2004-05-24 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "inferior.h"
30 #include "regcache.h"
31 #include "completer.h"
32 #include "osabi.h"
33 #include "gdb_assert.h"
34 #include "arch-utils.h"
35 /* For argument passing to the inferior */
36 #include "symtab.h"
37 #include "dis-asm.h"
38 #include "trad-frame.h"
39 #include "frame-unwind.h"
40 #include "frame-base.h"
41
42 #include "gdbcore.h"
43 #include "gdbcmd.h"
44 #include "objfiles.h"
45 #include "hppa-tdep.h"
46
47 static int hppa_debug = 0;
48
49 /* Some local constants. */
50 static const int hppa32_num_regs = 128;
51 static const int hppa64_num_regs = 96;
52
53 /* hppa-specific object data -- unwind and solib info.
54 TODO/maybe: think about splitting this into two parts; the unwind data is
55 common to all hppa targets, but is only used in this file; we can register
56 that separately and make this static. The solib data is probably hpux-
57 specific, so we can create a separate extern objfile_data that is registered
58 by hppa-hpux-tdep.c and shared with pa64solib.c and somsolib.c. */
59 const struct objfile_data *hppa_objfile_priv_data = NULL;
60
61 /* Get at various relevent fields of an instruction word. */
62 #define MASK_5 0x1f
63 #define MASK_11 0x7ff
64 #define MASK_14 0x3fff
65 #define MASK_21 0x1fffff
66
67 /* Sizes (in bytes) of the native unwind entries. */
68 #define UNWIND_ENTRY_SIZE 16
69 #define STUB_UNWIND_ENTRY_SIZE 8
70
71 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
72 following functions static, once we hppa is partially multiarched. */
73 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
74 int hppa_instruction_nullified (void);
75
76 /* Handle 32/64-bit struct return conventions. */
77
78 static enum return_value_convention
79 hppa32_return_value (struct gdbarch *gdbarch,
80 struct type *type, struct regcache *regcache,
81 void *readbuf, const void *writebuf)
82 {
83 if (TYPE_LENGTH (type) <= 2 * 4)
84 {
85 /* The value always lives in the right hand end of the register
86 (or register pair)? */
87 int b;
88 int reg = TYPE_CODE (type) == TYPE_CODE_FLT ? HPPA_FP4_REGNUM : 28;
89 int part = TYPE_LENGTH (type) % 4;
90 /* The left hand register contains only part of the value,
91 transfer that first so that the rest can be xfered as entire
92 4-byte registers. */
93 if (part > 0)
94 {
95 if (readbuf != NULL)
96 regcache_cooked_read_part (regcache, reg, 4 - part,
97 part, readbuf);
98 if (writebuf != NULL)
99 regcache_cooked_write_part (regcache, reg, 4 - part,
100 part, writebuf);
101 reg++;
102 }
103 /* Now transfer the remaining register values. */
104 for (b = part; b < TYPE_LENGTH (type); b += 4)
105 {
106 if (readbuf != NULL)
107 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
108 if (writebuf != NULL)
109 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
110 reg++;
111 }
112 return RETURN_VALUE_REGISTER_CONVENTION;
113 }
114 else
115 return RETURN_VALUE_STRUCT_CONVENTION;
116 }
117
118 static enum return_value_convention
119 hppa64_return_value (struct gdbarch *gdbarch,
120 struct type *type, struct regcache *regcache,
121 void *readbuf, const void *writebuf)
122 {
123 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
124 are in r28, padded on the left. Aggregates less that 65 bits are
125 in r28, right padded. Aggregates upto 128 bits are in r28 and
126 r29, right padded. */
127 if (TYPE_CODE (type) == TYPE_CODE_FLT
128 && TYPE_LENGTH (type) <= 8)
129 {
130 /* Floats are right aligned? */
131 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
132 if (readbuf != NULL)
133 regcache_cooked_read_part (regcache, HPPA_FP4_REGNUM, offset,
134 TYPE_LENGTH (type), readbuf);
135 if (writebuf != NULL)
136 regcache_cooked_write_part (regcache, HPPA_FP4_REGNUM, offset,
137 TYPE_LENGTH (type), writebuf);
138 return RETURN_VALUE_REGISTER_CONVENTION;
139 }
140 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
141 {
142 /* Integrals are right aligned. */
143 int offset = register_size (gdbarch, HPPA_FP4_REGNUM) - TYPE_LENGTH (type);
144 if (readbuf != NULL)
145 regcache_cooked_read_part (regcache, 28, offset,
146 TYPE_LENGTH (type), readbuf);
147 if (writebuf != NULL)
148 regcache_cooked_write_part (regcache, 28, offset,
149 TYPE_LENGTH (type), writebuf);
150 return RETURN_VALUE_REGISTER_CONVENTION;
151 }
152 else if (TYPE_LENGTH (type) <= 2 * 8)
153 {
154 /* Composite values are left aligned. */
155 int b;
156 for (b = 0; b < TYPE_LENGTH (type); b += 8)
157 {
158 int part = min (8, TYPE_LENGTH (type) - b);
159 if (readbuf != NULL)
160 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
161 (char *) readbuf + b);
162 if (writebuf != NULL)
163 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
164 (const char *) writebuf + b);
165 }
166 return RETURN_VALUE_REGISTER_CONVENTION;
167 }
168 else
169 return RETURN_VALUE_STRUCT_CONVENTION;
170 }
171
172 /* Routines to extract various sized constants out of hppa
173 instructions. */
174
175 /* This assumes that no garbage lies outside of the lower bits of
176 value. */
177
178 int
179 hppa_sign_extend (unsigned val, unsigned bits)
180 {
181 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
182 }
183
184 /* For many immediate values the sign bit is the low bit! */
185
186 int
187 hppa_low_hppa_sign_extend (unsigned val, unsigned bits)
188 {
189 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
190 }
191
192 /* Extract the bits at positions between FROM and TO, using HP's numbering
193 (MSB = 0). */
194
195 int
196 hppa_get_field (unsigned word, int from, int to)
197 {
198 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
199 }
200
201 /* extract the immediate field from a ld{bhw}s instruction */
202
203 int
204 hppa_extract_5_load (unsigned word)
205 {
206 return hppa_low_hppa_sign_extend (word >> 16 & MASK_5, 5);
207 }
208
209 /* extract the immediate field from a break instruction */
210
211 unsigned
212 hppa_extract_5r_store (unsigned word)
213 {
214 return (word & MASK_5);
215 }
216
217 /* extract the immediate field from a {sr}sm instruction */
218
219 unsigned
220 hppa_extract_5R_store (unsigned word)
221 {
222 return (word >> 16 & MASK_5);
223 }
224
225 /* extract a 14 bit immediate field */
226
227 int
228 hppa_extract_14 (unsigned word)
229 {
230 return hppa_low_hppa_sign_extend (word & MASK_14, 14);
231 }
232
233 /* extract a 21 bit constant */
234
235 int
236 hppa_extract_21 (unsigned word)
237 {
238 int val;
239
240 word &= MASK_21;
241 word <<= 11;
242 val = hppa_get_field (word, 20, 20);
243 val <<= 11;
244 val |= hppa_get_field (word, 9, 19);
245 val <<= 2;
246 val |= hppa_get_field (word, 5, 6);
247 val <<= 5;
248 val |= hppa_get_field (word, 0, 4);
249 val <<= 2;
250 val |= hppa_get_field (word, 7, 8);
251 return hppa_sign_extend (val, 21) << 11;
252 }
253
254 /* extract a 17 bit constant from branch instructions, returning the
255 19 bit signed value. */
256
257 int
258 hppa_extract_17 (unsigned word)
259 {
260 return hppa_sign_extend (hppa_get_field (word, 19, 28) |
261 hppa_get_field (word, 29, 29) << 10 |
262 hppa_get_field (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265 \f
266
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271 static int
272 compare_unwind_entries (const void *arg1, const void *arg2)
273 {
274 const struct unwind_table_entry *a = arg1;
275 const struct unwind_table_entry *b = arg2;
276
277 if (a->region_start > b->region_start)
278 return 1;
279 else if (a->region_start < b->region_start)
280 return -1;
281 else
282 return 0;
283 }
284
285 static void
286 record_text_segment_lowaddr (bfd *abfd, asection *section, void *data)
287 {
288 if ((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
289 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
290 {
291 bfd_vma value = section->vma - section->filepos;
292 CORE_ADDR *low_text_segment_address = (CORE_ADDR *)data;
293
294 if (value < *low_text_segment_address)
295 *low_text_segment_address = value;
296 }
297 }
298
299 static void
300 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
301 asection *section, unsigned int entries, unsigned int size,
302 CORE_ADDR text_offset)
303 {
304 /* We will read the unwind entries into temporary memory, then
305 fill in the actual unwind table. */
306
307 if (size > 0)
308 {
309 unsigned long tmp;
310 unsigned i;
311 char *buf = alloca (size);
312 CORE_ADDR low_text_segment_address;
313
314 /* For ELF targets, then unwinds are supposed to
315 be segment relative offsets instead of absolute addresses.
316
317 Note that when loading a shared library (text_offset != 0) the
318 unwinds are already relative to the text_offset that will be
319 passed in. */
320 if (gdbarch_tdep (current_gdbarch)->is_elf && text_offset == 0)
321 {
322 low_text_segment_address = -1;
323
324 bfd_map_over_sections (objfile->obfd,
325 record_text_segment_lowaddr,
326 &low_text_segment_address);
327
328 text_offset = low_text_segment_address;
329 }
330
331 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
332
333 /* Now internalize the information being careful to handle host/target
334 endian issues. */
335 for (i = 0; i < entries; i++)
336 {
337 table[i].region_start = bfd_get_32 (objfile->obfd,
338 (bfd_byte *) buf);
339 table[i].region_start += text_offset;
340 buf += 4;
341 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
342 table[i].region_end += text_offset;
343 buf += 4;
344 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
345 buf += 4;
346 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
347 table[i].Millicode = (tmp >> 30) & 0x1;
348 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
349 table[i].Region_description = (tmp >> 27) & 0x3;
350 table[i].reserved1 = (tmp >> 26) & 0x1;
351 table[i].Entry_SR = (tmp >> 25) & 0x1;
352 table[i].Entry_FR = (tmp >> 21) & 0xf;
353 table[i].Entry_GR = (tmp >> 16) & 0x1f;
354 table[i].Args_stored = (tmp >> 15) & 0x1;
355 table[i].Variable_Frame = (tmp >> 14) & 0x1;
356 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
357 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
358 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
359 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
360 table[i].Ada_Region = (tmp >> 9) & 0x1;
361 table[i].cxx_info = (tmp >> 8) & 0x1;
362 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
363 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
364 table[i].reserved2 = (tmp >> 5) & 0x1;
365 table[i].Save_SP = (tmp >> 4) & 0x1;
366 table[i].Save_RP = (tmp >> 3) & 0x1;
367 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
368 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
369 table[i].Cleanup_defined = tmp & 0x1;
370 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
371 buf += 4;
372 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
373 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
374 table[i].Large_frame = (tmp >> 29) & 0x1;
375 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
376 table[i].reserved4 = (tmp >> 27) & 0x1;
377 table[i].Total_frame_size = tmp & 0x7ffffff;
378
379 /* Stub unwinds are handled elsewhere. */
380 table[i].stub_unwind.stub_type = 0;
381 table[i].stub_unwind.padding = 0;
382 }
383 }
384 }
385
386 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
387 the object file. This info is used mainly by find_unwind_entry() to find
388 out the stack frame size and frame pointer used by procedures. We put
389 everything on the psymbol obstack in the objfile so that it automatically
390 gets freed when the objfile is destroyed. */
391
392 static void
393 read_unwind_info (struct objfile *objfile)
394 {
395 asection *unwind_sec, *stub_unwind_sec;
396 unsigned unwind_size, stub_unwind_size, total_size;
397 unsigned index, unwind_entries;
398 unsigned stub_entries, total_entries;
399 CORE_ADDR text_offset;
400 struct hppa_unwind_info *ui;
401 struct hppa_objfile_private *obj_private;
402
403 text_offset = ANOFFSET (objfile->section_offsets, 0);
404 ui = (struct hppa_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
405 sizeof (struct hppa_unwind_info));
406
407 ui->table = NULL;
408 ui->cache = NULL;
409 ui->last = -1;
410
411 /* For reasons unknown the HP PA64 tools generate multiple unwinder
412 sections in a single executable. So we just iterate over every
413 section in the BFD looking for unwinder sections intead of trying
414 to do a lookup with bfd_get_section_by_name.
415
416 First determine the total size of the unwind tables so that we
417 can allocate memory in a nice big hunk. */
418 total_entries = 0;
419 for (unwind_sec = objfile->obfd->sections;
420 unwind_sec;
421 unwind_sec = unwind_sec->next)
422 {
423 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
424 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
425 {
426 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
427 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
428
429 total_entries += unwind_entries;
430 }
431 }
432
433 /* Now compute the size of the stub unwinds. Note the ELF tools do not
434 use stub unwinds at the curren time. */
435 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
436
437 if (stub_unwind_sec)
438 {
439 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
440 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
441 }
442 else
443 {
444 stub_unwind_size = 0;
445 stub_entries = 0;
446 }
447
448 /* Compute total number of unwind entries and their total size. */
449 total_entries += stub_entries;
450 total_size = total_entries * sizeof (struct unwind_table_entry);
451
452 /* Allocate memory for the unwind table. */
453 ui->table = (struct unwind_table_entry *)
454 obstack_alloc (&objfile->objfile_obstack, total_size);
455 ui->last = total_entries - 1;
456
457 /* Now read in each unwind section and internalize the standard unwind
458 entries. */
459 index = 0;
460 for (unwind_sec = objfile->obfd->sections;
461 unwind_sec;
462 unwind_sec = unwind_sec->next)
463 {
464 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
465 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
466 {
467 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
468 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
469
470 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
471 unwind_entries, unwind_size, text_offset);
472 index += unwind_entries;
473 }
474 }
475
476 /* Now read in and internalize the stub unwind entries. */
477 if (stub_unwind_size > 0)
478 {
479 unsigned int i;
480 char *buf = alloca (stub_unwind_size);
481
482 /* Read in the stub unwind entries. */
483 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
484 0, stub_unwind_size);
485
486 /* Now convert them into regular unwind entries. */
487 for (i = 0; i < stub_entries; i++, index++)
488 {
489 /* Clear out the next unwind entry. */
490 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
491
492 /* Convert offset & size into region_start and region_end.
493 Stuff away the stub type into "reserved" fields. */
494 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
495 (bfd_byte *) buf);
496 ui->table[index].region_start += text_offset;
497 buf += 4;
498 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
499 (bfd_byte *) buf);
500 buf += 2;
501 ui->table[index].region_end
502 = ui->table[index].region_start + 4 *
503 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
504 buf += 2;
505 }
506
507 }
508
509 /* Unwind table needs to be kept sorted. */
510 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
511 compare_unwind_entries);
512
513 /* Keep a pointer to the unwind information. */
514 obj_private = (struct hppa_objfile_private *)
515 objfile_data (objfile, hppa_objfile_priv_data);
516 if (obj_private == NULL)
517 {
518 obj_private = (struct hppa_objfile_private *)
519 obstack_alloc (&objfile->objfile_obstack,
520 sizeof (struct hppa_objfile_private));
521 set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
522 obj_private->unwind_info = NULL;
523 obj_private->so_info = NULL;
524 obj_private->dp = 0;
525 }
526 obj_private->unwind_info = ui;
527 }
528
529 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
530 of the objfiles seeking the unwind table entry for this PC. Each objfile
531 contains a sorted list of struct unwind_table_entry. Since we do a binary
532 search of the unwind tables, we depend upon them to be sorted. */
533
534 struct unwind_table_entry *
535 find_unwind_entry (CORE_ADDR pc)
536 {
537 int first, middle, last;
538 struct objfile *objfile;
539 struct hppa_objfile_private *priv;
540
541 if (hppa_debug)
542 fprintf_unfiltered (gdb_stdlog, "{ find_unwind_entry 0x%s -> ",
543 paddr_nz (pc));
544
545 /* A function at address 0? Not in HP-UX! */
546 if (pc == (CORE_ADDR) 0)
547 {
548 if (hppa_debug)
549 fprintf_unfiltered (gdb_stdlog, "NULL }\n");
550 return NULL;
551 }
552
553 ALL_OBJFILES (objfile)
554 {
555 struct hppa_unwind_info *ui;
556 ui = NULL;
557 priv = objfile_data (objfile, hppa_objfile_priv_data);
558 if (priv)
559 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
560
561 if (!ui)
562 {
563 read_unwind_info (objfile);
564 priv = objfile_data (objfile, hppa_objfile_priv_data);
565 if (priv == NULL)
566 error ("Internal error reading unwind information.");
567 ui = ((struct hppa_objfile_private *) priv)->unwind_info;
568 }
569
570 /* First, check the cache */
571
572 if (ui->cache
573 && pc >= ui->cache->region_start
574 && pc <= ui->cache->region_end)
575 {
576 if (hppa_debug)
577 fprintf_unfiltered (gdb_stdlog, "0x%s (cached) }\n",
578 paddr_nz ((CORE_ADDR) ui->cache));
579 return ui->cache;
580 }
581
582 /* Not in the cache, do a binary search */
583
584 first = 0;
585 last = ui->last;
586
587 while (first <= last)
588 {
589 middle = (first + last) / 2;
590 if (pc >= ui->table[middle].region_start
591 && pc <= ui->table[middle].region_end)
592 {
593 ui->cache = &ui->table[middle];
594 if (hppa_debug)
595 fprintf_unfiltered (gdb_stdlog, "0x%s }\n",
596 paddr_nz ((CORE_ADDR) ui->cache));
597 return &ui->table[middle];
598 }
599
600 if (pc < ui->table[middle].region_start)
601 last = middle - 1;
602 else
603 first = middle + 1;
604 }
605 } /* ALL_OBJFILES() */
606
607 if (hppa_debug)
608 fprintf_unfiltered (gdb_stdlog, "NULL (not found) }\n");
609
610 return NULL;
611 }
612
613 static const unsigned char *
614 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
615 {
616 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
617 (*len) = sizeof (breakpoint);
618 return breakpoint;
619 }
620
621 /* Return the name of a register. */
622
623 const char *
624 hppa32_register_name (int i)
625 {
626 static char *names[] = {
627 "flags", "r1", "rp", "r3",
628 "r4", "r5", "r6", "r7",
629 "r8", "r9", "r10", "r11",
630 "r12", "r13", "r14", "r15",
631 "r16", "r17", "r18", "r19",
632 "r20", "r21", "r22", "r23",
633 "r24", "r25", "r26", "dp",
634 "ret0", "ret1", "sp", "r31",
635 "sar", "pcoqh", "pcsqh", "pcoqt",
636 "pcsqt", "eiem", "iir", "isr",
637 "ior", "ipsw", "goto", "sr4",
638 "sr0", "sr1", "sr2", "sr3",
639 "sr5", "sr6", "sr7", "cr0",
640 "cr8", "cr9", "ccr", "cr12",
641 "cr13", "cr24", "cr25", "cr26",
642 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
643 "fpsr", "fpe1", "fpe2", "fpe3",
644 "fpe4", "fpe5", "fpe6", "fpe7",
645 "fr4", "fr4R", "fr5", "fr5R",
646 "fr6", "fr6R", "fr7", "fr7R",
647 "fr8", "fr8R", "fr9", "fr9R",
648 "fr10", "fr10R", "fr11", "fr11R",
649 "fr12", "fr12R", "fr13", "fr13R",
650 "fr14", "fr14R", "fr15", "fr15R",
651 "fr16", "fr16R", "fr17", "fr17R",
652 "fr18", "fr18R", "fr19", "fr19R",
653 "fr20", "fr20R", "fr21", "fr21R",
654 "fr22", "fr22R", "fr23", "fr23R",
655 "fr24", "fr24R", "fr25", "fr25R",
656 "fr26", "fr26R", "fr27", "fr27R",
657 "fr28", "fr28R", "fr29", "fr29R",
658 "fr30", "fr30R", "fr31", "fr31R"
659 };
660 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
661 return NULL;
662 else
663 return names[i];
664 }
665
666 const char *
667 hppa64_register_name (int i)
668 {
669 static char *names[] = {
670 "flags", "r1", "rp", "r3",
671 "r4", "r5", "r6", "r7",
672 "r8", "r9", "r10", "r11",
673 "r12", "r13", "r14", "r15",
674 "r16", "r17", "r18", "r19",
675 "r20", "r21", "r22", "r23",
676 "r24", "r25", "r26", "dp",
677 "ret0", "ret1", "sp", "r31",
678 "sar", "pcoqh", "pcsqh", "pcoqt",
679 "pcsqt", "eiem", "iir", "isr",
680 "ior", "ipsw", "goto", "sr4",
681 "sr0", "sr1", "sr2", "sr3",
682 "sr5", "sr6", "sr7", "cr0",
683 "cr8", "cr9", "ccr", "cr12",
684 "cr13", "cr24", "cr25", "cr26",
685 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
686 "fpsr", "fpe1", "fpe2", "fpe3",
687 "fr4", "fr5", "fr6", "fr7",
688 "fr8", "fr9", "fr10", "fr11",
689 "fr12", "fr13", "fr14", "fr15",
690 "fr16", "fr17", "fr18", "fr19",
691 "fr20", "fr21", "fr22", "fr23",
692 "fr24", "fr25", "fr26", "fr27",
693 "fr28", "fr29", "fr30", "fr31"
694 };
695 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
696 return NULL;
697 else
698 return names[i];
699 }
700
701 /* This function pushes a stack frame with arguments as part of the
702 inferior function calling mechanism.
703
704 This is the version of the function for the 32-bit PA machines, in
705 which later arguments appear at lower addresses. (The stack always
706 grows towards higher addresses.)
707
708 We simply allocate the appropriate amount of stack space and put
709 arguments into their proper slots. */
710
711 CORE_ADDR
712 hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
713 struct regcache *regcache, CORE_ADDR bp_addr,
714 int nargs, struct value **args, CORE_ADDR sp,
715 int struct_return, CORE_ADDR struct_addr)
716 {
717 /* Stack base address at which any pass-by-reference parameters are
718 stored. */
719 CORE_ADDR struct_end = 0;
720 /* Stack base address at which the first parameter is stored. */
721 CORE_ADDR param_end = 0;
722
723 /* The inner most end of the stack after all the parameters have
724 been pushed. */
725 CORE_ADDR new_sp = 0;
726
727 /* Two passes. First pass computes the location of everything,
728 second pass writes the bytes out. */
729 int write_pass;
730 for (write_pass = 0; write_pass < 2; write_pass++)
731 {
732 CORE_ADDR struct_ptr = 0;
733 /* The first parameter goes into sp-36, each stack slot is 4-bytes.
734 struct_ptr is adjusted for each argument below, so the first
735 argument will end up at sp-36. */
736 CORE_ADDR param_ptr = 32;
737 int i;
738 int small_struct = 0;
739
740 for (i = 0; i < nargs; i++)
741 {
742 struct value *arg = args[i];
743 struct type *type = check_typedef (VALUE_TYPE (arg));
744 /* The corresponding parameter that is pushed onto the
745 stack, and [possibly] passed in a register. */
746 char param_val[8];
747 int param_len;
748 memset (param_val, 0, sizeof param_val);
749 if (TYPE_LENGTH (type) > 8)
750 {
751 /* Large parameter, pass by reference. Store the value
752 in "struct" area and then pass its address. */
753 param_len = 4;
754 struct_ptr += align_up (TYPE_LENGTH (type), 8);
755 if (write_pass)
756 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
757 TYPE_LENGTH (type));
758 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
759 }
760 else if (TYPE_CODE (type) == TYPE_CODE_INT
761 || TYPE_CODE (type) == TYPE_CODE_ENUM)
762 {
763 /* Integer value store, right aligned. "unpack_long"
764 takes care of any sign-extension problems. */
765 param_len = align_up (TYPE_LENGTH (type), 4);
766 store_unsigned_integer (param_val, param_len,
767 unpack_long (type,
768 VALUE_CONTENTS (arg)));
769 }
770 else if (TYPE_CODE (type) == TYPE_CODE_FLT)
771 {
772 /* Floating point value store, right aligned. */
773 param_len = align_up (TYPE_LENGTH (type), 4);
774 memcpy (param_val, VALUE_CONTENTS (arg), param_len);
775 }
776 else
777 {
778 param_len = align_up (TYPE_LENGTH (type), 4);
779
780 /* Small struct value are stored right-aligned. */
781 memcpy (param_val + param_len - TYPE_LENGTH (type),
782 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
783
784 /* Structures of size 5, 6 and 7 bytes are special in that
785 the higher-ordered word is stored in the lower-ordered
786 argument, and even though it is a 8-byte quantity the
787 registers need not be 8-byte aligned. */
788 if (param_len > 4 && param_len < 8)
789 small_struct = 1;
790 }
791
792 param_ptr += param_len;
793 if (param_len == 8 && !small_struct)
794 param_ptr = align_up (param_ptr, 8);
795
796 /* First 4 non-FP arguments are passed in gr26-gr23.
797 First 4 32-bit FP arguments are passed in fr4L-fr7L.
798 First 2 64-bit FP arguments are passed in fr5 and fr7.
799
800 The rest go on the stack, starting at sp-36, towards lower
801 addresses. 8-byte arguments must be aligned to a 8-byte
802 stack boundary. */
803 if (write_pass)
804 {
805 write_memory (param_end - param_ptr, param_val, param_len);
806
807 /* There are some cases when we don't know the type
808 expected by the callee (e.g. for variadic functions), so
809 pass the parameters in both general and fp regs. */
810 if (param_ptr <= 48)
811 {
812 int grreg = 26 - (param_ptr - 36) / 4;
813 int fpLreg = 72 + (param_ptr - 36) / 4 * 2;
814 int fpreg = 74 + (param_ptr - 32) / 8 * 4;
815
816 regcache_cooked_write (regcache, grreg, param_val);
817 regcache_cooked_write (regcache, fpLreg, param_val);
818
819 if (param_len > 4)
820 {
821 regcache_cooked_write (regcache, grreg + 1,
822 param_val + 4);
823
824 regcache_cooked_write (regcache, fpreg, param_val);
825 regcache_cooked_write (regcache, fpreg + 1,
826 param_val + 4);
827 }
828 }
829 }
830 }
831
832 /* Update the various stack pointers. */
833 if (!write_pass)
834 {
835 struct_end = sp + align_up (struct_ptr, 64);
836 /* PARAM_PTR already accounts for all the arguments passed
837 by the user. However, the ABI mandates minimum stack
838 space allocations for outgoing arguments. The ABI also
839 mandates minimum stack alignments which we must
840 preserve. */
841 param_end = struct_end + align_up (param_ptr, 64);
842 }
843 }
844
845 /* If a structure has to be returned, set up register 28 to hold its
846 address */
847 if (struct_return)
848 write_register (28, struct_addr);
849
850 /* Set the return address. */
851 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
852
853 /* Update the Stack Pointer. */
854 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end);
855
856 return param_end;
857 }
858
859 /* This function pushes a stack frame with arguments as part of the
860 inferior function calling mechanism.
861
862 This is the version for the PA64, in which later arguments appear
863 at higher addresses. (The stack always grows towards higher
864 addresses.)
865
866 We simply allocate the appropriate amount of stack space and put
867 arguments into their proper slots.
868
869 This ABI also requires that the caller provide an argument pointer
870 to the callee, so we do that too. */
871
872 CORE_ADDR
873 hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
874 struct regcache *regcache, CORE_ADDR bp_addr,
875 int nargs, struct value **args, CORE_ADDR sp,
876 int struct_return, CORE_ADDR struct_addr)
877 {
878 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
879 reverse engineering testsuite failures. */
880
881 /* Stack base address at which any pass-by-reference parameters are
882 stored. */
883 CORE_ADDR struct_end = 0;
884 /* Stack base address at which the first parameter is stored. */
885 CORE_ADDR param_end = 0;
886
887 /* The inner most end of the stack after all the parameters have
888 been pushed. */
889 CORE_ADDR new_sp = 0;
890
891 /* Two passes. First pass computes the location of everything,
892 second pass writes the bytes out. */
893 int write_pass;
894 for (write_pass = 0; write_pass < 2; write_pass++)
895 {
896 CORE_ADDR struct_ptr = 0;
897 CORE_ADDR param_ptr = 0;
898 int i;
899 for (i = 0; i < nargs; i++)
900 {
901 struct value *arg = args[i];
902 struct type *type = check_typedef (VALUE_TYPE (arg));
903 if ((TYPE_CODE (type) == TYPE_CODE_INT
904 || TYPE_CODE (type) == TYPE_CODE_ENUM)
905 && TYPE_LENGTH (type) <= 8)
906 {
907 /* Integer value store, right aligned. "unpack_long"
908 takes care of any sign-extension problems. */
909 param_ptr += 8;
910 if (write_pass)
911 {
912 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
913 int reg = 27 - param_ptr / 8;
914 write_memory_unsigned_integer (param_end - param_ptr,
915 val, 8);
916 if (reg >= 19)
917 regcache_cooked_write_unsigned (regcache, reg, val);
918 }
919 }
920 else
921 {
922 /* Small struct value, store left aligned? */
923 int reg;
924 if (TYPE_LENGTH (type) > 8)
925 {
926 param_ptr = align_up (param_ptr, 16);
927 reg = 26 - param_ptr / 8;
928 param_ptr += align_up (TYPE_LENGTH (type), 16);
929 }
930 else
931 {
932 param_ptr = align_up (param_ptr, 8);
933 reg = 26 - param_ptr / 8;
934 param_ptr += align_up (TYPE_LENGTH (type), 8);
935 }
936 if (write_pass)
937 {
938 int byte;
939 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
940 TYPE_LENGTH (type));
941 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
942 {
943 if (reg >= 19)
944 {
945 int len = min (8, TYPE_LENGTH (type) - byte);
946 regcache_cooked_write_part (regcache, reg, 0, len,
947 VALUE_CONTENTS (arg) + byte);
948 }
949 reg--;
950 }
951 }
952 }
953 }
954 /* Update the various stack pointers. */
955 if (!write_pass)
956 {
957 struct_end = sp + struct_ptr;
958 /* PARAM_PTR already accounts for all the arguments passed
959 by the user. However, the ABI mandates minimum stack
960 space allocations for outgoing arguments. The ABI also
961 mandates minimum stack alignments which we must
962 preserve. */
963 param_end = struct_end + max (align_up (param_ptr, 16), 64);
964 }
965 }
966
967 /* If a structure has to be returned, set up register 28 to hold its
968 address */
969 if (struct_return)
970 write_register (28, struct_addr);
971
972 /* Set the return address. */
973 regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
974
975 /* Update the Stack Pointer. */
976 regcache_cooked_write_unsigned (regcache, HPPA_SP_REGNUM, param_end + 64);
977
978 /* The stack will have 32 bytes of additional space for a frame marker. */
979 return param_end + 64;
980 }
981
982 static CORE_ADDR
983 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
984 {
985 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
986 and not _bit_)! */
987 return align_up (addr, 64);
988 }
989
990 /* Force all frames to 16-byte alignment. Better safe than sorry. */
991
992 static CORE_ADDR
993 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
994 {
995 /* Just always 16-byte align. */
996 return align_up (addr, 16);
997 }
998
999
1000 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1001 bits. */
1002
1003 static CORE_ADDR
1004 hppa_target_read_pc (ptid_t ptid)
1005 {
1006 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1007
1008 /* The following test does not belong here. It is OS-specific, and belongs
1009 in native code. */
1010 /* Test SS_INSYSCALL */
1011 if (flags & 2)
1012 return read_register_pid (31, ptid) & ~0x3;
1013
1014 return read_register_pid (HPPA_PCOQ_HEAD_REGNUM, ptid) & ~0x3;
1015 }
1016
1017 /* Write out the PC. If currently in a syscall, then also write the new
1018 PC value into %r31. */
1019
1020 static void
1021 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
1022 {
1023 int flags = read_register_pid (HPPA_FLAGS_REGNUM, ptid);
1024
1025 /* The following test does not belong here. It is OS-specific, and belongs
1026 in native code. */
1027 /* If in a syscall, then set %r31. Also make sure to get the
1028 privilege bits set correctly. */
1029 /* Test SS_INSYSCALL */
1030 if (flags & 2)
1031 write_register_pid (31, v | 0x3, ptid);
1032
1033 write_register_pid (HPPA_PCOQ_HEAD_REGNUM, v, ptid);
1034 write_register_pid (HPPA_PCOQ_TAIL_REGNUM, v + 4, ptid);
1035 }
1036
1037 /* return the alignment of a type in bytes. Structures have the maximum
1038 alignment required by their fields. */
1039
1040 static int
1041 hppa_alignof (struct type *type)
1042 {
1043 int max_align, align, i;
1044 CHECK_TYPEDEF (type);
1045 switch (TYPE_CODE (type))
1046 {
1047 case TYPE_CODE_PTR:
1048 case TYPE_CODE_INT:
1049 case TYPE_CODE_FLT:
1050 return TYPE_LENGTH (type);
1051 case TYPE_CODE_ARRAY:
1052 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
1053 case TYPE_CODE_STRUCT:
1054 case TYPE_CODE_UNION:
1055 max_align = 1;
1056 for (i = 0; i < TYPE_NFIELDS (type); i++)
1057 {
1058 /* Bit fields have no real alignment. */
1059 /* if (!TYPE_FIELD_BITPOS (type, i)) */
1060 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
1061 {
1062 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
1063 max_align = max (max_align, align);
1064 }
1065 }
1066 return max_align;
1067 default:
1068 return 4;
1069 }
1070 }
1071
1072 /* For the given instruction (INST), return any adjustment it makes
1073 to the stack pointer or zero for no adjustment.
1074
1075 This only handles instructions commonly found in prologues. */
1076
1077 static int
1078 prologue_inst_adjust_sp (unsigned long inst)
1079 {
1080 /* This must persist across calls. */
1081 static int save_high21;
1082
1083 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1084 if ((inst & 0xffffc000) == 0x37de0000)
1085 return hppa_extract_14 (inst);
1086
1087 /* stwm X,D(sp) */
1088 if ((inst & 0xffe00000) == 0x6fc00000)
1089 return hppa_extract_14 (inst);
1090
1091 /* std,ma X,D(sp) */
1092 if ((inst & 0xffe00008) == 0x73c00008)
1093 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1094
1095 /* addil high21,%r1; ldo low11,(%r1),%r30)
1096 save high bits in save_high21 for later use. */
1097 if ((inst & 0xffe00000) == 0x28200000)
1098 {
1099 save_high21 = hppa_extract_21 (inst);
1100 return 0;
1101 }
1102
1103 if ((inst & 0xffff0000) == 0x343e0000)
1104 return save_high21 + hppa_extract_14 (inst);
1105
1106 /* fstws as used by the HP compilers. */
1107 if ((inst & 0xffffffe0) == 0x2fd01220)
1108 return hppa_extract_5_load (inst);
1109
1110 /* No adjustment. */
1111 return 0;
1112 }
1113
1114 /* Return nonzero if INST is a branch of some kind, else return zero. */
1115
1116 static int
1117 is_branch (unsigned long inst)
1118 {
1119 switch (inst >> 26)
1120 {
1121 case 0x20:
1122 case 0x21:
1123 case 0x22:
1124 case 0x23:
1125 case 0x27:
1126 case 0x28:
1127 case 0x29:
1128 case 0x2a:
1129 case 0x2b:
1130 case 0x2f:
1131 case 0x30:
1132 case 0x31:
1133 case 0x32:
1134 case 0x33:
1135 case 0x38:
1136 case 0x39:
1137 case 0x3a:
1138 case 0x3b:
1139 return 1;
1140
1141 default:
1142 return 0;
1143 }
1144 }
1145
1146 /* Return the register number for a GR which is saved by INST or
1147 zero it INST does not save a GR. */
1148
1149 static int
1150 inst_saves_gr (unsigned long inst)
1151 {
1152 /* Does it look like a stw? */
1153 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
1154 || (inst >> 26) == 0x1f
1155 || ((inst >> 26) == 0x1f
1156 && ((inst >> 6) == 0xa)))
1157 return hppa_extract_5R_store (inst);
1158
1159 /* Does it look like a std? */
1160 if ((inst >> 26) == 0x1c
1161 || ((inst >> 26) == 0x03
1162 && ((inst >> 6) & 0xf) == 0xb))
1163 return hppa_extract_5R_store (inst);
1164
1165 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1166 if ((inst >> 26) == 0x1b)
1167 return hppa_extract_5R_store (inst);
1168
1169 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1170 too. */
1171 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
1172 || ((inst >> 26) == 0x3
1173 && (((inst >> 6) & 0xf) == 0x8
1174 || (inst >> 6) & 0xf) == 0x9))
1175 return hppa_extract_5R_store (inst);
1176
1177 return 0;
1178 }
1179
1180 /* Return the register number for a FR which is saved by INST or
1181 zero it INST does not save a FR.
1182
1183 Note we only care about full 64bit register stores (that's the only
1184 kind of stores the prologue will use).
1185
1186 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1187
1188 static int
1189 inst_saves_fr (unsigned long inst)
1190 {
1191 /* is this an FSTD ? */
1192 if ((inst & 0xfc00dfc0) == 0x2c001200)
1193 return hppa_extract_5r_store (inst);
1194 if ((inst & 0xfc000002) == 0x70000002)
1195 return hppa_extract_5R_store (inst);
1196 /* is this an FSTW ? */
1197 if ((inst & 0xfc00df80) == 0x24001200)
1198 return hppa_extract_5r_store (inst);
1199 if ((inst & 0xfc000002) == 0x7c000000)
1200 return hppa_extract_5R_store (inst);
1201 return 0;
1202 }
1203
1204 /* Advance PC across any function entry prologue instructions
1205 to reach some "real" code.
1206
1207 Use information in the unwind table to determine what exactly should
1208 be in the prologue. */
1209
1210
1211 CORE_ADDR
1212 skip_prologue_hard_way (CORE_ADDR pc)
1213 {
1214 char buf[4];
1215 CORE_ADDR orig_pc = pc;
1216 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1217 unsigned long args_stored, status, i, restart_gr, restart_fr;
1218 struct unwind_table_entry *u;
1219
1220 restart_gr = 0;
1221 restart_fr = 0;
1222
1223 restart:
1224 u = find_unwind_entry (pc);
1225 if (!u)
1226 return pc;
1227
1228 /* If we are not at the beginning of a function, then return now. */
1229 if ((pc & ~0x3) != u->region_start)
1230 return pc;
1231
1232 /* This is how much of a frame adjustment we need to account for. */
1233 stack_remaining = u->Total_frame_size << 3;
1234
1235 /* Magic register saves we want to know about. */
1236 save_rp = u->Save_RP;
1237 save_sp = u->Save_SP;
1238
1239 /* An indication that args may be stored into the stack. Unfortunately
1240 the HPUX compilers tend to set this in cases where no args were
1241 stored too!. */
1242 args_stored = 1;
1243
1244 /* Turn the Entry_GR field into a bitmask. */
1245 save_gr = 0;
1246 for (i = 3; i < u->Entry_GR + 3; i++)
1247 {
1248 /* Frame pointer gets saved into a special location. */
1249 if (u->Save_SP && i == HPPA_FP_REGNUM)
1250 continue;
1251
1252 save_gr |= (1 << i);
1253 }
1254 save_gr &= ~restart_gr;
1255
1256 /* Turn the Entry_FR field into a bitmask too. */
1257 save_fr = 0;
1258 for (i = 12; i < u->Entry_FR + 12; i++)
1259 save_fr |= (1 << i);
1260 save_fr &= ~restart_fr;
1261
1262 /* Loop until we find everything of interest or hit a branch.
1263
1264 For unoptimized GCC code and for any HP CC code this will never ever
1265 examine any user instructions.
1266
1267 For optimzied GCC code we're faced with problems. GCC will schedule
1268 its prologue and make prologue instructions available for delay slot
1269 filling. The end result is user code gets mixed in with the prologue
1270 and a prologue instruction may be in the delay slot of the first branch
1271 or call.
1272
1273 Some unexpected things are expected with debugging optimized code, so
1274 we allow this routine to walk past user instructions in optimized
1275 GCC code. */
1276 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1277 || args_stored)
1278 {
1279 unsigned int reg_num;
1280 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1281 unsigned long old_save_rp, old_save_sp, next_inst;
1282
1283 /* Save copies of all the triggers so we can compare them later
1284 (only for HPC). */
1285 old_save_gr = save_gr;
1286 old_save_fr = save_fr;
1287 old_save_rp = save_rp;
1288 old_save_sp = save_sp;
1289 old_stack_remaining = stack_remaining;
1290
1291 status = read_memory_nobpt (pc, buf, 4);
1292 inst = extract_unsigned_integer (buf, 4);
1293
1294 /* Yow! */
1295 if (status != 0)
1296 return pc;
1297
1298 /* Note the interesting effects of this instruction. */
1299 stack_remaining -= prologue_inst_adjust_sp (inst);
1300
1301 /* There are limited ways to store the return pointer into the
1302 stack. */
1303 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
1304 save_rp = 0;
1305
1306 /* These are the only ways we save SP into the stack. At this time
1307 the HP compilers never bother to save SP into the stack. */
1308 if ((inst & 0xffffc000) == 0x6fc10000
1309 || (inst & 0xffffc00c) == 0x73c10008)
1310 save_sp = 0;
1311
1312 /* Are we loading some register with an offset from the argument
1313 pointer? */
1314 if ((inst & 0xffe00000) == 0x37a00000
1315 || (inst & 0xffffffe0) == 0x081d0240)
1316 {
1317 pc += 4;
1318 continue;
1319 }
1320
1321 /* Account for general and floating-point register saves. */
1322 reg_num = inst_saves_gr (inst);
1323 save_gr &= ~(1 << reg_num);
1324
1325 /* Ugh. Also account for argument stores into the stack.
1326 Unfortunately args_stored only tells us that some arguments
1327 where stored into the stack. Not how many or what kind!
1328
1329 This is a kludge as on the HP compiler sets this bit and it
1330 never does prologue scheduling. So once we see one, skip past
1331 all of them. We have similar code for the fp arg stores below.
1332
1333 FIXME. Can still die if we have a mix of GR and FR argument
1334 stores! */
1335 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1336 {
1337 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
1338 {
1339 pc += 4;
1340 status = read_memory_nobpt (pc, buf, 4);
1341 inst = extract_unsigned_integer (buf, 4);
1342 if (status != 0)
1343 return pc;
1344 reg_num = inst_saves_gr (inst);
1345 }
1346 args_stored = 0;
1347 continue;
1348 }
1349
1350 reg_num = inst_saves_fr (inst);
1351 save_fr &= ~(1 << reg_num);
1352
1353 status = read_memory_nobpt (pc + 4, buf, 4);
1354 next_inst = extract_unsigned_integer (buf, 4);
1355
1356 /* Yow! */
1357 if (status != 0)
1358 return pc;
1359
1360 /* We've got to be read to handle the ldo before the fp register
1361 save. */
1362 if ((inst & 0xfc000000) == 0x34000000
1363 && inst_saves_fr (next_inst) >= 4
1364 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1365 {
1366 /* So we drop into the code below in a reasonable state. */
1367 reg_num = inst_saves_fr (next_inst);
1368 pc -= 4;
1369 }
1370
1371 /* Ugh. Also account for argument stores into the stack.
1372 This is a kludge as on the HP compiler sets this bit and it
1373 never does prologue scheduling. So once we see one, skip past
1374 all of them. */
1375 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1376 {
1377 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
1378 {
1379 pc += 8;
1380 status = read_memory_nobpt (pc, buf, 4);
1381 inst = extract_unsigned_integer (buf, 4);
1382 if (status != 0)
1383 return pc;
1384 if ((inst & 0xfc000000) != 0x34000000)
1385 break;
1386 status = read_memory_nobpt (pc + 4, buf, 4);
1387 next_inst = extract_unsigned_integer (buf, 4);
1388 if (status != 0)
1389 return pc;
1390 reg_num = inst_saves_fr (next_inst);
1391 }
1392 args_stored = 0;
1393 continue;
1394 }
1395
1396 /* Quit if we hit any kind of branch. This can happen if a prologue
1397 instruction is in the delay slot of the first call/branch. */
1398 if (is_branch (inst))
1399 break;
1400
1401 /* What a crock. The HP compilers set args_stored even if no
1402 arguments were stored into the stack (boo hiss). This could
1403 cause this code to then skip a bunch of user insns (up to the
1404 first branch).
1405
1406 To combat this we try to identify when args_stored was bogusly
1407 set and clear it. We only do this when args_stored is nonzero,
1408 all other resources are accounted for, and nothing changed on
1409 this pass. */
1410 if (args_stored
1411 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
1412 && old_save_gr == save_gr && old_save_fr == save_fr
1413 && old_save_rp == save_rp && old_save_sp == save_sp
1414 && old_stack_remaining == stack_remaining)
1415 break;
1416
1417 /* Bump the PC. */
1418 pc += 4;
1419 }
1420
1421 /* We've got a tenative location for the end of the prologue. However
1422 because of limitations in the unwind descriptor mechanism we may
1423 have went too far into user code looking for the save of a register
1424 that does not exist. So, if there registers we expected to be saved
1425 but never were, mask them out and restart.
1426
1427 This should only happen in optimized code, and should be very rare. */
1428 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
1429 {
1430 pc = orig_pc;
1431 restart_gr = save_gr;
1432 restart_fr = save_fr;
1433 goto restart;
1434 }
1435
1436 return pc;
1437 }
1438
1439
1440 /* Return the address of the PC after the last prologue instruction if
1441 we can determine it from the debug symbols. Else return zero. */
1442
1443 static CORE_ADDR
1444 after_prologue (CORE_ADDR pc)
1445 {
1446 struct symtab_and_line sal;
1447 CORE_ADDR func_addr, func_end;
1448 struct symbol *f;
1449
1450 /* If we can not find the symbol in the partial symbol table, then
1451 there is no hope we can determine the function's start address
1452 with this code. */
1453 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
1454 return 0;
1455
1456 /* Get the line associated with FUNC_ADDR. */
1457 sal = find_pc_line (func_addr, 0);
1458
1459 /* There are only two cases to consider. First, the end of the source line
1460 is within the function bounds. In that case we return the end of the
1461 source line. Second is the end of the source line extends beyond the
1462 bounds of the current function. We need to use the slow code to
1463 examine instructions in that case.
1464
1465 Anything else is simply a bug elsewhere. Fixing it here is absolutely
1466 the wrong thing to do. In fact, it should be entirely possible for this
1467 function to always return zero since the slow instruction scanning code
1468 is supposed to *always* work. If it does not, then it is a bug. */
1469 if (sal.end < func_end)
1470 return sal.end;
1471 else
1472 return 0;
1473 }
1474
1475 /* To skip prologues, I use this predicate. Returns either PC itself
1476 if the code at PC does not look like a function prologue; otherwise
1477 returns an address that (if we're lucky) follows the prologue. If
1478 LENIENT, then we must skip everything which is involved in setting
1479 up the frame (it's OK to skip more, just so long as we don't skip
1480 anything which might clobber the registers which are being saved.
1481 Currently we must not skip more on the alpha, but we might the lenient
1482 stuff some day. */
1483
1484 static CORE_ADDR
1485 hppa_skip_prologue (CORE_ADDR pc)
1486 {
1487 unsigned long inst;
1488 int offset;
1489 CORE_ADDR post_prologue_pc;
1490 char buf[4];
1491
1492 /* See if we can determine the end of the prologue via the symbol table.
1493 If so, then return either PC, or the PC after the prologue, whichever
1494 is greater. */
1495
1496 post_prologue_pc = after_prologue (pc);
1497
1498 /* If after_prologue returned a useful address, then use it. Else
1499 fall back on the instruction skipping code.
1500
1501 Some folks have claimed this causes problems because the breakpoint
1502 may be the first instruction of the prologue. If that happens, then
1503 the instruction skipping code has a bug that needs to be fixed. */
1504 if (post_prologue_pc != 0)
1505 return max (pc, post_prologue_pc);
1506 else
1507 return (skip_prologue_hard_way (pc));
1508 }
1509
1510 struct hppa_frame_cache
1511 {
1512 CORE_ADDR base;
1513 struct trad_frame_saved_reg *saved_regs;
1514 };
1515
1516 static struct hppa_frame_cache *
1517 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
1518 {
1519 struct hppa_frame_cache *cache;
1520 long saved_gr_mask;
1521 long saved_fr_mask;
1522 CORE_ADDR this_sp;
1523 long frame_size;
1524 struct unwind_table_entry *u;
1525 CORE_ADDR prologue_end;
1526 int i;
1527
1528 if (hppa_debug)
1529 fprintf_unfiltered (gdb_stdlog, "{ hppa_frame_cache (frame=%d) -> ",
1530 frame_relative_level(next_frame));
1531
1532 if ((*this_cache) != NULL)
1533 {
1534 if (hppa_debug)
1535 fprintf_unfiltered (gdb_stdlog, "base=0x%s (cached) }",
1536 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1537 return (*this_cache);
1538 }
1539 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1540 (*this_cache) = cache;
1541 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1542
1543 /* Yow! */
1544 u = find_unwind_entry (frame_func_unwind (next_frame));
1545 if (!u)
1546 {
1547 if (hppa_debug)
1548 fprintf_unfiltered (gdb_stdlog, "base=NULL (no unwind entry) }");
1549 return (*this_cache);
1550 }
1551
1552 /* Turn the Entry_GR field into a bitmask. */
1553 saved_gr_mask = 0;
1554 for (i = 3; i < u->Entry_GR + 3; i++)
1555 {
1556 /* Frame pointer gets saved into a special location. */
1557 if (u->Save_SP && i == HPPA_FP_REGNUM)
1558 continue;
1559
1560 saved_gr_mask |= (1 << i);
1561 }
1562
1563 /* Turn the Entry_FR field into a bitmask too. */
1564 saved_fr_mask = 0;
1565 for (i = 12; i < u->Entry_FR + 12; i++)
1566 saved_fr_mask |= (1 << i);
1567
1568 /* Loop until we find everything of interest or hit a branch.
1569
1570 For unoptimized GCC code and for any HP CC code this will never ever
1571 examine any user instructions.
1572
1573 For optimized GCC code we're faced with problems. GCC will schedule
1574 its prologue and make prologue instructions available for delay slot
1575 filling. The end result is user code gets mixed in with the prologue
1576 and a prologue instruction may be in the delay slot of the first branch
1577 or call.
1578
1579 Some unexpected things are expected with debugging optimized code, so
1580 we allow this routine to walk past user instructions in optimized
1581 GCC code. */
1582 {
1583 int final_iteration = 0;
1584 CORE_ADDR pc, end_pc;
1585 int looking_for_sp = u->Save_SP;
1586 int looking_for_rp = u->Save_RP;
1587 int fp_loc = -1;
1588
1589 /* We have to use hppa_skip_prologue instead of just
1590 skip_prologue_using_sal, in case we stepped into a function without
1591 symbol information. hppa_skip_prologue also bounds the returned
1592 pc by the passed in pc, so it will not return a pc in the next
1593 function. */
1594 prologue_end = hppa_skip_prologue (frame_func_unwind (next_frame));
1595 end_pc = frame_pc_unwind (next_frame);
1596
1597 if (prologue_end != 0 && end_pc > prologue_end)
1598 end_pc = prologue_end;
1599
1600 frame_size = 0;
1601
1602 for (pc = frame_func_unwind (next_frame);
1603 ((saved_gr_mask || saved_fr_mask
1604 || looking_for_sp || looking_for_rp
1605 || frame_size < (u->Total_frame_size << 3))
1606 && pc < end_pc);
1607 pc += 4)
1608 {
1609 int reg;
1610 char buf4[4];
1611 long status = read_memory_nobpt (pc, buf4, sizeof buf4);
1612 long inst = extract_unsigned_integer (buf4, sizeof buf4);
1613
1614 /* Note the interesting effects of this instruction. */
1615 frame_size += prologue_inst_adjust_sp (inst);
1616
1617 /* There are limited ways to store the return pointer into the
1618 stack. */
1619 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1620 {
1621 looking_for_rp = 0;
1622 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1623 }
1624 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1625 {
1626 looking_for_rp = 0;
1627 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1628 }
1629
1630 /* Check to see if we saved SP into the stack. This also
1631 happens to indicate the location of the saved frame
1632 pointer. */
1633 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
1634 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
1635 {
1636 looking_for_sp = 0;
1637 cache->saved_regs[HPPA_FP_REGNUM].addr = 0;
1638 }
1639
1640 /* Account for general and floating-point register saves. */
1641 reg = inst_saves_gr (inst);
1642 if (reg >= 3 && reg <= 18
1643 && (!u->Save_SP || reg != HPPA_FP_REGNUM))
1644 {
1645 saved_gr_mask &= ~(1 << reg);
1646 if ((inst >> 26) == 0x1b && hppa_extract_14 (inst) >= 0)
1647 /* stwm with a positive displacement is a _post_
1648 _modify_. */
1649 cache->saved_regs[reg].addr = 0;
1650 else if ((inst & 0xfc00000c) == 0x70000008)
1651 /* A std has explicit post_modify forms. */
1652 cache->saved_regs[reg].addr = 0;
1653 else
1654 {
1655 CORE_ADDR offset;
1656
1657 if ((inst >> 26) == 0x1c)
1658 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
1659 else if ((inst >> 26) == 0x03)
1660 offset = hppa_low_hppa_sign_extend (inst & 0x1f, 5);
1661 else
1662 offset = hppa_extract_14 (inst);
1663
1664 /* Handle code with and without frame pointers. */
1665 if (u->Save_SP)
1666 cache->saved_regs[reg].addr = offset;
1667 else
1668 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
1669 }
1670 }
1671
1672 /* GCC handles callee saved FP regs a little differently.
1673
1674 It emits an instruction to put the value of the start of
1675 the FP store area into %r1. It then uses fstds,ma with a
1676 basereg of %r1 for the stores.
1677
1678 HP CC emits them at the current stack pointer modifying the
1679 stack pointer as it stores each register. */
1680
1681 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
1682 if ((inst & 0xffffc000) == 0x34610000
1683 || (inst & 0xffffc000) == 0x37c10000)
1684 fp_loc = hppa_extract_14 (inst);
1685
1686 reg = inst_saves_fr (inst);
1687 if (reg >= 12 && reg <= 21)
1688 {
1689 /* Note +4 braindamage below is necessary because the FP
1690 status registers are internally 8 registers rather than
1691 the expected 4 registers. */
1692 saved_fr_mask &= ~(1 << reg);
1693 if (fp_loc == -1)
1694 {
1695 /* 1st HP CC FP register store. After this
1696 instruction we've set enough state that the GCC and
1697 HPCC code are both handled in the same manner. */
1698 cache->saved_regs[reg + HPPA_FP4_REGNUM + 4].addr = 0;
1699 fp_loc = 8;
1700 }
1701 else
1702 {
1703 cache->saved_regs[reg + HPPA_FP0_REGNUM + 4].addr = fp_loc;
1704 fp_loc += 8;
1705 }
1706 }
1707
1708 /* Quit if we hit any kind of branch the previous iteration. */
1709 if (final_iteration)
1710 break;
1711 /* We want to look precisely one instruction beyond the branch
1712 if we have not found everything yet. */
1713 if (is_branch (inst))
1714 final_iteration = 1;
1715 }
1716 }
1717
1718 {
1719 /* The frame base always represents the value of %sp at entry to
1720 the current function (and is thus equivalent to the "saved"
1721 stack pointer. */
1722 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1723 CORE_ADDR fp;
1724
1725 if (hppa_debug)
1726 fprintf_unfiltered (gdb_stdlog, " (this_sp=0x%s, pc=0x%s, "
1727 "prologue_end=0x%s) ",
1728 paddr_nz (this_sp),
1729 paddr_nz (frame_pc_unwind (next_frame)),
1730 paddr_nz (prologue_end));
1731
1732 /* Check to see if a frame pointer is available, and use it for
1733 frame unwinding if it is.
1734
1735 There are some situations where we need to rely on the frame
1736 pointer to do stack unwinding. For example, if a function calls
1737 alloca (), the stack pointer can get adjusted inside the body of
1738 the function. In this case, the ABI requires that the compiler
1739 maintain a frame pointer for the function.
1740
1741 The unwind record has a flag (alloca_frame) that indicates that
1742 a function has a variable frame; unfortunately, gcc/binutils
1743 does not set this flag. Instead, whenever a frame pointer is used
1744 and saved on the stack, the Save_SP flag is set. We use this to
1745 decide whether to use the frame pointer for unwinding.
1746
1747 fp should never be zero here; checking just in case.
1748
1749 TODO: For the HP compiler, maybe we should use the alloca_frame flag
1750 instead of Save_SP. */
1751
1752 fp = frame_unwind_register_unsigned (next_frame, HPPA_FP_REGNUM);
1753
1754 if (frame_pc_unwind (next_frame) >= prologue_end
1755 && u->Save_SP && fp != 0)
1756 {
1757 cache->base = fp;
1758
1759 if (hppa_debug)
1760 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [frame pointer] }",
1761 paddr_nz (cache->base));
1762 }
1763 else if (frame_pc_unwind (next_frame) >= prologue_end)
1764 {
1765 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, HPPA_SP_REGNUM))
1766 {
1767 /* Both we're expecting the SP to be saved and the SP has been
1768 saved. The entry SP value is saved at this frame's SP
1769 address. */
1770 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
1771
1772 if (hppa_debug)
1773 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [saved] }",
1774 paddr_nz (cache->base));
1775 }
1776 else
1777 {
1778 /* The prologue has been slowly allocating stack space. Adjust
1779 the SP back. */
1780 cache->base = this_sp - frame_size;
1781 if (hppa_debug)
1782 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [unwind adjust] } ",
1783 paddr_nz (cache->base));
1784
1785 }
1786 }
1787 else
1788 {
1789 /* This frame has not yet been created. */
1790 cache->base = this_sp;
1791
1792 if (hppa_debug)
1793 fprintf_unfiltered (gdb_stdlog, " (base=0x%s) [before prologue] } ",
1794 paddr_nz (cache->base));
1795
1796 }
1797
1798 trad_frame_set_value (cache->saved_regs, HPPA_SP_REGNUM, cache->base);
1799 }
1800
1801 /* The PC is found in the "return register", "Millicode" uses "r31"
1802 as the return register while normal code uses "rp". */
1803 if (u->Millicode)
1804 {
1805 if (trad_frame_addr_p (cache->saved_regs, 31))
1806 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
1807 else
1808 {
1809 ULONGEST r31 = frame_unwind_register_unsigned (next_frame, 31);
1810 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, r31);
1811 }
1812 }
1813 else
1814 {
1815 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1816 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1817 else
1818 {
1819 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1820 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1821 }
1822 }
1823
1824 {
1825 /* Convert all the offsets into addresses. */
1826 int reg;
1827 for (reg = 0; reg < NUM_REGS; reg++)
1828 {
1829 if (trad_frame_addr_p (cache->saved_regs, reg))
1830 cache->saved_regs[reg].addr += cache->base;
1831 }
1832 }
1833
1834 if (hppa_debug)
1835 fprintf_unfiltered (gdb_stdlog, "base=0x%s }",
1836 paddr_nz (((struct hppa_frame_cache *)*this_cache)->base));
1837 return (*this_cache);
1838 }
1839
1840 static void
1841 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
1842 struct frame_id *this_id)
1843 {
1844 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1845 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1846 }
1847
1848 static void
1849 hppa_frame_prev_register (struct frame_info *next_frame,
1850 void **this_cache,
1851 int regnum, int *optimizedp,
1852 enum lval_type *lvalp, CORE_ADDR *addrp,
1853 int *realnump, void *valuep)
1854 {
1855 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
1856 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1857 optimizedp, lvalp, addrp, realnump, valuep);
1858 }
1859
1860 static const struct frame_unwind hppa_frame_unwind =
1861 {
1862 NORMAL_FRAME,
1863 hppa_frame_this_id,
1864 hppa_frame_prev_register
1865 };
1866
1867 static const struct frame_unwind *
1868 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
1869 {
1870 CORE_ADDR pc = frame_pc_unwind (next_frame);
1871
1872 if (find_unwind_entry (pc))
1873 return &hppa_frame_unwind;
1874
1875 return NULL;
1876 }
1877
1878 /* This is a generic fallback frame unwinder that kicks in if we fail all
1879 the other ones. Normally we would expect the stub and regular unwinder
1880 to work, but in some cases we might hit a function that just doesn't
1881 have any unwind information available. In this case we try to do
1882 unwinding solely based on code reading. This is obviously going to be
1883 slow, so only use this as a last resort. Currently this will only
1884 identify the stack and pc for the frame. */
1885
1886 static struct hppa_frame_cache *
1887 hppa_fallback_frame_cache (struct frame_info *next_frame, void **this_cache)
1888 {
1889 struct hppa_frame_cache *cache;
1890 CORE_ADDR pc, start_pc, end_pc, cur_pc;
1891
1892 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
1893 (*this_cache) = cache;
1894 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1895
1896 pc = frame_func_unwind (next_frame);
1897 cur_pc = frame_pc_unwind (next_frame);
1898
1899 find_pc_partial_function (pc, NULL, &start_pc, &end_pc);
1900
1901 if (start_pc == 0 || end_pc == 0)
1902 {
1903 error ("Cannot find bounds of current function (@0x%s), unwinding will "
1904 "fail.", paddr_nz (pc));
1905 return cache;
1906 }
1907
1908 if (end_pc > cur_pc)
1909 end_pc = cur_pc;
1910
1911 for (pc = start_pc; pc < end_pc; pc += 4)
1912 {
1913 unsigned int insn;
1914
1915 insn = read_memory_unsigned_integer (pc, 4);
1916
1917 /* There are limited ways to store the return pointer into the
1918 stack. */
1919 if (insn == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
1920 {
1921 cache->saved_regs[HPPA_RP_REGNUM].addr = -20;
1922 break;
1923 }
1924 else if (insn == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
1925 {
1926 cache->saved_regs[HPPA_RP_REGNUM].addr = -16;
1927 break;
1928 }
1929 }
1930
1931 cache->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
1932
1933 if (trad_frame_addr_p (cache->saved_regs, HPPA_RP_REGNUM))
1934 {
1935 cache->saved_regs[HPPA_RP_REGNUM].addr += cache->base;
1936 cache->saved_regs[HPPA_PCOQ_HEAD_REGNUM] = cache->saved_regs[HPPA_RP_REGNUM];
1937 }
1938 else
1939 {
1940 ULONGEST rp = frame_unwind_register_unsigned (next_frame, HPPA_RP_REGNUM);
1941 trad_frame_set_value (cache->saved_regs, HPPA_PCOQ_HEAD_REGNUM, rp);
1942 }
1943
1944 return cache;
1945 }
1946
1947 static void
1948 hppa_fallback_frame_this_id (struct frame_info *next_frame, void **this_cache,
1949 struct frame_id *this_id)
1950 {
1951 struct hppa_frame_cache *info =
1952 hppa_fallback_frame_cache (next_frame, this_cache);
1953 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1954 }
1955
1956 static void
1957 hppa_fallback_frame_prev_register (struct frame_info *next_frame,
1958 void **this_cache,
1959 int regnum, int *optimizedp,
1960 enum lval_type *lvalp, CORE_ADDR *addrp,
1961 int *realnump, void *valuep)
1962 {
1963 struct hppa_frame_cache *info =
1964 hppa_fallback_frame_cache (next_frame, this_cache);
1965 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
1966 optimizedp, lvalp, addrp, realnump, valuep);
1967 }
1968
1969 static const struct frame_unwind hppa_fallback_frame_unwind =
1970 {
1971 NORMAL_FRAME,
1972 hppa_fallback_frame_this_id,
1973 hppa_fallback_frame_prev_register
1974 };
1975
1976 static const struct frame_unwind *
1977 hppa_fallback_unwind_sniffer (struct frame_info *next_frame)
1978 {
1979 return &hppa_fallback_frame_unwind;
1980 }
1981
1982 static CORE_ADDR
1983 hppa_frame_base_address (struct frame_info *next_frame,
1984 void **this_cache)
1985 {
1986 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
1987 this_cache);
1988 return info->base;
1989 }
1990
1991 static const struct frame_base hppa_frame_base = {
1992 &hppa_frame_unwind,
1993 hppa_frame_base_address,
1994 hppa_frame_base_address,
1995 hppa_frame_base_address
1996 };
1997
1998 static const struct frame_base *
1999 hppa_frame_base_sniffer (struct frame_info *next_frame)
2000 {
2001 return &hppa_frame_base;
2002 }
2003
2004 /* Stub frames, used for all kinds of call stubs. */
2005 struct hppa_stub_unwind_cache
2006 {
2007 CORE_ADDR base;
2008 struct trad_frame_saved_reg *saved_regs;
2009 };
2010
2011 static struct hppa_stub_unwind_cache *
2012 hppa_stub_frame_unwind_cache (struct frame_info *next_frame,
2013 void **this_cache)
2014 {
2015 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2016 struct hppa_stub_unwind_cache *info;
2017 struct unwind_table_entry *u;
2018
2019 if (*this_cache)
2020 return *this_cache;
2021
2022 info = FRAME_OBSTACK_ZALLOC (struct hppa_stub_unwind_cache);
2023 *this_cache = info;
2024 info->saved_regs = trad_frame_alloc_saved_regs (next_frame);
2025
2026 info->base = frame_unwind_register_unsigned (next_frame, HPPA_SP_REGNUM);
2027
2028 if (gdbarch_osabi (gdbarch) == GDB_OSABI_HPUX_SOM)
2029 {
2030 /* HPUX uses export stubs in function calls; the export stub clobbers
2031 the return value of the caller, and, later restores it from the
2032 stack. */
2033 u = find_unwind_entry (frame_pc_unwind (next_frame));
2034
2035 if (u && u->stub_unwind.stub_type == EXPORT)
2036 {
2037 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].addr = info->base - 24;
2038
2039 return info;
2040 }
2041 }
2042
2043 /* By default we assume that stubs do not change the rp. */
2044 info->saved_regs[HPPA_PCOQ_HEAD_REGNUM].realreg = HPPA_RP_REGNUM;
2045
2046 return info;
2047 }
2048
2049 static void
2050 hppa_stub_frame_this_id (struct frame_info *next_frame,
2051 void **this_prologue_cache,
2052 struct frame_id *this_id)
2053 {
2054 struct hppa_stub_unwind_cache *info
2055 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2056 *this_id = frame_id_build (info->base, frame_pc_unwind (next_frame));
2057 }
2058
2059 static void
2060 hppa_stub_frame_prev_register (struct frame_info *next_frame,
2061 void **this_prologue_cache,
2062 int regnum, int *optimizedp,
2063 enum lval_type *lvalp, CORE_ADDR *addrp,
2064 int *realnump, void *valuep)
2065 {
2066 struct hppa_stub_unwind_cache *info
2067 = hppa_stub_frame_unwind_cache (next_frame, this_prologue_cache);
2068 hppa_frame_prev_register_helper (next_frame, info->saved_regs, regnum,
2069 optimizedp, lvalp, addrp, realnump, valuep);
2070 }
2071
2072 static const struct frame_unwind hppa_stub_frame_unwind = {
2073 NORMAL_FRAME,
2074 hppa_stub_frame_this_id,
2075 hppa_stub_frame_prev_register
2076 };
2077
2078 static const struct frame_unwind *
2079 hppa_stub_unwind_sniffer (struct frame_info *next_frame)
2080 {
2081 CORE_ADDR pc = frame_pc_unwind (next_frame);
2082
2083 if (IN_SOLIB_CALL_TRAMPOLINE (pc, NULL)
2084 || IN_SOLIB_RETURN_TRAMPOLINE (pc, NULL))
2085 return &hppa_stub_frame_unwind;
2086 return NULL;
2087 }
2088
2089 static struct frame_id
2090 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
2091 {
2092 return frame_id_build (frame_unwind_register_unsigned (next_frame,
2093 HPPA_SP_REGNUM),
2094 frame_pc_unwind (next_frame));
2095 }
2096
2097 static CORE_ADDR
2098 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
2099 {
2100 return frame_unwind_register_signed (next_frame, HPPA_PCOQ_HEAD_REGNUM) & ~3;
2101 }
2102
2103 /* Instead of this nasty cast, add a method pvoid() that prints out a
2104 host VOID data type (remember %p isn't portable). */
2105
2106 static CORE_ADDR
2107 hppa_pointer_to_address_hack (void *ptr)
2108 {
2109 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
2110 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
2111 }
2112
2113 static void
2114 unwind_command (char *exp, int from_tty)
2115 {
2116 CORE_ADDR address;
2117 struct unwind_table_entry *u;
2118
2119 /* If we have an expression, evaluate it and use it as the address. */
2120
2121 if (exp != 0 && *exp != 0)
2122 address = parse_and_eval_address (exp);
2123 else
2124 return;
2125
2126 u = find_unwind_entry (address);
2127
2128 if (!u)
2129 {
2130 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
2131 return;
2132 }
2133
2134 printf_unfiltered ("unwind_table_entry (0x%s):\n",
2135 paddr_nz (hppa_pointer_to_address_hack (u)));
2136
2137 printf_unfiltered ("\tregion_start = ");
2138 print_address (u->region_start, gdb_stdout);
2139
2140 printf_unfiltered ("\n\tregion_end = ");
2141 print_address (u->region_end, gdb_stdout);
2142
2143 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
2144
2145 printf_unfiltered ("\n\tflags =");
2146 pif (Cannot_unwind);
2147 pif (Millicode);
2148 pif (Millicode_save_sr0);
2149 pif (Entry_SR);
2150 pif (Args_stored);
2151 pif (Variable_Frame);
2152 pif (Separate_Package_Body);
2153 pif (Frame_Extension_Millicode);
2154 pif (Stack_Overflow_Check);
2155 pif (Two_Instruction_SP_Increment);
2156 pif (Ada_Region);
2157 pif (Save_SP);
2158 pif (Save_RP);
2159 pif (Save_MRP_in_frame);
2160 pif (extn_ptr_defined);
2161 pif (Cleanup_defined);
2162 pif (MPE_XL_interrupt_marker);
2163 pif (HP_UX_interrupt_marker);
2164 pif (Large_frame);
2165
2166 putchar_unfiltered ('\n');
2167
2168 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
2169
2170 pin (Region_description);
2171 pin (Entry_FR);
2172 pin (Entry_GR);
2173 pin (Total_frame_size);
2174 }
2175
2176 void
2177 hppa_skip_permanent_breakpoint (void)
2178 {
2179 /* To step over a breakpoint instruction on the PA takes some
2180 fiddling with the instruction address queue.
2181
2182 When we stop at a breakpoint, the IA queue front (the instruction
2183 we're executing now) points at the breakpoint instruction, and
2184 the IA queue back (the next instruction to execute) points to
2185 whatever instruction we would execute after the breakpoint, if it
2186 were an ordinary instruction. This is the case even if the
2187 breakpoint is in the delay slot of a branch instruction.
2188
2189 Clearly, to step past the breakpoint, we need to set the queue
2190 front to the back. But what do we put in the back? What
2191 instruction comes after that one? Because of the branch delay
2192 slot, the next insn is always at the back + 4. */
2193 write_register (HPPA_PCOQ_HEAD_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM));
2194 write_register (HPPA_PCSQ_HEAD_REGNUM, read_register (HPPA_PCSQ_TAIL_REGNUM));
2195
2196 write_register (HPPA_PCOQ_TAIL_REGNUM, read_register (HPPA_PCOQ_TAIL_REGNUM) + 4);
2197 /* We can leave the tail's space the same, since there's no jump. */
2198 }
2199
2200 int
2201 hppa_pc_requires_run_before_use (CORE_ADDR pc)
2202 {
2203 /* Sometimes we may pluck out a minimal symbol that has a negative address.
2204
2205 An example of this occurs when an a.out is linked against a foo.sl.
2206 The foo.sl defines a global bar(), and the a.out declares a signature
2207 for bar(). However, the a.out doesn't directly call bar(), but passes
2208 its address in another call.
2209
2210 If you have this scenario and attempt to "break bar" before running,
2211 gdb will find a minimal symbol for bar() in the a.out. But that
2212 symbol's address will be negative. What this appears to denote is
2213 an index backwards from the base of the procedure linkage table (PLT)
2214 into the data linkage table (DLT), the end of which is contiguous
2215 with the start of the PLT. This is clearly not a valid address for
2216 us to set a breakpoint on.
2217
2218 Note that one must be careful in how one checks for a negative address.
2219 0xc0000000 is a legitimate address of something in a shared text
2220 segment, for example. Since I don't know what the possible range
2221 is of these "really, truly negative" addresses that come from the
2222 minimal symbols, I'm resorting to the gross hack of checking the
2223 top byte of the address for all 1's. Sigh. */
2224
2225 return (!target_has_stack && (pc & 0xFF000000));
2226 }
2227
2228 int
2229 hppa_instruction_nullified (void)
2230 {
2231 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
2232 avoid the type cast. I'm leaving it as is for now as I'm doing
2233 semi-mechanical multiarching-related changes. */
2234 const int ipsw = (int) read_register (HPPA_IPSW_REGNUM);
2235 const int flags = (int) read_register (HPPA_FLAGS_REGNUM);
2236
2237 return ((ipsw & 0x00200000) && !(flags & 0x2));
2238 }
2239
2240 /* Return the GDB type object for the "standard" data type of data
2241 in register N. */
2242
2243 static struct type *
2244 hppa32_register_type (struct gdbarch *gdbarch, int reg_nr)
2245 {
2246 if (reg_nr < HPPA_FP4_REGNUM)
2247 return builtin_type_uint32;
2248 else
2249 return builtin_type_ieee_single_big;
2250 }
2251
2252 /* Return the GDB type object for the "standard" data type of data
2253 in register N. hppa64 version. */
2254
2255 static struct type *
2256 hppa64_register_type (struct gdbarch *gdbarch, int reg_nr)
2257 {
2258 if (reg_nr < HPPA_FP4_REGNUM)
2259 return builtin_type_uint64;
2260 else
2261 return builtin_type_ieee_double_big;
2262 }
2263
2264 /* Return True if REGNUM is not a register available to the user
2265 through ptrace(). */
2266
2267 static int
2268 hppa_cannot_store_register (int regnum)
2269 {
2270 return (regnum == 0
2271 || regnum == HPPA_PCSQ_HEAD_REGNUM
2272 || (regnum >= HPPA_PCSQ_TAIL_REGNUM && regnum < HPPA_IPSW_REGNUM)
2273 || (regnum > HPPA_IPSW_REGNUM && regnum < HPPA_FP4_REGNUM));
2274
2275 }
2276
2277 static CORE_ADDR
2278 hppa_smash_text_address (CORE_ADDR addr)
2279 {
2280 /* The low two bits of the PC on the PA contain the privilege level.
2281 Some genius implementing a (non-GCC) compiler apparently decided
2282 this means that "addresses" in a text section therefore include a
2283 privilege level, and thus symbol tables should contain these bits.
2284 This seems like a bonehead thing to do--anyway, it seems to work
2285 for our purposes to just ignore those bits. */
2286
2287 return (addr &= ~0x3);
2288 }
2289
2290 /* Get the ith function argument for the current function. */
2291 CORE_ADDR
2292 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
2293 struct type *type)
2294 {
2295 CORE_ADDR addr;
2296 get_frame_register (frame, HPPA_R0_REGNUM + 26 - argi, &addr);
2297 return addr;
2298 }
2299
2300 static void
2301 hppa_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
2302 int regnum, void *buf)
2303 {
2304 ULONGEST tmp;
2305
2306 regcache_raw_read_unsigned (regcache, regnum, &tmp);
2307 if (regnum == HPPA_PCOQ_HEAD_REGNUM || regnum == HPPA_PCOQ_TAIL_REGNUM)
2308 tmp &= ~0x3;
2309 store_unsigned_integer (buf, sizeof(tmp), tmp);
2310 }
2311
2312 void
2313 hppa_frame_prev_register_helper (struct frame_info *next_frame,
2314 struct trad_frame_saved_reg saved_regs[],
2315 int regnum, int *optimizedp,
2316 enum lval_type *lvalp, CORE_ADDR *addrp,
2317 int *realnump, void *valuep)
2318 {
2319 int pcoqt = (regnum == HPPA_PCOQ_TAIL_REGNUM);
2320 struct gdbarch *gdbarch = get_frame_arch (next_frame);
2321 int regsize = register_size (gdbarch, HPPA_PCOQ_HEAD_REGNUM);
2322
2323 if (pcoqt)
2324 regnum = HPPA_PCOQ_HEAD_REGNUM;
2325
2326 trad_frame_prev_register (next_frame, saved_regs, regnum,
2327 optimizedp, lvalp, addrp, realnump, valuep);
2328
2329 if (pcoqt)
2330 store_unsigned_integer (valuep, regsize,
2331 extract_unsigned_integer (valuep, regsize) + 4);
2332 }
2333
2334 /* Here is a table of C type sizes on hppa with various compiles
2335 and options. I measured this on PA 9000/800 with HP-UX 11.11
2336 and these compilers:
2337
2338 /usr/ccs/bin/cc HP92453-01 A.11.01.21
2339 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
2340 /opt/aCC/bin/aCC B3910B A.03.45
2341 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
2342
2343 cc : 1 2 4 4 8 : 4 8 -- : 4 4
2344 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2345 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2346 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2347 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
2348 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
2349 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
2350 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
2351
2352 Each line is:
2353
2354 compiler and options
2355 char, short, int, long, long long
2356 float, double, long double
2357 char *, void (*)()
2358
2359 So all these compilers use either ILP32 or LP64 model.
2360 TODO: gcc has more options so it needs more investigation.
2361
2362 For floating point types, see:
2363
2364 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
2365 HP-UX floating-point guide, hpux 11.00
2366
2367 -- chastain 2003-12-18 */
2368
2369 static struct gdbarch *
2370 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2371 {
2372 struct gdbarch_tdep *tdep;
2373 struct gdbarch *gdbarch;
2374
2375 /* Try to determine the ABI of the object we are loading. */
2376 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
2377 {
2378 /* If it's a SOM file, assume it's HP/UX SOM. */
2379 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
2380 info.osabi = GDB_OSABI_HPUX_SOM;
2381 }
2382
2383 /* find a candidate among the list of pre-declared architectures. */
2384 arches = gdbarch_list_lookup_by_info (arches, &info);
2385 if (arches != NULL)
2386 return (arches->gdbarch);
2387
2388 /* If none found, then allocate and initialize one. */
2389 tdep = XZALLOC (struct gdbarch_tdep);
2390 gdbarch = gdbarch_alloc (&info, tdep);
2391
2392 /* Determine from the bfd_arch_info structure if we are dealing with
2393 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
2394 then default to a 32bit machine. */
2395 if (info.bfd_arch_info != NULL)
2396 tdep->bytes_per_address =
2397 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
2398 else
2399 tdep->bytes_per_address = 4;
2400
2401 /* Some parts of the gdbarch vector depend on whether we are running
2402 on a 32 bits or 64 bits target. */
2403 switch (tdep->bytes_per_address)
2404 {
2405 case 4:
2406 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
2407 set_gdbarch_register_name (gdbarch, hppa32_register_name);
2408 set_gdbarch_register_type (gdbarch, hppa32_register_type);
2409 break;
2410 case 8:
2411 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
2412 set_gdbarch_register_name (gdbarch, hppa64_register_name);
2413 set_gdbarch_register_type (gdbarch, hppa64_register_type);
2414 break;
2415 default:
2416 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
2417 tdep->bytes_per_address);
2418 }
2419
2420 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2421 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
2422
2423 /* The following gdbarch vector elements are the same in both ILP32
2424 and LP64, but might show differences some day. */
2425 set_gdbarch_long_long_bit (gdbarch, 64);
2426 set_gdbarch_long_double_bit (gdbarch, 128);
2427 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
2428
2429 /* The following gdbarch vector elements do not depend on the address
2430 size, or in any other gdbarch element previously set. */
2431 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
2432 set_gdbarch_inner_than (gdbarch, core_addr_greaterthan);
2433 set_gdbarch_sp_regnum (gdbarch, HPPA_SP_REGNUM);
2434 set_gdbarch_fp0_regnum (gdbarch, HPPA_FP0_REGNUM);
2435 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
2436 set_gdbarch_cannot_fetch_register (gdbarch, hppa_cannot_store_register);
2437 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
2438 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
2439 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
2440 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
2441 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
2442
2443 /* Helper for function argument information. */
2444 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
2445
2446 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
2447
2448 /* When a hardware watchpoint triggers, we'll move the inferior past
2449 it by removing all eventpoints; stepping past the instruction
2450 that caused the trigger; reinserting eventpoints; and checking
2451 whether any watched location changed. */
2452 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
2453
2454 /* Inferior function call methods. */
2455 switch (tdep->bytes_per_address)
2456 {
2457 case 4:
2458 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
2459 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
2460 break;
2461 case 8:
2462 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
2463 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
2464 break;
2465 default:
2466 internal_error (__FILE__, __LINE__, "bad switch");
2467 }
2468
2469 /* Struct return methods. */
2470 switch (tdep->bytes_per_address)
2471 {
2472 case 4:
2473 set_gdbarch_return_value (gdbarch, hppa32_return_value);
2474 break;
2475 case 8:
2476 set_gdbarch_return_value (gdbarch, hppa64_return_value);
2477 break;
2478 default:
2479 internal_error (__FILE__, __LINE__, "bad switch");
2480 }
2481
2482 set_gdbarch_breakpoint_from_pc (gdbarch, hppa_breakpoint_from_pc);
2483 set_gdbarch_pseudo_register_read (gdbarch, hppa_pseudo_register_read);
2484
2485 /* Frame unwind methods. */
2486 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
2487 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
2488
2489 /* Hook in ABI-specific overrides, if they have been registered. */
2490 gdbarch_init_osabi (info, gdbarch);
2491
2492 /* Hook in the default unwinders. */
2493 frame_unwind_append_sniffer (gdbarch, hppa_stub_unwind_sniffer);
2494 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
2495 frame_unwind_append_sniffer (gdbarch, hppa_fallback_unwind_sniffer);
2496 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
2497
2498 return gdbarch;
2499 }
2500
2501 static void
2502 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
2503 {
2504 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2505
2506 fprintf_unfiltered (file, "bytes_per_address = %d\n",
2507 tdep->bytes_per_address);
2508 fprintf_unfiltered (file, "elf = %s\n", tdep->is_elf ? "yes" : "no");
2509 }
2510
2511 void
2512 _initialize_hppa_tdep (void)
2513 {
2514 struct cmd_list_element *c;
2515 void break_at_finish_command (char *arg, int from_tty);
2516 void tbreak_at_finish_command (char *arg, int from_tty);
2517 void break_at_finish_at_depth_command (char *arg, int from_tty);
2518
2519 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
2520
2521 hppa_objfile_priv_data = register_objfile_data ();
2522
2523 add_cmd ("unwind", class_maintenance, unwind_command,
2524 "Print unwind table entry at given address.",
2525 &maintenanceprintlist);
2526
2527 deprecate_cmd (add_com ("xbreak", class_breakpoint,
2528 break_at_finish_command,
2529 concat ("Set breakpoint at procedure exit. \n\
2530 Argument may be function name, or \"*\" and an address.\n\
2531 If function is specified, break at end of code for that function.\n\
2532 If an address is specified, break at the end of the function that contains \n\
2533 that exact address.\n",
2534 "With no arg, uses current execution address of selected stack frame.\n\
2535 This is useful for breaking on return to a stack frame.\n\
2536 \n\
2537 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
2538 \n\
2539 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
2540 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
2541 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
2542 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
2543 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
2544
2545 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
2546 tbreak_at_finish_command,
2547 "Set temporary breakpoint at procedure exit. Either there should\n\
2548 be no argument or the argument must be a depth.\n"), NULL);
2549 set_cmd_completer (c, location_completer);
2550
2551 if (xdb_commands)
2552 deprecate_cmd (add_com ("bx", class_breakpoint,
2553 break_at_finish_at_depth_command,
2554 "Set breakpoint at procedure exit. Either there should\n\
2555 be no argument or the argument must be a depth.\n"), NULL);
2556
2557 /* Debug this files internals. */
2558 add_show_from_set (add_set_cmd ("hppa", class_maintenance, var_zinteger,
2559 &hppa_debug, "Set hppa debugging.\n\
2560 When non-zero, hppa specific debugging is enabled.", &setdebuglist), &showdebuglist);
2561 }
2562
This page took 0.079951 seconds and 5 git commands to generate.