2004-02-22 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "bfd.h"
30 #include "inferior.h"
31 #include "value.h"
32 #include "regcache.h"
33 #include "completer.h"
34 #include "language.h"
35 #include "osabi.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
40 #include "symtab.h"
41 #include "infcall.h"
42 #include "dis-asm.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "frame-base.h"
46
47 #ifdef USG
48 #include <sys/types.h>
49 #endif
50
51 #include <dl.h>
52 #include <sys/param.h>
53 #include <signal.h>
54
55 #include <sys/ptrace.h>
56 #include <machine/save_state.h>
57
58 #ifdef COFF_ENCAPSULATE
59 #include "a.out.encap.h"
60 #else
61 #endif
62
63 /*#include <sys/user.h> After a.out.h */
64 #include <sys/file.h>
65 #include "gdb_stat.h"
66 #include "gdb_wait.h"
67
68 #include "gdbcore.h"
69 #include "gdbcmd.h"
70 #include "target.h"
71 #include "symfile.h"
72 #include "objfiles.h"
73 #include "hppa-tdep.h"
74
75 /* Some local constants. */
76 static const int hppa32_num_regs = 128;
77 static const int hppa64_num_regs = 96;
78
79 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
80
81 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
86 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
98
99 /* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
103
104 /* To support detection of the pseudo-initial frame
105 that threads have. */
106 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
108
109 /* Sizes (in bytes) of the native unwind entries. */
110 #define UNWIND_ENTRY_SIZE 16
111 #define STUB_UNWIND_ENTRY_SIZE 8
112
113 static int get_field (unsigned word, int from, int to);
114
115 static int extract_5_load (unsigned int);
116
117 static unsigned extract_5R_store (unsigned int);
118
119 static unsigned extract_5r_store (unsigned int);
120
121 static void hppa_frame_init_saved_regs (struct frame_info *frame);
122
123 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
124
125 static int find_proc_framesize (CORE_ADDR);
126
127 static int find_return_regnum (CORE_ADDR);
128
129 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
130
131 static int extract_17 (unsigned int);
132
133 static unsigned deposit_21 (unsigned int, unsigned int);
134
135 static int extract_21 (unsigned);
136
137 static unsigned deposit_14 (int, unsigned int);
138
139 static int extract_14 (unsigned);
140
141 static void unwind_command (char *, int);
142
143 static int low_sign_extend (unsigned int, unsigned int);
144
145 static int sign_extend (unsigned int, unsigned int);
146
147 static int restore_pc_queue (CORE_ADDR *);
148
149 static int hppa_alignof (struct type *);
150
151 static int prologue_inst_adjust_sp (unsigned long);
152
153 static int is_branch (unsigned long);
154
155 static int inst_saves_gr (unsigned long);
156
157 static int inst_saves_fr (unsigned long);
158
159 static int pc_in_interrupt_handler (CORE_ADDR);
160
161 static int pc_in_linker_stub (CORE_ADDR);
162
163 static int compare_unwind_entries (const void *, const void *);
164
165 static void read_unwind_info (struct objfile *);
166
167 static void internalize_unwinds (struct objfile *,
168 struct unwind_table_entry *,
169 asection *, unsigned int,
170 unsigned int, CORE_ADDR);
171 static void pa_print_registers (char *, int, int);
172 static void pa_strcat_registers (char *, int, int, struct ui_file *);
173 static void pa_register_look_aside (char *, int, long *);
174 static void pa_print_fp_reg (int);
175 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
176 static void record_text_segment_lowaddr (bfd *, asection *, void *);
177 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
180 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
181 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
182 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
183 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
184 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
185 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
186 CORE_ADDR hppa32_stack_align (CORE_ADDR sp);
187 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
188 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
189 int hppa_instruction_nullified (void);
190 int hppa_register_raw_size (int reg_nr);
191 int hppa_register_byte (int reg_nr);
192 struct type * hppa32_register_virtual_type (int reg_nr);
193 struct type * hppa64_register_virtual_type (int reg_nr);
194 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
195 void hppa32_extract_return_value (struct type *type, char *regbuf,
196 char *valbuf);
197 void hppa64_extract_return_value (struct type *type, char *regbuf,
198 char *valbuf);
199 int hppa32_use_struct_convention (int gcc_p, struct type *type);
200 int hppa64_use_struct_convention (int gcc_p, struct type *type);
201 void hppa32_store_return_value (struct type *type, char *valbuf);
202 void hppa64_store_return_value (struct type *type, char *valbuf);
203 int hppa_cannot_store_register (int regnum);
204 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
205 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
206 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
207 int hppa_frameless_function_invocation (struct frame_info *frame);
208 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
209 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
210 int hppa_frame_num_args (struct frame_info *frame);
211 void hppa_push_dummy_frame (void);
212 void hppa_pop_frame (void);
213 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
214 int nargs, struct value **args,
215 struct type *type, int gcc_p);
216 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
217 int struct_return, CORE_ADDR struct_addr);
218 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
219 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
220 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
221 CORE_ADDR hppa_target_read_fp (void);
222
223 typedef struct
224 {
225 struct minimal_symbol *msym;
226 CORE_ADDR solib_handle;
227 CORE_ADDR return_val;
228 }
229 args_for_find_stub;
230
231 static int cover_find_stub_with_shl_get (void *);
232
233 static int is_pa_2 = 0; /* False */
234
235 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
236 extern int hp_som_som_object_present;
237
238 /* In breakpoint.c */
239 extern int exception_catchpoints_are_fragile;
240
241 /* Should call_function allocate stack space for a struct return? */
242
243 int
244 hppa32_use_struct_convention (int gcc_p, struct type *type)
245 {
246 return (TYPE_LENGTH (type) > 2 * DEPRECATED_REGISTER_SIZE);
247 }
248
249 /* Same as hppa32_use_struct_convention() for the PA64 ABI. */
250
251 int
252 hppa64_use_struct_convention (int gcc_p, struct type *type)
253 {
254 /* RM: struct upto 128 bits are returned in registers */
255 return TYPE_LENGTH (type) > 16;
256 }
257
258 /* Handle 32/64-bit struct return conventions. */
259
260 static enum return_value_convention
261 hppa32_return_value (struct gdbarch *gdbarch,
262 struct type *type, struct regcache *regcache,
263 void *readbuf, const void *writebuf)
264 {
265 if (TYPE_CODE (type) == TYPE_CODE_FLT)
266 {
267 if (readbuf != NULL)
268 regcache_cooked_read_part (regcache, FP4_REGNUM, 0,
269 TYPE_LENGTH (type), readbuf);
270 if (writebuf != NULL)
271 regcache_cooked_write_part (regcache, FP4_REGNUM, 0,
272 TYPE_LENGTH (type), writebuf);
273 return RETURN_VALUE_REGISTER_CONVENTION;
274 }
275 if (TYPE_LENGTH (type) <= 2 * 4)
276 {
277 /* The value always lives in the right hand end of the register
278 (or register pair)? */
279 int b;
280 int reg = 28;
281 int part = TYPE_LENGTH (type) % 4;
282 /* The left hand register contains only part of the value,
283 transfer that first so that the rest can be xfered as entire
284 4-byte registers. */
285 if (part > 0)
286 {
287 if (readbuf != NULL)
288 regcache_cooked_read_part (regcache, reg, 4 - part,
289 part, readbuf);
290 if (writebuf != NULL)
291 regcache_cooked_write_part (regcache, reg, 4 - part,
292 part, writebuf);
293 reg++;
294 }
295 /* Now transfer the remaining register values. */
296 for (b = part; b < TYPE_LENGTH (type); b += 4)
297 {
298 if (readbuf != NULL)
299 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
300 if (writebuf != NULL)
301 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
302 reg++;
303 }
304 return RETURN_VALUE_REGISTER_CONVENTION;
305 }
306 else
307 return RETURN_VALUE_STRUCT_CONVENTION;
308 }
309
310 static enum return_value_convention
311 hppa64_return_value (struct gdbarch *gdbarch,
312 struct type *type, struct regcache *regcache,
313 void *readbuf, const void *writebuf)
314 {
315 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
316 are in r28, padded on the left. Aggregates less that 65 bits are
317 in r28, right padded. Aggregates upto 128 bits are in r28 and
318 r29, right padded. */
319 if (TYPE_CODE (type) == TYPE_CODE_FLT)
320 {
321 /* Floats are right aligned? */
322 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
323 if (readbuf != NULL)
324 regcache_cooked_read_part (regcache, FP4_REGNUM, offset,
325 TYPE_LENGTH (type), readbuf);
326 if (writebuf != NULL)
327 regcache_cooked_write_part (regcache, FP4_REGNUM, offset,
328 TYPE_LENGTH (type), writebuf);
329 return RETURN_VALUE_REGISTER_CONVENTION;
330 }
331 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
332 {
333 /* Integrals are right aligned. */
334 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
335 if (readbuf != NULL)
336 regcache_cooked_read_part (regcache, 28, offset,
337 TYPE_LENGTH (type), readbuf);
338 if (writebuf != NULL)
339 regcache_cooked_write_part (regcache, 28, offset,
340 TYPE_LENGTH (type), writebuf);
341 return RETURN_VALUE_REGISTER_CONVENTION;
342 }
343 else if (TYPE_LENGTH (type) <= 2 * 8)
344 {
345 /* Composite values are left aligned. */
346 int b;
347 for (b = 0; b < TYPE_LENGTH (type); b += 8)
348 {
349 int part = (TYPE_LENGTH (type) - b - 1) % 8 + 1;
350 if (readbuf != NULL)
351 regcache_cooked_read_part (regcache, 28, 0, part,
352 (char *) readbuf + b);
353 if (writebuf != NULL)
354 regcache_cooked_write_part (regcache, 28, 0, part,
355 (const char *) writebuf + b);
356 }
357 return RETURN_VALUE_REGISTER_CONVENTION;
358 }
359 else
360 return RETURN_VALUE_STRUCT_CONVENTION;
361 }
362
363 /* Routines to extract various sized constants out of hppa
364 instructions. */
365
366 /* This assumes that no garbage lies outside of the lower bits of
367 value. */
368
369 static int
370 sign_extend (unsigned val, unsigned bits)
371 {
372 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
373 }
374
375 /* For many immediate values the sign bit is the low bit! */
376
377 static int
378 low_sign_extend (unsigned val, unsigned bits)
379 {
380 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
381 }
382
383 /* Extract the bits at positions between FROM and TO, using HP's numbering
384 (MSB = 0). */
385
386 static int
387 get_field (unsigned word, int from, int to)
388 {
389 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
390 }
391
392 /* extract the immediate field from a ld{bhw}s instruction */
393
394 static int
395 extract_5_load (unsigned word)
396 {
397 return low_sign_extend (word >> 16 & MASK_5, 5);
398 }
399
400 /* extract the immediate field from a break instruction */
401
402 static unsigned
403 extract_5r_store (unsigned word)
404 {
405 return (word & MASK_5);
406 }
407
408 /* extract the immediate field from a {sr}sm instruction */
409
410 static unsigned
411 extract_5R_store (unsigned word)
412 {
413 return (word >> 16 & MASK_5);
414 }
415
416 /* extract a 14 bit immediate field */
417
418 static int
419 extract_14 (unsigned word)
420 {
421 return low_sign_extend (word & MASK_14, 14);
422 }
423
424 /* deposit a 14 bit constant in a word */
425
426 static unsigned
427 deposit_14 (int opnd, unsigned word)
428 {
429 unsigned sign = (opnd < 0 ? 1 : 0);
430
431 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
432 }
433
434 /* extract a 21 bit constant */
435
436 static int
437 extract_21 (unsigned word)
438 {
439 int val;
440
441 word &= MASK_21;
442 word <<= 11;
443 val = get_field (word, 20, 20);
444 val <<= 11;
445 val |= get_field (word, 9, 19);
446 val <<= 2;
447 val |= get_field (word, 5, 6);
448 val <<= 5;
449 val |= get_field (word, 0, 4);
450 val <<= 2;
451 val |= get_field (word, 7, 8);
452 return sign_extend (val, 21) << 11;
453 }
454
455 /* deposit a 21 bit constant in a word. Although 21 bit constants are
456 usually the top 21 bits of a 32 bit constant, we assume that only
457 the low 21 bits of opnd are relevant */
458
459 static unsigned
460 deposit_21 (unsigned opnd, unsigned word)
461 {
462 unsigned val = 0;
463
464 val |= get_field (opnd, 11 + 14, 11 + 18);
465 val <<= 2;
466 val |= get_field (opnd, 11 + 12, 11 + 13);
467 val <<= 2;
468 val |= get_field (opnd, 11 + 19, 11 + 20);
469 val <<= 11;
470 val |= get_field (opnd, 11 + 1, 11 + 11);
471 val <<= 1;
472 val |= get_field (opnd, 11 + 0, 11 + 0);
473 return word | val;
474 }
475
476 /* extract a 17 bit constant from branch instructions, returning the
477 19 bit signed value. */
478
479 static int
480 extract_17 (unsigned word)
481 {
482 return sign_extend (get_field (word, 19, 28) |
483 get_field (word, 29, 29) << 10 |
484 get_field (word, 11, 15) << 11 |
485 (word & 0x1) << 16, 17) << 2;
486 }
487 \f
488
489 /* Compare the start address for two unwind entries returning 1 if
490 the first address is larger than the second, -1 if the second is
491 larger than the first, and zero if they are equal. */
492
493 static int
494 compare_unwind_entries (const void *arg1, const void *arg2)
495 {
496 const struct unwind_table_entry *a = arg1;
497 const struct unwind_table_entry *b = arg2;
498
499 if (a->region_start > b->region_start)
500 return 1;
501 else if (a->region_start < b->region_start)
502 return -1;
503 else
504 return 0;
505 }
506
507 static CORE_ADDR low_text_segment_address;
508
509 static void
510 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
511 {
512 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
513 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
514 && section->vma < low_text_segment_address)
515 low_text_segment_address = section->vma;
516 }
517
518 static void
519 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
520 asection *section, unsigned int entries, unsigned int size,
521 CORE_ADDR text_offset)
522 {
523 /* We will read the unwind entries into temporary memory, then
524 fill in the actual unwind table. */
525 if (size > 0)
526 {
527 unsigned long tmp;
528 unsigned i;
529 char *buf = alloca (size);
530
531 low_text_segment_address = -1;
532
533 /* If addresses are 64 bits wide, then unwinds are supposed to
534 be segment relative offsets instead of absolute addresses.
535
536 Note that when loading a shared library (text_offset != 0) the
537 unwinds are already relative to the text_offset that will be
538 passed in. */
539 if (TARGET_PTR_BIT == 64 && text_offset == 0)
540 {
541 bfd_map_over_sections (objfile->obfd,
542 record_text_segment_lowaddr, NULL);
543
544 /* ?!? Mask off some low bits. Should this instead subtract
545 out the lowest section's filepos or something like that?
546 This looks very hokey to me. */
547 low_text_segment_address &= ~0xfff;
548 text_offset += low_text_segment_address;
549 }
550
551 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
552
553 /* Now internalize the information being careful to handle host/target
554 endian issues. */
555 for (i = 0; i < entries; i++)
556 {
557 table[i].region_start = bfd_get_32 (objfile->obfd,
558 (bfd_byte *) buf);
559 table[i].region_start += text_offset;
560 buf += 4;
561 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
562 table[i].region_end += text_offset;
563 buf += 4;
564 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
565 buf += 4;
566 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
567 table[i].Millicode = (tmp >> 30) & 0x1;
568 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
569 table[i].Region_description = (tmp >> 27) & 0x3;
570 table[i].reserved1 = (tmp >> 26) & 0x1;
571 table[i].Entry_SR = (tmp >> 25) & 0x1;
572 table[i].Entry_FR = (tmp >> 21) & 0xf;
573 table[i].Entry_GR = (tmp >> 16) & 0x1f;
574 table[i].Args_stored = (tmp >> 15) & 0x1;
575 table[i].Variable_Frame = (tmp >> 14) & 0x1;
576 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
577 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
578 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
579 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
580 table[i].Ada_Region = (tmp >> 9) & 0x1;
581 table[i].cxx_info = (tmp >> 8) & 0x1;
582 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
583 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
584 table[i].reserved2 = (tmp >> 5) & 0x1;
585 table[i].Save_SP = (tmp >> 4) & 0x1;
586 table[i].Save_RP = (tmp >> 3) & 0x1;
587 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
588 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
589 table[i].Cleanup_defined = tmp & 0x1;
590 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
591 buf += 4;
592 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
593 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
594 table[i].Large_frame = (tmp >> 29) & 0x1;
595 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
596 table[i].reserved4 = (tmp >> 27) & 0x1;
597 table[i].Total_frame_size = tmp & 0x7ffffff;
598
599 /* Stub unwinds are handled elsewhere. */
600 table[i].stub_unwind.stub_type = 0;
601 table[i].stub_unwind.padding = 0;
602 }
603 }
604 }
605
606 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
607 the object file. This info is used mainly by find_unwind_entry() to find
608 out the stack frame size and frame pointer used by procedures. We put
609 everything on the psymbol obstack in the objfile so that it automatically
610 gets freed when the objfile is destroyed. */
611
612 static void
613 read_unwind_info (struct objfile *objfile)
614 {
615 asection *unwind_sec, *stub_unwind_sec;
616 unsigned unwind_size, stub_unwind_size, total_size;
617 unsigned index, unwind_entries;
618 unsigned stub_entries, total_entries;
619 CORE_ADDR text_offset;
620 struct obj_unwind_info *ui;
621 obj_private_data_t *obj_private;
622
623 text_offset = ANOFFSET (objfile->section_offsets, 0);
624 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
625 sizeof (struct obj_unwind_info));
626
627 ui->table = NULL;
628 ui->cache = NULL;
629 ui->last = -1;
630
631 /* For reasons unknown the HP PA64 tools generate multiple unwinder
632 sections in a single executable. So we just iterate over every
633 section in the BFD looking for unwinder sections intead of trying
634 to do a lookup with bfd_get_section_by_name.
635
636 First determine the total size of the unwind tables so that we
637 can allocate memory in a nice big hunk. */
638 total_entries = 0;
639 for (unwind_sec = objfile->obfd->sections;
640 unwind_sec;
641 unwind_sec = unwind_sec->next)
642 {
643 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
644 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
645 {
646 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
647 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
648
649 total_entries += unwind_entries;
650 }
651 }
652
653 /* Now compute the size of the stub unwinds. Note the ELF tools do not
654 use stub unwinds at the curren time. */
655 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
656
657 if (stub_unwind_sec)
658 {
659 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
660 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
661 }
662 else
663 {
664 stub_unwind_size = 0;
665 stub_entries = 0;
666 }
667
668 /* Compute total number of unwind entries and their total size. */
669 total_entries += stub_entries;
670 total_size = total_entries * sizeof (struct unwind_table_entry);
671
672 /* Allocate memory for the unwind table. */
673 ui->table = (struct unwind_table_entry *)
674 obstack_alloc (&objfile->objfile_obstack, total_size);
675 ui->last = total_entries - 1;
676
677 /* Now read in each unwind section and internalize the standard unwind
678 entries. */
679 index = 0;
680 for (unwind_sec = objfile->obfd->sections;
681 unwind_sec;
682 unwind_sec = unwind_sec->next)
683 {
684 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
685 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
686 {
687 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
688 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
689
690 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
691 unwind_entries, unwind_size, text_offset);
692 index += unwind_entries;
693 }
694 }
695
696 /* Now read in and internalize the stub unwind entries. */
697 if (stub_unwind_size > 0)
698 {
699 unsigned int i;
700 char *buf = alloca (stub_unwind_size);
701
702 /* Read in the stub unwind entries. */
703 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
704 0, stub_unwind_size);
705
706 /* Now convert them into regular unwind entries. */
707 for (i = 0; i < stub_entries; i++, index++)
708 {
709 /* Clear out the next unwind entry. */
710 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
711
712 /* Convert offset & size into region_start and region_end.
713 Stuff away the stub type into "reserved" fields. */
714 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
715 (bfd_byte *) buf);
716 ui->table[index].region_start += text_offset;
717 buf += 4;
718 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
719 (bfd_byte *) buf);
720 buf += 2;
721 ui->table[index].region_end
722 = ui->table[index].region_start + 4 *
723 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
724 buf += 2;
725 }
726
727 }
728
729 /* Unwind table needs to be kept sorted. */
730 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
731 compare_unwind_entries);
732
733 /* Keep a pointer to the unwind information. */
734 if (objfile->obj_private == NULL)
735 {
736 obj_private = (obj_private_data_t *)
737 obstack_alloc (&objfile->objfile_obstack,
738 sizeof (obj_private_data_t));
739 obj_private->unwind_info = NULL;
740 obj_private->so_info = NULL;
741 obj_private->dp = 0;
742
743 objfile->obj_private = obj_private;
744 }
745 obj_private = (obj_private_data_t *) objfile->obj_private;
746 obj_private->unwind_info = ui;
747 }
748
749 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
750 of the objfiles seeking the unwind table entry for this PC. Each objfile
751 contains a sorted list of struct unwind_table_entry. Since we do a binary
752 search of the unwind tables, we depend upon them to be sorted. */
753
754 struct unwind_table_entry *
755 find_unwind_entry (CORE_ADDR pc)
756 {
757 int first, middle, last;
758 struct objfile *objfile;
759
760 /* A function at address 0? Not in HP-UX! */
761 if (pc == (CORE_ADDR) 0)
762 return NULL;
763
764 ALL_OBJFILES (objfile)
765 {
766 struct obj_unwind_info *ui;
767 ui = NULL;
768 if (objfile->obj_private)
769 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
770
771 if (!ui)
772 {
773 read_unwind_info (objfile);
774 if (objfile->obj_private == NULL)
775 error ("Internal error reading unwind information.");
776 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
777 }
778
779 /* First, check the cache */
780
781 if (ui->cache
782 && pc >= ui->cache->region_start
783 && pc <= ui->cache->region_end)
784 return ui->cache;
785
786 /* Not in the cache, do a binary search */
787
788 first = 0;
789 last = ui->last;
790
791 while (first <= last)
792 {
793 middle = (first + last) / 2;
794 if (pc >= ui->table[middle].region_start
795 && pc <= ui->table[middle].region_end)
796 {
797 ui->cache = &ui->table[middle];
798 return &ui->table[middle];
799 }
800
801 if (pc < ui->table[middle].region_start)
802 last = middle - 1;
803 else
804 first = middle + 1;
805 }
806 } /* ALL_OBJFILES() */
807 return NULL;
808 }
809
810 const unsigned char *
811 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
812 {
813 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
814 (*len) = sizeof (breakpoint);
815 return breakpoint;
816 }
817
818 /* Return the name of a register. */
819
820 const char *
821 hppa32_register_name (int i)
822 {
823 static char *names[] = {
824 "flags", "r1", "rp", "r3",
825 "r4", "r5", "r6", "r7",
826 "r8", "r9", "r10", "r11",
827 "r12", "r13", "r14", "r15",
828 "r16", "r17", "r18", "r19",
829 "r20", "r21", "r22", "r23",
830 "r24", "r25", "r26", "dp",
831 "ret0", "ret1", "sp", "r31",
832 "sar", "pcoqh", "pcsqh", "pcoqt",
833 "pcsqt", "eiem", "iir", "isr",
834 "ior", "ipsw", "goto", "sr4",
835 "sr0", "sr1", "sr2", "sr3",
836 "sr5", "sr6", "sr7", "cr0",
837 "cr8", "cr9", "ccr", "cr12",
838 "cr13", "cr24", "cr25", "cr26",
839 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
840 "fpsr", "fpe1", "fpe2", "fpe3",
841 "fpe4", "fpe5", "fpe6", "fpe7",
842 "fr4", "fr4R", "fr5", "fr5R",
843 "fr6", "fr6R", "fr7", "fr7R",
844 "fr8", "fr8R", "fr9", "fr9R",
845 "fr10", "fr10R", "fr11", "fr11R",
846 "fr12", "fr12R", "fr13", "fr13R",
847 "fr14", "fr14R", "fr15", "fr15R",
848 "fr16", "fr16R", "fr17", "fr17R",
849 "fr18", "fr18R", "fr19", "fr19R",
850 "fr20", "fr20R", "fr21", "fr21R",
851 "fr22", "fr22R", "fr23", "fr23R",
852 "fr24", "fr24R", "fr25", "fr25R",
853 "fr26", "fr26R", "fr27", "fr27R",
854 "fr28", "fr28R", "fr29", "fr29R",
855 "fr30", "fr30R", "fr31", "fr31R"
856 };
857 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
858 return NULL;
859 else
860 return names[i];
861 }
862
863 const char *
864 hppa64_register_name (int i)
865 {
866 static char *names[] = {
867 "flags", "r1", "rp", "r3",
868 "r4", "r5", "r6", "r7",
869 "r8", "r9", "r10", "r11",
870 "r12", "r13", "r14", "r15",
871 "r16", "r17", "r18", "r19",
872 "r20", "r21", "r22", "r23",
873 "r24", "r25", "r26", "dp",
874 "ret0", "ret1", "sp", "r31",
875 "sar", "pcoqh", "pcsqh", "pcoqt",
876 "pcsqt", "eiem", "iir", "isr",
877 "ior", "ipsw", "goto", "sr4",
878 "sr0", "sr1", "sr2", "sr3",
879 "sr5", "sr6", "sr7", "cr0",
880 "cr8", "cr9", "ccr", "cr12",
881 "cr13", "cr24", "cr25", "cr26",
882 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
883 "fpsr", "fpe1", "fpe2", "fpe3",
884 "fr4", "fr5", "fr6", "fr7",
885 "fr8", "fr9", "fr10", "fr11",
886 "fr12", "fr13", "fr14", "fr15",
887 "fr16", "fr17", "fr18", "fr19",
888 "fr20", "fr21", "fr22", "fr23",
889 "fr24", "fr25", "fr26", "fr27",
890 "fr28", "fr29", "fr30", "fr31"
891 };
892 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
893 return NULL;
894 else
895 return names[i];
896 }
897
898
899
900 /* Return the adjustment necessary to make for addresses on the stack
901 as presented by hpread.c.
902
903 This is necessary because of the stack direction on the PA and the
904 bizarre way in which someone (?) decided they wanted to handle
905 frame pointerless code in GDB. */
906 int
907 hpread_adjust_stack_address (CORE_ADDR func_addr)
908 {
909 struct unwind_table_entry *u;
910
911 u = find_unwind_entry (func_addr);
912 if (!u)
913 return 0;
914 else
915 return u->Total_frame_size << 3;
916 }
917
918 /* Called to determine if PC is in an interrupt handler of some
919 kind. */
920
921 static int
922 pc_in_interrupt_handler (CORE_ADDR pc)
923 {
924 struct unwind_table_entry *u;
925 struct minimal_symbol *msym_us;
926
927 u = find_unwind_entry (pc);
928 if (!u)
929 return 0;
930
931 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
932 its frame isn't a pure interrupt frame. Deal with this. */
933 msym_us = lookup_minimal_symbol_by_pc (pc);
934
935 return (u->HP_UX_interrupt_marker
936 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
937 }
938
939 /* Called when no unwind descriptor was found for PC. Returns 1 if it
940 appears that PC is in a linker stub.
941
942 ?!? Need to handle stubs which appear in PA64 code. */
943
944 static int
945 pc_in_linker_stub (CORE_ADDR pc)
946 {
947 int found_magic_instruction = 0;
948 int i;
949 char buf[4];
950
951 /* If unable to read memory, assume pc is not in a linker stub. */
952 if (target_read_memory (pc, buf, 4) != 0)
953 return 0;
954
955 /* We are looking for something like
956
957 ; $$dyncall jams RP into this special spot in the frame (RP')
958 ; before calling the "call stub"
959 ldw -18(sp),rp
960
961 ldsid (rp),r1 ; Get space associated with RP into r1
962 mtsp r1,sp ; Move it into space register 0
963 be,n 0(sr0),rp) ; back to your regularly scheduled program */
964
965 /* Maximum known linker stub size is 4 instructions. Search forward
966 from the given PC, then backward. */
967 for (i = 0; i < 4; i++)
968 {
969 /* If we hit something with an unwind, stop searching this direction. */
970
971 if (find_unwind_entry (pc + i * 4) != 0)
972 break;
973
974 /* Check for ldsid (rp),r1 which is the magic instruction for a
975 return from a cross-space function call. */
976 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
977 {
978 found_magic_instruction = 1;
979 break;
980 }
981 /* Add code to handle long call/branch and argument relocation stubs
982 here. */
983 }
984
985 if (found_magic_instruction != 0)
986 return 1;
987
988 /* Now look backward. */
989 for (i = 0; i < 4; i++)
990 {
991 /* If we hit something with an unwind, stop searching this direction. */
992
993 if (find_unwind_entry (pc - i * 4) != 0)
994 break;
995
996 /* Check for ldsid (rp),r1 which is the magic instruction for a
997 return from a cross-space function call. */
998 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
999 {
1000 found_magic_instruction = 1;
1001 break;
1002 }
1003 /* Add code to handle long call/branch and argument relocation stubs
1004 here. */
1005 }
1006 return found_magic_instruction;
1007 }
1008
1009 static int
1010 find_return_regnum (CORE_ADDR pc)
1011 {
1012 struct unwind_table_entry *u;
1013
1014 u = find_unwind_entry (pc);
1015
1016 if (!u)
1017 return RP_REGNUM;
1018
1019 if (u->Millicode)
1020 return 31;
1021
1022 return RP_REGNUM;
1023 }
1024
1025 /* Return size of frame, or -1 if we should use a frame pointer. */
1026 static int
1027 find_proc_framesize (CORE_ADDR pc)
1028 {
1029 struct unwind_table_entry *u;
1030 struct minimal_symbol *msym_us;
1031
1032 /* This may indicate a bug in our callers... */
1033 if (pc == (CORE_ADDR) 0)
1034 return -1;
1035
1036 u = find_unwind_entry (pc);
1037
1038 if (!u)
1039 {
1040 if (pc_in_linker_stub (pc))
1041 /* Linker stubs have a zero size frame. */
1042 return 0;
1043 else
1044 return -1;
1045 }
1046
1047 msym_us = lookup_minimal_symbol_by_pc (pc);
1048
1049 /* If Save_SP is set, and we're not in an interrupt or signal caller,
1050 then we have a frame pointer. Use it. */
1051 if (u->Save_SP
1052 && !pc_in_interrupt_handler (pc)
1053 && msym_us
1054 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
1055 return -1;
1056
1057 return u->Total_frame_size << 3;
1058 }
1059
1060 /* Return offset from sp at which rp is saved, or 0 if not saved. */
1061 static int rp_saved (CORE_ADDR);
1062
1063 static int
1064 rp_saved (CORE_ADDR pc)
1065 {
1066 struct unwind_table_entry *u;
1067
1068 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
1069 if (pc == (CORE_ADDR) 0)
1070 return 0;
1071
1072 u = find_unwind_entry (pc);
1073
1074 if (!u)
1075 {
1076 if (pc_in_linker_stub (pc))
1077 /* This is the so-called RP'. */
1078 return -24;
1079 else
1080 return 0;
1081 }
1082
1083 if (u->Save_RP)
1084 return (TARGET_PTR_BIT == 64 ? -16 : -20);
1085 else if (u->stub_unwind.stub_type != 0)
1086 {
1087 switch (u->stub_unwind.stub_type)
1088 {
1089 case EXPORT:
1090 case IMPORT:
1091 return -24;
1092 case PARAMETER_RELOCATION:
1093 return -8;
1094 default:
1095 return 0;
1096 }
1097 }
1098 else
1099 return 0;
1100 }
1101 \f
1102 int
1103 hppa_frameless_function_invocation (struct frame_info *frame)
1104 {
1105 struct unwind_table_entry *u;
1106
1107 u = find_unwind_entry (get_frame_pc (frame));
1108
1109 if (u == 0)
1110 return 0;
1111
1112 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1113 }
1114
1115 /* Immediately after a function call, return the saved pc.
1116 Can't go through the frames for this because on some machines
1117 the new frame is not set up until the new function executes
1118 some instructions. */
1119
1120 CORE_ADDR
1121 hppa_saved_pc_after_call (struct frame_info *frame)
1122 {
1123 int ret_regnum;
1124 CORE_ADDR pc;
1125 struct unwind_table_entry *u;
1126
1127 ret_regnum = find_return_regnum (get_frame_pc (frame));
1128 pc = read_register (ret_regnum) & ~0x3;
1129
1130 /* If PC is in a linker stub, then we need to dig the address
1131 the stub will return to out of the stack. */
1132 u = find_unwind_entry (pc);
1133 if (u && u->stub_unwind.stub_type != 0)
1134 return DEPRECATED_FRAME_SAVED_PC (frame);
1135 else
1136 return pc;
1137 }
1138 \f
1139 CORE_ADDR
1140 hppa_frame_saved_pc (struct frame_info *frame)
1141 {
1142 CORE_ADDR pc = get_frame_pc (frame);
1143 struct unwind_table_entry *u;
1144 CORE_ADDR old_pc = 0;
1145 int spun_around_loop = 0;
1146 int rp_offset = 0;
1147
1148 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1149 at the base of the frame in an interrupt handler. Registers within
1150 are saved in the exact same order as GDB numbers registers. How
1151 convienent. */
1152 if (pc_in_interrupt_handler (pc))
1153 return read_memory_integer (get_frame_base (frame) + PC_REGNUM * 4,
1154 TARGET_PTR_BIT / 8) & ~0x3;
1155
1156 if ((get_frame_pc (frame) >= get_frame_base (frame)
1157 && (get_frame_pc (frame)
1158 <= (get_frame_base (frame)
1159 /* A call dummy is sized in words, but it is actually a
1160 series of instructions. Account for that scaling
1161 factor. */
1162 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1163 * DEPRECATED_CALL_DUMMY_LENGTH)
1164 /* Similarly we have to account for 64bit wide register
1165 saves. */
1166 + (32 * DEPRECATED_REGISTER_SIZE)
1167 /* We always consider FP regs 8 bytes long. */
1168 + (NUM_REGS - FP0_REGNUM) * 8
1169 /* Similarly we have to account for 64bit wide register
1170 saves. */
1171 + (6 * DEPRECATED_REGISTER_SIZE)))))
1172 {
1173 return read_memory_integer ((get_frame_base (frame)
1174 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1175 TARGET_PTR_BIT / 8) & ~0x3;
1176 }
1177
1178 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1179 /* Deal with signal handler caller frames too. */
1180 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1181 {
1182 CORE_ADDR rp;
1183 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1184 return rp & ~0x3;
1185 }
1186 #endif
1187
1188 if (hppa_frameless_function_invocation (frame))
1189 {
1190 int ret_regnum;
1191
1192 ret_regnum = find_return_regnum (pc);
1193
1194 /* If the next frame is an interrupt frame or a signal
1195 handler caller, then we need to look in the saved
1196 register area to get the return pointer (the values
1197 in the registers may not correspond to anything useful). */
1198 if (get_next_frame (frame)
1199 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1200 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1201 {
1202 CORE_ADDR *saved_regs;
1203 hppa_frame_init_saved_regs (get_next_frame (frame));
1204 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1205 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1206 TARGET_PTR_BIT / 8) & 0x2)
1207 {
1208 pc = read_memory_integer (saved_regs[31],
1209 TARGET_PTR_BIT / 8) & ~0x3;
1210
1211 /* Syscalls are really two frames. The syscall stub itself
1212 with a return pointer in %rp and the kernel call with
1213 a return pointer in %r31. We return the %rp variant
1214 if %r31 is the same as frame->pc. */
1215 if (pc == get_frame_pc (frame))
1216 pc = read_memory_integer (saved_regs[RP_REGNUM],
1217 TARGET_PTR_BIT / 8) & ~0x3;
1218 }
1219 else
1220 pc = read_memory_integer (saved_regs[RP_REGNUM],
1221 TARGET_PTR_BIT / 8) & ~0x3;
1222 }
1223 else
1224 pc = read_register (ret_regnum) & ~0x3;
1225 }
1226 else
1227 {
1228 spun_around_loop = 0;
1229 old_pc = pc;
1230
1231 restart:
1232 rp_offset = rp_saved (pc);
1233
1234 /* Similar to code in frameless function case. If the next
1235 frame is a signal or interrupt handler, then dig the right
1236 information out of the saved register info. */
1237 if (rp_offset == 0
1238 && get_next_frame (frame)
1239 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1240 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1241 {
1242 CORE_ADDR *saved_regs;
1243 hppa_frame_init_saved_regs (get_next_frame (frame));
1244 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1245 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1246 TARGET_PTR_BIT / 8) & 0x2)
1247 {
1248 pc = read_memory_integer (saved_regs[31],
1249 TARGET_PTR_BIT / 8) & ~0x3;
1250
1251 /* Syscalls are really two frames. The syscall stub itself
1252 with a return pointer in %rp and the kernel call with
1253 a return pointer in %r31. We return the %rp variant
1254 if %r31 is the same as frame->pc. */
1255 if (pc == get_frame_pc (frame))
1256 pc = read_memory_integer (saved_regs[RP_REGNUM],
1257 TARGET_PTR_BIT / 8) & ~0x3;
1258 }
1259 else
1260 pc = read_memory_integer (saved_regs[RP_REGNUM],
1261 TARGET_PTR_BIT / 8) & ~0x3;
1262 }
1263 else if (rp_offset == 0)
1264 {
1265 old_pc = pc;
1266 pc = read_register (RP_REGNUM) & ~0x3;
1267 }
1268 else
1269 {
1270 old_pc = pc;
1271 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1272 TARGET_PTR_BIT / 8) & ~0x3;
1273 }
1274 }
1275
1276 /* If PC is inside a linker stub, then dig out the address the stub
1277 will return to.
1278
1279 Don't do this for long branch stubs. Why? For some unknown reason
1280 _start is marked as a long branch stub in hpux10. */
1281 u = find_unwind_entry (pc);
1282 if (u && u->stub_unwind.stub_type != 0
1283 && u->stub_unwind.stub_type != LONG_BRANCH)
1284 {
1285 unsigned int insn;
1286
1287 /* If this is a dynamic executable, and we're in a signal handler,
1288 then the call chain will eventually point us into the stub for
1289 _sigreturn. Unlike most cases, we'll be pointed to the branch
1290 to the real sigreturn rather than the code after the real branch!.
1291
1292 Else, try to dig the address the stub will return to in the normal
1293 fashion. */
1294 insn = read_memory_integer (pc, 4);
1295 if ((insn & 0xfc00e000) == 0xe8000000)
1296 return (pc + extract_17 (insn) + 8) & ~0x3;
1297 else
1298 {
1299 if (old_pc == pc)
1300 spun_around_loop++;
1301
1302 if (spun_around_loop > 1)
1303 {
1304 /* We're just about to go around the loop again with
1305 no more hope of success. Die. */
1306 error ("Unable to find return pc for this frame");
1307 }
1308 else
1309 goto restart;
1310 }
1311 }
1312
1313 return pc;
1314 }
1315 \f
1316 /* We need to correct the PC and the FP for the outermost frame when we are
1317 in a system call. */
1318
1319 void
1320 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1321 {
1322 int flags;
1323 int framesize;
1324
1325 if (get_next_frame (frame) && !fromleaf)
1326 return;
1327
1328 /* If the next frame represents a frameless function invocation then
1329 we have to do some adjustments that are normally done by
1330 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1331 this case.) */
1332 if (fromleaf)
1333 {
1334 /* Find the framesize of *this* frame without peeking at the PC
1335 in the current frame structure (it isn't set yet). */
1336 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1337
1338 /* Now adjust our base frame accordingly. If we have a frame pointer
1339 use it, else subtract the size of this frame from the current
1340 frame. (we always want frame->frame to point at the lowest address
1341 in the frame). */
1342 if (framesize == -1)
1343 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1344 else
1345 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1346 return;
1347 }
1348
1349 flags = read_register (FLAGS_REGNUM);
1350 if (flags & 2) /* In system call? */
1351 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1352
1353 /* The outermost frame is always derived from PC-framesize
1354
1355 One might think frameless innermost frames should have
1356 a frame->frame that is the same as the parent's frame->frame.
1357 That is wrong; frame->frame in that case should be the *high*
1358 address of the parent's frame. It's complicated as hell to
1359 explain, but the parent *always* creates some stack space for
1360 the child. So the child actually does have a frame of some
1361 sorts, and its base is the high address in its parent's frame. */
1362 framesize = find_proc_framesize (get_frame_pc (frame));
1363 if (framesize == -1)
1364 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1365 else
1366 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1367 }
1368 \f
1369 /* Given a GDB frame, determine the address of the calling function's
1370 frame. This will be used to create a new GDB frame struct, and
1371 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1372 will be called for the new frame.
1373
1374 This may involve searching through prologues for several functions
1375 at boundaries where GCC calls HP C code, or where code which has
1376 a frame pointer calls code without a frame pointer. */
1377
1378 CORE_ADDR
1379 hppa_frame_chain (struct frame_info *frame)
1380 {
1381 int my_framesize, caller_framesize;
1382 struct unwind_table_entry *u;
1383 CORE_ADDR frame_base;
1384 struct frame_info *tmp_frame;
1385
1386 /* A frame in the current frame list, or zero. */
1387 struct frame_info *saved_regs_frame = 0;
1388 /* Where the registers were saved in saved_regs_frame. If
1389 saved_regs_frame is zero, this is garbage. */
1390 CORE_ADDR *saved_regs = NULL;
1391
1392 CORE_ADDR caller_pc;
1393
1394 struct minimal_symbol *min_frame_symbol;
1395 struct symbol *frame_symbol;
1396 char *frame_symbol_name;
1397
1398 /* If this is a threaded application, and we see the
1399 routine "__pthread_exit", treat it as the stack root
1400 for this thread. */
1401 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1402 frame_symbol = find_pc_function (get_frame_pc (frame));
1403
1404 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1405 {
1406 /* The test above for "no user function name" would defend
1407 against the slim likelihood that a user might define a
1408 routine named "__pthread_exit" and then try to debug it.
1409
1410 If it weren't commented out, and you tried to debug the
1411 pthread library itself, you'd get errors.
1412
1413 So for today, we don't make that check. */
1414 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1415 if (frame_symbol_name != 0)
1416 {
1417 if (0 == strncmp (frame_symbol_name,
1418 THREAD_INITIAL_FRAME_SYMBOL,
1419 THREAD_INITIAL_FRAME_SYM_LEN))
1420 {
1421 /* Pretend we've reached the bottom of the stack. */
1422 return (CORE_ADDR) 0;
1423 }
1424 }
1425 } /* End of hacky code for threads. */
1426
1427 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1428 are easy; at *sp we have a full save state strucutre which we can
1429 pull the old stack pointer from. Also see frame_saved_pc for
1430 code to dig a saved PC out of the save state structure. */
1431 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1432 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1433 TARGET_PTR_BIT / 8);
1434 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1435 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1436 {
1437 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1438 }
1439 #endif
1440 else
1441 frame_base = get_frame_base (frame);
1442
1443 /* Get frame sizes for the current frame and the frame of the
1444 caller. */
1445 my_framesize = find_proc_framesize (get_frame_pc (frame));
1446 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1447
1448 /* If we can't determine the caller's PC, then it's not likely we can
1449 really determine anything meaningful about its frame. We'll consider
1450 this to be stack bottom. */
1451 if (caller_pc == (CORE_ADDR) 0)
1452 return (CORE_ADDR) 0;
1453
1454 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1455
1456 /* If caller does not have a frame pointer, then its frame
1457 can be found at current_frame - caller_framesize. */
1458 if (caller_framesize != -1)
1459 {
1460 return frame_base - caller_framesize;
1461 }
1462 /* Both caller and callee have frame pointers and are GCC compiled
1463 (SAVE_SP bit in unwind descriptor is on for both functions.
1464 The previous frame pointer is found at the top of the current frame. */
1465 if (caller_framesize == -1 && my_framesize == -1)
1466 {
1467 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1468 }
1469 /* Caller has a frame pointer, but callee does not. This is a little
1470 more difficult as GCC and HP C lay out locals and callee register save
1471 areas very differently.
1472
1473 The previous frame pointer could be in a register, or in one of
1474 several areas on the stack.
1475
1476 Walk from the current frame to the innermost frame examining
1477 unwind descriptors to determine if %r3 ever gets saved into the
1478 stack. If so return whatever value got saved into the stack.
1479 If it was never saved in the stack, then the value in %r3 is still
1480 valid, so use it.
1481
1482 We use information from unwind descriptors to determine if %r3
1483 is saved into the stack (Entry_GR field has this information). */
1484
1485 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1486 {
1487 u = find_unwind_entry (get_frame_pc (tmp_frame));
1488
1489 if (!u)
1490 {
1491 /* We could find this information by examining prologues. I don't
1492 think anyone has actually written any tools (not even "strip")
1493 which leave them out of an executable, so maybe this is a moot
1494 point. */
1495 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1496 code that doesn't have unwind entries. For example, stepping into
1497 the dynamic linker will give you a PC that has none. Thus, I've
1498 disabled this warning. */
1499 #if 0
1500 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1501 #endif
1502 return (CORE_ADDR) 0;
1503 }
1504
1505 if (u->Save_SP
1506 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1507 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1508 break;
1509
1510 /* Entry_GR specifies the number of callee-saved general registers
1511 saved in the stack. It starts at %r3, so %r3 would be 1. */
1512 if (u->Entry_GR >= 1)
1513 {
1514 /* The unwind entry claims that r3 is saved here. However,
1515 in optimized code, GCC often doesn't actually save r3.
1516 We'll discover this if we look at the prologue. */
1517 hppa_frame_init_saved_regs (tmp_frame);
1518 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1519 saved_regs_frame = tmp_frame;
1520
1521 /* If we have an address for r3, that's good. */
1522 if (saved_regs[DEPRECATED_FP_REGNUM])
1523 break;
1524 }
1525 }
1526
1527 if (tmp_frame)
1528 {
1529 /* We may have walked down the chain into a function with a frame
1530 pointer. */
1531 if (u->Save_SP
1532 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1533 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1534 {
1535 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1536 }
1537 /* %r3 was saved somewhere in the stack. Dig it out. */
1538 else
1539 {
1540 /* Sick.
1541
1542 For optimization purposes many kernels don't have the
1543 callee saved registers into the save_state structure upon
1544 entry into the kernel for a syscall; the optimization
1545 is usually turned off if the process is being traced so
1546 that the debugger can get full register state for the
1547 process.
1548
1549 This scheme works well except for two cases:
1550
1551 * Attaching to a process when the process is in the
1552 kernel performing a system call (debugger can't get
1553 full register state for the inferior process since
1554 the process wasn't being traced when it entered the
1555 system call).
1556
1557 * Register state is not complete if the system call
1558 causes the process to core dump.
1559
1560
1561 The following heinous code is an attempt to deal with
1562 the lack of register state in a core dump. It will
1563 fail miserably if the function which performs the
1564 system call has a variable sized stack frame. */
1565
1566 if (tmp_frame != saved_regs_frame)
1567 {
1568 hppa_frame_init_saved_regs (tmp_frame);
1569 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1570 }
1571
1572 /* Abominable hack. */
1573 if (current_target.to_has_execution == 0
1574 && ((saved_regs[FLAGS_REGNUM]
1575 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1576 TARGET_PTR_BIT / 8)
1577 & 0x2))
1578 || (saved_regs[FLAGS_REGNUM] == 0
1579 && read_register (FLAGS_REGNUM) & 0x2)))
1580 {
1581 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1582 if (!u)
1583 {
1584 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1585 TARGET_PTR_BIT / 8);
1586 }
1587 else
1588 {
1589 return frame_base - (u->Total_frame_size << 3);
1590 }
1591 }
1592
1593 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1594 TARGET_PTR_BIT / 8);
1595 }
1596 }
1597 else
1598 {
1599 /* Get the innermost frame. */
1600 tmp_frame = frame;
1601 while (get_next_frame (tmp_frame) != NULL)
1602 tmp_frame = get_next_frame (tmp_frame);
1603
1604 if (tmp_frame != saved_regs_frame)
1605 {
1606 hppa_frame_init_saved_regs (tmp_frame);
1607 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1608 }
1609
1610 /* Abominable hack. See above. */
1611 if (current_target.to_has_execution == 0
1612 && ((saved_regs[FLAGS_REGNUM]
1613 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1614 TARGET_PTR_BIT / 8)
1615 & 0x2))
1616 || (saved_regs[FLAGS_REGNUM] == 0
1617 && read_register (FLAGS_REGNUM) & 0x2)))
1618 {
1619 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1620 if (!u)
1621 {
1622 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1623 TARGET_PTR_BIT / 8);
1624 }
1625 else
1626 {
1627 return frame_base - (u->Total_frame_size << 3);
1628 }
1629 }
1630
1631 /* The value in %r3 was never saved into the stack (thus %r3 still
1632 holds the value of the previous frame pointer). */
1633 return deprecated_read_fp ();
1634 }
1635 }
1636 \f
1637
1638 /* To see if a frame chain is valid, see if the caller looks like it
1639 was compiled with gcc. */
1640
1641 int
1642 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1643 {
1644 struct minimal_symbol *msym_us;
1645 struct minimal_symbol *msym_start;
1646 struct unwind_table_entry *u, *next_u = NULL;
1647 struct frame_info *next;
1648
1649 u = find_unwind_entry (get_frame_pc (thisframe));
1650
1651 if (u == NULL)
1652 return 1;
1653
1654 /* We can't just check that the same of msym_us is "_start", because
1655 someone idiotically decided that they were going to make a Ltext_end
1656 symbol with the same address. This Ltext_end symbol is totally
1657 indistinguishable (as nearly as I can tell) from the symbol for a function
1658 which is (legitimately, since it is in the user's namespace)
1659 named Ltext_end, so we can't just ignore it. */
1660 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1661 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1662 if (msym_us
1663 && msym_start
1664 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1665 return 0;
1666
1667 /* Grrrr. Some new idiot decided that they don't want _start for the
1668 PRO configurations; $START$ calls main directly.... Deal with it. */
1669 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1670 if (msym_us
1671 && msym_start
1672 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1673 return 0;
1674
1675 next = get_next_frame (thisframe);
1676 if (next)
1677 next_u = find_unwind_entry (get_frame_pc (next));
1678
1679 /* If this frame does not save SP, has no stack, isn't a stub,
1680 and doesn't "call" an interrupt routine or signal handler caller,
1681 then its not valid. */
1682 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1683 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1684 || (next_u && next_u->HP_UX_interrupt_marker))
1685 return 1;
1686
1687 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1688 return 1;
1689
1690 return 0;
1691 }
1692
1693 /* These functions deal with saving and restoring register state
1694 around a function call in the inferior. They keep the stack
1695 double-word aligned; eventually, on an hp700, the stack will have
1696 to be aligned to a 64-byte boundary. */
1697
1698 void
1699 hppa_push_dummy_frame (void)
1700 {
1701 CORE_ADDR sp, pc, pcspace;
1702 int regnum;
1703 CORE_ADDR int_buffer;
1704 double freg_buffer;
1705
1706 pc = hppa_target_read_pc (inferior_ptid);
1707 int_buffer = read_register (FLAGS_REGNUM);
1708 if (int_buffer & 0x2)
1709 {
1710 const unsigned int sid = (pc >> 30) & 0x3;
1711 if (sid == 0)
1712 pcspace = read_register (SR4_REGNUM);
1713 else
1714 pcspace = read_register (SR4_REGNUM + 4 + sid);
1715 }
1716 else
1717 pcspace = read_register (PCSQ_HEAD_REGNUM);
1718
1719 /* Space for "arguments"; the RP goes in here. */
1720 sp = read_register (SP_REGNUM) + 48;
1721 int_buffer = read_register (RP_REGNUM) | 0x3;
1722
1723 /* The 32bit and 64bit ABIs save the return pointer into different
1724 stack slots. */
1725 if (DEPRECATED_REGISTER_SIZE == 8)
1726 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1727 else
1728 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1729
1730 int_buffer = deprecated_read_fp ();
1731 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1732
1733 write_register (DEPRECATED_FP_REGNUM, sp);
1734
1735 sp += 2 * DEPRECATED_REGISTER_SIZE;
1736
1737 for (regnum = 1; regnum < 32; regnum++)
1738 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1739 sp = push_word (sp, read_register (regnum));
1740
1741 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1742 if (DEPRECATED_REGISTER_SIZE != 8)
1743 sp += 4;
1744
1745 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1746 {
1747 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1748 (char *) &freg_buffer, 8);
1749 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1750 }
1751 sp = push_word (sp, read_register (IPSW_REGNUM));
1752 sp = push_word (sp, read_register (SAR_REGNUM));
1753 sp = push_word (sp, pc);
1754 sp = push_word (sp, pcspace);
1755 sp = push_word (sp, pc + 4);
1756 sp = push_word (sp, pcspace);
1757 write_register (SP_REGNUM, sp);
1758 }
1759
1760 static void
1761 find_dummy_frame_regs (struct frame_info *frame,
1762 CORE_ADDR frame_saved_regs[])
1763 {
1764 CORE_ADDR fp = get_frame_base (frame);
1765 int i;
1766
1767 /* The 32bit and 64bit ABIs save RP into different locations. */
1768 if (DEPRECATED_REGISTER_SIZE == 8)
1769 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1770 else
1771 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1772
1773 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1774
1775 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1776
1777 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1778 {
1779 if (i != DEPRECATED_FP_REGNUM)
1780 {
1781 frame_saved_regs[i] = fp;
1782 fp += DEPRECATED_REGISTER_SIZE;
1783 }
1784 }
1785
1786 /* This is not necessary or desirable for the 64bit ABI. */
1787 if (DEPRECATED_REGISTER_SIZE != 8)
1788 fp += 4;
1789
1790 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1791 frame_saved_regs[i] = fp;
1792
1793 frame_saved_regs[IPSW_REGNUM] = fp;
1794 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1795 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1796 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1797 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1798 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1799 }
1800
1801 void
1802 hppa_pop_frame (void)
1803 {
1804 struct frame_info *frame = get_current_frame ();
1805 CORE_ADDR fp, npc, target_pc;
1806 int regnum;
1807 CORE_ADDR *fsr;
1808 double freg_buffer;
1809
1810 fp = get_frame_base (frame);
1811 hppa_frame_init_saved_regs (frame);
1812 fsr = deprecated_get_frame_saved_regs (frame);
1813
1814 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1815 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1816 restore_pc_queue (fsr);
1817 #endif
1818
1819 for (regnum = 31; regnum > 0; regnum--)
1820 if (fsr[regnum])
1821 write_register (regnum, read_memory_integer (fsr[regnum],
1822 DEPRECATED_REGISTER_SIZE));
1823
1824 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1825 if (fsr[regnum])
1826 {
1827 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1828 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1829 (char *) &freg_buffer, 8);
1830 }
1831
1832 if (fsr[IPSW_REGNUM])
1833 write_register (IPSW_REGNUM,
1834 read_memory_integer (fsr[IPSW_REGNUM],
1835 DEPRECATED_REGISTER_SIZE));
1836
1837 if (fsr[SAR_REGNUM])
1838 write_register (SAR_REGNUM,
1839 read_memory_integer (fsr[SAR_REGNUM],
1840 DEPRECATED_REGISTER_SIZE));
1841
1842 /* If the PC was explicitly saved, then just restore it. */
1843 if (fsr[PCOQ_TAIL_REGNUM])
1844 {
1845 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1846 DEPRECATED_REGISTER_SIZE);
1847 write_register (PCOQ_TAIL_REGNUM, npc);
1848 }
1849 /* Else use the value in %rp to set the new PC. */
1850 else
1851 {
1852 npc = read_register (RP_REGNUM);
1853 write_pc (npc);
1854 }
1855
1856 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1857
1858 if (fsr[IPSW_REGNUM]) /* call dummy */
1859 write_register (SP_REGNUM, fp - 48);
1860 else
1861 write_register (SP_REGNUM, fp);
1862
1863 /* The PC we just restored may be inside a return trampoline. If so
1864 we want to restart the inferior and run it through the trampoline.
1865
1866 Do this by setting a momentary breakpoint at the location the
1867 trampoline returns to.
1868
1869 Don't skip through the trampoline if we're popping a dummy frame. */
1870 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1871 if (target_pc && !fsr[IPSW_REGNUM])
1872 {
1873 struct symtab_and_line sal;
1874 struct breakpoint *breakpoint;
1875 struct cleanup *old_chain;
1876
1877 /* Set up our breakpoint. Set it to be silent as the MI code
1878 for "return_command" will print the frame we returned to. */
1879 sal = find_pc_line (target_pc, 0);
1880 sal.pc = target_pc;
1881 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1882 breakpoint->silent = 1;
1883
1884 /* So we can clean things up. */
1885 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1886
1887 /* Start up the inferior. */
1888 clear_proceed_status ();
1889 proceed_to_finish = 1;
1890 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1891
1892 /* Perform our cleanups. */
1893 do_cleanups (old_chain);
1894 }
1895 flush_cached_frames ();
1896 }
1897
1898 /* After returning to a dummy on the stack, restore the instruction
1899 queue space registers. */
1900
1901 static int
1902 restore_pc_queue (CORE_ADDR *fsr)
1903 {
1904 CORE_ADDR pc = read_pc ();
1905 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1906 TARGET_PTR_BIT / 8);
1907 struct target_waitstatus w;
1908 int insn_count;
1909
1910 /* Advance past break instruction in the call dummy. */
1911 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1912 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1913
1914 /* HPUX doesn't let us set the space registers or the space
1915 registers of the PC queue through ptrace. Boo, hiss.
1916 Conveniently, the call dummy has this sequence of instructions
1917 after the break:
1918 mtsp r21, sr0
1919 ble,n 0(sr0, r22)
1920
1921 So, load up the registers and single step until we are in the
1922 right place. */
1923
1924 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1925 DEPRECATED_REGISTER_SIZE));
1926 write_register (22, new_pc);
1927
1928 for (insn_count = 0; insn_count < 3; insn_count++)
1929 {
1930 /* FIXME: What if the inferior gets a signal right now? Want to
1931 merge this into wait_for_inferior (as a special kind of
1932 watchpoint? By setting a breakpoint at the end? Is there
1933 any other choice? Is there *any* way to do this stuff with
1934 ptrace() or some equivalent?). */
1935 resume (1, 0);
1936 target_wait (inferior_ptid, &w);
1937
1938 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1939 {
1940 stop_signal = w.value.sig;
1941 terminal_ours_for_output ();
1942 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1943 target_signal_to_name (stop_signal),
1944 target_signal_to_string (stop_signal));
1945 gdb_flush (gdb_stdout);
1946 return 0;
1947 }
1948 }
1949 target_terminal_ours ();
1950 target_fetch_registers (-1);
1951 return 1;
1952 }
1953
1954
1955 #ifdef PA20W_CALLING_CONVENTIONS
1956
1957 /* This function pushes a stack frame with arguments as part of the
1958 inferior function calling mechanism.
1959
1960 This is the version for the PA64, in which later arguments appear
1961 at higher addresses. (The stack always grows towards higher
1962 addresses.)
1963
1964 We simply allocate the appropriate amount of stack space and put
1965 arguments into their proper slots. The call dummy code will copy
1966 arguments into registers as needed by the ABI.
1967
1968 This ABI also requires that the caller provide an argument pointer
1969 to the callee, so we do that too. */
1970
1971 CORE_ADDR
1972 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1973 int struct_return, CORE_ADDR struct_addr)
1974 {
1975 /* array of arguments' offsets */
1976 int *offset = (int *) alloca (nargs * sizeof (int));
1977
1978 /* array of arguments' lengths: real lengths in bytes, not aligned to
1979 word size */
1980 int *lengths = (int *) alloca (nargs * sizeof (int));
1981
1982 /* The value of SP as it was passed into this function after
1983 aligning. */
1984 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1985
1986 /* The number of stack bytes occupied by the current argument. */
1987 int bytes_reserved;
1988
1989 /* The total number of bytes reserved for the arguments. */
1990 int cum_bytes_reserved = 0;
1991
1992 /* Similarly, but aligned. */
1993 int cum_bytes_aligned = 0;
1994 int i;
1995
1996 /* Iterate over each argument provided by the user. */
1997 for (i = 0; i < nargs; i++)
1998 {
1999 struct type *arg_type = VALUE_TYPE (args[i]);
2000
2001 /* Integral scalar values smaller than a register are padded on
2002 the left. We do this by promoting them to full-width,
2003 although the ABI says to pad them with garbage. */
2004 if (is_integral_type (arg_type)
2005 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
2006 {
2007 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
2008 ? builtin_type_unsigned_long
2009 : builtin_type_long),
2010 args[i]);
2011 arg_type = VALUE_TYPE (args[i]);
2012 }
2013
2014 lengths[i] = TYPE_LENGTH (arg_type);
2015
2016 /* Align the size of the argument to the word size for this
2017 target. */
2018 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2019
2020 offset[i] = cum_bytes_reserved;
2021
2022 /* Aggregates larger than eight bytes (the only types larger
2023 than eight bytes we have) are aligned on a 16-byte boundary,
2024 possibly padded on the right with garbage. This may leave an
2025 empty word on the stack, and thus an unused register, as per
2026 the ABI. */
2027 if (bytes_reserved > 8)
2028 {
2029 /* Round up the offset to a multiple of two slots. */
2030 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2031 & -(2*DEPRECATED_REGISTER_SIZE));
2032
2033 /* Note the space we've wasted, if any. */
2034 bytes_reserved += new_offset - offset[i];
2035 offset[i] = new_offset;
2036 }
2037
2038 cum_bytes_reserved += bytes_reserved;
2039 }
2040
2041 /* CUM_BYTES_RESERVED already accounts for all the arguments
2042 passed by the user. However, the ABIs mandate minimum stack space
2043 allocations for outgoing arguments.
2044
2045 The ABIs also mandate minimum stack alignments which we must
2046 preserve. */
2047 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2048 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2049
2050 /* Now write each of the args at the proper offset down the stack. */
2051 for (i = 0; i < nargs; i++)
2052 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2053
2054 /* If a structure has to be returned, set up register 28 to hold its
2055 address */
2056 if (struct_return)
2057 write_register (28, struct_addr);
2058
2059 /* For the PA64 we must pass a pointer to the outgoing argument list.
2060 The ABI mandates that the pointer should point to the first byte of
2061 storage beyond the register flushback area.
2062
2063 However, the call dummy expects the outgoing argument pointer to
2064 be passed in register %r4. */
2065 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2066
2067 /* ?!? This needs further work. We need to set up the global data
2068 pointer for this procedure. This assumes the same global pointer
2069 for every procedure. The call dummy expects the dp value to
2070 be passed in register %r6. */
2071 write_register (6, read_register (27));
2072
2073 /* The stack will have 64 bytes of additional space for a frame marker. */
2074 return sp + 64;
2075 }
2076
2077 #else
2078
2079 /* This function pushes a stack frame with arguments as part of the
2080 inferior function calling mechanism.
2081
2082 This is the version of the function for the 32-bit PA machines, in
2083 which later arguments appear at lower addresses. (The stack always
2084 grows towards higher addresses.)
2085
2086 We simply allocate the appropriate amount of stack space and put
2087 arguments into their proper slots. The call dummy code will copy
2088 arguments into registers as needed by the ABI. */
2089
2090 CORE_ADDR
2091 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2092 int struct_return, CORE_ADDR struct_addr)
2093 {
2094 /* array of arguments' offsets */
2095 int *offset = (int *) alloca (nargs * sizeof (int));
2096
2097 /* array of arguments' lengths: real lengths in bytes, not aligned to
2098 word size */
2099 int *lengths = (int *) alloca (nargs * sizeof (int));
2100
2101 /* The number of stack bytes occupied by the current argument. */
2102 int bytes_reserved;
2103
2104 /* The total number of bytes reserved for the arguments. */
2105 int cum_bytes_reserved = 0;
2106
2107 /* Similarly, but aligned. */
2108 int cum_bytes_aligned = 0;
2109 int i;
2110
2111 /* Iterate over each argument provided by the user. */
2112 for (i = 0; i < nargs; i++)
2113 {
2114 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2115
2116 /* Align the size of the argument to the word size for this
2117 target. */
2118 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2119
2120 offset[i] = (cum_bytes_reserved
2121 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2122
2123 /* If the argument is a double word argument, then it needs to be
2124 double word aligned. */
2125 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2126 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2127 {
2128 int new_offset = 0;
2129 /* BYTES_RESERVED is already aligned to the word, so we put
2130 the argument at one word more down the stack.
2131
2132 This will leave one empty word on the stack, and one unused
2133 register as mandated by the ABI. */
2134 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2135 & -(2 * DEPRECATED_REGISTER_SIZE));
2136
2137 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2138 {
2139 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2140 offset[i] += DEPRECATED_REGISTER_SIZE;
2141 }
2142 }
2143
2144 cum_bytes_reserved += bytes_reserved;
2145
2146 }
2147
2148 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2149 by the user. However, the ABI mandates minimum stack space
2150 allocations for outgoing arguments.
2151
2152 The ABI also mandates minimum stack alignments which we must
2153 preserve. */
2154 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2155 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2156
2157 /* Now write each of the args at the proper offset down the stack.
2158 ?!? We need to promote values to a full register instead of skipping
2159 words in the stack. */
2160 for (i = 0; i < nargs; i++)
2161 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2162
2163 /* If a structure has to be returned, set up register 28 to hold its
2164 address */
2165 if (struct_return)
2166 write_register (28, struct_addr);
2167
2168 /* The stack will have 32 bytes of additional space for a frame marker. */
2169 return sp + 32;
2170 }
2171
2172 #endif
2173
2174 /* elz: Used to lookup a symbol in the shared libraries.
2175 This function calls shl_findsym, indirectly through a
2176 call to __d_shl_get. __d_shl_get is in end.c, which is always
2177 linked in by the hp compilers/linkers.
2178 The call to shl_findsym cannot be made directly because it needs
2179 to be active in target address space.
2180 inputs: - minimal symbol pointer for the function we want to look up
2181 - address in target space of the descriptor for the library
2182 where we want to look the symbol up.
2183 This address is retrieved using the
2184 som_solib_get_solib_by_pc function (somsolib.c).
2185 output: - real address in the library of the function.
2186 note: the handle can be null, in which case shl_findsym will look for
2187 the symbol in all the loaded shared libraries.
2188 files to look at if you need reference on this stuff:
2189 dld.c, dld_shl_findsym.c
2190 end.c
2191 man entry for shl_findsym */
2192
2193 CORE_ADDR
2194 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2195 {
2196 struct symbol *get_sym, *symbol2;
2197 struct minimal_symbol *buff_minsym, *msymbol;
2198 struct type *ftype;
2199 struct value **args;
2200 struct value *funcval;
2201 struct value *val;
2202
2203 int x, namelen, err_value, tmp = -1;
2204 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2205 CORE_ADDR stub_addr;
2206
2207
2208 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2209 funcval = find_function_in_inferior ("__d_shl_get");
2210 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2211 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2212 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2213 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2214 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2215 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2216 value_return_addr = endo_buff_addr + namelen;
2217 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2218
2219 /* do alignment */
2220 if ((x = value_return_addr % 64) != 0)
2221 value_return_addr = value_return_addr + 64 - x;
2222
2223 errno_return_addr = value_return_addr + 64;
2224
2225
2226 /* set up stuff needed by __d_shl_get in buffer in end.o */
2227
2228 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2229
2230 target_write_memory (value_return_addr, (char *) &tmp, 4);
2231
2232 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2233
2234 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2235 (char *) &handle, 4);
2236
2237 /* now prepare the arguments for the call */
2238
2239 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2240 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2241 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2242 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2243 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2244 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2245
2246 /* now call the function */
2247
2248 val = call_function_by_hand (funcval, 6, args);
2249
2250 /* now get the results */
2251
2252 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2253
2254 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2255 if (stub_addr <= 0)
2256 error ("call to __d_shl_get failed, error code is %d", err_value);
2257
2258 return (stub_addr);
2259 }
2260
2261 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2262 static int
2263 cover_find_stub_with_shl_get (void *args_untyped)
2264 {
2265 args_for_find_stub *args = args_untyped;
2266 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2267 return 0;
2268 }
2269
2270 /* Insert the specified number of args and function address
2271 into a call sequence of the above form stored at DUMMYNAME.
2272
2273 On the hppa we need to call the stack dummy through $$dyncall.
2274 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2275 argument, real_pc, which is the location where gdb should start up
2276 the inferior to do the function call.
2277
2278 This has to work across several versions of hpux, bsd, osf1. It has to
2279 work regardless of what compiler was used to build the inferior program.
2280 It should work regardless of whether or not end.o is available. It has
2281 to work even if gdb can not call into the dynamic loader in the inferior
2282 to query it for symbol names and addresses.
2283
2284 Yes, all those cases should work. Luckily code exists to handle most
2285 of them. The complexity is in selecting exactly what scheme should
2286 be used to perform the inferior call.
2287
2288 At the current time this routine is known not to handle cases where
2289 the program was linked with HP's compiler without including end.o.
2290
2291 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2292
2293 CORE_ADDR
2294 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2295 struct value **args, struct type *type, int gcc_p)
2296 {
2297 CORE_ADDR dyncall_addr;
2298 struct minimal_symbol *msymbol;
2299 struct minimal_symbol *trampoline;
2300 int flags = read_register (FLAGS_REGNUM);
2301 struct unwind_table_entry *u = NULL;
2302 CORE_ADDR new_stub = 0;
2303 CORE_ADDR solib_handle = 0;
2304
2305 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2306 passed an import stub, not a PLABEL. It is also necessary to set %r19
2307 (the PIC register) before performing the call.
2308
2309 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2310 are calling the target directly. When using __d_plt_call we want to
2311 use a PLABEL instead of an import stub. */
2312 int using_gcc_plt_call = 1;
2313
2314 #ifdef GDB_TARGET_IS_HPPA_20W
2315 /* We currently use completely different code for the PA2.0W inferior
2316 function call sequences. This needs to be cleaned up. */
2317 {
2318 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2319 struct target_waitstatus w;
2320 int inst1, inst2;
2321 char buf[4];
2322 int status;
2323 struct objfile *objfile;
2324
2325 /* We can not modify the PC space queues directly, so we start
2326 up the inferior and execute a couple instructions to set the
2327 space queues so that they point to the call dummy in the stack. */
2328 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2329 sr5 = read_register (SR5_REGNUM);
2330 if (1)
2331 {
2332 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2333 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2334 if (target_read_memory (pcoqh, buf, 4) != 0)
2335 error ("Couldn't modify space queue\n");
2336 inst1 = extract_unsigned_integer (buf, 4);
2337
2338 if (target_read_memory (pcoqt, buf, 4) != 0)
2339 error ("Couldn't modify space queue\n");
2340 inst2 = extract_unsigned_integer (buf, 4);
2341
2342 /* BVE (r1) */
2343 *((int *) buf) = 0xe820d000;
2344 if (target_write_memory (pcoqh, buf, 4) != 0)
2345 error ("Couldn't modify space queue\n");
2346
2347 /* NOP */
2348 *((int *) buf) = 0x08000240;
2349 if (target_write_memory (pcoqt, buf, 4) != 0)
2350 {
2351 *((int *) buf) = inst1;
2352 target_write_memory (pcoqh, buf, 4);
2353 error ("Couldn't modify space queue\n");
2354 }
2355
2356 write_register (1, pc);
2357
2358 /* Single step twice, the BVE instruction will set the space queue
2359 such that it points to the PC value written immediately above
2360 (ie the call dummy). */
2361 resume (1, 0);
2362 target_wait (inferior_ptid, &w);
2363 resume (1, 0);
2364 target_wait (inferior_ptid, &w);
2365
2366 /* Restore the two instructions at the old PC locations. */
2367 *((int *) buf) = inst1;
2368 target_write_memory (pcoqh, buf, 4);
2369 *((int *) buf) = inst2;
2370 target_write_memory (pcoqt, buf, 4);
2371 }
2372
2373 /* The call dummy wants the ultimate destination address initially
2374 in register %r5. */
2375 write_register (5, fun);
2376
2377 /* We need to see if this objfile has a different DP value than our
2378 own (it could be a shared library for example). */
2379 ALL_OBJFILES (objfile)
2380 {
2381 struct obj_section *s;
2382 obj_private_data_t *obj_private;
2383
2384 /* See if FUN is in any section within this shared library. */
2385 for (s = objfile->sections; s < objfile->sections_end; s++)
2386 if (s->addr <= fun && fun < s->endaddr)
2387 break;
2388
2389 if (s >= objfile->sections_end)
2390 continue;
2391
2392 obj_private = (obj_private_data_t *) objfile->obj_private;
2393
2394 /* The DP value may be different for each objfile. But within an
2395 objfile each function uses the same dp value. Thus we do not need
2396 to grope around the opd section looking for dp values.
2397
2398 ?!? This is not strictly correct since we may be in a shared library
2399 and want to call back into the main program. To make that case
2400 work correctly we need to set obj_private->dp for the main program's
2401 objfile, then remove this conditional. */
2402 if (obj_private->dp)
2403 write_register (27, obj_private->dp);
2404 break;
2405 }
2406 return pc;
2407 }
2408 #endif
2409
2410 #ifndef GDB_TARGET_IS_HPPA_20W
2411 /* Prefer __gcc_plt_call over the HP supplied routine because
2412 __gcc_plt_call works for any number of arguments. */
2413 trampoline = NULL;
2414 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2415 using_gcc_plt_call = 0;
2416
2417 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2418 if (msymbol == NULL)
2419 error ("Can't find an address for $$dyncall trampoline");
2420
2421 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2422
2423 /* FUN could be a procedure label, in which case we have to get
2424 its real address and the value of its GOT/DP if we plan to
2425 call the routine via gcc_plt_call. */
2426 if ((fun & 0x2) && using_gcc_plt_call)
2427 {
2428 /* Get the GOT/DP value for the target function. It's
2429 at *(fun+4). Note the call dummy is *NOT* allowed to
2430 trash %r19 before calling the target function. */
2431 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2432 DEPRECATED_REGISTER_SIZE));
2433
2434 /* Now get the real address for the function we are calling, it's
2435 at *fun. */
2436 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2437 TARGET_PTR_BIT / 8);
2438 }
2439 else
2440 {
2441
2442 #ifndef GDB_TARGET_IS_PA_ELF
2443 /* FUN could be an export stub, the real address of a function, or
2444 a PLABEL. When using gcc's PLT call routine we must call an import
2445 stub rather than the export stub or real function for lazy binding
2446 to work correctly
2447
2448 If we are using the gcc PLT call routine, then we need to
2449 get the import stub for the target function. */
2450 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2451 {
2452 struct objfile *objfile;
2453 struct minimal_symbol *funsymbol, *stub_symbol;
2454 CORE_ADDR newfun = 0;
2455
2456 funsymbol = lookup_minimal_symbol_by_pc (fun);
2457 if (!funsymbol)
2458 error ("Unable to find minimal symbol for target function.\n");
2459
2460 /* Search all the object files for an import symbol with the
2461 right name. */
2462 ALL_OBJFILES (objfile)
2463 {
2464 stub_symbol
2465 = lookup_minimal_symbol_solib_trampoline
2466 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
2467
2468 if (!stub_symbol)
2469 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2470 NULL, objfile);
2471
2472 /* Found a symbol with the right name. */
2473 if (stub_symbol)
2474 {
2475 struct unwind_table_entry *u;
2476 /* It must be a shared library trampoline. */
2477 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2478 continue;
2479
2480 /* It must also be an import stub. */
2481 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2482 if (u == NULL
2483 || (u->stub_unwind.stub_type != IMPORT
2484 #ifdef GDB_NATIVE_HPUX_11
2485 /* Sigh. The hpux 10.20 dynamic linker will blow
2486 chunks if we perform a call to an unbound function
2487 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2488 linker will blow chunks if we do not call the
2489 unbound function via the IMPORT_SHLIB stub.
2490
2491 We currently have no way to select bevahior on just
2492 the target. However, we only support HPUX/SOM in
2493 native mode. So we conditinalize on a native
2494 #ifdef. Ugly. Ugly. Ugly */
2495 && u->stub_unwind.stub_type != IMPORT_SHLIB
2496 #endif
2497 ))
2498 continue;
2499
2500 /* OK. Looks like the correct import stub. */
2501 newfun = SYMBOL_VALUE (stub_symbol);
2502 fun = newfun;
2503
2504 /* If we found an IMPORT stub, then we want to stop
2505 searching now. If we found an IMPORT_SHLIB, we want
2506 to continue the search in the hopes that we will find
2507 an IMPORT stub. */
2508 if (u->stub_unwind.stub_type == IMPORT)
2509 break;
2510 }
2511 }
2512
2513 /* Ouch. We did not find an import stub. Make an attempt to
2514 do the right thing instead of just croaking. Most of the
2515 time this will actually work. */
2516 if (newfun == 0)
2517 write_register (19, som_solib_get_got_by_pc (fun));
2518
2519 u = find_unwind_entry (fun);
2520 if (u
2521 && (u->stub_unwind.stub_type == IMPORT
2522 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2523 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2524
2525 /* If we found the import stub in the shared library, then we have
2526 to set %r19 before we call the stub. */
2527 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2528 write_register (19, som_solib_get_got_by_pc (fun));
2529 }
2530 #endif
2531 }
2532
2533 /* If we are calling into another load module then have sr4export call the
2534 magic __d_plt_call routine which is linked in from end.o.
2535
2536 You can't use _sr4export to make the call as the value in sp-24 will get
2537 fried and you end up returning to the wrong location. You can't call the
2538 target as the code to bind the PLT entry to a function can't return to a
2539 stack address.
2540
2541 Also, query the dynamic linker in the inferior to provide a suitable
2542 PLABEL for the target function. */
2543 if (!using_gcc_plt_call)
2544 {
2545 CORE_ADDR new_fun;
2546
2547 /* Get a handle for the shared library containing FUN. Given the
2548 handle we can query the shared library for a PLABEL. */
2549 solib_handle = som_solib_get_solib_by_pc (fun);
2550
2551 if (solib_handle)
2552 {
2553 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2554
2555 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2556
2557 if (trampoline == NULL)
2558 {
2559 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2560 }
2561
2562 /* This is where sr4export will jump to. */
2563 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2564
2565 /* If the function is in a shared library, then call __d_shl_get to
2566 get a PLABEL for the target function. */
2567 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2568
2569 if (new_stub == 0)
2570 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2571
2572 /* We have to store the address of the stub in __shlib_funcptr. */
2573 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2574 (struct objfile *) NULL);
2575
2576 if (msymbol == NULL)
2577 error ("Can't find an address for __shlib_funcptr");
2578 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2579 (char *) &new_stub, 4);
2580
2581 /* We want sr4export to call __d_plt_call, so we claim it is
2582 the final target. Clear trampoline. */
2583 fun = new_fun;
2584 trampoline = NULL;
2585 }
2586 }
2587
2588 /* Store upper 21 bits of function address into ldil. fun will either be
2589 the final target (most cases) or __d_plt_call when calling into a shared
2590 library and __gcc_plt_call is not available. */
2591 store_unsigned_integer
2592 (&dummy[FUNC_LDIL_OFFSET],
2593 INSTRUCTION_SIZE,
2594 deposit_21 (fun >> 11,
2595 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2596 INSTRUCTION_SIZE)));
2597
2598 /* Store lower 11 bits of function address into ldo */
2599 store_unsigned_integer
2600 (&dummy[FUNC_LDO_OFFSET],
2601 INSTRUCTION_SIZE,
2602 deposit_14 (fun & MASK_11,
2603 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2604 INSTRUCTION_SIZE)));
2605 #ifdef SR4EXPORT_LDIL_OFFSET
2606
2607 {
2608 CORE_ADDR trampoline_addr;
2609
2610 /* We may still need sr4export's address too. */
2611
2612 if (trampoline == NULL)
2613 {
2614 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2615 if (msymbol == NULL)
2616 error ("Can't find an address for _sr4export trampoline");
2617
2618 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2619 }
2620 else
2621 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2622
2623
2624 /* Store upper 21 bits of trampoline's address into ldil */
2625 store_unsigned_integer
2626 (&dummy[SR4EXPORT_LDIL_OFFSET],
2627 INSTRUCTION_SIZE,
2628 deposit_21 (trampoline_addr >> 11,
2629 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2630 INSTRUCTION_SIZE)));
2631
2632 /* Store lower 11 bits of trampoline's address into ldo */
2633 store_unsigned_integer
2634 (&dummy[SR4EXPORT_LDO_OFFSET],
2635 INSTRUCTION_SIZE,
2636 deposit_14 (trampoline_addr & MASK_11,
2637 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2638 INSTRUCTION_SIZE)));
2639 }
2640 #endif
2641
2642 write_register (22, pc);
2643
2644 /* If we are in a syscall, then we should call the stack dummy
2645 directly. $$dyncall is not needed as the kernel sets up the
2646 space id registers properly based on the value in %r31. In
2647 fact calling $$dyncall will not work because the value in %r22
2648 will be clobbered on the syscall exit path.
2649
2650 Similarly if the current PC is in a shared library. Note however,
2651 this scheme won't work if the shared library isn't mapped into
2652 the same space as the stack. */
2653 if (flags & 2)
2654 return pc;
2655 #ifndef GDB_TARGET_IS_PA_ELF
2656 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2657 return pc;
2658 #endif
2659 else
2660 return dyncall_addr;
2661 #endif
2662 }
2663
2664 /* If the pid is in a syscall, then the FP register is not readable.
2665 We'll return zero in that case, rather than attempting to read it
2666 and cause a warning. */
2667
2668 CORE_ADDR
2669 hppa_read_fp (int pid)
2670 {
2671 int flags = read_register (FLAGS_REGNUM);
2672
2673 if (flags & 2)
2674 {
2675 return (CORE_ADDR) 0;
2676 }
2677
2678 /* This is the only site that may directly read_register () the FP
2679 register. All others must use deprecated_read_fp (). */
2680 return read_register (DEPRECATED_FP_REGNUM);
2681 }
2682
2683 CORE_ADDR
2684 hppa_target_read_fp (void)
2685 {
2686 return hppa_read_fp (PIDGET (inferior_ptid));
2687 }
2688
2689 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2690 bits. */
2691
2692 CORE_ADDR
2693 hppa_target_read_pc (ptid_t ptid)
2694 {
2695 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2696
2697 /* The following test does not belong here. It is OS-specific, and belongs
2698 in native code. */
2699 /* Test SS_INSYSCALL */
2700 if (flags & 2)
2701 return read_register_pid (31, ptid) & ~0x3;
2702
2703 return read_register_pid (PC_REGNUM, ptid) & ~0x3;
2704 }
2705
2706 /* Write out the PC. If currently in a syscall, then also write the new
2707 PC value into %r31. */
2708
2709 void
2710 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2711 {
2712 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2713
2714 /* The following test does not belong here. It is OS-specific, and belongs
2715 in native code. */
2716 /* If in a syscall, then set %r31. Also make sure to get the
2717 privilege bits set correctly. */
2718 /* Test SS_INSYSCALL */
2719 if (flags & 2)
2720 write_register_pid (31, v | 0x3, ptid);
2721
2722 write_register_pid (PC_REGNUM, v, ptid);
2723 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
2724 }
2725
2726 /* return the alignment of a type in bytes. Structures have the maximum
2727 alignment required by their fields. */
2728
2729 static int
2730 hppa_alignof (struct type *type)
2731 {
2732 int max_align, align, i;
2733 CHECK_TYPEDEF (type);
2734 switch (TYPE_CODE (type))
2735 {
2736 case TYPE_CODE_PTR:
2737 case TYPE_CODE_INT:
2738 case TYPE_CODE_FLT:
2739 return TYPE_LENGTH (type);
2740 case TYPE_CODE_ARRAY:
2741 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2742 case TYPE_CODE_STRUCT:
2743 case TYPE_CODE_UNION:
2744 max_align = 1;
2745 for (i = 0; i < TYPE_NFIELDS (type); i++)
2746 {
2747 /* Bit fields have no real alignment. */
2748 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2749 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2750 {
2751 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2752 max_align = max (max_align, align);
2753 }
2754 }
2755 return max_align;
2756 default:
2757 return 4;
2758 }
2759 }
2760
2761 /* Print the register regnum, or all registers if regnum is -1 */
2762
2763 void
2764 pa_do_registers_info (int regnum, int fpregs)
2765 {
2766 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2767 int i;
2768
2769 /* Make a copy of gdb's save area (may cause actual
2770 reads from the target). */
2771 for (i = 0; i < NUM_REGS; i++)
2772 frame_register_read (deprecated_selected_frame, i,
2773 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2774
2775 if (regnum == -1)
2776 pa_print_registers (raw_regs, regnum, fpregs);
2777 else if (regnum < FP4_REGNUM)
2778 {
2779 long reg_val[2];
2780
2781 /* Why is the value not passed through "extract_signed_integer"
2782 as in "pa_print_registers" below? */
2783 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2784
2785 if (!is_pa_2)
2786 {
2787 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2788 }
2789 else
2790 {
2791 /* Fancy % formats to prevent leading zeros. */
2792 if (reg_val[0] == 0)
2793 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
2794 else
2795 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
2796 reg_val[0], reg_val[1]);
2797 }
2798 }
2799 else
2800 /* Note that real floating point values only start at
2801 FP4_REGNUM. FP0 and up are just status and error
2802 registers, which have integral (bit) values. */
2803 pa_print_fp_reg (regnum);
2804 }
2805
2806 /********** new function ********************/
2807 void
2808 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
2809 enum precision_type precision)
2810 {
2811 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
2812 int i;
2813
2814 /* Make a copy of gdb's save area (may cause actual
2815 reads from the target). */
2816 for (i = 0; i < NUM_REGS; i++)
2817 frame_register_read (deprecated_selected_frame, i,
2818 raw_regs + DEPRECATED_REGISTER_BYTE (i));
2819
2820 if (regnum == -1)
2821 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
2822
2823 else if (regnum < FP4_REGNUM)
2824 {
2825 long reg_val[2];
2826
2827 /* Why is the value not passed through "extract_signed_integer"
2828 as in "pa_print_registers" below? */
2829 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
2830
2831 if (!is_pa_2)
2832 {
2833 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
2834 }
2835 else
2836 {
2837 /* Fancy % formats to prevent leading zeros. */
2838 if (reg_val[0] == 0)
2839 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
2840 reg_val[1]);
2841 else
2842 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
2843 reg_val[0], reg_val[1]);
2844 }
2845 }
2846 else
2847 /* Note that real floating point values only start at
2848 FP4_REGNUM. FP0 and up are just status and error
2849 registers, which have integral (bit) values. */
2850 pa_strcat_fp_reg (regnum, stream, precision);
2851 }
2852
2853 /* If this is a PA2.0 machine, fetch the real 64-bit register
2854 value. Otherwise use the info from gdb's saved register area.
2855
2856 Note that reg_val is really expected to be an array of longs,
2857 with two elements. */
2858 static void
2859 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
2860 {
2861 static int know_which = 0; /* False */
2862
2863 int regaddr;
2864 unsigned int offset;
2865 int i;
2866 int start;
2867
2868
2869 char buf[MAX_REGISTER_SIZE];
2870 long long reg_val;
2871
2872 if (!know_which)
2873 {
2874 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
2875 {
2876 is_pa_2 = (1 == 1);
2877 }
2878
2879 know_which = 1; /* True */
2880 }
2881
2882 raw_val[0] = 0;
2883 raw_val[1] = 0;
2884
2885 if (!is_pa_2)
2886 {
2887 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
2888 return;
2889 }
2890
2891 /* Code below copied from hppah-nat.c, with fixes for wide
2892 registers, using different area of save_state, etc. */
2893 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
2894 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
2895 {
2896 /* Use narrow regs area of save_state and default macro. */
2897 offset = U_REGS_OFFSET;
2898 regaddr = register_addr (regnum, offset);
2899 start = 1;
2900 }
2901 else
2902 {
2903 /* Use wide regs area, and calculate registers as 8 bytes wide.
2904
2905 We'd like to do this, but current version of "C" doesn't
2906 permit "offsetof":
2907
2908 offset = offsetof(save_state_t, ss_wide);
2909
2910 Note that to avoid "C" doing typed pointer arithmetic, we
2911 have to cast away the type in our offset calculation:
2912 otherwise we get an offset of 1! */
2913
2914 /* NB: save_state_t is not available before HPUX 9.
2915 The ss_wide field is not available previous to HPUX 10.20,
2916 so to avoid compile-time warnings, we only compile this for
2917 PA 2.0 processors. This control path should only be followed
2918 if we're debugging a PA 2.0 processor, so this should not cause
2919 problems. */
2920
2921 /* #if the following code out so that this file can still be
2922 compiled on older HPUX boxes (< 10.20) which don't have
2923 this structure/structure member. */
2924 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
2925 save_state_t temp;
2926
2927 offset = ((int) &temp.ss_wide) - ((int) &temp);
2928 regaddr = offset + regnum * 8;
2929 start = 0;
2930 #endif
2931 }
2932
2933 for (i = start; i < 2; i++)
2934 {
2935 errno = 0;
2936 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
2937 (PTRACE_ARG3_TYPE) regaddr, 0);
2938 if (errno != 0)
2939 {
2940 /* Warning, not error, in case we are attached; sometimes the
2941 kernel doesn't let us at the registers. */
2942 char *err = safe_strerror (errno);
2943 char *msg = alloca (strlen (err) + 128);
2944 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
2945 warning (msg);
2946 goto error_exit;
2947 }
2948
2949 regaddr += sizeof (long);
2950 }
2951
2952 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
2953 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
2954
2955 error_exit:
2956 ;
2957 }
2958
2959 /* "Info all-reg" command */
2960
2961 static void
2962 pa_print_registers (char *raw_regs, int regnum, int fpregs)
2963 {
2964 int i, j;
2965 /* Alas, we are compiled so that "long long" is 32 bits */
2966 long raw_val[2];
2967 long long_val;
2968 int rows = 48, columns = 2;
2969
2970 for (i = 0; i < rows; i++)
2971 {
2972 for (j = 0; j < columns; j++)
2973 {
2974 /* We display registers in column-major order. */
2975 int regnum = i + j * rows;
2976
2977 /* Q: Why is the value passed through "extract_signed_integer",
2978 while above, in "pa_do_registers_info" it isn't?
2979 A: ? */
2980 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
2981
2982 /* Even fancier % formats to prevent leading zeros
2983 and still maintain the output in columns. */
2984 if (!is_pa_2)
2985 {
2986 /* Being big-endian, on this machine the low bits
2987 (the ones we want to look at) are in the second longword. */
2988 long_val = extract_signed_integer (&raw_val[1], 4);
2989 printf_filtered ("%10.10s: %8lx ",
2990 REGISTER_NAME (regnum), long_val);
2991 }
2992 else
2993 {
2994 /* raw_val = extract_signed_integer(&raw_val, 8); */
2995 if (raw_val[0] == 0)
2996 printf_filtered ("%10.10s: %8lx ",
2997 REGISTER_NAME (regnum), raw_val[1]);
2998 else
2999 printf_filtered ("%10.10s: %8lx%8.8lx ",
3000 REGISTER_NAME (regnum),
3001 raw_val[0], raw_val[1]);
3002 }
3003 }
3004 printf_unfiltered ("\n");
3005 }
3006
3007 if (fpregs)
3008 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3009 pa_print_fp_reg (i);
3010 }
3011
3012 /************* new function ******************/
3013 static void
3014 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
3015 struct ui_file *stream)
3016 {
3017 int i, j;
3018 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
3019 long long_val;
3020 enum precision_type precision;
3021
3022 precision = unspecified_precision;
3023
3024 for (i = 0; i < 18; i++)
3025 {
3026 for (j = 0; j < 4; j++)
3027 {
3028 /* Q: Why is the value passed through "extract_signed_integer",
3029 while above, in "pa_do_registers_info" it isn't?
3030 A: ? */
3031 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
3032
3033 /* Even fancier % formats to prevent leading zeros
3034 and still maintain the output in columns. */
3035 if (!is_pa_2)
3036 {
3037 /* Being big-endian, on this machine the low bits
3038 (the ones we want to look at) are in the second longword. */
3039 long_val = extract_signed_integer (&raw_val[1], 4);
3040 fprintf_filtered (stream, "%8.8s: %8lx ",
3041 REGISTER_NAME (i + (j * 18)), long_val);
3042 }
3043 else
3044 {
3045 /* raw_val = extract_signed_integer(&raw_val, 8); */
3046 if (raw_val[0] == 0)
3047 fprintf_filtered (stream, "%8.8s: %8lx ",
3048 REGISTER_NAME (i + (j * 18)), raw_val[1]);
3049 else
3050 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
3051 REGISTER_NAME (i + (j * 18)), raw_val[0],
3052 raw_val[1]);
3053 }
3054 }
3055 fprintf_unfiltered (stream, "\n");
3056 }
3057
3058 if (fpregs)
3059 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3060 pa_strcat_fp_reg (i, stream, precision);
3061 }
3062
3063 static void
3064 pa_print_fp_reg (int i)
3065 {
3066 char raw_buffer[MAX_REGISTER_SIZE];
3067 char virtual_buffer[MAX_REGISTER_SIZE];
3068
3069 /* Get 32bits of data. */
3070 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3071
3072 /* Put it in the buffer. No conversions are ever necessary. */
3073 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3074
3075 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3076 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3077 fputs_filtered ("(single precision) ", gdb_stdout);
3078
3079 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
3080 1, 0, Val_pretty_default);
3081 printf_filtered ("\n");
3082
3083 /* If "i" is even, then this register can also be a double-precision
3084 FP register. Dump it out as such. */
3085 if ((i % 2) == 0)
3086 {
3087 /* Get the data in raw format for the 2nd half. */
3088 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3089
3090 /* Copy it into the appropriate part of the virtual buffer. */
3091 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3092 DEPRECATED_REGISTER_RAW_SIZE (i));
3093
3094 /* Dump it as a double. */
3095 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3096 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3097 fputs_filtered ("(double precision) ", gdb_stdout);
3098
3099 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3100 1, 0, Val_pretty_default);
3101 printf_filtered ("\n");
3102 }
3103 }
3104
3105 /*************** new function ***********************/
3106 static void
3107 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3108 {
3109 char raw_buffer[MAX_REGISTER_SIZE];
3110 char virtual_buffer[MAX_REGISTER_SIZE];
3111
3112 fputs_filtered (REGISTER_NAME (i), stream);
3113 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3114
3115 /* Get 32bits of data. */
3116 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3117
3118 /* Put it in the buffer. No conversions are ever necessary. */
3119 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3120
3121 if (precision == double_precision && (i % 2) == 0)
3122 {
3123
3124 char raw_buf[MAX_REGISTER_SIZE];
3125
3126 /* Get the data in raw format for the 2nd half. */
3127 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3128
3129 /* Copy it into the appropriate part of the virtual buffer. */
3130 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3131 DEPRECATED_REGISTER_RAW_SIZE (i));
3132
3133 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3134 1, 0, Val_pretty_default);
3135
3136 }
3137 else
3138 {
3139 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3140 1, 0, Val_pretty_default);
3141 }
3142
3143 }
3144
3145 /* Return one if PC is in the call path of a trampoline, else return zero.
3146
3147 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3148 just shared library trampolines (import, export). */
3149
3150 int
3151 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3152 {
3153 struct minimal_symbol *minsym;
3154 struct unwind_table_entry *u;
3155 static CORE_ADDR dyncall = 0;
3156 static CORE_ADDR sr4export = 0;
3157
3158 #ifdef GDB_TARGET_IS_HPPA_20W
3159 /* PA64 has a completely different stub/trampoline scheme. Is it
3160 better? Maybe. It's certainly harder to determine with any
3161 certainty that we are in a stub because we can not refer to the
3162 unwinders to help.
3163
3164 The heuristic is simple. Try to lookup the current PC value in th
3165 minimal symbol table. If that fails, then assume we are not in a
3166 stub and return.
3167
3168 Then see if the PC value falls within the section bounds for the
3169 section containing the minimal symbol we found in the first
3170 step. If it does, then assume we are not in a stub and return.
3171
3172 Finally peek at the instructions to see if they look like a stub. */
3173 {
3174 struct minimal_symbol *minsym;
3175 asection *sec;
3176 CORE_ADDR addr;
3177 int insn, i;
3178
3179 minsym = lookup_minimal_symbol_by_pc (pc);
3180 if (! minsym)
3181 return 0;
3182
3183 sec = SYMBOL_BFD_SECTION (minsym);
3184
3185 if (bfd_get_section_vma (sec->owner, sec) <= pc
3186 && pc < (bfd_get_section_vma (sec->owner, sec)
3187 + bfd_section_size (sec->owner, sec)))
3188 return 0;
3189
3190 /* We might be in a stub. Peek at the instructions. Stubs are 3
3191 instructions long. */
3192 insn = read_memory_integer (pc, 4);
3193
3194 /* Find out where we think we are within the stub. */
3195 if ((insn & 0xffffc00e) == 0x53610000)
3196 addr = pc;
3197 else if ((insn & 0xffffffff) == 0xe820d000)
3198 addr = pc - 4;
3199 else if ((insn & 0xffffc00e) == 0x537b0000)
3200 addr = pc - 8;
3201 else
3202 return 0;
3203
3204 /* Now verify each insn in the range looks like a stub instruction. */
3205 insn = read_memory_integer (addr, 4);
3206 if ((insn & 0xffffc00e) != 0x53610000)
3207 return 0;
3208
3209 /* Now verify each insn in the range looks like a stub instruction. */
3210 insn = read_memory_integer (addr + 4, 4);
3211 if ((insn & 0xffffffff) != 0xe820d000)
3212 return 0;
3213
3214 /* Now verify each insn in the range looks like a stub instruction. */
3215 insn = read_memory_integer (addr + 8, 4);
3216 if ((insn & 0xffffc00e) != 0x537b0000)
3217 return 0;
3218
3219 /* Looks like a stub. */
3220 return 1;
3221 }
3222 #endif
3223
3224 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3225 new exec file */
3226
3227 /* First see if PC is in one of the two C-library trampolines. */
3228 if (!dyncall)
3229 {
3230 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3231 if (minsym)
3232 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3233 else
3234 dyncall = -1;
3235 }
3236
3237 if (!sr4export)
3238 {
3239 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3240 if (minsym)
3241 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3242 else
3243 sr4export = -1;
3244 }
3245
3246 if (pc == dyncall || pc == sr4export)
3247 return 1;
3248
3249 minsym = lookup_minimal_symbol_by_pc (pc);
3250 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3251 return 1;
3252
3253 /* Get the unwind descriptor corresponding to PC, return zero
3254 if no unwind was found. */
3255 u = find_unwind_entry (pc);
3256 if (!u)
3257 return 0;
3258
3259 /* If this isn't a linker stub, then return now. */
3260 if (u->stub_unwind.stub_type == 0)
3261 return 0;
3262
3263 /* By definition a long-branch stub is a call stub. */
3264 if (u->stub_unwind.stub_type == LONG_BRANCH)
3265 return 1;
3266
3267 /* The call and return path execute the same instructions within
3268 an IMPORT stub! So an IMPORT stub is both a call and return
3269 trampoline. */
3270 if (u->stub_unwind.stub_type == IMPORT)
3271 return 1;
3272
3273 /* Parameter relocation stubs always have a call path and may have a
3274 return path. */
3275 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3276 || u->stub_unwind.stub_type == EXPORT)
3277 {
3278 CORE_ADDR addr;
3279
3280 /* Search forward from the current PC until we hit a branch
3281 or the end of the stub. */
3282 for (addr = pc; addr <= u->region_end; addr += 4)
3283 {
3284 unsigned long insn;
3285
3286 insn = read_memory_integer (addr, 4);
3287
3288 /* Does it look like a bl? If so then it's the call path, if
3289 we find a bv or be first, then we're on the return path. */
3290 if ((insn & 0xfc00e000) == 0xe8000000)
3291 return 1;
3292 else if ((insn & 0xfc00e001) == 0xe800c000
3293 || (insn & 0xfc000000) == 0xe0000000)
3294 return 0;
3295 }
3296
3297 /* Should never happen. */
3298 warning ("Unable to find branch in parameter relocation stub.\n");
3299 return 0;
3300 }
3301
3302 /* Unknown stub type. For now, just return zero. */
3303 return 0;
3304 }
3305
3306 /* Return one if PC is in the return path of a trampoline, else return zero.
3307
3308 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3309 just shared library trampolines (import, export). */
3310
3311 int
3312 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3313 {
3314 struct unwind_table_entry *u;
3315
3316 /* Get the unwind descriptor corresponding to PC, return zero
3317 if no unwind was found. */
3318 u = find_unwind_entry (pc);
3319 if (!u)
3320 return 0;
3321
3322 /* If this isn't a linker stub or it's just a long branch stub, then
3323 return zero. */
3324 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3325 return 0;
3326
3327 /* The call and return path execute the same instructions within
3328 an IMPORT stub! So an IMPORT stub is both a call and return
3329 trampoline. */
3330 if (u->stub_unwind.stub_type == IMPORT)
3331 return 1;
3332
3333 /* Parameter relocation stubs always have a call path and may have a
3334 return path. */
3335 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3336 || u->stub_unwind.stub_type == EXPORT)
3337 {
3338 CORE_ADDR addr;
3339
3340 /* Search forward from the current PC until we hit a branch
3341 or the end of the stub. */
3342 for (addr = pc; addr <= u->region_end; addr += 4)
3343 {
3344 unsigned long insn;
3345
3346 insn = read_memory_integer (addr, 4);
3347
3348 /* Does it look like a bl? If so then it's the call path, if
3349 we find a bv or be first, then we're on the return path. */
3350 if ((insn & 0xfc00e000) == 0xe8000000)
3351 return 0;
3352 else if ((insn & 0xfc00e001) == 0xe800c000
3353 || (insn & 0xfc000000) == 0xe0000000)
3354 return 1;
3355 }
3356
3357 /* Should never happen. */
3358 warning ("Unable to find branch in parameter relocation stub.\n");
3359 return 0;
3360 }
3361
3362 /* Unknown stub type. For now, just return zero. */
3363 return 0;
3364
3365 }
3366
3367 /* Figure out if PC is in a trampoline, and if so find out where
3368 the trampoline will jump to. If not in a trampoline, return zero.
3369
3370 Simple code examination probably is not a good idea since the code
3371 sequences in trampolines can also appear in user code.
3372
3373 We use unwinds and information from the minimal symbol table to
3374 determine when we're in a trampoline. This won't work for ELF
3375 (yet) since it doesn't create stub unwind entries. Whether or
3376 not ELF will create stub unwinds or normal unwinds for linker
3377 stubs is still being debated.
3378
3379 This should handle simple calls through dyncall or sr4export,
3380 long calls, argument relocation stubs, and dyncall/sr4export
3381 calling an argument relocation stub. It even handles some stubs
3382 used in dynamic executables. */
3383
3384 CORE_ADDR
3385 hppa_skip_trampoline_code (CORE_ADDR pc)
3386 {
3387 long orig_pc = pc;
3388 long prev_inst, curr_inst, loc;
3389 static CORE_ADDR dyncall = 0;
3390 static CORE_ADDR dyncall_external = 0;
3391 static CORE_ADDR sr4export = 0;
3392 struct minimal_symbol *msym;
3393 struct unwind_table_entry *u;
3394
3395 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3396 new exec file */
3397
3398 if (!dyncall)
3399 {
3400 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3401 if (msym)
3402 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3403 else
3404 dyncall = -1;
3405 }
3406
3407 if (!dyncall_external)
3408 {
3409 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3410 if (msym)
3411 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3412 else
3413 dyncall_external = -1;
3414 }
3415
3416 if (!sr4export)
3417 {
3418 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3419 if (msym)
3420 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3421 else
3422 sr4export = -1;
3423 }
3424
3425 /* Addresses passed to dyncall may *NOT* be the actual address
3426 of the function. So we may have to do something special. */
3427 if (pc == dyncall)
3428 {
3429 pc = (CORE_ADDR) read_register (22);
3430
3431 /* If bit 30 (counting from the left) is on, then pc is the address of
3432 the PLT entry for this function, not the address of the function
3433 itself. Bit 31 has meaning too, but only for MPE. */
3434 if (pc & 0x2)
3435 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3436 }
3437 if (pc == dyncall_external)
3438 {
3439 pc = (CORE_ADDR) read_register (22);
3440 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3441 }
3442 else if (pc == sr4export)
3443 pc = (CORE_ADDR) (read_register (22));
3444
3445 /* Get the unwind descriptor corresponding to PC, return zero
3446 if no unwind was found. */
3447 u = find_unwind_entry (pc);
3448 if (!u)
3449 return 0;
3450
3451 /* If this isn't a linker stub, then return now. */
3452 /* elz: attention here! (FIXME) because of a compiler/linker
3453 error, some stubs which should have a non zero stub_unwind.stub_type
3454 have unfortunately a value of zero. So this function would return here
3455 as if we were not in a trampoline. To fix this, we go look at the partial
3456 symbol information, which reports this guy as a stub.
3457 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3458 partial symbol information is also wrong sometimes. This is because
3459 when it is entered (somread.c::som_symtab_read()) it can happen that
3460 if the type of the symbol (from the som) is Entry, and the symbol is
3461 in a shared library, then it can also be a trampoline. This would
3462 be OK, except that I believe the way they decide if we are ina shared library
3463 does not work. SOOOO..., even if we have a regular function w/o trampolines
3464 its minimal symbol can be assigned type mst_solib_trampoline.
3465 Also, if we find that the symbol is a real stub, then we fix the unwind
3466 descriptor, and define the stub type to be EXPORT.
3467 Hopefully this is correct most of the times. */
3468 if (u->stub_unwind.stub_type == 0)
3469 {
3470
3471 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3472 we can delete all the code which appears between the lines */
3473 /*--------------------------------------------------------------------------*/
3474 msym = lookup_minimal_symbol_by_pc (pc);
3475
3476 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3477 return orig_pc == pc ? 0 : pc & ~0x3;
3478
3479 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3480 {
3481 struct objfile *objfile;
3482 struct minimal_symbol *msymbol;
3483 int function_found = 0;
3484
3485 /* go look if there is another minimal symbol with the same name as
3486 this one, but with type mst_text. This would happen if the msym
3487 is an actual trampoline, in which case there would be another
3488 symbol with the same name corresponding to the real function */
3489
3490 ALL_MSYMBOLS (objfile, msymbol)
3491 {
3492 if (MSYMBOL_TYPE (msymbol) == mst_text
3493 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3494 {
3495 function_found = 1;
3496 break;
3497 }
3498 }
3499
3500 if (function_found)
3501 /* the type of msym is correct (mst_solib_trampoline), but
3502 the unwind info is wrong, so set it to the correct value */
3503 u->stub_unwind.stub_type = EXPORT;
3504 else
3505 /* the stub type info in the unwind is correct (this is not a
3506 trampoline), but the msym type information is wrong, it
3507 should be mst_text. So we need to fix the msym, and also
3508 get out of this function */
3509 {
3510 MSYMBOL_TYPE (msym) = mst_text;
3511 return orig_pc == pc ? 0 : pc & ~0x3;
3512 }
3513 }
3514
3515 /*--------------------------------------------------------------------------*/
3516 }
3517
3518 /* It's a stub. Search for a branch and figure out where it goes.
3519 Note we have to handle multi insn branch sequences like ldil;ble.
3520 Most (all?) other branches can be determined by examining the contents
3521 of certain registers and the stack. */
3522
3523 loc = pc;
3524 curr_inst = 0;
3525 prev_inst = 0;
3526 while (1)
3527 {
3528 /* Make sure we haven't walked outside the range of this stub. */
3529 if (u != find_unwind_entry (loc))
3530 {
3531 warning ("Unable to find branch in linker stub");
3532 return orig_pc == pc ? 0 : pc & ~0x3;
3533 }
3534
3535 prev_inst = curr_inst;
3536 curr_inst = read_memory_integer (loc, 4);
3537
3538 /* Does it look like a branch external using %r1? Then it's the
3539 branch from the stub to the actual function. */
3540 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3541 {
3542 /* Yup. See if the previous instruction loaded
3543 a value into %r1. If so compute and return the jump address. */
3544 if ((prev_inst & 0xffe00000) == 0x20200000)
3545 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3546 else
3547 {
3548 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3549 return orig_pc == pc ? 0 : pc & ~0x3;
3550 }
3551 }
3552
3553 /* Does it look like a be 0(sr0,%r21)? OR
3554 Does it look like a be, n 0(sr0,%r21)? OR
3555 Does it look like a bve (r21)? (this is on PA2.0)
3556 Does it look like a bve, n(r21)? (this is also on PA2.0)
3557 That's the branch from an
3558 import stub to an export stub.
3559
3560 It is impossible to determine the target of the branch via
3561 simple examination of instructions and/or data (consider
3562 that the address in the plabel may be the address of the
3563 bind-on-reference routine in the dynamic loader).
3564
3565 So we have try an alternative approach.
3566
3567 Get the name of the symbol at our current location; it should
3568 be a stub symbol with the same name as the symbol in the
3569 shared library.
3570
3571 Then lookup a minimal symbol with the same name; we should
3572 get the minimal symbol for the target routine in the shared
3573 library as those take precedence of import/export stubs. */
3574 if ((curr_inst == 0xe2a00000) ||
3575 (curr_inst == 0xe2a00002) ||
3576 (curr_inst == 0xeaa0d000) ||
3577 (curr_inst == 0xeaa0d002))
3578 {
3579 struct minimal_symbol *stubsym, *libsym;
3580
3581 stubsym = lookup_minimal_symbol_by_pc (loc);
3582 if (stubsym == NULL)
3583 {
3584 warning ("Unable to find symbol for 0x%lx", loc);
3585 return orig_pc == pc ? 0 : pc & ~0x3;
3586 }
3587
3588 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3589 if (libsym == NULL)
3590 {
3591 warning ("Unable to find library symbol for %s\n",
3592 DEPRECATED_SYMBOL_NAME (stubsym));
3593 return orig_pc == pc ? 0 : pc & ~0x3;
3594 }
3595
3596 return SYMBOL_VALUE (libsym);
3597 }
3598
3599 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3600 branch from the stub to the actual function. */
3601 /*elz */
3602 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3603 || (curr_inst & 0xffe0e000) == 0xe8000000
3604 || (curr_inst & 0xffe0e000) == 0xe800A000)
3605 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3606
3607 /* Does it look like bv (rp)? Note this depends on the
3608 current stack pointer being the same as the stack
3609 pointer in the stub itself! This is a branch on from the
3610 stub back to the original caller. */
3611 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3612 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3613 {
3614 /* Yup. See if the previous instruction loaded
3615 rp from sp - 8. */
3616 if (prev_inst == 0x4bc23ff1)
3617 return (read_memory_integer
3618 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3619 else
3620 {
3621 warning ("Unable to find restore of %%rp before bv (%%rp).");
3622 return orig_pc == pc ? 0 : pc & ~0x3;
3623 }
3624 }
3625
3626 /* elz: added this case to capture the new instruction
3627 at the end of the return part of an export stub used by
3628 the PA2.0: BVE, n (rp) */
3629 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3630 {
3631 return (read_memory_integer
3632 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3633 }
3634
3635 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3636 the original caller from the stub. Used in dynamic executables. */
3637 else if (curr_inst == 0xe0400002)
3638 {
3639 /* The value we jump to is sitting in sp - 24. But that's
3640 loaded several instructions before the be instruction.
3641 I guess we could check for the previous instruction being
3642 mtsp %r1,%sr0 if we want to do sanity checking. */
3643 return (read_memory_integer
3644 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3645 }
3646
3647 /* Haven't found the branch yet, but we're still in the stub.
3648 Keep looking. */
3649 loc += 4;
3650 }
3651 }
3652
3653
3654 /* For the given instruction (INST), return any adjustment it makes
3655 to the stack pointer or zero for no adjustment.
3656
3657 This only handles instructions commonly found in prologues. */
3658
3659 static int
3660 prologue_inst_adjust_sp (unsigned long inst)
3661 {
3662 /* This must persist across calls. */
3663 static int save_high21;
3664
3665 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3666 if ((inst & 0xffffc000) == 0x37de0000)
3667 return extract_14 (inst);
3668
3669 /* stwm X,D(sp) */
3670 if ((inst & 0xffe00000) == 0x6fc00000)
3671 return extract_14 (inst);
3672
3673 /* std,ma X,D(sp) */
3674 if ((inst & 0xffe00008) == 0x73c00008)
3675 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3676
3677 /* addil high21,%r1; ldo low11,(%r1),%r30)
3678 save high bits in save_high21 for later use. */
3679 if ((inst & 0xffe00000) == 0x28200000)
3680 {
3681 save_high21 = extract_21 (inst);
3682 return 0;
3683 }
3684
3685 if ((inst & 0xffff0000) == 0x343e0000)
3686 return save_high21 + extract_14 (inst);
3687
3688 /* fstws as used by the HP compilers. */
3689 if ((inst & 0xffffffe0) == 0x2fd01220)
3690 return extract_5_load (inst);
3691
3692 /* No adjustment. */
3693 return 0;
3694 }
3695
3696 /* Return nonzero if INST is a branch of some kind, else return zero. */
3697
3698 static int
3699 is_branch (unsigned long inst)
3700 {
3701 switch (inst >> 26)
3702 {
3703 case 0x20:
3704 case 0x21:
3705 case 0x22:
3706 case 0x23:
3707 case 0x27:
3708 case 0x28:
3709 case 0x29:
3710 case 0x2a:
3711 case 0x2b:
3712 case 0x2f:
3713 case 0x30:
3714 case 0x31:
3715 case 0x32:
3716 case 0x33:
3717 case 0x38:
3718 case 0x39:
3719 case 0x3a:
3720 case 0x3b:
3721 return 1;
3722
3723 default:
3724 return 0;
3725 }
3726 }
3727
3728 /* Return the register number for a GR which is saved by INST or
3729 zero it INST does not save a GR. */
3730
3731 static int
3732 inst_saves_gr (unsigned long inst)
3733 {
3734 /* Does it look like a stw? */
3735 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3736 || (inst >> 26) == 0x1f
3737 || ((inst >> 26) == 0x1f
3738 && ((inst >> 6) == 0xa)))
3739 return extract_5R_store (inst);
3740
3741 /* Does it look like a std? */
3742 if ((inst >> 26) == 0x1c
3743 || ((inst >> 26) == 0x03
3744 && ((inst >> 6) & 0xf) == 0xb))
3745 return extract_5R_store (inst);
3746
3747 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3748 if ((inst >> 26) == 0x1b)
3749 return extract_5R_store (inst);
3750
3751 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3752 too. */
3753 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3754 || ((inst >> 26) == 0x3
3755 && (((inst >> 6) & 0xf) == 0x8
3756 || (inst >> 6) & 0xf) == 0x9))
3757 return extract_5R_store (inst);
3758
3759 return 0;
3760 }
3761
3762 /* Return the register number for a FR which is saved by INST or
3763 zero it INST does not save a FR.
3764
3765 Note we only care about full 64bit register stores (that's the only
3766 kind of stores the prologue will use).
3767
3768 FIXME: What about argument stores with the HP compiler in ANSI mode? */
3769
3770 static int
3771 inst_saves_fr (unsigned long inst)
3772 {
3773 /* is this an FSTD ? */
3774 if ((inst & 0xfc00dfc0) == 0x2c001200)
3775 return extract_5r_store (inst);
3776 if ((inst & 0xfc000002) == 0x70000002)
3777 return extract_5R_store (inst);
3778 /* is this an FSTW ? */
3779 if ((inst & 0xfc00df80) == 0x24001200)
3780 return extract_5r_store (inst);
3781 if ((inst & 0xfc000002) == 0x7c000000)
3782 return extract_5R_store (inst);
3783 return 0;
3784 }
3785
3786 /* Advance PC across any function entry prologue instructions
3787 to reach some "real" code.
3788
3789 Use information in the unwind table to determine what exactly should
3790 be in the prologue. */
3791
3792
3793 CORE_ADDR
3794 skip_prologue_hard_way (CORE_ADDR pc)
3795 {
3796 char buf[4];
3797 CORE_ADDR orig_pc = pc;
3798 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
3799 unsigned long args_stored, status, i, restart_gr, restart_fr;
3800 struct unwind_table_entry *u;
3801
3802 restart_gr = 0;
3803 restart_fr = 0;
3804
3805 restart:
3806 u = find_unwind_entry (pc);
3807 if (!u)
3808 return pc;
3809
3810 /* If we are not at the beginning of a function, then return now. */
3811 if ((pc & ~0x3) != u->region_start)
3812 return pc;
3813
3814 /* This is how much of a frame adjustment we need to account for. */
3815 stack_remaining = u->Total_frame_size << 3;
3816
3817 /* Magic register saves we want to know about. */
3818 save_rp = u->Save_RP;
3819 save_sp = u->Save_SP;
3820
3821 /* An indication that args may be stored into the stack. Unfortunately
3822 the HPUX compilers tend to set this in cases where no args were
3823 stored too!. */
3824 args_stored = 1;
3825
3826 /* Turn the Entry_GR field into a bitmask. */
3827 save_gr = 0;
3828 for (i = 3; i < u->Entry_GR + 3; i++)
3829 {
3830 /* Frame pointer gets saved into a special location. */
3831 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
3832 continue;
3833
3834 save_gr |= (1 << i);
3835 }
3836 save_gr &= ~restart_gr;
3837
3838 /* Turn the Entry_FR field into a bitmask too. */
3839 save_fr = 0;
3840 for (i = 12; i < u->Entry_FR + 12; i++)
3841 save_fr |= (1 << i);
3842 save_fr &= ~restart_fr;
3843
3844 /* Loop until we find everything of interest or hit a branch.
3845
3846 For unoptimized GCC code and for any HP CC code this will never ever
3847 examine any user instructions.
3848
3849 For optimzied GCC code we're faced with problems. GCC will schedule
3850 its prologue and make prologue instructions available for delay slot
3851 filling. The end result is user code gets mixed in with the prologue
3852 and a prologue instruction may be in the delay slot of the first branch
3853 or call.
3854
3855 Some unexpected things are expected with debugging optimized code, so
3856 we allow this routine to walk past user instructions in optimized
3857 GCC code. */
3858 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
3859 || args_stored)
3860 {
3861 unsigned int reg_num;
3862 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
3863 unsigned long old_save_rp, old_save_sp, next_inst;
3864
3865 /* Save copies of all the triggers so we can compare them later
3866 (only for HPC). */
3867 old_save_gr = save_gr;
3868 old_save_fr = save_fr;
3869 old_save_rp = save_rp;
3870 old_save_sp = save_sp;
3871 old_stack_remaining = stack_remaining;
3872
3873 status = target_read_memory (pc, buf, 4);
3874 inst = extract_unsigned_integer (buf, 4);
3875
3876 /* Yow! */
3877 if (status != 0)
3878 return pc;
3879
3880 /* Note the interesting effects of this instruction. */
3881 stack_remaining -= prologue_inst_adjust_sp (inst);
3882
3883 /* There are limited ways to store the return pointer into the
3884 stack. */
3885 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
3886 save_rp = 0;
3887
3888 /* These are the only ways we save SP into the stack. At this time
3889 the HP compilers never bother to save SP into the stack. */
3890 if ((inst & 0xffffc000) == 0x6fc10000
3891 || (inst & 0xffffc00c) == 0x73c10008)
3892 save_sp = 0;
3893
3894 /* Are we loading some register with an offset from the argument
3895 pointer? */
3896 if ((inst & 0xffe00000) == 0x37a00000
3897 || (inst & 0xffffffe0) == 0x081d0240)
3898 {
3899 pc += 4;
3900 continue;
3901 }
3902
3903 /* Account for general and floating-point register saves. */
3904 reg_num = inst_saves_gr (inst);
3905 save_gr &= ~(1 << reg_num);
3906
3907 /* Ugh. Also account for argument stores into the stack.
3908 Unfortunately args_stored only tells us that some arguments
3909 where stored into the stack. Not how many or what kind!
3910
3911 This is a kludge as on the HP compiler sets this bit and it
3912 never does prologue scheduling. So once we see one, skip past
3913 all of them. We have similar code for the fp arg stores below.
3914
3915 FIXME. Can still die if we have a mix of GR and FR argument
3916 stores! */
3917 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3918 {
3919 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
3920 {
3921 pc += 4;
3922 status = target_read_memory (pc, buf, 4);
3923 inst = extract_unsigned_integer (buf, 4);
3924 if (status != 0)
3925 return pc;
3926 reg_num = inst_saves_gr (inst);
3927 }
3928 args_stored = 0;
3929 continue;
3930 }
3931
3932 reg_num = inst_saves_fr (inst);
3933 save_fr &= ~(1 << reg_num);
3934
3935 status = target_read_memory (pc + 4, buf, 4);
3936 next_inst = extract_unsigned_integer (buf, 4);
3937
3938 /* Yow! */
3939 if (status != 0)
3940 return pc;
3941
3942 /* We've got to be read to handle the ldo before the fp register
3943 save. */
3944 if ((inst & 0xfc000000) == 0x34000000
3945 && inst_saves_fr (next_inst) >= 4
3946 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3947 {
3948 /* So we drop into the code below in a reasonable state. */
3949 reg_num = inst_saves_fr (next_inst);
3950 pc -= 4;
3951 }
3952
3953 /* Ugh. Also account for argument stores into the stack.
3954 This is a kludge as on the HP compiler sets this bit and it
3955 never does prologue scheduling. So once we see one, skip past
3956 all of them. */
3957 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3958 {
3959 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
3960 {
3961 pc += 8;
3962 status = target_read_memory (pc, buf, 4);
3963 inst = extract_unsigned_integer (buf, 4);
3964 if (status != 0)
3965 return pc;
3966 if ((inst & 0xfc000000) != 0x34000000)
3967 break;
3968 status = target_read_memory (pc + 4, buf, 4);
3969 next_inst = extract_unsigned_integer (buf, 4);
3970 if (status != 0)
3971 return pc;
3972 reg_num = inst_saves_fr (next_inst);
3973 }
3974 args_stored = 0;
3975 continue;
3976 }
3977
3978 /* Quit if we hit any kind of branch. This can happen if a prologue
3979 instruction is in the delay slot of the first call/branch. */
3980 if (is_branch (inst))
3981 break;
3982
3983 /* What a crock. The HP compilers set args_stored even if no
3984 arguments were stored into the stack (boo hiss). This could
3985 cause this code to then skip a bunch of user insns (up to the
3986 first branch).
3987
3988 To combat this we try to identify when args_stored was bogusly
3989 set and clear it. We only do this when args_stored is nonzero,
3990 all other resources are accounted for, and nothing changed on
3991 this pass. */
3992 if (args_stored
3993 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
3994 && old_save_gr == save_gr && old_save_fr == save_fr
3995 && old_save_rp == save_rp && old_save_sp == save_sp
3996 && old_stack_remaining == stack_remaining)
3997 break;
3998
3999 /* Bump the PC. */
4000 pc += 4;
4001 }
4002
4003 /* We've got a tenative location for the end of the prologue. However
4004 because of limitations in the unwind descriptor mechanism we may
4005 have went too far into user code looking for the save of a register
4006 that does not exist. So, if there registers we expected to be saved
4007 but never were, mask them out and restart.
4008
4009 This should only happen in optimized code, and should be very rare. */
4010 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
4011 {
4012 pc = orig_pc;
4013 restart_gr = save_gr;
4014 restart_fr = save_fr;
4015 goto restart;
4016 }
4017
4018 return pc;
4019 }
4020
4021
4022 /* Return the address of the PC after the last prologue instruction if
4023 we can determine it from the debug symbols. Else return zero. */
4024
4025 static CORE_ADDR
4026 after_prologue (CORE_ADDR pc)
4027 {
4028 struct symtab_and_line sal;
4029 CORE_ADDR func_addr, func_end;
4030 struct symbol *f;
4031
4032 /* If we can not find the symbol in the partial symbol table, then
4033 there is no hope we can determine the function's start address
4034 with this code. */
4035 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4036 return 0;
4037
4038 /* Get the line associated with FUNC_ADDR. */
4039 sal = find_pc_line (func_addr, 0);
4040
4041 /* There are only two cases to consider. First, the end of the source line
4042 is within the function bounds. In that case we return the end of the
4043 source line. Second is the end of the source line extends beyond the
4044 bounds of the current function. We need to use the slow code to
4045 examine instructions in that case.
4046
4047 Anything else is simply a bug elsewhere. Fixing it here is absolutely
4048 the wrong thing to do. In fact, it should be entirely possible for this
4049 function to always return zero since the slow instruction scanning code
4050 is supposed to *always* work. If it does not, then it is a bug. */
4051 if (sal.end < func_end)
4052 return sal.end;
4053 else
4054 return 0;
4055 }
4056
4057 /* To skip prologues, I use this predicate. Returns either PC itself
4058 if the code at PC does not look like a function prologue; otherwise
4059 returns an address that (if we're lucky) follows the prologue. If
4060 LENIENT, then we must skip everything which is involved in setting
4061 up the frame (it's OK to skip more, just so long as we don't skip
4062 anything which might clobber the registers which are being saved.
4063 Currently we must not skip more on the alpha, but we might the lenient
4064 stuff some day. */
4065
4066 CORE_ADDR
4067 hppa_skip_prologue (CORE_ADDR pc)
4068 {
4069 unsigned long inst;
4070 int offset;
4071 CORE_ADDR post_prologue_pc;
4072 char buf[4];
4073
4074 /* See if we can determine the end of the prologue via the symbol table.
4075 If so, then return either PC, or the PC after the prologue, whichever
4076 is greater. */
4077
4078 post_prologue_pc = after_prologue (pc);
4079
4080 /* If after_prologue returned a useful address, then use it. Else
4081 fall back on the instruction skipping code.
4082
4083 Some folks have claimed this causes problems because the breakpoint
4084 may be the first instruction of the prologue. If that happens, then
4085 the instruction skipping code has a bug that needs to be fixed. */
4086 if (post_prologue_pc != 0)
4087 return max (pc, post_prologue_pc);
4088 else
4089 return (skip_prologue_hard_way (pc));
4090 }
4091
4092 /* Put here the code to store, into the SAVED_REGS, the addresses of
4093 the saved registers of frame described by FRAME_INFO. This
4094 includes special registers such as pc and fp saved in special ways
4095 in the stack frame. sp is even more special: the address we return
4096 for it IS the sp for the next frame. */
4097
4098 void
4099 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4100 CORE_ADDR frame_saved_regs[])
4101 {
4102 CORE_ADDR pc;
4103 struct unwind_table_entry *u;
4104 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4105 int status, i, reg;
4106 char buf[4];
4107 int fp_loc = -1;
4108 int final_iteration;
4109
4110 /* Zero out everything. */
4111 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4112
4113 /* Call dummy frames always look the same, so there's no need to
4114 examine the dummy code to determine locations of saved registers;
4115 instead, let find_dummy_frame_regs fill in the correct offsets
4116 for the saved registers. */
4117 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4118 && (get_frame_pc (frame_info)
4119 <= (get_frame_base (frame_info)
4120 /* A call dummy is sized in words, but it is actually a
4121 series of instructions. Account for that scaling
4122 factor. */
4123 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4124 * DEPRECATED_CALL_DUMMY_LENGTH)
4125 /* Similarly we have to account for 64bit wide register
4126 saves. */
4127 + (32 * DEPRECATED_REGISTER_SIZE)
4128 /* We always consider FP regs 8 bytes long. */
4129 + (NUM_REGS - FP0_REGNUM) * 8
4130 /* Similarly we have to account for 64bit wide register
4131 saves. */
4132 + (6 * DEPRECATED_REGISTER_SIZE)))))
4133 find_dummy_frame_regs (frame_info, frame_saved_regs);
4134
4135 /* Interrupt handlers are special too. They lay out the register
4136 state in the exact same order as the register numbers in GDB. */
4137 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4138 {
4139 for (i = 0; i < NUM_REGS; i++)
4140 {
4141 /* SP is a little special. */
4142 if (i == SP_REGNUM)
4143 frame_saved_regs[SP_REGNUM]
4144 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4145 TARGET_PTR_BIT / 8);
4146 else
4147 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4148 }
4149 return;
4150 }
4151
4152 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4153 /* Handle signal handler callers. */
4154 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4155 {
4156 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4157 return;
4158 }
4159 #endif
4160
4161 /* Get the starting address of the function referred to by the PC
4162 saved in frame. */
4163 pc = get_frame_func (frame_info);
4164
4165 /* Yow! */
4166 u = find_unwind_entry (pc);
4167 if (!u)
4168 return;
4169
4170 /* This is how much of a frame adjustment we need to account for. */
4171 stack_remaining = u->Total_frame_size << 3;
4172
4173 /* Magic register saves we want to know about. */
4174 save_rp = u->Save_RP;
4175 save_sp = u->Save_SP;
4176
4177 /* Turn the Entry_GR field into a bitmask. */
4178 save_gr = 0;
4179 for (i = 3; i < u->Entry_GR + 3; i++)
4180 {
4181 /* Frame pointer gets saved into a special location. */
4182 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4183 continue;
4184
4185 save_gr |= (1 << i);
4186 }
4187
4188 /* Turn the Entry_FR field into a bitmask too. */
4189 save_fr = 0;
4190 for (i = 12; i < u->Entry_FR + 12; i++)
4191 save_fr |= (1 << i);
4192
4193 /* The frame always represents the value of %sp at entry to the
4194 current function (and is thus equivalent to the "saved" stack
4195 pointer. */
4196 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4197
4198 /* Loop until we find everything of interest or hit a branch.
4199
4200 For unoptimized GCC code and for any HP CC code this will never ever
4201 examine any user instructions.
4202
4203 For optimized GCC code we're faced with problems. GCC will schedule
4204 its prologue and make prologue instructions available for delay slot
4205 filling. The end result is user code gets mixed in with the prologue
4206 and a prologue instruction may be in the delay slot of the first branch
4207 or call.
4208
4209 Some unexpected things are expected with debugging optimized code, so
4210 we allow this routine to walk past user instructions in optimized
4211 GCC code. */
4212 final_iteration = 0;
4213 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4214 && pc <= get_frame_pc (frame_info))
4215 {
4216 status = target_read_memory (pc, buf, 4);
4217 inst = extract_unsigned_integer (buf, 4);
4218
4219 /* Yow! */
4220 if (status != 0)
4221 return;
4222
4223 /* Note the interesting effects of this instruction. */
4224 stack_remaining -= prologue_inst_adjust_sp (inst);
4225
4226 /* There are limited ways to store the return pointer into the
4227 stack. */
4228 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4229 {
4230 save_rp = 0;
4231 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4232 }
4233 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4234 {
4235 save_rp = 0;
4236 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4237 }
4238
4239 /* Note if we saved SP into the stack. This also happens to indicate
4240 the location of the saved frame pointer. */
4241 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4242 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4243 {
4244 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4245 save_sp = 0;
4246 }
4247
4248 /* Account for general and floating-point register saves. */
4249 reg = inst_saves_gr (inst);
4250 if (reg >= 3 && reg <= 18
4251 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4252 {
4253 save_gr &= ~(1 << reg);
4254
4255 /* stwm with a positive displacement is a *post modify*. */
4256 if ((inst >> 26) == 0x1b
4257 && extract_14 (inst) >= 0)
4258 frame_saved_regs[reg] = get_frame_base (frame_info);
4259 /* A std has explicit post_modify forms. */
4260 else if ((inst & 0xfc00000c) == 0x70000008)
4261 frame_saved_regs[reg] = get_frame_base (frame_info);
4262 else
4263 {
4264 CORE_ADDR offset;
4265
4266 if ((inst >> 26) == 0x1c)
4267 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4268 else if ((inst >> 26) == 0x03)
4269 offset = low_sign_extend (inst & 0x1f, 5);
4270 else
4271 offset = extract_14 (inst);
4272
4273 /* Handle code with and without frame pointers. */
4274 if (u->Save_SP)
4275 frame_saved_regs[reg]
4276 = get_frame_base (frame_info) + offset;
4277 else
4278 frame_saved_regs[reg]
4279 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4280 + offset);
4281 }
4282 }
4283
4284
4285 /* GCC handles callee saved FP regs a little differently.
4286
4287 It emits an instruction to put the value of the start of
4288 the FP store area into %r1. It then uses fstds,ma with
4289 a basereg of %r1 for the stores.
4290
4291 HP CC emits them at the current stack pointer modifying
4292 the stack pointer as it stores each register. */
4293
4294 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4295 if ((inst & 0xffffc000) == 0x34610000
4296 || (inst & 0xffffc000) == 0x37c10000)
4297 fp_loc = extract_14 (inst);
4298
4299 reg = inst_saves_fr (inst);
4300 if (reg >= 12 && reg <= 21)
4301 {
4302 /* Note +4 braindamage below is necessary because the FP status
4303 registers are internally 8 registers rather than the expected
4304 4 registers. */
4305 save_fr &= ~(1 << reg);
4306 if (fp_loc == -1)
4307 {
4308 /* 1st HP CC FP register store. After this instruction
4309 we've set enough state that the GCC and HPCC code are
4310 both handled in the same manner. */
4311 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4312 fp_loc = 8;
4313 }
4314 else
4315 {
4316 frame_saved_regs[reg + FP0_REGNUM + 4]
4317 = get_frame_base (frame_info) + fp_loc;
4318 fp_loc += 8;
4319 }
4320 }
4321
4322 /* Quit if we hit any kind of branch the previous iteration. */
4323 if (final_iteration)
4324 break;
4325
4326 /* We want to look precisely one instruction beyond the branch
4327 if we have not found everything yet. */
4328 if (is_branch (inst))
4329 final_iteration = 1;
4330
4331 /* Bump the PC. */
4332 pc += 4;
4333 }
4334 }
4335
4336 /* XXX - deprecated. This is a compatibility function for targets
4337 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4338 /* Find the addresses in which registers are saved in FRAME. */
4339
4340 static void
4341 hppa_frame_init_saved_regs (struct frame_info *frame)
4342 {
4343 if (deprecated_get_frame_saved_regs (frame) == NULL)
4344 frame_saved_regs_zalloc (frame);
4345 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4346 }
4347
4348 struct hppa_frame_cache
4349 {
4350 CORE_ADDR base;
4351 struct trad_frame_saved_reg *saved_regs;
4352 };
4353
4354 static struct hppa_frame_cache *
4355 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
4356 {
4357 struct hppa_frame_cache *cache;
4358 long saved_gr_mask;
4359 long saved_fr_mask;
4360 CORE_ADDR this_sp;
4361 long frame_size;
4362 struct unwind_table_entry *u;
4363 int i;
4364
4365 if ((*this_cache) != NULL)
4366 return (*this_cache);
4367 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
4368 (*this_cache) = cache;
4369 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
4370
4371 /* Yow! */
4372 u = find_unwind_entry (frame_func_unwind (next_frame));
4373 if (!u)
4374 return;
4375
4376 /* Turn the Entry_GR field into a bitmask. */
4377 saved_gr_mask = 0;
4378 for (i = 3; i < u->Entry_GR + 3; i++)
4379 {
4380 /* Frame pointer gets saved into a special location. */
4381 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4382 continue;
4383
4384 saved_gr_mask |= (1 << i);
4385 }
4386
4387 /* Turn the Entry_FR field into a bitmask too. */
4388 saved_fr_mask = 0;
4389 for (i = 12; i < u->Entry_FR + 12; i++)
4390 saved_fr_mask |= (1 << i);
4391
4392 /* Loop until we find everything of interest or hit a branch.
4393
4394 For unoptimized GCC code and for any HP CC code this will never ever
4395 examine any user instructions.
4396
4397 For optimized GCC code we're faced with problems. GCC will schedule
4398 its prologue and make prologue instructions available for delay slot
4399 filling. The end result is user code gets mixed in with the prologue
4400 and a prologue instruction may be in the delay slot of the first branch
4401 or call.
4402
4403 Some unexpected things are expected with debugging optimized code, so
4404 we allow this routine to walk past user instructions in optimized
4405 GCC code. */
4406 {
4407 int final_iteration = 0;
4408 CORE_ADDR pc;
4409 CORE_ADDR end_pc = skip_prologue_using_sal (pc);
4410 int looking_for_sp = u->Save_SP;
4411 int looking_for_rp = u->Save_RP;
4412 int fp_loc = -1;
4413 if (end_pc == 0)
4414 end_pc = frame_pc_unwind (next_frame);
4415 frame_size = 0;
4416 for (pc = frame_func_unwind (next_frame);
4417 ((saved_gr_mask || saved_fr_mask
4418 || looking_for_sp || looking_for_rp
4419 || frame_size < (u->Total_frame_size << 3))
4420 && pc <= end_pc);
4421 pc += 4)
4422 {
4423 int reg;
4424 char buf4[4];
4425 long status = target_read_memory (pc, buf4, sizeof buf4);
4426 long inst = extract_unsigned_integer (buf4, sizeof buf4);
4427
4428 /* Note the interesting effects of this instruction. */
4429 frame_size += prologue_inst_adjust_sp (inst);
4430
4431 /* There are limited ways to store the return pointer into the
4432 stack. */
4433 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4434 {
4435 looking_for_rp = 0;
4436 cache->saved_regs[RP_REGNUM].addr = -20;
4437 }
4438 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4439 {
4440 looking_for_rp = 0;
4441 cache->saved_regs[RP_REGNUM].addr = -16;
4442 }
4443
4444 /* Check to see if we saved SP into the stack. This also
4445 happens to indicate the location of the saved frame
4446 pointer. */
4447 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4448 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4449 {
4450 looking_for_sp = 0;
4451 cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0;
4452 }
4453
4454 /* Account for general and floating-point register saves. */
4455 reg = inst_saves_gr (inst);
4456 if (reg >= 3 && reg <= 18
4457 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4458 {
4459 saved_gr_mask &= ~(1 << reg);
4460 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
4461 /* stwm with a positive displacement is a _post_
4462 _modify_. */
4463 cache->saved_regs[reg].addr = 0;
4464 else if ((inst & 0xfc00000c) == 0x70000008)
4465 /* A std has explicit post_modify forms. */
4466 cache->saved_regs[reg].addr = 0;
4467 else
4468 {
4469 CORE_ADDR offset;
4470
4471 if ((inst >> 26) == 0x1c)
4472 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4473 else if ((inst >> 26) == 0x03)
4474 offset = low_sign_extend (inst & 0x1f, 5);
4475 else
4476 offset = extract_14 (inst);
4477
4478 /* Handle code with and without frame pointers. */
4479 if (u->Save_SP)
4480 cache->saved_regs[reg].addr = offset;
4481 else
4482 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
4483 }
4484 }
4485
4486 /* GCC handles callee saved FP regs a little differently.
4487
4488 It emits an instruction to put the value of the start of
4489 the FP store area into %r1. It then uses fstds,ma with a
4490 basereg of %r1 for the stores.
4491
4492 HP CC emits them at the current stack pointer modifying the
4493 stack pointer as it stores each register. */
4494
4495 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4496 if ((inst & 0xffffc000) == 0x34610000
4497 || (inst & 0xffffc000) == 0x37c10000)
4498 fp_loc = extract_14 (inst);
4499
4500 reg = inst_saves_fr (inst);
4501 if (reg >= 12 && reg <= 21)
4502 {
4503 /* Note +4 braindamage below is necessary because the FP
4504 status registers are internally 8 registers rather than
4505 the expected 4 registers. */
4506 saved_fr_mask &= ~(1 << reg);
4507 if (fp_loc == -1)
4508 {
4509 /* 1st HP CC FP register store. After this
4510 instruction we've set enough state that the GCC and
4511 HPCC code are both handled in the same manner. */
4512 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
4513 fp_loc = 8;
4514 }
4515 else
4516 {
4517 cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc;
4518 fp_loc += 8;
4519 }
4520 }
4521
4522 /* Quit if we hit any kind of branch the previous iteration. */
4523 if (final_iteration)
4524 break;
4525 /* We want to look precisely one instruction beyond the branch
4526 if we have not found everything yet. */
4527 if (is_branch (inst))
4528 final_iteration = 1;
4529 }
4530 }
4531
4532 {
4533 /* The frame base always represents the value of %sp at entry to
4534 the current function (and is thus equivalent to the "saved"
4535 stack pointer. */
4536 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
4537 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4538 created. If it hasn't everything will be out-of-wack. */
4539 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM))
4540 /* Both we're expecting the SP to be saved and the SP has been
4541 saved. The entry SP value is saved at this frame's SP
4542 address. */
4543 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
4544 else
4545 /* The prologue has been slowly allocating stack space. Adjust
4546 the SP back. */
4547 cache->base = this_sp - frame_size;
4548 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
4549 }
4550
4551 /* The PC is found in the "return register". */
4552 if (u->Millicode)
4553 cache->saved_regs[PC_REGNUM] = cache->saved_regs[31];
4554 else
4555 cache->saved_regs[PC_REGNUM] = cache->saved_regs[RP_REGNUM];
4556
4557 {
4558 /* Convert all the offsets into addresses. */
4559 int reg;
4560 for (reg = 0; reg < NUM_REGS; reg++)
4561 {
4562 if (trad_frame_addr_p (cache->saved_regs, reg))
4563 cache->saved_regs[reg].addr += cache->base;
4564 }
4565 }
4566
4567 return (*this_cache);
4568 }
4569
4570 static void
4571 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
4572 struct frame_id *this_id)
4573 {
4574 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4575 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
4576 }
4577
4578 static void
4579 hppa_frame_prev_register (struct frame_info *next_frame,
4580 void **this_cache,
4581 int regnum, int *optimizedp,
4582 enum lval_type *lvalp, CORE_ADDR *addrp,
4583 int *realnump, void *valuep)
4584 {
4585 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4586 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
4587 optimizedp, lvalp, addrp, realnump, valuep);
4588 }
4589
4590 static const struct frame_unwind hppa_frame_unwind =
4591 {
4592 NORMAL_FRAME,
4593 hppa_frame_this_id,
4594 hppa_frame_prev_register
4595 };
4596
4597 static const struct frame_unwind *
4598 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
4599 {
4600 return &hppa_frame_unwind;
4601 }
4602
4603 static CORE_ADDR
4604 hppa_frame_base_address (struct frame_info *next_frame,
4605 void **this_cache)
4606 {
4607 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
4608 this_cache);
4609 return info->base;
4610 }
4611
4612 static const struct frame_base hppa_frame_base = {
4613 &hppa_frame_unwind,
4614 hppa_frame_base_address,
4615 hppa_frame_base_address,
4616 hppa_frame_base_address
4617 };
4618
4619 static const struct frame_base *
4620 hppa_frame_base_sniffer (struct frame_info *next_frame)
4621 {
4622 return &hppa_frame_base;
4623 }
4624
4625 static struct frame_id
4626 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
4627 {
4628 return frame_id_build (frame_unwind_register_unsigned (next_frame,
4629 SP_REGNUM),
4630 frame_pc_unwind (next_frame));
4631 }
4632
4633 static CORE_ADDR
4634 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
4635 {
4636 return frame_unwind_register_signed (next_frame, PC_REGNUM) & ~3;
4637 }
4638
4639 /* Exception handling support for the HP-UX ANSI C++ compiler.
4640 The compiler (aCC) provides a callback for exception events;
4641 GDB can set a breakpoint on this callback and find out what
4642 exception event has occurred. */
4643
4644 /* The name of the hook to be set to point to the callback function */
4645 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4646 /* The name of the function to be used to set the hook value */
4647 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4648 /* The name of the callback function in end.o */
4649 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4650 /* Name of function in end.o on which a break is set (called by above) */
4651 static char HP_ACC_EH_break[] = "__d_eh_break";
4652 /* Name of flag (in end.o) that enables catching throws */
4653 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4654 /* Name of flag (in end.o) that enables catching catching */
4655 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4656 /* The enum used by aCC */
4657 typedef enum
4658 {
4659 __EH_NOTIFY_THROW,
4660 __EH_NOTIFY_CATCH
4661 }
4662 __eh_notification;
4663
4664 /* Is exception-handling support available with this executable? */
4665 static int hp_cxx_exception_support = 0;
4666 /* Has the initialize function been run? */
4667 int hp_cxx_exception_support_initialized = 0;
4668 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4669 extern int exception_support_initialized;
4670 /* Address of __eh_notify_hook */
4671 static CORE_ADDR eh_notify_hook_addr = 0;
4672 /* Address of __d_eh_notify_callback */
4673 static CORE_ADDR eh_notify_callback_addr = 0;
4674 /* Address of __d_eh_break */
4675 static CORE_ADDR eh_break_addr = 0;
4676 /* Address of __d_eh_catch_catch */
4677 static CORE_ADDR eh_catch_catch_addr = 0;
4678 /* Address of __d_eh_catch_throw */
4679 static CORE_ADDR eh_catch_throw_addr = 0;
4680 /* Sal for __d_eh_break */
4681 static struct symtab_and_line *break_callback_sal = 0;
4682
4683 /* Code in end.c expects __d_pid to be set in the inferior,
4684 otherwise __d_eh_notify_callback doesn't bother to call
4685 __d_eh_break! So we poke the pid into this symbol
4686 ourselves.
4687 0 => success
4688 1 => failure */
4689 int
4690 setup_d_pid_in_inferior (void)
4691 {
4692 CORE_ADDR anaddr;
4693 struct minimal_symbol *msymbol;
4694 char buf[4]; /* FIXME 32x64? */
4695
4696 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4697 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4698 if (msymbol == NULL)
4699 {
4700 warning ("Unable to find __d_pid symbol in object file.");
4701 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4702 return 1;
4703 }
4704
4705 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4706 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4707 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4708 {
4709 warning ("Unable to write __d_pid");
4710 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4711 return 1;
4712 }
4713 return 0;
4714 }
4715
4716 /* Initialize exception catchpoint support by looking for the
4717 necessary hooks/callbacks in end.o, etc., and set the hook value to
4718 point to the required debug function
4719
4720 Return 0 => failure
4721 1 => success */
4722
4723 static int
4724 initialize_hp_cxx_exception_support (void)
4725 {
4726 struct symtabs_and_lines sals;
4727 struct cleanup *old_chain;
4728 struct cleanup *canonical_strings_chain = NULL;
4729 int i;
4730 char *addr_start;
4731 char *addr_end = NULL;
4732 char **canonical = (char **) NULL;
4733 int thread = -1;
4734 struct symbol *sym = NULL;
4735 struct minimal_symbol *msym = NULL;
4736 struct objfile *objfile;
4737 asection *shlib_info;
4738
4739 /* Detect and disallow recursion. On HP-UX with aCC, infinite
4740 recursion is a possibility because finding the hook for exception
4741 callbacks involves making a call in the inferior, which means
4742 re-inserting breakpoints which can re-invoke this code */
4743
4744 static int recurse = 0;
4745 if (recurse > 0)
4746 {
4747 hp_cxx_exception_support_initialized = 0;
4748 exception_support_initialized = 0;
4749 return 0;
4750 }
4751
4752 hp_cxx_exception_support = 0;
4753
4754 /* First check if we have seen any HP compiled objects; if not,
4755 it is very unlikely that HP's idiosyncratic callback mechanism
4756 for exception handling debug support will be available!
4757 This will percolate back up to breakpoint.c, where our callers
4758 will decide to try the g++ exception-handling support instead. */
4759 if (!hp_som_som_object_present)
4760 return 0;
4761
4762 /* We have a SOM executable with SOM debug info; find the hooks */
4763
4764 /* First look for the notify hook provided by aCC runtime libs */
4765 /* If we find this symbol, we conclude that the executable must
4766 have HP aCC exception support built in. If this symbol is not
4767 found, even though we're a HP SOM-SOM file, we may have been
4768 built with some other compiler (not aCC). This results percolates
4769 back up to our callers in breakpoint.c which can decide to
4770 try the g++ style of exception support instead.
4771 If this symbol is found but the other symbols we require are
4772 not found, there is something weird going on, and g++ support
4773 should *not* be tried as an alternative.
4774
4775 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
4776 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
4777
4778 /* libCsup has this hook; it'll usually be non-debuggable */
4779 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
4780 if (msym)
4781 {
4782 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
4783 hp_cxx_exception_support = 1;
4784 }
4785 else
4786 {
4787 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
4788 warning ("Executable may not have been compiled debuggable with HP aCC.");
4789 warning ("GDB will be unable to intercept exception events.");
4790 eh_notify_hook_addr = 0;
4791 hp_cxx_exception_support = 0;
4792 return 0;
4793 }
4794
4795 /* Next look for the notify callback routine in end.o */
4796 /* This is always available in the SOM symbol dictionary if end.o is linked in */
4797 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
4798 if (msym)
4799 {
4800 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
4801 hp_cxx_exception_support = 1;
4802 }
4803 else
4804 {
4805 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
4806 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4807 warning ("GDB will be unable to intercept exception events.");
4808 eh_notify_callback_addr = 0;
4809 return 0;
4810 }
4811
4812 #ifndef GDB_TARGET_IS_HPPA_20W
4813 /* Check whether the executable is dynamically linked or archive bound */
4814 /* With an archive-bound executable we can use the raw addresses we find
4815 for the callback function, etc. without modification. For an executable
4816 with shared libraries, we have to do more work to find the plabel, which
4817 can be the target of a call through $$dyncall from the aCC runtime support
4818 library (libCsup) which is linked shared by default by aCC. */
4819 /* This test below was copied from somsolib.c/somread.c. It may not be a very
4820 reliable one to test that an executable is linked shared. pai/1997-07-18 */
4821 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
4822 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
4823 {
4824 /* The minsym we have has the local code address, but that's not the
4825 plabel that can be used by an inter-load-module call. */
4826 /* Find solib handle for main image (which has end.o), and use that
4827 and the min sym as arguments to __d_shl_get() (which does the equivalent
4828 of shl_findsym()) to find the plabel. */
4829
4830 args_for_find_stub args;
4831 static char message[] = "Error while finding exception callback hook:\n";
4832
4833 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
4834 args.msym = msym;
4835 args.return_val = 0;
4836
4837 recurse++;
4838 catch_errors (cover_find_stub_with_shl_get, &args, message,
4839 RETURN_MASK_ALL);
4840 eh_notify_callback_addr = args.return_val;
4841 recurse--;
4842
4843 exception_catchpoints_are_fragile = 1;
4844
4845 if (!eh_notify_callback_addr)
4846 {
4847 /* We can get here either if there is no plabel in the export list
4848 for the main image, or if something strange happened (?) */
4849 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
4850 warning ("GDB will not be able to intercept exception events.");
4851 return 0;
4852 }
4853 }
4854 else
4855 exception_catchpoints_are_fragile = 0;
4856 #endif
4857
4858 /* Now, look for the breakpointable routine in end.o */
4859 /* This should also be available in the SOM symbol dict. if end.o linked in */
4860 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
4861 if (msym)
4862 {
4863 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
4864 hp_cxx_exception_support = 1;
4865 }
4866 else
4867 {
4868 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
4869 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4870 warning ("GDB will be unable to intercept exception events.");
4871 eh_break_addr = 0;
4872 return 0;
4873 }
4874
4875 /* Next look for the catch enable flag provided in end.o */
4876 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4877 VAR_DOMAIN, 0, (struct symtab **) NULL);
4878 if (sym) /* sometimes present in debug info */
4879 {
4880 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
4881 hp_cxx_exception_support = 1;
4882 }
4883 else
4884 /* otherwise look in SOM symbol dict. */
4885 {
4886 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
4887 if (msym)
4888 {
4889 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
4890 hp_cxx_exception_support = 1;
4891 }
4892 else
4893 {
4894 warning ("Unable to enable interception of exception catches.");
4895 warning ("Executable may not have been compiled debuggable with HP aCC.");
4896 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4897 return 0;
4898 }
4899 }
4900
4901 /* Next look for the catch enable flag provided end.o */
4902 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
4903 VAR_DOMAIN, 0, (struct symtab **) NULL);
4904 if (sym) /* sometimes present in debug info */
4905 {
4906 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
4907 hp_cxx_exception_support = 1;
4908 }
4909 else
4910 /* otherwise look in SOM symbol dict. */
4911 {
4912 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
4913 if (msym)
4914 {
4915 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
4916 hp_cxx_exception_support = 1;
4917 }
4918 else
4919 {
4920 warning ("Unable to enable interception of exception throws.");
4921 warning ("Executable may not have been compiled debuggable with HP aCC.");
4922 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
4923 return 0;
4924 }
4925 }
4926
4927 /* Set the flags */
4928 hp_cxx_exception_support = 2; /* everything worked so far */
4929 hp_cxx_exception_support_initialized = 1;
4930 exception_support_initialized = 1;
4931
4932 return 1;
4933 }
4934
4935 /* Target operation for enabling or disabling interception of
4936 exception events.
4937 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
4938 ENABLE is either 0 (disable) or 1 (enable).
4939 Return value is NULL if no support found;
4940 -1 if something went wrong,
4941 or a pointer to a symtab/line struct if the breakpointable
4942 address was found. */
4943
4944 struct symtab_and_line *
4945 child_enable_exception_callback (enum exception_event_kind kind, int enable)
4946 {
4947 char buf[4];
4948
4949 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
4950 if (!initialize_hp_cxx_exception_support ())
4951 return NULL;
4952
4953 switch (hp_cxx_exception_support)
4954 {
4955 case 0:
4956 /* Assuming no HP support at all */
4957 return NULL;
4958 case 1:
4959 /* HP support should be present, but something went wrong */
4960 return (struct symtab_and_line *) -1; /* yuck! */
4961 /* there may be other cases in the future */
4962 }
4963
4964 /* Set the EH hook to point to the callback routine */
4965 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
4966 /* pai: (temp) FIXME should there be a pack operation first? */
4967 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
4968 {
4969 warning ("Could not write to target memory for exception event callback.");
4970 warning ("Interception of exception events may not work.");
4971 return (struct symtab_and_line *) -1;
4972 }
4973 if (enable)
4974 {
4975 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
4976 if (PIDGET (inferior_ptid) > 0)
4977 {
4978 if (setup_d_pid_in_inferior ())
4979 return (struct symtab_and_line *) -1;
4980 }
4981 else
4982 {
4983 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
4984 return (struct symtab_and_line *) -1;
4985 }
4986 }
4987
4988 switch (kind)
4989 {
4990 case EX_EVENT_THROW:
4991 store_unsigned_integer (buf, 4, enable ? 1 : 0);
4992 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
4993 {
4994 warning ("Couldn't enable exception throw interception.");
4995 return (struct symtab_and_line *) -1;
4996 }
4997 break;
4998 case EX_EVENT_CATCH:
4999 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5000 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
5001 {
5002 warning ("Couldn't enable exception catch interception.");
5003 return (struct symtab_and_line *) -1;
5004 }
5005 break;
5006 default:
5007 error ("Request to enable unknown or unsupported exception event.");
5008 }
5009
5010 /* Copy break address into new sal struct, malloc'ing if needed. */
5011 if (!break_callback_sal)
5012 {
5013 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
5014 }
5015 init_sal (break_callback_sal);
5016 break_callback_sal->symtab = NULL;
5017 break_callback_sal->pc = eh_break_addr;
5018 break_callback_sal->line = 0;
5019 break_callback_sal->end = eh_break_addr;
5020
5021 return break_callback_sal;
5022 }
5023
5024 /* Record some information about the current exception event */
5025 static struct exception_event_record current_ex_event;
5026 /* Convenience struct */
5027 static struct symtab_and_line null_symtab_and_line =
5028 {NULL, 0, 0, 0};
5029
5030 /* Report current exception event. Returns a pointer to a record
5031 that describes the kind of the event, where it was thrown from,
5032 and where it will be caught. More information may be reported
5033 in the future */
5034 struct exception_event_record *
5035 child_get_current_exception_event (void)
5036 {
5037 CORE_ADDR event_kind;
5038 CORE_ADDR throw_addr;
5039 CORE_ADDR catch_addr;
5040 struct frame_info *fi, *curr_frame;
5041 int level = 1;
5042
5043 curr_frame = get_current_frame ();
5044 if (!curr_frame)
5045 return (struct exception_event_record *) NULL;
5046
5047 /* Go up one frame to __d_eh_notify_callback, because at the
5048 point when this code is executed, there's garbage in the
5049 arguments of __d_eh_break. */
5050 fi = find_relative_frame (curr_frame, &level);
5051 if (level != 0)
5052 return (struct exception_event_record *) NULL;
5053
5054 select_frame (fi);
5055
5056 /* Read in the arguments */
5057 /* __d_eh_notify_callback() is called with 3 arguments:
5058 1. event kind catch or throw
5059 2. the target address if known
5060 3. a flag -- not sure what this is. pai/1997-07-17 */
5061 event_kind = read_register (ARG0_REGNUM);
5062 catch_addr = read_register (ARG1_REGNUM);
5063
5064 /* Now go down to a user frame */
5065 /* For a throw, __d_eh_break is called by
5066 __d_eh_notify_callback which is called by
5067 __notify_throw which is called
5068 from user code.
5069 For a catch, __d_eh_break is called by
5070 __d_eh_notify_callback which is called by
5071 <stackwalking stuff> which is called by
5072 __throw__<stuff> or __rethrow_<stuff> which is called
5073 from user code. */
5074 /* FIXME: Don't use such magic numbers; search for the frames */
5075 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
5076 fi = find_relative_frame (curr_frame, &level);
5077 if (level != 0)
5078 return (struct exception_event_record *) NULL;
5079
5080 select_frame (fi);
5081 throw_addr = get_frame_pc (fi);
5082
5083 /* Go back to original (top) frame */
5084 select_frame (curr_frame);
5085
5086 current_ex_event.kind = (enum exception_event_kind) event_kind;
5087 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
5088 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
5089
5090 return &current_ex_event;
5091 }
5092
5093 /* Instead of this nasty cast, add a method pvoid() that prints out a
5094 host VOID data type (remember %p isn't portable). */
5095
5096 static CORE_ADDR
5097 hppa_pointer_to_address_hack (void *ptr)
5098 {
5099 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
5100 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
5101 }
5102
5103 static void
5104 unwind_command (char *exp, int from_tty)
5105 {
5106 CORE_ADDR address;
5107 struct unwind_table_entry *u;
5108
5109 /* If we have an expression, evaluate it and use it as the address. */
5110
5111 if (exp != 0 && *exp != 0)
5112 address = parse_and_eval_address (exp);
5113 else
5114 return;
5115
5116 u = find_unwind_entry (address);
5117
5118 if (!u)
5119 {
5120 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
5121 return;
5122 }
5123
5124 printf_unfiltered ("unwind_table_entry (0x%s):\n",
5125 paddr_nz (hppa_pointer_to_address_hack (u)));
5126
5127 printf_unfiltered ("\tregion_start = ");
5128 print_address (u->region_start, gdb_stdout);
5129
5130 printf_unfiltered ("\n\tregion_end = ");
5131 print_address (u->region_end, gdb_stdout);
5132
5133 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
5134
5135 printf_unfiltered ("\n\tflags =");
5136 pif (Cannot_unwind);
5137 pif (Millicode);
5138 pif (Millicode_save_sr0);
5139 pif (Entry_SR);
5140 pif (Args_stored);
5141 pif (Variable_Frame);
5142 pif (Separate_Package_Body);
5143 pif (Frame_Extension_Millicode);
5144 pif (Stack_Overflow_Check);
5145 pif (Two_Instruction_SP_Increment);
5146 pif (Ada_Region);
5147 pif (Save_SP);
5148 pif (Save_RP);
5149 pif (Save_MRP_in_frame);
5150 pif (extn_ptr_defined);
5151 pif (Cleanup_defined);
5152 pif (MPE_XL_interrupt_marker);
5153 pif (HP_UX_interrupt_marker);
5154 pif (Large_frame);
5155
5156 putchar_unfiltered ('\n');
5157
5158 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
5159
5160 pin (Region_description);
5161 pin (Entry_FR);
5162 pin (Entry_GR);
5163 pin (Total_frame_size);
5164 }
5165
5166 void
5167 hppa_skip_permanent_breakpoint (void)
5168 {
5169 /* To step over a breakpoint instruction on the PA takes some
5170 fiddling with the instruction address queue.
5171
5172 When we stop at a breakpoint, the IA queue front (the instruction
5173 we're executing now) points at the breakpoint instruction, and
5174 the IA queue back (the next instruction to execute) points to
5175 whatever instruction we would execute after the breakpoint, if it
5176 were an ordinary instruction. This is the case even if the
5177 breakpoint is in the delay slot of a branch instruction.
5178
5179 Clearly, to step past the breakpoint, we need to set the queue
5180 front to the back. But what do we put in the back? What
5181 instruction comes after that one? Because of the branch delay
5182 slot, the next insn is always at the back + 4. */
5183 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
5184 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
5185
5186 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
5187 /* We can leave the tail's space the same, since there's no jump. */
5188 }
5189
5190 /* Copy the function value from VALBUF into the proper location
5191 for a function return.
5192
5193 Called only in the context of the "return" command. */
5194
5195 void
5196 hppa32_store_return_value (struct type *type, char *valbuf)
5197 {
5198 /* For software floating point, the return value goes into the
5199 integer registers. But we do not have any flag to key this on,
5200 so we always store the value into the integer registers.
5201
5202 If its a float value, then we also store it into the floating
5203 point registers. */
5204 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28)
5205 + (TYPE_LENGTH (type) > 4
5206 ? (8 - TYPE_LENGTH (type))
5207 : (4 - TYPE_LENGTH (type))),
5208 valbuf, TYPE_LENGTH (type));
5209 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5210 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (FP4_REGNUM),
5211 valbuf, TYPE_LENGTH (type));
5212 }
5213
5214 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5215
5216 void
5217 hppa64_store_return_value (struct type *type, char *valbuf)
5218 {
5219 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5220 deprecated_write_register_bytes
5221 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5222 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5223 valbuf, TYPE_LENGTH (type));
5224 else if (is_integral_type(type))
5225 deprecated_write_register_bytes
5226 (DEPRECATED_REGISTER_BYTE (28)
5227 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5228 valbuf, TYPE_LENGTH (type));
5229 else if (TYPE_LENGTH (type) <= 8)
5230 deprecated_write_register_bytes
5231 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
5232 else if (TYPE_LENGTH (type) <= 16)
5233 {
5234 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
5235 deprecated_write_register_bytes
5236 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
5237 }
5238 }
5239
5240 /* Copy the function's return value into VALBUF.
5241
5242 This function is called only in the context of "target function calls",
5243 ie. when the debugger forces a function to be called in the child, and
5244 when the debugger forces a fucntion to return prematurely via the
5245 "return" command. */
5246
5247 void
5248 hppa32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5249 {
5250 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5251 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM), TYPE_LENGTH (type));
5252 else
5253 memcpy (valbuf,
5254 (regbuf
5255 + DEPRECATED_REGISTER_BYTE (28)
5256 + (TYPE_LENGTH (type) > 4
5257 ? (8 - TYPE_LENGTH (type))
5258 : (4 - TYPE_LENGTH (type)))),
5259 TYPE_LENGTH (type));
5260 }
5261
5262 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5263
5264 void
5265 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5266 {
5267 /* RM: Floats are returned in FR4R, doubles in FR4.
5268 Integral values are in r28, padded on the left.
5269 Aggregates less that 65 bits are in r28, right padded.
5270 Aggregates upto 128 bits are in r28 and r29, right padded. */
5271 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5272 memcpy (valbuf,
5273 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5274 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5275 TYPE_LENGTH (type));
5276 else if (is_integral_type(type))
5277 memcpy (valbuf,
5278 regbuf + DEPRECATED_REGISTER_BYTE (28)
5279 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5280 TYPE_LENGTH (type));
5281 else if (TYPE_LENGTH (type) <= 8)
5282 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
5283 TYPE_LENGTH (type));
5284 else if (TYPE_LENGTH (type) <= 16)
5285 {
5286 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
5287 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
5288 TYPE_LENGTH (type) - 8);
5289 }
5290 }
5291
5292 int
5293 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
5294 {
5295 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5296 via a pointer regardless of its type or the compiler used. */
5297 return (TYPE_LENGTH (type) > 8);
5298 }
5299
5300 int
5301 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
5302 {
5303 /* Stack grows upward */
5304 return (lhs > rhs);
5305 }
5306
5307 CORE_ADDR
5308 hppa32_stack_align (CORE_ADDR sp)
5309 {
5310 /* elz: adjust the quantity to the next highest value which is
5311 64-bit aligned. This is used in valops.c, when the sp is adjusted.
5312 On hppa the sp must always be kept 64-bit aligned */
5313 return ((sp % 8) ? (sp + 7) & -8 : sp);
5314 }
5315
5316 CORE_ADDR
5317 hppa64_stack_align (CORE_ADDR sp)
5318 {
5319 /* The PA64 ABI mandates a 16 byte stack alignment. */
5320 return ((sp % 16) ? (sp + 15) & -16 : sp);
5321 }
5322
5323 int
5324 hppa_pc_requires_run_before_use (CORE_ADDR pc)
5325 {
5326 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5327
5328 An example of this occurs when an a.out is linked against a foo.sl.
5329 The foo.sl defines a global bar(), and the a.out declares a signature
5330 for bar(). However, the a.out doesn't directly call bar(), but passes
5331 its address in another call.
5332
5333 If you have this scenario and attempt to "break bar" before running,
5334 gdb will find a minimal symbol for bar() in the a.out. But that
5335 symbol's address will be negative. What this appears to denote is
5336 an index backwards from the base of the procedure linkage table (PLT)
5337 into the data linkage table (DLT), the end of which is contiguous
5338 with the start of the PLT. This is clearly not a valid address for
5339 us to set a breakpoint on.
5340
5341 Note that one must be careful in how one checks for a negative address.
5342 0xc0000000 is a legitimate address of something in a shared text
5343 segment, for example. Since I don't know what the possible range
5344 is of these "really, truly negative" addresses that come from the
5345 minimal symbols, I'm resorting to the gross hack of checking the
5346 top byte of the address for all 1's. Sigh. */
5347
5348 return (!target_has_stack && (pc & 0xFF000000));
5349 }
5350
5351 int
5352 hppa_instruction_nullified (void)
5353 {
5354 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5355 avoid the type cast. I'm leaving it as is for now as I'm doing
5356 semi-mechanical multiarching-related changes. */
5357 const int ipsw = (int) read_register (IPSW_REGNUM);
5358 const int flags = (int) read_register (FLAGS_REGNUM);
5359
5360 return ((ipsw & 0x00200000) && !(flags & 0x2));
5361 }
5362
5363 int
5364 hppa_register_raw_size (int reg_nr)
5365 {
5366 /* All registers have the same size. */
5367 return DEPRECATED_REGISTER_SIZE;
5368 }
5369
5370 /* Index within the register vector of the first byte of the space i
5371 used for register REG_NR. */
5372
5373 int
5374 hppa_register_byte (int reg_nr)
5375 {
5376 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5377
5378 return reg_nr * tdep->bytes_per_address;
5379 }
5380
5381 /* Return the GDB type object for the "standard" data type of data
5382 in register N. */
5383
5384 struct type *
5385 hppa32_register_virtual_type (int reg_nr)
5386 {
5387 if (reg_nr < FP4_REGNUM)
5388 return builtin_type_int;
5389 else
5390 return builtin_type_float;
5391 }
5392
5393 /* Return the GDB type object for the "standard" data type of data
5394 in register N. hppa64 version. */
5395
5396 struct type *
5397 hppa64_register_virtual_type (int reg_nr)
5398 {
5399 if (reg_nr < FP4_REGNUM)
5400 return builtin_type_unsigned_long_long;
5401 else
5402 return builtin_type_double;
5403 }
5404
5405 /* Store the address of the place in which to copy the structure the
5406 subroutine will return. This is called from call_function. */
5407
5408 void
5409 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5410 {
5411 write_register (28, addr);
5412 }
5413 /* Return True if REGNUM is not a register available to the user
5414 through ptrace(). */
5415
5416 int
5417 hppa_cannot_store_register (int regnum)
5418 {
5419 return (regnum == 0
5420 || regnum == PCSQ_HEAD_REGNUM
5421 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5422 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5423
5424 }
5425
5426 CORE_ADDR
5427 hppa_smash_text_address (CORE_ADDR addr)
5428 {
5429 /* The low two bits of the PC on the PA contain the privilege level.
5430 Some genius implementing a (non-GCC) compiler apparently decided
5431 this means that "addresses" in a text section therefore include a
5432 privilege level, and thus symbol tables should contain these bits.
5433 This seems like a bonehead thing to do--anyway, it seems to work
5434 for our purposes to just ignore those bits. */
5435
5436 return (addr &= ~0x3);
5437 }
5438
5439 /* Get the ith function argument for the current function. */
5440 CORE_ADDR
5441 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5442 struct type *type)
5443 {
5444 CORE_ADDR addr;
5445 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5446 return addr;
5447 }
5448
5449 /* Here is a table of C type sizes on hppa with various compiles
5450 and options. I measured this on PA 9000/800 with HP-UX 11.11
5451 and these compilers:
5452
5453 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5454 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5455 /opt/aCC/bin/aCC B3910B A.03.45
5456 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5457
5458 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5459 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5460 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5461 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5462 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5463 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5464 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5465 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5466
5467 Each line is:
5468
5469 compiler and options
5470 char, short, int, long, long long
5471 float, double, long double
5472 char *, void (*)()
5473
5474 So all these compilers use either ILP32 or LP64 model.
5475 TODO: gcc has more options so it needs more investigation.
5476
5477 For floating point types, see:
5478
5479 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5480 HP-UX floating-point guide, hpux 11.00
5481
5482 -- chastain 2003-12-18 */
5483
5484 static struct gdbarch *
5485 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5486 {
5487 struct gdbarch_tdep *tdep;
5488 struct gdbarch *gdbarch;
5489
5490 /* Try to determine the ABI of the object we are loading. */
5491 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5492 {
5493 /* If it's a SOM file, assume it's HP/UX SOM. */
5494 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5495 info.osabi = GDB_OSABI_HPUX_SOM;
5496 }
5497
5498 /* find a candidate among the list of pre-declared architectures. */
5499 arches = gdbarch_list_lookup_by_info (arches, &info);
5500 if (arches != NULL)
5501 return (arches->gdbarch);
5502
5503 /* If none found, then allocate and initialize one. */
5504 tdep = XMALLOC (struct gdbarch_tdep);
5505 gdbarch = gdbarch_alloc (&info, tdep);
5506
5507 /* Determine from the bfd_arch_info structure if we are dealing with
5508 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5509 then default to a 32bit machine. */
5510 if (info.bfd_arch_info != NULL)
5511 tdep->bytes_per_address =
5512 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5513 else
5514 tdep->bytes_per_address = 4;
5515
5516 /* Some parts of the gdbarch vector depend on whether we are running
5517 on a 32 bits or 64 bits target. */
5518 switch (tdep->bytes_per_address)
5519 {
5520 case 4:
5521 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5522 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5523 set_gdbarch_deprecated_register_virtual_type
5524 (gdbarch, hppa32_register_virtual_type);
5525 break;
5526 case 8:
5527 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5528 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5529 set_gdbarch_deprecated_register_virtual_type
5530 (gdbarch, hppa64_register_virtual_type);
5531 break;
5532 default:
5533 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5534 tdep->bytes_per_address);
5535 }
5536
5537 /* The following gdbarch vector elements depend on other parts of this
5538 vector which have been set above, depending on the ABI. */
5539 set_gdbarch_deprecated_register_bytes
5540 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5541 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5542 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5543
5544 /* The following gdbarch vector elements are the same in both ILP32
5545 and LP64, but might show differences some day. */
5546 set_gdbarch_long_long_bit (gdbarch, 64);
5547 set_gdbarch_long_double_bit (gdbarch, 128);
5548 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
5549
5550 /* The following gdbarch vector elements do not depend on the address
5551 size, or in any other gdbarch element previously set. */
5552 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5553 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5554 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5555 set_gdbarch_in_solib_return_trampoline (gdbarch,
5556 hppa_in_solib_return_trampoline);
5557 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5558 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5559 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5560 set_gdbarch_sp_regnum (gdbarch, 30);
5561 set_gdbarch_fp0_regnum (gdbarch, 64);
5562 set_gdbarch_pc_regnum (gdbarch, PCOQ_HEAD_REGNUM);
5563 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5564 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5565 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5566 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5567 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5568 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5569 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5570 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5571 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5572 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5573 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5574 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5575
5576 /* Helper for function argument information. */
5577 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5578
5579 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5580
5581 /* When a hardware watchpoint triggers, we'll move the inferior past
5582 it by removing all eventpoints; stepping past the instruction
5583 that caused the trigger; reinserting eventpoints; and checking
5584 whether any watched location changed. */
5585 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5586
5587 /* Inferior function call methods. */
5588 if (0)
5589 {
5590 }
5591 else
5592 {
5593 switch (tdep->bytes_per_address)
5594 {
5595 case 4:
5596 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa32_call_dummy_length);
5597 set_gdbarch_deprecated_stack_align (gdbarch, hppa32_stack_align);
5598 set_gdbarch_deprecated_reg_struct_has_addr (gdbarch, hppa_reg_struct_has_addr);
5599 break;
5600 case 8:
5601 set_gdbarch_deprecated_call_dummy_breakpoint_offset (gdbarch, hppa64_call_dummy_breakpoint_offset);
5602 set_gdbarch_deprecated_call_dummy_length (gdbarch, hppa64_call_dummy_length);
5603 set_gdbarch_deprecated_stack_align (gdbarch, hppa64_stack_align);
5604 break;
5605 }
5606 set_gdbarch_deprecated_push_dummy_frame (gdbarch, hppa_push_dummy_frame);
5607 /* set_gdbarch_deprecated_fix_call_dummy (gdbarch, hppa_fix_call_dummy); */
5608 set_gdbarch_deprecated_push_arguments (gdbarch, hppa_push_arguments);
5609 }
5610
5611 /* Struct return methods. */
5612 if (0)
5613 {
5614 switch (tdep->bytes_per_address)
5615 {
5616 case 4:
5617 set_gdbarch_return_value (gdbarch, hppa32_return_value);
5618 break;
5619 case 8:
5620 set_gdbarch_return_value (gdbarch, hppa64_return_value);
5621 break;
5622 default:
5623 internal_error (__FILE__, __LINE__, "bad switch");
5624 }
5625 }
5626 else
5627 {
5628 switch (tdep->bytes_per_address)
5629 {
5630 case 4:
5631 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa32_extract_return_value);
5632 set_gdbarch_use_struct_convention (gdbarch, hppa32_use_struct_convention);
5633 set_gdbarch_deprecated_store_return_value (gdbarch, hppa32_store_return_value);
5634 break;
5635 case 8:
5636 set_gdbarch_deprecated_extract_return_value (gdbarch, hppa64_extract_return_value);
5637 set_gdbarch_use_struct_convention (gdbarch, hppa64_use_struct_convention);
5638 set_gdbarch_deprecated_store_return_value (gdbarch, hppa64_store_return_value);
5639 break;
5640 }
5641 set_gdbarch_deprecated_store_struct_return (gdbarch, hppa_store_struct_return);
5642 }
5643
5644 /* Frame unwind methods. */
5645 if (0)
5646 {
5647 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
5648 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
5649 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
5650 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
5651 }
5652 else
5653 {
5654 set_gdbarch_deprecated_saved_pc_after_call (gdbarch, hppa_saved_pc_after_call);
5655 set_gdbarch_deprecated_init_frame_pc (gdbarch, deprecated_init_frame_pc_default);
5656 set_gdbarch_deprecated_frame_init_saved_regs (gdbarch, hppa_frame_init_saved_regs);
5657 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, hppa_init_extra_frame_info);
5658 set_gdbarch_deprecated_frame_chain (gdbarch, hppa_frame_chain);
5659 set_gdbarch_deprecated_frame_chain_valid (gdbarch, hppa_frame_chain_valid);
5660 set_gdbarch_deprecated_frameless_function_invocation (gdbarch, hppa_frameless_function_invocation);
5661 set_gdbarch_deprecated_frame_saved_pc (gdbarch, hppa_frame_saved_pc);
5662 set_gdbarch_deprecated_pop_frame (gdbarch, hppa_pop_frame);
5663 }
5664
5665 /* Hook in ABI-specific overrides, if they have been registered. */
5666 gdbarch_init_osabi (info, gdbarch);
5667
5668 return gdbarch;
5669 }
5670
5671 static void
5672 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5673 {
5674 /* Nothing to print for the moment. */
5675 }
5676
5677 void
5678 _initialize_hppa_tdep (void)
5679 {
5680 struct cmd_list_element *c;
5681 void break_at_finish_command (char *arg, int from_tty);
5682 void tbreak_at_finish_command (char *arg, int from_tty);
5683 void break_at_finish_at_depth_command (char *arg, int from_tty);
5684
5685 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5686
5687 add_cmd ("unwind", class_maintenance, unwind_command,
5688 "Print unwind table entry at given address.",
5689 &maintenanceprintlist);
5690
5691 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5692 break_at_finish_command,
5693 concat ("Set breakpoint at procedure exit. \n\
5694 Argument may be function name, or \"*\" and an address.\n\
5695 If function is specified, break at end of code for that function.\n\
5696 If an address is specified, break at the end of the function that contains \n\
5697 that exact address.\n",
5698 "With no arg, uses current execution address of selected stack frame.\n\
5699 This is useful for breaking on return to a stack frame.\n\
5700 \n\
5701 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5702 \n\
5703 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5704 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5705 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5706 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5707 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5708
5709 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5710 tbreak_at_finish_command,
5711 "Set temporary breakpoint at procedure exit. Either there should\n\
5712 be no argument or the argument must be a depth.\n"), NULL);
5713 set_cmd_completer (c, location_completer);
5714
5715 if (xdb_commands)
5716 deprecate_cmd (add_com ("bx", class_breakpoint,
5717 break_at_finish_at_depth_command,
5718 "Set breakpoint at procedure exit. Either there should\n\
5719 be no argument or the argument must be a depth.\n"), NULL);
5720 }
5721
This page took 0.171455 seconds and 5 git commands to generate.