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2587 tdep->bytes_per_address);
2588 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2589 }
2590
2591 void
2592 _initialize_hppa_tdep (void)
2593 {
2594 struct cmd_list_element *c;
2595 void break_at_finish_command (char *arg, int from_tty);
2596 void tbreak_at_finish_command (char *arg, int from_tty);
2597 void break_at_finish_at_depth_command (char *arg, int from_tty);
2598
2599 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2600
2601 hppa_objfile_priv_data = register_objfile_data ();
2602
2603 add_cmd ("unwind", class_maintenance, unwind_command,
2604 "Print unwind table entry at given address.",
2605 &maintenanceprintlist);
2606
2607 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2608 break_at_finish_command,
2609 concat ("Set breakpoint at procedure exit. \n\
2610 Argument may be function name, or \"*\" and an address.\n\
2611 If function is specified, break at end of code for that function.\n\
2612 If an address is specified, break at the end of the function that contains \n\
2613 that exact address.\n",
2614 "With no arg, uses current execution address of selected stack frame.\n\
2615 This is useful for breaking on return to a stack frame.\n\
2616 \n\
2617 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2618 \n\
2619 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2620 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2621 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2622 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2623 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2624
2625 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2626 tbreak_at_finish_command,
2627 "Set temporary breakpoint at procedure exit. Either there should\n\
2628 be no argument or the argument must be a depth.\n"), NULL);
2629 set_cmd_completer (c, location_completer);
2630
2631 if (xdb_commands)
2632 deprecate_cmd (add_com ("bx", class_breakpoint,
2633 break_at_finish_at_depth_command,
2634 "Set breakpoint at procedure exit. Either there should\n\
2635 be no argument or the argument must be a depth.\n"), NULL);
2636
2637 /* Debug this files internals. */
2638 add_setshow_boolean_cmd ("hppa", class_maintenance, &hppa_debug, "\
2639 Set whether hppa target specific debugging information should be displayed.", "\
2640 Show whether hppa target specific debugging information is displayed.", "\
2641 This flag controls whether hppa target specific debugging information is\n\
2642 displayed. This information is particularly useful for debugging frame\n\
2643 unwinding problems.", "hppa debug flag is %s.",
2644 NULL, NULL, &setdebuglist, &showdebuglist);
2645 }
This page took 0.085717 seconds and 5 git commands to generate.