* hppa-tdep.c (read_unwind_info): Use "text_offset" for linker
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994
3 Free Software Foundation, Inc.
4
5 Contributed by the Center for Software Science at the
6 University of Utah (pa-gdb-bugs@cs.utah.edu).
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "value.h"
28
29 /* For argument passing to the inferior */
30 #include "symtab.h"
31
32 #ifdef USG
33 #include <sys/types.h>
34 #endif
35
36 #include <sys/param.h>
37 #include <sys/dir.h>
38 #include <signal.h>
39
40 #ifdef COFF_ENCAPSULATE
41 #include "a.out.encap.h"
42 #else
43 #endif
44 #ifndef N_SET_MAGIC
45 #define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
46 #endif
47
48 /*#include <sys/user.h> After a.out.h */
49 #include <sys/file.h>
50 #include <sys/stat.h>
51 #include "wait.h"
52
53 #include "gdbcore.h"
54 #include "gdbcmd.h"
55 #include "target.h"
56 #include "symfile.h"
57 #include "objfiles.h"
58
59 static int restore_pc_queue PARAMS ((struct frame_saved_regs *));
60
61 static int hppa_alignof PARAMS ((struct type *));
62
63 CORE_ADDR frame_saved_pc PARAMS ((struct frame_info *));
64
65 static int prologue_inst_adjust_sp PARAMS ((unsigned long));
66
67 static int is_branch PARAMS ((unsigned long));
68
69 static int inst_saves_gr PARAMS ((unsigned long));
70
71 static int inst_saves_fr PARAMS ((unsigned long));
72
73 static int pc_in_interrupt_handler PARAMS ((CORE_ADDR));
74
75 static int pc_in_linker_stub PARAMS ((CORE_ADDR));
76
77 static int compare_unwind_entries PARAMS ((const struct unwind_table_entry *,
78 const struct unwind_table_entry *));
79
80 static void read_unwind_info PARAMS ((struct objfile *));
81
82 static void internalize_unwinds PARAMS ((struct objfile *,
83 struct unwind_table_entry *,
84 asection *, unsigned int,
85 unsigned int, CORE_ADDR));
86
87 \f
88 /* Routines to extract various sized constants out of hppa
89 instructions. */
90
91 /* This assumes that no garbage lies outside of the lower bits of
92 value. */
93
94 int
95 sign_extend (val, bits)
96 unsigned val, bits;
97 {
98 return (int)(val >> bits - 1 ? (-1 << bits) | val : val);
99 }
100
101 /* For many immediate values the sign bit is the low bit! */
102
103 int
104 low_sign_extend (val, bits)
105 unsigned val, bits;
106 {
107 return (int)((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
108 }
109 /* extract the immediate field from a ld{bhw}s instruction */
110
111 unsigned
112 get_field (val, from, to)
113 unsigned val, from, to;
114 {
115 val = val >> 31 - to;
116 return val & ((1 << 32 - from) - 1);
117 }
118
119 unsigned
120 set_field (val, from, to, new_val)
121 unsigned *val, from, to;
122 {
123 unsigned mask = ~((1 << (to - from + 1)) << (31 - from));
124 return *val = *val & mask | (new_val << (31 - from));
125 }
126
127 /* extract a 3-bit space register number from a be, ble, mtsp or mfsp */
128
129 extract_3 (word)
130 unsigned word;
131 {
132 return GET_FIELD (word, 18, 18) << 2 | GET_FIELD (word, 16, 17);
133 }
134
135 extract_5_load (word)
136 unsigned word;
137 {
138 return low_sign_extend (word >> 16 & MASK_5, 5);
139 }
140
141 /* extract the immediate field from a st{bhw}s instruction */
142
143 int
144 extract_5_store (word)
145 unsigned word;
146 {
147 return low_sign_extend (word & MASK_5, 5);
148 }
149
150 /* extract the immediate field from a break instruction */
151
152 unsigned
153 extract_5r_store (word)
154 unsigned word;
155 {
156 return (word & MASK_5);
157 }
158
159 /* extract the immediate field from a {sr}sm instruction */
160
161 unsigned
162 extract_5R_store (word)
163 unsigned word;
164 {
165 return (word >> 16 & MASK_5);
166 }
167
168 /* extract an 11 bit immediate field */
169
170 int
171 extract_11 (word)
172 unsigned word;
173 {
174 return low_sign_extend (word & MASK_11, 11);
175 }
176
177 /* extract a 14 bit immediate field */
178
179 int
180 extract_14 (word)
181 unsigned word;
182 {
183 return low_sign_extend (word & MASK_14, 14);
184 }
185
186 /* deposit a 14 bit constant in a word */
187
188 unsigned
189 deposit_14 (opnd, word)
190 int opnd;
191 unsigned word;
192 {
193 unsigned sign = (opnd < 0 ? 1 : 0);
194
195 return word | ((unsigned)opnd << 1 & MASK_14) | sign;
196 }
197
198 /* extract a 21 bit constant */
199
200 int
201 extract_21 (word)
202 unsigned word;
203 {
204 int val;
205
206 word &= MASK_21;
207 word <<= 11;
208 val = GET_FIELD (word, 20, 20);
209 val <<= 11;
210 val |= GET_FIELD (word, 9, 19);
211 val <<= 2;
212 val |= GET_FIELD (word, 5, 6);
213 val <<= 5;
214 val |= GET_FIELD (word, 0, 4);
215 val <<= 2;
216 val |= GET_FIELD (word, 7, 8);
217 return sign_extend (val, 21) << 11;
218 }
219
220 /* deposit a 21 bit constant in a word. Although 21 bit constants are
221 usually the top 21 bits of a 32 bit constant, we assume that only
222 the low 21 bits of opnd are relevant */
223
224 unsigned
225 deposit_21 (opnd, word)
226 unsigned opnd, word;
227 {
228 unsigned val = 0;
229
230 val |= GET_FIELD (opnd, 11 + 14, 11 + 18);
231 val <<= 2;
232 val |= GET_FIELD (opnd, 11 + 12, 11 + 13);
233 val <<= 2;
234 val |= GET_FIELD (opnd, 11 + 19, 11 + 20);
235 val <<= 11;
236 val |= GET_FIELD (opnd, 11 + 1, 11 + 11);
237 val <<= 1;
238 val |= GET_FIELD (opnd, 11 + 0, 11 + 0);
239 return word | val;
240 }
241
242 /* extract a 12 bit constant from branch instructions */
243
244 int
245 extract_12 (word)
246 unsigned word;
247 {
248 return sign_extend (GET_FIELD (word, 19, 28) |
249 GET_FIELD (word, 29, 29) << 10 |
250 (word & 0x1) << 11, 12) << 2;
251 }
252
253 /* extract a 17 bit constant from branch instructions, returning the
254 19 bit signed value. */
255
256 int
257 extract_17 (word)
258 unsigned word;
259 {
260 return sign_extend (GET_FIELD (word, 19, 28) |
261 GET_FIELD (word, 29, 29) << 10 |
262 GET_FIELD (word, 11, 15) << 11 |
263 (word & 0x1) << 16, 17) << 2;
264 }
265 \f
266
267 /* Compare the start address for two unwind entries returning 1 if
268 the first address is larger than the second, -1 if the second is
269 larger than the first, and zero if they are equal. */
270
271 static int
272 compare_unwind_entries (a, b)
273 const struct unwind_table_entry *a;
274 const struct unwind_table_entry *b;
275 {
276 if (a->region_start > b->region_start)
277 return 1;
278 else if (a->region_start < b->region_start)
279 return -1;
280 else
281 return 0;
282 }
283
284 static void
285 internalize_unwinds (objfile, table, section, entries, size, text_offset)
286 struct objfile *objfile;
287 struct unwind_table_entry *table;
288 asection *section;
289 unsigned int entries, size;
290 CORE_ADDR text_offset;
291 {
292 /* We will read the unwind entries into temporary memory, then
293 fill in the actual unwind table. */
294 if (size > 0)
295 {
296 unsigned long tmp;
297 unsigned i;
298 char *buf = alloca (size);
299
300 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
301
302 /* Now internalize the information being careful to handle host/target
303 endian issues. */
304 for (i = 0; i < entries; i++)
305 {
306 table[i].region_start = bfd_get_32 (objfile->obfd,
307 (bfd_byte *)buf);
308 table[i].region_start += text_offset;
309 buf += 4;
310 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
311 table[i].region_end += text_offset;
312 buf += 4;
313 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
314 buf += 4;
315 table[i].Cannot_unwind = (tmp >> 31) & 0x1;;
316 table[i].Millicode = (tmp >> 30) & 0x1;
317 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
318 table[i].Region_description = (tmp >> 27) & 0x3;
319 table[i].reserved1 = (tmp >> 26) & 0x1;
320 table[i].Entry_SR = (tmp >> 25) & 0x1;
321 table[i].Entry_FR = (tmp >> 21) & 0xf;
322 table[i].Entry_GR = (tmp >> 16) & 0x1f;
323 table[i].Args_stored = (tmp >> 15) & 0x1;
324 table[i].Variable_Frame = (tmp >> 14) & 0x1;
325 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
326 table[i].Frame_Extension_Millicode = (tmp >> 12 ) & 0x1;
327 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
328 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
329 table[i].Ada_Region = (tmp >> 9) & 0x1;
330 table[i].reserved2 = (tmp >> 5) & 0xf;
331 table[i].Save_SP = (tmp >> 4) & 0x1;
332 table[i].Save_RP = (tmp >> 3) & 0x1;
333 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
334 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
335 table[i].Cleanup_defined = tmp & 0x1;
336 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *)buf);
337 buf += 4;
338 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
339 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
340 table[i].Large_frame = (tmp >> 29) & 0x1;
341 table[i].reserved4 = (tmp >> 27) & 0x3;
342 table[i].Total_frame_size = tmp & 0x7ffffff;
343 }
344 }
345 }
346
347 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
348 the object file. This info is used mainly by find_unwind_entry() to find
349 out the stack frame size and frame pointer used by procedures. We put
350 everything on the psymbol obstack in the objfile so that it automatically
351 gets freed when the objfile is destroyed. */
352
353 static void
354 read_unwind_info (objfile)
355 struct objfile *objfile;
356 {
357 asection *unwind_sec, *elf_unwind_sec, *stub_unwind_sec;
358 unsigned unwind_size, elf_unwind_size, stub_unwind_size, total_size;
359 unsigned index, unwind_entries, elf_unwind_entries;
360 unsigned stub_entries, total_entries;
361 CORE_ADDR text_offset;
362 struct obj_unwind_info *ui;
363
364 text_offset = ANOFFSET (objfile->section_offsets, 0);
365 ui = obstack_alloc (&objfile->psymbol_obstack,
366 sizeof (struct obj_unwind_info));
367
368 ui->table = NULL;
369 ui->cache = NULL;
370 ui->last = -1;
371
372 /* Get hooks to all unwind sections. Note there is no linker-stub unwind
373 section in ELF at the moment. */
374 unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_START$");
375 elf_unwind_sec = bfd_get_section_by_name (objfile->obfd, ".PARISC.unwind");
376 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
377
378 /* Get sizes and unwind counts for all sections. */
379 if (unwind_sec)
380 {
381 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
382 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
383 }
384 else
385 {
386 unwind_size = 0;
387 unwind_entries = 0;
388 }
389
390 if (elf_unwind_sec)
391 {
392 elf_unwind_size = bfd_section_size (objfile->obfd, elf_unwind_sec);
393 elf_unwind_entries = elf_unwind_size / UNWIND_ENTRY_SIZE;
394 }
395 else
396 {
397 elf_unwind_size = 0;
398 elf_unwind_entries = 0;
399 }
400
401 if (stub_unwind_sec)
402 {
403 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
404 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
405 }
406 else
407 {
408 stub_unwind_size = 0;
409 stub_entries = 0;
410 }
411
412 /* Compute total number of unwind entries and their total size. */
413 total_entries = unwind_entries + elf_unwind_entries + stub_entries;
414 total_size = total_entries * sizeof (struct unwind_table_entry);
415
416 /* Allocate memory for the unwind table. */
417 ui->table = obstack_alloc (&objfile->psymbol_obstack, total_size);
418 ui->last = total_entries - 1;
419
420 /* Internalize the standard unwind entries. */
421 index = 0;
422 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
423 unwind_entries, unwind_size, text_offset);
424 index += unwind_entries;
425 internalize_unwinds (objfile, &ui->table[index], elf_unwind_sec,
426 elf_unwind_entries, elf_unwind_size, text_offset);
427 index += elf_unwind_entries;
428
429 /* Now internalize the stub unwind entries. */
430 if (stub_unwind_size > 0)
431 {
432 unsigned int i;
433 char *buf = alloca (stub_unwind_size);
434
435 /* Read in the stub unwind entries. */
436 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
437 0, stub_unwind_size);
438
439 /* Now convert them into regular unwind entries. */
440 for (i = 0; i < stub_entries; i++, index++)
441 {
442 /* Clear out the next unwind entry. */
443 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
444
445 /* Convert offset & size into region_start and region_end.
446 Stuff away the stub type into "reserved" fields. */
447 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
448 (bfd_byte *) buf);
449 ui->table[index].region_start += text_offset;
450 buf += 4;
451 ui->table[index].stub_type = bfd_get_8 (objfile->obfd,
452 (bfd_byte *) buf);
453 buf += 2;
454 ui->table[index].region_end
455 = ui->table[index].region_start + 4 *
456 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
457 buf += 2;
458 }
459
460 }
461
462 /* Unwind table needs to be kept sorted. */
463 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
464 compare_unwind_entries);
465
466 /* Keep a pointer to the unwind information. */
467 objfile->obj_private = (PTR) ui;
468 }
469
470 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
471 of the objfiles seeking the unwind table entry for this PC. Each objfile
472 contains a sorted list of struct unwind_table_entry. Since we do a binary
473 search of the unwind tables, we depend upon them to be sorted. */
474
475 static struct unwind_table_entry *
476 find_unwind_entry(pc)
477 CORE_ADDR pc;
478 {
479 int first, middle, last;
480 struct objfile *objfile;
481
482 ALL_OBJFILES (objfile)
483 {
484 struct obj_unwind_info *ui;
485
486 ui = OBJ_UNWIND_INFO (objfile);
487
488 if (!ui)
489 {
490 read_unwind_info (objfile);
491 ui = OBJ_UNWIND_INFO (objfile);
492 }
493
494 /* First, check the cache */
495
496 if (ui->cache
497 && pc >= ui->cache->region_start
498 && pc <= ui->cache->region_end)
499 return ui->cache;
500
501 /* Not in the cache, do a binary search */
502
503 first = 0;
504 last = ui->last;
505
506 while (first <= last)
507 {
508 middle = (first + last) / 2;
509 if (pc >= ui->table[middle].region_start
510 && pc <= ui->table[middle].region_end)
511 {
512 ui->cache = &ui->table[middle];
513 return &ui->table[middle];
514 }
515
516 if (pc < ui->table[middle].region_start)
517 last = middle - 1;
518 else
519 first = middle + 1;
520 }
521 } /* ALL_OBJFILES() */
522 return NULL;
523 }
524
525 /* start-sanitize-hpread */
526 /* Return the adjustment necessary to make for addresses on the stack
527 as presented by hpread.c.
528
529 This is necessary because of the stack direction on the PA and the
530 bizarre way in which someone (?) decided they wanted to handle
531 frame pointerless code in GDB. */
532 int
533 hpread_adjust_stack_address (func_addr)
534 CORE_ADDR func_addr;
535 {
536 struct unwind_table_entry *u;
537
538 u = find_unwind_entry (func_addr);
539 if (!u)
540 return 0;
541 else
542 return u->Total_frame_size << 3;
543 }
544 /* end-sanitize-hpread */
545
546 /* Called to determine if PC is in an interrupt handler of some
547 kind. */
548
549 static int
550 pc_in_interrupt_handler (pc)
551 CORE_ADDR pc;
552 {
553 struct unwind_table_entry *u;
554 struct minimal_symbol *msym_us;
555
556 u = find_unwind_entry (pc);
557 if (!u)
558 return 0;
559
560 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
561 its frame isn't a pure interrupt frame. Deal with this. */
562 msym_us = lookup_minimal_symbol_by_pc (pc);
563
564 return u->HP_UX_interrupt_marker && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us));
565 }
566
567 /* Called when no unwind descriptor was found for PC. Returns 1 if it
568 appears that PC is in a linker stub. */
569
570 static int
571 pc_in_linker_stub (pc)
572 CORE_ADDR pc;
573 {
574 int found_magic_instruction = 0;
575 int i;
576 char buf[4];
577
578 /* If unable to read memory, assume pc is not in a linker stub. */
579 if (target_read_memory (pc, buf, 4) != 0)
580 return 0;
581
582 /* We are looking for something like
583
584 ; $$dyncall jams RP into this special spot in the frame (RP')
585 ; before calling the "call stub"
586 ldw -18(sp),rp
587
588 ldsid (rp),r1 ; Get space associated with RP into r1
589 mtsp r1,sp ; Move it into space register 0
590 be,n 0(sr0),rp) ; back to your regularly scheduled program
591 */
592
593 /* Maximum known linker stub size is 4 instructions. Search forward
594 from the given PC, then backward. */
595 for (i = 0; i < 4; i++)
596 {
597 /* If we hit something with an unwind, stop searching this direction. */
598
599 if (find_unwind_entry (pc + i * 4) != 0)
600 break;
601
602 /* Check for ldsid (rp),r1 which is the magic instruction for a
603 return from a cross-space function call. */
604 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
605 {
606 found_magic_instruction = 1;
607 break;
608 }
609 /* Add code to handle long call/branch and argument relocation stubs
610 here. */
611 }
612
613 if (found_magic_instruction != 0)
614 return 1;
615
616 /* Now look backward. */
617 for (i = 0; i < 4; i++)
618 {
619 /* If we hit something with an unwind, stop searching this direction. */
620
621 if (find_unwind_entry (pc - i * 4) != 0)
622 break;
623
624 /* Check for ldsid (rp),r1 which is the magic instruction for a
625 return from a cross-space function call. */
626 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
627 {
628 found_magic_instruction = 1;
629 break;
630 }
631 /* Add code to handle long call/branch and argument relocation stubs
632 here. */
633 }
634 return found_magic_instruction;
635 }
636
637 static int
638 find_return_regnum(pc)
639 CORE_ADDR pc;
640 {
641 struct unwind_table_entry *u;
642
643 u = find_unwind_entry (pc);
644
645 if (!u)
646 return RP_REGNUM;
647
648 if (u->Millicode)
649 return 31;
650
651 return RP_REGNUM;
652 }
653
654 /* Return size of frame, or -1 if we should use a frame pointer. */
655 int
656 find_proc_framesize (pc)
657 CORE_ADDR pc;
658 {
659 struct unwind_table_entry *u;
660 struct minimal_symbol *msym_us;
661
662 u = find_unwind_entry (pc);
663
664 if (!u)
665 {
666 if (pc_in_linker_stub (pc))
667 /* Linker stubs have a zero size frame. */
668 return 0;
669 else
670 return -1;
671 }
672
673 msym_us = lookup_minimal_symbol_by_pc (pc);
674
675 /* If Save_SP is set, and we're not in an interrupt or signal caller,
676 then we have a frame pointer. Use it. */
677 if (u->Save_SP && !pc_in_interrupt_handler (pc)
678 && !IN_SIGTRAMP (pc, SYMBOL_NAME (msym_us)))
679 return -1;
680
681 return u->Total_frame_size << 3;
682 }
683
684 /* Return offset from sp at which rp is saved, or 0 if not saved. */
685 static int rp_saved PARAMS ((CORE_ADDR));
686
687 static int
688 rp_saved (pc)
689 CORE_ADDR pc;
690 {
691 struct unwind_table_entry *u;
692
693 u = find_unwind_entry (pc);
694
695 if (!u)
696 {
697 if (pc_in_linker_stub (pc))
698 /* This is the so-called RP'. */
699 return -24;
700 else
701 return 0;
702 }
703
704 if (u->Save_RP)
705 return -20;
706 else if (u->stub_type != 0)
707 {
708 switch (u->stub_type)
709 {
710 case EXPORT:
711 return -24;
712 case PARAMETER_RELOCATION:
713 return -8;
714 default:
715 return 0;
716 }
717 }
718 else
719 return 0;
720 }
721 \f
722 int
723 frameless_function_invocation (frame)
724 struct frame_info *frame;
725 {
726 struct unwind_table_entry *u;
727
728 u = find_unwind_entry (frame->pc);
729
730 if (u == 0)
731 return 0;
732
733 return (u->Total_frame_size == 0 && u->stub_type == 0);
734 }
735
736 CORE_ADDR
737 saved_pc_after_call (frame)
738 struct frame_info *frame;
739 {
740 int ret_regnum;
741 CORE_ADDR pc;
742 struct unwind_table_entry *u;
743
744 ret_regnum = find_return_regnum (get_frame_pc (frame));
745 pc = read_register (ret_regnum) & ~0x3;
746
747 /* If PC is in a linker stub, then we need to dig the address
748 the stub will return to out of the stack. */
749 u = find_unwind_entry (pc);
750 if (u && u->stub_type != 0)
751 return frame_saved_pc (frame);
752 else
753 return pc;
754 }
755 \f
756 CORE_ADDR
757 frame_saved_pc (frame)
758 struct frame_info *frame;
759 {
760 CORE_ADDR pc = get_frame_pc (frame);
761 struct unwind_table_entry *u;
762
763 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
764 at the base of the frame in an interrupt handler. Registers within
765 are saved in the exact same order as GDB numbers registers. How
766 convienent. */
767 if (pc_in_interrupt_handler (pc))
768 return read_memory_integer (frame->frame + PC_REGNUM * 4, 4) & ~0x3;
769
770 /* Deal with signal handler caller frames too. */
771 if (frame->signal_handler_caller)
772 {
773 CORE_ADDR rp;
774 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
775 return rp & ~0x3;
776 }
777
778 if (frameless_function_invocation (frame))
779 {
780 int ret_regnum;
781
782 ret_regnum = find_return_regnum (pc);
783
784 /* If the next frame is an interrupt frame or a signal
785 handler caller, then we need to look in the saved
786 register area to get the return pointer (the values
787 in the registers may not correspond to anything useful). */
788 if (frame->next
789 && (frame->next->signal_handler_caller
790 || pc_in_interrupt_handler (frame->next->pc)))
791 {
792 struct frame_saved_regs saved_regs;
793
794 get_frame_saved_regs (frame->next, &saved_regs);
795 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
796 {
797 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
798
799 /* Syscalls are really two frames. The syscall stub itself
800 with a return pointer in %rp and the kernel call with
801 a return pointer in %r31. We return the %rp variant
802 if %r31 is the same as frame->pc. */
803 if (pc == frame->pc)
804 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
805 }
806 else
807 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
808 }
809 else
810 pc = read_register (ret_regnum) & ~0x3;
811 }
812 else
813 {
814 int rp_offset;
815
816 restart:
817 rp_offset = rp_saved (pc);
818 /* Similar to code in frameless function case. If the next
819 frame is a signal or interrupt handler, then dig the right
820 information out of the saved register info. */
821 if (rp_offset == 0
822 && frame->next
823 && (frame->next->signal_handler_caller
824 || pc_in_interrupt_handler (frame->next->pc)))
825 {
826 struct frame_saved_regs saved_regs;
827
828 get_frame_saved_regs (frame->next, &saved_regs);
829 if (read_memory_integer (saved_regs.regs[FLAGS_REGNUM], 4) & 0x2)
830 {
831 pc = read_memory_integer (saved_regs.regs[31], 4) & ~0x3;
832
833 /* Syscalls are really two frames. The syscall stub itself
834 with a return pointer in %rp and the kernel call with
835 a return pointer in %r31. We return the %rp variant
836 if %r31 is the same as frame->pc. */
837 if (pc == frame->pc)
838 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
839 }
840 else
841 pc = read_memory_integer (saved_regs.regs[RP_REGNUM], 4) & ~0x3;
842 }
843 else if (rp_offset == 0)
844 pc = read_register (RP_REGNUM) & ~0x3;
845 else
846 pc = read_memory_integer (frame->frame + rp_offset, 4) & ~0x3;
847 }
848
849 /* If PC is inside a linker stub, then dig out the address the stub
850 will return to. */
851 u = find_unwind_entry (pc);
852 if (u && u->stub_type != 0)
853 goto restart;
854
855 return pc;
856 }
857 \f
858 /* We need to correct the PC and the FP for the outermost frame when we are
859 in a system call. */
860
861 void
862 init_extra_frame_info (fromleaf, frame)
863 int fromleaf;
864 struct frame_info *frame;
865 {
866 int flags;
867 int framesize;
868
869 if (frame->next && !fromleaf)
870 return;
871
872 /* If the next frame represents a frameless function invocation
873 then we have to do some adjustments that are normally done by
874 FRAME_CHAIN. (FRAME_CHAIN is not called in this case.) */
875 if (fromleaf)
876 {
877 /* Find the framesize of *this* frame without peeking at the PC
878 in the current frame structure (it isn't set yet). */
879 framesize = find_proc_framesize (FRAME_SAVED_PC (get_next_frame (frame)));
880
881 /* Now adjust our base frame accordingly. If we have a frame pointer
882 use it, else subtract the size of this frame from the current
883 frame. (we always want frame->frame to point at the lowest address
884 in the frame). */
885 if (framesize == -1)
886 frame->frame = read_register (FP_REGNUM);
887 else
888 frame->frame -= framesize;
889 return;
890 }
891
892 flags = read_register (FLAGS_REGNUM);
893 if (flags & 2) /* In system call? */
894 frame->pc = read_register (31) & ~0x3;
895
896 /* The outermost frame is always derived from PC-framesize
897
898 One might think frameless innermost frames should have
899 a frame->frame that is the same as the parent's frame->frame.
900 That is wrong; frame->frame in that case should be the *high*
901 address of the parent's frame. It's complicated as hell to
902 explain, but the parent *always* creates some stack space for
903 the child. So the child actually does have a frame of some
904 sorts, and its base is the high address in its parent's frame. */
905 framesize = find_proc_framesize(frame->pc);
906 if (framesize == -1)
907 frame->frame = read_register (FP_REGNUM);
908 else
909 frame->frame = read_register (SP_REGNUM) - framesize;
910 }
911 \f
912 /* Given a GDB frame, determine the address of the calling function's frame.
913 This will be used to create a new GDB frame struct, and then
914 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
915
916 This may involve searching through prologues for several functions
917 at boundaries where GCC calls HP C code, or where code which has
918 a frame pointer calls code without a frame pointer. */
919
920 CORE_ADDR
921 frame_chain (frame)
922 struct frame_info *frame;
923 {
924 int my_framesize, caller_framesize;
925 struct unwind_table_entry *u;
926 CORE_ADDR frame_base;
927
928 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
929 are easy; at *sp we have a full save state strucutre which we can
930 pull the old stack pointer from. Also see frame_saved_pc for
931 code to dig a saved PC out of the save state structure. */
932 if (pc_in_interrupt_handler (frame->pc))
933 frame_base = read_memory_integer (frame->frame + SP_REGNUM * 4, 4);
934 else if (frame->signal_handler_caller)
935 {
936 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
937 }
938 else
939 frame_base = frame->frame;
940
941 /* Get frame sizes for the current frame and the frame of the
942 caller. */
943 my_framesize = find_proc_framesize (frame->pc);
944 caller_framesize = find_proc_framesize (FRAME_SAVED_PC(frame));
945
946 /* If caller does not have a frame pointer, then its frame
947 can be found at current_frame - caller_framesize. */
948 if (caller_framesize != -1)
949 return frame_base - caller_framesize;
950
951 /* Both caller and callee have frame pointers and are GCC compiled
952 (SAVE_SP bit in unwind descriptor is on for both functions.
953 The previous frame pointer is found at the top of the current frame. */
954 if (caller_framesize == -1 && my_framesize == -1)
955 return read_memory_integer (frame_base, 4);
956
957 /* Caller has a frame pointer, but callee does not. This is a little
958 more difficult as GCC and HP C lay out locals and callee register save
959 areas very differently.
960
961 The previous frame pointer could be in a register, or in one of
962 several areas on the stack.
963
964 Walk from the current frame to the innermost frame examining
965 unwind descriptors to determine if %r3 ever gets saved into the
966 stack. If so return whatever value got saved into the stack.
967 If it was never saved in the stack, then the value in %r3 is still
968 valid, so use it.
969
970 We use information from unwind descriptors to determine if %r3
971 is saved into the stack (Entry_GR field has this information). */
972
973 while (frame)
974 {
975 u = find_unwind_entry (frame->pc);
976
977 if (!u)
978 {
979 /* We could find this information by examining prologues. I don't
980 think anyone has actually written any tools (not even "strip")
981 which leave them out of an executable, so maybe this is a moot
982 point. */
983 warning ("Unable to find unwind for PC 0x%x -- Help!", frame->pc);
984 return 0;
985 }
986
987 /* Entry_GR specifies the number of callee-saved general registers
988 saved in the stack. It starts at %r3, so %r3 would be 1. */
989 if (u->Entry_GR >= 1 || u->Save_SP
990 || frame->signal_handler_caller
991 || pc_in_interrupt_handler (frame->pc))
992 break;
993 else
994 frame = frame->next;
995 }
996
997 if (frame)
998 {
999 /* We may have walked down the chain into a function with a frame
1000 pointer. */
1001 if (u->Save_SP
1002 && !frame->signal_handler_caller
1003 && !pc_in_interrupt_handler (frame->pc))
1004 return read_memory_integer (frame->frame, 4);
1005 /* %r3 was saved somewhere in the stack. Dig it out. */
1006 else
1007 {
1008 struct frame_saved_regs saved_regs;
1009
1010 get_frame_saved_regs (frame, &saved_regs);
1011 return read_memory_integer (saved_regs.regs[FP_REGNUM], 4);
1012 }
1013 }
1014 else
1015 {
1016 /* The value in %r3 was never saved into the stack (thus %r3 still
1017 holds the value of the previous frame pointer). */
1018 return read_register (FP_REGNUM);
1019 }
1020 }
1021
1022 \f
1023 /* To see if a frame chain is valid, see if the caller looks like it
1024 was compiled with gcc. */
1025
1026 int
1027 frame_chain_valid (chain, thisframe)
1028 CORE_ADDR chain;
1029 struct frame_info *thisframe;
1030 {
1031 struct minimal_symbol *msym_us;
1032 struct minimal_symbol *msym_start;
1033 struct unwind_table_entry *u, *next_u = NULL;
1034 struct frame_info *next;
1035
1036 if (!chain)
1037 return 0;
1038
1039 u = find_unwind_entry (thisframe->pc);
1040
1041 if (u == NULL)
1042 return 1;
1043
1044 /* We can't just check that the same of msym_us is "_start", because
1045 someone idiotically decided that they were going to make a Ltext_end
1046 symbol with the same address. This Ltext_end symbol is totally
1047 indistinguishable (as nearly as I can tell) from the symbol for a function
1048 which is (legitimately, since it is in the user's namespace)
1049 named Ltext_end, so we can't just ignore it. */
1050 msym_us = lookup_minimal_symbol_by_pc (FRAME_SAVED_PC (thisframe));
1051 msym_start = lookup_minimal_symbol ("_start", NULL);
1052 if (msym_us
1053 && msym_start
1054 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1055 return 0;
1056
1057 next = get_next_frame (thisframe);
1058 if (next)
1059 next_u = find_unwind_entry (next->pc);
1060
1061 /* If this frame does not save SP, has no stack, isn't a stub,
1062 and doesn't "call" an interrupt routine or signal handler caller,
1063 then its not valid. */
1064 if (u->Save_SP || u->Total_frame_size || u->stub_type != 0
1065 || (thisframe->next && thisframe->next->signal_handler_caller)
1066 || (next_u && next_u->HP_UX_interrupt_marker))
1067 return 1;
1068
1069 if (pc_in_linker_stub (thisframe->pc))
1070 return 1;
1071
1072 return 0;
1073 }
1074
1075 /*
1076 * These functions deal with saving and restoring register state
1077 * around a function call in the inferior. They keep the stack
1078 * double-word aligned; eventually, on an hp700, the stack will have
1079 * to be aligned to a 64-byte boundary.
1080 */
1081
1082 int
1083 push_dummy_frame ()
1084 {
1085 register CORE_ADDR sp;
1086 register int regnum;
1087 int int_buffer;
1088 double freg_buffer;
1089
1090 /* Space for "arguments"; the RP goes in here. */
1091 sp = read_register (SP_REGNUM) + 48;
1092 int_buffer = read_register (RP_REGNUM) | 0x3;
1093 write_memory (sp - 20, (char *)&int_buffer, 4);
1094
1095 int_buffer = read_register (FP_REGNUM);
1096 write_memory (sp, (char *)&int_buffer, 4);
1097
1098 write_register (FP_REGNUM, sp);
1099
1100 sp += 8;
1101
1102 for (regnum = 1; regnum < 32; regnum++)
1103 if (regnum != RP_REGNUM && regnum != FP_REGNUM)
1104 sp = push_word (sp, read_register (regnum));
1105
1106 sp += 4;
1107
1108 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1109 {
1110 read_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1111 sp = push_bytes (sp, (char *)&freg_buffer, 8);
1112 }
1113 sp = push_word (sp, read_register (IPSW_REGNUM));
1114 sp = push_word (sp, read_register (SAR_REGNUM));
1115 sp = push_word (sp, read_register (PCOQ_HEAD_REGNUM));
1116 sp = push_word (sp, read_register (PCSQ_HEAD_REGNUM));
1117 sp = push_word (sp, read_register (PCOQ_TAIL_REGNUM));
1118 sp = push_word (sp, read_register (PCSQ_TAIL_REGNUM));
1119 write_register (SP_REGNUM, sp);
1120 }
1121
1122 find_dummy_frame_regs (frame, frame_saved_regs)
1123 struct frame_info *frame;
1124 struct frame_saved_regs *frame_saved_regs;
1125 {
1126 CORE_ADDR fp = frame->frame;
1127 int i;
1128
1129 frame_saved_regs->regs[RP_REGNUM] = fp - 20 & ~0x3;
1130 frame_saved_regs->regs[FP_REGNUM] = fp;
1131 frame_saved_regs->regs[1] = fp + 8;
1132
1133 for (fp += 12, i = 3; i < 32; i++)
1134 {
1135 if (i != FP_REGNUM)
1136 {
1137 frame_saved_regs->regs[i] = fp;
1138 fp += 4;
1139 }
1140 }
1141
1142 fp += 4;
1143 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1144 frame_saved_regs->regs[i] = fp;
1145
1146 frame_saved_regs->regs[IPSW_REGNUM] = fp;
1147 frame_saved_regs->regs[SAR_REGNUM] = fp + 4;
1148 frame_saved_regs->regs[PCOQ_HEAD_REGNUM] = fp + 8;
1149 frame_saved_regs->regs[PCSQ_HEAD_REGNUM] = fp + 12;
1150 frame_saved_regs->regs[PCOQ_TAIL_REGNUM] = fp + 16;
1151 frame_saved_regs->regs[PCSQ_TAIL_REGNUM] = fp + 20;
1152 }
1153
1154 int
1155 hppa_pop_frame ()
1156 {
1157 register struct frame_info *frame = get_current_frame ();
1158 register CORE_ADDR fp;
1159 register int regnum;
1160 struct frame_saved_regs fsr;
1161 double freg_buffer;
1162
1163 fp = FRAME_FP (frame);
1164 get_frame_saved_regs (frame, &fsr);
1165
1166 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1167 if (fsr.regs[IPSW_REGNUM]) /* Restoring a call dummy frame */
1168 restore_pc_queue (&fsr);
1169 #endif
1170
1171 for (regnum = 31; regnum > 0; regnum--)
1172 if (fsr.regs[regnum])
1173 write_register (regnum, read_memory_integer (fsr.regs[regnum], 4));
1174
1175 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM ; regnum--)
1176 if (fsr.regs[regnum])
1177 {
1178 read_memory (fsr.regs[regnum], (char *)&freg_buffer, 8);
1179 write_register_bytes (REGISTER_BYTE (regnum), (char *)&freg_buffer, 8);
1180 }
1181
1182 if (fsr.regs[IPSW_REGNUM])
1183 write_register (IPSW_REGNUM,
1184 read_memory_integer (fsr.regs[IPSW_REGNUM], 4));
1185
1186 if (fsr.regs[SAR_REGNUM])
1187 write_register (SAR_REGNUM,
1188 read_memory_integer (fsr.regs[SAR_REGNUM], 4));
1189
1190 /* If the PC was explicitly saved, then just restore it. */
1191 if (fsr.regs[PCOQ_TAIL_REGNUM])
1192 write_register (PCOQ_TAIL_REGNUM,
1193 read_memory_integer (fsr.regs[PCOQ_TAIL_REGNUM], 4));
1194
1195 /* Else use the value in %rp to set the new PC. */
1196 else
1197 target_write_pc (read_register (RP_REGNUM), 0);
1198
1199 write_register (FP_REGNUM, read_memory_integer (fp, 4));
1200
1201 if (fsr.regs[IPSW_REGNUM]) /* call dummy */
1202 write_register (SP_REGNUM, fp - 48);
1203 else
1204 write_register (SP_REGNUM, fp);
1205
1206 flush_cached_frames ();
1207 }
1208
1209 /*
1210 * After returning to a dummy on the stack, restore the instruction
1211 * queue space registers. */
1212
1213 static int
1214 restore_pc_queue (fsr)
1215 struct frame_saved_regs *fsr;
1216 {
1217 CORE_ADDR pc = read_pc ();
1218 CORE_ADDR new_pc = read_memory_integer (fsr->regs[PCOQ_HEAD_REGNUM], 4);
1219 int pid;
1220 struct target_waitstatus w;
1221 int insn_count;
1222
1223 /* Advance past break instruction in the call dummy. */
1224 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1225 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1226
1227 /*
1228 * HPUX doesn't let us set the space registers or the space
1229 * registers of the PC queue through ptrace. Boo, hiss.
1230 * Conveniently, the call dummy has this sequence of instructions
1231 * after the break:
1232 * mtsp r21, sr0
1233 * ble,n 0(sr0, r22)
1234 *
1235 * So, load up the registers and single step until we are in the
1236 * right place.
1237 */
1238
1239 write_register (21, read_memory_integer (fsr->regs[PCSQ_HEAD_REGNUM], 4));
1240 write_register (22, new_pc);
1241
1242 for (insn_count = 0; insn_count < 3; insn_count++)
1243 {
1244 /* FIXME: What if the inferior gets a signal right now? Want to
1245 merge this into wait_for_inferior (as a special kind of
1246 watchpoint? By setting a breakpoint at the end? Is there
1247 any other choice? Is there *any* way to do this stuff with
1248 ptrace() or some equivalent?). */
1249 resume (1, 0);
1250 target_wait (inferior_pid, &w);
1251
1252 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1253 {
1254 stop_signal = w.value.sig;
1255 terminal_ours_for_output ();
1256 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1257 target_signal_to_name (stop_signal),
1258 target_signal_to_string (stop_signal));
1259 gdb_flush (gdb_stdout);
1260 return 0;
1261 }
1262 }
1263 target_terminal_ours ();
1264 target_fetch_registers (-1);
1265 return 1;
1266 }
1267
1268 CORE_ADDR
1269 hppa_push_arguments (nargs, args, sp, struct_return, struct_addr)
1270 int nargs;
1271 value_ptr *args;
1272 CORE_ADDR sp;
1273 int struct_return;
1274 CORE_ADDR struct_addr;
1275 {
1276 /* array of arguments' offsets */
1277 int *offset = (int *)alloca(nargs * sizeof (int));
1278 int cum = 0;
1279 int i, alignment;
1280
1281 for (i = 0; i < nargs; i++)
1282 {
1283 /* Coerce chars to int & float to double if necessary */
1284 args[i] = value_arg_coerce (args[i]);
1285
1286 cum += TYPE_LENGTH (VALUE_TYPE (args[i]));
1287
1288 /* value must go at proper alignment. Assume alignment is a
1289 power of two.*/
1290 alignment = hppa_alignof (VALUE_TYPE (args[i]));
1291 if (cum % alignment)
1292 cum = (cum + alignment) & -alignment;
1293 offset[i] = -cum;
1294 }
1295 sp += max ((cum + 7) & -8, 16);
1296
1297 for (i = 0; i < nargs; i++)
1298 write_memory (sp + offset[i], VALUE_CONTENTS (args[i]),
1299 TYPE_LENGTH (VALUE_TYPE (args[i])));
1300
1301 if (struct_return)
1302 write_register (28, struct_addr);
1303 return sp + 32;
1304 }
1305
1306 /*
1307 * Insert the specified number of args and function address
1308 * into a call sequence of the above form stored at DUMMYNAME.
1309 *
1310 * On the hppa we need to call the stack dummy through $$dyncall.
1311 * Therefore our version of FIX_CALL_DUMMY takes an extra argument,
1312 * real_pc, which is the location where gdb should start up the
1313 * inferior to do the function call.
1314 */
1315
1316 CORE_ADDR
1317 hppa_fix_call_dummy (dummy, pc, fun, nargs, args, type, gcc_p)
1318 char *dummy;
1319 CORE_ADDR pc;
1320 CORE_ADDR fun;
1321 int nargs;
1322 value_ptr *args;
1323 struct type *type;
1324 int gcc_p;
1325 {
1326 CORE_ADDR dyncall_addr, sr4export_addr;
1327 struct minimal_symbol *msymbol;
1328 int flags = read_register (FLAGS_REGNUM);
1329 struct unwind_table_entry *u;
1330
1331 msymbol = lookup_minimal_symbol ("$$dyncall", (struct objfile *) NULL);
1332 if (msymbol == NULL)
1333 error ("Can't find an address for $$dyncall trampoline");
1334
1335 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1336
1337 /* FUN could be a procedure label, in which case we have to get
1338 its real address and the value of its GOT/DP. */
1339 if (fun & 0x2)
1340 {
1341 /* Get the GOT/DP value for the target function. It's
1342 at *(fun+4). Note the call dummy is *NOT* allowed to
1343 trash %r19 before calling the target function. */
1344 write_register (19, read_memory_integer ((fun & ~0x3) + 4, 4));
1345
1346 /* Now get the real address for the function we are calling, it's
1347 at *fun. */
1348 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3, 4);
1349 }
1350
1351 /* If we are calling an import stub (eg calling into a dynamic library)
1352 then have sr4export call the magic __d_plt_call routine which is linked
1353 in from end.o. (You can't use _sr4export to call the import stub as
1354 the value in sp-24 will get fried and you end up returning to the
1355 wrong location. You can't call the import stub directly as the code
1356 to bind the PLT entry to a function can't return to a stack address.) */
1357 u = find_unwind_entry (fun);
1358 if (u && u->stub_type == IMPORT)
1359 {
1360 CORE_ADDR new_fun;
1361 msymbol = lookup_minimal_symbol ("__d_plt_call", (struct objfile *) NULL);
1362 if (msymbol == NULL)
1363 error ("Can't find an address for __d_plt_call trampoline");
1364
1365 /* This is where sr4export will jump to. */
1366 new_fun = SYMBOL_VALUE_ADDRESS (msymbol);
1367
1368 /* We have to store the address of the stub in __shlib_funcptr. */
1369 msymbol = lookup_minimal_symbol ("__shlib_funcptr",
1370 (struct objfile *)NULL);
1371 if (msymbol == NULL)
1372 error ("Can't find an address for __shlib_funcptr");
1373
1374 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol), (char *)&fun, 4);
1375 fun = new_fun;
1376
1377 }
1378
1379 /* We still need sr4export's address too. */
1380 msymbol = lookup_minimal_symbol ("_sr4export", (struct objfile *) NULL);
1381 if (msymbol == NULL)
1382 error ("Can't find an address for _sr4export trampoline");
1383
1384 sr4export_addr = SYMBOL_VALUE_ADDRESS (msymbol);
1385
1386 store_unsigned_integer
1387 (&dummy[9*REGISTER_SIZE],
1388 REGISTER_SIZE,
1389 deposit_21 (fun >> 11,
1390 extract_unsigned_integer (&dummy[9*REGISTER_SIZE],
1391 REGISTER_SIZE)));
1392 store_unsigned_integer
1393 (&dummy[10*REGISTER_SIZE],
1394 REGISTER_SIZE,
1395 deposit_14 (fun & MASK_11,
1396 extract_unsigned_integer (&dummy[10*REGISTER_SIZE],
1397 REGISTER_SIZE)));
1398 store_unsigned_integer
1399 (&dummy[12*REGISTER_SIZE],
1400 REGISTER_SIZE,
1401 deposit_21 (sr4export_addr >> 11,
1402 extract_unsigned_integer (&dummy[12*REGISTER_SIZE],
1403 REGISTER_SIZE)));
1404 store_unsigned_integer
1405 (&dummy[13*REGISTER_SIZE],
1406 REGISTER_SIZE,
1407 deposit_14 (sr4export_addr & MASK_11,
1408 extract_unsigned_integer (&dummy[13*REGISTER_SIZE],
1409 REGISTER_SIZE)));
1410
1411 write_register (22, pc);
1412
1413 /* If we are in a syscall, then we should call the stack dummy
1414 directly. $$dyncall is not needed as the kernel sets up the
1415 space id registers properly based on the value in %r31. In
1416 fact calling $$dyncall will not work because the value in %r22
1417 will be clobbered on the syscall exit path. */
1418 if (flags & 2)
1419 return pc;
1420 else
1421 return dyncall_addr;
1422
1423 }
1424
1425 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
1426 bits. */
1427
1428 CORE_ADDR
1429 target_read_pc (pid)
1430 int pid;
1431 {
1432 int flags = read_register (FLAGS_REGNUM);
1433
1434 if (flags & 2)
1435 return read_register (31) & ~0x3;
1436 return read_register (PC_REGNUM) & ~0x3;
1437 }
1438
1439 /* Write out the PC. If currently in a syscall, then also write the new
1440 PC value into %r31. */
1441
1442 void
1443 target_write_pc (v, pid)
1444 CORE_ADDR v;
1445 int pid;
1446 {
1447 int flags = read_register (FLAGS_REGNUM);
1448
1449 /* If in a syscall, then set %r31. Also make sure to get the
1450 privilege bits set correctly. */
1451 if (flags & 2)
1452 write_register (31, (long) (v | 0x3));
1453
1454 write_register (PC_REGNUM, (long) v);
1455 write_register (NPC_REGNUM, (long) v + 4);
1456 }
1457
1458 /* return the alignment of a type in bytes. Structures have the maximum
1459 alignment required by their fields. */
1460
1461 static int
1462 hppa_alignof (arg)
1463 struct type *arg;
1464 {
1465 int max_align, align, i;
1466 switch (TYPE_CODE (arg))
1467 {
1468 case TYPE_CODE_PTR:
1469 case TYPE_CODE_INT:
1470 case TYPE_CODE_FLT:
1471 return TYPE_LENGTH (arg);
1472 case TYPE_CODE_ARRAY:
1473 return hppa_alignof (TYPE_FIELD_TYPE (arg, 0));
1474 case TYPE_CODE_STRUCT:
1475 case TYPE_CODE_UNION:
1476 max_align = 2;
1477 for (i = 0; i < TYPE_NFIELDS (arg); i++)
1478 {
1479 /* Bit fields have no real alignment. */
1480 if (!TYPE_FIELD_BITPOS (arg, i))
1481 {
1482 align = hppa_alignof (TYPE_FIELD_TYPE (arg, i));
1483 max_align = max (max_align, align);
1484 }
1485 }
1486 return max_align;
1487 default:
1488 return 4;
1489 }
1490 }
1491
1492 /* Print the register regnum, or all registers if regnum is -1 */
1493
1494 pa_do_registers_info (regnum, fpregs)
1495 int regnum;
1496 int fpregs;
1497 {
1498 char raw_regs [REGISTER_BYTES];
1499 int i;
1500
1501 for (i = 0; i < NUM_REGS; i++)
1502 read_relative_register_raw_bytes (i, raw_regs + REGISTER_BYTE (i));
1503 if (regnum == -1)
1504 pa_print_registers (raw_regs, regnum, fpregs);
1505 else if (regnum < FP0_REGNUM)
1506 printf_unfiltered ("%s %x\n", reg_names[regnum], *(long *)(raw_regs +
1507 REGISTER_BYTE (regnum)));
1508 else
1509 pa_print_fp_reg (regnum);
1510 }
1511
1512 pa_print_registers (raw_regs, regnum, fpregs)
1513 char *raw_regs;
1514 int regnum;
1515 int fpregs;
1516 {
1517 int i;
1518
1519 for (i = 0; i < 18; i++)
1520 printf_unfiltered ("%8.8s: %8x %8.8s: %8x %8.8s: %8x %8.8s: %8x\n",
1521 reg_names[i],
1522 *(int *)(raw_regs + REGISTER_BYTE (i)),
1523 reg_names[i + 18],
1524 *(int *)(raw_regs + REGISTER_BYTE (i + 18)),
1525 reg_names[i + 36],
1526 *(int *)(raw_regs + REGISTER_BYTE (i + 36)),
1527 reg_names[i + 54],
1528 *(int *)(raw_regs + REGISTER_BYTE (i + 54)));
1529
1530 if (fpregs)
1531 for (i = 72; i < NUM_REGS; i++)
1532 pa_print_fp_reg (i);
1533 }
1534
1535 pa_print_fp_reg (i)
1536 int i;
1537 {
1538 unsigned char raw_buffer[MAX_REGISTER_RAW_SIZE];
1539 unsigned char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
1540
1541 /* Get 32bits of data. */
1542 read_relative_register_raw_bytes (i, raw_buffer);
1543
1544 /* Put it in the buffer. No conversions are ever necessary. */
1545 memcpy (virtual_buffer, raw_buffer, REGISTER_RAW_SIZE (i));
1546
1547 fputs_filtered (reg_names[i], gdb_stdout);
1548 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1549 fputs_filtered ("(single precision) ", gdb_stdout);
1550
1551 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, gdb_stdout, 0,
1552 1, 0, Val_pretty_default);
1553 printf_filtered ("\n");
1554
1555 /* If "i" is even, then this register can also be a double-precision
1556 FP register. Dump it out as such. */
1557 if ((i % 2) == 0)
1558 {
1559 /* Get the data in raw format for the 2nd half. */
1560 read_relative_register_raw_bytes (i + 1, raw_buffer);
1561
1562 /* Copy it into the appropriate part of the virtual buffer. */
1563 memcpy (virtual_buffer + REGISTER_RAW_SIZE (i), raw_buffer,
1564 REGISTER_RAW_SIZE (i));
1565
1566 /* Dump it as a double. */
1567 fputs_filtered (reg_names[i], gdb_stdout);
1568 print_spaces_filtered (8 - strlen (reg_names[i]), gdb_stdout);
1569 fputs_filtered ("(double precision) ", gdb_stdout);
1570
1571 val_print (builtin_type_double, virtual_buffer, 0, gdb_stdout, 0,
1572 1, 0, Val_pretty_default);
1573 printf_filtered ("\n");
1574 }
1575 }
1576
1577 /* Figure out if PC is in a trampoline, and if so find out where
1578 the trampoline will jump to. If not in a trampoline, return zero.
1579
1580 Simple code examination probably is not a good idea since the code
1581 sequences in trampolines can also appear in user code.
1582
1583 We use unwinds and information from the minimal symbol table to
1584 determine when we're in a trampoline. This won't work for ELF
1585 (yet) since it doesn't create stub unwind entries. Whether or
1586 not ELF will create stub unwinds or normal unwinds for linker
1587 stubs is still being debated.
1588
1589 This should handle simple calls through dyncall or sr4export,
1590 long calls, argument relocation stubs, and dyncall/sr4export
1591 calling an argument relocation stub. It even handles some stubs
1592 used in dynamic executables. */
1593
1594 CORE_ADDR
1595 skip_trampoline_code (pc, name)
1596 CORE_ADDR pc;
1597 char *name;
1598 {
1599 long orig_pc = pc;
1600 long prev_inst, curr_inst, loc;
1601 static CORE_ADDR dyncall = 0;
1602 static CORE_ADDR sr4export = 0;
1603 struct minimal_symbol *msym;
1604 struct unwind_table_entry *u;
1605
1606 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
1607 new exec file */
1608
1609 if (!dyncall)
1610 {
1611 msym = lookup_minimal_symbol ("$$dyncall", NULL);
1612 if (msym)
1613 dyncall = SYMBOL_VALUE_ADDRESS (msym);
1614 else
1615 dyncall = -1;
1616 }
1617
1618 if (!sr4export)
1619 {
1620 msym = lookup_minimal_symbol ("_sr4export", NULL);
1621 if (msym)
1622 sr4export = SYMBOL_VALUE_ADDRESS (msym);
1623 else
1624 sr4export = -1;
1625 }
1626
1627 /* Addresses passed to dyncall may *NOT* be the actual address
1628 of the function. So we may have to do something special. */
1629 if (pc == dyncall)
1630 {
1631 pc = (CORE_ADDR) read_register (22);
1632
1633 /* If bit 30 (counting from the left) is on, then pc is the address of
1634 the PLT entry for this function, not the address of the function
1635 itself. Bit 31 has meaning too, but only for MPE. */
1636 if (pc & 0x2)
1637 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, 4);
1638 }
1639 else if (pc == sr4export)
1640 pc = (CORE_ADDR) (read_register (22));
1641
1642 /* Get the unwind descriptor corresponding to PC, return zero
1643 if no unwind was found. */
1644 u = find_unwind_entry (pc);
1645 if (!u)
1646 return 0;
1647
1648 /* If this isn't a linker stub, then return now. */
1649 if (u->stub_type == 0)
1650 return orig_pc == pc ? 0 : pc & ~0x3;
1651
1652 /* It's a stub. Search for a branch and figure out where it goes.
1653 Note we have to handle multi insn branch sequences like ldil;ble.
1654 Most (all?) other branches can be determined by examining the contents
1655 of certain registers and the stack. */
1656 loc = pc;
1657 curr_inst = 0;
1658 prev_inst = 0;
1659 while (1)
1660 {
1661 /* Make sure we haven't walked outside the range of this stub. */
1662 if (u != find_unwind_entry (loc))
1663 {
1664 warning ("Unable to find branch in linker stub");
1665 return orig_pc == pc ? 0 : pc & ~0x3;
1666 }
1667
1668 prev_inst = curr_inst;
1669 curr_inst = read_memory_integer (loc, 4);
1670
1671 /* Does it look like a branch external using %r1? Then it's the
1672 branch from the stub to the actual function. */
1673 if ((curr_inst & 0xffe0e000) == 0xe0202000)
1674 {
1675 /* Yup. See if the previous instruction loaded
1676 a value into %r1. If so compute and return the jump address. */
1677 if ((prev_inst & 0xffe00000) == 0x20200000)
1678 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
1679 else
1680 {
1681 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
1682 return orig_pc == pc ? 0 : pc & ~0x3;
1683 }
1684 }
1685
1686 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
1687 branch from the stub to the actual function. */
1688 else if ((curr_inst & 0xffe0e000) == 0xe8400000
1689 || (curr_inst & 0xffe0e000) == 0xe8000000)
1690 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
1691
1692 /* Does it look like bv (rp)? Note this depends on the
1693 current stack pointer being the same as the stack
1694 pointer in the stub itself! This is a branch on from the
1695 stub back to the original caller. */
1696 else if ((curr_inst & 0xffe0e000) == 0xe840c000)
1697 {
1698 /* Yup. See if the previous instruction loaded
1699 rp from sp - 8. */
1700 if (prev_inst == 0x4bc23ff1)
1701 return (read_memory_integer
1702 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
1703 else
1704 {
1705 warning ("Unable to find restore of %%rp before bv (%%rp).");
1706 return orig_pc == pc ? 0 : pc & ~0x3;
1707 }
1708 }
1709
1710 /* What about be,n 0(sr0,%rp)? It's just another way we return to
1711 the original caller from the stub. Used in dynamic executables. */
1712 else if (curr_inst == 0xe0400002)
1713 {
1714 /* The value we jump to is sitting in sp - 24. But that's
1715 loaded several instructions before the be instruction.
1716 I guess we could check for the previous instruction being
1717 mtsp %r1,%sr0 if we want to do sanity checking. */
1718 return (read_memory_integer
1719 (read_register (SP_REGNUM) - 24, 4)) & ~0x3;
1720 }
1721
1722 /* Haven't found the branch yet, but we're still in the stub.
1723 Keep looking. */
1724 loc += 4;
1725 }
1726 }
1727
1728 /* For the given instruction (INST), return any adjustment it makes
1729 to the stack pointer or zero for no adjustment.
1730
1731 This only handles instructions commonly found in prologues. */
1732
1733 static int
1734 prologue_inst_adjust_sp (inst)
1735 unsigned long inst;
1736 {
1737 /* This must persist across calls. */
1738 static int save_high21;
1739
1740 /* The most common way to perform a stack adjustment ldo X(sp),sp */
1741 if ((inst & 0xffffc000) == 0x37de0000)
1742 return extract_14 (inst);
1743
1744 /* stwm X,D(sp) */
1745 if ((inst & 0xffe00000) == 0x6fc00000)
1746 return extract_14 (inst);
1747
1748 /* addil high21,%r1; ldo low11,(%r1),%r30)
1749 save high bits in save_high21 for later use. */
1750 if ((inst & 0xffe00000) == 0x28200000)
1751 {
1752 save_high21 = extract_21 (inst);
1753 return 0;
1754 }
1755
1756 if ((inst & 0xffff0000) == 0x343e0000)
1757 return save_high21 + extract_14 (inst);
1758
1759 /* fstws as used by the HP compilers. */
1760 if ((inst & 0xffffffe0) == 0x2fd01220)
1761 return extract_5_load (inst);
1762
1763 /* No adjustment. */
1764 return 0;
1765 }
1766
1767 /* Return nonzero if INST is a branch of some kind, else return zero. */
1768
1769 static int
1770 is_branch (inst)
1771 unsigned long inst;
1772 {
1773 switch (inst >> 26)
1774 {
1775 case 0x20:
1776 case 0x21:
1777 case 0x22:
1778 case 0x23:
1779 case 0x28:
1780 case 0x29:
1781 case 0x2a:
1782 case 0x2b:
1783 case 0x30:
1784 case 0x31:
1785 case 0x32:
1786 case 0x33:
1787 case 0x38:
1788 case 0x39:
1789 case 0x3a:
1790 return 1;
1791
1792 default:
1793 return 0;
1794 }
1795 }
1796
1797 /* Return the register number for a GR which is saved by INST or
1798 zero it INST does not save a GR. */
1799
1800 static int
1801 inst_saves_gr (inst)
1802 unsigned long inst;
1803 {
1804 /* Does it look like a stw? */
1805 if ((inst >> 26) == 0x1a)
1806 return extract_5R_store (inst);
1807
1808 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
1809 if ((inst >> 26) == 0x1b)
1810 return extract_5R_store (inst);
1811
1812 /* Does it look like sth or stb? HPC versions 9.0 and later use these
1813 too. */
1814 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18)
1815 return extract_5R_store (inst);
1816
1817 return 0;
1818 }
1819
1820 /* Return the register number for a FR which is saved by INST or
1821 zero it INST does not save a FR.
1822
1823 Note we only care about full 64bit register stores (that's the only
1824 kind of stores the prologue will use).
1825
1826 FIXME: What about argument stores with the HP compiler in ANSI mode? */
1827
1828 static int
1829 inst_saves_fr (inst)
1830 unsigned long inst;
1831 {
1832 if ((inst & 0xfc00dfc0) == 0x2c001200)
1833 return extract_5r_store (inst);
1834 return 0;
1835 }
1836
1837 /* Advance PC across any function entry prologue instructions
1838 to reach some "real" code.
1839
1840 Use information in the unwind table to determine what exactly should
1841 be in the prologue. */
1842
1843 CORE_ADDR
1844 skip_prologue (pc)
1845 CORE_ADDR pc;
1846 {
1847 char buf[4];
1848 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
1849 unsigned long args_stored, status, i;
1850 struct unwind_table_entry *u;
1851
1852 u = find_unwind_entry (pc);
1853 if (!u)
1854 return pc;
1855
1856 /* If we are not at the beginning of a function, then return now. */
1857 if ((pc & ~0x3) != u->region_start)
1858 return pc;
1859
1860 /* This is how much of a frame adjustment we need to account for. */
1861 stack_remaining = u->Total_frame_size << 3;
1862
1863 /* Magic register saves we want to know about. */
1864 save_rp = u->Save_RP;
1865 save_sp = u->Save_SP;
1866
1867 /* An indication that args may be stored into the stack. Unfortunately
1868 the HPUX compilers tend to set this in cases where no args were
1869 stored too!. */
1870 args_stored = u->Args_stored;
1871
1872 /* Turn the Entry_GR field into a bitmask. */
1873 save_gr = 0;
1874 for (i = 3; i < u->Entry_GR + 3; i++)
1875 {
1876 /* Frame pointer gets saved into a special location. */
1877 if (u->Save_SP && i == FP_REGNUM)
1878 continue;
1879
1880 save_gr |= (1 << i);
1881 }
1882
1883 /* Turn the Entry_FR field into a bitmask too. */
1884 save_fr = 0;
1885 for (i = 12; i < u->Entry_FR + 12; i++)
1886 save_fr |= (1 << i);
1887
1888 /* Loop until we find everything of interest or hit a branch.
1889
1890 For unoptimized GCC code and for any HP CC code this will never ever
1891 examine any user instructions.
1892
1893 For optimzied GCC code we're faced with problems. GCC will schedule
1894 its prologue and make prologue instructions available for delay slot
1895 filling. The end result is user code gets mixed in with the prologue
1896 and a prologue instruction may be in the delay slot of the first branch
1897 or call.
1898
1899 Some unexpected things are expected with debugging optimized code, so
1900 we allow this routine to walk past user instructions in optimized
1901 GCC code. */
1902 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
1903 || args_stored)
1904 {
1905 unsigned int reg_num;
1906 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
1907 unsigned long old_save_rp, old_save_sp, old_args_stored, next_inst;
1908
1909 /* Save copies of all the triggers so we can compare them later
1910 (only for HPC). */
1911 old_save_gr = save_gr;
1912 old_save_fr = save_fr;
1913 old_save_rp = save_rp;
1914 old_save_sp = save_sp;
1915 old_stack_remaining = stack_remaining;
1916
1917 status = target_read_memory (pc, buf, 4);
1918 inst = extract_unsigned_integer (buf, 4);
1919
1920 /* Yow! */
1921 if (status != 0)
1922 return pc;
1923
1924 /* Note the interesting effects of this instruction. */
1925 stack_remaining -= prologue_inst_adjust_sp (inst);
1926
1927 /* There is only one instruction used for saving RP into the stack. */
1928 if (inst == 0x6bc23fd9)
1929 save_rp = 0;
1930
1931 /* This is the only way we save SP into the stack. At this time
1932 the HP compilers never bother to save SP into the stack. */
1933 if ((inst & 0xffffc000) == 0x6fc10000)
1934 save_sp = 0;
1935
1936 /* Account for general and floating-point register saves. */
1937 reg_num = inst_saves_gr (inst);
1938 save_gr &= ~(1 << reg_num);
1939
1940 /* Ugh. Also account for argument stores into the stack.
1941 Unfortunately args_stored only tells us that some arguments
1942 where stored into the stack. Not how many or what kind!
1943
1944 This is a kludge as on the HP compiler sets this bit and it
1945 never does prologue scheduling. So once we see one, skip past
1946 all of them. We have similar code for the fp arg stores below.
1947
1948 FIXME. Can still die if we have a mix of GR and FR argument
1949 stores! */
1950 if (reg_num >= 23 && reg_num <= 26)
1951 {
1952 while (reg_num >= 23 && reg_num <= 26)
1953 {
1954 pc += 4;
1955 status = target_read_memory (pc, buf, 4);
1956 inst = extract_unsigned_integer (buf, 4);
1957 if (status != 0)
1958 return pc;
1959 reg_num = inst_saves_gr (inst);
1960 }
1961 args_stored = 0;
1962 continue;
1963 }
1964
1965 reg_num = inst_saves_fr (inst);
1966 save_fr &= ~(1 << reg_num);
1967
1968 status = target_read_memory (pc + 4, buf, 4);
1969 next_inst = extract_unsigned_integer (buf, 4);
1970
1971 /* Yow! */
1972 if (status != 0)
1973 return pc;
1974
1975 /* We've got to be read to handle the ldo before the fp register
1976 save. */
1977 if ((inst & 0xfc000000) == 0x34000000
1978 && inst_saves_fr (next_inst) >= 4
1979 && inst_saves_fr (next_inst) <= 7)
1980 {
1981 /* So we drop into the code below in a reasonable state. */
1982 reg_num = inst_saves_fr (next_inst);
1983 pc -= 4;
1984 }
1985
1986 /* Ugh. Also account for argument stores into the stack.
1987 This is a kludge as on the HP compiler sets this bit and it
1988 never does prologue scheduling. So once we see one, skip past
1989 all of them. */
1990 if (reg_num >= 4 && reg_num <= 7)
1991 {
1992 while (reg_num >= 4 && reg_num <= 7)
1993 {
1994 pc += 8;
1995 status = target_read_memory (pc, buf, 4);
1996 inst = extract_unsigned_integer (buf, 4);
1997 if (status != 0)
1998 return pc;
1999 if ((inst & 0xfc000000) != 0x34000000)
2000 break;
2001 status = target_read_memory (pc + 4, buf, 4);
2002 next_inst = extract_unsigned_integer (buf, 4);
2003 if (status != 0)
2004 return pc;
2005 reg_num = inst_saves_fr (next_inst);
2006 }
2007 args_stored = 0;
2008 continue;
2009 }
2010
2011 /* Quit if we hit any kind of branch. This can happen if a prologue
2012 instruction is in the delay slot of the first call/branch. */
2013 if (is_branch (inst))
2014 break;
2015
2016 /* What a crock. The HP compilers set args_stored even if no
2017 arguments were stored into the stack (boo hiss). This could
2018 cause this code to then skip a bunch of user insns (up to the
2019 first branch).
2020
2021 To combat this we try to identify when args_stored was bogusly
2022 set and clear it. We only do this when args_stored is nonzero,
2023 all other resources are accounted for, and nothing changed on
2024 this pass. */
2025 if (args_stored
2026 && ! (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2027 && old_save_gr == save_gr && old_save_fr == save_fr
2028 && old_save_rp == save_rp && old_save_sp == save_sp
2029 && old_stack_remaining == stack_remaining)
2030 break;
2031
2032 /* Bump the PC. */
2033 pc += 4;
2034 }
2035
2036 return pc;
2037 }
2038
2039 /* Put here the code to store, into a struct frame_saved_regs,
2040 the addresses of the saved registers of frame described by FRAME_INFO.
2041 This includes special registers such as pc and fp saved in special
2042 ways in the stack frame. sp is even more special:
2043 the address we return for it IS the sp for the next frame. */
2044
2045 void
2046 hppa_frame_find_saved_regs (frame_info, frame_saved_regs)
2047 struct frame_info *frame_info;
2048 struct frame_saved_regs *frame_saved_regs;
2049 {
2050 CORE_ADDR pc;
2051 struct unwind_table_entry *u;
2052 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
2053 int status, i, reg;
2054 char buf[4];
2055 int fp_loc = -1;
2056
2057 /* Zero out everything. */
2058 memset (frame_saved_regs, '\0', sizeof (struct frame_saved_regs));
2059
2060 /* Call dummy frames always look the same, so there's no need to
2061 examine the dummy code to determine locations of saved registers;
2062 instead, let find_dummy_frame_regs fill in the correct offsets
2063 for the saved registers. */
2064 if ((frame_info->pc >= frame_info->frame
2065 && frame_info->pc <= (frame_info->frame + CALL_DUMMY_LENGTH
2066 + 32 * 4 + (NUM_REGS - FP0_REGNUM) * 8
2067 + 6 * 4)))
2068 find_dummy_frame_regs (frame_info, frame_saved_regs);
2069
2070 /* Interrupt handlers are special too. They lay out the register
2071 state in the exact same order as the register numbers in GDB. */
2072 if (pc_in_interrupt_handler (frame_info->pc))
2073 {
2074 for (i = 0; i < NUM_REGS; i++)
2075 {
2076 /* SP is a little special. */
2077 if (i == SP_REGNUM)
2078 frame_saved_regs->regs[SP_REGNUM]
2079 = read_memory_integer (frame_info->frame + SP_REGNUM * 4, 4);
2080 else
2081 frame_saved_regs->regs[i] = frame_info->frame + i * 4;
2082 }
2083 return;
2084 }
2085
2086 /* Handle signal handler callers. */
2087 if (frame_info->signal_handler_caller)
2088 {
2089 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
2090 return;
2091 }
2092
2093 /* Get the starting address of the function referred to by the PC
2094 saved in frame. */
2095 pc = get_pc_function_start (frame_info->pc);
2096
2097 /* Yow! */
2098 u = find_unwind_entry (pc);
2099 if (!u)
2100 return;
2101
2102 /* This is how much of a frame adjustment we need to account for. */
2103 stack_remaining = u->Total_frame_size << 3;
2104
2105 /* Magic register saves we want to know about. */
2106 save_rp = u->Save_RP;
2107 save_sp = u->Save_SP;
2108
2109 /* Turn the Entry_GR field into a bitmask. */
2110 save_gr = 0;
2111 for (i = 3; i < u->Entry_GR + 3; i++)
2112 {
2113 /* Frame pointer gets saved into a special location. */
2114 if (u->Save_SP && i == FP_REGNUM)
2115 continue;
2116
2117 save_gr |= (1 << i);
2118 }
2119
2120 /* Turn the Entry_FR field into a bitmask too. */
2121 save_fr = 0;
2122 for (i = 12; i < u->Entry_FR + 12; i++)
2123 save_fr |= (1 << i);
2124
2125 /* The frame always represents the value of %sp at entry to the
2126 current function (and is thus equivalent to the "saved" stack
2127 pointer. */
2128 frame_saved_regs->regs[SP_REGNUM] = frame_info->frame;
2129
2130 /* Loop until we find everything of interest or hit a branch.
2131
2132 For unoptimized GCC code and for any HP CC code this will never ever
2133 examine any user instructions.
2134
2135 For optimzied GCC code we're faced with problems. GCC will schedule
2136 its prologue and make prologue instructions available for delay slot
2137 filling. The end result is user code gets mixed in with the prologue
2138 and a prologue instruction may be in the delay slot of the first branch
2139 or call.
2140
2141 Some unexpected things are expected with debugging optimized code, so
2142 we allow this routine to walk past user instructions in optimized
2143 GCC code. */
2144 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
2145 {
2146 status = target_read_memory (pc, buf, 4);
2147 inst = extract_unsigned_integer (buf, 4);
2148
2149 /* Yow! */
2150 if (status != 0)
2151 return;
2152
2153 /* Note the interesting effects of this instruction. */
2154 stack_remaining -= prologue_inst_adjust_sp (inst);
2155
2156 /* There is only one instruction used for saving RP into the stack. */
2157 if (inst == 0x6bc23fd9)
2158 {
2159 save_rp = 0;
2160 frame_saved_regs->regs[RP_REGNUM] = frame_info->frame - 20;
2161 }
2162
2163 /* Just note that we found the save of SP into the stack. The
2164 value for frame_saved_regs was computed above. */
2165 if ((inst & 0xffffc000) == 0x6fc10000)
2166 save_sp = 0;
2167
2168 /* Account for general and floating-point register saves. */
2169 reg = inst_saves_gr (inst);
2170 if (reg >= 3 && reg <= 18
2171 && (!u->Save_SP || reg != FP_REGNUM))
2172 {
2173 save_gr &= ~(1 << reg);
2174
2175 /* stwm with a positive displacement is a *post modify*. */
2176 if ((inst >> 26) == 0x1b
2177 && extract_14 (inst) >= 0)
2178 frame_saved_regs->regs[reg] = frame_info->frame;
2179 else
2180 {
2181 /* Handle code with and without frame pointers. */
2182 if (u->Save_SP)
2183 frame_saved_regs->regs[reg]
2184 = frame_info->frame + extract_14 (inst);
2185 else
2186 frame_saved_regs->regs[reg]
2187 = frame_info->frame + (u->Total_frame_size << 3)
2188 + extract_14 (inst);
2189 }
2190 }
2191
2192
2193 /* GCC handles callee saved FP regs a little differently.
2194
2195 It emits an instruction to put the value of the start of
2196 the FP store area into %r1. It then uses fstds,ma with
2197 a basereg of %r1 for the stores.
2198
2199 HP CC emits them at the current stack pointer modifying
2200 the stack pointer as it stores each register. */
2201
2202 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
2203 if ((inst & 0xffffc000) == 0x34610000
2204 || (inst & 0xffffc000) == 0x37c10000)
2205 fp_loc = extract_14 (inst);
2206
2207 reg = inst_saves_fr (inst);
2208 if (reg >= 12 && reg <= 21)
2209 {
2210 /* Note +4 braindamage below is necessary because the FP status
2211 registers are internally 8 registers rather than the expected
2212 4 registers. */
2213 save_fr &= ~(1 << reg);
2214 if (fp_loc == -1)
2215 {
2216 /* 1st HP CC FP register store. After this instruction
2217 we've set enough state that the GCC and HPCC code are
2218 both handled in the same manner. */
2219 frame_saved_regs->regs[reg + FP4_REGNUM + 4] = frame_info->frame;
2220 fp_loc = 8;
2221 }
2222 else
2223 {
2224 frame_saved_regs->regs[reg + FP0_REGNUM + 4]
2225 = frame_info->frame + fp_loc;
2226 fp_loc += 8;
2227 }
2228 }
2229
2230 /* Quit if we hit any kind of branch. This can happen if a prologue
2231 instruction is in the delay slot of the first call/branch. */
2232 if (is_branch (inst))
2233 break;
2234
2235 /* Bump the PC. */
2236 pc += 4;
2237 }
2238 }
2239
2240 #ifdef MAINTENANCE_CMDS
2241
2242 static void
2243 unwind_command (exp, from_tty)
2244 char *exp;
2245 int from_tty;
2246 {
2247 CORE_ADDR address;
2248 union
2249 {
2250 int *foo;
2251 struct unwind_table_entry *u;
2252 } xxx;
2253
2254 /* If we have an expression, evaluate it and use it as the address. */
2255
2256 if (exp != 0 && *exp != 0)
2257 address = parse_and_eval_address (exp);
2258 else
2259 return;
2260
2261 xxx.u = find_unwind_entry (address);
2262
2263 if (!xxx.u)
2264 {
2265 printf_unfiltered ("Can't find unwind table entry for PC 0x%x\n", address);
2266 return;
2267 }
2268
2269 printf_unfiltered ("%08x\n%08X\n%08X\n%08X\n", xxx.foo[0], xxx.foo[1], xxx.foo[2],
2270 xxx.foo[3]);
2271 }
2272 #endif /* MAINTENANCE_CMDS */
2273
2274 void
2275 _initialize_hppa_tdep ()
2276 {
2277 #ifdef MAINTENANCE_CMDS
2278 add_cmd ("unwind", class_maintenance, unwind_command,
2279 "Print unwind table entry at given address.",
2280 &maintenanceprintlist);
2281 #endif /* MAINTENANCE_CMDS */
2282 }
This page took 0.075859 seconds and 5 git commands to generate.