2004-03-07 Andrew Cagney <cagney@redhat.com>
[deliverable/binutils-gdb.git] / gdb / hppa-tdep.c
1 /* Target-dependent code for the HP PA architecture, for GDB.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by the Center for Software Science at the
8 University of Utah (pa-gdb-bugs@cs.utah.edu).
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "frame.h"
29 #include "bfd.h"
30 #include "inferior.h"
31 #include "value.h"
32 #include "regcache.h"
33 #include "completer.h"
34 #include "language.h"
35 #include "osabi.h"
36 #include "gdb_assert.h"
37 #include "infttrace.h"
38 #include "arch-utils.h"
39 /* For argument passing to the inferior */
40 #include "symtab.h"
41 #include "infcall.h"
42 #include "dis-asm.h"
43 #include "trad-frame.h"
44 #include "frame-unwind.h"
45 #include "frame-base.h"
46
47 #ifdef USG
48 #include <sys/types.h>
49 #endif
50
51 #include <dl.h>
52 #include <sys/param.h>
53 #include <signal.h>
54
55 #include <sys/ptrace.h>
56 #include <machine/save_state.h>
57
58 #ifdef COFF_ENCAPSULATE
59 #include "a.out.encap.h"
60 #else
61 #endif
62
63 /*#include <sys/user.h> After a.out.h */
64 #include <sys/file.h>
65 #include "gdb_stat.h"
66 #include "gdb_wait.h"
67
68 #include "gdbcore.h"
69 #include "gdbcmd.h"
70 #include "target.h"
71 #include "symfile.h"
72 #include "objfiles.h"
73 #include "hppa-tdep.h"
74
75 /* Some local constants. */
76 static const int hppa32_num_regs = 128;
77 static const int hppa64_num_regs = 96;
78
79 static const int hppa64_call_dummy_breakpoint_offset = 22 * 4;
80
81 /* DEPRECATED_CALL_DUMMY_LENGTH is computed based on the size of a
82 word on the target machine, not the size of an instruction. Since
83 a word on this target holds two instructions we have to divide the
84 instruction size by two to get the word size of the dummy. */
85 static const int hppa32_call_dummy_length = INSTRUCTION_SIZE * 28;
86 static const int hppa64_call_dummy_length = INSTRUCTION_SIZE * 26 / 2;
87
88 /* Get at various relevent fields of an instruction word. */
89 #define MASK_5 0x1f
90 #define MASK_11 0x7ff
91 #define MASK_14 0x3fff
92 #define MASK_21 0x1fffff
93
94 /* Define offsets into the call dummy for the target function address.
95 See comments related to CALL_DUMMY for more info. */
96 #define FUNC_LDIL_OFFSET (INSTRUCTION_SIZE * 9)
97 #define FUNC_LDO_OFFSET (INSTRUCTION_SIZE * 10)
98
99 /* Define offsets into the call dummy for the _sr4export address.
100 See comments related to CALL_DUMMY for more info. */
101 #define SR4EXPORT_LDIL_OFFSET (INSTRUCTION_SIZE * 12)
102 #define SR4EXPORT_LDO_OFFSET (INSTRUCTION_SIZE * 13)
103
104 /* To support detection of the pseudo-initial frame
105 that threads have. */
106 #define THREAD_INITIAL_FRAME_SYMBOL "__pthread_exit"
107 #define THREAD_INITIAL_FRAME_SYM_LEN sizeof(THREAD_INITIAL_FRAME_SYMBOL)
108
109 /* Sizes (in bytes) of the native unwind entries. */
110 #define UNWIND_ENTRY_SIZE 16
111 #define STUB_UNWIND_ENTRY_SIZE 8
112
113 static int get_field (unsigned word, int from, int to);
114
115 static int extract_5_load (unsigned int);
116
117 static unsigned extract_5R_store (unsigned int);
118
119 static unsigned extract_5r_store (unsigned int);
120
121 static void hppa_frame_init_saved_regs (struct frame_info *frame);
122
123 static void find_dummy_frame_regs (struct frame_info *, CORE_ADDR *);
124
125 static int find_proc_framesize (CORE_ADDR);
126
127 static int find_return_regnum (CORE_ADDR);
128
129 struct unwind_table_entry *find_unwind_entry (CORE_ADDR);
130
131 static int extract_17 (unsigned int);
132
133 static unsigned deposit_21 (unsigned int, unsigned int);
134
135 static int extract_21 (unsigned);
136
137 static unsigned deposit_14 (int, unsigned int);
138
139 static int extract_14 (unsigned);
140
141 static void unwind_command (char *, int);
142
143 static int low_sign_extend (unsigned int, unsigned int);
144
145 static int sign_extend (unsigned int, unsigned int);
146
147 static int restore_pc_queue (CORE_ADDR *);
148
149 static int hppa_alignof (struct type *);
150
151 static int prologue_inst_adjust_sp (unsigned long);
152
153 static int is_branch (unsigned long);
154
155 static int inst_saves_gr (unsigned long);
156
157 static int inst_saves_fr (unsigned long);
158
159 static int pc_in_interrupt_handler (CORE_ADDR);
160
161 static int pc_in_linker_stub (CORE_ADDR);
162
163 static int compare_unwind_entries (const void *, const void *);
164
165 static void read_unwind_info (struct objfile *);
166
167 static void internalize_unwinds (struct objfile *,
168 struct unwind_table_entry *,
169 asection *, unsigned int,
170 unsigned int, CORE_ADDR);
171 static void pa_print_registers (char *, int, int);
172 static void pa_strcat_registers (char *, int, int, struct ui_file *);
173 static void pa_register_look_aside (char *, int, long *);
174 static void pa_print_fp_reg (int);
175 static void pa_strcat_fp_reg (int, struct ui_file *, enum precision_type);
176 static void record_text_segment_lowaddr (bfd *, asection *, void *);
177 /* FIXME: brobecker 2002-11-07: We will likely be able to make the
178 following functions static, once we hppa is partially multiarched. */
179 int hppa_reg_struct_has_addr (int gcc_p, struct type *type);
180 CORE_ADDR hppa_skip_prologue (CORE_ADDR pc);
181 CORE_ADDR hppa_skip_trampoline_code (CORE_ADDR pc);
182 int hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name);
183 int hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name);
184 CORE_ADDR hppa_saved_pc_after_call (struct frame_info *frame);
185 int hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs);
186 CORE_ADDR hppa64_stack_align (CORE_ADDR sp);
187 int hppa_pc_requires_run_before_use (CORE_ADDR pc);
188 int hppa_instruction_nullified (void);
189 int hppa_register_raw_size (int reg_nr);
190 int hppa_register_byte (int reg_nr);
191 struct type * hppa32_register_virtual_type (int reg_nr);
192 struct type * hppa64_register_virtual_type (int reg_nr);
193 void hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp);
194 void hppa64_extract_return_value (struct type *type, char *regbuf,
195 char *valbuf);
196 int hppa64_use_struct_convention (int gcc_p, struct type *type);
197 void hppa64_store_return_value (struct type *type, char *valbuf);
198 int hppa_cannot_store_register (int regnum);
199 void hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame);
200 CORE_ADDR hppa_frame_chain (struct frame_info *frame);
201 int hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe);
202 int hppa_frameless_function_invocation (struct frame_info *frame);
203 CORE_ADDR hppa_frame_saved_pc (struct frame_info *frame);
204 CORE_ADDR hppa_frame_args_address (struct frame_info *fi);
205 int hppa_frame_num_args (struct frame_info *frame);
206 void hppa_push_dummy_frame (void);
207 void hppa_pop_frame (void);
208 CORE_ADDR hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
209 int nargs, struct value **args,
210 struct type *type, int gcc_p);
211 CORE_ADDR hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
212 int struct_return, CORE_ADDR struct_addr);
213 CORE_ADDR hppa_smash_text_address (CORE_ADDR addr);
214 CORE_ADDR hppa_target_read_pc (ptid_t ptid);
215 void hppa_target_write_pc (CORE_ADDR v, ptid_t ptid);
216 CORE_ADDR hppa_target_read_fp (void);
217
218 typedef struct
219 {
220 struct minimal_symbol *msym;
221 CORE_ADDR solib_handle;
222 CORE_ADDR return_val;
223 }
224 args_for_find_stub;
225
226 static int cover_find_stub_with_shl_get (void *);
227
228 static int is_pa_2 = 0; /* False */
229
230 /* This is declared in symtab.c; set to 1 in hp-symtab-read.c */
231 extern int hp_som_som_object_present;
232
233 /* In breakpoint.c */
234 extern int exception_catchpoints_are_fragile;
235
236 /* Should call_function allocate stack space for a struct return? */
237
238 int
239 hppa64_use_struct_convention (int gcc_p, struct type *type)
240 {
241 /* RM: struct upto 128 bits are returned in registers */
242 return TYPE_LENGTH (type) > 16;
243 }
244
245 /* Handle 32/64-bit struct return conventions. */
246
247 static enum return_value_convention
248 hppa32_return_value (struct gdbarch *gdbarch,
249 struct type *type, struct regcache *regcache,
250 void *readbuf, const void *writebuf)
251 {
252 if (TYPE_CODE (type) == TYPE_CODE_FLT)
253 {
254 if (readbuf != NULL)
255 regcache_cooked_read_part (regcache, FP4_REGNUM, 0,
256 TYPE_LENGTH (type), readbuf);
257 if (writebuf != NULL)
258 regcache_cooked_write_part (regcache, FP4_REGNUM, 0,
259 TYPE_LENGTH (type), writebuf);
260 return RETURN_VALUE_REGISTER_CONVENTION;
261 }
262 if (TYPE_LENGTH (type) <= 2 * 4)
263 {
264 /* The value always lives in the right hand end of the register
265 (or register pair)? */
266 int b;
267 int reg = 28;
268 int part = TYPE_LENGTH (type) % 4;
269 /* The left hand register contains only part of the value,
270 transfer that first so that the rest can be xfered as entire
271 4-byte registers. */
272 if (part > 0)
273 {
274 if (readbuf != NULL)
275 regcache_cooked_read_part (regcache, reg, 4 - part,
276 part, readbuf);
277 if (writebuf != NULL)
278 regcache_cooked_write_part (regcache, reg, 4 - part,
279 part, writebuf);
280 reg++;
281 }
282 /* Now transfer the remaining register values. */
283 for (b = part; b < TYPE_LENGTH (type); b += 4)
284 {
285 if (readbuf != NULL)
286 regcache_cooked_read (regcache, reg, (char *) readbuf + b);
287 if (writebuf != NULL)
288 regcache_cooked_write (regcache, reg, (const char *) writebuf + b);
289 reg++;
290 }
291 return RETURN_VALUE_REGISTER_CONVENTION;
292 }
293 else
294 return RETURN_VALUE_STRUCT_CONVENTION;
295 }
296
297 static enum return_value_convention
298 hppa64_return_value (struct gdbarch *gdbarch,
299 struct type *type, struct regcache *regcache,
300 void *readbuf, const void *writebuf)
301 {
302 /* RM: Floats are returned in FR4R, doubles in FR4. Integral values
303 are in r28, padded on the left. Aggregates less that 65 bits are
304 in r28, right padded. Aggregates upto 128 bits are in r28 and
305 r29, right padded. */
306 if (TYPE_CODE (type) == TYPE_CODE_FLT
307 && TYPE_LENGTH (type) <= 8)
308 {
309 /* Floats are right aligned? */
310 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
311 if (readbuf != NULL)
312 regcache_cooked_read_part (regcache, FP4_REGNUM, offset,
313 TYPE_LENGTH (type), readbuf);
314 if (writebuf != NULL)
315 regcache_cooked_write_part (regcache, FP4_REGNUM, offset,
316 TYPE_LENGTH (type), writebuf);
317 return RETURN_VALUE_REGISTER_CONVENTION;
318 }
319 else if (TYPE_LENGTH (type) <= 8 && is_integral_type (type))
320 {
321 /* Integrals are right aligned. */
322 int offset = register_size (gdbarch, FP4_REGNUM) - TYPE_LENGTH (type);
323 if (readbuf != NULL)
324 regcache_cooked_read_part (regcache, 28, offset,
325 TYPE_LENGTH (type), readbuf);
326 if (writebuf != NULL)
327 regcache_cooked_write_part (regcache, 28, offset,
328 TYPE_LENGTH (type), writebuf);
329 return RETURN_VALUE_REGISTER_CONVENTION;
330 }
331 else if (TYPE_LENGTH (type) <= 2 * 8)
332 {
333 /* Composite values are left aligned. */
334 int b;
335 for (b = 0; b < TYPE_LENGTH (type); b += 8)
336 {
337 int part = min (8, TYPE_LENGTH (type) - b);
338 if (readbuf != NULL)
339 regcache_cooked_read_part (regcache, 28 + b / 8, 0, part,
340 (char *) readbuf + b);
341 if (writebuf != NULL)
342 regcache_cooked_write_part (regcache, 28 + b / 8, 0, part,
343 (const char *) writebuf + b);
344 }
345 return RETURN_VALUE_REGISTER_CONVENTION;
346 }
347 else
348 return RETURN_VALUE_STRUCT_CONVENTION;
349 }
350
351 /* Routines to extract various sized constants out of hppa
352 instructions. */
353
354 /* This assumes that no garbage lies outside of the lower bits of
355 value. */
356
357 static int
358 sign_extend (unsigned val, unsigned bits)
359 {
360 return (int) (val >> (bits - 1) ? (-1 << bits) | val : val);
361 }
362
363 /* For many immediate values the sign bit is the low bit! */
364
365 static int
366 low_sign_extend (unsigned val, unsigned bits)
367 {
368 return (int) ((val & 0x1 ? (-1 << (bits - 1)) : 0) | val >> 1);
369 }
370
371 /* Extract the bits at positions between FROM and TO, using HP's numbering
372 (MSB = 0). */
373
374 static int
375 get_field (unsigned word, int from, int to)
376 {
377 return ((word) >> (31 - (to)) & ((1 << ((to) - (from) + 1)) - 1));
378 }
379
380 /* extract the immediate field from a ld{bhw}s instruction */
381
382 static int
383 extract_5_load (unsigned word)
384 {
385 return low_sign_extend (word >> 16 & MASK_5, 5);
386 }
387
388 /* extract the immediate field from a break instruction */
389
390 static unsigned
391 extract_5r_store (unsigned word)
392 {
393 return (word & MASK_5);
394 }
395
396 /* extract the immediate field from a {sr}sm instruction */
397
398 static unsigned
399 extract_5R_store (unsigned word)
400 {
401 return (word >> 16 & MASK_5);
402 }
403
404 /* extract a 14 bit immediate field */
405
406 static int
407 extract_14 (unsigned word)
408 {
409 return low_sign_extend (word & MASK_14, 14);
410 }
411
412 /* deposit a 14 bit constant in a word */
413
414 static unsigned
415 deposit_14 (int opnd, unsigned word)
416 {
417 unsigned sign = (opnd < 0 ? 1 : 0);
418
419 return word | ((unsigned) opnd << 1 & MASK_14) | sign;
420 }
421
422 /* extract a 21 bit constant */
423
424 static int
425 extract_21 (unsigned word)
426 {
427 int val;
428
429 word &= MASK_21;
430 word <<= 11;
431 val = get_field (word, 20, 20);
432 val <<= 11;
433 val |= get_field (word, 9, 19);
434 val <<= 2;
435 val |= get_field (word, 5, 6);
436 val <<= 5;
437 val |= get_field (word, 0, 4);
438 val <<= 2;
439 val |= get_field (word, 7, 8);
440 return sign_extend (val, 21) << 11;
441 }
442
443 /* deposit a 21 bit constant in a word. Although 21 bit constants are
444 usually the top 21 bits of a 32 bit constant, we assume that only
445 the low 21 bits of opnd are relevant */
446
447 static unsigned
448 deposit_21 (unsigned opnd, unsigned word)
449 {
450 unsigned val = 0;
451
452 val |= get_field (opnd, 11 + 14, 11 + 18);
453 val <<= 2;
454 val |= get_field (opnd, 11 + 12, 11 + 13);
455 val <<= 2;
456 val |= get_field (opnd, 11 + 19, 11 + 20);
457 val <<= 11;
458 val |= get_field (opnd, 11 + 1, 11 + 11);
459 val <<= 1;
460 val |= get_field (opnd, 11 + 0, 11 + 0);
461 return word | val;
462 }
463
464 /* extract a 17 bit constant from branch instructions, returning the
465 19 bit signed value. */
466
467 static int
468 extract_17 (unsigned word)
469 {
470 return sign_extend (get_field (word, 19, 28) |
471 get_field (word, 29, 29) << 10 |
472 get_field (word, 11, 15) << 11 |
473 (word & 0x1) << 16, 17) << 2;
474 }
475 \f
476
477 /* Compare the start address for two unwind entries returning 1 if
478 the first address is larger than the second, -1 if the second is
479 larger than the first, and zero if they are equal. */
480
481 static int
482 compare_unwind_entries (const void *arg1, const void *arg2)
483 {
484 const struct unwind_table_entry *a = arg1;
485 const struct unwind_table_entry *b = arg2;
486
487 if (a->region_start > b->region_start)
488 return 1;
489 else if (a->region_start < b->region_start)
490 return -1;
491 else
492 return 0;
493 }
494
495 static CORE_ADDR low_text_segment_address;
496
497 static void
498 record_text_segment_lowaddr (bfd *abfd, asection *section, void *ignored)
499 {
500 if (((section->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
501 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
502 && section->vma < low_text_segment_address)
503 low_text_segment_address = section->vma;
504 }
505
506 static void
507 internalize_unwinds (struct objfile *objfile, struct unwind_table_entry *table,
508 asection *section, unsigned int entries, unsigned int size,
509 CORE_ADDR text_offset)
510 {
511 /* We will read the unwind entries into temporary memory, then
512 fill in the actual unwind table. */
513 if (size > 0)
514 {
515 unsigned long tmp;
516 unsigned i;
517 char *buf = alloca (size);
518
519 low_text_segment_address = -1;
520
521 /* If addresses are 64 bits wide, then unwinds are supposed to
522 be segment relative offsets instead of absolute addresses.
523
524 Note that when loading a shared library (text_offset != 0) the
525 unwinds are already relative to the text_offset that will be
526 passed in. */
527 if (TARGET_PTR_BIT == 64 && text_offset == 0)
528 {
529 bfd_map_over_sections (objfile->obfd,
530 record_text_segment_lowaddr, NULL);
531
532 /* ?!? Mask off some low bits. Should this instead subtract
533 out the lowest section's filepos or something like that?
534 This looks very hokey to me. */
535 low_text_segment_address &= ~0xfff;
536 text_offset += low_text_segment_address;
537 }
538
539 bfd_get_section_contents (objfile->obfd, section, buf, 0, size);
540
541 /* Now internalize the information being careful to handle host/target
542 endian issues. */
543 for (i = 0; i < entries; i++)
544 {
545 table[i].region_start = bfd_get_32 (objfile->obfd,
546 (bfd_byte *) buf);
547 table[i].region_start += text_offset;
548 buf += 4;
549 table[i].region_end = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
550 table[i].region_end += text_offset;
551 buf += 4;
552 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
553 buf += 4;
554 table[i].Cannot_unwind = (tmp >> 31) & 0x1;
555 table[i].Millicode = (tmp >> 30) & 0x1;
556 table[i].Millicode_save_sr0 = (tmp >> 29) & 0x1;
557 table[i].Region_description = (tmp >> 27) & 0x3;
558 table[i].reserved1 = (tmp >> 26) & 0x1;
559 table[i].Entry_SR = (tmp >> 25) & 0x1;
560 table[i].Entry_FR = (tmp >> 21) & 0xf;
561 table[i].Entry_GR = (tmp >> 16) & 0x1f;
562 table[i].Args_stored = (tmp >> 15) & 0x1;
563 table[i].Variable_Frame = (tmp >> 14) & 0x1;
564 table[i].Separate_Package_Body = (tmp >> 13) & 0x1;
565 table[i].Frame_Extension_Millicode = (tmp >> 12) & 0x1;
566 table[i].Stack_Overflow_Check = (tmp >> 11) & 0x1;
567 table[i].Two_Instruction_SP_Increment = (tmp >> 10) & 0x1;
568 table[i].Ada_Region = (tmp >> 9) & 0x1;
569 table[i].cxx_info = (tmp >> 8) & 0x1;
570 table[i].cxx_try_catch = (tmp >> 7) & 0x1;
571 table[i].sched_entry_seq = (tmp >> 6) & 0x1;
572 table[i].reserved2 = (tmp >> 5) & 0x1;
573 table[i].Save_SP = (tmp >> 4) & 0x1;
574 table[i].Save_RP = (tmp >> 3) & 0x1;
575 table[i].Save_MRP_in_frame = (tmp >> 2) & 0x1;
576 table[i].extn_ptr_defined = (tmp >> 1) & 0x1;
577 table[i].Cleanup_defined = tmp & 0x1;
578 tmp = bfd_get_32 (objfile->obfd, (bfd_byte *) buf);
579 buf += 4;
580 table[i].MPE_XL_interrupt_marker = (tmp >> 31) & 0x1;
581 table[i].HP_UX_interrupt_marker = (tmp >> 30) & 0x1;
582 table[i].Large_frame = (tmp >> 29) & 0x1;
583 table[i].Pseudo_SP_Set = (tmp >> 28) & 0x1;
584 table[i].reserved4 = (tmp >> 27) & 0x1;
585 table[i].Total_frame_size = tmp & 0x7ffffff;
586
587 /* Stub unwinds are handled elsewhere. */
588 table[i].stub_unwind.stub_type = 0;
589 table[i].stub_unwind.padding = 0;
590 }
591 }
592 }
593
594 /* Read in the backtrace information stored in the `$UNWIND_START$' section of
595 the object file. This info is used mainly by find_unwind_entry() to find
596 out the stack frame size and frame pointer used by procedures. We put
597 everything on the psymbol obstack in the objfile so that it automatically
598 gets freed when the objfile is destroyed. */
599
600 static void
601 read_unwind_info (struct objfile *objfile)
602 {
603 asection *unwind_sec, *stub_unwind_sec;
604 unsigned unwind_size, stub_unwind_size, total_size;
605 unsigned index, unwind_entries;
606 unsigned stub_entries, total_entries;
607 CORE_ADDR text_offset;
608 struct obj_unwind_info *ui;
609 obj_private_data_t *obj_private;
610
611 text_offset = ANOFFSET (objfile->section_offsets, 0);
612 ui = (struct obj_unwind_info *) obstack_alloc (&objfile->objfile_obstack,
613 sizeof (struct obj_unwind_info));
614
615 ui->table = NULL;
616 ui->cache = NULL;
617 ui->last = -1;
618
619 /* For reasons unknown the HP PA64 tools generate multiple unwinder
620 sections in a single executable. So we just iterate over every
621 section in the BFD looking for unwinder sections intead of trying
622 to do a lookup with bfd_get_section_by_name.
623
624 First determine the total size of the unwind tables so that we
625 can allocate memory in a nice big hunk. */
626 total_entries = 0;
627 for (unwind_sec = objfile->obfd->sections;
628 unwind_sec;
629 unwind_sec = unwind_sec->next)
630 {
631 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
632 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
633 {
634 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
635 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
636
637 total_entries += unwind_entries;
638 }
639 }
640
641 /* Now compute the size of the stub unwinds. Note the ELF tools do not
642 use stub unwinds at the curren time. */
643 stub_unwind_sec = bfd_get_section_by_name (objfile->obfd, "$UNWIND_END$");
644
645 if (stub_unwind_sec)
646 {
647 stub_unwind_size = bfd_section_size (objfile->obfd, stub_unwind_sec);
648 stub_entries = stub_unwind_size / STUB_UNWIND_ENTRY_SIZE;
649 }
650 else
651 {
652 stub_unwind_size = 0;
653 stub_entries = 0;
654 }
655
656 /* Compute total number of unwind entries and their total size. */
657 total_entries += stub_entries;
658 total_size = total_entries * sizeof (struct unwind_table_entry);
659
660 /* Allocate memory for the unwind table. */
661 ui->table = (struct unwind_table_entry *)
662 obstack_alloc (&objfile->objfile_obstack, total_size);
663 ui->last = total_entries - 1;
664
665 /* Now read in each unwind section and internalize the standard unwind
666 entries. */
667 index = 0;
668 for (unwind_sec = objfile->obfd->sections;
669 unwind_sec;
670 unwind_sec = unwind_sec->next)
671 {
672 if (strcmp (unwind_sec->name, "$UNWIND_START$") == 0
673 || strcmp (unwind_sec->name, ".PARISC.unwind") == 0)
674 {
675 unwind_size = bfd_section_size (objfile->obfd, unwind_sec);
676 unwind_entries = unwind_size / UNWIND_ENTRY_SIZE;
677
678 internalize_unwinds (objfile, &ui->table[index], unwind_sec,
679 unwind_entries, unwind_size, text_offset);
680 index += unwind_entries;
681 }
682 }
683
684 /* Now read in and internalize the stub unwind entries. */
685 if (stub_unwind_size > 0)
686 {
687 unsigned int i;
688 char *buf = alloca (stub_unwind_size);
689
690 /* Read in the stub unwind entries. */
691 bfd_get_section_contents (objfile->obfd, stub_unwind_sec, buf,
692 0, stub_unwind_size);
693
694 /* Now convert them into regular unwind entries. */
695 for (i = 0; i < stub_entries; i++, index++)
696 {
697 /* Clear out the next unwind entry. */
698 memset (&ui->table[index], 0, sizeof (struct unwind_table_entry));
699
700 /* Convert offset & size into region_start and region_end.
701 Stuff away the stub type into "reserved" fields. */
702 ui->table[index].region_start = bfd_get_32 (objfile->obfd,
703 (bfd_byte *) buf);
704 ui->table[index].region_start += text_offset;
705 buf += 4;
706 ui->table[index].stub_unwind.stub_type = bfd_get_8 (objfile->obfd,
707 (bfd_byte *) buf);
708 buf += 2;
709 ui->table[index].region_end
710 = ui->table[index].region_start + 4 *
711 (bfd_get_16 (objfile->obfd, (bfd_byte *) buf) - 1);
712 buf += 2;
713 }
714
715 }
716
717 /* Unwind table needs to be kept sorted. */
718 qsort (ui->table, total_entries, sizeof (struct unwind_table_entry),
719 compare_unwind_entries);
720
721 /* Keep a pointer to the unwind information. */
722 if (objfile->obj_private == NULL)
723 {
724 obj_private = (obj_private_data_t *)
725 obstack_alloc (&objfile->objfile_obstack,
726 sizeof (obj_private_data_t));
727 obj_private->unwind_info = NULL;
728 obj_private->so_info = NULL;
729 obj_private->dp = 0;
730
731 objfile->obj_private = obj_private;
732 }
733 obj_private = (obj_private_data_t *) objfile->obj_private;
734 obj_private->unwind_info = ui;
735 }
736
737 /* Lookup the unwind (stack backtrace) info for the given PC. We search all
738 of the objfiles seeking the unwind table entry for this PC. Each objfile
739 contains a sorted list of struct unwind_table_entry. Since we do a binary
740 search of the unwind tables, we depend upon them to be sorted. */
741
742 struct unwind_table_entry *
743 find_unwind_entry (CORE_ADDR pc)
744 {
745 int first, middle, last;
746 struct objfile *objfile;
747
748 /* A function at address 0? Not in HP-UX! */
749 if (pc == (CORE_ADDR) 0)
750 return NULL;
751
752 ALL_OBJFILES (objfile)
753 {
754 struct obj_unwind_info *ui;
755 ui = NULL;
756 if (objfile->obj_private)
757 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
758
759 if (!ui)
760 {
761 read_unwind_info (objfile);
762 if (objfile->obj_private == NULL)
763 error ("Internal error reading unwind information.");
764 ui = ((obj_private_data_t *) (objfile->obj_private))->unwind_info;
765 }
766
767 /* First, check the cache */
768
769 if (ui->cache
770 && pc >= ui->cache->region_start
771 && pc <= ui->cache->region_end)
772 return ui->cache;
773
774 /* Not in the cache, do a binary search */
775
776 first = 0;
777 last = ui->last;
778
779 while (first <= last)
780 {
781 middle = (first + last) / 2;
782 if (pc >= ui->table[middle].region_start
783 && pc <= ui->table[middle].region_end)
784 {
785 ui->cache = &ui->table[middle];
786 return &ui->table[middle];
787 }
788
789 if (pc < ui->table[middle].region_start)
790 last = middle - 1;
791 else
792 first = middle + 1;
793 }
794 } /* ALL_OBJFILES() */
795 return NULL;
796 }
797
798 const unsigned char *
799 hppa_breakpoint_from_pc (CORE_ADDR *pc, int *len)
800 {
801 static const unsigned char breakpoint[] = {0x00, 0x01, 0x00, 0x04};
802 (*len) = sizeof (breakpoint);
803 return breakpoint;
804 }
805
806 /* Return the name of a register. */
807
808 const char *
809 hppa32_register_name (int i)
810 {
811 static char *names[] = {
812 "flags", "r1", "rp", "r3",
813 "r4", "r5", "r6", "r7",
814 "r8", "r9", "r10", "r11",
815 "r12", "r13", "r14", "r15",
816 "r16", "r17", "r18", "r19",
817 "r20", "r21", "r22", "r23",
818 "r24", "r25", "r26", "dp",
819 "ret0", "ret1", "sp", "r31",
820 "sar", "pcoqh", "pcsqh", "pcoqt",
821 "pcsqt", "eiem", "iir", "isr",
822 "ior", "ipsw", "goto", "sr4",
823 "sr0", "sr1", "sr2", "sr3",
824 "sr5", "sr6", "sr7", "cr0",
825 "cr8", "cr9", "ccr", "cr12",
826 "cr13", "cr24", "cr25", "cr26",
827 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
828 "fpsr", "fpe1", "fpe2", "fpe3",
829 "fpe4", "fpe5", "fpe6", "fpe7",
830 "fr4", "fr4R", "fr5", "fr5R",
831 "fr6", "fr6R", "fr7", "fr7R",
832 "fr8", "fr8R", "fr9", "fr9R",
833 "fr10", "fr10R", "fr11", "fr11R",
834 "fr12", "fr12R", "fr13", "fr13R",
835 "fr14", "fr14R", "fr15", "fr15R",
836 "fr16", "fr16R", "fr17", "fr17R",
837 "fr18", "fr18R", "fr19", "fr19R",
838 "fr20", "fr20R", "fr21", "fr21R",
839 "fr22", "fr22R", "fr23", "fr23R",
840 "fr24", "fr24R", "fr25", "fr25R",
841 "fr26", "fr26R", "fr27", "fr27R",
842 "fr28", "fr28R", "fr29", "fr29R",
843 "fr30", "fr30R", "fr31", "fr31R"
844 };
845 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
846 return NULL;
847 else
848 return names[i];
849 }
850
851 const char *
852 hppa64_register_name (int i)
853 {
854 static char *names[] = {
855 "flags", "r1", "rp", "r3",
856 "r4", "r5", "r6", "r7",
857 "r8", "r9", "r10", "r11",
858 "r12", "r13", "r14", "r15",
859 "r16", "r17", "r18", "r19",
860 "r20", "r21", "r22", "r23",
861 "r24", "r25", "r26", "dp",
862 "ret0", "ret1", "sp", "r31",
863 "sar", "pcoqh", "pcsqh", "pcoqt",
864 "pcsqt", "eiem", "iir", "isr",
865 "ior", "ipsw", "goto", "sr4",
866 "sr0", "sr1", "sr2", "sr3",
867 "sr5", "sr6", "sr7", "cr0",
868 "cr8", "cr9", "ccr", "cr12",
869 "cr13", "cr24", "cr25", "cr26",
870 "mpsfu_high","mpsfu_low","mpsfu_ovflo","pad",
871 "fpsr", "fpe1", "fpe2", "fpe3",
872 "fr4", "fr5", "fr6", "fr7",
873 "fr8", "fr9", "fr10", "fr11",
874 "fr12", "fr13", "fr14", "fr15",
875 "fr16", "fr17", "fr18", "fr19",
876 "fr20", "fr21", "fr22", "fr23",
877 "fr24", "fr25", "fr26", "fr27",
878 "fr28", "fr29", "fr30", "fr31"
879 };
880 if (i < 0 || i >= (sizeof (names) / sizeof (*names)))
881 return NULL;
882 else
883 return names[i];
884 }
885
886
887
888 /* Return the adjustment necessary to make for addresses on the stack
889 as presented by hpread.c.
890
891 This is necessary because of the stack direction on the PA and the
892 bizarre way in which someone (?) decided they wanted to handle
893 frame pointerless code in GDB. */
894 int
895 hpread_adjust_stack_address (CORE_ADDR func_addr)
896 {
897 struct unwind_table_entry *u;
898
899 u = find_unwind_entry (func_addr);
900 if (!u)
901 return 0;
902 else
903 return u->Total_frame_size << 3;
904 }
905
906 /* Called to determine if PC is in an interrupt handler of some
907 kind. */
908
909 static int
910 pc_in_interrupt_handler (CORE_ADDR pc)
911 {
912 struct unwind_table_entry *u;
913 struct minimal_symbol *msym_us;
914
915 u = find_unwind_entry (pc);
916 if (!u)
917 return 0;
918
919 /* Oh joys. HPUX sets the interrupt bit for _sigreturn even though
920 its frame isn't a pure interrupt frame. Deal with this. */
921 msym_us = lookup_minimal_symbol_by_pc (pc);
922
923 return (u->HP_UX_interrupt_marker
924 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)));
925 }
926
927 /* Called when no unwind descriptor was found for PC. Returns 1 if it
928 appears that PC is in a linker stub.
929
930 ?!? Need to handle stubs which appear in PA64 code. */
931
932 static int
933 pc_in_linker_stub (CORE_ADDR pc)
934 {
935 int found_magic_instruction = 0;
936 int i;
937 char buf[4];
938
939 /* If unable to read memory, assume pc is not in a linker stub. */
940 if (target_read_memory (pc, buf, 4) != 0)
941 return 0;
942
943 /* We are looking for something like
944
945 ; $$dyncall jams RP into this special spot in the frame (RP')
946 ; before calling the "call stub"
947 ldw -18(sp),rp
948
949 ldsid (rp),r1 ; Get space associated with RP into r1
950 mtsp r1,sp ; Move it into space register 0
951 be,n 0(sr0),rp) ; back to your regularly scheduled program */
952
953 /* Maximum known linker stub size is 4 instructions. Search forward
954 from the given PC, then backward. */
955 for (i = 0; i < 4; i++)
956 {
957 /* If we hit something with an unwind, stop searching this direction. */
958
959 if (find_unwind_entry (pc + i * 4) != 0)
960 break;
961
962 /* Check for ldsid (rp),r1 which is the magic instruction for a
963 return from a cross-space function call. */
964 if (read_memory_integer (pc + i * 4, 4) == 0x004010a1)
965 {
966 found_magic_instruction = 1;
967 break;
968 }
969 /* Add code to handle long call/branch and argument relocation stubs
970 here. */
971 }
972
973 if (found_magic_instruction != 0)
974 return 1;
975
976 /* Now look backward. */
977 for (i = 0; i < 4; i++)
978 {
979 /* If we hit something with an unwind, stop searching this direction. */
980
981 if (find_unwind_entry (pc - i * 4) != 0)
982 break;
983
984 /* Check for ldsid (rp),r1 which is the magic instruction for a
985 return from a cross-space function call. */
986 if (read_memory_integer (pc - i * 4, 4) == 0x004010a1)
987 {
988 found_magic_instruction = 1;
989 break;
990 }
991 /* Add code to handle long call/branch and argument relocation stubs
992 here. */
993 }
994 return found_magic_instruction;
995 }
996
997 static int
998 find_return_regnum (CORE_ADDR pc)
999 {
1000 struct unwind_table_entry *u;
1001
1002 u = find_unwind_entry (pc);
1003
1004 if (!u)
1005 return RP_REGNUM;
1006
1007 if (u->Millicode)
1008 return 31;
1009
1010 return RP_REGNUM;
1011 }
1012
1013 /* Return size of frame, or -1 if we should use a frame pointer. */
1014 static int
1015 find_proc_framesize (CORE_ADDR pc)
1016 {
1017 struct unwind_table_entry *u;
1018 struct minimal_symbol *msym_us;
1019
1020 /* This may indicate a bug in our callers... */
1021 if (pc == (CORE_ADDR) 0)
1022 return -1;
1023
1024 u = find_unwind_entry (pc);
1025
1026 if (!u)
1027 {
1028 if (pc_in_linker_stub (pc))
1029 /* Linker stubs have a zero size frame. */
1030 return 0;
1031 else
1032 return -1;
1033 }
1034
1035 msym_us = lookup_minimal_symbol_by_pc (pc);
1036
1037 /* If Save_SP is set, and we're not in an interrupt or signal caller,
1038 then we have a frame pointer. Use it. */
1039 if (u->Save_SP
1040 && !pc_in_interrupt_handler (pc)
1041 && msym_us
1042 && !PC_IN_SIGTRAMP (pc, DEPRECATED_SYMBOL_NAME (msym_us)))
1043 return -1;
1044
1045 return u->Total_frame_size << 3;
1046 }
1047
1048 /* Return offset from sp at which rp is saved, or 0 if not saved. */
1049 static int rp_saved (CORE_ADDR);
1050
1051 static int
1052 rp_saved (CORE_ADDR pc)
1053 {
1054 struct unwind_table_entry *u;
1055
1056 /* A function at, and thus a return PC from, address 0? Not in HP-UX! */
1057 if (pc == (CORE_ADDR) 0)
1058 return 0;
1059
1060 u = find_unwind_entry (pc);
1061
1062 if (!u)
1063 {
1064 if (pc_in_linker_stub (pc))
1065 /* This is the so-called RP'. */
1066 return -24;
1067 else
1068 return 0;
1069 }
1070
1071 if (u->Save_RP)
1072 return (TARGET_PTR_BIT == 64 ? -16 : -20);
1073 else if (u->stub_unwind.stub_type != 0)
1074 {
1075 switch (u->stub_unwind.stub_type)
1076 {
1077 case EXPORT:
1078 case IMPORT:
1079 return -24;
1080 case PARAMETER_RELOCATION:
1081 return -8;
1082 default:
1083 return 0;
1084 }
1085 }
1086 else
1087 return 0;
1088 }
1089 \f
1090 int
1091 hppa_frameless_function_invocation (struct frame_info *frame)
1092 {
1093 struct unwind_table_entry *u;
1094
1095 u = find_unwind_entry (get_frame_pc (frame));
1096
1097 if (u == 0)
1098 return 0;
1099
1100 return (u->Total_frame_size == 0 && u->stub_unwind.stub_type == 0);
1101 }
1102
1103 /* Immediately after a function call, return the saved pc.
1104 Can't go through the frames for this because on some machines
1105 the new frame is not set up until the new function executes
1106 some instructions. */
1107
1108 CORE_ADDR
1109 hppa_saved_pc_after_call (struct frame_info *frame)
1110 {
1111 int ret_regnum;
1112 CORE_ADDR pc;
1113 struct unwind_table_entry *u;
1114
1115 ret_regnum = find_return_regnum (get_frame_pc (frame));
1116 pc = read_register (ret_regnum) & ~0x3;
1117
1118 /* If PC is in a linker stub, then we need to dig the address
1119 the stub will return to out of the stack. */
1120 u = find_unwind_entry (pc);
1121 if (u && u->stub_unwind.stub_type != 0)
1122 return DEPRECATED_FRAME_SAVED_PC (frame);
1123 else
1124 return pc;
1125 }
1126 \f
1127 CORE_ADDR
1128 hppa_frame_saved_pc (struct frame_info *frame)
1129 {
1130 CORE_ADDR pc = get_frame_pc (frame);
1131 struct unwind_table_entry *u;
1132 CORE_ADDR old_pc = 0;
1133 int spun_around_loop = 0;
1134 int rp_offset = 0;
1135
1136 /* BSD, HPUX & OSF1 all lay out the hardware state in the same manner
1137 at the base of the frame in an interrupt handler. Registers within
1138 are saved in the exact same order as GDB numbers registers. How
1139 convienent. */
1140 if (pc_in_interrupt_handler (pc))
1141 return read_memory_integer (get_frame_base (frame) + PCOQ_HEAD_REGNUM * 4,
1142 TARGET_PTR_BIT / 8) & ~0x3;
1143
1144 if ((get_frame_pc (frame) >= get_frame_base (frame)
1145 && (get_frame_pc (frame)
1146 <= (get_frame_base (frame)
1147 /* A call dummy is sized in words, but it is actually a
1148 series of instructions. Account for that scaling
1149 factor. */
1150 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
1151 * DEPRECATED_CALL_DUMMY_LENGTH)
1152 /* Similarly we have to account for 64bit wide register
1153 saves. */
1154 + (32 * DEPRECATED_REGISTER_SIZE)
1155 /* We always consider FP regs 8 bytes long. */
1156 + (NUM_REGS - FP0_REGNUM) * 8
1157 /* Similarly we have to account for 64bit wide register
1158 saves. */
1159 + (6 * DEPRECATED_REGISTER_SIZE)))))
1160 {
1161 return read_memory_integer ((get_frame_base (frame)
1162 + (TARGET_PTR_BIT == 64 ? -16 : -20)),
1163 TARGET_PTR_BIT / 8) & ~0x3;
1164 }
1165
1166 #ifdef FRAME_SAVED_PC_IN_SIGTRAMP
1167 /* Deal with signal handler caller frames too. */
1168 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1169 {
1170 CORE_ADDR rp;
1171 FRAME_SAVED_PC_IN_SIGTRAMP (frame, &rp);
1172 return rp & ~0x3;
1173 }
1174 #endif
1175
1176 if (hppa_frameless_function_invocation (frame))
1177 {
1178 int ret_regnum;
1179
1180 ret_regnum = find_return_regnum (pc);
1181
1182 /* If the next frame is an interrupt frame or a signal
1183 handler caller, then we need to look in the saved
1184 register area to get the return pointer (the values
1185 in the registers may not correspond to anything useful). */
1186 if (get_next_frame (frame)
1187 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1188 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1189 {
1190 CORE_ADDR *saved_regs;
1191 hppa_frame_init_saved_regs (get_next_frame (frame));
1192 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1193 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1194 TARGET_PTR_BIT / 8) & 0x2)
1195 {
1196 pc = read_memory_integer (saved_regs[31],
1197 TARGET_PTR_BIT / 8) & ~0x3;
1198
1199 /* Syscalls are really two frames. The syscall stub itself
1200 with a return pointer in %rp and the kernel call with
1201 a return pointer in %r31. We return the %rp variant
1202 if %r31 is the same as frame->pc. */
1203 if (pc == get_frame_pc (frame))
1204 pc = read_memory_integer (saved_regs[RP_REGNUM],
1205 TARGET_PTR_BIT / 8) & ~0x3;
1206 }
1207 else
1208 pc = read_memory_integer (saved_regs[RP_REGNUM],
1209 TARGET_PTR_BIT / 8) & ~0x3;
1210 }
1211 else
1212 pc = read_register (ret_regnum) & ~0x3;
1213 }
1214 else
1215 {
1216 spun_around_loop = 0;
1217 old_pc = pc;
1218
1219 restart:
1220 rp_offset = rp_saved (pc);
1221
1222 /* Similar to code in frameless function case. If the next
1223 frame is a signal or interrupt handler, then dig the right
1224 information out of the saved register info. */
1225 if (rp_offset == 0
1226 && get_next_frame (frame)
1227 && ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME)
1228 || pc_in_interrupt_handler (get_frame_pc (get_next_frame (frame)))))
1229 {
1230 CORE_ADDR *saved_regs;
1231 hppa_frame_init_saved_regs (get_next_frame (frame));
1232 saved_regs = deprecated_get_frame_saved_regs (get_next_frame (frame));
1233 if (read_memory_integer (saved_regs[FLAGS_REGNUM],
1234 TARGET_PTR_BIT / 8) & 0x2)
1235 {
1236 pc = read_memory_integer (saved_regs[31],
1237 TARGET_PTR_BIT / 8) & ~0x3;
1238
1239 /* Syscalls are really two frames. The syscall stub itself
1240 with a return pointer in %rp and the kernel call with
1241 a return pointer in %r31. We return the %rp variant
1242 if %r31 is the same as frame->pc. */
1243 if (pc == get_frame_pc (frame))
1244 pc = read_memory_integer (saved_regs[RP_REGNUM],
1245 TARGET_PTR_BIT / 8) & ~0x3;
1246 }
1247 else
1248 pc = read_memory_integer (saved_regs[RP_REGNUM],
1249 TARGET_PTR_BIT / 8) & ~0x3;
1250 }
1251 else if (rp_offset == 0)
1252 {
1253 old_pc = pc;
1254 pc = read_register (RP_REGNUM) & ~0x3;
1255 }
1256 else
1257 {
1258 old_pc = pc;
1259 pc = read_memory_integer (get_frame_base (frame) + rp_offset,
1260 TARGET_PTR_BIT / 8) & ~0x3;
1261 }
1262 }
1263
1264 /* If PC is inside a linker stub, then dig out the address the stub
1265 will return to.
1266
1267 Don't do this for long branch stubs. Why? For some unknown reason
1268 _start is marked as a long branch stub in hpux10. */
1269 u = find_unwind_entry (pc);
1270 if (u && u->stub_unwind.stub_type != 0
1271 && u->stub_unwind.stub_type != LONG_BRANCH)
1272 {
1273 unsigned int insn;
1274
1275 /* If this is a dynamic executable, and we're in a signal handler,
1276 then the call chain will eventually point us into the stub for
1277 _sigreturn. Unlike most cases, we'll be pointed to the branch
1278 to the real sigreturn rather than the code after the real branch!.
1279
1280 Else, try to dig the address the stub will return to in the normal
1281 fashion. */
1282 insn = read_memory_integer (pc, 4);
1283 if ((insn & 0xfc00e000) == 0xe8000000)
1284 return (pc + extract_17 (insn) + 8) & ~0x3;
1285 else
1286 {
1287 if (old_pc == pc)
1288 spun_around_loop++;
1289
1290 if (spun_around_loop > 1)
1291 {
1292 /* We're just about to go around the loop again with
1293 no more hope of success. Die. */
1294 error ("Unable to find return pc for this frame");
1295 }
1296 else
1297 goto restart;
1298 }
1299 }
1300
1301 return pc;
1302 }
1303 \f
1304 /* We need to correct the PC and the FP for the outermost frame when we are
1305 in a system call. */
1306
1307 void
1308 hppa_init_extra_frame_info (int fromleaf, struct frame_info *frame)
1309 {
1310 int flags;
1311 int framesize;
1312
1313 if (get_next_frame (frame) && !fromleaf)
1314 return;
1315
1316 /* If the next frame represents a frameless function invocation then
1317 we have to do some adjustments that are normally done by
1318 DEPRECATED_FRAME_CHAIN. (DEPRECATED_FRAME_CHAIN is not called in
1319 this case.) */
1320 if (fromleaf)
1321 {
1322 /* Find the framesize of *this* frame without peeking at the PC
1323 in the current frame structure (it isn't set yet). */
1324 framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (get_next_frame (frame)));
1325
1326 /* Now adjust our base frame accordingly. If we have a frame pointer
1327 use it, else subtract the size of this frame from the current
1328 frame. (we always want frame->frame to point at the lowest address
1329 in the frame). */
1330 if (framesize == -1)
1331 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1332 else
1333 deprecated_update_frame_base_hack (frame, get_frame_base (frame) - framesize);
1334 return;
1335 }
1336
1337 flags = read_register (FLAGS_REGNUM);
1338 if (flags & 2) /* In system call? */
1339 deprecated_update_frame_pc_hack (frame, read_register (31) & ~0x3);
1340
1341 /* The outermost frame is always derived from PC-framesize
1342
1343 One might think frameless innermost frames should have
1344 a frame->frame that is the same as the parent's frame->frame.
1345 That is wrong; frame->frame in that case should be the *high*
1346 address of the parent's frame. It's complicated as hell to
1347 explain, but the parent *always* creates some stack space for
1348 the child. So the child actually does have a frame of some
1349 sorts, and its base is the high address in its parent's frame. */
1350 framesize = find_proc_framesize (get_frame_pc (frame));
1351 if (framesize == -1)
1352 deprecated_update_frame_base_hack (frame, deprecated_read_fp ());
1353 else
1354 deprecated_update_frame_base_hack (frame, read_register (SP_REGNUM) - framesize);
1355 }
1356 \f
1357 /* Given a GDB frame, determine the address of the calling function's
1358 frame. This will be used to create a new GDB frame struct, and
1359 then DEPRECATED_INIT_EXTRA_FRAME_INFO and DEPRECATED_INIT_FRAME_PC
1360 will be called for the new frame.
1361
1362 This may involve searching through prologues for several functions
1363 at boundaries where GCC calls HP C code, or where code which has
1364 a frame pointer calls code without a frame pointer. */
1365
1366 CORE_ADDR
1367 hppa_frame_chain (struct frame_info *frame)
1368 {
1369 int my_framesize, caller_framesize;
1370 struct unwind_table_entry *u;
1371 CORE_ADDR frame_base;
1372 struct frame_info *tmp_frame;
1373
1374 /* A frame in the current frame list, or zero. */
1375 struct frame_info *saved_regs_frame = 0;
1376 /* Where the registers were saved in saved_regs_frame. If
1377 saved_regs_frame is zero, this is garbage. */
1378 CORE_ADDR *saved_regs = NULL;
1379
1380 CORE_ADDR caller_pc;
1381
1382 struct minimal_symbol *min_frame_symbol;
1383 struct symbol *frame_symbol;
1384 char *frame_symbol_name;
1385
1386 /* If this is a threaded application, and we see the
1387 routine "__pthread_exit", treat it as the stack root
1388 for this thread. */
1389 min_frame_symbol = lookup_minimal_symbol_by_pc (get_frame_pc (frame));
1390 frame_symbol = find_pc_function (get_frame_pc (frame));
1391
1392 if ((min_frame_symbol != 0) /* && (frame_symbol == 0) */ )
1393 {
1394 /* The test above for "no user function name" would defend
1395 against the slim likelihood that a user might define a
1396 routine named "__pthread_exit" and then try to debug it.
1397
1398 If it weren't commented out, and you tried to debug the
1399 pthread library itself, you'd get errors.
1400
1401 So for today, we don't make that check. */
1402 frame_symbol_name = DEPRECATED_SYMBOL_NAME (min_frame_symbol);
1403 if (frame_symbol_name != 0)
1404 {
1405 if (0 == strncmp (frame_symbol_name,
1406 THREAD_INITIAL_FRAME_SYMBOL,
1407 THREAD_INITIAL_FRAME_SYM_LEN))
1408 {
1409 /* Pretend we've reached the bottom of the stack. */
1410 return (CORE_ADDR) 0;
1411 }
1412 }
1413 } /* End of hacky code for threads. */
1414
1415 /* Handle HPUX, BSD, and OSF1 style interrupt frames first. These
1416 are easy; at *sp we have a full save state strucutre which we can
1417 pull the old stack pointer from. Also see frame_saved_pc for
1418 code to dig a saved PC out of the save state structure. */
1419 if (pc_in_interrupt_handler (get_frame_pc (frame)))
1420 frame_base = read_memory_integer (get_frame_base (frame) + SP_REGNUM * 4,
1421 TARGET_PTR_BIT / 8);
1422 #ifdef FRAME_BASE_BEFORE_SIGTRAMP
1423 else if ((get_frame_type (frame) == SIGTRAMP_FRAME))
1424 {
1425 FRAME_BASE_BEFORE_SIGTRAMP (frame, &frame_base);
1426 }
1427 #endif
1428 else
1429 frame_base = get_frame_base (frame);
1430
1431 /* Get frame sizes for the current frame and the frame of the
1432 caller. */
1433 my_framesize = find_proc_framesize (get_frame_pc (frame));
1434 caller_pc = DEPRECATED_FRAME_SAVED_PC (frame);
1435
1436 /* If we can't determine the caller's PC, then it's not likely we can
1437 really determine anything meaningful about its frame. We'll consider
1438 this to be stack bottom. */
1439 if (caller_pc == (CORE_ADDR) 0)
1440 return (CORE_ADDR) 0;
1441
1442 caller_framesize = find_proc_framesize (DEPRECATED_FRAME_SAVED_PC (frame));
1443
1444 /* If caller does not have a frame pointer, then its frame
1445 can be found at current_frame - caller_framesize. */
1446 if (caller_framesize != -1)
1447 {
1448 return frame_base - caller_framesize;
1449 }
1450 /* Both caller and callee have frame pointers and are GCC compiled
1451 (SAVE_SP bit in unwind descriptor is on for both functions.
1452 The previous frame pointer is found at the top of the current frame. */
1453 if (caller_framesize == -1 && my_framesize == -1)
1454 {
1455 return read_memory_integer (frame_base, TARGET_PTR_BIT / 8);
1456 }
1457 /* Caller has a frame pointer, but callee does not. This is a little
1458 more difficult as GCC and HP C lay out locals and callee register save
1459 areas very differently.
1460
1461 The previous frame pointer could be in a register, or in one of
1462 several areas on the stack.
1463
1464 Walk from the current frame to the innermost frame examining
1465 unwind descriptors to determine if %r3 ever gets saved into the
1466 stack. If so return whatever value got saved into the stack.
1467 If it was never saved in the stack, then the value in %r3 is still
1468 valid, so use it.
1469
1470 We use information from unwind descriptors to determine if %r3
1471 is saved into the stack (Entry_GR field has this information). */
1472
1473 for (tmp_frame = frame; tmp_frame; tmp_frame = get_next_frame (tmp_frame))
1474 {
1475 u = find_unwind_entry (get_frame_pc (tmp_frame));
1476
1477 if (!u)
1478 {
1479 /* We could find this information by examining prologues. I don't
1480 think anyone has actually written any tools (not even "strip")
1481 which leave them out of an executable, so maybe this is a moot
1482 point. */
1483 /* ??rehrauer: Actually, it's quite possible to stepi your way into
1484 code that doesn't have unwind entries. For example, stepping into
1485 the dynamic linker will give you a PC that has none. Thus, I've
1486 disabled this warning. */
1487 #if 0
1488 warning ("Unable to find unwind for PC 0x%x -- Help!", get_frame_pc (tmp_frame));
1489 #endif
1490 return (CORE_ADDR) 0;
1491 }
1492
1493 if (u->Save_SP
1494 || (get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1495 || pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1496 break;
1497
1498 /* Entry_GR specifies the number of callee-saved general registers
1499 saved in the stack. It starts at %r3, so %r3 would be 1. */
1500 if (u->Entry_GR >= 1)
1501 {
1502 /* The unwind entry claims that r3 is saved here. However,
1503 in optimized code, GCC often doesn't actually save r3.
1504 We'll discover this if we look at the prologue. */
1505 hppa_frame_init_saved_regs (tmp_frame);
1506 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1507 saved_regs_frame = tmp_frame;
1508
1509 /* If we have an address for r3, that's good. */
1510 if (saved_regs[DEPRECATED_FP_REGNUM])
1511 break;
1512 }
1513 }
1514
1515 if (tmp_frame)
1516 {
1517 /* We may have walked down the chain into a function with a frame
1518 pointer. */
1519 if (u->Save_SP
1520 && !(get_frame_type (tmp_frame) == SIGTRAMP_FRAME)
1521 && !pc_in_interrupt_handler (get_frame_pc (tmp_frame)))
1522 {
1523 return read_memory_integer (get_frame_base (tmp_frame), TARGET_PTR_BIT / 8);
1524 }
1525 /* %r3 was saved somewhere in the stack. Dig it out. */
1526 else
1527 {
1528 /* Sick.
1529
1530 For optimization purposes many kernels don't have the
1531 callee saved registers into the save_state structure upon
1532 entry into the kernel for a syscall; the optimization
1533 is usually turned off if the process is being traced so
1534 that the debugger can get full register state for the
1535 process.
1536
1537 This scheme works well except for two cases:
1538
1539 * Attaching to a process when the process is in the
1540 kernel performing a system call (debugger can't get
1541 full register state for the inferior process since
1542 the process wasn't being traced when it entered the
1543 system call).
1544
1545 * Register state is not complete if the system call
1546 causes the process to core dump.
1547
1548
1549 The following heinous code is an attempt to deal with
1550 the lack of register state in a core dump. It will
1551 fail miserably if the function which performs the
1552 system call has a variable sized stack frame. */
1553
1554 if (tmp_frame != saved_regs_frame)
1555 {
1556 hppa_frame_init_saved_regs (tmp_frame);
1557 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1558 }
1559
1560 /* Abominable hack. */
1561 if (current_target.to_has_execution == 0
1562 && ((saved_regs[FLAGS_REGNUM]
1563 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1564 TARGET_PTR_BIT / 8)
1565 & 0x2))
1566 || (saved_regs[FLAGS_REGNUM] == 0
1567 && read_register (FLAGS_REGNUM) & 0x2)))
1568 {
1569 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1570 if (!u)
1571 {
1572 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1573 TARGET_PTR_BIT / 8);
1574 }
1575 else
1576 {
1577 return frame_base - (u->Total_frame_size << 3);
1578 }
1579 }
1580
1581 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1582 TARGET_PTR_BIT / 8);
1583 }
1584 }
1585 else
1586 {
1587 /* Get the innermost frame. */
1588 tmp_frame = frame;
1589 while (get_next_frame (tmp_frame) != NULL)
1590 tmp_frame = get_next_frame (tmp_frame);
1591
1592 if (tmp_frame != saved_regs_frame)
1593 {
1594 hppa_frame_init_saved_regs (tmp_frame);
1595 saved_regs = deprecated_get_frame_saved_regs (tmp_frame);
1596 }
1597
1598 /* Abominable hack. See above. */
1599 if (current_target.to_has_execution == 0
1600 && ((saved_regs[FLAGS_REGNUM]
1601 && (read_memory_integer (saved_regs[FLAGS_REGNUM],
1602 TARGET_PTR_BIT / 8)
1603 & 0x2))
1604 || (saved_regs[FLAGS_REGNUM] == 0
1605 && read_register (FLAGS_REGNUM) & 0x2)))
1606 {
1607 u = find_unwind_entry (DEPRECATED_FRAME_SAVED_PC (frame));
1608 if (!u)
1609 {
1610 return read_memory_integer (saved_regs[DEPRECATED_FP_REGNUM],
1611 TARGET_PTR_BIT / 8);
1612 }
1613 else
1614 {
1615 return frame_base - (u->Total_frame_size << 3);
1616 }
1617 }
1618
1619 /* The value in %r3 was never saved into the stack (thus %r3 still
1620 holds the value of the previous frame pointer). */
1621 return deprecated_read_fp ();
1622 }
1623 }
1624 \f
1625
1626 /* To see if a frame chain is valid, see if the caller looks like it
1627 was compiled with gcc. */
1628
1629 int
1630 hppa_frame_chain_valid (CORE_ADDR chain, struct frame_info *thisframe)
1631 {
1632 struct minimal_symbol *msym_us;
1633 struct minimal_symbol *msym_start;
1634 struct unwind_table_entry *u, *next_u = NULL;
1635 struct frame_info *next;
1636
1637 u = find_unwind_entry (get_frame_pc (thisframe));
1638
1639 if (u == NULL)
1640 return 1;
1641
1642 /* We can't just check that the same of msym_us is "_start", because
1643 someone idiotically decided that they were going to make a Ltext_end
1644 symbol with the same address. This Ltext_end symbol is totally
1645 indistinguishable (as nearly as I can tell) from the symbol for a function
1646 which is (legitimately, since it is in the user's namespace)
1647 named Ltext_end, so we can't just ignore it. */
1648 msym_us = lookup_minimal_symbol_by_pc (DEPRECATED_FRAME_SAVED_PC (thisframe));
1649 msym_start = lookup_minimal_symbol ("_start", NULL, NULL);
1650 if (msym_us
1651 && msym_start
1652 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1653 return 0;
1654
1655 /* Grrrr. Some new idiot decided that they don't want _start for the
1656 PRO configurations; $START$ calls main directly.... Deal with it. */
1657 msym_start = lookup_minimal_symbol ("$START$", NULL, NULL);
1658 if (msym_us
1659 && msym_start
1660 && SYMBOL_VALUE_ADDRESS (msym_us) == SYMBOL_VALUE_ADDRESS (msym_start))
1661 return 0;
1662
1663 next = get_next_frame (thisframe);
1664 if (next)
1665 next_u = find_unwind_entry (get_frame_pc (next));
1666
1667 /* If this frame does not save SP, has no stack, isn't a stub,
1668 and doesn't "call" an interrupt routine or signal handler caller,
1669 then its not valid. */
1670 if (u->Save_SP || u->Total_frame_size || u->stub_unwind.stub_type != 0
1671 || (get_next_frame (thisframe) && (get_frame_type (get_next_frame (thisframe)) == SIGTRAMP_FRAME))
1672 || (next_u && next_u->HP_UX_interrupt_marker))
1673 return 1;
1674
1675 if (pc_in_linker_stub (get_frame_pc (thisframe)))
1676 return 1;
1677
1678 return 0;
1679 }
1680
1681 /* These functions deal with saving and restoring register state
1682 around a function call in the inferior. They keep the stack
1683 double-word aligned; eventually, on an hp700, the stack will have
1684 to be aligned to a 64-byte boundary. */
1685
1686 void
1687 hppa_push_dummy_frame (void)
1688 {
1689 CORE_ADDR sp, pc, pcspace;
1690 int regnum;
1691 CORE_ADDR int_buffer;
1692 double freg_buffer;
1693
1694 pc = hppa_target_read_pc (inferior_ptid);
1695 int_buffer = read_register (FLAGS_REGNUM);
1696 if (int_buffer & 0x2)
1697 {
1698 const unsigned int sid = (pc >> 30) & 0x3;
1699 if (sid == 0)
1700 pcspace = read_register (SR4_REGNUM);
1701 else
1702 pcspace = read_register (SR4_REGNUM + 4 + sid);
1703 }
1704 else
1705 pcspace = read_register (PCSQ_HEAD_REGNUM);
1706
1707 /* Space for "arguments"; the RP goes in here. */
1708 sp = read_register (SP_REGNUM) + 48;
1709 int_buffer = read_register (RP_REGNUM) | 0x3;
1710
1711 /* The 32bit and 64bit ABIs save the return pointer into different
1712 stack slots. */
1713 if (DEPRECATED_REGISTER_SIZE == 8)
1714 write_memory (sp - 16, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1715 else
1716 write_memory (sp - 20, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1717
1718 int_buffer = deprecated_read_fp ();
1719 write_memory (sp, (char *) &int_buffer, DEPRECATED_REGISTER_SIZE);
1720
1721 write_register (DEPRECATED_FP_REGNUM, sp);
1722
1723 sp += 2 * DEPRECATED_REGISTER_SIZE;
1724
1725 for (regnum = 1; regnum < 32; regnum++)
1726 if (regnum != RP_REGNUM && regnum != DEPRECATED_FP_REGNUM)
1727 sp = push_word (sp, read_register (regnum));
1728
1729 /* This is not necessary for the 64bit ABI. In fact it is dangerous. */
1730 if (DEPRECATED_REGISTER_SIZE != 8)
1731 sp += 4;
1732
1733 for (regnum = FP0_REGNUM; regnum < NUM_REGS; regnum++)
1734 {
1735 deprecated_read_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1736 (char *) &freg_buffer, 8);
1737 sp = push_bytes (sp, (char *) &freg_buffer, 8);
1738 }
1739 sp = push_word (sp, read_register (IPSW_REGNUM));
1740 sp = push_word (sp, read_register (SAR_REGNUM));
1741 sp = push_word (sp, pc);
1742 sp = push_word (sp, pcspace);
1743 sp = push_word (sp, pc + 4);
1744 sp = push_word (sp, pcspace);
1745 write_register (SP_REGNUM, sp);
1746 }
1747
1748 static void
1749 find_dummy_frame_regs (struct frame_info *frame,
1750 CORE_ADDR frame_saved_regs[])
1751 {
1752 CORE_ADDR fp = get_frame_base (frame);
1753 int i;
1754
1755 /* The 32bit and 64bit ABIs save RP into different locations. */
1756 if (DEPRECATED_REGISTER_SIZE == 8)
1757 frame_saved_regs[RP_REGNUM] = (fp - 16) & ~0x3;
1758 else
1759 frame_saved_regs[RP_REGNUM] = (fp - 20) & ~0x3;
1760
1761 frame_saved_regs[DEPRECATED_FP_REGNUM] = fp;
1762
1763 frame_saved_regs[1] = fp + (2 * DEPRECATED_REGISTER_SIZE);
1764
1765 for (fp += 3 * DEPRECATED_REGISTER_SIZE, i = 3; i < 32; i++)
1766 {
1767 if (i != DEPRECATED_FP_REGNUM)
1768 {
1769 frame_saved_regs[i] = fp;
1770 fp += DEPRECATED_REGISTER_SIZE;
1771 }
1772 }
1773
1774 /* This is not necessary or desirable for the 64bit ABI. */
1775 if (DEPRECATED_REGISTER_SIZE != 8)
1776 fp += 4;
1777
1778 for (i = FP0_REGNUM; i < NUM_REGS; i++, fp += 8)
1779 frame_saved_regs[i] = fp;
1780
1781 frame_saved_regs[IPSW_REGNUM] = fp;
1782 frame_saved_regs[SAR_REGNUM] = fp + DEPRECATED_REGISTER_SIZE;
1783 frame_saved_regs[PCOQ_HEAD_REGNUM] = fp + 2 * DEPRECATED_REGISTER_SIZE;
1784 frame_saved_regs[PCSQ_HEAD_REGNUM] = fp + 3 * DEPRECATED_REGISTER_SIZE;
1785 frame_saved_regs[PCOQ_TAIL_REGNUM] = fp + 4 * DEPRECATED_REGISTER_SIZE;
1786 frame_saved_regs[PCSQ_TAIL_REGNUM] = fp + 5 * DEPRECATED_REGISTER_SIZE;
1787 }
1788
1789 void
1790 hppa_pop_frame (void)
1791 {
1792 struct frame_info *frame = get_current_frame ();
1793 CORE_ADDR fp, npc, target_pc;
1794 int regnum;
1795 CORE_ADDR *fsr;
1796 double freg_buffer;
1797
1798 fp = get_frame_base (frame);
1799 hppa_frame_init_saved_regs (frame);
1800 fsr = deprecated_get_frame_saved_regs (frame);
1801
1802 #ifndef NO_PC_SPACE_QUEUE_RESTORE
1803 if (fsr[IPSW_REGNUM]) /* Restoring a call dummy frame */
1804 restore_pc_queue (fsr);
1805 #endif
1806
1807 for (regnum = 31; regnum > 0; regnum--)
1808 if (fsr[regnum])
1809 write_register (regnum, read_memory_integer (fsr[regnum],
1810 DEPRECATED_REGISTER_SIZE));
1811
1812 for (regnum = NUM_REGS - 1; regnum >= FP0_REGNUM; regnum--)
1813 if (fsr[regnum])
1814 {
1815 read_memory (fsr[regnum], (char *) &freg_buffer, 8);
1816 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (regnum),
1817 (char *) &freg_buffer, 8);
1818 }
1819
1820 if (fsr[IPSW_REGNUM])
1821 write_register (IPSW_REGNUM,
1822 read_memory_integer (fsr[IPSW_REGNUM],
1823 DEPRECATED_REGISTER_SIZE));
1824
1825 if (fsr[SAR_REGNUM])
1826 write_register (SAR_REGNUM,
1827 read_memory_integer (fsr[SAR_REGNUM],
1828 DEPRECATED_REGISTER_SIZE));
1829
1830 /* If the PC was explicitly saved, then just restore it. */
1831 if (fsr[PCOQ_TAIL_REGNUM])
1832 {
1833 npc = read_memory_integer (fsr[PCOQ_TAIL_REGNUM],
1834 DEPRECATED_REGISTER_SIZE);
1835 write_register (PCOQ_TAIL_REGNUM, npc);
1836 }
1837 /* Else use the value in %rp to set the new PC. */
1838 else
1839 {
1840 npc = read_register (RP_REGNUM);
1841 write_pc (npc);
1842 }
1843
1844 write_register (DEPRECATED_FP_REGNUM, read_memory_integer (fp, DEPRECATED_REGISTER_SIZE));
1845
1846 if (fsr[IPSW_REGNUM]) /* call dummy */
1847 write_register (SP_REGNUM, fp - 48);
1848 else
1849 write_register (SP_REGNUM, fp);
1850
1851 /* The PC we just restored may be inside a return trampoline. If so
1852 we want to restart the inferior and run it through the trampoline.
1853
1854 Do this by setting a momentary breakpoint at the location the
1855 trampoline returns to.
1856
1857 Don't skip through the trampoline if we're popping a dummy frame. */
1858 target_pc = SKIP_TRAMPOLINE_CODE (npc & ~0x3) & ~0x3;
1859 if (target_pc && !fsr[IPSW_REGNUM])
1860 {
1861 struct symtab_and_line sal;
1862 struct breakpoint *breakpoint;
1863 struct cleanup *old_chain;
1864
1865 /* Set up our breakpoint. Set it to be silent as the MI code
1866 for "return_command" will print the frame we returned to. */
1867 sal = find_pc_line (target_pc, 0);
1868 sal.pc = target_pc;
1869 breakpoint = set_momentary_breakpoint (sal, null_frame_id, bp_finish);
1870 breakpoint->silent = 1;
1871
1872 /* So we can clean things up. */
1873 old_chain = make_cleanup_delete_breakpoint (breakpoint);
1874
1875 /* Start up the inferior. */
1876 clear_proceed_status ();
1877 proceed_to_finish = 1;
1878 proceed ((CORE_ADDR) -1, TARGET_SIGNAL_DEFAULT, 0);
1879
1880 /* Perform our cleanups. */
1881 do_cleanups (old_chain);
1882 }
1883 flush_cached_frames ();
1884 }
1885
1886 /* After returning to a dummy on the stack, restore the instruction
1887 queue space registers. */
1888
1889 static int
1890 restore_pc_queue (CORE_ADDR *fsr)
1891 {
1892 CORE_ADDR pc = read_pc ();
1893 CORE_ADDR new_pc = read_memory_integer (fsr[PCOQ_HEAD_REGNUM],
1894 TARGET_PTR_BIT / 8);
1895 struct target_waitstatus w;
1896 int insn_count;
1897
1898 /* Advance past break instruction in the call dummy. */
1899 write_register (PCOQ_HEAD_REGNUM, pc + 4);
1900 write_register (PCOQ_TAIL_REGNUM, pc + 8);
1901
1902 /* HPUX doesn't let us set the space registers or the space
1903 registers of the PC queue through ptrace. Boo, hiss.
1904 Conveniently, the call dummy has this sequence of instructions
1905 after the break:
1906 mtsp r21, sr0
1907 ble,n 0(sr0, r22)
1908
1909 So, load up the registers and single step until we are in the
1910 right place. */
1911
1912 write_register (21, read_memory_integer (fsr[PCSQ_HEAD_REGNUM],
1913 DEPRECATED_REGISTER_SIZE));
1914 write_register (22, new_pc);
1915
1916 for (insn_count = 0; insn_count < 3; insn_count++)
1917 {
1918 /* FIXME: What if the inferior gets a signal right now? Want to
1919 merge this into wait_for_inferior (as a special kind of
1920 watchpoint? By setting a breakpoint at the end? Is there
1921 any other choice? Is there *any* way to do this stuff with
1922 ptrace() or some equivalent?). */
1923 resume (1, 0);
1924 target_wait (inferior_ptid, &w);
1925
1926 if (w.kind == TARGET_WAITKIND_SIGNALLED)
1927 {
1928 stop_signal = w.value.sig;
1929 terminal_ours_for_output ();
1930 printf_unfiltered ("\nProgram terminated with signal %s, %s.\n",
1931 target_signal_to_name (stop_signal),
1932 target_signal_to_string (stop_signal));
1933 gdb_flush (gdb_stdout);
1934 return 0;
1935 }
1936 }
1937 target_terminal_ours ();
1938 target_fetch_registers (-1);
1939 return 1;
1940 }
1941
1942
1943 #ifdef PA20W_CALLING_CONVENTIONS
1944
1945 /* This function pushes a stack frame with arguments as part of the
1946 inferior function calling mechanism.
1947
1948 This is the version for the PA64, in which later arguments appear
1949 at higher addresses. (The stack always grows towards higher
1950 addresses.)
1951
1952 We simply allocate the appropriate amount of stack space and put
1953 arguments into their proper slots. The call dummy code will copy
1954 arguments into registers as needed by the ABI.
1955
1956 This ABI also requires that the caller provide an argument pointer
1957 to the callee, so we do that too. */
1958
1959 CORE_ADDR
1960 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
1961 int struct_return, CORE_ADDR struct_addr)
1962 {
1963 /* array of arguments' offsets */
1964 int *offset = (int *) alloca (nargs * sizeof (int));
1965
1966 /* array of arguments' lengths: real lengths in bytes, not aligned to
1967 word size */
1968 int *lengths = (int *) alloca (nargs * sizeof (int));
1969
1970 /* The value of SP as it was passed into this function after
1971 aligning. */
1972 CORE_ADDR orig_sp = DEPRECATED_STACK_ALIGN (sp);
1973
1974 /* The number of stack bytes occupied by the current argument. */
1975 int bytes_reserved;
1976
1977 /* The total number of bytes reserved for the arguments. */
1978 int cum_bytes_reserved = 0;
1979
1980 /* Similarly, but aligned. */
1981 int cum_bytes_aligned = 0;
1982 int i;
1983
1984 /* Iterate over each argument provided by the user. */
1985 for (i = 0; i < nargs; i++)
1986 {
1987 struct type *arg_type = VALUE_TYPE (args[i]);
1988
1989 /* Integral scalar values smaller than a register are padded on
1990 the left. We do this by promoting them to full-width,
1991 although the ABI says to pad them with garbage. */
1992 if (is_integral_type (arg_type)
1993 && TYPE_LENGTH (arg_type) < DEPRECATED_REGISTER_SIZE)
1994 {
1995 args[i] = value_cast ((TYPE_UNSIGNED (arg_type)
1996 ? builtin_type_unsigned_long
1997 : builtin_type_long),
1998 args[i]);
1999 arg_type = VALUE_TYPE (args[i]);
2000 }
2001
2002 lengths[i] = TYPE_LENGTH (arg_type);
2003
2004 /* Align the size of the argument to the word size for this
2005 target. */
2006 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2007
2008 offset[i] = cum_bytes_reserved;
2009
2010 /* Aggregates larger than eight bytes (the only types larger
2011 than eight bytes we have) are aligned on a 16-byte boundary,
2012 possibly padded on the right with garbage. This may leave an
2013 empty word on the stack, and thus an unused register, as per
2014 the ABI. */
2015 if (bytes_reserved > 8)
2016 {
2017 /* Round up the offset to a multiple of two slots. */
2018 int new_offset = ((offset[i] + 2*DEPRECATED_REGISTER_SIZE-1)
2019 & -(2*DEPRECATED_REGISTER_SIZE));
2020
2021 /* Note the space we've wasted, if any. */
2022 bytes_reserved += new_offset - offset[i];
2023 offset[i] = new_offset;
2024 }
2025
2026 cum_bytes_reserved += bytes_reserved;
2027 }
2028
2029 /* CUM_BYTES_RESERVED already accounts for all the arguments
2030 passed by the user. However, the ABIs mandate minimum stack space
2031 allocations for outgoing arguments.
2032
2033 The ABIs also mandate minimum stack alignments which we must
2034 preserve. */
2035 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2036 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2037
2038 /* Now write each of the args at the proper offset down the stack. */
2039 for (i = 0; i < nargs; i++)
2040 write_memory (orig_sp + offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2041
2042 /* If a structure has to be returned, set up register 28 to hold its
2043 address */
2044 if (struct_return)
2045 write_register (28, struct_addr);
2046
2047 /* For the PA64 we must pass a pointer to the outgoing argument list.
2048 The ABI mandates that the pointer should point to the first byte of
2049 storage beyond the register flushback area.
2050
2051 However, the call dummy expects the outgoing argument pointer to
2052 be passed in register %r4. */
2053 write_register (4, orig_sp + REG_PARM_STACK_SPACE);
2054
2055 /* ?!? This needs further work. We need to set up the global data
2056 pointer for this procedure. This assumes the same global pointer
2057 for every procedure. The call dummy expects the dp value to
2058 be passed in register %r6. */
2059 write_register (6, read_register (27));
2060
2061 /* The stack will have 64 bytes of additional space for a frame marker. */
2062 return sp + 64;
2063 }
2064
2065 #else
2066
2067 /* This function pushes a stack frame with arguments as part of the
2068 inferior function calling mechanism.
2069
2070 This is the version of the function for the 32-bit PA machines, in
2071 which later arguments appear at lower addresses. (The stack always
2072 grows towards higher addresses.)
2073
2074 We simply allocate the appropriate amount of stack space and put
2075 arguments into their proper slots. The call dummy code will copy
2076 arguments into registers as needed by the ABI. */
2077
2078 CORE_ADDR
2079 hppa_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2080 int struct_return, CORE_ADDR struct_addr)
2081 {
2082 /* array of arguments' offsets */
2083 int *offset = (int *) alloca (nargs * sizeof (int));
2084
2085 /* array of arguments' lengths: real lengths in bytes, not aligned to
2086 word size */
2087 int *lengths = (int *) alloca (nargs * sizeof (int));
2088
2089 /* The number of stack bytes occupied by the current argument. */
2090 int bytes_reserved;
2091
2092 /* The total number of bytes reserved for the arguments. */
2093 int cum_bytes_reserved = 0;
2094
2095 /* Similarly, but aligned. */
2096 int cum_bytes_aligned = 0;
2097 int i;
2098
2099 /* Iterate over each argument provided by the user. */
2100 for (i = 0; i < nargs; i++)
2101 {
2102 lengths[i] = TYPE_LENGTH (VALUE_TYPE (args[i]));
2103
2104 /* Align the size of the argument to the word size for this
2105 target. */
2106 bytes_reserved = (lengths[i] + DEPRECATED_REGISTER_SIZE - 1) & -DEPRECATED_REGISTER_SIZE;
2107
2108 offset[i] = (cum_bytes_reserved
2109 + (lengths[i] > 4 ? bytes_reserved : lengths[i]));
2110
2111 /* If the argument is a double word argument, then it needs to be
2112 double word aligned. */
2113 if ((bytes_reserved == 2 * DEPRECATED_REGISTER_SIZE)
2114 && (offset[i] % 2 * DEPRECATED_REGISTER_SIZE))
2115 {
2116 int new_offset = 0;
2117 /* BYTES_RESERVED is already aligned to the word, so we put
2118 the argument at one word more down the stack.
2119
2120 This will leave one empty word on the stack, and one unused
2121 register as mandated by the ABI. */
2122 new_offset = ((offset[i] + 2 * DEPRECATED_REGISTER_SIZE - 1)
2123 & -(2 * DEPRECATED_REGISTER_SIZE));
2124
2125 if ((new_offset - offset[i]) >= 2 * DEPRECATED_REGISTER_SIZE)
2126 {
2127 bytes_reserved += DEPRECATED_REGISTER_SIZE;
2128 offset[i] += DEPRECATED_REGISTER_SIZE;
2129 }
2130 }
2131
2132 cum_bytes_reserved += bytes_reserved;
2133
2134 }
2135
2136 /* CUM_BYTES_RESERVED already accounts for all the arguments passed
2137 by the user. However, the ABI mandates minimum stack space
2138 allocations for outgoing arguments.
2139
2140 The ABI also mandates minimum stack alignments which we must
2141 preserve. */
2142 cum_bytes_aligned = DEPRECATED_STACK_ALIGN (cum_bytes_reserved);
2143 sp += max (cum_bytes_aligned, REG_PARM_STACK_SPACE);
2144
2145 /* Now write each of the args at the proper offset down the stack.
2146 ?!? We need to promote values to a full register instead of skipping
2147 words in the stack. */
2148 for (i = 0; i < nargs; i++)
2149 write_memory (sp - offset[i], VALUE_CONTENTS (args[i]), lengths[i]);
2150
2151 /* If a structure has to be returned, set up register 28 to hold its
2152 address */
2153 if (struct_return)
2154 write_register (28, struct_addr);
2155
2156 /* The stack will have 32 bytes of additional space for a frame marker. */
2157 return sp + 32;
2158 }
2159
2160 #endif
2161
2162 /* This function pushes a stack frame with arguments as part of the
2163 inferior function calling mechanism.
2164
2165 This is the version of the function for the 32-bit PA machines, in
2166 which later arguments appear at lower addresses. (The stack always
2167 grows towards higher addresses.)
2168
2169 We simply allocate the appropriate amount of stack space and put
2170 arguments into their proper slots. */
2171
2172 CORE_ADDR
2173 hppa32_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2174 struct regcache *regcache, CORE_ADDR bp_addr,
2175 int nargs, struct value **args, CORE_ADDR sp,
2176 int struct_return, CORE_ADDR struct_addr)
2177 {
2178 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
2179 reverse engineering testsuite failures. */
2180
2181 /* Stack base address at which any pass-by-reference parameters are
2182 stored. */
2183 CORE_ADDR struct_end = 0;
2184 /* Stack base address at which the first parameter is stored. */
2185 CORE_ADDR param_end = 0;
2186
2187 /* The inner most end of the stack after all the parameters have
2188 been pushed. */
2189 CORE_ADDR new_sp = 0;
2190
2191 /* Two passes. First pass computes the location of everything,
2192 second pass writes the bytes out. */
2193 int write_pass;
2194 for (write_pass = 0; write_pass < 2; write_pass++)
2195 {
2196 CORE_ADDR struct_ptr = 0;
2197 CORE_ADDR param_ptr = 0;
2198 int reg = 27; /* NOTE: Registers go down. */
2199 int i;
2200 for (i = 0; i < nargs; i++)
2201 {
2202 struct value *arg = args[i];
2203 struct type *type = check_typedef (VALUE_TYPE (arg));
2204 /* The corresponding parameter that is pushed onto the
2205 stack, and [possibly] passed in a register. */
2206 char param_val[8];
2207 int param_len;
2208 memset (param_val, 0, sizeof param_val);
2209 if (TYPE_LENGTH (type) > 8)
2210 {
2211 /* Large parameter, pass by reference. Store the value
2212 in "struct" area and then pass its address. */
2213 param_len = 4;
2214 struct_ptr += align_up (TYPE_LENGTH (type), 8);
2215 if (write_pass)
2216 write_memory (struct_end - struct_ptr, VALUE_CONTENTS (arg),
2217 TYPE_LENGTH (type));
2218 store_unsigned_integer (param_val, 4, struct_end - struct_ptr);
2219 }
2220 else if (TYPE_CODE (type) == TYPE_CODE_INT
2221 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2222 {
2223 /* Integer value store, right aligned. "unpack_long"
2224 takes care of any sign-extension problems. */
2225 param_len = align_up (TYPE_LENGTH (type), 4);
2226 store_unsigned_integer (param_val, param_len,
2227 unpack_long (type,
2228 VALUE_CONTENTS (arg)));
2229 }
2230 else
2231 {
2232 /* Small struct value, store right aligned? */
2233 param_len = align_up (TYPE_LENGTH (type), 4);
2234 memcpy (param_val + param_len - TYPE_LENGTH (type),
2235 VALUE_CONTENTS (arg), TYPE_LENGTH (type));
2236 }
2237 param_ptr += param_len;
2238 reg -= param_len / 4;
2239 if (write_pass)
2240 {
2241 write_memory (param_end - param_ptr, param_val, param_len);
2242 if (reg >= 23)
2243 {
2244 regcache_cooked_write (regcache, reg, param_val);
2245 if (param_len > 4)
2246 regcache_cooked_write (regcache, reg + 1, param_val + 4);
2247 }
2248 }
2249 }
2250
2251 /* Update the various stack pointers. */
2252 if (!write_pass)
2253 {
2254 struct_end = sp + struct_ptr;
2255 /* PARAM_PTR already accounts for all the arguments passed
2256 by the user. However, the ABI mandates minimum stack
2257 space allocations for outgoing arguments. The ABI also
2258 mandates minimum stack alignments which we must
2259 preserve. */
2260 param_end = struct_end + max (align_up (param_ptr, 8),
2261 REG_PARM_STACK_SPACE);
2262 }
2263 }
2264
2265 /* If a structure has to be returned, set up register 28 to hold its
2266 address */
2267 if (struct_return)
2268 write_register (28, struct_addr);
2269
2270 /* Set the return address. */
2271 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2272
2273 /* The stack will have 32 bytes of additional space for a frame marker. */
2274 return param_end + 32;
2275 }
2276
2277 /* This function pushes a stack frame with arguments as part of the
2278 inferior function calling mechanism.
2279
2280 This is the version for the PA64, in which later arguments appear
2281 at higher addresses. (The stack always grows towards higher
2282 addresses.)
2283
2284 We simply allocate the appropriate amount of stack space and put
2285 arguments into their proper slots.
2286
2287 This ABI also requires that the caller provide an argument pointer
2288 to the callee, so we do that too. */
2289
2290 CORE_ADDR
2291 hppa64_push_dummy_call (struct gdbarch *gdbarch, CORE_ADDR func_addr,
2292 struct regcache *regcache, CORE_ADDR bp_addr,
2293 int nargs, struct value **args, CORE_ADDR sp,
2294 int struct_return, CORE_ADDR struct_addr)
2295 {
2296 /* NOTE: cagney/2004-02-27: This is a guess - its implemented by
2297 reverse engineering testsuite failures. */
2298
2299 /* Stack base address at which any pass-by-reference parameters are
2300 stored. */
2301 CORE_ADDR struct_end = 0;
2302 /* Stack base address at which the first parameter is stored. */
2303 CORE_ADDR param_end = 0;
2304
2305 /* The inner most end of the stack after all the parameters have
2306 been pushed. */
2307 CORE_ADDR new_sp = 0;
2308
2309 /* Two passes. First pass computes the location of everything,
2310 second pass writes the bytes out. */
2311 int write_pass;
2312 for (write_pass = 0; write_pass < 2; write_pass++)
2313 {
2314 CORE_ADDR struct_ptr = 0;
2315 CORE_ADDR param_ptr = 0;
2316 int i;
2317 for (i = 0; i < nargs; i++)
2318 {
2319 struct value *arg = args[i];
2320 struct type *type = check_typedef (VALUE_TYPE (arg));
2321 if ((TYPE_CODE (type) == TYPE_CODE_INT
2322 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2323 && TYPE_LENGTH (type) <= 8)
2324 {
2325 /* Integer value store, right aligned. "unpack_long"
2326 takes care of any sign-extension problems. */
2327 param_ptr += 8;
2328 if (write_pass)
2329 {
2330 ULONGEST val = unpack_long (type, VALUE_CONTENTS (arg));
2331 int reg = 27 - param_ptr / 8;
2332 write_memory_unsigned_integer (param_end - param_ptr,
2333 val, 8);
2334 if (reg >= 19)
2335 regcache_cooked_write_unsigned (regcache, reg, val);
2336 }
2337 }
2338 else
2339 {
2340 /* Small struct value, store left aligned? */
2341 int reg;
2342 if (TYPE_LENGTH (type) > 8)
2343 {
2344 param_ptr = align_up (param_ptr, 16);
2345 reg = 26 - param_ptr / 8;
2346 param_ptr += align_up (TYPE_LENGTH (type), 16);
2347 }
2348 else
2349 {
2350 param_ptr = align_up (param_ptr, 8);
2351 reg = 26 - param_ptr / 8;
2352 param_ptr += align_up (TYPE_LENGTH (type), 8);
2353 }
2354 if (write_pass)
2355 {
2356 int byte;
2357 write_memory (param_end - param_ptr, VALUE_CONTENTS (arg),
2358 TYPE_LENGTH (type));
2359 for (byte = 0; byte < TYPE_LENGTH (type); byte += 8)
2360 {
2361 if (reg >= 19)
2362 {
2363 int len = min (8, TYPE_LENGTH (type) - byte);
2364 regcache_cooked_write_part (regcache, reg, 0, len,
2365 VALUE_CONTENTS (arg) + byte);
2366 }
2367 reg--;
2368 }
2369 }
2370 }
2371 }
2372 /* Update the various stack pointers. */
2373 if (!write_pass)
2374 {
2375 struct_end = sp + struct_ptr;
2376 /* PARAM_PTR already accounts for all the arguments passed
2377 by the user. However, the ABI mandates minimum stack
2378 space allocations for outgoing arguments. The ABI also
2379 mandates minimum stack alignments which we must
2380 preserve. */
2381 param_end = struct_end + max (align_up (param_ptr, 16),
2382 REG_PARM_STACK_SPACE);
2383 }
2384 }
2385
2386 /* If a structure has to be returned, set up register 28 to hold its
2387 address */
2388 if (struct_return)
2389 write_register (28, struct_addr);
2390
2391 /* Set the return address. */
2392 regcache_cooked_write_unsigned (regcache, RP_REGNUM, bp_addr);
2393
2394 /* The stack will have 32 bytes of additional space for a frame marker. */
2395 return param_end + 64;
2396 }
2397
2398 static CORE_ADDR
2399 hppa32_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2400 {
2401 /* HP frames are 64-byte (or cache line) aligned (yes that's _byte_
2402 and not _bit_)! */
2403 return align_up (addr, 64);
2404 }
2405
2406 /* Force all frames to 16-byte alignment. Better safe than sorry. */
2407
2408 static CORE_ADDR
2409 hppa64_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2410 {
2411 /* Just always 16-byte align. */
2412 return align_up (addr, 16);
2413 }
2414
2415
2416 /* elz: Used to lookup a symbol in the shared libraries.
2417 This function calls shl_findsym, indirectly through a
2418 call to __d_shl_get. __d_shl_get is in end.c, which is always
2419 linked in by the hp compilers/linkers.
2420 The call to shl_findsym cannot be made directly because it needs
2421 to be active in target address space.
2422 inputs: - minimal symbol pointer for the function we want to look up
2423 - address in target space of the descriptor for the library
2424 where we want to look the symbol up.
2425 This address is retrieved using the
2426 som_solib_get_solib_by_pc function (somsolib.c).
2427 output: - real address in the library of the function.
2428 note: the handle can be null, in which case shl_findsym will look for
2429 the symbol in all the loaded shared libraries.
2430 files to look at if you need reference on this stuff:
2431 dld.c, dld_shl_findsym.c
2432 end.c
2433 man entry for shl_findsym */
2434
2435 CORE_ADDR
2436 find_stub_with_shl_get (struct minimal_symbol *function, CORE_ADDR handle)
2437 {
2438 struct symbol *get_sym, *symbol2;
2439 struct minimal_symbol *buff_minsym, *msymbol;
2440 struct type *ftype;
2441 struct value **args;
2442 struct value *funcval;
2443 struct value *val;
2444
2445 int x, namelen, err_value, tmp = -1;
2446 CORE_ADDR endo_buff_addr, value_return_addr, errno_return_addr;
2447 CORE_ADDR stub_addr;
2448
2449
2450 args = alloca (sizeof (struct value *) * 8); /* 6 for the arguments and one null one??? */
2451 funcval = find_function_in_inferior ("__d_shl_get");
2452 get_sym = lookup_symbol ("__d_shl_get", NULL, VAR_DOMAIN, NULL, NULL);
2453 buff_minsym = lookup_minimal_symbol ("__buffer", NULL, NULL);
2454 msymbol = lookup_minimal_symbol ("__shldp", NULL, NULL);
2455 symbol2 = lookup_symbol ("__shldp", NULL, VAR_DOMAIN, NULL, NULL);
2456 endo_buff_addr = SYMBOL_VALUE_ADDRESS (buff_minsym);
2457 namelen = strlen (DEPRECATED_SYMBOL_NAME (function));
2458 value_return_addr = endo_buff_addr + namelen;
2459 ftype = check_typedef (SYMBOL_TYPE (get_sym));
2460
2461 /* do alignment */
2462 if ((x = value_return_addr % 64) != 0)
2463 value_return_addr = value_return_addr + 64 - x;
2464
2465 errno_return_addr = value_return_addr + 64;
2466
2467
2468 /* set up stuff needed by __d_shl_get in buffer in end.o */
2469
2470 target_write_memory (endo_buff_addr, DEPRECATED_SYMBOL_NAME (function), namelen);
2471
2472 target_write_memory (value_return_addr, (char *) &tmp, 4);
2473
2474 target_write_memory (errno_return_addr, (char *) &tmp, 4);
2475
2476 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2477 (char *) &handle, 4);
2478
2479 /* now prepare the arguments for the call */
2480
2481 args[0] = value_from_longest (TYPE_FIELD_TYPE (ftype, 0), 12);
2482 args[1] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 1), SYMBOL_VALUE_ADDRESS (msymbol));
2483 args[2] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 2), endo_buff_addr);
2484 args[3] = value_from_longest (TYPE_FIELD_TYPE (ftype, 3), TYPE_PROCEDURE);
2485 args[4] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 4), value_return_addr);
2486 args[5] = value_from_pointer (TYPE_FIELD_TYPE (ftype, 5), errno_return_addr);
2487
2488 /* now call the function */
2489
2490 val = call_function_by_hand (funcval, 6, args);
2491
2492 /* now get the results */
2493
2494 target_read_memory (errno_return_addr, (char *) &err_value, sizeof (err_value));
2495
2496 target_read_memory (value_return_addr, (char *) &stub_addr, sizeof (stub_addr));
2497 if (stub_addr <= 0)
2498 error ("call to __d_shl_get failed, error code is %d", err_value);
2499
2500 return (stub_addr);
2501 }
2502
2503 /* Cover routine for find_stub_with_shl_get to pass to catch_errors */
2504 static int
2505 cover_find_stub_with_shl_get (void *args_untyped)
2506 {
2507 args_for_find_stub *args = args_untyped;
2508 args->return_val = find_stub_with_shl_get (args->msym, args->solib_handle);
2509 return 0;
2510 }
2511
2512 /* Insert the specified number of args and function address
2513 into a call sequence of the above form stored at DUMMYNAME.
2514
2515 On the hppa we need to call the stack dummy through $$dyncall.
2516 Therefore our version of DEPRECATED_FIX_CALL_DUMMY takes an extra
2517 argument, real_pc, which is the location where gdb should start up
2518 the inferior to do the function call.
2519
2520 This has to work across several versions of hpux, bsd, osf1. It has to
2521 work regardless of what compiler was used to build the inferior program.
2522 It should work regardless of whether or not end.o is available. It has
2523 to work even if gdb can not call into the dynamic loader in the inferior
2524 to query it for symbol names and addresses.
2525
2526 Yes, all those cases should work. Luckily code exists to handle most
2527 of them. The complexity is in selecting exactly what scheme should
2528 be used to perform the inferior call.
2529
2530 At the current time this routine is known not to handle cases where
2531 the program was linked with HP's compiler without including end.o.
2532
2533 Please contact Jeff Law (law@cygnus.com) before changing this code. */
2534
2535 CORE_ADDR
2536 hppa_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun, int nargs,
2537 struct value **args, struct type *type, int gcc_p)
2538 {
2539 CORE_ADDR dyncall_addr;
2540 struct minimal_symbol *msymbol;
2541 struct minimal_symbol *trampoline;
2542 int flags = read_register (FLAGS_REGNUM);
2543 struct unwind_table_entry *u = NULL;
2544 CORE_ADDR new_stub = 0;
2545 CORE_ADDR solib_handle = 0;
2546
2547 /* Nonzero if we will use GCC's PLT call routine. This routine must be
2548 passed an import stub, not a PLABEL. It is also necessary to set %r19
2549 (the PIC register) before performing the call.
2550
2551 If zero, then we are using __d_plt_call (HP's PLT call routine) or we
2552 are calling the target directly. When using __d_plt_call we want to
2553 use a PLABEL instead of an import stub. */
2554 int using_gcc_plt_call = 1;
2555
2556 #ifdef GDB_TARGET_IS_HPPA_20W
2557 /* We currently use completely different code for the PA2.0W inferior
2558 function call sequences. This needs to be cleaned up. */
2559 {
2560 CORE_ADDR pcsqh, pcsqt, pcoqh, pcoqt, sr5;
2561 struct target_waitstatus w;
2562 int inst1, inst2;
2563 char buf[4];
2564 int status;
2565 struct objfile *objfile;
2566
2567 /* We can not modify the PC space queues directly, so we start
2568 up the inferior and execute a couple instructions to set the
2569 space queues so that they point to the call dummy in the stack. */
2570 pcsqh = read_register (PCSQ_HEAD_REGNUM);
2571 sr5 = read_register (SR5_REGNUM);
2572 if (1)
2573 {
2574 pcoqh = read_register (PCOQ_HEAD_REGNUM);
2575 pcoqt = read_register (PCOQ_TAIL_REGNUM);
2576 if (target_read_memory (pcoqh, buf, 4) != 0)
2577 error ("Couldn't modify space queue\n");
2578 inst1 = extract_unsigned_integer (buf, 4);
2579
2580 if (target_read_memory (pcoqt, buf, 4) != 0)
2581 error ("Couldn't modify space queue\n");
2582 inst2 = extract_unsigned_integer (buf, 4);
2583
2584 /* BVE (r1) */
2585 *((int *) buf) = 0xe820d000;
2586 if (target_write_memory (pcoqh, buf, 4) != 0)
2587 error ("Couldn't modify space queue\n");
2588
2589 /* NOP */
2590 *((int *) buf) = 0x08000240;
2591 if (target_write_memory (pcoqt, buf, 4) != 0)
2592 {
2593 *((int *) buf) = inst1;
2594 target_write_memory (pcoqh, buf, 4);
2595 error ("Couldn't modify space queue\n");
2596 }
2597
2598 write_register (1, pc);
2599
2600 /* Single step twice, the BVE instruction will set the space queue
2601 such that it points to the PC value written immediately above
2602 (ie the call dummy). */
2603 resume (1, 0);
2604 target_wait (inferior_ptid, &w);
2605 resume (1, 0);
2606 target_wait (inferior_ptid, &w);
2607
2608 /* Restore the two instructions at the old PC locations. */
2609 *((int *) buf) = inst1;
2610 target_write_memory (pcoqh, buf, 4);
2611 *((int *) buf) = inst2;
2612 target_write_memory (pcoqt, buf, 4);
2613 }
2614
2615 /* The call dummy wants the ultimate destination address initially
2616 in register %r5. */
2617 write_register (5, fun);
2618
2619 /* We need to see if this objfile has a different DP value than our
2620 own (it could be a shared library for example). */
2621 ALL_OBJFILES (objfile)
2622 {
2623 struct obj_section *s;
2624 obj_private_data_t *obj_private;
2625
2626 /* See if FUN is in any section within this shared library. */
2627 for (s = objfile->sections; s < objfile->sections_end; s++)
2628 if (s->addr <= fun && fun < s->endaddr)
2629 break;
2630
2631 if (s >= objfile->sections_end)
2632 continue;
2633
2634 obj_private = (obj_private_data_t *) objfile->obj_private;
2635
2636 /* The DP value may be different for each objfile. But within an
2637 objfile each function uses the same dp value. Thus we do not need
2638 to grope around the opd section looking for dp values.
2639
2640 ?!? This is not strictly correct since we may be in a shared library
2641 and want to call back into the main program. To make that case
2642 work correctly we need to set obj_private->dp for the main program's
2643 objfile, then remove this conditional. */
2644 if (obj_private->dp)
2645 write_register (27, obj_private->dp);
2646 break;
2647 }
2648 return pc;
2649 }
2650 #endif
2651
2652 #ifndef GDB_TARGET_IS_HPPA_20W
2653 /* Prefer __gcc_plt_call over the HP supplied routine because
2654 __gcc_plt_call works for any number of arguments. */
2655 trampoline = NULL;
2656 if (lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL) == NULL)
2657 using_gcc_plt_call = 0;
2658
2659 msymbol = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
2660 if (msymbol == NULL)
2661 error ("Can't find an address for $$dyncall trampoline");
2662
2663 dyncall_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2664
2665 /* FUN could be a procedure label, in which case we have to get
2666 its real address and the value of its GOT/DP if we plan to
2667 call the routine via gcc_plt_call. */
2668 if ((fun & 0x2) && using_gcc_plt_call)
2669 {
2670 /* Get the GOT/DP value for the target function. It's
2671 at *(fun+4). Note the call dummy is *NOT* allowed to
2672 trash %r19 before calling the target function. */
2673 write_register (19, read_memory_integer ((fun & ~0x3) + 4,
2674 DEPRECATED_REGISTER_SIZE));
2675
2676 /* Now get the real address for the function we are calling, it's
2677 at *fun. */
2678 fun = (CORE_ADDR) read_memory_integer (fun & ~0x3,
2679 TARGET_PTR_BIT / 8);
2680 }
2681 else
2682 {
2683
2684 #ifndef GDB_TARGET_IS_PA_ELF
2685 /* FUN could be an export stub, the real address of a function, or
2686 a PLABEL. When using gcc's PLT call routine we must call an import
2687 stub rather than the export stub or real function for lazy binding
2688 to work correctly
2689
2690 If we are using the gcc PLT call routine, then we need to
2691 get the import stub for the target function. */
2692 if (using_gcc_plt_call && som_solib_get_got_by_pc (fun))
2693 {
2694 struct objfile *objfile;
2695 struct minimal_symbol *funsymbol, *stub_symbol;
2696 CORE_ADDR newfun = 0;
2697
2698 funsymbol = lookup_minimal_symbol_by_pc (fun);
2699 if (!funsymbol)
2700 error ("Unable to find minimal symbol for target function.\n");
2701
2702 /* Search all the object files for an import symbol with the
2703 right name. */
2704 ALL_OBJFILES (objfile)
2705 {
2706 stub_symbol
2707 = lookup_minimal_symbol_solib_trampoline
2708 (DEPRECATED_SYMBOL_NAME (funsymbol), objfile);
2709
2710 if (!stub_symbol)
2711 stub_symbol = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (funsymbol),
2712 NULL, objfile);
2713
2714 /* Found a symbol with the right name. */
2715 if (stub_symbol)
2716 {
2717 struct unwind_table_entry *u;
2718 /* It must be a shared library trampoline. */
2719 if (MSYMBOL_TYPE (stub_symbol) != mst_solib_trampoline)
2720 continue;
2721
2722 /* It must also be an import stub. */
2723 u = find_unwind_entry (SYMBOL_VALUE (stub_symbol));
2724 if (u == NULL
2725 || (u->stub_unwind.stub_type != IMPORT
2726 #ifdef GDB_NATIVE_HPUX_11
2727 /* Sigh. The hpux 10.20 dynamic linker will blow
2728 chunks if we perform a call to an unbound function
2729 via the IMPORT_SHLIB stub. The hpux 11.00 dynamic
2730 linker will blow chunks if we do not call the
2731 unbound function via the IMPORT_SHLIB stub.
2732
2733 We currently have no way to select bevahior on just
2734 the target. However, we only support HPUX/SOM in
2735 native mode. So we conditinalize on a native
2736 #ifdef. Ugly. Ugly. Ugly */
2737 && u->stub_unwind.stub_type != IMPORT_SHLIB
2738 #endif
2739 ))
2740 continue;
2741
2742 /* OK. Looks like the correct import stub. */
2743 newfun = SYMBOL_VALUE (stub_symbol);
2744 fun = newfun;
2745
2746 /* If we found an IMPORT stub, then we want to stop
2747 searching now. If we found an IMPORT_SHLIB, we want
2748 to continue the search in the hopes that we will find
2749 an IMPORT stub. */
2750 if (u->stub_unwind.stub_type == IMPORT)
2751 break;
2752 }
2753 }
2754
2755 /* Ouch. We did not find an import stub. Make an attempt to
2756 do the right thing instead of just croaking. Most of the
2757 time this will actually work. */
2758 if (newfun == 0)
2759 write_register (19, som_solib_get_got_by_pc (fun));
2760
2761 u = find_unwind_entry (fun);
2762 if (u
2763 && (u->stub_unwind.stub_type == IMPORT
2764 || u->stub_unwind.stub_type == IMPORT_SHLIB))
2765 trampoline = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
2766
2767 /* If we found the import stub in the shared library, then we have
2768 to set %r19 before we call the stub. */
2769 if (u && u->stub_unwind.stub_type == IMPORT_SHLIB)
2770 write_register (19, som_solib_get_got_by_pc (fun));
2771 }
2772 #endif
2773 }
2774
2775 /* If we are calling into another load module then have sr4export call the
2776 magic __d_plt_call routine which is linked in from end.o.
2777
2778 You can't use _sr4export to make the call as the value in sp-24 will get
2779 fried and you end up returning to the wrong location. You can't call the
2780 target as the code to bind the PLT entry to a function can't return to a
2781 stack address.
2782
2783 Also, query the dynamic linker in the inferior to provide a suitable
2784 PLABEL for the target function. */
2785 if (!using_gcc_plt_call)
2786 {
2787 CORE_ADDR new_fun;
2788
2789 /* Get a handle for the shared library containing FUN. Given the
2790 handle we can query the shared library for a PLABEL. */
2791 solib_handle = som_solib_get_solib_by_pc (fun);
2792
2793 if (solib_handle)
2794 {
2795 struct minimal_symbol *fmsymbol = lookup_minimal_symbol_by_pc (fun);
2796
2797 trampoline = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
2798
2799 if (trampoline == NULL)
2800 {
2801 error ("Can't find an address for __d_plt_call or __gcc_plt_call trampoline\nSuggest linking executable with -g or compiling with gcc.");
2802 }
2803
2804 /* This is where sr4export will jump to. */
2805 new_fun = SYMBOL_VALUE_ADDRESS (trampoline);
2806
2807 /* If the function is in a shared library, then call __d_shl_get to
2808 get a PLABEL for the target function. */
2809 new_stub = find_stub_with_shl_get (fmsymbol, solib_handle);
2810
2811 if (new_stub == 0)
2812 error ("Can't find an import stub for %s", DEPRECATED_SYMBOL_NAME (fmsymbol));
2813
2814 /* We have to store the address of the stub in __shlib_funcptr. */
2815 msymbol = lookup_minimal_symbol ("__shlib_funcptr", NULL,
2816 (struct objfile *) NULL);
2817
2818 if (msymbol == NULL)
2819 error ("Can't find an address for __shlib_funcptr");
2820 target_write_memory (SYMBOL_VALUE_ADDRESS (msymbol),
2821 (char *) &new_stub, 4);
2822
2823 /* We want sr4export to call __d_plt_call, so we claim it is
2824 the final target. Clear trampoline. */
2825 fun = new_fun;
2826 trampoline = NULL;
2827 }
2828 }
2829
2830 /* Store upper 21 bits of function address into ldil. fun will either be
2831 the final target (most cases) or __d_plt_call when calling into a shared
2832 library and __gcc_plt_call is not available. */
2833 store_unsigned_integer
2834 (&dummy[FUNC_LDIL_OFFSET],
2835 INSTRUCTION_SIZE,
2836 deposit_21 (fun >> 11,
2837 extract_unsigned_integer (&dummy[FUNC_LDIL_OFFSET],
2838 INSTRUCTION_SIZE)));
2839
2840 /* Store lower 11 bits of function address into ldo */
2841 store_unsigned_integer
2842 (&dummy[FUNC_LDO_OFFSET],
2843 INSTRUCTION_SIZE,
2844 deposit_14 (fun & MASK_11,
2845 extract_unsigned_integer (&dummy[FUNC_LDO_OFFSET],
2846 INSTRUCTION_SIZE)));
2847 #ifdef SR4EXPORT_LDIL_OFFSET
2848
2849 {
2850 CORE_ADDR trampoline_addr;
2851
2852 /* We may still need sr4export's address too. */
2853
2854 if (trampoline == NULL)
2855 {
2856 msymbol = lookup_minimal_symbol ("_sr4export", NULL, NULL);
2857 if (msymbol == NULL)
2858 error ("Can't find an address for _sr4export trampoline");
2859
2860 trampoline_addr = SYMBOL_VALUE_ADDRESS (msymbol);
2861 }
2862 else
2863 trampoline_addr = SYMBOL_VALUE_ADDRESS (trampoline);
2864
2865
2866 /* Store upper 21 bits of trampoline's address into ldil */
2867 store_unsigned_integer
2868 (&dummy[SR4EXPORT_LDIL_OFFSET],
2869 INSTRUCTION_SIZE,
2870 deposit_21 (trampoline_addr >> 11,
2871 extract_unsigned_integer (&dummy[SR4EXPORT_LDIL_OFFSET],
2872 INSTRUCTION_SIZE)));
2873
2874 /* Store lower 11 bits of trampoline's address into ldo */
2875 store_unsigned_integer
2876 (&dummy[SR4EXPORT_LDO_OFFSET],
2877 INSTRUCTION_SIZE,
2878 deposit_14 (trampoline_addr & MASK_11,
2879 extract_unsigned_integer (&dummy[SR4EXPORT_LDO_OFFSET],
2880 INSTRUCTION_SIZE)));
2881 }
2882 #endif
2883
2884 write_register (22, pc);
2885
2886 /* If we are in a syscall, then we should call the stack dummy
2887 directly. $$dyncall is not needed as the kernel sets up the
2888 space id registers properly based on the value in %r31. In
2889 fact calling $$dyncall will not work because the value in %r22
2890 will be clobbered on the syscall exit path.
2891
2892 Similarly if the current PC is in a shared library. Note however,
2893 this scheme won't work if the shared library isn't mapped into
2894 the same space as the stack. */
2895 if (flags & 2)
2896 return pc;
2897 #ifndef GDB_TARGET_IS_PA_ELF
2898 else if (som_solib_get_got_by_pc (hppa_target_read_pc (inferior_ptid)))
2899 return pc;
2900 #endif
2901 else
2902 return dyncall_addr;
2903 #endif
2904 }
2905
2906 /* If the pid is in a syscall, then the FP register is not readable.
2907 We'll return zero in that case, rather than attempting to read it
2908 and cause a warning. */
2909
2910 CORE_ADDR
2911 hppa_read_fp (int pid)
2912 {
2913 int flags = read_register (FLAGS_REGNUM);
2914
2915 if (flags & 2)
2916 {
2917 return (CORE_ADDR) 0;
2918 }
2919
2920 /* This is the only site that may directly read_register () the FP
2921 register. All others must use deprecated_read_fp (). */
2922 return read_register (DEPRECATED_FP_REGNUM);
2923 }
2924
2925 CORE_ADDR
2926 hppa_target_read_fp (void)
2927 {
2928 return hppa_read_fp (PIDGET (inferior_ptid));
2929 }
2930
2931 /* Get the PC from %r31 if currently in a syscall. Also mask out privilege
2932 bits. */
2933
2934 CORE_ADDR
2935 hppa_target_read_pc (ptid_t ptid)
2936 {
2937 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2938
2939 /* The following test does not belong here. It is OS-specific, and belongs
2940 in native code. */
2941 /* Test SS_INSYSCALL */
2942 if (flags & 2)
2943 return read_register_pid (31, ptid) & ~0x3;
2944
2945 return read_register_pid (PCOQ_HEAD_REGNUM, ptid) & ~0x3;
2946 }
2947
2948 /* Write out the PC. If currently in a syscall, then also write the new
2949 PC value into %r31. */
2950
2951 void
2952 hppa_target_write_pc (CORE_ADDR v, ptid_t ptid)
2953 {
2954 int flags = read_register_pid (FLAGS_REGNUM, ptid);
2955
2956 /* The following test does not belong here. It is OS-specific, and belongs
2957 in native code. */
2958 /* If in a syscall, then set %r31. Also make sure to get the
2959 privilege bits set correctly. */
2960 /* Test SS_INSYSCALL */
2961 if (flags & 2)
2962 write_register_pid (31, v | 0x3, ptid);
2963
2964 write_register_pid (PCOQ_HEAD_REGNUM, v, ptid);
2965 write_register_pid (PCOQ_TAIL_REGNUM, v + 4, ptid);
2966 }
2967
2968 /* return the alignment of a type in bytes. Structures have the maximum
2969 alignment required by their fields. */
2970
2971 static int
2972 hppa_alignof (struct type *type)
2973 {
2974 int max_align, align, i;
2975 CHECK_TYPEDEF (type);
2976 switch (TYPE_CODE (type))
2977 {
2978 case TYPE_CODE_PTR:
2979 case TYPE_CODE_INT:
2980 case TYPE_CODE_FLT:
2981 return TYPE_LENGTH (type);
2982 case TYPE_CODE_ARRAY:
2983 return hppa_alignof (TYPE_FIELD_TYPE (type, 0));
2984 case TYPE_CODE_STRUCT:
2985 case TYPE_CODE_UNION:
2986 max_align = 1;
2987 for (i = 0; i < TYPE_NFIELDS (type); i++)
2988 {
2989 /* Bit fields have no real alignment. */
2990 /* if (!TYPE_FIELD_BITPOS (type, i)) */
2991 if (!TYPE_FIELD_BITSIZE (type, i)) /* elz: this should be bitsize */
2992 {
2993 align = hppa_alignof (TYPE_FIELD_TYPE (type, i));
2994 max_align = max (max_align, align);
2995 }
2996 }
2997 return max_align;
2998 default:
2999 return 4;
3000 }
3001 }
3002
3003 /* Print the register regnum, or all registers if regnum is -1 */
3004
3005 void
3006 pa_do_registers_info (int regnum, int fpregs)
3007 {
3008 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
3009 int i;
3010
3011 /* Make a copy of gdb's save area (may cause actual
3012 reads from the target). */
3013 for (i = 0; i < NUM_REGS; i++)
3014 frame_register_read (deprecated_selected_frame, i,
3015 raw_regs + DEPRECATED_REGISTER_BYTE (i));
3016
3017 if (regnum == -1)
3018 pa_print_registers (raw_regs, regnum, fpregs);
3019 else if (regnum < FP4_REGNUM)
3020 {
3021 long reg_val[2];
3022
3023 /* Why is the value not passed through "extract_signed_integer"
3024 as in "pa_print_registers" below? */
3025 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
3026
3027 if (!is_pa_2)
3028 {
3029 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
3030 }
3031 else
3032 {
3033 /* Fancy % formats to prevent leading zeros. */
3034 if (reg_val[0] == 0)
3035 printf_unfiltered ("%s %lx\n", REGISTER_NAME (regnum), reg_val[1]);
3036 else
3037 printf_unfiltered ("%s %lx%8.8lx\n", REGISTER_NAME (regnum),
3038 reg_val[0], reg_val[1]);
3039 }
3040 }
3041 else
3042 /* Note that real floating point values only start at
3043 FP4_REGNUM. FP0 and up are just status and error
3044 registers, which have integral (bit) values. */
3045 pa_print_fp_reg (regnum);
3046 }
3047
3048 /********** new function ********************/
3049 void
3050 pa_do_strcat_registers_info (int regnum, int fpregs, struct ui_file *stream,
3051 enum precision_type precision)
3052 {
3053 char *raw_regs = alloca (DEPRECATED_REGISTER_BYTES);
3054 int i;
3055
3056 /* Make a copy of gdb's save area (may cause actual
3057 reads from the target). */
3058 for (i = 0; i < NUM_REGS; i++)
3059 frame_register_read (deprecated_selected_frame, i,
3060 raw_regs + DEPRECATED_REGISTER_BYTE (i));
3061
3062 if (regnum == -1)
3063 pa_strcat_registers (raw_regs, regnum, fpregs, stream);
3064
3065 else if (regnum < FP4_REGNUM)
3066 {
3067 long reg_val[2];
3068
3069 /* Why is the value not passed through "extract_signed_integer"
3070 as in "pa_print_registers" below? */
3071 pa_register_look_aside (raw_regs, regnum, &reg_val[0]);
3072
3073 if (!is_pa_2)
3074 {
3075 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum), reg_val[1]);
3076 }
3077 else
3078 {
3079 /* Fancy % formats to prevent leading zeros. */
3080 if (reg_val[0] == 0)
3081 fprintf_unfiltered (stream, "%s %lx", REGISTER_NAME (regnum),
3082 reg_val[1]);
3083 else
3084 fprintf_unfiltered (stream, "%s %lx%8.8lx", REGISTER_NAME (regnum),
3085 reg_val[0], reg_val[1]);
3086 }
3087 }
3088 else
3089 /* Note that real floating point values only start at
3090 FP4_REGNUM. FP0 and up are just status and error
3091 registers, which have integral (bit) values. */
3092 pa_strcat_fp_reg (regnum, stream, precision);
3093 }
3094
3095 /* If this is a PA2.0 machine, fetch the real 64-bit register
3096 value. Otherwise use the info from gdb's saved register area.
3097
3098 Note that reg_val is really expected to be an array of longs,
3099 with two elements. */
3100 static void
3101 pa_register_look_aside (char *raw_regs, int regnum, long *raw_val)
3102 {
3103 static int know_which = 0; /* False */
3104
3105 int regaddr;
3106 unsigned int offset;
3107 int i;
3108 int start;
3109
3110
3111 char buf[MAX_REGISTER_SIZE];
3112 long long reg_val;
3113
3114 if (!know_which)
3115 {
3116 if (CPU_PA_RISC2_0 == sysconf (_SC_CPU_VERSION))
3117 {
3118 is_pa_2 = (1 == 1);
3119 }
3120
3121 know_which = 1; /* True */
3122 }
3123
3124 raw_val[0] = 0;
3125 raw_val[1] = 0;
3126
3127 if (!is_pa_2)
3128 {
3129 raw_val[1] = *(long *) (raw_regs + DEPRECATED_REGISTER_BYTE (regnum));
3130 return;
3131 }
3132
3133 /* Code below copied from hppah-nat.c, with fixes for wide
3134 registers, using different area of save_state, etc. */
3135 if (regnum == FLAGS_REGNUM || regnum >= FP0_REGNUM ||
3136 !HAVE_STRUCT_SAVE_STATE_T || !HAVE_STRUCT_MEMBER_SS_WIDE)
3137 {
3138 /* Use narrow regs area of save_state and default macro. */
3139 offset = U_REGS_OFFSET;
3140 regaddr = register_addr (regnum, offset);
3141 start = 1;
3142 }
3143 else
3144 {
3145 /* Use wide regs area, and calculate registers as 8 bytes wide.
3146
3147 We'd like to do this, but current version of "C" doesn't
3148 permit "offsetof":
3149
3150 offset = offsetof(save_state_t, ss_wide);
3151
3152 Note that to avoid "C" doing typed pointer arithmetic, we
3153 have to cast away the type in our offset calculation:
3154 otherwise we get an offset of 1! */
3155
3156 /* NB: save_state_t is not available before HPUX 9.
3157 The ss_wide field is not available previous to HPUX 10.20,
3158 so to avoid compile-time warnings, we only compile this for
3159 PA 2.0 processors. This control path should only be followed
3160 if we're debugging a PA 2.0 processor, so this should not cause
3161 problems. */
3162
3163 /* #if the following code out so that this file can still be
3164 compiled on older HPUX boxes (< 10.20) which don't have
3165 this structure/structure member. */
3166 #if HAVE_STRUCT_SAVE_STATE_T == 1 && HAVE_STRUCT_MEMBER_SS_WIDE == 1
3167 save_state_t temp;
3168
3169 offset = ((int) &temp.ss_wide) - ((int) &temp);
3170 regaddr = offset + regnum * 8;
3171 start = 0;
3172 #endif
3173 }
3174
3175 for (i = start; i < 2; i++)
3176 {
3177 errno = 0;
3178 raw_val[i] = call_ptrace (PT_RUREGS, PIDGET (inferior_ptid),
3179 (PTRACE_ARG3_TYPE) regaddr, 0);
3180 if (errno != 0)
3181 {
3182 /* Warning, not error, in case we are attached; sometimes the
3183 kernel doesn't let us at the registers. */
3184 char *err = safe_strerror (errno);
3185 char *msg = alloca (strlen (err) + 128);
3186 sprintf (msg, "reading register %s: %s", REGISTER_NAME (regnum), err);
3187 warning (msg);
3188 goto error_exit;
3189 }
3190
3191 regaddr += sizeof (long);
3192 }
3193
3194 if (regnum == PCOQ_HEAD_REGNUM || regnum == PCOQ_TAIL_REGNUM)
3195 raw_val[1] &= ~0x3; /* I think we're masking out space bits */
3196
3197 error_exit:
3198 ;
3199 }
3200
3201 /* "Info all-reg" command */
3202
3203 static void
3204 pa_print_registers (char *raw_regs, int regnum, int fpregs)
3205 {
3206 int i, j;
3207 /* Alas, we are compiled so that "long long" is 32 bits */
3208 long raw_val[2];
3209 long long_val;
3210 int rows = 48, columns = 2;
3211
3212 for (i = 0; i < rows; i++)
3213 {
3214 for (j = 0; j < columns; j++)
3215 {
3216 /* We display registers in column-major order. */
3217 int regnum = i + j * rows;
3218
3219 /* Q: Why is the value passed through "extract_signed_integer",
3220 while above, in "pa_do_registers_info" it isn't?
3221 A: ? */
3222 pa_register_look_aside (raw_regs, regnum, &raw_val[0]);
3223
3224 /* Even fancier % formats to prevent leading zeros
3225 and still maintain the output in columns. */
3226 if (!is_pa_2)
3227 {
3228 /* Being big-endian, on this machine the low bits
3229 (the ones we want to look at) are in the second longword. */
3230 long_val = extract_signed_integer (&raw_val[1], 4);
3231 printf_filtered ("%10.10s: %8lx ",
3232 REGISTER_NAME (regnum), long_val);
3233 }
3234 else
3235 {
3236 /* raw_val = extract_signed_integer(&raw_val, 8); */
3237 if (raw_val[0] == 0)
3238 printf_filtered ("%10.10s: %8lx ",
3239 REGISTER_NAME (regnum), raw_val[1]);
3240 else
3241 printf_filtered ("%10.10s: %8lx%8.8lx ",
3242 REGISTER_NAME (regnum),
3243 raw_val[0], raw_val[1]);
3244 }
3245 }
3246 printf_unfiltered ("\n");
3247 }
3248
3249 if (fpregs)
3250 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3251 pa_print_fp_reg (i);
3252 }
3253
3254 /************* new function ******************/
3255 static void
3256 pa_strcat_registers (char *raw_regs, int regnum, int fpregs,
3257 struct ui_file *stream)
3258 {
3259 int i, j;
3260 long raw_val[2]; /* Alas, we are compiled so that "long long" is 32 bits */
3261 long long_val;
3262 enum precision_type precision;
3263
3264 precision = unspecified_precision;
3265
3266 for (i = 0; i < 18; i++)
3267 {
3268 for (j = 0; j < 4; j++)
3269 {
3270 /* Q: Why is the value passed through "extract_signed_integer",
3271 while above, in "pa_do_registers_info" it isn't?
3272 A: ? */
3273 pa_register_look_aside (raw_regs, i + (j * 18), &raw_val[0]);
3274
3275 /* Even fancier % formats to prevent leading zeros
3276 and still maintain the output in columns. */
3277 if (!is_pa_2)
3278 {
3279 /* Being big-endian, on this machine the low bits
3280 (the ones we want to look at) are in the second longword. */
3281 long_val = extract_signed_integer (&raw_val[1], 4);
3282 fprintf_filtered (stream, "%8.8s: %8lx ",
3283 REGISTER_NAME (i + (j * 18)), long_val);
3284 }
3285 else
3286 {
3287 /* raw_val = extract_signed_integer(&raw_val, 8); */
3288 if (raw_val[0] == 0)
3289 fprintf_filtered (stream, "%8.8s: %8lx ",
3290 REGISTER_NAME (i + (j * 18)), raw_val[1]);
3291 else
3292 fprintf_filtered (stream, "%8.8s: %8lx%8.8lx ",
3293 REGISTER_NAME (i + (j * 18)), raw_val[0],
3294 raw_val[1]);
3295 }
3296 }
3297 fprintf_unfiltered (stream, "\n");
3298 }
3299
3300 if (fpregs)
3301 for (i = FP4_REGNUM; i < NUM_REGS; i++) /* FP4_REGNUM == 72 */
3302 pa_strcat_fp_reg (i, stream, precision);
3303 }
3304
3305 static void
3306 pa_print_fp_reg (int i)
3307 {
3308 char raw_buffer[MAX_REGISTER_SIZE];
3309 char virtual_buffer[MAX_REGISTER_SIZE];
3310
3311 /* Get 32bits of data. */
3312 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3313
3314 /* Put it in the buffer. No conversions are ever necessary. */
3315 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3316
3317 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3318 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3319 fputs_filtered ("(single precision) ", gdb_stdout);
3320
3321 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, gdb_stdout, 0,
3322 1, 0, Val_pretty_default);
3323 printf_filtered ("\n");
3324
3325 /* If "i" is even, then this register can also be a double-precision
3326 FP register. Dump it out as such. */
3327 if ((i % 2) == 0)
3328 {
3329 /* Get the data in raw format for the 2nd half. */
3330 frame_register_read (deprecated_selected_frame, i + 1, raw_buffer);
3331
3332 /* Copy it into the appropriate part of the virtual buffer. */
3333 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buffer,
3334 DEPRECATED_REGISTER_RAW_SIZE (i));
3335
3336 /* Dump it as a double. */
3337 fputs_filtered (REGISTER_NAME (i), gdb_stdout);
3338 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), gdb_stdout);
3339 fputs_filtered ("(double precision) ", gdb_stdout);
3340
3341 val_print (builtin_type_double, virtual_buffer, 0, 0, gdb_stdout, 0,
3342 1, 0, Val_pretty_default);
3343 printf_filtered ("\n");
3344 }
3345 }
3346
3347 /*************** new function ***********************/
3348 static void
3349 pa_strcat_fp_reg (int i, struct ui_file *stream, enum precision_type precision)
3350 {
3351 char raw_buffer[MAX_REGISTER_SIZE];
3352 char virtual_buffer[MAX_REGISTER_SIZE];
3353
3354 fputs_filtered (REGISTER_NAME (i), stream);
3355 print_spaces_filtered (8 - strlen (REGISTER_NAME (i)), stream);
3356
3357 /* Get 32bits of data. */
3358 frame_register_read (deprecated_selected_frame, i, raw_buffer);
3359
3360 /* Put it in the buffer. No conversions are ever necessary. */
3361 memcpy (virtual_buffer, raw_buffer, DEPRECATED_REGISTER_RAW_SIZE (i));
3362
3363 if (precision == double_precision && (i % 2) == 0)
3364 {
3365
3366 char raw_buf[MAX_REGISTER_SIZE];
3367
3368 /* Get the data in raw format for the 2nd half. */
3369 frame_register_read (deprecated_selected_frame, i + 1, raw_buf);
3370
3371 /* Copy it into the appropriate part of the virtual buffer. */
3372 memcpy (virtual_buffer + DEPRECATED_REGISTER_RAW_SIZE (i), raw_buf,
3373 DEPRECATED_REGISTER_RAW_SIZE (i));
3374
3375 val_print (builtin_type_double, virtual_buffer, 0, 0, stream, 0,
3376 1, 0, Val_pretty_default);
3377
3378 }
3379 else
3380 {
3381 val_print (DEPRECATED_REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0, stream, 0,
3382 1, 0, Val_pretty_default);
3383 }
3384
3385 }
3386
3387 /* Return one if PC is in the call path of a trampoline, else return zero.
3388
3389 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3390 just shared library trampolines (import, export). */
3391
3392 int
3393 hppa_in_solib_call_trampoline (CORE_ADDR pc, char *name)
3394 {
3395 struct minimal_symbol *minsym;
3396 struct unwind_table_entry *u;
3397 static CORE_ADDR dyncall = 0;
3398 static CORE_ADDR sr4export = 0;
3399
3400 #ifdef GDB_TARGET_IS_HPPA_20W
3401 /* PA64 has a completely different stub/trampoline scheme. Is it
3402 better? Maybe. It's certainly harder to determine with any
3403 certainty that we are in a stub because we can not refer to the
3404 unwinders to help.
3405
3406 The heuristic is simple. Try to lookup the current PC value in th
3407 minimal symbol table. If that fails, then assume we are not in a
3408 stub and return.
3409
3410 Then see if the PC value falls within the section bounds for the
3411 section containing the minimal symbol we found in the first
3412 step. If it does, then assume we are not in a stub and return.
3413
3414 Finally peek at the instructions to see if they look like a stub. */
3415 {
3416 struct minimal_symbol *minsym;
3417 asection *sec;
3418 CORE_ADDR addr;
3419 int insn, i;
3420
3421 minsym = lookup_minimal_symbol_by_pc (pc);
3422 if (! minsym)
3423 return 0;
3424
3425 sec = SYMBOL_BFD_SECTION (minsym);
3426
3427 if (bfd_get_section_vma (sec->owner, sec) <= pc
3428 && pc < (bfd_get_section_vma (sec->owner, sec)
3429 + bfd_section_size (sec->owner, sec)))
3430 return 0;
3431
3432 /* We might be in a stub. Peek at the instructions. Stubs are 3
3433 instructions long. */
3434 insn = read_memory_integer (pc, 4);
3435
3436 /* Find out where we think we are within the stub. */
3437 if ((insn & 0xffffc00e) == 0x53610000)
3438 addr = pc;
3439 else if ((insn & 0xffffffff) == 0xe820d000)
3440 addr = pc - 4;
3441 else if ((insn & 0xffffc00e) == 0x537b0000)
3442 addr = pc - 8;
3443 else
3444 return 0;
3445
3446 /* Now verify each insn in the range looks like a stub instruction. */
3447 insn = read_memory_integer (addr, 4);
3448 if ((insn & 0xffffc00e) != 0x53610000)
3449 return 0;
3450
3451 /* Now verify each insn in the range looks like a stub instruction. */
3452 insn = read_memory_integer (addr + 4, 4);
3453 if ((insn & 0xffffffff) != 0xe820d000)
3454 return 0;
3455
3456 /* Now verify each insn in the range looks like a stub instruction. */
3457 insn = read_memory_integer (addr + 8, 4);
3458 if ((insn & 0xffffc00e) != 0x537b0000)
3459 return 0;
3460
3461 /* Looks like a stub. */
3462 return 1;
3463 }
3464 #endif
3465
3466 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3467 new exec file */
3468
3469 /* First see if PC is in one of the two C-library trampolines. */
3470 if (!dyncall)
3471 {
3472 minsym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3473 if (minsym)
3474 dyncall = SYMBOL_VALUE_ADDRESS (minsym);
3475 else
3476 dyncall = -1;
3477 }
3478
3479 if (!sr4export)
3480 {
3481 minsym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3482 if (minsym)
3483 sr4export = SYMBOL_VALUE_ADDRESS (minsym);
3484 else
3485 sr4export = -1;
3486 }
3487
3488 if (pc == dyncall || pc == sr4export)
3489 return 1;
3490
3491 minsym = lookup_minimal_symbol_by_pc (pc);
3492 if (minsym && strcmp (DEPRECATED_SYMBOL_NAME (minsym), ".stub") == 0)
3493 return 1;
3494
3495 /* Get the unwind descriptor corresponding to PC, return zero
3496 if no unwind was found. */
3497 u = find_unwind_entry (pc);
3498 if (!u)
3499 return 0;
3500
3501 /* If this isn't a linker stub, then return now. */
3502 if (u->stub_unwind.stub_type == 0)
3503 return 0;
3504
3505 /* By definition a long-branch stub is a call stub. */
3506 if (u->stub_unwind.stub_type == LONG_BRANCH)
3507 return 1;
3508
3509 /* The call and return path execute the same instructions within
3510 an IMPORT stub! So an IMPORT stub is both a call and return
3511 trampoline. */
3512 if (u->stub_unwind.stub_type == IMPORT)
3513 return 1;
3514
3515 /* Parameter relocation stubs always have a call path and may have a
3516 return path. */
3517 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3518 || u->stub_unwind.stub_type == EXPORT)
3519 {
3520 CORE_ADDR addr;
3521
3522 /* Search forward from the current PC until we hit a branch
3523 or the end of the stub. */
3524 for (addr = pc; addr <= u->region_end; addr += 4)
3525 {
3526 unsigned long insn;
3527
3528 insn = read_memory_integer (addr, 4);
3529
3530 /* Does it look like a bl? If so then it's the call path, if
3531 we find a bv or be first, then we're on the return path. */
3532 if ((insn & 0xfc00e000) == 0xe8000000)
3533 return 1;
3534 else if ((insn & 0xfc00e001) == 0xe800c000
3535 || (insn & 0xfc000000) == 0xe0000000)
3536 return 0;
3537 }
3538
3539 /* Should never happen. */
3540 warning ("Unable to find branch in parameter relocation stub.\n");
3541 return 0;
3542 }
3543
3544 /* Unknown stub type. For now, just return zero. */
3545 return 0;
3546 }
3547
3548 /* Return one if PC is in the return path of a trampoline, else return zero.
3549
3550 Note we return one for *any* call trampoline (long-call, arg-reloc), not
3551 just shared library trampolines (import, export). */
3552
3553 int
3554 hppa_in_solib_return_trampoline (CORE_ADDR pc, char *name)
3555 {
3556 struct unwind_table_entry *u;
3557
3558 /* Get the unwind descriptor corresponding to PC, return zero
3559 if no unwind was found. */
3560 u = find_unwind_entry (pc);
3561 if (!u)
3562 return 0;
3563
3564 /* If this isn't a linker stub or it's just a long branch stub, then
3565 return zero. */
3566 if (u->stub_unwind.stub_type == 0 || u->stub_unwind.stub_type == LONG_BRANCH)
3567 return 0;
3568
3569 /* The call and return path execute the same instructions within
3570 an IMPORT stub! So an IMPORT stub is both a call and return
3571 trampoline. */
3572 if (u->stub_unwind.stub_type == IMPORT)
3573 return 1;
3574
3575 /* Parameter relocation stubs always have a call path and may have a
3576 return path. */
3577 if (u->stub_unwind.stub_type == PARAMETER_RELOCATION
3578 || u->stub_unwind.stub_type == EXPORT)
3579 {
3580 CORE_ADDR addr;
3581
3582 /* Search forward from the current PC until we hit a branch
3583 or the end of the stub. */
3584 for (addr = pc; addr <= u->region_end; addr += 4)
3585 {
3586 unsigned long insn;
3587
3588 insn = read_memory_integer (addr, 4);
3589
3590 /* Does it look like a bl? If so then it's the call path, if
3591 we find a bv or be first, then we're on the return path. */
3592 if ((insn & 0xfc00e000) == 0xe8000000)
3593 return 0;
3594 else if ((insn & 0xfc00e001) == 0xe800c000
3595 || (insn & 0xfc000000) == 0xe0000000)
3596 return 1;
3597 }
3598
3599 /* Should never happen. */
3600 warning ("Unable to find branch in parameter relocation stub.\n");
3601 return 0;
3602 }
3603
3604 /* Unknown stub type. For now, just return zero. */
3605 return 0;
3606
3607 }
3608
3609 /* Figure out if PC is in a trampoline, and if so find out where
3610 the trampoline will jump to. If not in a trampoline, return zero.
3611
3612 Simple code examination probably is not a good idea since the code
3613 sequences in trampolines can also appear in user code.
3614
3615 We use unwinds and information from the minimal symbol table to
3616 determine when we're in a trampoline. This won't work for ELF
3617 (yet) since it doesn't create stub unwind entries. Whether or
3618 not ELF will create stub unwinds or normal unwinds for linker
3619 stubs is still being debated.
3620
3621 This should handle simple calls through dyncall or sr4export,
3622 long calls, argument relocation stubs, and dyncall/sr4export
3623 calling an argument relocation stub. It even handles some stubs
3624 used in dynamic executables. */
3625
3626 CORE_ADDR
3627 hppa_skip_trampoline_code (CORE_ADDR pc)
3628 {
3629 long orig_pc = pc;
3630 long prev_inst, curr_inst, loc;
3631 static CORE_ADDR dyncall = 0;
3632 static CORE_ADDR dyncall_external = 0;
3633 static CORE_ADDR sr4export = 0;
3634 struct minimal_symbol *msym;
3635 struct unwind_table_entry *u;
3636
3637 /* FIXME XXX - dyncall and sr4export must be initialized whenever we get a
3638 new exec file */
3639
3640 if (!dyncall)
3641 {
3642 msym = lookup_minimal_symbol ("$$dyncall", NULL, NULL);
3643 if (msym)
3644 dyncall = SYMBOL_VALUE_ADDRESS (msym);
3645 else
3646 dyncall = -1;
3647 }
3648
3649 if (!dyncall_external)
3650 {
3651 msym = lookup_minimal_symbol ("$$dyncall_external", NULL, NULL);
3652 if (msym)
3653 dyncall_external = SYMBOL_VALUE_ADDRESS (msym);
3654 else
3655 dyncall_external = -1;
3656 }
3657
3658 if (!sr4export)
3659 {
3660 msym = lookup_minimal_symbol ("_sr4export", NULL, NULL);
3661 if (msym)
3662 sr4export = SYMBOL_VALUE_ADDRESS (msym);
3663 else
3664 sr4export = -1;
3665 }
3666
3667 /* Addresses passed to dyncall may *NOT* be the actual address
3668 of the function. So we may have to do something special. */
3669 if (pc == dyncall)
3670 {
3671 pc = (CORE_ADDR) read_register (22);
3672
3673 /* If bit 30 (counting from the left) is on, then pc is the address of
3674 the PLT entry for this function, not the address of the function
3675 itself. Bit 31 has meaning too, but only for MPE. */
3676 if (pc & 0x2)
3677 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3678 }
3679 if (pc == dyncall_external)
3680 {
3681 pc = (CORE_ADDR) read_register (22);
3682 pc = (CORE_ADDR) read_memory_integer (pc & ~0x3, TARGET_PTR_BIT / 8);
3683 }
3684 else if (pc == sr4export)
3685 pc = (CORE_ADDR) (read_register (22));
3686
3687 /* Get the unwind descriptor corresponding to PC, return zero
3688 if no unwind was found. */
3689 u = find_unwind_entry (pc);
3690 if (!u)
3691 return 0;
3692
3693 /* If this isn't a linker stub, then return now. */
3694 /* elz: attention here! (FIXME) because of a compiler/linker
3695 error, some stubs which should have a non zero stub_unwind.stub_type
3696 have unfortunately a value of zero. So this function would return here
3697 as if we were not in a trampoline. To fix this, we go look at the partial
3698 symbol information, which reports this guy as a stub.
3699 (FIXME): Unfortunately, we are not that lucky: it turns out that the
3700 partial symbol information is also wrong sometimes. This is because
3701 when it is entered (somread.c::som_symtab_read()) it can happen that
3702 if the type of the symbol (from the som) is Entry, and the symbol is
3703 in a shared library, then it can also be a trampoline. This would
3704 be OK, except that I believe the way they decide if we are ina shared library
3705 does not work. SOOOO..., even if we have a regular function w/o trampolines
3706 its minimal symbol can be assigned type mst_solib_trampoline.
3707 Also, if we find that the symbol is a real stub, then we fix the unwind
3708 descriptor, and define the stub type to be EXPORT.
3709 Hopefully this is correct most of the times. */
3710 if (u->stub_unwind.stub_type == 0)
3711 {
3712
3713 /* elz: NOTE (FIXME!) once the problem with the unwind information is fixed
3714 we can delete all the code which appears between the lines */
3715 /*--------------------------------------------------------------------------*/
3716 msym = lookup_minimal_symbol_by_pc (pc);
3717
3718 if (msym == NULL || MSYMBOL_TYPE (msym) != mst_solib_trampoline)
3719 return orig_pc == pc ? 0 : pc & ~0x3;
3720
3721 else if (msym != NULL && MSYMBOL_TYPE (msym) == mst_solib_trampoline)
3722 {
3723 struct objfile *objfile;
3724 struct minimal_symbol *msymbol;
3725 int function_found = 0;
3726
3727 /* go look if there is another minimal symbol with the same name as
3728 this one, but with type mst_text. This would happen if the msym
3729 is an actual trampoline, in which case there would be another
3730 symbol with the same name corresponding to the real function */
3731
3732 ALL_MSYMBOLS (objfile, msymbol)
3733 {
3734 if (MSYMBOL_TYPE (msymbol) == mst_text
3735 && DEPRECATED_STREQ (DEPRECATED_SYMBOL_NAME (msymbol), DEPRECATED_SYMBOL_NAME (msym)))
3736 {
3737 function_found = 1;
3738 break;
3739 }
3740 }
3741
3742 if (function_found)
3743 /* the type of msym is correct (mst_solib_trampoline), but
3744 the unwind info is wrong, so set it to the correct value */
3745 u->stub_unwind.stub_type = EXPORT;
3746 else
3747 /* the stub type info in the unwind is correct (this is not a
3748 trampoline), but the msym type information is wrong, it
3749 should be mst_text. So we need to fix the msym, and also
3750 get out of this function */
3751 {
3752 MSYMBOL_TYPE (msym) = mst_text;
3753 return orig_pc == pc ? 0 : pc & ~0x3;
3754 }
3755 }
3756
3757 /*--------------------------------------------------------------------------*/
3758 }
3759
3760 /* It's a stub. Search for a branch and figure out where it goes.
3761 Note we have to handle multi insn branch sequences like ldil;ble.
3762 Most (all?) other branches can be determined by examining the contents
3763 of certain registers and the stack. */
3764
3765 loc = pc;
3766 curr_inst = 0;
3767 prev_inst = 0;
3768 while (1)
3769 {
3770 /* Make sure we haven't walked outside the range of this stub. */
3771 if (u != find_unwind_entry (loc))
3772 {
3773 warning ("Unable to find branch in linker stub");
3774 return orig_pc == pc ? 0 : pc & ~0x3;
3775 }
3776
3777 prev_inst = curr_inst;
3778 curr_inst = read_memory_integer (loc, 4);
3779
3780 /* Does it look like a branch external using %r1? Then it's the
3781 branch from the stub to the actual function. */
3782 if ((curr_inst & 0xffe0e000) == 0xe0202000)
3783 {
3784 /* Yup. See if the previous instruction loaded
3785 a value into %r1. If so compute and return the jump address. */
3786 if ((prev_inst & 0xffe00000) == 0x20200000)
3787 return (extract_21 (prev_inst) + extract_17 (curr_inst)) & ~0x3;
3788 else
3789 {
3790 warning ("Unable to find ldil X,%%r1 before ble Y(%%sr4,%%r1).");
3791 return orig_pc == pc ? 0 : pc & ~0x3;
3792 }
3793 }
3794
3795 /* Does it look like a be 0(sr0,%r21)? OR
3796 Does it look like a be, n 0(sr0,%r21)? OR
3797 Does it look like a bve (r21)? (this is on PA2.0)
3798 Does it look like a bve, n(r21)? (this is also on PA2.0)
3799 That's the branch from an
3800 import stub to an export stub.
3801
3802 It is impossible to determine the target of the branch via
3803 simple examination of instructions and/or data (consider
3804 that the address in the plabel may be the address of the
3805 bind-on-reference routine in the dynamic loader).
3806
3807 So we have try an alternative approach.
3808
3809 Get the name of the symbol at our current location; it should
3810 be a stub symbol with the same name as the symbol in the
3811 shared library.
3812
3813 Then lookup a minimal symbol with the same name; we should
3814 get the minimal symbol for the target routine in the shared
3815 library as those take precedence of import/export stubs. */
3816 if ((curr_inst == 0xe2a00000) ||
3817 (curr_inst == 0xe2a00002) ||
3818 (curr_inst == 0xeaa0d000) ||
3819 (curr_inst == 0xeaa0d002))
3820 {
3821 struct minimal_symbol *stubsym, *libsym;
3822
3823 stubsym = lookup_minimal_symbol_by_pc (loc);
3824 if (stubsym == NULL)
3825 {
3826 warning ("Unable to find symbol for 0x%lx", loc);
3827 return orig_pc == pc ? 0 : pc & ~0x3;
3828 }
3829
3830 libsym = lookup_minimal_symbol (DEPRECATED_SYMBOL_NAME (stubsym), NULL, NULL);
3831 if (libsym == NULL)
3832 {
3833 warning ("Unable to find library symbol for %s\n",
3834 DEPRECATED_SYMBOL_NAME (stubsym));
3835 return orig_pc == pc ? 0 : pc & ~0x3;
3836 }
3837
3838 return SYMBOL_VALUE (libsym);
3839 }
3840
3841 /* Does it look like bl X,%rp or bl X,%r0? Another way to do a
3842 branch from the stub to the actual function. */
3843 /*elz */
3844 else if ((curr_inst & 0xffe0e000) == 0xe8400000
3845 || (curr_inst & 0xffe0e000) == 0xe8000000
3846 || (curr_inst & 0xffe0e000) == 0xe800A000)
3847 return (loc + extract_17 (curr_inst) + 8) & ~0x3;
3848
3849 /* Does it look like bv (rp)? Note this depends on the
3850 current stack pointer being the same as the stack
3851 pointer in the stub itself! This is a branch on from the
3852 stub back to the original caller. */
3853 /*else if ((curr_inst & 0xffe0e000) == 0xe840c000) */
3854 else if ((curr_inst & 0xffe0f000) == 0xe840c000)
3855 {
3856 /* Yup. See if the previous instruction loaded
3857 rp from sp - 8. */
3858 if (prev_inst == 0x4bc23ff1)
3859 return (read_memory_integer
3860 (read_register (SP_REGNUM) - 8, 4)) & ~0x3;
3861 else
3862 {
3863 warning ("Unable to find restore of %%rp before bv (%%rp).");
3864 return orig_pc == pc ? 0 : pc & ~0x3;
3865 }
3866 }
3867
3868 /* elz: added this case to capture the new instruction
3869 at the end of the return part of an export stub used by
3870 the PA2.0: BVE, n (rp) */
3871 else if ((curr_inst & 0xffe0f000) == 0xe840d000)
3872 {
3873 return (read_memory_integer
3874 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3875 }
3876
3877 /* What about be,n 0(sr0,%rp)? It's just another way we return to
3878 the original caller from the stub. Used in dynamic executables. */
3879 else if (curr_inst == 0xe0400002)
3880 {
3881 /* The value we jump to is sitting in sp - 24. But that's
3882 loaded several instructions before the be instruction.
3883 I guess we could check for the previous instruction being
3884 mtsp %r1,%sr0 if we want to do sanity checking. */
3885 return (read_memory_integer
3886 (read_register (SP_REGNUM) - 24, TARGET_PTR_BIT / 8)) & ~0x3;
3887 }
3888
3889 /* Haven't found the branch yet, but we're still in the stub.
3890 Keep looking. */
3891 loc += 4;
3892 }
3893 }
3894
3895
3896 /* For the given instruction (INST), return any adjustment it makes
3897 to the stack pointer or zero for no adjustment.
3898
3899 This only handles instructions commonly found in prologues. */
3900
3901 static int
3902 prologue_inst_adjust_sp (unsigned long inst)
3903 {
3904 /* This must persist across calls. */
3905 static int save_high21;
3906
3907 /* The most common way to perform a stack adjustment ldo X(sp),sp */
3908 if ((inst & 0xffffc000) == 0x37de0000)
3909 return extract_14 (inst);
3910
3911 /* stwm X,D(sp) */
3912 if ((inst & 0xffe00000) == 0x6fc00000)
3913 return extract_14 (inst);
3914
3915 /* std,ma X,D(sp) */
3916 if ((inst & 0xffe00008) == 0x73c00008)
3917 return (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
3918
3919 /* addil high21,%r1; ldo low11,(%r1),%r30)
3920 save high bits in save_high21 for later use. */
3921 if ((inst & 0xffe00000) == 0x28200000)
3922 {
3923 save_high21 = extract_21 (inst);
3924 return 0;
3925 }
3926
3927 if ((inst & 0xffff0000) == 0x343e0000)
3928 return save_high21 + extract_14 (inst);
3929
3930 /* fstws as used by the HP compilers. */
3931 if ((inst & 0xffffffe0) == 0x2fd01220)
3932 return extract_5_load (inst);
3933
3934 /* No adjustment. */
3935 return 0;
3936 }
3937
3938 /* Return nonzero if INST is a branch of some kind, else return zero. */
3939
3940 static int
3941 is_branch (unsigned long inst)
3942 {
3943 switch (inst >> 26)
3944 {
3945 case 0x20:
3946 case 0x21:
3947 case 0x22:
3948 case 0x23:
3949 case 0x27:
3950 case 0x28:
3951 case 0x29:
3952 case 0x2a:
3953 case 0x2b:
3954 case 0x2f:
3955 case 0x30:
3956 case 0x31:
3957 case 0x32:
3958 case 0x33:
3959 case 0x38:
3960 case 0x39:
3961 case 0x3a:
3962 case 0x3b:
3963 return 1;
3964
3965 default:
3966 return 0;
3967 }
3968 }
3969
3970 /* Return the register number for a GR which is saved by INST or
3971 zero it INST does not save a GR. */
3972
3973 static int
3974 inst_saves_gr (unsigned long inst)
3975 {
3976 /* Does it look like a stw? */
3977 if ((inst >> 26) == 0x1a || (inst >> 26) == 0x1b
3978 || (inst >> 26) == 0x1f
3979 || ((inst >> 26) == 0x1f
3980 && ((inst >> 6) == 0xa)))
3981 return extract_5R_store (inst);
3982
3983 /* Does it look like a std? */
3984 if ((inst >> 26) == 0x1c
3985 || ((inst >> 26) == 0x03
3986 && ((inst >> 6) & 0xf) == 0xb))
3987 return extract_5R_store (inst);
3988
3989 /* Does it look like a stwm? GCC & HPC may use this in prologues. */
3990 if ((inst >> 26) == 0x1b)
3991 return extract_5R_store (inst);
3992
3993 /* Does it look like sth or stb? HPC versions 9.0 and later use these
3994 too. */
3995 if ((inst >> 26) == 0x19 || (inst >> 26) == 0x18
3996 || ((inst >> 26) == 0x3
3997 && (((inst >> 6) & 0xf) == 0x8
3998 || (inst >> 6) & 0xf) == 0x9))
3999 return extract_5R_store (inst);
4000
4001 return 0;
4002 }
4003
4004 /* Return the register number for a FR which is saved by INST or
4005 zero it INST does not save a FR.
4006
4007 Note we only care about full 64bit register stores (that's the only
4008 kind of stores the prologue will use).
4009
4010 FIXME: What about argument stores with the HP compiler in ANSI mode? */
4011
4012 static int
4013 inst_saves_fr (unsigned long inst)
4014 {
4015 /* is this an FSTD ? */
4016 if ((inst & 0xfc00dfc0) == 0x2c001200)
4017 return extract_5r_store (inst);
4018 if ((inst & 0xfc000002) == 0x70000002)
4019 return extract_5R_store (inst);
4020 /* is this an FSTW ? */
4021 if ((inst & 0xfc00df80) == 0x24001200)
4022 return extract_5r_store (inst);
4023 if ((inst & 0xfc000002) == 0x7c000000)
4024 return extract_5R_store (inst);
4025 return 0;
4026 }
4027
4028 /* Advance PC across any function entry prologue instructions
4029 to reach some "real" code.
4030
4031 Use information in the unwind table to determine what exactly should
4032 be in the prologue. */
4033
4034
4035 CORE_ADDR
4036 skip_prologue_hard_way (CORE_ADDR pc)
4037 {
4038 char buf[4];
4039 CORE_ADDR orig_pc = pc;
4040 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4041 unsigned long args_stored, status, i, restart_gr, restart_fr;
4042 struct unwind_table_entry *u;
4043
4044 restart_gr = 0;
4045 restart_fr = 0;
4046
4047 restart:
4048 u = find_unwind_entry (pc);
4049 if (!u)
4050 return pc;
4051
4052 /* If we are not at the beginning of a function, then return now. */
4053 if ((pc & ~0x3) != u->region_start)
4054 return pc;
4055
4056 /* This is how much of a frame adjustment we need to account for. */
4057 stack_remaining = u->Total_frame_size << 3;
4058
4059 /* Magic register saves we want to know about. */
4060 save_rp = u->Save_RP;
4061 save_sp = u->Save_SP;
4062
4063 /* An indication that args may be stored into the stack. Unfortunately
4064 the HPUX compilers tend to set this in cases where no args were
4065 stored too!. */
4066 args_stored = 1;
4067
4068 /* Turn the Entry_GR field into a bitmask. */
4069 save_gr = 0;
4070 for (i = 3; i < u->Entry_GR + 3; i++)
4071 {
4072 /* Frame pointer gets saved into a special location. */
4073 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4074 continue;
4075
4076 save_gr |= (1 << i);
4077 }
4078 save_gr &= ~restart_gr;
4079
4080 /* Turn the Entry_FR field into a bitmask too. */
4081 save_fr = 0;
4082 for (i = 12; i < u->Entry_FR + 12; i++)
4083 save_fr |= (1 << i);
4084 save_fr &= ~restart_fr;
4085
4086 /* Loop until we find everything of interest or hit a branch.
4087
4088 For unoptimized GCC code and for any HP CC code this will never ever
4089 examine any user instructions.
4090
4091 For optimzied GCC code we're faced with problems. GCC will schedule
4092 its prologue and make prologue instructions available for delay slot
4093 filling. The end result is user code gets mixed in with the prologue
4094 and a prologue instruction may be in the delay slot of the first branch
4095 or call.
4096
4097 Some unexpected things are expected with debugging optimized code, so
4098 we allow this routine to walk past user instructions in optimized
4099 GCC code. */
4100 while (save_gr || save_fr || save_rp || save_sp || stack_remaining > 0
4101 || args_stored)
4102 {
4103 unsigned int reg_num;
4104 unsigned long old_stack_remaining, old_save_gr, old_save_fr;
4105 unsigned long old_save_rp, old_save_sp, next_inst;
4106
4107 /* Save copies of all the triggers so we can compare them later
4108 (only for HPC). */
4109 old_save_gr = save_gr;
4110 old_save_fr = save_fr;
4111 old_save_rp = save_rp;
4112 old_save_sp = save_sp;
4113 old_stack_remaining = stack_remaining;
4114
4115 status = target_read_memory (pc, buf, 4);
4116 inst = extract_unsigned_integer (buf, 4);
4117
4118 /* Yow! */
4119 if (status != 0)
4120 return pc;
4121
4122 /* Note the interesting effects of this instruction. */
4123 stack_remaining -= prologue_inst_adjust_sp (inst);
4124
4125 /* There are limited ways to store the return pointer into the
4126 stack. */
4127 if (inst == 0x6bc23fd9 || inst == 0x0fc212c1)
4128 save_rp = 0;
4129
4130 /* These are the only ways we save SP into the stack. At this time
4131 the HP compilers never bother to save SP into the stack. */
4132 if ((inst & 0xffffc000) == 0x6fc10000
4133 || (inst & 0xffffc00c) == 0x73c10008)
4134 save_sp = 0;
4135
4136 /* Are we loading some register with an offset from the argument
4137 pointer? */
4138 if ((inst & 0xffe00000) == 0x37a00000
4139 || (inst & 0xffffffe0) == 0x081d0240)
4140 {
4141 pc += 4;
4142 continue;
4143 }
4144
4145 /* Account for general and floating-point register saves. */
4146 reg_num = inst_saves_gr (inst);
4147 save_gr &= ~(1 << reg_num);
4148
4149 /* Ugh. Also account for argument stores into the stack.
4150 Unfortunately args_stored only tells us that some arguments
4151 where stored into the stack. Not how many or what kind!
4152
4153 This is a kludge as on the HP compiler sets this bit and it
4154 never does prologue scheduling. So once we see one, skip past
4155 all of them. We have similar code for the fp arg stores below.
4156
4157 FIXME. Can still die if we have a mix of GR and FR argument
4158 stores! */
4159 if (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
4160 {
4161 while (reg_num >= (TARGET_PTR_BIT == 64 ? 19 : 23) && reg_num <= 26)
4162 {
4163 pc += 4;
4164 status = target_read_memory (pc, buf, 4);
4165 inst = extract_unsigned_integer (buf, 4);
4166 if (status != 0)
4167 return pc;
4168 reg_num = inst_saves_gr (inst);
4169 }
4170 args_stored = 0;
4171 continue;
4172 }
4173
4174 reg_num = inst_saves_fr (inst);
4175 save_fr &= ~(1 << reg_num);
4176
4177 status = target_read_memory (pc + 4, buf, 4);
4178 next_inst = extract_unsigned_integer (buf, 4);
4179
4180 /* Yow! */
4181 if (status != 0)
4182 return pc;
4183
4184 /* We've got to be read to handle the ldo before the fp register
4185 save. */
4186 if ((inst & 0xfc000000) == 0x34000000
4187 && inst_saves_fr (next_inst) >= 4
4188 && inst_saves_fr (next_inst) <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4189 {
4190 /* So we drop into the code below in a reasonable state. */
4191 reg_num = inst_saves_fr (next_inst);
4192 pc -= 4;
4193 }
4194
4195 /* Ugh. Also account for argument stores into the stack.
4196 This is a kludge as on the HP compiler sets this bit and it
4197 never does prologue scheduling. So once we see one, skip past
4198 all of them. */
4199 if (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4200 {
4201 while (reg_num >= 4 && reg_num <= (TARGET_PTR_BIT == 64 ? 11 : 7))
4202 {
4203 pc += 8;
4204 status = target_read_memory (pc, buf, 4);
4205 inst = extract_unsigned_integer (buf, 4);
4206 if (status != 0)
4207 return pc;
4208 if ((inst & 0xfc000000) != 0x34000000)
4209 break;
4210 status = target_read_memory (pc + 4, buf, 4);
4211 next_inst = extract_unsigned_integer (buf, 4);
4212 if (status != 0)
4213 return pc;
4214 reg_num = inst_saves_fr (next_inst);
4215 }
4216 args_stored = 0;
4217 continue;
4218 }
4219
4220 /* Quit if we hit any kind of branch. This can happen if a prologue
4221 instruction is in the delay slot of the first call/branch. */
4222 if (is_branch (inst))
4223 break;
4224
4225 /* What a crock. The HP compilers set args_stored even if no
4226 arguments were stored into the stack (boo hiss). This could
4227 cause this code to then skip a bunch of user insns (up to the
4228 first branch).
4229
4230 To combat this we try to identify when args_stored was bogusly
4231 set and clear it. We only do this when args_stored is nonzero,
4232 all other resources are accounted for, and nothing changed on
4233 this pass. */
4234 if (args_stored
4235 && !(save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4236 && old_save_gr == save_gr && old_save_fr == save_fr
4237 && old_save_rp == save_rp && old_save_sp == save_sp
4238 && old_stack_remaining == stack_remaining)
4239 break;
4240
4241 /* Bump the PC. */
4242 pc += 4;
4243 }
4244
4245 /* We've got a tenative location for the end of the prologue. However
4246 because of limitations in the unwind descriptor mechanism we may
4247 have went too far into user code looking for the save of a register
4248 that does not exist. So, if there registers we expected to be saved
4249 but never were, mask them out and restart.
4250
4251 This should only happen in optimized code, and should be very rare. */
4252 if (save_gr || (save_fr && !(restart_fr || restart_gr)))
4253 {
4254 pc = orig_pc;
4255 restart_gr = save_gr;
4256 restart_fr = save_fr;
4257 goto restart;
4258 }
4259
4260 return pc;
4261 }
4262
4263
4264 /* Return the address of the PC after the last prologue instruction if
4265 we can determine it from the debug symbols. Else return zero. */
4266
4267 static CORE_ADDR
4268 after_prologue (CORE_ADDR pc)
4269 {
4270 struct symtab_and_line sal;
4271 CORE_ADDR func_addr, func_end;
4272 struct symbol *f;
4273
4274 /* If we can not find the symbol in the partial symbol table, then
4275 there is no hope we can determine the function's start address
4276 with this code. */
4277 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
4278 return 0;
4279
4280 /* Get the line associated with FUNC_ADDR. */
4281 sal = find_pc_line (func_addr, 0);
4282
4283 /* There are only two cases to consider. First, the end of the source line
4284 is within the function bounds. In that case we return the end of the
4285 source line. Second is the end of the source line extends beyond the
4286 bounds of the current function. We need to use the slow code to
4287 examine instructions in that case.
4288
4289 Anything else is simply a bug elsewhere. Fixing it here is absolutely
4290 the wrong thing to do. In fact, it should be entirely possible for this
4291 function to always return zero since the slow instruction scanning code
4292 is supposed to *always* work. If it does not, then it is a bug. */
4293 if (sal.end < func_end)
4294 return sal.end;
4295 else
4296 return 0;
4297 }
4298
4299 /* To skip prologues, I use this predicate. Returns either PC itself
4300 if the code at PC does not look like a function prologue; otherwise
4301 returns an address that (if we're lucky) follows the prologue. If
4302 LENIENT, then we must skip everything which is involved in setting
4303 up the frame (it's OK to skip more, just so long as we don't skip
4304 anything which might clobber the registers which are being saved.
4305 Currently we must not skip more on the alpha, but we might the lenient
4306 stuff some day. */
4307
4308 CORE_ADDR
4309 hppa_skip_prologue (CORE_ADDR pc)
4310 {
4311 unsigned long inst;
4312 int offset;
4313 CORE_ADDR post_prologue_pc;
4314 char buf[4];
4315
4316 /* See if we can determine the end of the prologue via the symbol table.
4317 If so, then return either PC, or the PC after the prologue, whichever
4318 is greater. */
4319
4320 post_prologue_pc = after_prologue (pc);
4321
4322 /* If after_prologue returned a useful address, then use it. Else
4323 fall back on the instruction skipping code.
4324
4325 Some folks have claimed this causes problems because the breakpoint
4326 may be the first instruction of the prologue. If that happens, then
4327 the instruction skipping code has a bug that needs to be fixed. */
4328 if (post_prologue_pc != 0)
4329 return max (pc, post_prologue_pc);
4330 else
4331 return (skip_prologue_hard_way (pc));
4332 }
4333
4334 /* Put here the code to store, into the SAVED_REGS, the addresses of
4335 the saved registers of frame described by FRAME_INFO. This
4336 includes special registers such as pc and fp saved in special ways
4337 in the stack frame. sp is even more special: the address we return
4338 for it IS the sp for the next frame. */
4339
4340 void
4341 hppa_frame_find_saved_regs (struct frame_info *frame_info,
4342 CORE_ADDR frame_saved_regs[])
4343 {
4344 CORE_ADDR pc;
4345 struct unwind_table_entry *u;
4346 unsigned long inst, stack_remaining, save_gr, save_fr, save_rp, save_sp;
4347 int status, i, reg;
4348 char buf[4];
4349 int fp_loc = -1;
4350 int final_iteration;
4351
4352 /* Zero out everything. */
4353 memset (frame_saved_regs, '\0', SIZEOF_FRAME_SAVED_REGS);
4354
4355 /* Call dummy frames always look the same, so there's no need to
4356 examine the dummy code to determine locations of saved registers;
4357 instead, let find_dummy_frame_regs fill in the correct offsets
4358 for the saved registers. */
4359 if ((get_frame_pc (frame_info) >= get_frame_base (frame_info)
4360 && (get_frame_pc (frame_info)
4361 <= (get_frame_base (frame_info)
4362 /* A call dummy is sized in words, but it is actually a
4363 series of instructions. Account for that scaling
4364 factor. */
4365 + ((DEPRECATED_REGISTER_SIZE / INSTRUCTION_SIZE)
4366 * DEPRECATED_CALL_DUMMY_LENGTH)
4367 /* Similarly we have to account for 64bit wide register
4368 saves. */
4369 + (32 * DEPRECATED_REGISTER_SIZE)
4370 /* We always consider FP regs 8 bytes long. */
4371 + (NUM_REGS - FP0_REGNUM) * 8
4372 /* Similarly we have to account for 64bit wide register
4373 saves. */
4374 + (6 * DEPRECATED_REGISTER_SIZE)))))
4375 find_dummy_frame_regs (frame_info, frame_saved_regs);
4376
4377 /* Interrupt handlers are special too. They lay out the register
4378 state in the exact same order as the register numbers in GDB. */
4379 if (pc_in_interrupt_handler (get_frame_pc (frame_info)))
4380 {
4381 for (i = 0; i < NUM_REGS; i++)
4382 {
4383 /* SP is a little special. */
4384 if (i == SP_REGNUM)
4385 frame_saved_regs[SP_REGNUM]
4386 = read_memory_integer (get_frame_base (frame_info) + SP_REGNUM * 4,
4387 TARGET_PTR_BIT / 8);
4388 else
4389 frame_saved_regs[i] = get_frame_base (frame_info) + i * 4;
4390 }
4391 return;
4392 }
4393
4394 #ifdef FRAME_FIND_SAVED_REGS_IN_SIGTRAMP
4395 /* Handle signal handler callers. */
4396 if ((get_frame_type (frame_info) == SIGTRAMP_FRAME))
4397 {
4398 FRAME_FIND_SAVED_REGS_IN_SIGTRAMP (frame_info, frame_saved_regs);
4399 return;
4400 }
4401 #endif
4402
4403 /* Get the starting address of the function referred to by the PC
4404 saved in frame. */
4405 pc = get_frame_func (frame_info);
4406
4407 /* Yow! */
4408 u = find_unwind_entry (pc);
4409 if (!u)
4410 return;
4411
4412 /* This is how much of a frame adjustment we need to account for. */
4413 stack_remaining = u->Total_frame_size << 3;
4414
4415 /* Magic register saves we want to know about. */
4416 save_rp = u->Save_RP;
4417 save_sp = u->Save_SP;
4418
4419 /* Turn the Entry_GR field into a bitmask. */
4420 save_gr = 0;
4421 for (i = 3; i < u->Entry_GR + 3; i++)
4422 {
4423 /* Frame pointer gets saved into a special location. */
4424 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4425 continue;
4426
4427 save_gr |= (1 << i);
4428 }
4429
4430 /* Turn the Entry_FR field into a bitmask too. */
4431 save_fr = 0;
4432 for (i = 12; i < u->Entry_FR + 12; i++)
4433 save_fr |= (1 << i);
4434
4435 /* The frame always represents the value of %sp at entry to the
4436 current function (and is thus equivalent to the "saved" stack
4437 pointer. */
4438 frame_saved_regs[SP_REGNUM] = get_frame_base (frame_info);
4439
4440 /* Loop until we find everything of interest or hit a branch.
4441
4442 For unoptimized GCC code and for any HP CC code this will never ever
4443 examine any user instructions.
4444
4445 For optimized GCC code we're faced with problems. GCC will schedule
4446 its prologue and make prologue instructions available for delay slot
4447 filling. The end result is user code gets mixed in with the prologue
4448 and a prologue instruction may be in the delay slot of the first branch
4449 or call.
4450
4451 Some unexpected things are expected with debugging optimized code, so
4452 we allow this routine to walk past user instructions in optimized
4453 GCC code. */
4454 final_iteration = 0;
4455 while ((save_gr || save_fr || save_rp || save_sp || stack_remaining > 0)
4456 && pc <= get_frame_pc (frame_info))
4457 {
4458 status = target_read_memory (pc, buf, 4);
4459 inst = extract_unsigned_integer (buf, 4);
4460
4461 /* Yow! */
4462 if (status != 0)
4463 return;
4464
4465 /* Note the interesting effects of this instruction. */
4466 stack_remaining -= prologue_inst_adjust_sp (inst);
4467
4468 /* There are limited ways to store the return pointer into the
4469 stack. */
4470 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4471 {
4472 save_rp = 0;
4473 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 20;
4474 }
4475 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4476 {
4477 save_rp = 0;
4478 frame_saved_regs[RP_REGNUM] = get_frame_base (frame_info) - 16;
4479 }
4480
4481 /* Note if we saved SP into the stack. This also happens to indicate
4482 the location of the saved frame pointer. */
4483 if ( (inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4484 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4485 {
4486 frame_saved_regs[DEPRECATED_FP_REGNUM] = get_frame_base (frame_info);
4487 save_sp = 0;
4488 }
4489
4490 /* Account for general and floating-point register saves. */
4491 reg = inst_saves_gr (inst);
4492 if (reg >= 3 && reg <= 18
4493 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4494 {
4495 save_gr &= ~(1 << reg);
4496
4497 /* stwm with a positive displacement is a *post modify*. */
4498 if ((inst >> 26) == 0x1b
4499 && extract_14 (inst) >= 0)
4500 frame_saved_regs[reg] = get_frame_base (frame_info);
4501 /* A std has explicit post_modify forms. */
4502 else if ((inst & 0xfc00000c) == 0x70000008)
4503 frame_saved_regs[reg] = get_frame_base (frame_info);
4504 else
4505 {
4506 CORE_ADDR offset;
4507
4508 if ((inst >> 26) == 0x1c)
4509 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4510 else if ((inst >> 26) == 0x03)
4511 offset = low_sign_extend (inst & 0x1f, 5);
4512 else
4513 offset = extract_14 (inst);
4514
4515 /* Handle code with and without frame pointers. */
4516 if (u->Save_SP)
4517 frame_saved_regs[reg]
4518 = get_frame_base (frame_info) + offset;
4519 else
4520 frame_saved_regs[reg]
4521 = (get_frame_base (frame_info) + (u->Total_frame_size << 3)
4522 + offset);
4523 }
4524 }
4525
4526
4527 /* GCC handles callee saved FP regs a little differently.
4528
4529 It emits an instruction to put the value of the start of
4530 the FP store area into %r1. It then uses fstds,ma with
4531 a basereg of %r1 for the stores.
4532
4533 HP CC emits them at the current stack pointer modifying
4534 the stack pointer as it stores each register. */
4535
4536 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4537 if ((inst & 0xffffc000) == 0x34610000
4538 || (inst & 0xffffc000) == 0x37c10000)
4539 fp_loc = extract_14 (inst);
4540
4541 reg = inst_saves_fr (inst);
4542 if (reg >= 12 && reg <= 21)
4543 {
4544 /* Note +4 braindamage below is necessary because the FP status
4545 registers are internally 8 registers rather than the expected
4546 4 registers. */
4547 save_fr &= ~(1 << reg);
4548 if (fp_loc == -1)
4549 {
4550 /* 1st HP CC FP register store. After this instruction
4551 we've set enough state that the GCC and HPCC code are
4552 both handled in the same manner. */
4553 frame_saved_regs[reg + FP4_REGNUM + 4] = get_frame_base (frame_info);
4554 fp_loc = 8;
4555 }
4556 else
4557 {
4558 frame_saved_regs[reg + FP0_REGNUM + 4]
4559 = get_frame_base (frame_info) + fp_loc;
4560 fp_loc += 8;
4561 }
4562 }
4563
4564 /* Quit if we hit any kind of branch the previous iteration. */
4565 if (final_iteration)
4566 break;
4567
4568 /* We want to look precisely one instruction beyond the branch
4569 if we have not found everything yet. */
4570 if (is_branch (inst))
4571 final_iteration = 1;
4572
4573 /* Bump the PC. */
4574 pc += 4;
4575 }
4576 }
4577
4578 /* XXX - deprecated. This is a compatibility function for targets
4579 that do not yet implement DEPRECATED_FRAME_INIT_SAVED_REGS. */
4580 /* Find the addresses in which registers are saved in FRAME. */
4581
4582 static void
4583 hppa_frame_init_saved_regs (struct frame_info *frame)
4584 {
4585 if (deprecated_get_frame_saved_regs (frame) == NULL)
4586 frame_saved_regs_zalloc (frame);
4587 hppa_frame_find_saved_regs (frame, deprecated_get_frame_saved_regs (frame));
4588 }
4589
4590 struct hppa_frame_cache
4591 {
4592 CORE_ADDR base;
4593 struct trad_frame_saved_reg *saved_regs;
4594 };
4595
4596 static struct hppa_frame_cache *
4597 hppa_frame_cache (struct frame_info *next_frame, void **this_cache)
4598 {
4599 struct hppa_frame_cache *cache;
4600 long saved_gr_mask;
4601 long saved_fr_mask;
4602 CORE_ADDR this_sp;
4603 long frame_size;
4604 struct unwind_table_entry *u;
4605 int i;
4606
4607 if ((*this_cache) != NULL)
4608 return (*this_cache);
4609 cache = FRAME_OBSTACK_ZALLOC (struct hppa_frame_cache);
4610 (*this_cache) = cache;
4611 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
4612
4613 /* Yow! */
4614 u = find_unwind_entry (frame_func_unwind (next_frame));
4615 if (!u)
4616 return (*this_cache);
4617
4618 /* Turn the Entry_GR field into a bitmask. */
4619 saved_gr_mask = 0;
4620 for (i = 3; i < u->Entry_GR + 3; i++)
4621 {
4622 /* Frame pointer gets saved into a special location. */
4623 if (u->Save_SP && i == DEPRECATED_FP_REGNUM)
4624 continue;
4625
4626 saved_gr_mask |= (1 << i);
4627 }
4628
4629 /* Turn the Entry_FR field into a bitmask too. */
4630 saved_fr_mask = 0;
4631 for (i = 12; i < u->Entry_FR + 12; i++)
4632 saved_fr_mask |= (1 << i);
4633
4634 /* Loop until we find everything of interest or hit a branch.
4635
4636 For unoptimized GCC code and for any HP CC code this will never ever
4637 examine any user instructions.
4638
4639 For optimized GCC code we're faced with problems. GCC will schedule
4640 its prologue and make prologue instructions available for delay slot
4641 filling. The end result is user code gets mixed in with the prologue
4642 and a prologue instruction may be in the delay slot of the first branch
4643 or call.
4644
4645 Some unexpected things are expected with debugging optimized code, so
4646 we allow this routine to walk past user instructions in optimized
4647 GCC code. */
4648 {
4649 int final_iteration = 0;
4650 CORE_ADDR pc;
4651 CORE_ADDR end_pc = skip_prologue_using_sal (pc);
4652 int looking_for_sp = u->Save_SP;
4653 int looking_for_rp = u->Save_RP;
4654 int fp_loc = -1;
4655 if (end_pc == 0)
4656 end_pc = frame_pc_unwind (next_frame);
4657 frame_size = 0;
4658 for (pc = frame_func_unwind (next_frame);
4659 ((saved_gr_mask || saved_fr_mask
4660 || looking_for_sp || looking_for_rp
4661 || frame_size < (u->Total_frame_size << 3))
4662 && pc <= end_pc);
4663 pc += 4)
4664 {
4665 int reg;
4666 char buf4[4];
4667 long status = target_read_memory (pc, buf4, sizeof buf4);
4668 long inst = extract_unsigned_integer (buf4, sizeof buf4);
4669
4670 /* Note the interesting effects of this instruction. */
4671 frame_size += prologue_inst_adjust_sp (inst);
4672
4673 /* There are limited ways to store the return pointer into the
4674 stack. */
4675 if (inst == 0x6bc23fd9) /* stw rp,-0x14(sr0,sp) */
4676 {
4677 looking_for_rp = 0;
4678 cache->saved_regs[RP_REGNUM].addr = -20;
4679 }
4680 else if (inst == 0x0fc212c1) /* std rp,-0x10(sr0,sp) */
4681 {
4682 looking_for_rp = 0;
4683 cache->saved_regs[RP_REGNUM].addr = -16;
4684 }
4685
4686 /* Check to see if we saved SP into the stack. This also
4687 happens to indicate the location of the saved frame
4688 pointer. */
4689 if ((inst & 0xffffc000) == 0x6fc10000 /* stw,ma r1,N(sr0,sp) */
4690 || (inst & 0xffffc00c) == 0x73c10008) /* std,ma r1,N(sr0,sp) */
4691 {
4692 looking_for_sp = 0;
4693 cache->saved_regs[DEPRECATED_FP_REGNUM].addr = 0;
4694 }
4695
4696 /* Account for general and floating-point register saves. */
4697 reg = inst_saves_gr (inst);
4698 if (reg >= 3 && reg <= 18
4699 && (!u->Save_SP || reg != DEPRECATED_FP_REGNUM))
4700 {
4701 saved_gr_mask &= ~(1 << reg);
4702 if ((inst >> 26) == 0x1b && extract_14 (inst) >= 0)
4703 /* stwm with a positive displacement is a _post_
4704 _modify_. */
4705 cache->saved_regs[reg].addr = 0;
4706 else if ((inst & 0xfc00000c) == 0x70000008)
4707 /* A std has explicit post_modify forms. */
4708 cache->saved_regs[reg].addr = 0;
4709 else
4710 {
4711 CORE_ADDR offset;
4712
4713 if ((inst >> 26) == 0x1c)
4714 offset = (inst & 0x1 ? -1 << 13 : 0) | (((inst >> 4) & 0x3ff) << 3);
4715 else if ((inst >> 26) == 0x03)
4716 offset = low_sign_extend (inst & 0x1f, 5);
4717 else
4718 offset = extract_14 (inst);
4719
4720 /* Handle code with and without frame pointers. */
4721 if (u->Save_SP)
4722 cache->saved_regs[reg].addr = offset;
4723 else
4724 cache->saved_regs[reg].addr = (u->Total_frame_size << 3) + offset;
4725 }
4726 }
4727
4728 /* GCC handles callee saved FP regs a little differently.
4729
4730 It emits an instruction to put the value of the start of
4731 the FP store area into %r1. It then uses fstds,ma with a
4732 basereg of %r1 for the stores.
4733
4734 HP CC emits them at the current stack pointer modifying the
4735 stack pointer as it stores each register. */
4736
4737 /* ldo X(%r3),%r1 or ldo X(%r30),%r1. */
4738 if ((inst & 0xffffc000) == 0x34610000
4739 || (inst & 0xffffc000) == 0x37c10000)
4740 fp_loc = extract_14 (inst);
4741
4742 reg = inst_saves_fr (inst);
4743 if (reg >= 12 && reg <= 21)
4744 {
4745 /* Note +4 braindamage below is necessary because the FP
4746 status registers are internally 8 registers rather than
4747 the expected 4 registers. */
4748 saved_fr_mask &= ~(1 << reg);
4749 if (fp_loc == -1)
4750 {
4751 /* 1st HP CC FP register store. After this
4752 instruction we've set enough state that the GCC and
4753 HPCC code are both handled in the same manner. */
4754 cache->saved_regs[reg + FP4_REGNUM + 4].addr = 0;
4755 fp_loc = 8;
4756 }
4757 else
4758 {
4759 cache->saved_regs[reg + FP0_REGNUM + 4].addr = fp_loc;
4760 fp_loc += 8;
4761 }
4762 }
4763
4764 /* Quit if we hit any kind of branch the previous iteration. */
4765 if (final_iteration)
4766 break;
4767 /* We want to look precisely one instruction beyond the branch
4768 if we have not found everything yet. */
4769 if (is_branch (inst))
4770 final_iteration = 1;
4771 }
4772 }
4773
4774 {
4775 /* The frame base always represents the value of %sp at entry to
4776 the current function (and is thus equivalent to the "saved"
4777 stack pointer. */
4778 CORE_ADDR this_sp = frame_unwind_register_unsigned (next_frame, SP_REGNUM);
4779 /* FIXME: cagney/2004-02-22: This assumes that the frame has been
4780 created. If it hasn't everything will be out-of-wack. */
4781 if (u->Save_SP && trad_frame_addr_p (cache->saved_regs, SP_REGNUM))
4782 /* Both we're expecting the SP to be saved and the SP has been
4783 saved. The entry SP value is saved at this frame's SP
4784 address. */
4785 cache->base = read_memory_integer (this_sp, TARGET_PTR_BIT / 8);
4786 else
4787 /* The prologue has been slowly allocating stack space. Adjust
4788 the SP back. */
4789 cache->base = this_sp - frame_size;
4790 trad_frame_set_value (cache->saved_regs, SP_REGNUM, cache->base);
4791 }
4792
4793 /* The PC is found in the "return register", "Millicode" uses "r31"
4794 as the return register while normal code uses "rp". */
4795 if (u->Millicode)
4796 cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[31];
4797 else
4798 cache->saved_regs[PCOQ_HEAD_REGNUM] = cache->saved_regs[RP_REGNUM];
4799
4800 {
4801 /* Convert all the offsets into addresses. */
4802 int reg;
4803 for (reg = 0; reg < NUM_REGS; reg++)
4804 {
4805 if (trad_frame_addr_p (cache->saved_regs, reg))
4806 cache->saved_regs[reg].addr += cache->base;
4807 }
4808 }
4809
4810 return (*this_cache);
4811 }
4812
4813 static void
4814 hppa_frame_this_id (struct frame_info *next_frame, void **this_cache,
4815 struct frame_id *this_id)
4816 {
4817 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4818 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
4819 }
4820
4821 static void
4822 hppa_frame_prev_register (struct frame_info *next_frame,
4823 void **this_cache,
4824 int regnum, int *optimizedp,
4825 enum lval_type *lvalp, CORE_ADDR *addrp,
4826 int *realnump, void *valuep)
4827 {
4828 struct hppa_frame_cache *info = hppa_frame_cache (next_frame, this_cache);
4829 struct gdbarch *gdbarch = get_frame_arch (next_frame);
4830 if (regnum == PCOQ_TAIL_REGNUM)
4831 {
4832 /* The PCOQ TAIL, or NPC, needs to be computed from the unwound
4833 PC register. */
4834 *optimizedp = 0;
4835 *lvalp = not_lval;
4836 *addrp = 0;
4837 *realnump = 0;
4838 if (valuep)
4839 {
4840 int regsize = register_size (gdbarch, PCOQ_HEAD_REGNUM);
4841 CORE_ADDR pc;
4842 int optimized;
4843 enum lval_type lval;
4844 CORE_ADDR addr;
4845 int realnum;
4846 bfd_byte value[MAX_REGISTER_SIZE];
4847 trad_frame_prev_register (next_frame, info->saved_regs,
4848 PCOQ_HEAD_REGNUM, &optimized, &lval, &addr,
4849 &realnum, &value);
4850 pc = extract_unsigned_integer (&value, regsize);
4851 store_unsigned_integer (valuep, regsize, pc + 4);
4852 }
4853 }
4854 else
4855 {
4856 trad_frame_prev_register (next_frame, info->saved_regs, regnum,
4857 optimizedp, lvalp, addrp, realnump, valuep);
4858 }
4859 }
4860
4861 static const struct frame_unwind hppa_frame_unwind =
4862 {
4863 NORMAL_FRAME,
4864 hppa_frame_this_id,
4865 hppa_frame_prev_register
4866 };
4867
4868 static const struct frame_unwind *
4869 hppa_frame_unwind_sniffer (struct frame_info *next_frame)
4870 {
4871 return &hppa_frame_unwind;
4872 }
4873
4874 static CORE_ADDR
4875 hppa_frame_base_address (struct frame_info *next_frame,
4876 void **this_cache)
4877 {
4878 struct hppa_frame_cache *info = hppa_frame_cache (next_frame,
4879 this_cache);
4880 return info->base;
4881 }
4882
4883 static const struct frame_base hppa_frame_base = {
4884 &hppa_frame_unwind,
4885 hppa_frame_base_address,
4886 hppa_frame_base_address,
4887 hppa_frame_base_address
4888 };
4889
4890 static const struct frame_base *
4891 hppa_frame_base_sniffer (struct frame_info *next_frame)
4892 {
4893 return &hppa_frame_base;
4894 }
4895
4896 static struct frame_id
4897 hppa_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
4898 {
4899 return frame_id_build (frame_unwind_register_unsigned (next_frame,
4900 SP_REGNUM),
4901 frame_pc_unwind (next_frame));
4902 }
4903
4904 static CORE_ADDR
4905 hppa_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
4906 {
4907 return frame_unwind_register_signed (next_frame, PCOQ_HEAD_REGNUM) & ~3;
4908 }
4909
4910 /* Exception handling support for the HP-UX ANSI C++ compiler.
4911 The compiler (aCC) provides a callback for exception events;
4912 GDB can set a breakpoint on this callback and find out what
4913 exception event has occurred. */
4914
4915 /* The name of the hook to be set to point to the callback function */
4916 static char HP_ACC_EH_notify_hook[] = "__eh_notify_hook";
4917 /* The name of the function to be used to set the hook value */
4918 static char HP_ACC_EH_set_hook_value[] = "__eh_set_hook_value";
4919 /* The name of the callback function in end.o */
4920 static char HP_ACC_EH_notify_callback[] = "__d_eh_notify_callback";
4921 /* Name of function in end.o on which a break is set (called by above) */
4922 static char HP_ACC_EH_break[] = "__d_eh_break";
4923 /* Name of flag (in end.o) that enables catching throws */
4924 static char HP_ACC_EH_catch_throw[] = "__d_eh_catch_throw";
4925 /* Name of flag (in end.o) that enables catching catching */
4926 static char HP_ACC_EH_catch_catch[] = "__d_eh_catch_catch";
4927 /* The enum used by aCC */
4928 typedef enum
4929 {
4930 __EH_NOTIFY_THROW,
4931 __EH_NOTIFY_CATCH
4932 }
4933 __eh_notification;
4934
4935 /* Is exception-handling support available with this executable? */
4936 static int hp_cxx_exception_support = 0;
4937 /* Has the initialize function been run? */
4938 int hp_cxx_exception_support_initialized = 0;
4939 /* Similar to above, but imported from breakpoint.c -- non-target-specific */
4940 extern int exception_support_initialized;
4941 /* Address of __eh_notify_hook */
4942 static CORE_ADDR eh_notify_hook_addr = 0;
4943 /* Address of __d_eh_notify_callback */
4944 static CORE_ADDR eh_notify_callback_addr = 0;
4945 /* Address of __d_eh_break */
4946 static CORE_ADDR eh_break_addr = 0;
4947 /* Address of __d_eh_catch_catch */
4948 static CORE_ADDR eh_catch_catch_addr = 0;
4949 /* Address of __d_eh_catch_throw */
4950 static CORE_ADDR eh_catch_throw_addr = 0;
4951 /* Sal for __d_eh_break */
4952 static struct symtab_and_line *break_callback_sal = 0;
4953
4954 /* Code in end.c expects __d_pid to be set in the inferior,
4955 otherwise __d_eh_notify_callback doesn't bother to call
4956 __d_eh_break! So we poke the pid into this symbol
4957 ourselves.
4958 0 => success
4959 1 => failure */
4960 int
4961 setup_d_pid_in_inferior (void)
4962 {
4963 CORE_ADDR anaddr;
4964 struct minimal_symbol *msymbol;
4965 char buf[4]; /* FIXME 32x64? */
4966
4967 /* Slam the pid of the process into __d_pid; failing is only a warning! */
4968 msymbol = lookup_minimal_symbol ("__d_pid", NULL, symfile_objfile);
4969 if (msymbol == NULL)
4970 {
4971 warning ("Unable to find __d_pid symbol in object file.");
4972 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4973 return 1;
4974 }
4975
4976 anaddr = SYMBOL_VALUE_ADDRESS (msymbol);
4977 store_unsigned_integer (buf, 4, PIDGET (inferior_ptid)); /* FIXME 32x64? */
4978 if (target_write_memory (anaddr, buf, 4)) /* FIXME 32x64? */
4979 {
4980 warning ("Unable to write __d_pid");
4981 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
4982 return 1;
4983 }
4984 return 0;
4985 }
4986
4987 /* Initialize exception catchpoint support by looking for the
4988 necessary hooks/callbacks in end.o, etc., and set the hook value to
4989 point to the required debug function
4990
4991 Return 0 => failure
4992 1 => success */
4993
4994 static int
4995 initialize_hp_cxx_exception_support (void)
4996 {
4997 struct symtabs_and_lines sals;
4998 struct cleanup *old_chain;
4999 struct cleanup *canonical_strings_chain = NULL;
5000 int i;
5001 char *addr_start;
5002 char *addr_end = NULL;
5003 char **canonical = (char **) NULL;
5004 int thread = -1;
5005 struct symbol *sym = NULL;
5006 struct minimal_symbol *msym = NULL;
5007 struct objfile *objfile;
5008 asection *shlib_info;
5009
5010 /* Detect and disallow recursion. On HP-UX with aCC, infinite
5011 recursion is a possibility because finding the hook for exception
5012 callbacks involves making a call in the inferior, which means
5013 re-inserting breakpoints which can re-invoke this code */
5014
5015 static int recurse = 0;
5016 if (recurse > 0)
5017 {
5018 hp_cxx_exception_support_initialized = 0;
5019 exception_support_initialized = 0;
5020 return 0;
5021 }
5022
5023 hp_cxx_exception_support = 0;
5024
5025 /* First check if we have seen any HP compiled objects; if not,
5026 it is very unlikely that HP's idiosyncratic callback mechanism
5027 for exception handling debug support will be available!
5028 This will percolate back up to breakpoint.c, where our callers
5029 will decide to try the g++ exception-handling support instead. */
5030 if (!hp_som_som_object_present)
5031 return 0;
5032
5033 /* We have a SOM executable with SOM debug info; find the hooks */
5034
5035 /* First look for the notify hook provided by aCC runtime libs */
5036 /* If we find this symbol, we conclude that the executable must
5037 have HP aCC exception support built in. If this symbol is not
5038 found, even though we're a HP SOM-SOM file, we may have been
5039 built with some other compiler (not aCC). This results percolates
5040 back up to our callers in breakpoint.c which can decide to
5041 try the g++ style of exception support instead.
5042 If this symbol is found but the other symbols we require are
5043 not found, there is something weird going on, and g++ support
5044 should *not* be tried as an alternative.
5045
5046 ASSUMPTION: Only HP aCC code will have __eh_notify_hook defined.
5047 ASSUMPTION: HP aCC and g++ modules cannot be linked together. */
5048
5049 /* libCsup has this hook; it'll usually be non-debuggable */
5050 msym = lookup_minimal_symbol (HP_ACC_EH_notify_hook, NULL, NULL);
5051 if (msym)
5052 {
5053 eh_notify_hook_addr = SYMBOL_VALUE_ADDRESS (msym);
5054 hp_cxx_exception_support = 1;
5055 }
5056 else
5057 {
5058 warning ("Unable to find exception callback hook (%s).", HP_ACC_EH_notify_hook);
5059 warning ("Executable may not have been compiled debuggable with HP aCC.");
5060 warning ("GDB will be unable to intercept exception events.");
5061 eh_notify_hook_addr = 0;
5062 hp_cxx_exception_support = 0;
5063 return 0;
5064 }
5065
5066 /* Next look for the notify callback routine in end.o */
5067 /* This is always available in the SOM symbol dictionary if end.o is linked in */
5068 msym = lookup_minimal_symbol (HP_ACC_EH_notify_callback, NULL, NULL);
5069 if (msym)
5070 {
5071 eh_notify_callback_addr = SYMBOL_VALUE_ADDRESS (msym);
5072 hp_cxx_exception_support = 1;
5073 }
5074 else
5075 {
5076 warning ("Unable to find exception callback routine (%s).", HP_ACC_EH_notify_callback);
5077 warning ("Suggest linking executable with -g (links in /opt/langtools/lib/end.o).");
5078 warning ("GDB will be unable to intercept exception events.");
5079 eh_notify_callback_addr = 0;
5080 return 0;
5081 }
5082
5083 #ifndef GDB_TARGET_IS_HPPA_20W
5084 /* Check whether the executable is dynamically linked or archive bound */
5085 /* With an archive-bound executable we can use the raw addresses we find
5086 for the callback function, etc. without modification. For an executable
5087 with shared libraries, we have to do more work to find the plabel, which
5088 can be the target of a call through $$dyncall from the aCC runtime support
5089 library (libCsup) which is linked shared by default by aCC. */
5090 /* This test below was copied from somsolib.c/somread.c. It may not be a very
5091 reliable one to test that an executable is linked shared. pai/1997-07-18 */
5092 shlib_info = bfd_get_section_by_name (symfile_objfile->obfd, "$SHLIB_INFO$");
5093 if (shlib_info && (bfd_section_size (symfile_objfile->obfd, shlib_info) != 0))
5094 {
5095 /* The minsym we have has the local code address, but that's not the
5096 plabel that can be used by an inter-load-module call. */
5097 /* Find solib handle for main image (which has end.o), and use that
5098 and the min sym as arguments to __d_shl_get() (which does the equivalent
5099 of shl_findsym()) to find the plabel. */
5100
5101 args_for_find_stub args;
5102 static char message[] = "Error while finding exception callback hook:\n";
5103
5104 args.solib_handle = som_solib_get_solib_by_pc (eh_notify_callback_addr);
5105 args.msym = msym;
5106 args.return_val = 0;
5107
5108 recurse++;
5109 catch_errors (cover_find_stub_with_shl_get, &args, message,
5110 RETURN_MASK_ALL);
5111 eh_notify_callback_addr = args.return_val;
5112 recurse--;
5113
5114 exception_catchpoints_are_fragile = 1;
5115
5116 if (!eh_notify_callback_addr)
5117 {
5118 /* We can get here either if there is no plabel in the export list
5119 for the main image, or if something strange happened (?) */
5120 warning ("Couldn't find a plabel (indirect function label) for the exception callback.");
5121 warning ("GDB will not be able to intercept exception events.");
5122 return 0;
5123 }
5124 }
5125 else
5126 exception_catchpoints_are_fragile = 0;
5127 #endif
5128
5129 /* Now, look for the breakpointable routine in end.o */
5130 /* This should also be available in the SOM symbol dict. if end.o linked in */
5131 msym = lookup_minimal_symbol (HP_ACC_EH_break, NULL, NULL);
5132 if (msym)
5133 {
5134 eh_break_addr = SYMBOL_VALUE_ADDRESS (msym);
5135 hp_cxx_exception_support = 1;
5136 }
5137 else
5138 {
5139 warning ("Unable to find exception callback routine to set breakpoint (%s).", HP_ACC_EH_break);
5140 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5141 warning ("GDB will be unable to intercept exception events.");
5142 eh_break_addr = 0;
5143 return 0;
5144 }
5145
5146 /* Next look for the catch enable flag provided in end.o */
5147 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
5148 VAR_DOMAIN, 0, (struct symtab **) NULL);
5149 if (sym) /* sometimes present in debug info */
5150 {
5151 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (sym);
5152 hp_cxx_exception_support = 1;
5153 }
5154 else
5155 /* otherwise look in SOM symbol dict. */
5156 {
5157 msym = lookup_minimal_symbol (HP_ACC_EH_catch_catch, NULL, NULL);
5158 if (msym)
5159 {
5160 eh_catch_catch_addr = SYMBOL_VALUE_ADDRESS (msym);
5161 hp_cxx_exception_support = 1;
5162 }
5163 else
5164 {
5165 warning ("Unable to enable interception of exception catches.");
5166 warning ("Executable may not have been compiled debuggable with HP aCC.");
5167 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5168 return 0;
5169 }
5170 }
5171
5172 /* Next look for the catch enable flag provided end.o */
5173 sym = lookup_symbol (HP_ACC_EH_catch_catch, (struct block *) NULL,
5174 VAR_DOMAIN, 0, (struct symtab **) NULL);
5175 if (sym) /* sometimes present in debug info */
5176 {
5177 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (sym);
5178 hp_cxx_exception_support = 1;
5179 }
5180 else
5181 /* otherwise look in SOM symbol dict. */
5182 {
5183 msym = lookup_minimal_symbol (HP_ACC_EH_catch_throw, NULL, NULL);
5184 if (msym)
5185 {
5186 eh_catch_throw_addr = SYMBOL_VALUE_ADDRESS (msym);
5187 hp_cxx_exception_support = 1;
5188 }
5189 else
5190 {
5191 warning ("Unable to enable interception of exception throws.");
5192 warning ("Executable may not have been compiled debuggable with HP aCC.");
5193 warning ("Suggest linking executable with -g (link in /opt/langtools/lib/end.o).");
5194 return 0;
5195 }
5196 }
5197
5198 /* Set the flags */
5199 hp_cxx_exception_support = 2; /* everything worked so far */
5200 hp_cxx_exception_support_initialized = 1;
5201 exception_support_initialized = 1;
5202
5203 return 1;
5204 }
5205
5206 /* Target operation for enabling or disabling interception of
5207 exception events.
5208 KIND is either EX_EVENT_THROW or EX_EVENT_CATCH
5209 ENABLE is either 0 (disable) or 1 (enable).
5210 Return value is NULL if no support found;
5211 -1 if something went wrong,
5212 or a pointer to a symtab/line struct if the breakpointable
5213 address was found. */
5214
5215 struct symtab_and_line *
5216 child_enable_exception_callback (enum exception_event_kind kind, int enable)
5217 {
5218 char buf[4];
5219
5220 if (!exception_support_initialized || !hp_cxx_exception_support_initialized)
5221 if (!initialize_hp_cxx_exception_support ())
5222 return NULL;
5223
5224 switch (hp_cxx_exception_support)
5225 {
5226 case 0:
5227 /* Assuming no HP support at all */
5228 return NULL;
5229 case 1:
5230 /* HP support should be present, but something went wrong */
5231 return (struct symtab_and_line *) -1; /* yuck! */
5232 /* there may be other cases in the future */
5233 }
5234
5235 /* Set the EH hook to point to the callback routine */
5236 store_unsigned_integer (buf, 4, enable ? eh_notify_callback_addr : 0); /* FIXME 32x64 problem */
5237 /* pai: (temp) FIXME should there be a pack operation first? */
5238 if (target_write_memory (eh_notify_hook_addr, buf, 4)) /* FIXME 32x64 problem */
5239 {
5240 warning ("Could not write to target memory for exception event callback.");
5241 warning ("Interception of exception events may not work.");
5242 return (struct symtab_and_line *) -1;
5243 }
5244 if (enable)
5245 {
5246 /* Ensure that __d_pid is set up correctly -- end.c code checks this. :-( */
5247 if (PIDGET (inferior_ptid) > 0)
5248 {
5249 if (setup_d_pid_in_inferior ())
5250 return (struct symtab_and_line *) -1;
5251 }
5252 else
5253 {
5254 warning ("Internal error: Invalid inferior pid? Cannot intercept exception events.");
5255 return (struct symtab_and_line *) -1;
5256 }
5257 }
5258
5259 switch (kind)
5260 {
5261 case EX_EVENT_THROW:
5262 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5263 if (target_write_memory (eh_catch_throw_addr, buf, 4)) /* FIXME 32x64? */
5264 {
5265 warning ("Couldn't enable exception throw interception.");
5266 return (struct symtab_and_line *) -1;
5267 }
5268 break;
5269 case EX_EVENT_CATCH:
5270 store_unsigned_integer (buf, 4, enable ? 1 : 0);
5271 if (target_write_memory (eh_catch_catch_addr, buf, 4)) /* FIXME 32x64? */
5272 {
5273 warning ("Couldn't enable exception catch interception.");
5274 return (struct symtab_and_line *) -1;
5275 }
5276 break;
5277 default:
5278 error ("Request to enable unknown or unsupported exception event.");
5279 }
5280
5281 /* Copy break address into new sal struct, malloc'ing if needed. */
5282 if (!break_callback_sal)
5283 {
5284 break_callback_sal = (struct symtab_and_line *) xmalloc (sizeof (struct symtab_and_line));
5285 }
5286 init_sal (break_callback_sal);
5287 break_callback_sal->symtab = NULL;
5288 break_callback_sal->pc = eh_break_addr;
5289 break_callback_sal->line = 0;
5290 break_callback_sal->end = eh_break_addr;
5291
5292 return break_callback_sal;
5293 }
5294
5295 /* Record some information about the current exception event */
5296 static struct exception_event_record current_ex_event;
5297 /* Convenience struct */
5298 static struct symtab_and_line null_symtab_and_line =
5299 {NULL, 0, 0, 0};
5300
5301 /* Report current exception event. Returns a pointer to a record
5302 that describes the kind of the event, where it was thrown from,
5303 and where it will be caught. More information may be reported
5304 in the future */
5305 struct exception_event_record *
5306 child_get_current_exception_event (void)
5307 {
5308 CORE_ADDR event_kind;
5309 CORE_ADDR throw_addr;
5310 CORE_ADDR catch_addr;
5311 struct frame_info *fi, *curr_frame;
5312 int level = 1;
5313
5314 curr_frame = get_current_frame ();
5315 if (!curr_frame)
5316 return (struct exception_event_record *) NULL;
5317
5318 /* Go up one frame to __d_eh_notify_callback, because at the
5319 point when this code is executed, there's garbage in the
5320 arguments of __d_eh_break. */
5321 fi = find_relative_frame (curr_frame, &level);
5322 if (level != 0)
5323 return (struct exception_event_record *) NULL;
5324
5325 select_frame (fi);
5326
5327 /* Read in the arguments */
5328 /* __d_eh_notify_callback() is called with 3 arguments:
5329 1. event kind catch or throw
5330 2. the target address if known
5331 3. a flag -- not sure what this is. pai/1997-07-17 */
5332 event_kind = read_register (ARG0_REGNUM);
5333 catch_addr = read_register (ARG1_REGNUM);
5334
5335 /* Now go down to a user frame */
5336 /* For a throw, __d_eh_break is called by
5337 __d_eh_notify_callback which is called by
5338 __notify_throw which is called
5339 from user code.
5340 For a catch, __d_eh_break is called by
5341 __d_eh_notify_callback which is called by
5342 <stackwalking stuff> which is called by
5343 __throw__<stuff> or __rethrow_<stuff> which is called
5344 from user code. */
5345 /* FIXME: Don't use such magic numbers; search for the frames */
5346 level = (event_kind == EX_EVENT_THROW) ? 3 : 4;
5347 fi = find_relative_frame (curr_frame, &level);
5348 if (level != 0)
5349 return (struct exception_event_record *) NULL;
5350
5351 select_frame (fi);
5352 throw_addr = get_frame_pc (fi);
5353
5354 /* Go back to original (top) frame */
5355 select_frame (curr_frame);
5356
5357 current_ex_event.kind = (enum exception_event_kind) event_kind;
5358 current_ex_event.throw_sal = find_pc_line (throw_addr, 1);
5359 current_ex_event.catch_sal = find_pc_line (catch_addr, 1);
5360
5361 return &current_ex_event;
5362 }
5363
5364 /* Instead of this nasty cast, add a method pvoid() that prints out a
5365 host VOID data type (remember %p isn't portable). */
5366
5367 static CORE_ADDR
5368 hppa_pointer_to_address_hack (void *ptr)
5369 {
5370 gdb_assert (sizeof (ptr) == TYPE_LENGTH (builtin_type_void_data_ptr));
5371 return POINTER_TO_ADDRESS (builtin_type_void_data_ptr, &ptr);
5372 }
5373
5374 static void
5375 unwind_command (char *exp, int from_tty)
5376 {
5377 CORE_ADDR address;
5378 struct unwind_table_entry *u;
5379
5380 /* If we have an expression, evaluate it and use it as the address. */
5381
5382 if (exp != 0 && *exp != 0)
5383 address = parse_and_eval_address (exp);
5384 else
5385 return;
5386
5387 u = find_unwind_entry (address);
5388
5389 if (!u)
5390 {
5391 printf_unfiltered ("Can't find unwind table entry for %s\n", exp);
5392 return;
5393 }
5394
5395 printf_unfiltered ("unwind_table_entry (0x%s):\n",
5396 paddr_nz (hppa_pointer_to_address_hack (u)));
5397
5398 printf_unfiltered ("\tregion_start = ");
5399 print_address (u->region_start, gdb_stdout);
5400
5401 printf_unfiltered ("\n\tregion_end = ");
5402 print_address (u->region_end, gdb_stdout);
5403
5404 #define pif(FLD) if (u->FLD) printf_unfiltered (" "#FLD);
5405
5406 printf_unfiltered ("\n\tflags =");
5407 pif (Cannot_unwind);
5408 pif (Millicode);
5409 pif (Millicode_save_sr0);
5410 pif (Entry_SR);
5411 pif (Args_stored);
5412 pif (Variable_Frame);
5413 pif (Separate_Package_Body);
5414 pif (Frame_Extension_Millicode);
5415 pif (Stack_Overflow_Check);
5416 pif (Two_Instruction_SP_Increment);
5417 pif (Ada_Region);
5418 pif (Save_SP);
5419 pif (Save_RP);
5420 pif (Save_MRP_in_frame);
5421 pif (extn_ptr_defined);
5422 pif (Cleanup_defined);
5423 pif (MPE_XL_interrupt_marker);
5424 pif (HP_UX_interrupt_marker);
5425 pif (Large_frame);
5426
5427 putchar_unfiltered ('\n');
5428
5429 #define pin(FLD) printf_unfiltered ("\t"#FLD" = 0x%x\n", u->FLD);
5430
5431 pin (Region_description);
5432 pin (Entry_FR);
5433 pin (Entry_GR);
5434 pin (Total_frame_size);
5435 }
5436
5437 void
5438 hppa_skip_permanent_breakpoint (void)
5439 {
5440 /* To step over a breakpoint instruction on the PA takes some
5441 fiddling with the instruction address queue.
5442
5443 When we stop at a breakpoint, the IA queue front (the instruction
5444 we're executing now) points at the breakpoint instruction, and
5445 the IA queue back (the next instruction to execute) points to
5446 whatever instruction we would execute after the breakpoint, if it
5447 were an ordinary instruction. This is the case even if the
5448 breakpoint is in the delay slot of a branch instruction.
5449
5450 Clearly, to step past the breakpoint, we need to set the queue
5451 front to the back. But what do we put in the back? What
5452 instruction comes after that one? Because of the branch delay
5453 slot, the next insn is always at the back + 4. */
5454 write_register (PCOQ_HEAD_REGNUM, read_register (PCOQ_TAIL_REGNUM));
5455 write_register (PCSQ_HEAD_REGNUM, read_register (PCSQ_TAIL_REGNUM));
5456
5457 write_register (PCOQ_TAIL_REGNUM, read_register (PCOQ_TAIL_REGNUM) + 4);
5458 /* We can leave the tail's space the same, since there's no jump. */
5459 }
5460
5461 /* Same as hppa32_store_return_value(), but for the PA64 ABI. */
5462
5463 void
5464 hppa64_store_return_value (struct type *type, char *valbuf)
5465 {
5466 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5467 deprecated_write_register_bytes
5468 (DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5469 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5470 valbuf, TYPE_LENGTH (type));
5471 else if (is_integral_type(type))
5472 deprecated_write_register_bytes
5473 (DEPRECATED_REGISTER_BYTE (28)
5474 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5475 valbuf, TYPE_LENGTH (type));
5476 else if (TYPE_LENGTH (type) <= 8)
5477 deprecated_write_register_bytes
5478 (DEPRECATED_REGISTER_BYTE (28),valbuf, TYPE_LENGTH (type));
5479 else if (TYPE_LENGTH (type) <= 16)
5480 {
5481 deprecated_write_register_bytes (DEPRECATED_REGISTER_BYTE (28),valbuf, 8);
5482 deprecated_write_register_bytes
5483 (DEPRECATED_REGISTER_BYTE (29), valbuf + 8, TYPE_LENGTH (type) - 8);
5484 }
5485 }
5486
5487 /* Same as hppa32_extract_return_value but for the PA64 ABI case. */
5488
5489 void
5490 hppa64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
5491 {
5492 /* RM: Floats are returned in FR4R, doubles in FR4.
5493 Integral values are in r28, padded on the left.
5494 Aggregates less that 65 bits are in r28, right padded.
5495 Aggregates upto 128 bits are in r28 and r29, right padded. */
5496 if (TYPE_CODE (type) == TYPE_CODE_FLT)
5497 memcpy (valbuf,
5498 regbuf + DEPRECATED_REGISTER_BYTE (FP4_REGNUM)
5499 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5500 TYPE_LENGTH (type));
5501 else if (is_integral_type(type))
5502 memcpy (valbuf,
5503 regbuf + DEPRECATED_REGISTER_BYTE (28)
5504 + DEPRECATED_REGISTER_SIZE - TYPE_LENGTH (type),
5505 TYPE_LENGTH (type));
5506 else if (TYPE_LENGTH (type) <= 8)
5507 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28),
5508 TYPE_LENGTH (type));
5509 else if (TYPE_LENGTH (type) <= 16)
5510 {
5511 memcpy (valbuf, regbuf + DEPRECATED_REGISTER_BYTE (28), 8);
5512 memcpy (valbuf + 8, regbuf + DEPRECATED_REGISTER_BYTE (29),
5513 TYPE_LENGTH (type) - 8);
5514 }
5515 }
5516
5517 int
5518 hppa_reg_struct_has_addr (int gcc_p, struct type *type)
5519 {
5520 /* On the PA, any pass-by-value structure > 8 bytes is actually passed
5521 via a pointer regardless of its type or the compiler used. */
5522 return (TYPE_LENGTH (type) > 8);
5523 }
5524
5525 int
5526 hppa_inner_than (CORE_ADDR lhs, CORE_ADDR rhs)
5527 {
5528 /* Stack grows upward */
5529 return (lhs > rhs);
5530 }
5531
5532 CORE_ADDR
5533 hppa64_stack_align (CORE_ADDR sp)
5534 {
5535 /* The PA64 ABI mandates a 16 byte stack alignment. */
5536 return ((sp % 16) ? (sp + 15) & -16 : sp);
5537 }
5538
5539 int
5540 hppa_pc_requires_run_before_use (CORE_ADDR pc)
5541 {
5542 /* Sometimes we may pluck out a minimal symbol that has a negative address.
5543
5544 An example of this occurs when an a.out is linked against a foo.sl.
5545 The foo.sl defines a global bar(), and the a.out declares a signature
5546 for bar(). However, the a.out doesn't directly call bar(), but passes
5547 its address in another call.
5548
5549 If you have this scenario and attempt to "break bar" before running,
5550 gdb will find a minimal symbol for bar() in the a.out. But that
5551 symbol's address will be negative. What this appears to denote is
5552 an index backwards from the base of the procedure linkage table (PLT)
5553 into the data linkage table (DLT), the end of which is contiguous
5554 with the start of the PLT. This is clearly not a valid address for
5555 us to set a breakpoint on.
5556
5557 Note that one must be careful in how one checks for a negative address.
5558 0xc0000000 is a legitimate address of something in a shared text
5559 segment, for example. Since I don't know what the possible range
5560 is of these "really, truly negative" addresses that come from the
5561 minimal symbols, I'm resorting to the gross hack of checking the
5562 top byte of the address for all 1's. Sigh. */
5563
5564 return (!target_has_stack && (pc & 0xFF000000));
5565 }
5566
5567 int
5568 hppa_instruction_nullified (void)
5569 {
5570 /* brobecker 2002/11/07: Couldn't we use a ULONGEST here? It would
5571 avoid the type cast. I'm leaving it as is for now as I'm doing
5572 semi-mechanical multiarching-related changes. */
5573 const int ipsw = (int) read_register (IPSW_REGNUM);
5574 const int flags = (int) read_register (FLAGS_REGNUM);
5575
5576 return ((ipsw & 0x00200000) && !(flags & 0x2));
5577 }
5578
5579 int
5580 hppa_register_raw_size (int reg_nr)
5581 {
5582 /* All registers have the same size. */
5583 return DEPRECATED_REGISTER_SIZE;
5584 }
5585
5586 /* Index within the register vector of the first byte of the space i
5587 used for register REG_NR. */
5588
5589 int
5590 hppa_register_byte (int reg_nr)
5591 {
5592 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5593
5594 return reg_nr * tdep->bytes_per_address;
5595 }
5596
5597 /* Return the GDB type object for the "standard" data type of data
5598 in register N. */
5599
5600 struct type *
5601 hppa32_register_virtual_type (int reg_nr)
5602 {
5603 if (reg_nr < FP4_REGNUM)
5604 return builtin_type_int;
5605 else
5606 return builtin_type_float;
5607 }
5608
5609 /* Return the GDB type object for the "standard" data type of data
5610 in register N. hppa64 version. */
5611
5612 struct type *
5613 hppa64_register_virtual_type (int reg_nr)
5614 {
5615 if (reg_nr < FP4_REGNUM)
5616 return builtin_type_unsigned_long_long;
5617 else
5618 return builtin_type_double;
5619 }
5620
5621 /* Store the address of the place in which to copy the structure the
5622 subroutine will return. This is called from call_function. */
5623
5624 void
5625 hppa_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
5626 {
5627 write_register (28, addr);
5628 }
5629 /* Return True if REGNUM is not a register available to the user
5630 through ptrace(). */
5631
5632 int
5633 hppa_cannot_store_register (int regnum)
5634 {
5635 return (regnum == 0
5636 || regnum == PCSQ_HEAD_REGNUM
5637 || (regnum >= PCSQ_TAIL_REGNUM && regnum < IPSW_REGNUM)
5638 || (regnum > IPSW_REGNUM && regnum < FP4_REGNUM));
5639
5640 }
5641
5642 CORE_ADDR
5643 hppa_smash_text_address (CORE_ADDR addr)
5644 {
5645 /* The low two bits of the PC on the PA contain the privilege level.
5646 Some genius implementing a (non-GCC) compiler apparently decided
5647 this means that "addresses" in a text section therefore include a
5648 privilege level, and thus symbol tables should contain these bits.
5649 This seems like a bonehead thing to do--anyway, it seems to work
5650 for our purposes to just ignore those bits. */
5651
5652 return (addr &= ~0x3);
5653 }
5654
5655 /* Get the ith function argument for the current function. */
5656 CORE_ADDR
5657 hppa_fetch_pointer_argument (struct frame_info *frame, int argi,
5658 struct type *type)
5659 {
5660 CORE_ADDR addr;
5661 get_frame_register (frame, R0_REGNUM + 26 - argi, &addr);
5662 return addr;
5663 }
5664
5665 /* Here is a table of C type sizes on hppa with various compiles
5666 and options. I measured this on PA 9000/800 with HP-UX 11.11
5667 and these compilers:
5668
5669 /usr/ccs/bin/cc HP92453-01 A.11.01.21
5670 /opt/ansic/bin/cc HP92453-01 B.11.11.28706.GP
5671 /opt/aCC/bin/aCC B3910B A.03.45
5672 gcc gcc 3.3.2 native hppa2.0w-hp-hpux11.11
5673
5674 cc : 1 2 4 4 8 : 4 8 -- : 4 4
5675 ansic +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5676 ansic +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5677 ansic +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5678 acc +DA1.1 : 1 2 4 4 8 : 4 8 16 : 4 4
5679 acc +DA2.0 : 1 2 4 4 8 : 4 8 16 : 4 4
5680 acc +DA2.0W : 1 2 4 8 8 : 4 8 16 : 8 8
5681 gcc : 1 2 4 4 8 : 4 8 16 : 4 4
5682
5683 Each line is:
5684
5685 compiler and options
5686 char, short, int, long, long long
5687 float, double, long double
5688 char *, void (*)()
5689
5690 So all these compilers use either ILP32 or LP64 model.
5691 TODO: gcc has more options so it needs more investigation.
5692
5693 For floating point types, see:
5694
5695 http://docs.hp.com/hpux/pdf/B3906-90006.pdf
5696 HP-UX floating-point guide, hpux 11.00
5697
5698 -- chastain 2003-12-18 */
5699
5700 static struct gdbarch *
5701 hppa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
5702 {
5703 struct gdbarch_tdep *tdep;
5704 struct gdbarch *gdbarch;
5705
5706 /* Try to determine the ABI of the object we are loading. */
5707 if (info.abfd != NULL && info.osabi == GDB_OSABI_UNKNOWN)
5708 {
5709 /* If it's a SOM file, assume it's HP/UX SOM. */
5710 if (bfd_get_flavour (info.abfd) == bfd_target_som_flavour)
5711 info.osabi = GDB_OSABI_HPUX_SOM;
5712 }
5713
5714 /* find a candidate among the list of pre-declared architectures. */
5715 arches = gdbarch_list_lookup_by_info (arches, &info);
5716 if (arches != NULL)
5717 return (arches->gdbarch);
5718
5719 /* If none found, then allocate and initialize one. */
5720 tdep = XMALLOC (struct gdbarch_tdep);
5721 gdbarch = gdbarch_alloc (&info, tdep);
5722
5723 /* Determine from the bfd_arch_info structure if we are dealing with
5724 a 32 or 64 bits architecture. If the bfd_arch_info is not available,
5725 then default to a 32bit machine. */
5726 if (info.bfd_arch_info != NULL)
5727 tdep->bytes_per_address =
5728 info.bfd_arch_info->bits_per_address / info.bfd_arch_info->bits_per_byte;
5729 else
5730 tdep->bytes_per_address = 4;
5731
5732 /* Some parts of the gdbarch vector depend on whether we are running
5733 on a 32 bits or 64 bits target. */
5734 switch (tdep->bytes_per_address)
5735 {
5736 case 4:
5737 set_gdbarch_num_regs (gdbarch, hppa32_num_regs);
5738 set_gdbarch_register_name (gdbarch, hppa32_register_name);
5739 set_gdbarch_deprecated_register_virtual_type
5740 (gdbarch, hppa32_register_virtual_type);
5741 break;
5742 case 8:
5743 set_gdbarch_num_regs (gdbarch, hppa64_num_regs);
5744 set_gdbarch_register_name (gdbarch, hppa64_register_name);
5745 set_gdbarch_deprecated_register_virtual_type
5746 (gdbarch, hppa64_register_virtual_type);
5747 break;
5748 default:
5749 internal_error (__FILE__, __LINE__, "Unsupported address size: %d",
5750 tdep->bytes_per_address);
5751 }
5752
5753 /* The following gdbarch vector elements depend on other parts of this
5754 vector which have been set above, depending on the ABI. */
5755 set_gdbarch_deprecated_register_bytes
5756 (gdbarch, gdbarch_num_regs (gdbarch) * tdep->bytes_per_address);
5757 set_gdbarch_long_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5758 set_gdbarch_ptr_bit (gdbarch, tdep->bytes_per_address * TARGET_CHAR_BIT);
5759
5760 /* The following gdbarch vector elements are the same in both ILP32
5761 and LP64, but might show differences some day. */
5762 set_gdbarch_long_long_bit (gdbarch, 64);
5763 set_gdbarch_long_double_bit (gdbarch, 128);
5764 set_gdbarch_long_double_format (gdbarch, &floatformat_ia64_quad_big);
5765
5766 /* The following gdbarch vector elements do not depend on the address
5767 size, or in any other gdbarch element previously set. */
5768 set_gdbarch_skip_prologue (gdbarch, hppa_skip_prologue);
5769 set_gdbarch_skip_trampoline_code (gdbarch, hppa_skip_trampoline_code);
5770 set_gdbarch_in_solib_call_trampoline (gdbarch, hppa_in_solib_call_trampoline);
5771 set_gdbarch_in_solib_return_trampoline (gdbarch,
5772 hppa_in_solib_return_trampoline);
5773 set_gdbarch_inner_than (gdbarch, hppa_inner_than);
5774 set_gdbarch_deprecated_register_size (gdbarch, tdep->bytes_per_address);
5775 set_gdbarch_deprecated_fp_regnum (gdbarch, 3);
5776 set_gdbarch_sp_regnum (gdbarch, 30);
5777 set_gdbarch_fp0_regnum (gdbarch, 64);
5778 set_gdbarch_deprecated_register_raw_size (gdbarch, hppa_register_raw_size);
5779 set_gdbarch_deprecated_register_byte (gdbarch, hppa_register_byte);
5780 set_gdbarch_deprecated_register_virtual_size (gdbarch, hppa_register_raw_size);
5781 set_gdbarch_deprecated_max_register_raw_size (gdbarch, tdep->bytes_per_address);
5782 set_gdbarch_deprecated_max_register_virtual_size (gdbarch, 8);
5783 set_gdbarch_cannot_store_register (gdbarch, hppa_cannot_store_register);
5784 set_gdbarch_addr_bits_remove (gdbarch, hppa_smash_text_address);
5785 set_gdbarch_smash_text_address (gdbarch, hppa_smash_text_address);
5786 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
5787 set_gdbarch_read_pc (gdbarch, hppa_target_read_pc);
5788 set_gdbarch_write_pc (gdbarch, hppa_target_write_pc);
5789 set_gdbarch_deprecated_target_read_fp (gdbarch, hppa_target_read_fp);
5790
5791 /* Helper for function argument information. */
5792 set_gdbarch_fetch_pointer_argument (gdbarch, hppa_fetch_pointer_argument);
5793
5794 set_gdbarch_print_insn (gdbarch, print_insn_hppa);
5795
5796 /* When a hardware watchpoint triggers, we'll move the inferior past
5797 it by removing all eventpoints; stepping past the instruction
5798 that caused the trigger; reinserting eventpoints; and checking
5799 whether any watched location changed. */
5800 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5801
5802 /* Inferior function call methods. */
5803 switch (tdep->bytes_per_address)
5804 {
5805 case 4:
5806 set_gdbarch_push_dummy_call (gdbarch, hppa32_push_dummy_call);
5807 set_gdbarch_frame_align (gdbarch, hppa32_frame_align);
5808 break;
5809 case 8:
5810 set_gdbarch_push_dummy_call (gdbarch, hppa64_push_dummy_call);
5811 set_gdbarch_frame_align (gdbarch, hppa64_frame_align);
5812 break;
5813 default:
5814 internal_error (__FILE__, __LINE__, "bad switch");
5815 }
5816
5817 /* Struct return methods. */
5818 switch (tdep->bytes_per_address)
5819 {
5820 case 4:
5821 set_gdbarch_return_value (gdbarch, hppa32_return_value);
5822 break;
5823 case 8:
5824 set_gdbarch_return_value (gdbarch, hppa64_return_value);
5825 default:
5826 internal_error (__FILE__, __LINE__, "bad switch");
5827 }
5828
5829 /* Frame unwind methods. */
5830 set_gdbarch_unwind_dummy_id (gdbarch, hppa_unwind_dummy_id);
5831 set_gdbarch_unwind_pc (gdbarch, hppa_unwind_pc);
5832 frame_unwind_append_sniffer (gdbarch, hppa_frame_unwind_sniffer);
5833 frame_base_append_sniffer (gdbarch, hppa_frame_base_sniffer);
5834
5835 /* Hook in ABI-specific overrides, if they have been registered. */
5836 gdbarch_init_osabi (info, gdbarch);
5837
5838 return gdbarch;
5839 }
5840
5841 static void
5842 hppa_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5843 {
5844 /* Nothing to print for the moment. */
5845 }
5846
5847 void
5848 _initialize_hppa_tdep (void)
5849 {
5850 struct cmd_list_element *c;
5851 void break_at_finish_command (char *arg, int from_tty);
5852 void tbreak_at_finish_command (char *arg, int from_tty);
5853 void break_at_finish_at_depth_command (char *arg, int from_tty);
5854
5855 gdbarch_register (bfd_arch_hppa, hppa_gdbarch_init, hppa_dump_tdep);
5856
5857 add_cmd ("unwind", class_maintenance, unwind_command,
5858 "Print unwind table entry at given address.",
5859 &maintenanceprintlist);
5860
5861 deprecate_cmd (add_com ("xbreak", class_breakpoint,
5862 break_at_finish_command,
5863 concat ("Set breakpoint at procedure exit. \n\
5864 Argument may be function name, or \"*\" and an address.\n\
5865 If function is specified, break at end of code for that function.\n\
5866 If an address is specified, break at the end of the function that contains \n\
5867 that exact address.\n",
5868 "With no arg, uses current execution address of selected stack frame.\n\
5869 This is useful for breaking on return to a stack frame.\n\
5870 \n\
5871 Multiple breakpoints at one place are permitted, and useful if conditional.\n\
5872 \n\
5873 Do \"help breakpoints\" for info on other commands dealing with breakpoints.", NULL)), NULL);
5874 deprecate_cmd (add_com_alias ("xb", "xbreak", class_breakpoint, 1), NULL);
5875 deprecate_cmd (add_com_alias ("xbr", "xbreak", class_breakpoint, 1), NULL);
5876 deprecate_cmd (add_com_alias ("xbre", "xbreak", class_breakpoint, 1), NULL);
5877 deprecate_cmd (add_com_alias ("xbrea", "xbreak", class_breakpoint, 1), NULL);
5878
5879 deprecate_cmd (c = add_com ("txbreak", class_breakpoint,
5880 tbreak_at_finish_command,
5881 "Set temporary breakpoint at procedure exit. Either there should\n\
5882 be no argument or the argument must be a depth.\n"), NULL);
5883 set_cmd_completer (c, location_completer);
5884
5885 if (xdb_commands)
5886 deprecate_cmd (add_com ("bx", class_breakpoint,
5887 break_at_finish_at_depth_command,
5888 "Set breakpoint at procedure exit. Either there should\n\
5889 be no argument or the argument must be a depth.\n"), NULL);
5890 }
5891
This page took 0.15042 seconds and 5 git commands to generate.